WO2018055827A1 - 損傷検知システム及び損傷検知方法 - Google Patents

損傷検知システム及び損傷検知方法 Download PDF

Info

Publication number
WO2018055827A1
WO2018055827A1 PCT/JP2017/016838 JP2017016838W WO2018055827A1 WO 2018055827 A1 WO2018055827 A1 WO 2018055827A1 JP 2017016838 W JP2017016838 W JP 2017016838W WO 2018055827 A1 WO2018055827 A1 WO 2018055827A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
damage
flight condition
flight
physical quantity
Prior art date
Application number
PCT/JP2017/016838
Other languages
English (en)
French (fr)
Inventor
雅勝 安部
英樹 副島
健 袋瀬
Original Assignee
株式会社Subaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Subaru filed Critical 株式会社Subaru
Priority to CN201780047745.5A priority Critical patent/CN109562843B/zh
Priority to ES17852608T priority patent/ES2928656T3/es
Priority to EP17852608.3A priority patent/EP3517445B1/en
Priority to JP2017523545A priority patent/JP6374608B1/ja
Publication of WO2018055827A1 publication Critical patent/WO2018055827A1/ja
Priority to US16/218,097 priority patent/US11084601B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/085Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/346Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with amplitude characteristics, e.g. modulated signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Definitions

  • Embodiments described herein relate generally to a damage detection system and a damage detection method.
  • Patent Document 1 a technique for detecting damage that has occurred in the aircraft body has been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • a technique has been proposed in which a sensor is arranged on an aircraft structure and a slip is detected by detecting ultrasonic waves using the sensor.
  • Conventional damage detection technology is suitable for aircraft inspections on the ground, but it is difficult to detect damage with high accuracy during flight. This is because during the flight of the aircraft, not only damage but also the structure constituting the aircraft is distorted due to causes other than damage such as motion and vibration of the aircraft.
  • an object of the present invention is to make it possible to detect aircraft damage with higher accuracy during flight.
  • the damage detection system includes a physical quantity detection unit, a flight condition change unit, and a damage detection unit.
  • the physical quantity detection unit detects a physical quantity of a structure constituting the aircraft during the flight of the aircraft.
  • the flight condition change unit changes the flight condition of the aircraft to a specific flight condition when the physical quantity of the structure is detected by the physical quantity detection unit.
  • the damage detection unit determines whether or not the structure is damaged based on the physical quantity detected by the physical quantity detection unit from the structure of the aircraft flying under the changed flight condition.
  • the damage detection method includes a step of detecting a physical quantity of a structure constituting the aircraft during flight of the aircraft, and a flight of the aircraft when the physical quantity of the structure is detected.
  • the block diagram of the damage detection system which concerns on the 1st Embodiment of this invention The flowchart which shows an example of the flow which determines whether damage has generate
  • the sequence chart which shows an example of the flow of the mission update of an aircraft when damage is detected by the flow shown in FIG. 2 or FIG.
  • FIG. 1 is a configuration diagram of a damage detection system according to the first embodiment of the present invention.
  • the damage detection system 1 is a system that determines whether or not damage has occurred in the structure 2 constituting the aircraft in flight.
  • the damage detection system 1 includes a physical quantity detection unit 3, a flight condition change unit 4, a damage detection unit 5, and a storage device 6.
  • the physical quantity detection unit 3 is a device that detects the physical quantity of the structure 2 constituting the aircraft during the flight of the aircraft.
  • the physical quantity to be detected by the physical quantity detection unit 3 is a desired physical quantity that changes when the structure 2 is damaged.
  • Typical and easily detected physical quantities that change when the structure 2 is damaged include the amount of distortion, vibration, and acceleration of the structure 2. Therefore, the physical quantity detection unit 3 may detect at least one of the distortion amount, vibration, and acceleration of the structure 2.
  • vibration is a time change of a minute strain amount
  • the vibration can also be detected as a time change of a minute strain amount. That is, vibration can also be detected by detecting a temporal change in the amount of distortion with an appropriate time resolution.
  • the physical quantity detection unit 3 mainly detects the strain amount of the structure 2 will be described as an example, but the same applies to the case where a physical quantity other than the strain amount such as acceleration is detected.
  • the flight condition change unit 4 sets the flight condition of the aircraft including at least one of the aircraft load multiple, airspeed, and angular velocity as a specific flight condition. Has the function to change.
  • the damage detection unit 5 has a function of determining whether or not the structure 2 has been damaged based on the physical quantity detected by the physical quantity detection unit 3 from the aircraft structure 2 flying under the changed flight conditions.
  • the main cause of damage to the structure 2 such as an aircraft wing is the collision of a bird or a cormorant.
  • the storage device 6 stores a physical quantity corresponding to at least one specific flight condition of the aircraft and corresponding to a specific flight condition corresponding to a physical quantity such as a distortion quantity corresponding to a state in which the structure 2 is not damaged. . That is, the storage device 6 stores the flight conditions of the aircraft in association with the physical quantities generated in the structure 2 in a state in which the aircraft flying under each flight condition is not damaged. Practically, a plurality of flight conditions are stored in the storage device 6 in association with physical quantities. Therefore, the storage device 6 functions as a database indicating the relationship between the flight conditions and the physical quantity such as the strain amount of the structure 2.
  • the physical quantity detection unit 3 detects the strain amount of the structure 2, as illustrated in FIG. 1, the physical quantity detection unit 3 includes the ultrasonic oscillator 3 ⁇ / b> A, the vibration sensor 3 ⁇ / b> B, the strain amount detection unit 3 ⁇ / b> C, and the ultrasonic wave. It can be configured by the control unit 3D. In the case of detecting the vibration of the structure 2, as described above, the vibration can be detected as a change in the amount of high-frequency distortion. Therefore, the structure 2 can be detected. If the acceleration of the structure 2 is detected, the physical quantity detection unit 3 can be configured using an acceleration sensor that detects the acceleration of the structure 2 instead of the vibration sensor 3B.
  • the ultrasonic oscillator 3 ⁇ / b> A is an element such as an actuator that oscillates an ultrasonic wave toward the structure 2 and propagates the ultrasonic wave to the structure 2.
  • the vibration sensor 3 ⁇ / b> B is a sensor for receiving ultrasonic waves that propagate through the structure 2.
  • the vibration sensor 3B includes an ultrasonic transducer as an acoustic sensor, a fiber Bragg grating (FBG) sensor that detects vibration such as ultrasonic vibration as a change in high-frequency distortion, and a phase shift FBG (FBG).
  • PS-FBG It can be composed of an optical fiber sensor such as a phase-shifted FBG sensor.
  • the vibration sensor 3B is configured by an optical fiber sensor, necessary optical elements such as a light source and an optical filter are provided.
  • the strain amount detection unit 3C has a function of detecting the strain amount of the structure 2 based on a change from the reference waveform of the ultrasonic waveform received by the vibration sensor 3B. That is, the waveform of the ultrasonic wave propagated through the structure 2 in a state where no distortion is generated can be acquired in advance as a reference waveform. Furthermore, the relationship between the amount of change from the reference waveform and the amount of distortion of the waveform of the ultrasonic wave propagated through the structure 2 in which the distortion has occurred can be acquired in advance by a test or the like. Then, the amount of distortion generated in the structure 2 can be detected by observing the waveform of the ultrasonic wave that has propagated through the structure 2.
  • indices such as the amplitude of the ultrasonic waveform, the integral value (area) in the time direction, the maximum value, and the average value can be used.
  • necessary signal processing such as averaging and filter processing may be performed. When averaging is performed, ultrasonic wave oscillation and detection are repeated a plurality of times.
  • the ultrasonic wave can be propagated, and the propagated ultrasonic wave is received with sufficient intensity by the vibration sensor 3B. It becomes an area where can be. Therefore, a wide area of the structure 2 can be covered by arranging the plurality of ultrasonic oscillators 3A and the plurality of vibration sensors 3B at appropriate intervals as illustrated in FIG.
  • a system for diagnosing the soundness of a structure using a sensor built in an aircraft is called a Structural Health Monitoring (SHM) system.
  • SHM Structural Health Monitoring
  • the ultrasonic control unit 3D is a device that drives and controls the ultrasonic oscillator 3A.
  • the ultrasonic control unit 3D can be provided with a function of changing at least one of the amplitude and frequency of the ultrasonic wave oscillated from the ultrasonic oscillator 3A. If the amplitude and frequency of the ultrasonic wave oscillated from the ultrasonic oscillator 3A can be changed, the ultrasonic wave can be oscillated under conditions suitable for damage detection of the structure 2. For example, if the amplitude or frequency of the ultrasonic wave is increased, it is easy to detect the ultrasonic wave with the vibration sensor 3B.
  • the vibration sensor 3B arranged in the structure 2 is configured by a strain sensor capable of detecting static strain such as an optical fiber sensor, the strain generated by the damage generated in the structure 2 is detected. be able to.
  • the strain amount detection unit 3C can detect the strain amount of the structure 2 based on an output signal from a strain sensor such as a fiber sensor. Therefore, the operation of the ultrasonic oscillator 3A may be turned off, and the amount of strain may be detected by the vibration sensor 3B that can also be used as a strain sensor.
  • the strain amount detection unit 3C When the strain amount of the structure 2 is detected by the strain amount detection unit 3C, it is possible to determine whether or not the structure 2 is damaged based on the strain amount. However, during the flight of the aircraft, the structure 2 vibrates or the structure 2 is deformed, so that distortion occurs. For this reason, it is necessary to distinguish whether the strain generated in the structure 2 is a strain generated by damage or a strain generated by vibration or deformation of the structure 2. In other words, distortion caused by vibration or deformation of the structure 2 acts like a noise as a flight disturbance in distortion detection for detecting damage. Therefore, in order to detect damage to the structure 2 during the flight of the aircraft, it is necessary to detect distortion due to damage in the presence of distortion due to flight disturbance.
  • the damage generated in the structure 2 is small, the amount of distortion caused by the damage is relatively smaller than the amount of distortion due to flight disturbance such as vibration or deformation of the structure 2.
  • the change in the amount of strain before and after the occurrence of damage becomes small, making it difficult to detect damage. That is, there is a risk of missing detection of damage or erroneous detection of damage. If damage is erroneously detected, unnecessary flight restrictions such as lowering altitude and speed will be imposed. On the other hand, if a small damage is left unattended and the flight is continued without restricting the flight, the damage may increase and threaten safety.
  • the flight condition change unit 4 that changes the flight condition of the aircraft to a specific flight condition suitable for damage detection when the physical quantity detection unit 3 detects the distortion of the structure 2.
  • the flight condition changing unit 4 obtains the detection result of the strain amount of the structure 2 from the strain amount detection unit 3C of the physical quantity detection unit 3, and if the strain amount is not large enough to detect damage, the flight condition change unit 4 By controlling the control system 7, the flight condition of the aircraft can be automatically changed to a specific flight condition suitable for damage detection.
  • the damage detection unit 5 acquires the detection result of the strain amount of the structure 2 from the strain amount detection unit 3C of the physical quantity detection unit 3, and if the strain amount is large enough to detect damage, In addition to detecting damage based on the strain amount of the body 2, the structure body based on the strain amount detected by the physical quantity detection unit 3 from the aircraft structure 2 flying under the changed flight conditions suitable for damage detection. It is configured to determine whether or not 2 has been damaged.
  • the flight conditions suitable for detecting damage include flight conditions that intentionally destabilize the aircraft, as well as stable flight conditions that minimize the flight disturbance such as vibration and deformation of the structure 2 as much as possible.
  • flight conditions that intentionally destabilize the aircraft include flight conditions in which damage caused to the structure 2 expands and flight conditions in which the amount of distortion caused by damage caused in the structure 2 increases.
  • the damage is enlarged. That is, even if the damage is small, the damage can be enlarged if the aircraft is allowed to fly under the flight conditions in which the aircraft is intentionally shaken within a range where there is no danger. For this reason, the amount of strain accompanying damage increases to such an extent that damage can be detected, and the damage detection unit 5 detects damage with good accuracy based on the strain amount of the structure 2 detected by the physical quantity detection unit 3. It becomes possible. That is, it is possible to determine whether or not the structure 2 has been damaged based on the detection result of the amount of strain caused by the enlarged damage.
