WO2020233290A1 - 一种动态变形下基于双重滤波器的传递对准方法 - Google Patents

一种动态变形下基于双重滤波器的传递对准方法 Download PDF

Info

Publication number
WO2020233290A1
WO2020233290A1 PCT/CN2020/084846 CN2020084846W WO2020233290A1 WO 2020233290 A1 WO2020233290 A1 WO 2020233290A1 CN 2020084846 W CN2020084846 W CN 2020084846W WO 2020233290 A1 WO2020233290 A1 WO 2020233290A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
angular velocity
main
angle
sub
Prior art date
Application number
PCT/CN2020/084846
Other languages
English (en)
French (fr)
Inventor
陈熙源
杨萍
方琳
王俊玮
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/275,506 priority Critical patent/US11912433B2/en
Publication of WO2020233290A1 publication Critical patent/WO2020233290A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/0005Devices specially adapted to indicate the position of a movable element of the aircraft, e.g. landing gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration

Definitions

  • the invention belongs to the technical field of inertial navigation.
  • the inertial navigation system is used to measure the deformation of the wing of an aircraft, which relates to the process of calibrating a low-precision sub-inertial navigation system by a high-precision main inertial navigation system, and specifically relates to a dual filter based on dynamic deformation
  • the transfer alignment method is used to measure the deformation of the wing of an aircraft, which relates to the process of calibrating a low-precision sub-inertial navigation system by a high-precision main inertial navigation system, and specifically relates to a dual filter based on dynamic deformation The transfer alignment method.
  • the carrying capacity of the aircraft is limited, especially the wing part. Therefore, the dynamic deformation measurement of the aircraft wing has very strict requirements on the weight and size of the measuring equipment, and the measurement accuracy of the IMU unit is proportional to the weight and size. At the same time, a high-precision IMU is installed.
  • the aircraft wing deformation measurement adopts the fuselage-mounted high-precision POS, while the wing part uses the low-precision IMU unit to obtain the high-precision position and attitude information of each positioning point through the transfer and alignment between the main and subsystems.
  • the additional speed, angular velocity and angle generated by the flexural deformation between the main and sub are the main factors that affect its accuracy.
  • the existing dynamic deformation measurement of aircraft wings regards the wing as a rigid body without considering the flexural deformation. The accuracy is difficult to achieve the required accuracy.
  • the objective of the present invention is to provide a dual filter-based transfer alignment method under dynamic deformation, which can measure the difference between the movement of the aircraft body and the dynamic deformation during the alignment process of the aircraft wing dynamic deformation measurement.
  • Geometric modeling and mathematical analysis of the error angle and angular velocity caused by coupling are carried out to derive the expressions of coupling angle and angular velocity, and the transfer alignment filter is divided into two parts. The first part estimates the bending deformation angle and the coupling angle.
  • the attitude matching method is adopted; the second part estimates the dynamic lever arm and adopts the "speed + angular velocity" matching method. This design improves the transfer alignment accuracy and shortens the transfer alignment process time.
  • a transfer alignment method based on dual filters under dynamic deformation is applied to an aircraft wing deformation measurement system, wherein the main inertial navigation system is installed in the cabin and the sub inertial navigation system is installed in the wing.
  • the method includes the following steps:
  • step (3) Use the bending deformation angle and coupling angle estimated in step (2) to establish a dynamic lever arm model, and derive the velocity error expression and the angular velocity error expression;
  • step (3) Using the velocity error expression and angular velocity error expression derived in step (3), using the "velocity + angular velocity" matching method, the model of filter 2 is established to estimate the initial attitude error of the sub-inertial navigation system, and this error It is used for the initial attitude calibration of the sub-inertial navigation system to complete the transfer alignment process.
  • step (1) geometric analysis is performed on the bending deformation, and the coupling angle caused by the dynamic deformation of the carrier and the movement of the carrier is derived
  • the expression is:
  • the bending deformation angle, the bending deformation angular velocity, and the coupling angle are used as state variables, and the posture matching method is used to establish the filter 1 model, which is specifically as follows:
  • F 1 represents the state transition matrix of filter 1
  • G 1 represents the system noise allocation matrix of filter 1
  • w 1 represents the system noise of filter 1
  • the state transition matrix F 1 is expressed as:
  • y 1 represents the difference between the true attitude value and the filter estimated value
  • H 1 represents the filter 1 measurement matrix
  • ⁇ 1 represents the filter 1 measurement noise.
  • the derived velocity error expression and angular velocity error expression are specifically as follows:
  • the angular velocity error expression is:
  • the speed error expression is:
  • Is the rotation of the navigation system caused by the rotation of the earth Is the rotation of the navigation system caused by the curvature of the earth’s surface as the subsystem moves on the earth’s surface, Respectively represent the velocity vectors of the main and subsystems in the navigation coordinate system, Is the bending deformation angle between the main and sub inertial navigation, Is the coupling angle between the master and sub inertial navigation, Indicates the angular velocity of the main system under the navigation system, Represents the conversion matrix between the subsystem and the navigation coordinate system, Indicates that the sub-system accelerometer measures zero offset, Represents the specific force of the subsystem in the navigation coordinate system, Represents the dynamic lever arm, Represents the lever arm in the static state, x 0 y 0 z 0 represents the lever arm in the static state in the three directions of east, north and sky respectively, R 0 can be expressed as:
