WO2020062792A1 - 一种动态变形下传递对准过程中角速度解耦合方法 - Google Patents

一种动态变形下传递对准过程中角速度解耦合方法 Download PDF

Info

Publication number
WO2020062792A1
WO2020062792A1 PCT/CN2019/077890 CN2019077890W WO2020062792A1 WO 2020062792 A1 WO2020062792 A1 WO 2020062792A1 CN 2019077890 W CN2019077890 W CN 2019077890W WO 2020062792 A1 WO2020062792 A1 WO 2020062792A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation system
inertial navigation
angular velocity
deformation
sub
Prior art date
Application number
PCT/CN2019/077890
Other languages
English (en)
French (fr)
Inventor
陈熙源
杨萍
王俊玮
方琳
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/980,860 priority Critical patent/US11293759B2/en
Publication of WO2020062792A1 publication Critical patent/WO2020062792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope

Definitions

  • the invention relates to an angular velocity decoupling method during transfer alignment under dynamic deformation, and belongs to the technical field of inertial navigation.
  • the load capacity of the aircraft is limited, especially the wing part. Therefore, the dynamic deformation measurement of the aircraft wing has very strict requirements on the weight and size of the measurement equipment.
  • the measurement accuracy of the IMU unit is directly proportional to the weight and size. At the same time, a high-precision IMU is installed.
  • aircraft wing deformation measurement uses a high-precision POS mounted on the fuselage, while the wing part uses a low-precision IMU unit.
  • the high-precision position and attitude of each positioning point are obtained by transferring alignment between the main inertial navigation system and the sub-inertial navigation system. information.
  • the additional speed, angular velocity, and angle caused by the bending deformation between the main and the child are the main factors that affect its accuracy.
  • the current dynamic deformation measurement of aircraft wing treats the wing as a rigid body and does not consider the bending deformation. It is difficult to achieve the required precision with quasi-precision.
  • the purpose of the present invention is to provide a method for decoupling angular velocity during transfer alignment under dynamic deformation, and to perform error angle and angular velocity caused by coupling between body movement and dynamic deformation during transfer alignment measurement of aircraft wings.
  • Geometric modeling and mathematical analysis the expressions of coupling angle and angular velocity are deduced, which are used to transfer the angular velocity matching process to improve the accuracy of transfer alignment.
  • a method for decoupling angular velocity during transfer alignment under dynamic deformation includes the following steps:
  • the trajectory generator generates the attitude, velocity and position information of the main inertial navigation system and the output of the inertial device, and uses a second-order Markov to simulate the bending deformation angle between the main inertial navigation system and the sub inertial navigation system And bending angular velocity
  • step (2) The high-frequency and low-amplitude vibration deformation in step (2) is regarded as noise, and the low-frequency and high-amplitude bending deformation is geometrically analyzed to derive the relationship between the main inertial navigation system and the sub inertial navigation system Angle of error between main inertial navigation system and sub inertial navigation system caused by dynamic deformation
  • step (3) Substitute the coupling error angular velocity expression And it is applied in the process of matching the angular velocity of the transmission alignment to improve the accuracy of the transmission alignment.
  • step (2) refers to dynamic elastic deformation including bending and vibration, where the bending is Low-frequency, high-amplitude motion, vibration indicates high-frequency, low-amplitude motion;
  • step (2) The establishment of the angular velocity model under dynamic deformation of the wing described in step (2), specifically: the angular velocity of the main inertial navigation system and the sub inertial navigation system is expressed as:
  • the error angle between the main inertial navigation system and the sub inertial navigation system caused by the dynamic deformation between the main inertial navigation system and the sub inertial navigation system described in step (3) is derived
  • the specific method is: geometric analysis of the dynamic deformation coupling angle vector, in which the angular velocity change due to vibration deformation in the dynamic angular velocity vector Seen as noise, and the angular velocity change due to bending deformation take
  • the subscripts x, y, and z indicate three directions: east, north, and sky.
  • the angular vector of the error between the main inertial navigation system and the sub inertial navigation system caused by the bending deformation coupling angular velocity, that is, versus Angle there are:
  • step (4) Substitute the coupling error angular velocity expression Specifically: the difference in angular velocity between the main inertial navigation system and the sub inertial navigation system Expressed as:
  • the error angle vector between the main inertial navigation system and the sub inertial navigation system is Then the transformation matrix between the main inertial navigation system and the sub inertial navigation system is expressed as The angular velocity of error between the main inertial navigation system and the sub inertial navigation system is expressed as:
  • is the antisymmetric matrix
  • the present invention takes into account the coupling errors between rigid body motion and dynamic elastic deformation between the main inertial navigation system of the carrier and the sub-inertial navigation system.
  • the angular and angular velocity errors are modeled by spatial geometry and mathematical analysis.
  • the coupling angle error between the main inertial navigation system and the sub inertial navigation system under dynamic deformation is obtained, and the main inertial navigation system and the sub inertial navigation system under dynamic deformation are derived.
  • the expression of the angular velocity error between the two; the traditional transfer alignment process treats the dynamic deformation angular velocity as being collinear with the sub-system angular velocity in the ideal state.
  • the present invention performs geometric analysis on the coupling angle between the main inertial navigation system and the sub inertial navigation system to obtain the expression of the coupling angle. Further mathematically model the coupling angular velocity between the main inertial navigation system and the sub-inertial navigation system. This model is used to transfer the alignment angular velocity During the matching process, the accuracy of transfer alignment can be improved.
  • Figure 1 is a flowchart of decoupling angular velocity between the main inertial navigation system and the sub inertial navigation system under dynamic deformation
  • Figure 2 shows the coupling angle between the main and sub inertial navigation under dynamic deformation (projected to the yoz plane);
  • Figure 3 shows the spatial relationship between the angular velocity vector and the additional dynamic bending angular velocity vector.
  • a method for decoupling angular velocity during transfer alignment under dynamic deformation is implemented.
  • a trajectory simulator is used to simulate the attitude, velocity, position, and output data of the aircraft main system.
  • -Order Markov simulation output of the bending deformation angle between the main inertial navigation system and the sub inertial navigation system And bending angular velocity Combining the dynamic deformation between the main inertial navigation system and the sub inertial navigation system, the dynamic deformation is divided into high frequency and low amplitude vibration deformation and low frequency and high amplitude bending deformation to establish the main inertial navigation system and the sub inertial navigation system.
  • the detailed mathematical analysis of this error analysis is as follows:
  • Step 1 The trajectory generator generates the attitude, velocity and position information of the main inertial navigation system and the output of the inertial device, and uses a second-order Markov to simulate the bending deformation angle between the main inertial guide and the sub inertial guide. And bending angular velocity
  • Step 2 Decompose dynamic deformation into high-frequency, low-amplitude vibration deformation and low-frequency, high-amplitude bending deformation, establish a lever arm and angular velocity model under wing dynamic deformation, and analyze the additional effects of dynamic deformation of aircraft wings Angular velocity, the angular velocity without error between the main inertial navigation system and the sub inertial navigation system can be expressed as:
  • Dynamic elastic deformation includes two parts: bending and vibration. Among them, bending is low-frequency and high-valued motion. Vibration indicates high-frequency and low-amplitude motion.
  • Step 3 Perform geometric analysis on the dynamic deformation error angle vector in combination with the angular error between the main and sub-inertial inertia guides, where the angular velocity change due to vibration deformation in the dynamic angular velocity vector Can be regarded as noise, and the angular velocity change due to bending deformation take
  • the angular velocity output of the subsystem in the actual state It can be expressed as:
  • the subscripts x, y, and z indicate three directions: east, north, and sky.
  • the angular vector of the error between the main inertial navigation system and the sub inertial navigation system caused by the bending deformation coupling angular velocity versus Angle are:
  • Step 4 Based on the spatial relationship between the angular velocity vector and the additional dynamic bending angular velocity vector, perform geometric analysis on the dynamic angular velocity vector. As shown in Figure 3, the angular velocity difference between the main inertial navigation system and the sub inertial navigation system. Can be expressed as:
  • the error angle vector between the main inertial navigation system and the sub inertial navigation system is Then the transformation matrix between the main inertial navigation system and the sub inertial navigation system can be expressed as The angular velocity of error between the main inertial navigation system and the sub inertial navigation system can be expressed as:
  • is the antisymmetric matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