  • the amount of distortion caused by the damage can be increased to such an extent that the damage can be detected.
  • the change in distortion caused by damage is so small that it is difficult for the distortion detection unit 3C to detect, a flight in which a load is intentionally applied to the aircraft in a range where there is no danger. By doing so, the change in the amount of strain caused by damage can be increased. For this reason, in the damage detection part 5, it becomes possible to determine whether the structure 2 was damaged based on the detection result of the increased distortion amount.
  • the distortion amount caused by the damage is changed to the distortion caused by the flight disturbance. It can be made relatively large with respect to the quantity. In other words, when it is difficult to detect the amount of distortion due to damage due to flight disturbance, the effect of flight disturbance is suppressed by performing stable flight so that changes in distortion due to damage can be detected. Can do.
  • the flight condition of the aircraft can be changed to a specific flight condition in which the amount of distortion of the structure 2 caused by the flight of the aircraft is known.
  • the amount of distortion due to damage as a variation from the amount of distortion of the structure 2 caused by the flight of the aircraft. Therefore, it is not always necessary to set the flight condition in which the distortion amount of the structure 2 caused by the flight of the aircraft is reduced.
  • Specific flight conditions suitable for detection of these damages can be determined in advance by tests, simulations, etc., and stored in the storage device 6. Then, the flight condition changing unit 4 selects and reads one specific flight condition stored in the storage device 6 and changes the current flight condition of the aircraft to the selected one specific flight condition. Configured to be able to.
  • the flight condition of the aircraft When damage is detected by intentionally changing the flight condition of the aircraft to a flight condition that destabilizes the aircraft, or conversely, the flight condition of the aircraft reduces the amount of distortion of the structure 2 caused by the flight of the aircraft.
  • the flight condition to be changed can be stored in the storage device 6.
  • the physical quantity detection unit 3 detects a distortion of the structure 2 that may have occurred due to damage, the flight condition of the aircraft is changed to a specific flight condition stored in the storage device 6. Can do.
  • the storage device 6 can also store the flight conditions of a plurality of aircraft. In that case, when the distortion of the structure 2 that may have occurred due to the damage is detected by the physical quantity detection unit 3, the flight condition is stored in the storage device 6 in the initial stage suitable for the detection of the damage. If the damage detection unit 5 still cannot determine whether or not the structure 2 has been damaged even if the aircraft is allowed to fly under the changed flight conditions, the flight condition of the aircraft is specified separately. The flight conditions can be changed.
  • the control of the control unit 3D can change at least one of the amplitude and frequency of the ultrasonic wave oscillated from the ultrasonic oscillator 3A during the flight of the aircraft under the changed specific flight condition.
  • the damage detection unit 5 can determine whether or not the structure 2 is damaged.
  • the flight condition of the aircraft, the amplitude of the ultrasonic wave, and the frequency of the ultrasonic wave may be used as parameters, and the parameters may be sequentially changed until a distortion amount large enough for damage detection is detected.
  • the order of the parameters to be changed is arbitrary. That is, when the amount of distortion of the structure 2 does not increase to such an extent that damage can be detected even if the flight conditions of the aircraft are changed, the ultrasonic oscillation conditions such as the amplitude and frequency of the ultrasonic waves are changed.
  • the flight conditions of the aircraft may be changed when the distortion amount of the structure 2 does not increase to such an extent that damage can be detected even if the sound wave oscillation conditions are changed.
  • the damage detection unit 5 uses the physical quantity from the aircraft structure 2 flying under the changed specific flight condition. Based on the strain amount detected by the detection unit 3 and the strain amount stored in the storage device 6 in association with the specific flight condition after the change and corresponding to the state where the structure 2 is not damaged, the structure body Whether or not 2 has been damaged can be determined.
  • the amount of distortion corresponding to a state in which no damage is present in the structure 2 is subtracted from the actual measurement value of the amount of distortion detected by the physical quantity detection unit 3 from the aircraft structure 2 flying in a specific flight condition.
  • the distortion amount of the structure 2 due to the flight disturbance can be canceled.
  • the physical quantity detection unit 3 detects the amount of distortion corresponding to the state in which the structure 2 is not damaged as correction data from the structure 2 of the aircraft flying under a specific flight condition. Correction for canceling the distortion amount of the structure 2 caused by the flight disturbance can be performed from the actual measurement value of the distortion amount.
  • amendment, the damage detection part 5 can determine with high precision whether the structure 2 was damaged.
  • the strain amount of the structure 2 is ignored depending on the temperature and vibration magnitude of the structure 2. It changes to the extent that it cannot be done. In particular, if the temperature of the structure 2 changes, the rigidity of the structure 2 also changes, so the amount of strain of the structure 2 due to flight disturbance changes. Therefore, the strain amount of the structure 2 can be stored for each other parameter such as temperature without storing the strain amount of one structure 2 for each flight condition. That is, the amount of strain of the structure 2 can be associated with a combination of flight conditions suitable for damage detection and a single or a plurality of parameters such as temperature and vibration of the structure 2 and stored in the storage device 6. .
  • a typical aircraft is provided with a sensor group 8 for detecting the temperature and vibration of the structure 2.
  • Typical sensors constituting the sensor group 8 include a temperature sensor 8A, an acceleration sensor 8B, and a strain gauge 8C. If the temperature sensor 8A is used, the temperature of the structure 2 can be measured. On the other hand, if the acceleration sensor 8B is used, vibration can be detected as a change in the acceleration of the structure 2 with time. Further, if the strain gauge 8C is used, it is possible to detect a static strain amount of the structure 2 and a low-frequency strain amount change.
  • the amount of strain of the structure 2 associated with a specific flight condition suitable for damage detection and a combination of parameters such as vibrations captured as temperature and acceleration changes of the structure 2 is acquired from the storage device 6.
  • the obtained distortion amount is subtracted from the actual measurement value of the distortion amount detected by the physical quantity detection unit 3 from the aircraft structure body 2 flying under a specific flight condition, thereby causing the structure body 2 due to damage.
  • the magnitude of distortion can be determined. And based on the magnitude
  • the acceleration of the structure 2 is detected by the physical quantity detection unit 3
  • the acceleration of the structure 2 detected by the acceleration sensor 8 ⁇ / b> B from the actual measurement value of the acceleration of the structure 2 detected by the physical quantity detection unit 3.
  • the acceleration generated in the structure 2 due to the damage can be obtained. For this reason, it can be determined with high accuracy whether or not the structure 2 is damaged based on the acceleration generated in the structure 2 due to the damage.
  • damage can also be obtained by subtracting the actual strain value of the structure 2 obtained from the strain gauge 8C from the actual strain value of the structure 2 detected by the physical quantity detection unit 3. It is possible to determine the magnitude of the distortion generated in the structure 2 due to the above.
  • the damage detection unit 5 may be configured to detect a damage size, a damage occurrence area, a damage occurrence position, and the like in addition to the presence or absence of damage. These detection methods are arbitrary. For example, the presence / absence of damage can be determined based on whether or not the distortion caused by the damage is detected with a certain amount of distortion as described above. Specifically, when it is determined that a distortion having a distortion amount exceeding an empirically determined threshold or a distortion having a distortion amount exceeding the empirically determined threshold is a distortion generated due to damage. It can be determined that the structure 2 has been damaged.
  • the size of the strain caused by the damage is measured to estimate the size of the damage. Can do.
  • the damage occurrence area can be specified.
  • the position of damage can be estimated by analyzing the distribution of strain amounts detected by the plurality of vibration sensors 3B.
  • the position of the damage and the damage occurrence area can be specified by performing detailed damage detection while switching the ultrasonic oscillator 3A that oscillates the ultrasonic wave.
  • the presence / absence, size, occurrence area or location of damage is detected, it can be recorded as a damage detection result. Further, based on the detection result of damage, flight conditions such as altitude and speed of the aircraft can be limited, and if the aircraft is an unmanned aircraft, the mission of the unmanned aircraft can be changed. In that case, it is possible to automatically limit the flight conditions and change the mission by outputting a control signal from the damage detection unit 5 to a necessary system such as the flight control system 7.
  • the mission of the drone includes flight routes, target points, targets, etc. for observation, photographing or pesticide spraying. Moreover, even if it is a manned machine, missions, such as a destination, can be changed based on the detection result of damage.
  • the components that process electric signals can be constituted by electric circuits.
  • a component that processes digital information can be configured by an electronic circuit that has a computer read a program.
  • an optical fiber sensor is used as the vibration sensor 3B, an optical signal is output from the vibration sensor 3B.
  • a photoelectric conversion circuit can be provided in addition to an optical element for processing an optical signal.
  • an A / D (analog-to-digital) converter is also used as a component.
  • the damage detection system 1 can include an input device 10 and a display device 11 as necessary as a user interface for setting damage detection conditions and a user interface for outputting damage detection results. .
  • the operator oscillates ultrasonic waves from the ultrasonic oscillator 3 ⁇ / b> A to detect damage detection timing, damage detection interval, and damage detection by operating the input device 10 during flight of the aircraft. It is possible to set damage detection conditions such as whether or not to perform the ultrasonic wave oscillation timing. On the other hand, even when the aircraft is an unmanned aerial vehicle, it is possible for the aircraft user to set the damage detection condition as described above by operating the input device 10 before the flight of the aircraft.
  • the damage detection result can be displayed on the display device 11.
  • the damage detection result can be displayed on the display device 11 so that the user of the aircraft can confirm the damage detection result after the flight of the aircraft.
  • the vibration sensor 3B of the physical quantity detection unit 3 is configured by a strain sensor such as a fiber sensor and the ultrasonic oscillator 3A is turned off to detect damage to the structure 2 will be described. Thereafter, a mode in which the amount of strain generated in the structure 2 is measured by a strain sensor without oscillating ultrasonic waves from the ultrasonic oscillator 3A, and the damage detection unit 5 detects the presence or absence of damage based on the measured amount of strain. Is referred to as a passive damage detection mode.
  • the ultrasonic oscillator 3A is turned on to oscillate the ultrasonic wave, and the vibration sensor 3B detects the vibration of the ultrasonic wave propagated through the structural body 2, thereby calculating the strain amount of the structural body 2 and the calculated structure.
  • a mode in which the damage detection unit 5 detects the presence or absence of damage based on the amount of strain of the body 2 is referred to as an active damage detection mode.
  • Passive damage detection mode and active damage detection mode can be selected by the aircraft user if the aircraft is an unmanned aircraft, or by the aircraft operator or mechanic if the aircraft is a manned aircraft. it can.
  • the passive damage detection mode and the active damage detection mode can be used in combination.
  • damage detection may be performed in the active damage detection mode.
  • a mode in which an aircraft flies under a specific flight condition suitable for damage detection is referred to as a damage detection flight mode.
  • FIG. 2 is a flowchart showing an example of a flow for determining in the passive damage detection mode whether or not damage has occurred in the structure 2 of the aircraft in flight by the damage detection system 1 shown in FIG.
  • a damage detection mode for detecting damage by switching to the active damage detection mode when a suspected damage is detected in the passive damage detection mode alone or in the passive damage detection mode by operating the input device 10 before the flight of the aircraft. It is specified. Alternatively, if the aircraft is a manned aircraft, after the flight, the operator detects damage in the active damage detection mode when a suspected damage is detected in the passive damage detection mode alone or in the passive damage detection mode by operating the input device 10. You may make it designate the damage detection mode to perform.
  • step S1 When the aircraft flies, in step S1, during the flight of the aircraft, the strain of the structure 2 constituting the aircraft is detected by a strain sensor provided in the physical quantity detection unit 3 as the vibration sensor 3B. During the flight of the aircraft, the structure 2 is deformed by the movement of the airframe. Therefore, strain including at least deformation of the structure 2 caused by movement of the airframe is detected by the strain sensor. A strain detection signal detected by the strain sensor is output to the strain amount detection unit 3C. In the strain amount detection unit 3C, the strain amount of the structure 2 is acquired. The acquired strain amount of the structure 2 is notified from the strain amount detection unit 3C to the damage detection unit 5.