  • the filter 2 adopts "speed + angular velocity" matching, and uses the velocity error expression and the angular velocity error expression derived in step (3) to establish a quantity measurement equation and establish a Kalman filter model, details as follows:
  • G 2 represents the filter 2 system noise allocation matrix
  • w 2 represents the filter 2 system noise
  • F 2 is expressed as:
  • y 2 represents the difference between the actual value of the velocity and angular velocity and the estimated value of the filter
  • ⁇ 2 represents the noise measured by the filter 2
  • the present invention considers the rigid body motion and dynamic elastic deformation coupling error between the carrier motion main and subsystems, and performs spatial geometry on the angle and angular velocity errors between the main and subsystems under dynamic elastic deformation. Modeling and mathematical analysis are used to obtain the coupling angle error between the main and sub-systems under dynamic deformation. From this, the angular velocity error expression between the main and sub-systems under dynamic deformation is derived, and the double filter method is adopted.
  • the filters are synchronized and fused in the last step; the traditional transfer alignment process does not consider the coupling error between dynamic deformation and body motion, and the transfer alignment accuracy cannot meet the requirements of high-precision transfer alignment.
  • the 24-dimensional filter requires a large amount of calculation.
  • the present invention performs geometric analysis on the coupling angle between the main and sub-systems to obtain the expression of the coupling angle, and divides the state quantity into two groups, respectively in the two filters Simultaneously, this design reduces the time of the transfer alignment process while improving the transfer alignment accuracy.
  • Figure 1 is a flow chart of the transfer alignment based on the dual filter of the present invention
  • Figure 2 is a schematic diagram of the spatial relationship between the angular velocity vector and the additional dynamic bending angular velocity vector
  • Figure 3 is a schematic diagram of the coupling angle between the main and sub-inertial navigation (projected to the yoz plane) under dynamic deformation;
  • Figure 4 is a schematic diagram of the relative position of the main and subsystems.
  • the implementation of the present invention proposes a dual filter-based transfer alignment method under dynamic deformation.
  • a trajectory simulator is used to simulate the attitude, speed, position and output data of the inertial device of the aircraft's main system.
  • Markov simulation outputs the bending deformation angle between the main and subsystems And bending angular velocity Decouple the carrier motion and flexure deformation, obtain the coupling angle and use it as the state quantity of filter 1, adopting attitude matching;
  • filter 2 uses the result of filter 1 to compensate the lever arm error, and adopts speed + angular velocity matching method.
  • Step 1 The trajectory generator generates the attitude, velocity and position information of the main inertial navigation system and the output of inertial devices (gyro and accelerometer), and uses the second-order Markov to simulate the bending deformation between the main inertial navigation system and the sub-inertial navigation system angle And bending angular velocity Geometric analysis of the bending deformation is carried out, and the coupling angle between the main and sub-systems caused by the dynamic deformation between the main and the sub-systems is derived Bending deformation angle between main and subsystem It can be expressed as a second-order Markov:
  • the subscripts x, y, z represent the three directions of east, north and sky respectively, Is the coupling error angle between the main and subsystems caused by the coupling angular velocity of bending deformation, namely versus The angle of Then there are:
  • M can be expressed as:
  • Step 2 Take the bending deformation angle, the bending deformation angular velocity and the coupling angle as the state quantities, and use the attitude matching method to establish the model of filter 1, as follows:
  • F 1 represents the state transition matrix
  • G 1 represents the system noise allocation matrix
  • w 1 represents the system noise
  • y 1 represents the difference between the true value of the attitude and the estimated value of the filter
  • H 1 represents the measurement matrix
  • ⁇ 1 represents Filter 1 measures noise
  • Step 3 Derive the velocity error expression and angular velocity error expression, as follows:
  • the coupling error angle vector between the main and subsystems is Then the conversion matrix between the main and subsystems can be expressed as The error angular velocity between the main and subsystems can be expressed as:
  • the dynamic lever arm vector can be expressed as:
  • Step 4 Pass the alignment filter 2 with "speed + angular velocity" matching, use the velocity error expression and angular velocity error expression derived in step 3 to establish a quantity measurement equation, establish a Kalman filter model, and estimate the initial attitude error of the child node , And use this error for the initial posture calibration of the child nodes to complete the transfer alignment process.
  • the state quantity of filter 2 selected in this step is:
  • G 2 represents the system noise distribution matrix of filter 2
  • w 2 represents the system noise of filter 2
  • F 2 is represented as:
  • y 2 represents the difference between the actual value of the velocity and angular velocity and the estimated value of the filter
  • ⁇ 2 represents the noise measured by the filter 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