一种动态变形下传递对准过程中角速度解耦合方法,包括如下步骤:(1)轨迹发生器产生主惯导系统的姿态、速度和位置信息以及惯性器件的输出,用二阶马尔科夫模拟主惯导系统与子惯导系统之间的弯曲变形角(I)和弯曲变形角速度(II);(2)将动态变形分解为高频率、低幅值的振动变形和低频率、高幅值的弯曲变形,建立机翼动态变形下角速度模型;(3)推导出由主惯导系统与子惯导系统之间动态变形所引起的主惯导系统与子惯导系统之间的误差角度(III);(4)推导出耦合误差角速度表达式(IV)并应用于传递对准角速度匹配过程中,提高传递对准的精度。动态变形下传递对准过程中角速度解耦合方法用于传递对准角速度匹配过程。

Description

一种动态变形下传递对准过程中角速度解耦合方法 技术领域:
本发明涉及一种动态变形下传递对准过程中角速度解耦合方法,属于惯性导航技术领域。
背景技术:
飞机的承载能力有限,特别是机翼部分,因此飞机机翼动态变形测量对测量设备的重量和尺寸有非常严格的要求,而IMU单元的测量精度与重量和尺寸成正比,每个负载处无法同时安装高精度的IMU。
目前飞机机翼变形测量采用机身安装高精度的POS,而机翼部分则采用低精度IMU单元,通过主惯导系统与子惯导系统间传递对准获取各定位点的高精度位置、姿态信息。但是主、子之间挠曲变形产生的附加速度、角速度和角度是影响其精度的主要因素,现有的飞机机翼动态变形测量将机翼视为刚体,不考虑挠曲变形,其传递对准精度难以达到所需要的精度。
发明内容
本发明的目的是提供一种动态变形下传递对准过程中角速度解耦合方法,对飞机机翼动态变形测量传递对准过程中机体运动和动态变形之间的耦合所引起的误差角度和角速度进行几何建模和数学分析,推导出耦合角度和角速度的表达式,用于传递对准角速度匹配过程,提高传递对准精度。
上述的目的通过以下技术方案实现:
一种动态变形下传递对准过程中角速度解耦合方法,该方法包括如下步骤:
(1)轨迹发生器产生主惯导系统的姿态、速度和位置信息以及惯性器件的输出,用二阶马尔科夫模拟主惯导系统与子惯导系统之间的弯曲变形角
Figure PCTCN2019077890-appb-000001
和弯曲变形角速度
Figure PCTCN2019077890-appb-000002
(2)将动态变形分解为高频率、低幅值的振动变形和低频率、高幅值的弯曲变形,建立机翼动态变形下角速度模型;
(3)步骤(2)中的高频率、低幅值的振动变形视为噪声,对低频率、高幅值的弯曲变形进行几何分析,推导出由主惯导系统与子惯导系统之间动态变形所引起的主惯导系统与子惯导系统之间的误差角度
Figure PCTCN2019077890-appb-000003
(4)将步骤(3)推导的误差角度
Figure PCTCN2019077890-appb-000004
代入耦合误差角速度表达式
Figure PCTCN2019077890-appb-000005
并应用于传递对准角速度匹配过程中,提高传递对准的精度。
进一步地,步骤(2)中所述的将动态变形分解为高频率、低幅值的振动变形和低频率、 高幅值的弯曲变形是指动态弹性变形包含弯曲和振动两部分,其中弯曲为低频率、高幅值的运动,振动表示高频率、低幅值的运动;
步骤(2)中所述的建立机翼动态变形下角速度模型,具体是:主惯导系统与子惯导系统的角速度表示为:
Figure PCTCN2019077890-appb-000006
其中,
Figure PCTCN2019077890-appb-000007
式中,
Figure PCTCN2019077890-appb-000008
表示主惯导系统与子惯导系统之间相对角速度矢量,
Figure PCTCN2019077890-appb-000009
表示主惯导系统与子惯导系统之间静态相对角速度矢量,
Figure PCTCN2019077890-appb-000010
表示主惯导系统与子惯导系统之间动态相对角速度矢量,
Figure PCTCN2019077890-appb-000011
表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于弯曲变形产生的角速度变化部分,
Figure PCTCN2019077890-appb-000012
表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于振动变形产生的角速度变化部分。
进一步地,步骤(3)中所述的推导出由主惯导系统与子惯导系统之间动态变形所引起的主惯导系统与子惯导系统之间的误差角度
Figure PCTCN2019077890-appb-000013
的具体方法是:对动态变形耦合角度矢量进行几何分析,其中,动态角速度矢量中由于振动变形所产生的角速度变化
Figure PCTCN2019077890-appb-000014
视为噪声,而由于弯曲变形所产生的角速度变化
Figure PCTCN2019077890-appb-000015
Figure PCTCN2019077890-appb-000016
则有:
Figure PCTCN2019077890-appb-000017
Figure PCTCN2019077890-appb-000018
其中,
Figure PCTCN2019077890-appb-000019
表示理想状态下子系统陀螺仪的输出,
Figure PCTCN2019077890-appb-000020
表示主系统陀螺仪的输出,
Figure PCTCN2019077890-appb-000021
表示主惯导系统与子惯导系统之间的转换矩阵,
Figure PCTCN2019077890-appb-000022
表示主惯导系统与子惯导系统之间的误差角矢量,
Figure PCTCN2019077890-appb-000023
表示主惯导系统与子惯导系统之间的初始安装误差角矢量,
由于动态弯曲变形的作用,产生了附加的角速度
Figure PCTCN2019077890-appb-000024
则实际状态下子系统的角速度输出
Figure PCTCN2019077890-appb-000025
表示为:
Figure PCTCN2019077890-appb-000026
取弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量为
Figure PCTCN2019077890-appb-000027
Figure PCTCN2019077890-appb-000028
下标x,y,z分别表示东、北、天三个方向,
Figure PCTCN2019077890-appb-000029
为弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量,即
Figure PCTCN2019077890-appb-000030
Figure PCTCN2019077890-appb-000031
的夹角,取
Figure PCTCN2019077890-appb-000032
Figure PCTCN2019077890-appb-000033
则有:
Figure PCTCN2019077890-appb-000034
由几何关系有:
Figure PCTCN2019077890-appb-000035
用泰勒级数将反正切函数展开,并略去高次项,得:
Figure PCTCN2019077890-appb-000036
进一步地,步骤(4)中所述的将步骤(3)推导的误差角度
Figure PCTCN2019077890-appb-000037
代入耦合误差角速度表达式
Figure PCTCN2019077890-appb-000038
具体是:主惯导系统与子惯导系统之间的角速度之差
Figure PCTCN2019077890-appb-000039
表示为:
Figure PCTCN2019077890-appb-000040
Figure PCTCN2019077890-appb-000041
主惯导系统与子惯导系统之间的误差角矢量为
Figure PCTCN2019077890-appb-000042
则主惯导系统与子惯导系统之间的转换矩阵表示为
Figure PCTCN2019077890-appb-000043
主惯导系统与子惯导系统之间的误差角速度表示为:
Figure PCTCN2019077890-appb-000044
其中,
Figure PCTCN2019077890-appb-000045
Figure PCTCN2019077890-appb-000046
Figure PCTCN2019077890-appb-000047
上的投影,由于主系统与子系统之间的等效旋转矢量
Figure PCTCN2019077890-appb-000048
为小量, 则有
Figure PCTCN2019077890-appb-000049
其中,×表示反对称矩阵,
故有:
Figure PCTCN2019077890-appb-000050
其中,
Figure PCTCN2019077890-appb-000051
表示反对称矩阵,
Figure PCTCN2019077890-appb-000052
表示为:
Figure PCTCN2019077890-appb-000053
其中,
Figure PCTCN2019077890-appb-000054
表示幅值矩阵,
Figure PCTCN2019077890-appb-000055
表示
Figure PCTCN2019077890-appb-000056
方向上的单位矩阵,
Figure PCTCN2019077890-appb-000057
表示
Figure PCTCN2019077890-appb-000058
Figure PCTCN2019077890-appb-000059
之间的夹角矢量,
Figure PCTCN2019077890-appb-000060
表示由
Figure PCTCN2019077890-appb-000061
Figure PCTCN2019077890-appb-000062
之间的转换矩阵,
Figure PCTCN2019077890-appb-000063
其中,U=[1 1 1] T,且有:
Figure PCTCN2019077890-appb-000064
符号| |表示求模,将
Figure PCTCN2019077890-appb-000065
代入
Figure PCTCN2019077890-appb-000066
的表达式,则有:
Figure PCTCN2019077890-appb-000067
Figure PCTCN2019077890-appb-000068
代入
Figure PCTCN2019077890-appb-000069
的表达式,则有:
Figure PCTCN2019077890-appb-000070
Figure PCTCN2019077890-appb-000071
根据
Figure PCTCN2019077890-appb-000072
解得
Figure PCTCN2019077890-appb-000073
补偿传递对准过程中角速度匹配的误差,提高传递对准的精度。
有益效果:
与现有技术相比,本发明考虑了载体运动主惯导系统与子惯导系统之间刚体运动和动态弹性形变耦合误差,对动态弹性变形下主惯导系统与子惯导系统之间的角度和角速度误差进行空间几何建模和数学分析,得出动态形变下主惯导系统与子惯导系统之间的耦合角度误差,由此推导出动态形变下主惯导系统与子惯导系统之间的角速度误差表达式;传统的传递对准 过程,将动态变形角速度视为与理想状态下的子系统角速度共线,虽然在一定程度上补偿了动态形变误差,但是实际状态下,动态变形角速度与理想状态下的子系统角速度并不共线,共线处理会引入误差,本发明对主惯导系统与子惯导系统之间的耦合角度进行几何分析,得出耦合角度的表达式,进一步对主惯导系统与子惯导系统之间的耦合角速度进行数学建模,该模型应用于传递对准角速度匹配过程中,可提高传递对准的精度。
附图说明
图1为动态变形下主惯导系统与子惯导系统之间角速度解耦合流程图;
图2为动态变形下主、子惯导之间耦合角度(投影到yoz平面);
图3为角速度矢量与附加动态弯曲角速度矢量之间的空间关系。
具体实施方式
以下结合具体的实施方案和附图对本发明作进一步详细说明:
如图1所示,本发明实施提出的一种动态变形下传递对准过程中角速度解耦合方法,用轨迹模拟器模拟飞机主系统的姿态、速度、位置和惯性器件的输出数据,同时采用二阶马尔科夫模拟输出主惯导系统与子惯导系统之间的弯曲变形角
Figure PCTCN2019077890-appb-000074
和弯曲变形角速度
Figure PCTCN2019077890-appb-000075
结合主惯导系统与子惯导系统之间的动态变形,将动态变形分为高频率、低幅值的振动变形与低频率、高幅值的弯曲变形,建立主惯导系统与子惯导系统之间的角速度模型;将振动变形等效为噪声,分析和处理弯曲变形,建立弯曲变形下主惯导系统与子惯导系统之间的耦合角度几何模型,求解得出主、子系之间由于弯曲变形所引起的耦合角度
Figure PCTCN2019077890-appb-000076
再结合主惯导系统与子惯导系统之间的角速度矢量之间的空间关系,推导出角速度误差表达式,将角速度误差表达式应用于传递对准角速度匹配过程中,提高子系统的导航精度。下面对该误差分析进行详细的数学分析:
步骤1:轨迹发生器产生主惯导系统的姿态、速度和位置信息以及惯性器件的输出,用二阶马尔科夫模拟主惯导与子惯导之间的弯曲变形角
Figure PCTCN2019077890-appb-000077
和弯曲变形角速度
Figure PCTCN2019077890-appb-000078
步骤2:将动态变形分解为高频率、低幅值的振动变形和低频率、高幅值的弯曲变形,建立机翼动态变形下杠杆臂和角速度模型,分析飞机机翼的动态变形产生的附加角速度,主惯导系统与子惯导系统之间无误差的角速度可表示为:
Figure PCTCN2019077890-appb-000079
其中,
Figure PCTCN2019077890-appb-000080
动态弹性变形包含弯曲和振动两部分,其中弯曲为低频率、高赋值的运动,振动表示高频率、低幅值的运动,式中,
Figure PCTCN2019077890-appb-000081
表示主惯导系统与子惯导系统之间相对角速度矢量,
Figure PCTCN2019077890-appb-000082
表示主惯导系统与子惯导系统之间静态相对角速度矢量,
Figure PCTCN2019077890-appb-000083