  • the damage detection unit 5 determines whether or not the structure 2 is distorted with a distortion amount that can detect damage with sufficient accuracy.
  • the damage detection unit 5 determines whether or not the strain amount of the structure 2 acquired in the strain amount detection unit 3C has changed over time with a change amount that is greater than or equal to the first threshold value or exceeds the first threshold value. Determine.
  • the first threshold value is a threshold value that is determined empirically as the minimum distortion amount of the structure 2 when there is a possibility that damage to be detected has occurred in the structure 2.
  • the degree of damage to be detected may vary depending on the aircraft mission. As a specific example, in the case of an unmanned non-defense aircraft, it is desired to detect even slight damage with an emphasis on safety. On the other hand, in the case of a defense aircraft, a large damage due to a bullet or the like should be detected, but a small damage due to a collision such as a spear may be ignored.
  • the threshold value corresponding to the damage to be detected can be determined empirically according to the aircraft mission. In other words, it is appropriate to determine a threshold value for the distortion amount of the structure 2 so that the detection accuracy of damage required for the aircraft mission is ensured. Specifically, when small damage is ignored, a threshold value that is a reference for the amount of distortion of the structure 2 is set large, while when even small damage should be detected, the structure 2 What is necessary is just to set the threshold value used as a reference
  • the structure body 2 detects it. It can be determined that no damage has occurred. In this case, the strain amount of the structure 2 is continuously monitored by the physical quantity detection unit 3.
  • the damage detection unit 5 determines whether or not the strain amount of the structure 2 acquired by the strain amount detection unit 3C has changed over time with a change amount that is equal to or greater than the second threshold value or exceeds the second threshold value.
  • the second threshold is a threshold that is determined empirically as the minimum amount of distortion of the structure 2 when it can be determined that damage to the extent that the structure 2 should be detected has occurred.
  • the strain amount of the structure 2 acquired by the strain amount detection unit 3C changes with time by a change amount that is equal to or more than the second threshold value or exceeds the second threshold value, the structure body 2 is damaged. Can be determined. In this case, in the determination of step S2, it can be determined that the structure 2 has been distorted with an amount of distortion capable of detecting the damage to the extent that should be detected with sufficient accuracy.
  • the strain amount of the structure 2 acquired by the strain amount detection unit 3C changes over time with a change amount that is equal to or greater than the first threshold value or exceeds the first threshold value. If the amount of change exceeds the threshold value of 2 and does not change with time, the structure 2 may have been damaged, but it cannot be determined whether the damage has occurred. . In this case, in the determination in step S2, it is determined that NO, that is, that the structure 2 is not distorted with a strain amount that can detect damage with sufficient accuracy.
  • step S2 an instruction to change the current flight condition of the aircraft to a specific flight condition suitable for damage detection is sent from the damage detection unit 5 to the flight condition change unit 4. Be notified. That is, the flight in the damage detection flight mode is notified from the damage detection unit 5 to the flight condition change unit 4.
  • step S3 the flight condition changing unit 4 changes the flight condition of the aircraft to a specific flight condition suitable for damage detection. Specifically, the flight condition changing unit 4 reads one flight condition suitable for damage detection from the storage device 6. Then, the flight condition changing unit 4 controls the flight control system 7 so that the aircraft flies under the read flight conditions. Thereby, the aircraft shifts to flight in the damage detection flight mode. That is, the aircraft flies under flight conditions such as a load multiple, airspeed and angular velocity suitable for damage detection in advance.
  • step S4 the physical quantity detection unit 3 detects the amount of strain from the aircraft structure 2 flying under the changed flight conditions.
  • the detected amount of distortion of the structure 2 is notified from the physical quantity detection unit 3 to the damage detection unit 5.
  • the aircraft flies under a flight condition determined so that damage and the amount of distortion of the structure 2 caused by damage increase, the amount of distortion of the structure 2 caused by damage increases. For this reason, the amount of distortion of the structure 2 detected by the physical quantity detection unit 3 becomes larger than before the change of the flight conditions.
  • the aircraft flies under flight conditions determined so that the amount of distortion of the structure 2 due to the flight of the aircraft is reduced, the amount of distortion of the structure 2 caused by the damage is caused by the flight of the aircraft. It becomes relatively large with respect to the amount of distortion of the structure 2 to be performed. For this reason, in the case where a plurality of strain sensors are arranged in the structure 2, it is possible to identify a location where the strain amount is relatively large as compared to other portions as a singular point of the two-dimensional distribution of strain amount. It may be possible.
  • the physical quantity detection unit 3 detects a distortion quantity in which a distortion quantity that may be caused by damage is superimposed on a known distortion quantity corresponding to the flight condition.
  • step S5 the structure due to the flight of the aircraft is corrected by correcting the flight disturbance based on the known distortion amount.
  • the distortion amount of the body 2 is canceled from the distortion amount detected by the physical quantity detection unit 3.
  • the known distortion amount stored in the storage device 6 in association with the flight condition is subtracted from the distortion amount detected by the physical quantity detection unit 3. That is, the ideal strain amount in a state where the structure 2 is not damaged is subtracted from the actually measured value of the strain amount of the structure 2. Thereby, the amount of distortion of the structure 2 caused by the damage can be obtained.
  • the flight conditions such as the flight load multiple, airspeed, and angular velocity are set in the aircraft. It can be measured by various sensors provided in the system. Then, based on the database representing the relationship between each flight condition obtained in advance by testing or the like and the amount of distortion of the structure 2 and the measurement result of the flight condition by various sensors, the distortion of the structure 2 caused by the flight of the aircraft The amount can be determined. Even in this case, the strain amount of the structure 2 caused by the damage can be obtained by subtracting the strain amount of the structure 2 due to the flight of the aircraft from the strain amount detected by the physical quantity detection unit 3. .
  • a database representing the relationship between each flight condition and the amount of strain of the structure 2 can be stored in the storage device 6.
  • the damage detection unit 5 acquires the temperature of the structure 2 from the temperature sensor 8A installed on the structure 2, and based on the temperature of the structure 2, the structure 2 in the case where there is no damage.
  • the amount of distortion can be determined with higher accuracy. For this reason, by subtracting the strain amount for each temperature of the structure 2 when there is no damage from the strain amount detected by the physical quantity detection unit 3, the strain amount of the structure 2 caused by the damage with higher accuracy. Can be requested.
  • the amount of strain of the structure 2 changes due to aerodynamic vibration caused by the flight of the aircraft. Therefore, the magnitude of vibration of the structure 2 due to the flight of the aircraft is acquired as a time change of acceleration from the acceleration sensor 8B installed on the aircraft structure 2, and corresponds to the vibration amount of the structure 2 due to the flight of the aircraft.
  • the strain amount of the structure 2 can be subtracted from the strain amount detected by the physical quantity detection unit 3. Even in this case, the strain amount of the structure 2 caused by the damage can be obtained.
  • the strain amount of the known structure 2 corresponding to the flight conditions stored in the storage device 6, the strain amount corresponding to the temperature of the structure 2 obtained from the temperature sensor 8A, and the acceleration sensor 8B are acquired.
  • the distortion amount detected by the physical quantity detection unit 3 can be corrected by using the distortion amount of the structure 2 corresponding to the acceleration of the structure 2 as correction data. That is, it is possible to perform correction for canceling the distortion amount of the structure 2 caused by the flight of the aircraft.
  • the amount of distortion of the structure 2 caused by damage or damage is increased when the aircraft is caused to fly under a flight condition determined so as to reduce the amount of distortion of the structure 2 caused by the flight of the aircraft.
  • the distortion amount disturbance correction may be omitted.
  • the amount of distortion of the structure 2 caused by the damage is acquired.
  • a distortion amount in which a component of the distortion amount of the structure 2 caused by damage is emphasized is acquired.
  • step S6 the damage detection unit 5 determines again whether or not the structure 2 is distorted with a distortion amount capable of detecting damage with sufficient accuracy. Even in this case, similarly to the determination in step S2, the threshold processing for comparing with a rough threshold for determining whether or not there is a possibility that the structure 2 is damaged, and the structure 2 are damaged. It is possible to execute a threshold process for comparing with a strict threshold value for determining whether or not it has occurred.
  • the amount of distortion of the structure 2 caused by the damage becomes the target of threshold processing.
  • the disturbance correction is not performed, the amount of distortion in which the component of the amount of distortion of the structure 2 caused by damage is emphasized is subjected to threshold processing.
  • step S6 If it is determined in step S6 that there is still a possibility of damage but damage cannot be detected, it is determined in step S7 that the damage detection unit 5 has changed all specific flight conditions. Until it is done, the flight condition change from step S3, the detection of the distortion amount of the structure 2 corresponding to the changed flight condition, the necessary disturbance correction, and the determination of whether damage can be detected are repeated. . That is, based on the determination result of whether or not damage can be detected with sufficient accuracy, feedback control is executed to sequentially change the flight conditions until it is determined that damage can be detected with sufficient accuracy.
  • step S7 If the damage detection unit 5 determines that all flight conditions have been changed in step S7, damage has not been detected with sufficient accuracy. Therefore, the damage detection unit 5 performs step S8. It is determined that no damage has been detected with sufficient accuracy.
  • step S2 when it is determined in step S2 or step S6 that damage can be detected, the damage detection unit 5 determines that the structure 2 is damaged in step S9. In step S10, the damage detection unit 5 can automatically limit the flight conditions and change the mission by outputting a control signal to a necessary system such as the flight control system 7.
  • the flight of the aircraft It is possible to determine whether or not the structure 2 has been damaged based on the amount of strain detected from the aircraft structure 2 flying under the changed flight conditions by changing the conditions. Especially the flight conditions of the aircraft.
  • the distortion amount of the structure 2 is changed to a known flight condition, the distortion amount detected from the aircraft structure 2 flying under the changed specific flight condition and the specific flight condition after the change are associated. And determining whether or not the structure 2 is damaged based on the strain amount of the structure 2 stored in the storage device 6 and corresponding to the strain amount corresponding to a state in which the structure 2 is not damaged. Can do.
  • Damage detection in the active damage detection mode can be executed, for example, when it is determined that damage has occurred in the passive damage detection mode.
  • the damage detection in the active damage detection mode can be executed regardless of the damage detection result in the passive damage detection mode.
  • FIG. 3 is a flowchart showing an example of a flow for determining in the active damage detection mode whether or not damage has occurred in the structure 2 of the aircraft in flight by the damage detection system 1 shown in FIG.
  • the same steps as those in the flowchart shown in FIG. 3 are identical steps as those in the flowchart shown in FIG.
  • ultrasonic waves oscillate from the ultrasonic oscillator 3A toward the inspection area of the structure 2 in order to detect the strain amount of the structure 2 in steps S1 and S4. Is done. Therefore, it is necessary to generate a trigger that oscillates ultrasonic waves.
  • the ultrasonic oscillation timing can be determined arbitrarily. For example, if the aircraft is a manned aircraft, an ultrasonic wave can be oscillated by the operator pressing a button. That is, it is possible to manually oscillate ultrasonic waves by operating the input device 10.
  • the strain amount of the structure 2 in step S1 is detected passively without oscillating ultrasonic waves. If the flight condition is changed in step S3, the change of the flight condition is used as a trigger in step S4. An ultrasonic wave may be oscillated at.
  • the strain amount of the structure body 2 can be changed by changing the ultrasonic oscillation conditions. Therefore, in addition to the change of the flight condition, the ultrasonic oscillation condition can be changed until it is determined that the damage can be detected with sufficient accuracy. That is, it is possible to perform feedback control that changes the ultrasonic oscillation condition until it is determined that damage can be detected with sufficient accuracy.
  • step S20 When it is determined that damage has not been detected with sufficient accuracy after the change of the flight condition but damage may have occurred, in step S20, The ultrasonic oscillation conditions are changed.
  • amplitude and frequency can be mentioned. For example, increasing the amplitude of the ultrasonic wave leads to an improvement in damage detection sensitivity. Further, if the frequency of the ultrasonic wave is increased, distance resolution can be improved in damage detection. From the viewpoint of energy efficiency, the initial value of the amplitude and frequency of the ultrasonic wave is set to an amplitude and frequency with small energy, and if the damage cannot be detected, the ultrasonic vibration control is gradually increased. Is preferred.