一种动态变形下基于双重滤波器的传递对准方法,动态变形下产生的动态变形角以及动态变形和机体运动之间的耦合角会降低传递对准的精度;将传递对准滤波器分为两部分,第一部分针对弯曲变形角和耦合角进行估计,采用姿态匹配方法;第二部分针对动态杠杆臂进行估计,采用"速度+角速度"匹配方法。

Description

一种动态变形下基于双重滤波器的传递对准方法 技术领域
本发明属于惯性导航技术领域,利用惯性导航系统测量飞机的机翼变形,其中涉及高精度主惯导系统对低精度子惯导系统进行校准的过程,具体涉及一种动态变形下基于双重滤波器的传递对准方法。
背景技术
飞机的承载能力有限,特别是机翼部分,因此飞机机翼动态变形测量对测量设备的重量和尺寸有非常严格的要求,而IMU单元的测量精度与重量和尺寸成正比,每个负载处无法同时安装高精度的IMU。
目前飞机机翼变形测量采用机身安装高精度的POS,而机翼部分则采用低精度IMU单元,通过主、子系统间传递对准获取各定位点的高精度位置、姿态信息。但是主、子之间挠曲变形产生的附加速度、角速度和角度是影响其精度的主要因素,现有的飞机机翼动态变形测量将机翼视为刚体,不考虑挠曲变形,其传递对准精度难以达到所需要的精度。
发明内容
发明目的:针对现有技术的不足,本发明目的在于提供一种动态变形下基于双重滤波器的传递对准方法,对飞机机翼动态变形测量传递对准过程中机体运动和动态变形之间的耦合所引起的误差角度和角速度进行几何建模和数学分析,推导出耦合角度和角速度的表达 式,并将传递对准滤波器分为两部分,第一部分针对弯曲变形角和耦合角进行估计,采用姿态匹配方法;第二部分针对动态杠杆臂进行估计,采用“速度+角速度”匹配方法,此设计在提高传递对准精度的前提下,同时缩短了传递对准过程的时间。
技术方案:为实现上述发明目的,本发明采用的技术方案如下:
一种动态变形下基于双重滤波器的传递对准方法,应用于飞机机翼变形测量系统中,其中主惯导系统安装在机舱,子惯导系统安装在机翼,该方法包括以下步骤:
(1)用轨迹发生器产生主惯导系统的姿态、速度和位置信息以及陀螺仪和加速度计的输出,用二阶马尔科夫模拟主、子惯导之间的弯曲变形角
Figure PCTCN2020084846-appb-000001
和弯曲变形角速度
Figure PCTCN2020084846-appb-000002
对弯曲变形进行几何分析,推导出由载体动态变形和载体运动所引起的耦合角度
Figure PCTCN2020084846-appb-000003
表达式;
(2)将弯曲变形角、弯曲变形角速度和耦合角作为状态量,采用姿态匹配方法,建立滤波器1模型;
(3)利用步骤(2)中估计的弯曲变形角和耦合角建立动态杠杆臂模型,推导速度误差表达式和角速度误差表达式;
(4)利用步骤(3)推导的速度误差表达式和角速度误差表达式,采用“速度+角速度”匹配方法,建立滤波器2的模型,估计子惯导系统的初始姿态误差,并将此误差用于子惯导系统的初始姿态校准,完成传递对准过程。
进一步地,所述步骤(1)中,对弯曲变形进行几何分析,推导出由载体动态变形和载体运动所引起的耦合角度
Figure PCTCN2020084846-appb-000004
表达式为:
Figure PCTCN2020084846-appb-000005
其中,
Figure PCTCN2020084846-appb-000006
M表示为:
Figure PCTCN2020084846-appb-000007
其中,
Figure PCTCN2020084846-appb-000008
分别表示东、北、天三个方向下子惯导系统角速度理想值。
进一步地,所述步骤(2)中,将弯曲变形角、弯曲变形角速度和耦合角作为状态量,采用姿态匹配方法建立滤波器1模型,具体如下:
选取滤波器1的状态量为:
Figure PCTCN2020084846-appb-000009
其中,
Figure PCTCN2020084846-appb-000010
表示姿态误差,
Figure PCTCN2020084846-appb-000011
表示子系统陀螺仪测量零漂,
Figure PCTCN2020084846-appb-000012
表示主、子系统之间的初始安装角误差;
滤波器1的状态方程为:
Figure PCTCN2020084846-appb-000013
其中,F 1表示滤波器1状态转移矩阵,G 1表示滤波器1系统噪声分配矩阵,w 1表示滤波器1系统噪声,状态转移矩阵F 1表示为:
Figure PCTCN2020084846-appb-000014
其中,
Figure PCTCN2020084846-appb-000015
表示导航系相对于惯性系的旋转,
Figure PCTCN2020084846-appb-000016
表示反对称矩阵,
Figure PCTCN2020084846-appb-000017
表示子系统理想坐标系与导航坐标系之间的转换矩阵,
Figure PCTCN2020084846-appb-000018
表示东、北、天三个方向上二阶马尔科夫模型的系数,F 64=MB 2,F 65=MB 1
系统量测方程为:
y 1=H 1x 11
其中,y 1表示姿态真实值与滤波器估计值的差值,H 1表示滤波器1量测矩阵,μ 1表示滤波器1量测噪声。
进一步地,所述步骤(3)中,推导出的速度误差表达式和角速度误差表达式,具体如下:
角速度误差表达式为:
Figure PCTCN2020084846-appb-000019
其中,
Figure PCTCN2020084846-appb-000020
表示主系统坐标系下主系统的角速度,
Figure PCTCN2020084846-appb-000021
表示主、子系统之间的理想误差角,
Figure PCTCN2020084846-appb-000022
表示幅值矩阵,
Figure PCTCN2020084846-appb-000023
表示
Figure PCTCN2020084846-appb-000024
方向上的单位矩阵,
Figure PCTCN2020084846-appb-000025
表示子系统坐标系下子系统的角速度,U=[1 1 1] T
速度误差表达式为:
Figure PCTCN2020084846-appb-000026
其中,
Figure PCTCN2020084846-appb-000027
为地球自转引起的导航系旋转,
Figure PCTCN2020084846-appb-000028
为子系统在地球表面移动因地球表面弯曲引起的导航系的旋转,
Figure PCTCN2020084846-appb-000029
Figure PCTCN2020084846-appb-000030
分别表示主、子系统在导航坐标系下的速度矢量,
Figure PCTCN2020084846-appb-000031
为主、子惯导之间的弯曲变形角,
Figure PCTCN2020084846-appb-000032
为主、子惯导之间的耦合角,
Figure PCTCN2020084846-appb-000033
表示导航系下主系统的角速度,
Figure PCTCN2020084846-appb-000034
表示子系统与导航坐标系之间的转换矩阵,
Figure PCTCN2020084846-appb-000035
表示子系统加速度计测量零偏,
Figure PCTCN2020084846-appb-000036
表示子系统在导航坐标系下的比力,
Figure PCTCN2020084846-appb-000037
表示动态杠杆臂,
Figure PCTCN2020084846-appb-000038
表示静止状态下杠杆臂,x 0 y 0 z 0分别表示东、北、天三个方向的静止状态下杠杆臂,R 0可表示为:
Figure PCTCN2020084846-appb-000039
进一步地,所述步骤(4)中,滤波器2采用“速度+角速度”匹配,利用步骤(3)推导的速度误差表达式和角速度误差表达式建立量测量方程,建立卡尔曼滤波器模型,具体如下:
选取卡尔曼滤波器2的状态量为:
Figure PCTCN2020084846-appb-000040
其中,
Figure PCTCN2020084846-appb-000041
表示速度误差,
Figure PCTCN2020084846-appb-000042
表示子系统加速度计测量零偏;
滤波器的状态方程为:
Figure PCTCN2020084846-appb-000043
其中,G 2表示滤波器2系统噪声分配矩阵,w 2表示滤波器2系统噪声,状态转移矩阵F 2表示为:
Figure PCTCN2020084846-appb-000044
其中,
Figure PCTCN2020084846-appb-000045
F 13=R 0B 2+R 0M(B 1B 2+B 2),
Figure PCTCN2020084846-appb-000046
F 53=R 0MB 2,F 54=R 0+R 0MB 1,系统量测方程为:
y 2=H 2x 22
其中,y 2表示速度、角速度真实值与滤波器估计值的差值,μ 2表示滤波器2量测噪声,
Figure PCTCN2020084846-appb-000047
有益效果:与现有技术相比,本发明考虑了载体运动主、子系统之间刚体运动和动态弹性形变耦合误差,对动态弹性变形下主、子系统之间的角度和角速度误差进行空间几何建模和数学分析,得出动态形变下主、子系统之间的耦合角度误差,由此推导出动态形变下主、子系统之间的角速度误差表达式,并采用双重滤波器的方法,两滤波器同步进行,在最后一步进行融合;传统的传递对准过程,不考虑动态形变和机体运动之间的耦合误差,传递对准精度无法达到高精度传递对准的要求,另一方面,采用24维的滤波器,计算量大,本发明对主、子系统之间的耦合角度进行几何分析,得出耦合角度的表达式,并将状态量分为两组,分别在两个滤波器中同步进行,此设计在提高传递对准精度的前提下,同时缩短了传递对准过程的时间。
附图说明
图1为本发明基于双重滤波器的传递对准流程图;
图2为角速度矢量与附加动态弯曲角速度矢量之间的空间关系示意图;
图3为动态变形下主、子惯导之间耦合角度(投影到yoz平面)示意图;
图4为主、子系统相对位置关系示意图。
具体实施方式
以下结合具体的实施方案和附图对本发明作进一步详细说明:
如图1所示,本发明实施提出的一种动态变形下基于双重滤波器的传递对准方法,用轨迹模拟器模拟飞机主系统的姿态、速度、位置和惯性器件的输出数据,同时采用二阶马尔科夫模拟输出主、子系统之间的弯曲变形角
Figure PCTCN2020084846-appb-000048
和弯曲变形角速度
Figure PCTCN2020084846-appb-000049
对载体运动和挠曲变形解耦合,得到耦合角并将其作为滤波器1的状态量,采用姿态匹配;滤波器2利用滤波器1的结果对杠杆臂误差进行补偿,并采用速度+角速度匹配方法。下面进行详细的分析:
步骤1:轨迹发生器产生主惯导系统的姿态、速度和位置信息以及惯性器件(陀螺仪和加速度计)的输出,用二阶马尔科夫模拟主惯导与子惯导之间的弯曲变形角
Figure PCTCN2020084846-appb-000050
和弯曲变形角速度
Figure PCTCN2020084846-appb-000051
并对弯曲变形进行几何分析,推导出由主、子系统之间动态变形所引起的主、子系统之间的耦合角度
Figure PCTCN2020084846-appb-000052
主、子系统之间弯曲变形角
Figure PCTCN2020084846-appb-000053
可用二阶马尔 科夫表示为:
Figure PCTCN2020084846-appb-000054
其中,β=2.146/τ,τ表示相关时间,
Figure PCTCN2020084846-appb-000055
表示高斯白噪声,主、子系统之间的理想误差角矢量
Figure PCTCN2020084846-appb-000056
表示为:
Figure PCTCN2020084846-appb-000057
Figure PCTCN2020084846-appb-000058
其中,
Figure PCTCN2020084846-appb-000059
表示理想状态下子系统陀螺仪的输出,
Figure PCTCN2020084846-appb-000060
表示主系统陀螺仪的输出,
Figure PCTCN2020084846-appb-000061
表示主、子系统之间的姿态矩阵,
Figure PCTCN2020084846-appb-000062
表示主系统初始安装误差角矢量,
Figure PCTCN2020084846-appb-000063
表示弯曲变形角,由于动态弯曲变形的作用,产生了附加的角速度
Figure PCTCN2020084846-appb-000064
其可表示为
Figure PCTCN2020084846-appb-000065
则如图2所示,实际状态下子系统的角速度输出
Figure PCTCN2020084846-appb-000066
可表示为:
Figure PCTCN2020084846-appb-000067
取弯曲变形耦合角速度所引起的主、子系统之间的耦合误差角矢量为
Figure PCTCN2020084846-appb-000068
Figure PCTCN2020084846-appb-000069
下标x,y,z分别表示东、北、天三个方向,
Figure PCTCN2020084846-appb-000070
为弯曲变形耦合角速度所引起的主、子系统之间的耦合误差角,即
Figure PCTCN2020084846-appb-000071
Figure PCTCN2020084846-appb-000072
的夹角,取
Figure PCTCN2020084846-appb-000073
则有:
Figure PCTCN2020084846-appb-000074
如图3所示,由几何关系有:
Figure PCTCN2020084846-appb-000075
用泰勒级数将反正切函数arctan展开,并略去高次项,可得:
Figure PCTCN2020084846-appb-000076
其中,M可表示为:
Figure PCTCN2020084846-appb-000077
步骤2:将弯曲变形角、弯曲变形角速度和耦合角作为状态量,采用姿态匹配方法建立滤波器1的模型,具体如下:
选取滤波器1的状态量为:
Figure PCTCN2020084846-appb-000078
其中,
Figure PCTCN2020084846-appb-000079
表示姿态误差,
Figure PCTCN2020084846-appb-000080
表示子系统陀螺仪测量零漂,
Figure PCTCN2020084846-appb-000081
表示主、子系统之间的初始安装角误差;
滤波器1的状态方程为:
Figure PCTCN2020084846-appb-000082
其中,F 1表示状态转移矩阵,G 1表示系统噪声分配矩阵,w 1表示系统噪声,根据步骤(1)中得到的耦合角模型,状态转移矩阵F 1可表示为:
Figure PCTCN2020084846-appb-000083
其中,
Figure PCTCN2020084846-appb-000084
表示导航系相对于惯性系的旋转,
Figure PCTCN2020084846-appb-000085
表示反对称矩阵,
Figure PCTCN2020084846-appb-000086
表示子系统理想坐标系与导航坐标系之间的转换矩阵,
Figure PCTCN2020084846-appb-000087
表示x,y,z三个方向上二阶马尔科夫模型的系数,F 64=MB 2,F 65=MB 1
系统量测方程为:
y 1=H 1x 11
其中,y 1表示姿态真实值与滤波器估计值的差值,H 1表示量测矩阵,H矩阵的具体表达式见文献“Multi-node Transfer Alignment based on Mechanics Modeling for Airborne DPOS”,μ 1表示滤波器1量测噪声;