表示主惯导系统与子惯导系统之间动态相对角速度矢量,
Figure PCTCN2019077890-appb-000084
表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于弯曲变形产生的部分,
Figure PCTCN2019077890-appb-000085
表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于振动变形产生的部分;
步骤3:结合主、子惯导之间角度误差,对动态变形误差角度矢量进行几何分析,其中,动态角速度矢量中由于振动变形所产生的角速度变化
Figure PCTCN2019077890-appb-000086
可视为噪声,而由于弯曲变形所产生的角速度变化
Figure PCTCN2019077890-appb-000087
Figure PCTCN2019077890-appb-000088
则有:
Figure PCTCN2019077890-appb-000089
Figure PCTCN2019077890-appb-000090
其中,
Figure PCTCN2019077890-appb-000091
表示理想状态下子系统陀螺仪的输出,
Figure PCTCN2019077890-appb-000092
表示主系统陀螺仪的输出,
Figure PCTCN2019077890-appb-000093
表示主惯导系统与子惯导系统之间的转换矩阵,
Figure PCTCN2019077890-appb-000094
表示主惯导系统与子惯导系统之间的误差角矢量,
Figure PCTCN2019077890-appb-000095
表示主惯导系统与子惯导系统初始安装误差角矢量,由于动态弯曲变形的作用,产生了附加的角速度
Figure PCTCN2019077890-appb-000096
则实际状态下子系统的角速度输出
Figure PCTCN2019077890-appb-000097
可以表示为:
Figure PCTCN2019077890-appb-000098
取弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量为
Figure PCTCN2019077890-appb-000099
Figure PCTCN2019077890-appb-000100
下标x,y,z分别表示东、北、天三个方向,
Figure PCTCN2019077890-appb-000101
为弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量,即
Figure PCTCN2019077890-appb-000102
Figure PCTCN2019077890-appb-000103
的夹角,取
Figure PCTCN2019077890-appb-000104
Figure PCTCN2019077890-appb-000105
则有:
Figure PCTCN2019077890-appb-000106
如图2所示,其中,
Figure PCTCN2019077890-appb-000107
分别表示
Figure PCTCN2019077890-appb-000108
在yoz平面的投影,由几何关系有:
Figure PCTCN2019077890-appb-000109
用泰勒级数将反正切函数展开,并略去高次项,可得:
Figure PCTCN2019077890-appb-000110
步骤4:结合角速度矢量与附加动态弯曲角速度矢量之间的空间关系,对动态角速度矢量进行几何分析,如图3所示,主惯导系统与子惯导系统之间的角速度之差
Figure PCTCN2019077890-appb-000111
可表示为:
Figure PCTCN2019077890-appb-000112
Figure PCTCN2019077890-appb-000113
主惯导系统与子惯导系统之间的误差角矢量为
Figure PCTCN2019077890-appb-000114
则主惯导系统与子惯导系统之间的转换矩阵可以表示为
Figure PCTCN2019077890-appb-000115
主惯导系统与子惯导系统之间的误差角速度可以表示为:
Figure PCTCN2019077890-appb-000116
其中,
Figure PCTCN2019077890-appb-000117
Figure PCTCN2019077890-appb-000118
Figure PCTCN2019077890-appb-000119
上的投影,由于主惯导系统与子惯导系统之间总的误差角
Figure PCTCN2019077890-appb-000120
为小量,则有
Figure PCTCN2019077890-appb-000121
其中,×表示反对称矩阵,
故有:
Figure PCTCN2019077890-appb-000122
其中,
Figure PCTCN2019077890-appb-000123
表示反对称矩阵,
Figure PCTCN2019077890-appb-000124
可以表示为:
Figure PCTCN2019077890-appb-000125
其中,
Figure PCTCN2019077890-appb-000126
表示幅值矩阵,
Figure PCTCN2019077890-appb-000127
表示
Figure PCTCN2019077890-appb-000128
方向上的单位矩阵,
Figure PCTCN2019077890-appb-000129
表示
Figure PCTCN2019077890-appb-000130
Figure PCTCN2019077890-appb-000131
之间的夹角矢量,
Figure PCTCN2019077890-appb-000132
表示由
Figure PCTCN2019077890-appb-000133
Figure PCTCN2019077890-appb-000134
之间的转换矩阵,
Figure PCTCN2019077890-appb-000135
其中,U=[1 1 1] T,且有:
Figure PCTCN2019077890-appb-000136
符号| |表示求模,将
Figure PCTCN2019077890-appb-000137
代入
Figure PCTCN2019077890-appb-000138
的表达式,则有:
Figure PCTCN2019077890-appb-000139
Figure PCTCN2019077890-appb-000140
代入
Figure PCTCN2019077890-appb-000141
的表达式,则有:
Figure PCTCN2019077890-appb-000142
Figure PCTCN2019077890-appb-000143
根据
Figure PCTCN2019077890-appb-000144
课解得
Figure PCTCN2019077890-appb-000145
补偿传递对准过程中角速度匹配的误差,提高传递对准的精度。