  • step S21 it is determined in step S21 whether or not the damage detection unit 5 has detected a strain amount enough to detect damage. Specifically, the ultrasonic wave oscillated from the ultrasonic oscillator 3A under the changed oscillation condition propagates through the structure 2 and is received by the vibration sensor 3B, and an ultrasonic wave representing the waveform of the ultrasonic wave received from the vibration sensor 3B. The sound wave detection signal is output to the distortion amount detection unit 3C.
  • the reference waveform of the ultrasonic wave when there is no distortion in the structure 2 is compared with the waveform of the ultrasonic wave received by the vibration sensor 3B. Then, the strain amount of the structure 2 is calculated based on the deviation amount of the ultrasonic waveform received by the vibration sensor 3B from the ultrasonic reference waveform when there is no strain in the structure 2. Then, the calculated distortion amount of the structure 2 is compared with a threshold value for determining the presence or absence of damage, and when it is determined that the calculated value is equal to or greater than the threshold value or exceeds the threshold value, It can be determined that the structure 2 is distorted.
  • step S21 determines whether or not there is damage. If it is not determined that the amount of distortion of the structure 2 corresponding to the changed ultrasonic oscillation condition exceeds or exceeds the threshold for determining whether or not there is damage, it is possible to detect damage. It can be determined that the structure 2 is not distorted by the amount of strain. Therefore, the determination in step S21 is NO.
  • step S22 When it is determined that the structure 2 is not distorted with the amount of strain that can detect damage, in step S22, the change to all the preset selectable ultrasonic oscillation conditions is completed. Until then, the determination of whether or not the detection of the amount of distortion and the detection of damage is possible is repeated while sequentially changing the ultrasonic oscillation conditions. In addition, even if the ultrasonic oscillation conditions are changed, if the damage cannot still be detected with sufficient accuracy, the flight conditions of the aircraft are changed.
  • the determination result as to whether or not damage can be detected with sufficient accuracy can be fed back not only to the flight conditions of the aircraft but also to the ultrasonic oscillation conditions.
  • FIG. 4 is a sequence chart showing an example of an aircraft mission update flow when damage is detected in the flow shown in FIG. 2 or FIG.
  • the physical quantity detection unit 3 of the damage detection system 1 starts detecting the distortion of the structure 2. Then, as shown in step S ⁇ b> 30, the change with time of the strain amount of the structure 2 is monitored.
  • the distortion amount of the structure 2 may be constantly monitored by the strain sensor without oscillating the ultrasonic wave in the passive damage detection mode, or the ultrasonic wave is oscillated intermittently at a predetermined time interval in the active damage detection mode. Then, the strain amount of the structure 2 may be periodically acquired.
  • the flight control system 7 controls the aircraft under the flight restrictions determined in advance on the assumption that no damage has occurred.
  • the aircraft flies along a predetermined flight path. Further, as shown in step S32, the aircraft flies according to a mission determined in advance on the assumption that no damage has occurred.
  • step S33 if the structure 2 is damaged by an accident such as a shot, a lightning strike, or a bird's collision during the flight of the aircraft, a vibration wave is generated due to the impact. Changes. Then, in step S35, the damage detection unit 5 can detect at least the possibility of damage. Specifically, threshold processing is performed with a threshold smaller than the threshold for the amount of strain of the structure 2 for detecting damage, and it is possible to detect the possibility that damage has occurred although damage cannot be reliably detected.
  • the flight mode of the aircraft is changed from the normal flight mode to the damage detection flight mode in step S36. That is, the flight condition changing unit 4 reads a specific flight condition suitable for damage detection from the storage device 6 and notifies the flight control system 7 of it. Then, the flight control system 7 performs control to change the flight condition of the aircraft to the specific flight condition notified from the flight condition changing unit 4. Thereby, the aircraft can be caused to fly in the damage detection flight mode.
  • step S37 the strain amount of the structure 2 is detected in the passive damage detection mode or the active damage detection mode.
  • the detected distortion amount of the structure 2 is given to the damage detection unit 5.
  • step S38 the damage detection unit 5 detects the presence or absence of damage based on the strain amount of the structure 2 detected during the flight in the damage detection flight mode.
  • the flight mode of the aircraft is updated to a damage detection flight mode in which the flight is performed under another flight condition in step S36.
  • the flight condition changing unit 4 reads another specific flight condition suitable for damage detection from the storage device 6 and notifies the flight control system 7 of it. Then, the flight control system 7 performs control to change the flight condition of the aircraft to another specific flight condition notified from the flight condition changing unit 4. This allows the aircraft to fly in the updated damage detection flight mode.
  • step S36 Such update of the damage detection flight mode in step S36 is repeated until the presence or absence of damage can be detected with sufficient accuracy by the damage detection unit 5 in step S38.
  • the damage detection unit 5 detects the size, position, area, etc. of the damage generated in the structure 2 as necessary, and the flight control system 7 Notify
  • step S39 the flight control system 7 updates the flight restrictions and the flight path of the aircraft based on the detection information of the damage such as the size, position, and area of the damage that has occurred in the structure 2. That is, a flight restriction and a flight path that can withstand the load in the structure 2 whose strength has deteriorated due to damage are applied.
  • step S40 the aircraft mission is also updated in accordance with the updated flight restrictions and flight paths. Further, when the mission is updated, the flight restriction and the flight path are further updated according to the updated mission as necessary.
  • the damage detection system 1 and the damage detection method as described above improve the accuracy of damage detection during flight of the aircraft by flying the aircraft in a suitable flight state in order to detect damage caused to the aircraft structure 2. It can be made to be.
  • the damage detection system 1 and the damage detection method it is possible to detect damage to the structure 2 with high accuracy using a conventional sensor even during flight of an aircraft.
  • the aircraft is an unmanned aircraft, safety can be improved.
  • FIG. 5 is a configuration diagram of a damage detection system according to the second embodiment of the present invention.
  • the function of the flight condition changing unit 4A is different from that in the damage detection system 1 in the first embodiment. Since the other configurations and operations of the damage detection system 1A in the second embodiment are not substantially different from those in the damage detection system 1 in the first embodiment, the same or corresponding configurations are denoted by the same reference numerals. The description is omitted.
  • the flight condition changing unit 4A of the damage detection system 1A in the second embodiment notifies the aircraft operator of a change to a specific flight condition suitable for detection of damage that may occur in the structure 2.
  • the flight conditions of the aircraft are configured to be changed manually by the operator.
  • the notification of the change to the specific flight condition can be performed by any method such as message display, voice, light, or sound.
  • the flight condition changing unit 4A is connected to an output device 20 such as a display device, a speaker, or a lamp according to a notification method of changing to a specific flight condition. Then, the flight condition changing unit 4A is configured to instruct the aircraft operator to change the flight conditions by outputting necessary information to the output device 20. Note that when a change to a specific flight condition is notified by displaying a message, the message may be displayed on the display device 11.
  • the damage detection system 1A in the second embodiment the same effect as that of the damage detection system 1 in the first embodiment can be obtained.
  • the damage detection system 1A according to the second embodiment can determine whether or not the structure 2 is damaged without automatic control of complicated flight conditions for a manned aircraft.
  • FIG. 6 is a block diagram of a damage detection system according to the third embodiment of the present invention.
  • the configuration of the physical quantity detection unit 3 is different from that in the damage detection system 1 in the first embodiment. Since the other configurations and operations of the damage detection system 1B in the third embodiment are not substantially different from those in the damage detection system 1 in the first embodiment, the same or corresponding configurations are denoted by the same reference numerals. The description is omitted.
  • the physical quantity detection unit 3 of the damage detection system 1B in the third embodiment detects a strain sensor 3E that detects strain generated in the structure 2, and a strain amount of the structure 2 based on a detection signal from the strain sensor 3E. And a distortion amount detection unit 3C. Similarly to the first embodiment, if a plurality of strain sensors 3E are arranged in the structure 2 at appropriate intervals, the damage detection range can be widened. An optical fiber sensor or the like can be used for each strain sensor 3E.
  • the damage detection system 1 in the first embodiment is configured to be able to detect damage in the passive damage detection mode and damage in the active damage detection mode by switching the operation of the ultrasonic oscillator 3A.
  • the damage detection system 1B according to the third embodiment can detect only damage in the passive damage detection mode.
  • the damage detection system 1B according to the third embodiment having such a configuration, it is possible to detect the amount of strain generated in the structure 2 without performing ultrasonic oscillation. For this reason, the configuration and control of the physical quantity detection unit 3 can be simplified.
  • the aircraft operator may manually change the flight condition of the aircraft to a specific flight condition suitable for damage detection.