步骤3:推导速度误差表达式和角速度误差表达式,具体如下:
主、子系统之间的角速度之差
Figure PCTCN2020084846-appb-000088
可表示为:
Figure PCTCN2020084846-appb-000089
Figure PCTCN2020084846-appb-000090
其中,主、子系统之间的耦合误差角矢量为
Figure PCTCN2020084846-appb-000091
则主、子系统之间的转换矩阵可以表示为
Figure PCTCN2020084846-appb-000092
主、子系统之间的误差角速度可以表示为:
Figure PCTCN2020084846-appb-000093
其中,
Figure PCTCN2020084846-appb-000094
Figure PCTCN2020084846-appb-000095
Figure PCTCN2020084846-appb-000096
上的投影,由于主系统到子系统之间的旋转矢量
Figure PCTCN2020084846-appb-000097
为小量,则有
Figure PCTCN2020084846-appb-000098
故有:
Figure PCTCN2020084846-appb-000099
其中,
Figure PCTCN2020084846-appb-000100
表示反对称矩阵,取
Figure PCTCN2020084846-appb-000101
为:
Figure PCTCN2020084846-appb-000102
其中,
Figure PCTCN2020084846-appb-000103
表示幅值矩阵,
Figure PCTCN2020084846-appb-000104
表示
Figure PCTCN2020084846-appb-000105
方向上的单位矩阵,
Figure PCTCN2020084846-appb-000106
表示
Figure PCTCN2020084846-appb-000107
Figure PCTCN2020084846-appb-000108
之间的夹角矢量,
Figure PCTCN2020084846-appb-000109
表示由
Figure PCTCN2020084846-appb-000110
Figure PCTCN2020084846-appb-000111
之间的转换矩阵,
Figure PCTCN2020084846-appb-000112
其中,U=[1 1 1] T,且有:
Figure PCTCN2020084846-appb-000113
符号||表示求模,将
Figure PCTCN2020084846-appb-000114
代入
Figure PCTCN2020084846-appb-000115
的表达式,则有:
Figure PCTCN2020084846-appb-000116
Figure PCTCN2020084846-appb-000117
代入
Figure PCTCN2020084846-appb-000118
的表达式,则有:
Figure PCTCN2020084846-appb-000119
主、子系统之间的位置关系如图4所示,表达式为:
Figure PCTCN2020084846-appb-000120
其中,
Figure PCTCN2020084846-appb-000121
分别表示主、子节点到地心的矢量,
Figure PCTCN2020084846-appb-000122
表示主、子节点之间的动态杠杆臂矢量,则在惯性系下可表示为:
Figure PCTCN2020084846-appb-000123
其中,
Figure PCTCN2020084846-appb-000124
表示主系统到惯性系的转换矩阵,
Figure PCTCN2020084846-appb-000125
表示主系统坐标系下动态杠杆臂矢量,根据牛顿第二定律,有:
Figure PCTCN2020084846-appb-000126
Figure PCTCN2020084846-appb-000127
其中,
Figure PCTCN2020084846-appb-000128
表示子系统在惯性系下的比力,
Figure PCTCN2020084846-appb-000129
表示主系统在惯性系下的比力,g表示重力加速度,
Figure PCTCN2020084846-appb-000130
表示地球自转角速度,联立上式有:
Figure PCTCN2020084846-appb-000131
由于,主、子系统速度矢量微分方程可表示为:
Figure PCTCN2020084846-appb-000132
Figure PCTCN2020084846-appb-000133
其中,
Figure PCTCN2020084846-appb-000134
分别表示主、子系统在导航坐标系下的速度矢量,
Figure PCTCN2020084846-appb-000135
为地球自转引起的导航系旋转,
Figure PCTCN2020084846-appb-000136
为子系统在地球表面移动因地球表面弯曲引起的导航系的旋转,
Figure PCTCN2020084846-appb-000137
表示导航系下主系统的角速度,
Figure PCTCN2020084846-appb-000138
表示子系统在导航坐标系下的比力,
Figure PCTCN2020084846-appb-000139
表示子系统加速度计测量零偏,速度误差矢量方程表示为:
Figure PCTCN2020084846-appb-000140
将上式两边微分有:
Figure PCTCN2020084846-appb-000141
动态杠杆臂矢量可表示为:
Figure PCTCN2020084846-appb-000142
Figure PCTCN2020084846-appb-000143
其中,
Figure PCTCN2020084846-appb-000144
表示静止状态下杠杆臂,x 0 y 0 z 0分别表示东、北、天三个方向的静止状态下杠杆臂,
Figure PCTCN2020084846-appb-000145
将上式两边微分 有:
Figure PCTCN2020084846-appb-000146
Figure PCTCN2020084846-appb-000147
将动态杠杆臂表达式代入速度误差矢量表达式中,有:
Figure PCTCN2020084846-appb-000148
步骤4:传递对准滤波器2采用“速度+角速度”匹配,利用步骤3推导的速度误差表达式和角速度误差表达式建立量测量方程,建立卡尔曼滤波器模型,估计子节点的初始姿态误差,并将此误差用于子节点的初始姿态校准,完成传递对准过程。
本步骤中选取滤波器2的状态量为:
Figure PCTCN2020084846-appb-000149
其中,
Figure PCTCN2020084846-appb-000150
表示速度误差,
Figure PCTCN2020084846-appb-000151
表示子系统加速度计测量零偏;
滤波器的状态方程为:
Figure PCTCN2020084846-appb-000152
其中,G 2表示滤波器2的系统噪声分配矩阵,w 2表示滤波器2的系统噪声,F 2表示为:
Figure PCTCN2020084846-appb-000153
其中,
Figure PCTCN2020084846-appb-000154
F 13=R 0B 2+R 0M(B 1B 2+B 2),
Figure PCTCN2020084846-appb-000155
Figure PCTCN2020084846-appb-000156
F 53=R 0MB 2,F 54=R 0+R 0MB 1,系统量测方程为:
y 2=H 2x 22
其中,y 2表示速度、角速度真实值与滤波器估计值的差值,μ 2表示滤波器2量测噪声,
Figure PCTCN2020084846-appb-000157