Claims (4)

  1. 一种动态变形下传递对准过程中角速度解耦合方法,其特征在于:该方法包括如下步骤:
    (1)轨迹发生器产生主惯导系统的姿态、速度和位置信息以及惯性器件的输出,用二阶马尔科夫模拟主惯导系统与子惯导系统之间的弯曲变形角
    Figure PCTCN2019077890-appb-100001
    和弯曲变形角速度
    Figure PCTCN2019077890-appb-100002
    (2)将动态变形分解为高频率、低幅值的振动变形和低频率、高幅值的弯曲变形,建立机翼动态变形下角速度模型;
    (3)步骤(2)中的高频率、低幅值的振动变形视为噪声,对低频率、高幅值的弯曲变形进行几何分析,推导出由主惯导系统与子惯导系统之间动态变形所引起的主惯导系统与子惯导系统之间的误差角度
    Figure PCTCN2019077890-appb-100003
    (4)将步骤(3)推导的误差角度
    Figure PCTCN2019077890-appb-100004
    代入耦合误差角速度表达式
    Figure PCTCN2019077890-appb-100005
    并应用于传递对准角速度匹配过程中,提高传递对准的精度。
  2. 根据权利要求1所述的动态变形下传递对准过程中角速度解耦合方法,其特征在于:步骤(2)中所述的将动态变形分解为高频率、低幅值的振动变形和低频率、高幅值的弯曲变形是指动态弹性变形包含弯曲和振动两部分,其中弯曲为低频率、高幅值的运动,振动表示高频率、低幅值的运动;
    步骤(2)中所述的建立机翼动态变形下角速度模型,具体是:主惯导系统与子惯导系统的角速度表示为:
    Figure PCTCN2019077890-appb-100006
    其中,
    Figure PCTCN2019077890-appb-100007
    式中,
    Figure PCTCN2019077890-appb-100008
    表示主惯导系统与子惯导系统之间相对角速度矢量,
    Figure PCTCN2019077890-appb-100009
    表示主惯导系统与子惯导系统之间静态相对角速度矢量,
    Figure PCTCN2019077890-appb-100010
    表示主惯导系统与子惯导系统之间动态相对角速度矢量,
    Figure PCTCN2019077890-appb-100011
    表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于弯曲变形产生的角速度变化部分,
    Figure PCTCN2019077890-appb-100012
    表示主惯导系统与子惯导系统之间动态相对角速度矢量中由于振动变形产生的角速度变化部分。
  3. 根据权利要求2所述的动态变形下传递对准过程中角速度解耦合方法,其特征在于:步骤(3)中所述的推导出由主惯导系统与子惯导系统之间动态变形所引起的主惯导系统与子惯导系统之间的误差角度
    Figure PCTCN2019077890-appb-100013
    的具体方法是:对动态变形耦合角度矢量进行几何分析,其中,动态角速度矢量中由于振动变形所产生的角速度变化
    Figure PCTCN2019077890-appb-100014
    视为噪声,而由于弯曲变形所产生的角速度变化
    Figure PCTCN2019077890-appb-100015
    Figure PCTCN2019077890-appb-100016
    则有:
    Figure PCTCN2019077890-appb-100017
    Figure PCTCN2019077890-appb-100018
    其中,
    Figure PCTCN2019077890-appb-100019
    表示理想状态下子系统陀螺仪的输出,
    Figure PCTCN2019077890-appb-100020
    表示主系统陀螺仪的输出,
    Figure PCTCN2019077890-appb-100021
    表示主惯导系统与子惯导系统之间的转换矩阵,
    Figure PCTCN2019077890-appb-100022
    表示主惯导系统与子惯导系统之间的误差角矢量,
    Figure PCTCN2019077890-appb-100023
    表示主惯导系统与子惯导系统之间的初始安装误差角矢量,
    由于动态弯曲变形的作用,产生了附加的角速度
    Figure PCTCN2019077890-appb-100024
    则实际状态下子系统的角速度输出
    Figure PCTCN2019077890-appb-100025
    表示为:
    Figure PCTCN2019077890-appb-100026
    取弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量为
    Figure PCTCN2019077890-appb-100027
    Figure PCTCN2019077890-appb-100028
    下标x,y,z分别表示东、北、天三个方向,
    Figure PCTCN2019077890-appb-100029
    为弯曲变形耦合角速度所引起的主惯导系统与子惯导系统之间的误差角矢量,即
    Figure PCTCN2019077890-appb-100030
    Figure PCTCN2019077890-appb-100031
    的夹角,取
    Figure PCTCN2019077890-appb-100032
    Figure PCTCN2019077890-appb-100033
    则有:
    Figure PCTCN2019077890-appb-100034
    由几何关系有:
    Figure PCTCN2019077890-appb-100035
    用泰勒级数将反正切函数展开,并略去高次项,得:
    Figure PCTCN2019077890-appb-100036
  4. 根据权利要求3所述的动态变形下传递对准过程中角速度解耦合方法,其特征在于:步骤(4)中所述的将步骤(3)推导的误差角度
    Figure PCTCN2019077890-appb-100037
    代入耦合误差角速度表达式
    Figure PCTCN2019077890-appb-100038
    具体是:主惯导系统与子惯导系统之间的角速度之差
    Figure PCTCN2019077890-appb-100039
    表示为:
    Figure PCTCN2019077890-appb-100040
    Figure PCTCN2019077890-appb-100041
    主惯导系统与子惯导系统之间的误差角矢量为
    Figure PCTCN2019077890-appb-100042
    则主惯导系统与子惯导系统之间的转换矩阵表示为
    Figure PCTCN2019077890-appb-100043
    主惯导系统与子惯导系统之间的误差角速度表示为:
    Figure PCTCN2019077890-appb-100044
    其中,
    Figure PCTCN2019077890-appb-100045
    Figure PCTCN2019077890-appb-100046
    Figure PCTCN2019077890-appb-100047
    上的投影,由于主系统与子系统之间的等效旋转矢量
    Figure PCTCN2019077890-appb-100048
    为小量,则有
    Figure PCTCN2019077890-appb-100049
    其中,×表示反对称矩阵,
    故有:
    Figure PCTCN2019077890-appb-100050
    其中,
    Figure PCTCN2019077890-appb-100051
    表示反对称矩阵,
    Figure PCTCN2019077890-appb-100052
    表示为:
    Figure PCTCN2019077890-appb-100053
    其中,
    Figure PCTCN2019077890-appb-100054
    表示幅值矩阵,
    Figure PCTCN2019077890-appb-100055
    表示
    Figure PCTCN2019077890-appb-100056
    方向上的单位矩阵,
    Figure PCTCN2019077890-appb-100057
    表示
    Figure PCTCN2019077890-appb-100058
    Figure PCTCN2019077890-appb-100059
    之间的夹角矢量,
    Figure PCTCN2019077890-appb-100060
    表示由
    Figure PCTCN2019077890-appb-100061
    Figure PCTCN2019077890-appb-100062
    之间的转换矩阵,
    Figure PCTCN2019077890-appb-100063
    其中,U=[1 1 1] T,且有:
    Figure PCTCN2019077890-appb-100064
    符号| |表示求模,将
    Figure PCTCN2019077890-appb-100065
    代入
    Figure PCTCN2019077890-appb-100066
    的表达式,则有:
    Figure PCTCN2019077890-appb-100067
    Figure PCTCN2019077890-appb-100068
    代入
    Figure PCTCN2019077890-appb-100069
    的表达式,则有:
    Figure PCTCN2019077890-appb-100070
    Figure PCTCN2019077890-appb-100071
    根据
    Figure PCTCN2019077890-appb-100072
    解得
    Figure PCTCN2019077890-appb-100073
    补偿传递对准过程中角速度匹配的误差,提高传递对准的精度。
PCT/CN2019/077890 2018-09-27 2019-03-12 一种动态变形下传递对准过程中角速度解耦合方法 WO2020062792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,860 US11293759B2 (en) 2018-09-27 2019-03-12 Method for decoupling angular velocity in transfer alignment process under dynamic deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811136759.7A CN109141476B (zh) 2018-09-27 2018-09-27 一种动态变形下传递对准过程中角速度解耦合方法
CN201811136759.7 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020062792A1 true WO2020062792A1 (zh) 2020-04-02