  • another physical quantity sensor such as an acceleration sensor may be used to detect damage in the passive damage detection mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

実施形態に係る損傷検知システムは、物理量検出ユニット、飛行条件変更部及び損傷検知部を有する。物理量検出ユニットは、航空機の飛行中において前記航空機を構成する構造体の物理量を検出する。飛行条件変更部は、前記物理量検出ユニットによって前記構造体の物理量が検出された場合に、前記航空機の飛行条件を特定の飛行条件に変更させる。損傷検知部は、変更後の前記飛行条件で飛行する前記航空機の前記構造体から前記物理量検出ユニットで検出された物理量に基づいて、前記構造体に損傷が生じたか否かを判定する。

Description

損傷検知システム及び損傷検知方法
 本発明の実施形態は、損傷検知システム及び損傷検知方法に関する。
 航空機の機体が損傷した場合には、速やかに損傷を検知することが重要である。このため、航空機の機体に生じた損傷を検知するための様々な技術が提案されている(例えば特許文献1及び特許文献2参照)。具体例として、航空機の構造体にセンサを配置し、センサで超音波を検出することによって損書を検出する技術が提案されている。
特開2011-194974号公報 特表2008-536756号公報
 従来の損傷検知技術は、地上での航空機検査には適しているが、飛行中において高精度に損傷を検知することが困難である。これは、航空機の飛行中には、損傷のみならず、機体の運動や振動等の損傷以外の原因によっても航空機を構成する構造体に歪が生じるためである。
 そこで、本発明は、飛行中において航空機の損傷をより高精度に検知できるようにすることを目的とする。
 本発明の実施形態に係る損傷検知システムは、物理量検出ユニット、飛行条件変更部及び損傷検知部を有する。物理量検出ユニットは、航空機の飛行中において前記航空機を構成する構造体の物理量を検出する。飛行条件変更部は、前記物理量検出ユニットによって前記構造体の物理量が検出された場合に、前記航空機の飛行条件を特定の飛行条件に変更させる。損傷検知部は、変更後の前記飛行条件で飛行する前記航空機の前記構造体から前記物理量検出ユニットで検出された物理量に基づいて、前記構造体に損傷が生じたか否かを判定する。
 また、本発明の実施形態に係る損傷検知方法は、航空機の飛行中において前記航空機を構成する構造体の物理量を検出するステップと、前記構造体の物理量が検出された場合に、前記航空機の飛行条件を特定の飛行条件に変更させるステップと、変更後の前記飛行条件で飛行する前記航空機の前記構造体から検出された物理量に基づいて、前記構造体に損傷が生じたか否かを判定するステップとを有するものである。
本発明の第1の実施形態に係る損傷検知システムの構成図。 図1に示す損傷検知システムにより、飛行中の航空機の構造体に損傷が発生したか否かをパッシブ損傷検知モードで判定する流れの一例を示すフローチャート。 図1に示す損傷検知システムにより、飛行中の航空機の構造体に損傷が発生したか否かをアクティブ損傷検知モードで判定する流れの一例を示すフローチャート。 図2又は図3に示すフローで損傷が検知された場合における航空機のミッション更新の流れの一例を示すシーケンスチャート。 本発明の第2の実施形態に係る損傷検知システムの構成図。 本発明の第3の実施形態に係る損傷検知システムの構成図。
実施形態
 本発明の実施形態に係る損傷検知システム及び損傷検知方法について添付図面を参照して説明する。
(第1の実施形態)
(構成及び機能)
 図1は本発明の第1の実施形態に係る損傷検知システムの構成図である。
 損傷検知システム1は、飛行中の航空機を構成する構造体2に損傷が生じたか否かを判定するシステムである。損傷検知システム1は、物理量検出ユニット3、飛行条件変更部4、損傷検知部5及び記憶装置6を有する。
 物理量検出ユニット3は、航空機の飛行中において航空機を構成する構造体2の物理量を検出する装置である。物理量検出ユニット3によって検出対象となる物理量は、構造体2に損傷が生じた場合に変化する所望の物理量とされる。構造体2に損傷が生じた場合に変化する典型的かつ検出が容易な物理量としては、構造体2の歪量、振動及び加速度が挙げられる。従って、物理量検出ユニット3では、構造体2の歪量、振動及び加速度の少なくとも1つを検出するようにしてもよい。
 尚、振動は、微小な歪量の時間変化であるため、微小な歪量の時間変化として振動を検出することもできる。つまり、適切な時間分解能で歪量の時間変化を検出することによっても、振動を検出することができる。
 以降では、主として物理量検出ユニット3が構造体2の歪量を検出する場合を例に説明するが、加速度等の歪量以外の物理量を検出する場合においても同様である。
 飛行条件変更部4は、物理量検出ユニット3によって構造体2の物理量が検出された場合に、航空機の荷重倍数、対気速度及び角速度の少なくとも1つを含む航空機の飛行条件を特定の飛行条件に変更させる機能を有する。損傷検知部5は、変更後の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された物理量に基づいて、構造体2に損傷が生じたか否かを判定する機能を有する。尚、航空機の翼等の構造体2に損傷が生じる主な原因としては、鳥や雹の衝突が挙げられる。
 記憶装置6には、航空機の少なくとも1つの特定の飛行条件に対応し、かつ構造体2に損傷が存在しない状態に対応する歪量等の物理量が対応する特定の飛行条件と関連付けて記憶される。すなわち、記憶装置6には、航空機の飛行条件と、各飛行条件で飛行する航空機の、損傷が生じていない状態における構造体2に生じる物理量とが関連付けて保存される。実用的には、複数の飛行条件が物理量と関連付けて記憶装置6に保存される。従って、記憶装置6は、飛行条件と構造体2の歪量等の物理量との関係を示すデータベースとして機能する。
 物理量検出ユニット3において構造体2の歪量を検出する場合には、物理量検出ユニット3は、図1に例示されるように、超音波発振器3A、振動センサ3B、歪量検出部3C及び超音波制御部3Dで構成することができる。尚、構造体2の振動を検出する場合においても、上述したように、振動を高周波の歪量変化として検出することができるため、図1に例示される構成で検出することができる。また、構造体2の加速度を検出する場合であれば、振動センサ3Bに代えて、構造体2の加速度を検出する加速度センサを用いて物理量検出ユニット3を構成することができる。
 超音波発振器3Aは、構造体2に向けて超音波を発振し、構造体2に超音波を伝播させるアクチュエータ等の素子である。振動センサ3Bは、構造体2を伝播する超音波を受信するためのセンサである。振動センサ3Bは、音響センサとしての超音波振動子の他、超音波振動等の振動を高周波の歪量の変化として検出するファイバ・ブラッグ・グレーティング(FBG:Fiber Bragg Grating)センサや位相シフトFBG(PS-FBG: Phase-shifted FBG)センサ等の光ファイバセンサで構成することができる。振動センサ3Bを光ファイバセンサで構成する場合には、光源や光フィルタ等の必要な光学素子が備えられる。
 歪量検出部3Cは、振動センサ3Bで受信された超音波の波形の基準波形からの変化に基づいて構造体2の歪量を検出する機能を有する。すなわち、歪が生じていない状態における構造体2を伝播した超音波の波形を基準波形として予め取得しておくことができる。更に、歪が生じた構造体2を伝播した超音波の波形の、基準波形からの変化量と、歪量との関係を試験等によって予め取得しておくことができる。そうすると、構造体2を伝播した超音波の波形を観測することによって、構造体2に生じた歪の量を検出することができる。
 尚、波形の変化量を求める対象としては、超音波波形の振幅、時間方向の積分値(面積)、最大値、平均値等の指標を用いることができる。また、振動センサ3Bからの出力信号に重畳するノイズを低減するために、アベレージングやフィルタ処理等の必要な信号処理を施すようにしてもよい。アベレージングを行う場合には、複数回、超音波の発振と検出が繰り返されることになる。
 歪量検出部3Cにおいて歪量を検出することが可能な構造体2のエリアは、超音波を伝播させることが可能であり、かつ伝播した超音波を振動センサ3Bで十分な強度で受信することが可能なエリアとなる。従って、図1に例示されるように複数の超音波発振器3A及び複数の振動センサ3Bを適切な間隔で配置することによって構造体2の広範囲のエリアをカバーすることができる。
 尚、航空機に内蔵したセンサで構造の健全性を診断するシステムは、Structural Health Monitoring(SHM)システムと呼ばれる。
 超音波制御部3Dは、超音波発振器3Aを駆動制御する装置である。超音波制御部3Dには、超音波発振器3Aから発振される超音波の振幅及び周波数の少なくとも一方を変化させる機能を設けることができる。超音波発振器3Aから発振される超音波の振幅及び周波数を変更できるようにすれば、構造体2の損傷検出に適した条件で超音波を発振することが可能となる。例えば、超音波の振幅又は周波数を大きくすれば、振動センサ3Bで超音波を検出することが容易となる。
 構造体2に配置される振動センサ3Bを、光ファイバセンサ等の静的な歪を検出することが可能な歪センサで構成する場合には、構造体2に生じた損傷によって生じる歪を検出することができる。その場合には、歪量検出部3Cにおいて、ファイバセンサ等の歪センサからの出力信号に基づいて、構造体2の歪量を検出することが可能となる。従って、超音波発振器3Aの動作をオフにして、歪センサとしても用いることが可能な振動センサ3Bで歪量を検出するようにしてもよい。
 歪量検出部3Cにおいて構造体2の歪量が検出されると、歪量に基づいて構造体2に損傷が発生したか否かを判定することが可能となる。しかしながら、航空機の飛行中には、構造体2が振動したり、構造体2が変形することによって歪が生じることになる。このため、構造体2に生じた歪が、損傷によって生じた歪であるのか、或いは、構造体2の振動や変形によって生じた歪であるのかを峻別することが必要となる。換言すれば、構造体2の振動や変形によって生じる歪が、損傷の検出のための歪検出において飛行外乱としてノイズのように作用する。従って、航空機の飛行時において構造体2の損傷を検知するためには、飛行外乱による歪が存在する中で、損傷による歪を検出することが必要となる。
 しかしながら、構造体2に生じた損傷が小さい場合には、損傷によって生じる歪量が、構造体2の振動や変形等の飛行外乱による歪量に比べて相対的に小さくなる。そのような場合には、損傷の発生前後における歪量の変化が小さくなり、損傷の検知が困難となる。すなわち、損傷の検知漏れや損傷の誤検知が発生する恐れがある。損傷が誤検知されれば、高度や速度等を下げるといった不要な飛行制限を受けることになる。逆に、小さな損傷を放置し、飛行制限を行わずに飛行を継続すれば、損傷が拡大して安全を脅かす恐れがある。
 そこで、損傷検知システム1には、物理量検出ユニット3によって構造体2の歪が検出された場合に、航空機の飛行条件を、損傷の検知に適した特定の飛行条件に変更させる飛行条件変更部4が備えられる。飛行条件変更部4は、物理量検出ユニット3の歪量検出部3Cから構造体2の歪量の検出結果を取得し、歪量が損傷の検知に十分な大きさでない場合には、航空機の飛行制御システム7を制御することによって、航空機の飛行条件を、損傷の検知に適した特定の飛行条件に自動的に変更させることができるように構成されている。
 一方、損傷検知部5は、物理量検出ユニット3の歪量検出部3Cから構造体2の歪量の検出結果を取得し、歪量が損傷の検知に十分な大きさである場合には、構造体2の歪量に基づいて損傷を検知する他、損傷の検知に適した変更後の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された歪量に基づいて、構造体2に損傷が生じたか否かを判定するように構成されている。
 損傷の検知に適した飛行条件としては、構造体2の振動や変形等の飛行外乱をできるだけ小さくする安定的な飛行条件の他、意図的に機体を不安定にする飛行条件が挙げられる。意図的に機体を不安定にする飛行条件の例としては、構造体2に生じた損傷が拡大する飛行条件及び構造体2に生じた損傷によって生じる歪量が増加する飛行条件が挙げられる。
 航空機の飛行条件を、構造体2に生じた損傷が拡大する飛行条件に変更させれば、損傷が拡大する。すなわち、損傷が小さい場合であっても、危険がない範囲で意図的に機体を揺らす飛行条件で航空機を飛行させれば、損傷を拡大させることができる。このため、損傷に伴う歪の量も損傷を検知できる程度まで大きくなり、物理量検出ユニット3において検出された構造体2の歪量に基づいて、損傷検知部5において良好な精度で損傷を検知することが可能となる。すなわち、拡大した損傷に起因して生じた歪量の検出結果に基づいて、構造体2に損傷が生じたか否かを判定することが可能となる。