Claims (5)

  1. 一种动态变形下基于双重滤波器的传递对准方法,应用于飞机机翼变形测量系统中,其中主惯导系统安装在机舱,子惯导系统安装在机翼,其特征在于,包括以下步骤:
    (1)用轨迹发生器产生主惯导系统的姿态、速度和位置信息以及陀螺仪和加速度计的输出,用二阶马尔科夫模拟主、子惯导之间的弯曲变形角
    Figure PCTCN2020084846-appb-100001
    和弯曲变形角速度
    Figure PCTCN2020084846-appb-100002
    对弯曲变形进行几何分析,推导出由载体动态变形和载体运动所引起的耦合角度
    Figure PCTCN2020084846-appb-100003
    表达式;
    (2)将弯曲变形角、弯曲变形角速度和耦合角作为状态量,采用姿态匹配方法,建立滤波器1模型;
    (3)利用步骤(2)中估计的弯曲变形角和耦合角建立动态杠杆臂模型,推导速度误差表达式和角速度误差表达式;
    (4)利用步骤(3)推导的速度误差表达式和角速度误差表达式,采用“速度+角速度”匹配方法,建立滤波器2的模型,估计子惯导系统的初始姿态误差,并将此误差用于子惯导系统的初始姿态校准,完成传递对准过程。
  2. 根据权利要求1所述的一种动态变形下基于双重滤波器的传递对准方法,其特征在于,所述步骤(1)中,对弯曲变形进行几何分析,推导出由载体动态变形和载体运动所引起的耦合角度
    Figure PCTCN2020084846-appb-100004
    表达式为:
    Figure PCTCN2020084846-appb-100005
    其中,
    Figure PCTCN2020084846-appb-100006
    M表示为:
    Figure PCTCN2020084846-appb-100007
    其中,
    Figure PCTCN2020084846-appb-100008
    分别表示东、北、天三个方向下子惯导系统角速度理想值。
  3. 根据权利要求2所述的一种动态变形下基于双重滤波器的传递对准方法,其特征在于,所述步骤(2)中,将弯曲变形角、弯曲变形角速度和耦合角作为状态量,采用姿态匹配方法建立滤波器1模型,具体如下:
    选取滤波器1的状态量为:
    Figure PCTCN2020084846-appb-100009
    其中,
    Figure PCTCN2020084846-appb-100010
    表示姿态误差,
    Figure PCTCN2020084846-appb-100011
    表示子系统陀螺仪测量零漂,
    Figure PCTCN2020084846-appb-100012
    表示主、子系统之间的初始安装角误差;
    滤波器1的状态方程为:
    Figure PCTCN2020084846-appb-100013
    其中,F 1表示滤波器1状态转移矩阵,G 1表示滤波器1系统噪声分配矩阵,w 1表示滤波器1系统噪声,状态转移矩阵F 1表示为:
    Figure PCTCN2020084846-appb-100014
    其中,
    Figure PCTCN2020084846-appb-100015
    表示导航系相对于惯性系的旋转,
    Figure PCTCN2020084846-appb-100016
    表示反对称矩阵,
    Figure PCTCN2020084846-appb-100017
    表示子系统理想坐标系与导航坐标系之间的转换矩阵,
    Figure PCTCN2020084846-appb-100018
    β i(i=x,y,z)表示东、北、天三个方向上二阶马尔科夫模型的系数,F 64=MB 2,F 65=MB 1
    系统量测方程为:
    y 1=H 1x 11
    其中,y 1表示姿态真实值与滤波器估计值的差值,H 1表示滤波器1量测矩阵,μ 1表示滤波器1量测噪声。
  4. 根据权利要求2所述的一种动态变形下基于双重滤波器的传递对准方法,其特征在于,所述步骤(3)中,推导出的速度误差表达式和角速度误差表达式,具体如下:
    角速度误差表达式为:
    Figure PCTCN2020084846-appb-100019
    其中,
    Figure PCTCN2020084846-appb-100020
    表示主系统坐标系下主系统的角速度,
    Figure PCTCN2020084846-appb-100021
    表示主、子系统之间的理想误差角,
    Figure PCTCN2020084846-appb-100022
    表示幅值矩阵,
    Figure PCTCN2020084846-appb-100023
    表示
    Figure PCTCN2020084846-appb-100024
    方向上的单位矩阵,
    Figure PCTCN2020084846-appb-100025
    表示子系统坐标系下子系统的角速度,U=[1 1 1] T
    速度误差表达式为:
    Figure PCTCN2020084846-appb-100026
    其中,
    Figure PCTCN2020084846-appb-100027
    为地球自转引起的导航系旋转,
    Figure PCTCN2020084846-appb-100028
    为子系统在地球表面移动因地球表面弯曲引起的导航系的旋转,
    Figure PCTCN2020084846-appb-100029
    分别表 示主、子系统在导航坐标系下的速度矢量,
    Figure PCTCN2020084846-appb-100030
    为主、子惯导之间的弯曲变形角,
    Figure PCTCN2020084846-appb-100031
    为主、子惯导之间的耦合角,
    Figure PCTCN2020084846-appb-100032
    表示导航系下主系统的角速度,
    Figure PCTCN2020084846-appb-100033
    表示子系统与导航坐标系之间的转换矩阵,
    Figure PCTCN2020084846-appb-100034
    表示子系统加速度计测量零偏,
    Figure PCTCN2020084846-appb-100035
    表示子系统在导航坐标系下的比力,
    Figure PCTCN2020084846-appb-100036
    表示动态杠杆臂,
    Figure PCTCN2020084846-appb-100037
    表示静止状态下杠杆臂,x 0y 0z 0分别表示东、北、天三个方向的静止状态下杠杆臂,R 0可表示为:
    Figure PCTCN2020084846-appb-100038
  5. 权利要求4所述的一种动态变形下基于双重滤波器的传递对准方法,其特征在于,所述步骤(4)中,滤波器2采用“速度+角速度”匹配,利用步骤(3)推导的速度误差表达式和角速度误差表达式建立量测量方程,建立卡尔曼滤波器模型,具体如下:
    选取卡尔曼滤波器2的状态量为:
    Figure PCTCN2020084846-appb-100039
    其中,
    Figure PCTCN2020084846-appb-100040
    表示速度误差,
    Figure PCTCN2020084846-appb-100041
    表示子系统加速度计测量零偏;
    滤波器的状态方程为:
    Figure PCTCN2020084846-appb-100042
    其中,G 2表示滤波器2系统噪声分配矩阵,w 2表示滤波器2系统噪声,状态转移矩阵F 2表示为:
    Figure PCTCN2020084846-appb-100043
    其中,
    Figure PCTCN2020084846-appb-100044
    F 13=R 0B 2+R 0M(B 1B 2+B 2),
    Figure PCTCN2020084846-appb-100045
    Figure PCTCN2020084846-appb-100046
    F 53=R 0MB 2,F 54=R 0+R 0MB 1,系统量测方程为:
    y 2=H 2x 22
    其中,y 2表示速度、角速度真实值与滤波器估计值的差值,μ 2表示滤波器2量测噪声,
    Figure PCTCN2020084846-appb-100047
PCT/CN2020/084846 2019-05-17 2020-04-15 一种动态变形下基于双重滤波器的传递对准方法 WO2020233290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/275,506 US11912433B2 (en) 2019-05-17 2020-04-15 Dual-filter-based transfer alignment method under dynamic deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910413535.4A CN110371318B (zh) 2019-05-17 2019-05-17 一种动态变形下基于双重滤波器的传递对准方法
CN201910413535.4 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020233290A1 true WO2020233290A1 (zh) 2020-11-26