Family

ID=64813045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077890 WO2020062792A1 (zh) 2018-09-27 2019-03-12 一种动态变形下传递对准过程中角速度解耦合方法

Country Status (3)

Country Link
US (1) US11293759B2 (zh)
CN (1) CN109141476B (zh)
WO (1) WO2020062792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118149862A (zh) * 2024-05-11 2024-06-07 西安中科华航光电科技有限公司 一种用于旋转调制惯导系统的高精度转动传递对准方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141476B (zh) * 2018-09-27 2019-11-08 东南大学 一种动态变形下传递对准过程中角速度解耦合方法
CN110371318B (zh) * 2019-05-17 2020-12-11 东南大学 一种动态变形下基于双重滤波器的传递对准方法
CN112097728B (zh) * 2020-09-17 2021-07-30 中国人民解放军国防科技大学 基于反向解算组合惯性导航系统的惯性双矢量匹配形变测量方法
CN113188565B (zh) * 2021-03-23 2023-09-29 北京航空航天大学 一种机载分布式pos传递对准量测异常处理方法
CN113884006A (zh) * 2021-09-27 2022-01-04 视辰信息科技(上海)有限公司 一种空间定位方法及系统、设备和计算机可读存储介质
CN117742174A (zh) * 2023-08-23 2024-03-22 北京动力机械研究所 卫星/惯导组合式旋转炮弹的半实物仿真系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948045A (en) * 1995-05-23 1999-09-07 State Of Israel-Ministry Of Defense Armament Development Authority-Rafael Method for airbourne transfer alignment of an inertial measurement unit
CN103175545A (zh) * 2013-03-15 2013-06-26 戴洪德 惯导系统速度加部分角速度匹配抗干扰快速传递对准方法
CN103913181A (zh) * 2014-04-24 2014-07-09 北京航空航天大学 一种基于参数辨识的机载分布式pos传递对准方法
CN108387227A (zh) * 2018-02-22 2018-08-10 北京航空航天大学 机载分布式pos的多节点信息融合方法及系统
CN109141476A (zh) * 2018-09-27 2019-01-04 东南大学 一种动态变形下传递对准过程中角速度解耦合方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328775A1 (en) * 2000-07-28 2003-07-23 Litton Systems, Inc. Attitude alignment of a slave inertial measurement system
US7206694B2 (en) * 2004-07-16 2007-04-17 Northrop Grumman Corporation Transfer alignment of navigation systems
WO2006104552A1 (en) * 2005-03-29 2006-10-05 Honeywell International Inc. Method and apparatus for high accuracy relative motion determinatation using inertial sensors
US8019538B2 (en) * 2007-07-25 2011-09-13 Honeywell International Inc. System and method for high accuracy relative navigation
CN102621565B (zh) * 2012-04-17 2013-12-04 北京航空航天大学 一种机载分布式pos的传递对准方法
CN103995918A (zh) * 2014-04-17 2014-08-20 中国航空工业集团公司沈阳飞机设计研究所 一种机翼变形和振动对飞机传递对准影响的分析方法
CN104567930A (zh) * 2014-12-30 2015-04-29 南京理工大学 一种能够估计和补偿机翼挠曲变形的传递对准方法
CN106802143B (zh) * 2017-03-10 2019-07-02 中国人民解放军国防科学技术大学 一种基于惯性仪器和迭代滤波算法的船体形变角测量方法
CN107764261B (zh) * 2017-10-13 2020-03-24 北京航空航天大学 一种分布式pos传递对准用模拟数据生成方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948045A (en) * 1995-05-23 1999-09-07 State Of Israel-Ministry Of Defense Armament Development Authority-Rafael Method for airbourne transfer alignment of an inertial measurement unit
CN103175545A (zh) * 2013-03-15 2013-06-26 戴洪德 惯导系统速度加部分角速度匹配抗干扰快速传递对准方法
CN103913181A (zh) * 2014-04-24 2014-07-09 北京航空航天大学 一种基于参数辨识的机载分布式pos传递对准方法
CN108387227A (zh) * 2018-02-22 2018-08-10 北京航空航天大学 机载分布式pos的多节点信息融合方法及系统
CN109141476A (zh) * 2018-09-27 2019-01-04 东南大学 一种动态变形下传递对准过程中角速度解耦合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO, YANXIA ET AL.: "Study on Transfer Alignment with the Wing Flexure of Aircraft", AEROSPACE CONTROL, 31 December 2001 (2001-12-31), ISSN: 1006-3242 *
YANG, PING ET AL.: "decoupling of airborne dynamic bending deformation angle and its application in the high-accuracy transfer alignment process", SENSORS, vol. 19, no. 1, 8 January 2019 (2019-01-08), pages 1 - 14, ISSN: 1424-8220 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118149862A (zh) * 2024-05-11 2024-06-07 西安中科华航光电科技有限公司 一种用于旋转调制惯导系统的高精度转动传递对准方法

Also Published As

Publication number Publication date
CN109141476B (zh) 2019-11-08
CN109141476A (zh) 2019-01-04
US20210010812A1 (en) 2021-01-14
US11293759B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2020062792A1 (zh) 一种动态变形下传递对准过程中角速度解耦合方法
WO2020233290A1 (zh) 一种动态变形下基于双重滤波器的传递对准方法
CN110125936B (zh) 一种空间机器人的地面实验验证系统
CN103256928B (zh) 一种分布式惯性导航系统及其姿态传递对准方法
CN105973238B (zh) 一种基于范数约束容积卡尔曼滤波的飞行器姿态估计方法
CN106628257B (zh) 地球摄动引力场中近地航天器相对运动轨道的保持方法
CN111026160B (zh) 一种四旋翼无人机轨迹跟踪控制方法
CN104215244B (zh) 基于发射惯性坐标系的空天飞行器组合导航鲁棒滤波方法
CN103056872A (zh) 空间机械手遥操作指令安全检测与修正方法
CN106354901A (zh) 一种运载火箭质量特性及动力学关键参数在线辨识方法
CN110044385B (zh) 一种大失准角情况下的快速传递对准方法
CN111498147B (zh) 挠性航天器的有限时间分段滑模姿态跟踪控制算法
CN109084757B (zh) 一种飞机机翼运动与动态变形耦合速度误差计算方法
CN112683274A (zh) 一种基于无迹卡尔曼滤波的无人机组合导航方法和系统
CN109737958A (zh) 一种声学测速辅助的极区格网惯性导航误差抑制方法
CN114180027B (zh) 一种变体飞行器的控制方法、控制器及其应用
Ritter et al. Free-flight Nonlinear Aeroelastic Simulations of the X-HALE UAV by an Extended Modal Approach
Grauer et al. Aeroelastic modeling of X-56A stiff-wing configuration flight test data
CN107247464A (zh) 一种四旋翼无人飞行器的状态受限控制方法和系统
CN112649022B (zh) 一种考虑挠曲变形和杆臂效应的大失准角传递对准方法
CN109737960A (zh) 基于速度加角速度匹配的船体变形测量方法
CN107144276A (zh) 基于h∞次优滤波的角速度匹配传递对准方法
CN102998975B (zh) 一种欠驱动航天器角速度稳定的鲁棒控制方法
CN108981752B (zh) 基于子惯组信息协同的传递对准方法、系统及存储介质
CN109733649A (zh) 空间组合体航天器的非完全连接约束状态地面模拟方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19864661

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11-05-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19864661

Country of ref document: EP

Kind code of ref document: A1