 また、航空機の飛行条件を、構造体2に生じた損傷によって生じる歪量が増加する飛行条件に変更させる場合においても、損傷によって生じる歪量を、損傷を検知できる程度まで増加させることができる。すなわち、損傷によって生じる歪量の変化が歪量検出部3Cにおいて検出することが困難な程、小さい場合であっても、危険がない範囲で意図的に機体に荷重が負荷されるような飛行を行うことによって、損傷によって生じる歪量の変化を大きくすることができる。このため、損傷検知部5において、増加した歪量の検出結果に基づいて、構造体2に損傷が生じたか否かを判定することが可能となる。
 一方、航空機の飛行条件を、航空機の飛行によって生じる構造体2の歪量が低減されるように決定された特定の飛行条件に変更させれば、損傷によって生じる歪量を、飛行外乱によって生じる歪量に対して相対的に大きくすることができる。つまり、飛行外乱によって、損傷に起因する歪量の検出が困難な場合には、安定飛行を行うことによって飛行外乱の影響を抑制し、損傷に起因する歪量の変化を検出できるようにすることができる。
 或いは、航空機の飛行条件を、航空機の飛行によって生じる構造体2の歪量が既知の特定の飛行条件に変更させることもできる。この場合には、航空機の飛行によって生じる構造体2の歪量からの変動分として、損傷に起因する歪量を検出することが可能となる。従って、必ずしも、航空機の飛行によって生じる構造体2の歪量が低減される飛行条件とする必要はない。
 これらの損傷の検知に適した特定の飛行条件は、予め試験やシミュレーション等によって決定し、記憶装置6に保存しておくことができる。そして、飛行条件変更部4は、記憶装置6に保存された1つの特定の飛行条件を選択して読み込み、航空機の現在の飛行条件を、選択された1つの特定の飛行条件に変更させることができるように構成される。
 航空機の飛行条件を、意図的に機体を不安定にする飛行条件に変更することによって損傷を検知する場合や、逆に航空機の飛行条件を、航空機の飛行によって生じる構造体2の歪量が低減されるように決定された特定の飛行条件に変更する場合には、変更対象となる飛行条件を記憶装置6に保存しておくことができる。そして、損傷が原因で生じた可能性のある構造体2の歪が物理量検出ユニット3によって検出された場合には、航空機の飛行条件を記憶装置6に記憶された特定の飛行条件に変更させることができる。
 記憶装置6には、複数の航空機の飛行条件を記憶させることもできる。その場合には、損傷が原因で生じた可能性のある構造体2の歪が物理量検出ユニット3によって検出された場合に、飛行条件を記憶装置6に保存された損傷の検知に適した初期の飛行条件に変更させ、変更後の飛行条件で航空機を飛行させても依然として、損傷検知部5において構造体2に損傷が生じたか否かを判定できない場合には、航空機の飛行条件を別の特定の飛行条件に変更させるようにすることができる。
 また、航空機の飛行条件が同じであっても、超音波発振器3Aから発振される超音波の振幅及び周波数の少なくとも一方が異なる場合には、損傷の検知に十分な大きさの歪を物理量検出ユニット3で検知できる場合がある。そこで、飛行条件を、記憶装置6に保存された損傷の検知に適した特定の飛行条件に変更させても、依然として、構造体2に損傷が生じたか否かを判定できない場合には、超音波制御部3Dの制御によって、変更後の特定の飛行条件での航空機の飛行中において超音波発振器3Aから発振される超音波の振幅及び周波数の少なくとも一方を変化させることができる。
 そして、振幅及び周波数の少なくとも一方を変化させて超音波発振器3Aから発振され、構造体2を伝播した複数の超音波の各波形のそれぞれの基準波形からの変化に基づいて検出された複数の歪量に基づいて、損傷検知部5により、構造体2に損傷が生じたか否かを判定することができる。
 尚、航空機の飛行条件、超音波の振幅及び超音波の周波数をパラメータとして、損傷検知に十分な大きさの歪量が検出されるまでパラメータを順次変化させるようにしてもよい。その場合には、変化させるパラメータの順序は任意である。すなわち、航空機の飛行条件を変えても損傷が検知できる程度に構造体2の歪量が大きくならなかった場合において超音波の振幅や周波数等の超音波発振条件を変化させたり、逆に、超音波発振条件を変化させても損傷が検知できる程度に構造体2の歪量が大きくならなかった場合において航空機の飛行条件を変えるようにしてもよい。
 一方、航空機の飛行条件を、航空機の飛行によって生じる構造体2の歪量が既知の特定の飛行条件に変更させることによって損傷を検知する場合には、少なくとも1つの特定の飛行条件と、特定の飛行条件で航空機を飛行させた場合において構造体2に生じる歪量の組合わせが記憶装置6に保存される。この場合においても、複数の飛行条件と、複数の飛行条件に対応する複数の構造体2の歪量とを関連付けたテーブル又は関数を記憶装置6に保存することができる。
 特定の飛行条件と構造体2の歪量が互いに関連付けられて記憶装置6に保存される場合には、損傷検知部5において、変更後の特定の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された歪量と、変更後の特定の飛行条件に関連付けて記憶装置6に記憶された、構造体2に損傷が存在しない状態に対応する歪量とに基づいて、構造体2に損傷が生じたか否かを判定することができる。
 具体的には、特定の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された歪量の実測値から、構造体2に損傷が存在しない状態に対応する歪量を減算することによって、飛行外乱に起因する構造体2の歪量をキャンセルすることができる。その結果、損傷に起因する構造体2の歪量を検出することが可能となる。換言すれば、損傷検知部5において、構造体2に損傷が存在しない状態に対応する歪量を補正データとして、特定の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された歪量の実測値から飛行外乱に起因する構造体2の歪量をキャンセルする補正を行うことができる。そして、補正後の構造体2の歪量に基づいて、損傷検知部5により、構造体2に損傷が生じたか否かを高精度に判定することができる。
 尚、航空機の飛行条件が同一であっても、構造体2の温度や振動の大きさが大きく異なれば、構造体2の温度や振動の大きさに依存して構造体2の歪量が無視できない程度に変化する。特に、構造体2の温度が変化すれば、構造体2の剛性も変化するため、飛行外乱による構造体2の歪量が変化する。そこで、飛行条件ごとに1つの構造体2の歪量を記憶させずに、温度等の他のパラメータ別に構造体2の歪量を記憶させることができる。つまり、損傷の検知に適した飛行条件と、構造体2の温度や振動等の単一又は複数のパラメータとの組合わせに構造体2の歪量を関連付けて記憶装置6に保存することができる。
 典型的な航空機には、構造体2の温度や振動を検出するためのセンサ群8が備えられている。センサ群8を構成する代表的なセンサとしては、温度センサ8A、加速度センサ8B及び歪ゲージ8Cが挙げられる。温度センサ8Aを用いれば、構造体2の温度を測定することができる。一方、加速度センサ8Bを用いれば、構造体2の加速度の時間変化として振動を検出することができる。また、歪ゲージ8Cを用いれば、構造体2の静的な歪量及び低周波の歪量変化を検出することができる。
 そこで、損傷検知部5において、航空機の構造体2に据付けられた温度センサ8Aから取得された構造体2の温度及び航空機の構造体2に据付けられた加速度センサ8Bから取得された構造体2の加速度及び航空機の構造体2に据付けられた歪ゲージ8Cから取得された構造体2の歪量の少なくとも1つに基づいて、構造体2に損傷が生じたか否かを判定することができる。
 具体例として、損傷の検知に適した特定の飛行条件及び構造体2の温度や加速度変化として捉えられる振動等のパラメータの組合わせに関連付けられた構造体2の歪量を記憶装置6から取得し、取得した歪量を、特定の飛行条件で飛行する航空機の構造体2から物理量検出ユニット3で検出された歪量の実測値から減算することによって、損傷に起因して構造体2に生じた歪の大きさを求めることができる。そして、損傷に起因して構造体2に生じた歪の大きさに基づいて、構造体2に損傷が生じたか否かを高精度に判定することができる。
 また、物理量検出ユニット3で構造体2の加速度を検出する場合であれば、物理量検出ユニット3で検出された構造体2の加速度の実測値から加速度センサ8Bで検出された構造体2の加速度の実測値を減算することによって、損傷に起因して構造体2に生じた加速度を求めることができる。このため、損傷に起因して構造体2に生じた加速度に基づいて、構造体2に損傷が生じたか否かを高精度に判定することができる。
 或いは、別の例として、物理量検出ユニット3で検出された構造体2の歪量の実測値から、歪ゲージ8Cから取得された構造体2の歪量の実測値を減算することによっても、損傷に起因して構造体2に生じた歪の大きさを求めることができる。
 損傷検知部5では、損傷の有無に加えて、損傷のサイズ、損傷の発生エリア及び損傷の発生位置等を検知できるようにしてもよい。これらの検知方法は任意である。例えば、損傷の有無は、上述したように損傷に起因する歪が、一定の歪量で検出されたか否かに基づいて判定することができる。具体的には、経験的に決定された閾値を超える歪量の歪又は経験的に決定された閾値以上の歪量の歪が、損傷に起因して発生した歪である判定された場合には、構造体2に損傷が発生したと判定することができる。
 また、損傷のサイズと、構造体2の歪量との関係を予め試験等によって求めておけば、損傷に起因して生じた歪の大きさを測定することによって、損傷のサイズを推定することができる。更に、構造体2に複数の振動センサ3Bを配置し、損傷に起因する歪が検出された振動センサ3Bを特定すれば、損傷の発生エリアを特定することができる。また、複数の振動センサ3Bで検出された歪量の分布を解析すれば、損傷の位置を推定することができる。或いは、超音波を発振させる超音波発振器3Aを切換えながら、詳細な損傷の検知を行うことによっても、損傷の位置や損傷の発生エリアを特定することができる。
 損傷の有無、サイズ、発生エリア或いは発生位置等が検知された場合には、損傷の検知結果として記録することができる。また、損傷の検知結果に基づいて、航空機の高度や速度等の飛行条件を制限したり、航空機が無人機であれば無人機のミッションを変更することもできる。その場合には、損傷検知部5から飛行制御システム7等の必要なシステムに制御信号を出力することによって自動的に飛行条件の制限やミッションの変更を行うことができるようにすることができる。
 尚、無人機のミッションとしては、観測、撮影或いは農薬散布等のための飛行経路、目標地点、標的等が挙げられる。また、有人機であっても、目的地等のミッションを損傷の検知結果に基づいて変更することができる。
 以上のような損傷検知システム1を構成する構成要素のうち、電気信号の処理を行う構成要素は、電気回路で構成することができる。また、デジタル情報の処理を行う構成要素は、コンピュータにプログラムを読込ませた電子回路によって構成することができる。光ファイバセンサが振動センサ3Bとして用いられる場合には、振動センサ3Bから光信号が出力されることになる。このため、物理量検出ユニット3を構成するために、光信号を処理するための光学素子の他、光電変換回路を備えることができる。また、光電変換回路によって光信号から変換される電気信号をデジタル信号に変換して信号処理を行う場合には、A/D(analog-to-digital)変換器も構成要素として用いられる。
 上述の他、損傷検知システム1には、損傷の検知条件を設定するためのユーザインターフェースや損傷の検出結果の出力用のユーザインターフェースとして必要に応じて入力装置10及び表示装置11を備えることができる。
 例えば、航空機が有人機であれば、航空機の飛行中において操縦者が入力装置10の操作によって、損傷の検知タイミング、損傷の検知間隔、損傷の検知のために超音波発振器3Aから超音波を発振させるか否か、超音波の発振タイミング等の損傷の検知条件を設定できるようにすることができる。一方、航空機が無人機である場合においても、航空機のユーザが航空機の飛行前に入力装置10の操作によって上述したような損傷の検知条件を設定できるようにすることができる。
 また、航空機が有人機であれば、損傷の検知結果を表示装置11に表示させることができる。一方、航空機が無人機である場合においても、航空機の飛行後において航空機のユーザが損傷の検知結果を確認できるように、損傷の検知結果を表示装置11に表示させることができる。
(動作及び作用)
 次に損傷検知システム1による航空機構造体の損傷検知方法について説明する。
 まず、物理量検出ユニット3の振動センサ3Bをファイバセンサ等の歪センサで構成し、超音波発振器3Aの動作をオフにして構造体2の損傷を検知する場合の流れについて説明する。以降では、超音波発振器3Aから超音波を発振せずに、歪センサで構造体2に生じた歪量を測定し、測定した歪量に基づいて損傷検知部5が損傷の有無を検知するモードをパッシブ損傷検知モードと称する。
 一方、超音波発振器3Aの動作をオンにして超音波を発振させ、構造体2を伝播した超音波の振動を振動センサ3Bで検出することによって構造体2の歪量を算出し、算出した構造体2の歪量に基づいて損傷検知部5が損傷の有無を検知するモードをアクティブ損傷検知モードと称する。
 パッシブ損傷検知モードとアクティブ損傷検知モードは、航空機が無人機であれば航空機のユーザが、航空機が有人機であれば航空機の操縦者や整備士等が、いずれかを選択できるようにすることができる。或いは、パッシブ損傷検知モードとアクティブ損傷検知モードとを併用することもできる。具体例として、パッシブ損傷検知モードで損傷が発生した疑いがあると判定された場合に、アクティブ損傷検知モードで損傷の検知を行うようにすることもできる。