Family

ID=68248564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084846 WO2020233290A1 (zh) 2019-05-17 2020-04-15 一种动态变形下基于双重滤波器的传递对准方法

Country Status (3)

Country Link
US (1) US11912433B2 (zh)
CN (1) CN110371318B (zh)
WO (1) WO2020233290A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188566A (zh) * 2021-03-23 2021-07-30 北京航空航天大学 一种机载分布式pos数据融合方法
CN113188565A (zh) * 2021-03-23 2021-07-30 北京航空航天大学 一种机载分布式pos传递对准量测异常处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371318B (zh) 2019-05-17 2020-12-11 东南大学 一种动态变形下基于双重滤波器的传递对准方法
CN111291471B (zh) * 2020-01-17 2021-12-17 中山大学 一种基于l1正则无迹变换的约束多模型滤波方法
CN115727875B (zh) * 2022-11-29 2023-09-01 哈尔滨理工大学 一种基于修正罗德里格斯参数的无奇异传递对准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621565A (zh) * 2012-04-17 2012-08-01 北京航空航天大学 一种机载分布式pos的传递对准方法
EP2634534A2 (en) * 2012-03-01 2013-09-04 Honeywell International Inc. Systems and methods to incorporate master navigation system resets during transfer alignment
CN104567930A (zh) * 2014-12-30 2015-04-29 南京理工大学 一种能够估计和补偿机翼挠曲变形的传递对准方法
CN108413887A (zh) * 2018-02-22 2018-08-17 北京航空航天大学 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台
CN109724624A (zh) * 2018-12-29 2019-05-07 湖北航天技术研究院总体设计所 一种适用于机翼挠曲变形的机载自适应传递对准算法
CN110371318A (zh) * 2019-05-17 2019-10-25 东南大学 一种动态变形下基于双重滤波器的传递对准方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082207A (en) * 1985-02-04 1992-01-21 Rockwell International Corporation Active flexible wing aircraft control system
US6127970A (en) * 1998-09-25 2000-10-03 Lin; Ching-Fang Coupled real time emulation method for positioning and location system
US6491262B1 (en) * 1999-01-15 2002-12-10 Sridhar Kota System for varying a surface contour
US6510354B1 (en) * 1999-04-21 2003-01-21 Ching-Fang Lin Universal robust filtering process
US6735523B1 (en) * 2000-06-19 2004-05-11 American Gnc Corp. Process and system of coupled real-time GPS/IMU simulation with differential GPS
US6408245B1 (en) * 2000-08-03 2002-06-18 American Gnc Corporation Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
US6725173B2 (en) * 2000-09-02 2004-04-20 American Gnc Corporation Digital signal processing method and system thereof for precision orientation measurements
FR2841211B1 (fr) * 2002-06-21 2004-12-17 Airbus France Procede et dispositif pour reduire les mouvements vibratoires du fuselage d'un aeronef
US7004428B2 (en) * 2003-01-24 2006-02-28 Aerion Corporation Lift and twist control using trailing edge control surfaces on supersonic laminar flow wings
US20040176887A1 (en) * 2003-03-04 2004-09-09 Arinc Incorporated Aircraft condition analysis and management system
US20040243360A1 (en) * 2003-05-30 2004-12-02 General Electric Company Persistent compressor airfoils
US6879875B1 (en) * 2003-09-20 2005-04-12 American Gnc Corporation Low cost multisensor high precision positioning and data integrated method and system thereof
US6970773B2 (en) * 2004-03-10 2005-11-29 Utah State University Apparatus and method for reducing induced drag on aircraft and other vehicles
DE102004029196B4 (de) * 2004-06-16 2007-11-22 Airbus Deutschland Gmbh System zur Rumpfstrukturlastabminderung in Verkehrsmitteln
US7307585B2 (en) * 2005-11-01 2007-12-11 The Boeing Company Integrated aeroelasticity measurement system
FR2893911B1 (fr) * 2005-11-28 2007-12-21 Airbus France Sas Procede et dispositif de detection de pannes oscillatoires dans une chaine d'asservissement en position d'une gouverne d'aeronef
FR2906223B1 (fr) * 2006-09-22 2008-11-21 Thales Sa Instrument de secours pour tableau de bord d'un aeronef detectant les surcharges, notamment en phase d'atterrissage
FR2925182B1 (fr) * 2007-12-18 2021-07-02 Airbus France Procede et dispositif de detection de pannes oscillatoires dans une chaine d'asservissement en position d'une gouverne d'aeronef.
US8838298B2 (en) * 2008-09-25 2014-09-16 The Boeing Company Methods and systems for active wing and lift surface control using integrated aeroelasticity measurements
US20110313614A1 (en) * 2010-06-21 2011-12-22 Hinnant Jr Harris O Integrated aeroelasticity measurement for vehicle health management
US8880242B2 (en) * 2011-06-06 2014-11-04 The Boeing Company Structural health management with active control using integrated elasticity measurement
US9746392B2 (en) * 2012-08-07 2017-08-29 The Boeing Company Systems and methods to determine navigation states of a platform
CN104344882B (zh) * 2013-07-24 2017-08-04 中国国际航空股份有限公司 一种飞机抖动检测系统及方法
CN103913181B (zh) * 2014-04-24 2017-03-29 北京航空航天大学 一种基于参数辨识的机载分布式pos传递对准方法
CN104165640B (zh) * 2014-08-11 2017-02-15 东南大学 基于星敏感器的近空间弹载捷联惯导系统传递对准方法
WO2016105508A2 (en) * 2014-12-23 2016-06-30 California Institute Of Technology Devices and methods for autonomous measurements
US10062831B2 (en) * 2015-08-05 2018-08-28 The Boeing Company Structural health management apparatus and system
US10215836B2 (en) * 2016-03-07 2019-02-26 Raytheon Company Geolocation on a single platform having flexible portions
WO2018055827A1 (ja) * 2016-09-26 2018-03-29 株式会社Subaru 損傷検知システム及び損傷検知方法
US10401154B2 (en) * 2016-10-12 2019-09-03 The Boeing Company Apparatus and method to detect aircraft wing deflection and twist during flight
US10099774B2 (en) * 2016-10-12 2018-10-16 The Boeing Company System and method for correcting wing twist of an aircraft
US10137999B2 (en) * 2017-03-30 2018-11-27 The Boeing Company Methods and apparatus for detecting airflow control surface skew conditions
US10989539B1 (en) * 2018-04-25 2021-04-27 Bae Systems Information And Electronic Systems Integration Inc. Alignment of electrical devices using inertial measurement units
CN109141476B (zh) * 2018-09-27 2019-11-08 东南大学 一种动态变形下传递对准过程中角速度解耦合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634534A2 (en) * 2012-03-01 2013-09-04 Honeywell International Inc. Systems and methods to incorporate master navigation system resets during transfer alignment
CN102621565A (zh) * 2012-04-17 2012-08-01 北京航空航天大学 一种机载分布式pos的传递对准方法
CN104567930A (zh) * 2014-12-30 2015-04-29 南京理工大学 一种能够估计和补偿机翼挠曲变形的传递对准方法
CN108413887A (zh) * 2018-02-22 2018-08-17 北京航空航天大学 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台
CN109724624A (zh) * 2018-12-29 2019-05-07 湖北航天技术研究院总体设计所 一种适用于机翼挠曲变形的机载自适应传递对准算法
CN110371318A (zh) * 2019-05-17 2019-10-25 东南大学 一种动态变形下基于双重滤波器的传递对准方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188566A (zh) * 2021-03-23 2021-07-30 北京航空航天大学 一种机载分布式pos数据融合方法
CN113188565A (zh) * 2021-03-23 2021-07-30 北京航空航天大学 一种机载分布式pos传递对准量测异常处理方法
CN113188565B (zh) * 2021-03-23 2023-09-29 北京航空航天大学 一种机载分布式pos传递对准量测异常处理方法
CN113188566B (zh) * 2021-03-23 2023-09-29 北京航空航天大学 一种机载分布式pos数据融合方法