 また、以降では、損傷の検知に適した特定の飛行条件で航空機が飛行するモードを、損傷検知飛行モードと称する。
 図2は、図1に示す損傷検知システム1により、飛行中の航空機の構造体2に損傷が発生したか否かをパッシブ損傷検知モードで判定する流れの一例を示すフローチャートである。
 まず、航空機の飛行前において、入力装置10の操作によってパッシブ損傷検知モード単独又はパッシブ損傷検知モードで損傷の疑いが検知された場合にアクティブ損傷検知モードに切換えて損傷の検知を行う損傷検知モードが指定される。或いは、航空機が有人機であれば、飛行後に操縦者が入力装置10の操作によってパッシブ損傷検知モード単独又はパッシブ損傷検知モードで損傷の疑いが検知された場合にアクティブ損傷検知モードで損傷の検知を行う損傷検知モードを指定するようにしてもよい。
 航空機が飛行すると、ステップS1において、航空機の飛行中において、航空機を構成する構造体2の歪が、物理量検出ユニット3に振動センサ3Bとして備えられる歪センサによって検出される。航空機の飛行中には、機体の運動によって構造体2に変形が生じる。従って、少なくとも機体の運動によって生じる構造体2の変形を含む歪が歪センサによって検出される。歪センサによって検出された歪の検出信号は、歪量検出部3Cに出力される。歪量検出部3Cでは、構造体2の歪量が取得される。取得された構造体2の歪量は、歪量検出部3Cから損傷検知部5に通知される。
 次に、ステップS2において、損傷検知部5は、損傷を十分な精度で検知することが可能な歪量で構造体2に歪が生じたか否かを判定する。具体例として、損傷検知部5は、歪量検出部3Cにおいて取得された構造体2の歪量が、第1の閾値以上又は第1の閾値を超える変化量で時間的に変化したか否かを判定する。第1の閾値は、構造体2に検知すべき損傷が発生した可能性がある場合における最小の構造体2の歪量として経験的に決定される閾値である。
 尚、検知すべき損傷の程度は航空機のミッションに応じて異なる場合がある。具体例として、無人の非防衛機であれば、安全性を重視して僅かな損傷でも検知することが望まれる。一方、防衛機の場合には、被弾等による大きな損傷については検知すべきであるが、雹等の衝突による小さな損傷については無視してよいという場合がある。
 従って、航空機のミッションに応じて検知すべき損傷に対応する閾値を経験的に決定することができる。換言すれば、航空機のミッションに要求される損傷の検知精度が確保されるように、構造体2の歪量に対する閾値を決定することが適切である。具体的には、小さな損傷を無視する場合には、構造体2の歪量に対して基準となる閾値を大きく設定する一方、小さな損傷であっても検知すべき場合には、構造体2の歪量に対して基準となる閾値を小さく設定すればよい。
 歪量検出部3Cにおいて取得された構造体2の歪量が、第1の閾値以上又は第1の閾値を超える変化量で時間的に変化していない場合には、構造体2には検知すべき損傷が発生していないと判定することができる。この場合には、構造体2の歪量が、引続き物理量検出ユニット3によってモニタリングされる。
 歪量検出部3Cにおいて取得された構造体2の歪量が、第1の閾値以上又は第1の閾値を超える変化量で時間的に変化している場合には、構造体2に損傷が発生した可能性があることになる。そこで、損傷検知部5は、歪量検出部3Cにおいて取得された構造体2の歪量が、第2の閾値以上又は第2の閾値を超える変化量で時間的に変化したか否かを判定する。第2の閾値は、構造体2に検知すべき程度の損傷が発生したと判定できる場合における最小の構造体2の歪量として経験的に決定される閾値である。
 従って、歪量検出部3Cにおいて取得された構造体2の歪量が、第2の閾値以上又は第2の閾値を超える変化量で時間的に変化した場合には、構造体2には損傷が発生した判定することができる。この場合には、ステップS2の判定において、YES、すなわち検知すべき程度の損傷を十分な精度で検知することが可能な歪量で構造体2に歪が生じたと判定することができる。
 一方、歪量検出部3Cにおいて取得された構造体2の歪量が、第1の閾値以上又は第1の閾値を超える変化量で時間的に変化しているが、第2の閾値以上又は第2の閾値を超える変化量で時間的に変化していない場合には、構造体2に損傷が発生した可能性があるが、損傷が発生したか否かを判定できない状態であるということになる。この場合には、ステップS2の判定において、NO、すなわち損傷を十分な精度で検知することが可能な歪量で構造体2に歪が生じていないと判定される。
 ステップS2の判定において、NOと判定された場合には、現在の航空機の飛行条件を、損傷の検知に適した特定の飛行条件に変更する指示が、損傷検知部5から飛行条件変更部4に通知される。すなわち、損傷検知飛行モードでの飛行が損傷検知部5から飛行条件変更部4に通知される。
 そうすると、ステップS3において、飛行条件変更部4は、航空機の飛行条件を損傷の検知に適した特定の飛行条件に変更させる。具体的には、飛行条件変更部4が記憶装置6から損傷の検知に適した1つの飛行条件を読み込む。そして、飛行条件変更部4は、読み込んだ飛行条件で航空機が飛行するように、飛行制御システム7を制御する。これにより、航空機が損傷検知飛行モードでの飛行に移行する。すなわち、予め損傷の検知に適した荷重倍数、対気速度及び角速度等の飛行条件で航空機が飛行する。
 次に、ステップS4において、物理量検出ユニット3により、変更後の飛行条件で飛行する航空機の構造体2から歪量が検出される。検出された構造体2の歪量は、物理量検出ユニット3から損傷検知部5に通知される。
 例えば、損傷や損傷に起因して生じる構造体2の歪量が拡大するように決定された飛行条件で航空機が飛行すれば、損傷に起因して生じる構造体2の歪量が拡大する。このため、物理量検出ユニット3により検出される構造体2の歪量は、飛行条件の変更前に比べて大きくなる。
 或いは、航空機の飛行に起因する構造体2の歪量が減少するように決定された飛行条件で航空機が飛行すれば、損傷に起因して生じる構造体2の歪量が、航空機の飛行に起因する構造体2の歪量に対して相対的に大きくなる。このため、構造体2に複数の歪センサが配列されている場合であれば、歪量の2次元分布の特異点として歪量が他の部分に対して相対的に大きい箇所を特定することが可能となる場合がある。
 また、航空機の飛行に起因する構造体2の歪量が既知である飛行条件で航空機が飛行すれば、航空機の飛行に起因する構造体2の歪量が、記憶装置6に飛行条件に関連付けて記憶された既知の歪量となる。このため、物理量検出ユニット3では、飛行条件に対応する既知の歪量に、損傷によって生じ得る歪量が重畳された歪量が検出されることになる。
 航空機の飛行に起因する構造体2の歪量が既知である飛行条件で航空機を飛行させる場合には、ステップS5において、既知の歪量に基づく飛行外乱の補正によって、航空機の飛行に起因する構造体2の歪量が物理量検出ユニット3において検出された歪量からキャンセルされる。具体的には、物理量検出ユニット3において検出された歪量から記憶装置6に飛行条件に関連付けて記憶された既知の歪量が減算される。つまり、構造体2の歪量の実測値から、構造体2に損傷が生じていない状態における理想的な歪量が差し引かれる。これにより、損傷によって生じた構造体2の歪量を求めることができる。
 また、航空機の飛行に起因する構造体2の歪量が既知である飛行条件で航空機を飛行させる場合であるか否かに依らず、飛行荷重倍数、対気速度、角速度等の飛行条件を航空機に備えられる各種センサで測定することができる。そして、予め試験等によって求められた各飛行条件と構造体2の歪量との関係を表すデータベースと、各種センサによる飛行条件の測定結果に基づいて、航空機の飛行に起因する構造体2の歪量を求めることができる。この場合においても、航空機の飛行に起因する構造体2の歪量を、物理量検出ユニット3において検出された歪量から減算することによって、損傷によって生じた構造体2の歪量を求めることができる。このため、飛行条件の制御値ではなく、飛行条件の測定値に基づいて、航空機の飛行に起因する構造体2の歪量を求めるようにしてもよい。尚、各飛行条件と構造体2の歪量との関係を表すデータベースは、記憶装置6に保存しておくことができる。
 また、構造体2の剛性は、温度依存性を有するため、構造体2の歪量も構造体2の温度によって変化する。そこで、損傷が存在しない場合における、飛行条件に対応する歪量を温度ごとに予め取得し、記憶装置6に保存しておくことができる。その場合には、損傷検知部5が、構造体2に据付けられた温度センサ8Aから構造体2の温度を取得し、構造体2の温度に基づいて、損傷が存在しない場合における構造体2の歪量をより高精度に求めることができる。このため、損傷が存在しない場合における構造体2の温度毎の歪量を、物理量検出ユニット3において検出された歪量から減算することによって、一層高精度に損傷によって生じた構造体2の歪量を求めることができる。
 また、構造体2の歪量は、航空機の飛行による空力振動によって変化する。そこで、航空機の構造体2に据付けられた加速度センサ8Bから航空機の飛行による構造体2の振動の大きさ等を加速度の時間変化として取得し、航空機の飛行による構造体2の振動量に対応する構造体2の歪量を、物理量検出ユニット3において検出された歪量から減算するようにすることもできる。この場合においても、損傷によって生じた構造体2の歪量を求めることができる。
 このように、記憶装置6に保存された飛行条件に対応する既知の構造体2の歪量、温度センサ8Aから取得される構造体2の温度に対応する歪量、加速度センサ8Bから取得される構造体2の加速度に対応する構造体2の歪量等を補正データとして、物理量検出ユニット3において検出された歪量の外乱補正を行うことができる。すなわち、航空機の飛行に起因する構造体2の歪量をキャンセルする補正を行うことができる。
 尚、航空機の飛行に起因する構造体2の歪量が減少するように決定された飛行条件で航空機を飛行させる場合や、損傷や損傷に起因して生じる構造体2の歪量が拡大するように決定された飛行条件で航空機を飛行させる場合には、歪量の外乱補正を省略してもよい。
 損傷検知部5において必要な外乱補正が完了すると、損傷によって生じた構造体2の歪量が取得される。或いは、外乱補正が省略される場合には、損傷によって生じた構造体2の歪量の成分が強調された歪量が取得される。
 そうすると、ステップS6において、損傷検知部5は、損傷を十分な精度で検知することが可能な歪量で構造体2に歪が生じたか否かを再び判定する。この場合においても、ステップS2における判定と同様に、構造体2に損傷が発生した可能性があるか否かを判定するための粗い閾値との比較を行う閾値処理と、構造体2に損傷が発生したか否かを判定するための厳格な閾値との比較を行う閾値処理を実行することができる。
 外乱補正が行われた場合であれば、損傷によって生じた構造体2の歪量が閾値処理の対象となる。一方、外乱補正が行われなかった場合であれば、損傷によって生じた構造体2の歪量の成分が強調された歪量が閾値処理の対象となる。
 ステップS6の判定において、依然として損傷の可能性があるが損傷を検知することができないと判定された場合には、ステップS7において損傷検知部5により全ての特定の飛行条件に変更済であると判定されるまで、ステップS3からの飛行条件の変更、変更後の飛行条件に対応する構造体2の歪量の検出、必要な外乱補正及び損傷の検知が可能であるか否かの判定が繰返される。すなわち、十分な精度で損傷が検知可能であるか否かという判定結果に基づいて、十分な精度で損傷が検知可能であると判定されるまで飛行条件を順次変更するフィードバック制御が実行される。
 そして、ステップS7において損傷検知部5により全ての飛行条件に変更済であると判定された場合には、十分な精度で損傷が検知されなかったことになるため、損傷検知部5は、ステップS8において十分な精度で損傷が検出されなかったと判定する。
 一方、ステップS2又はステップS6における判定において、損傷の検知が可能であると判定された場合には、損傷検知部5が、ステップS9において構造体2に損傷ありと判定する。そして、ステップS10において損傷検知部5は、飛行制御システム7等の必要なシステムに制御信号を出力することによって自動的に飛行条件の制限やミッションの変更を行うことができる。
 以上のように、物理量検出ユニット3において構造体2に損傷によって生じた可能性がある歪が検出されているが、損傷によって歪が生じたか否かを正確に判定できない場合には、航空機の飛行条件を変更させ、変更後の飛行条件で飛行する航空機の構造体2から検出された歪量に基づいて、構造体2に損傷が生じたか否かを判定することができる。特に、航空機の飛行条件を。構造体2の歪量が既知の飛行条件に変更した場合には、変更後の特定の飛行条件で飛行する航空機の構造体2から検出された歪量と、変更後の特定の飛行条件に関連付けて記憶装置6に記憶された構造体2の歪量であって構造体2に損傷が存在しない状態に対応する歪量とに基づいて、構造体2に損傷が生じたか否かを判定することができる。
 次に、アクティブ損傷検知モードで損傷の検知を行う場合について説明する。アクティブ損傷検知モードでの損傷検知は、例えば、パッシブ損傷検知モードで損傷が発生した疑いがあると判定された場合に実行することができる。もちろん、パッシブ損傷検知モードでの損傷の検知結果とは無関係に、アクティブ損傷検知モードでの損傷検知を実行することもできる。