Also Published As

Publication number Publication date
CN110371318A (zh) 2019-10-25
US11912433B2 (en) 2024-02-27
US20220033100A1 (en) 2022-02-03
CN110371318B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2020233290A1 (zh) 一种动态变形下基于双重滤波器的传递对准方法
CN110030994B (zh) 一种基于单目的鲁棒性视觉惯性紧耦合定位方法
CN110398257B (zh) Gps辅助的sins系统快速动基座初始对准方法
CN103256928B (zh) 一种分布式惯性导航系统及其姿态传递对准方法
WO2020220729A1 (zh) 基于角加速度计/陀螺/加速度计的惯性导航解算方法
CN107728182B (zh) 基于相机辅助的柔性多基线测量方法和装置
CN111323050B (zh) 一种捷联惯导和多普勒组合系统标定方法
WO2020062792A1 (zh) 一种动态变形下传递对准过程中角速度解耦合方法
CN108375383B (zh) 多相机辅助的机载分布式pos柔性基线测量方法和装置
CN106289246A (zh) 一种基于位置和姿态测量系统的柔性杆臂测量方法
CN109931955B (zh) 基于状态相关李群滤波的捷联惯性导航系统初始对准方法
CN103913181A (zh) 一种基于参数辨识的机载分布式pos传递对准方法
CN108398130B (zh) 挠曲形变测量网络的分布式pos传递对准建模方法和装置
CN101131311A (zh) 一种智能化机载导弹动基座对准及标定方法
CN103591949A (zh) 三轴姿态测量系统非正交性误差的正交补偿方法
CN104034329A (zh) 发射惯性系下的多组合导航处理装置及其导航方法
CN107764261B (zh) 一种分布式pos传递对准用模拟数据生成方法和系统
CN105865455A (zh) 一种利用gps与加速度计计算飞行器姿态角的方法
CN112683274A (zh) 一种基于无迹卡尔曼滤波的无人机组合导航方法和系统
CN109084757A (zh) 一种飞机机翼运动与动态变形耦合速度误差计算方法
CN111982126A (zh) 一种全源BeiDou/SINS弹性状态观测器模型设计方法
Gong et al. An innovative distributed filter for airborne distributed position and orientation system
CN110081906B (zh) 基于吸附过程的非合作目标惯性特征参数的两步辨识方法
CN114111840B (zh) 一种基于组合导航的dvl误差参数在线标定方法
CN109737960A (zh) 基于速度加角速度匹配的船体变形测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809984

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20809984

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20809984

Country of ref document: EP

Kind code of ref document: A1