 図3は、図1に示す損傷検知システム1により、飛行中の航空機の構造体2に損傷が発生したか否かをアクティブ損傷検知モードで判定する流れの一例を示すフローチャートである。尚、図3に示すフローチャートにおいて、図2に示すフローチャートのステップと同様なステップには同符号を付して詳細な説明を省略する。
 アクティブ損傷検知モードで損傷の検知を行う場合には、ステップS1及びステップS4における構造体2の歪量の検出のために、超音波発振器3Aから構造体2の検査エリアに向けて超音波が発振される。従って、超音波を発振させるトリガを生成することが必要である。
 超音波の発振タイミングは、任意に決定することができる。例えば、航空機が有人機であれば、操縦者がボタンを押すことによって超音波を発振できるようにすることができる。すなわち、入力装置10の操作によって手動で超音波を発振できるようにすることができる。
 或いは、ステップS1における構造体2の歪量の検出については、超音波を発振せずに受動的に行い、ステップS3において飛行条件が変更された場合には、飛行条件の変更をトリガとしてステップS4において超音波を発振するようにしてもよい。
 また、構造体2の歪量を検出するために超音波を発振する場合には、超音波の発振条件を変更することによって、構造体2の歪量を変化させることができる。そこで、飛行条件の変更に加えて、超音波の発振条件についても、損傷を十分な精度で検出できると判定されるまで変化させることができる。つまり、十分な精度で損傷が検知可能であると判定されるまで超音波の発振条件を変化させるフィードバック制御を行うことができる。
 具体的には、図3に示すように、飛行条件の変更後において十分な精度で損傷が検知可能ではないが、損傷が発生した可能性があると判定される場合には、ステップS20において、超音波の発振条件が変更される。変更対象となる超音波の発振条件としては、振幅及び周波数が挙げられる。例えば、超音波の振幅を増加させれば、損傷の検出感度の向上に繋がる。また、超音波の周波数を増加させれば、損傷検出において距離分解能を向上させることができる。エネルギ効率の観点からは、超音波の振幅及び周波数の初期値を、エネルギが小さい振幅及び周波数とし、損傷が検知できない場合には徐々に振幅及び周波数を増加させている超音波の加振制御が好適である。
 超音波の発振条件が変更されると、ステップS21において、再び損傷検知部5により損傷の検知が可能な程度の歪量が検出されたか否かが判定される。具体的には、変更後の発振条件で超音波発振器3Aから発振された超音波が構造体2を伝播して振動センサ3Bで受信され、振動センサ3Bから受信された超音波の波形を表す超音波検出信号が歪量検出部3Cに出力される。
 歪量検出部3Cでは、構造体2に歪が存在しない場合における超音波の基準波形と、振動センサ3Bで受信された超音波の波形が比較される。そして、構造体2に歪が存在しない場合における超音波の基準波形からの、振動センサ3Bで受信された超音波の波形の乖離量に基づいて構造体2の歪量が算出される。そして、算出された構造体2の歪量が損傷の有無を判定するための閾値と比較され、閾値以上又は閾値を超えると判定される場合には、損傷を検知することが可能な歪量で構造体2に歪が生じたと判定することができる。
 一方、変更後の超音波の発振条件に対応する構造体2の歪量が、損傷の有無を判定するための閾値以上又は閾値を超えると判定されない場合には、損傷を検知することが可能な歪量で構造体2に歪が生じていないと判定することができる。従って、ステップS21における判定はNOとなる。
 損傷を検知することが可能な歪量で構造体2に歪が生じていないと判定された場合には、ステップS22において、プリセットされた選択可能な全ての超音波発振条件への変更が完了するまで、超音波の発振条件を順次変更しながら歪量の検出及び損傷の検知が可能であるか否かの判定が繰返される。また、超音波の発振条件を変更しても、依然として十分な精度での損傷の検知ができない場合には、航空機の飛行条件が変更される。
 このように、損傷を十分な精度で検知できるか否かという判定結果を、航空機の飛行条件に限らず、超音波の発振条件にもフィードバックすることができる。
 次に、損傷検知システム1を備えた航空機自体の制御も含む全体の情報処理及び制御の流れについて説明する。
 図4は、図2又は図3に示すフローで損傷が検知された場合における航空機のミッション更新の流れの一例を示すシーケンスチャートである。
 航空機が飛行すると、損傷検知システム1の物理量検出ユニット3では、構造体2の歪検出が開始される。そして、ステップS30に示すように、構造体2の歪量の経時変化がモニタリングされる。例えば、パッシブ損傷検知モードで超音波を発振せずに構造体2の歪量を歪センサで常時モニタリングしても良いし、アクティブ損傷検知モードで予め指定した時間間隔で超音波を断続的に発振して構造体2の歪量を定期的に取得するようにしてもよい。
 損傷検知システム1によって航空機の構造体2から損傷が検知されなければ、ステップS31に示すように、航空機の飛行制御システム7による制御によって、損傷が発生していない前提で予め決定された飛行制限下で、予め決定された飛行経路に沿って航空機が飛行する。また、ステップS32に示すように、航空機は、損傷が発生していない前提で予め決定されたミッションに従って飛行する。
 ステップS33に示すように、航空機の飛行中において構造体2が被弾、被雷或いは鳥の衝突等のアクシデントによって損傷すると衝撃による振動波が生じ、ステップS34に示すように、構造体2の歪量が変化する。そうすると、ステップS35において、損傷検知部5では、少なくとも損傷の可能性を検知することができる。具体的には、損傷を検知するための構造体2の歪量に対する閾値よりも小さい閾値で閾値処理が行われ、損傷を確実に検知できないものの損傷が発生した可能性を検知することができる。
 損傷検知部5において、損傷の疑いが検知された場合には、ステップS36において、航空機の飛行モードが通常の飛行モードから損傷検知飛行モードに変更される。すなわち、飛行条件変更部4は、損傷の検知に適した特定の飛行条件を記憶装置6から読込んで飛行制御システム7に通知する。そうすると、飛行制御システム7は、飛行条件変更部4から通知された特定の飛行条件に、航空機の飛行条件を変更させる制御を行う。これにより、航空機を損傷検知飛行モードで飛行させることができる。
 損傷検知飛行モードでの飛行中においても、ステップS37に示すように、パッシブ損傷検知モード又はアクティブ損傷検知モードで構造体2の歪量が検出される。検出された構造体2の歪量は、損傷検知部5に与えられる。そうすると、ステップS38において、損傷検知部5は、損傷検知飛行モードでの飛行中において検出された構造体2の歪量に基づいて損傷の有無を検知する。
 ステップS38において十分な精度で損傷の有無が検知できなかった場合には、ステップS36において航空機の飛行モードが、別の飛行条件で飛行する損傷検知飛行モードに更新される。すなわち、飛行条件変更部4は、損傷の検知に適した別の特定の飛行条件を記憶装置6から読込んで飛行制御システム7に通知する。そうすると、飛行制御システム7は、飛行条件変更部4から通知された別の特定の飛行条件に、航空機の飛行条件を変更させる制御を行う。これにより、航空機を更新された損傷検知飛行モードで飛行させることができる。
 このような、ステップS36における損傷検知飛行モードの更新は、ステップS38において損傷検知部5により十分な精度で損傷の有無が検知できるようになるまで繰返される。ステップS38において損傷検知部5により構造体2の損傷が検知されると、損傷検知部5は必要に応じて構造体2に生じた損傷のサイズ、位置、エリア等を検出し、飛行制御システム7に通知する。
 そうすると、ステップS39において、飛行制御システム7は、構造体2に生じた損傷のサイズ、位置、エリア等の損傷の検出情報に基づいて、航空機の飛行制限や飛行経路を更新する。すなわち、損傷によって強度が劣化した構造体2で荷重が耐えられるような飛行制限及び飛行経路が適用される。一方、ステップS40において、航空機のミッションも、更新後の飛行制限及び飛行経路に合わせて更新される。また、ミッションが更新されると、必要に応じて飛行制限及び飛行経路が、更新後のミッションに応じて更に更新される。
(効果)
 以上のような損傷検知システム1及び損傷検知方法は、航空機の構造体2に生じた損傷を検知するために好適な飛行状態で航空機を飛行させることによって航空機の飛行中における損傷の検知精度を向上させることができるようにしたものである。
 このため、損傷検知システム1及び損傷検知方法によれば、航空機の飛行中であっても、従来のセンサを用いて高精度に構造体2の損傷を検知することができる。特に、航空機が無人機である場合には、安全性を向上させることができる。
(第2の実施形態)
 図5は本発明の第2の実施形態に係る損傷検知システムの構成図である。
 図5に示された第2の実施形態における損傷検知システム1Aでは、飛行条件変更部4Aの機能が第1の実施形態における損傷検知システム1と相違する。第2の実施形態における損傷検知システム1Aの他の構成及び作用については第1の実施形態における損傷検知システム1と実質的に異ならないため、同一の構成又は対応する構成については同符号を付して説明を省略する。
 第2の実施形態における損傷検知システム1Aの飛行条件変更部4Aは、構造体2に生じ得る損傷の検知に適した特定の飛行条件への変更を航空機の操縦者に対して通知することによって、航空機の飛行条件を操縦者の手動で変更させるように構成されている。特定の飛行条件への変更の通知は、メッセージの表示、音声、光或いは音等の任意の方法で行うことができる。
 このため、飛行条件変更部4Aは、特定の飛行条件への変更の通知方法に応じた表示装置、スピーカ或いはランプ等の出力装置20と接続される。そして、飛行条件変更部4Aは、出力装置20に必要な情報を出力することによって、航空機の操縦者に、飛行条件の変更を指示できるように構成されている。尚、メッセージの表示によって、特定の飛行条件への変更を通知する場合には、表示装置11にメッセージを表示させるようにしてもよい。
 このような第2の実施形態における損傷検知システム1Aにおいても、第1の実施形態における損傷検知システム1と同様な効果を得ることができる。特に、第2の実施形態における損傷検知システム1Aは、有人航空機を対象として、複雑な飛行条件の自動制御を伴わずに構造体2に損傷が生じたか否かを判定することができる。
(第3の実施形態)
 図6は本発明の第3の実施形態に係る損傷検知システムの構成図である。
 図6に示された第3の実施形態における損傷検知システム1Bでは、物理量検出ユニット3の構成が第1の実施形態における損傷検知システム1と相違する。第3の実施形態における損傷検知システム1Bの他の構成及び作用については第1の実施形態における損傷検知システム1と実質的に異ならないため、同一の構成又は対応する構成については同符号を付して説明を省略する。
 第3の実施形態における損傷検知システム1Bの物理量検出ユニット3は、構造体2において生じた歪を検出する歪センサ3Eと、歪センサ3Eからの検出信号に基づいて構造体2の歪量を検出する歪量検出部3Cとを用いて構成される。第1の実施形態と同様に、複数の歪センサ3Eを適切な間隔で構造体2に配置すれば、損傷の検知範囲を広くすることができる。各歪センサ3Eには、光ファイバセンサ等を用いることができる。
 つまり、第1の実施形態における損傷検知システム1は、超音波発振器3Aの動作の切換えによってパッシブ損傷検知モードによる損傷の検知とアクティブ損傷検知モードによる損傷の検知を行うことができるように構成されているのに対して、第3の実施形態における損傷検知システム1Bは、パッシブ損傷検知モードによる損傷の検知のみを行うことができるようにしたものである。
 このような構成を有する第3の実施形態における損傷検知システム1Bでは、超音波の発振を行わずに、構造体2において生じた歪の量を検出することができる。このため、物理量検出ユニット3の構成及び制御を簡易にすることができる。もちろん、第3の実施形態において、第2の実施形態のように、航空機の操縦者が手動で航空機の飛行条件を、損傷の検知に適した特定の飛行条件に変更するようにしてもよい。
 また、第3の実施形態において、歪センサ3Eの代わりに、加速度センサ等の他の物理量センサを用いてパッシブ損傷検知モードによる損傷の検知を行うことができるようにしてもよい。
(他の実施形態)
 以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。

Claims (15)

  1.  航空機の飛行中において前記航空機を構成する構造体の物理量を検出する物理量検出ユニットと、
     前記物理量検出ユニットによって前記構造体の物理量が検出された場合に、前記航空機の飛行条件を特定の飛行条件に変更させる飛行条件変更部と、
     変更後の前記飛行条件で飛行する前記航空機の前記構造体から前記物理量検出ユニットで検出された物理量に基づいて、前記構造体に損傷が生じたか否かを判定する損傷検知部と、
    を有する損傷検知システム。
  2.  前記航空機の少なくとも1つの特定の飛行条件に対応する前記構造体の物理量であって前記構造体に損傷が存在しない状態に対応する物理量を、対応する特定の飛行条件と関連付けて記憶する記憶装置を更に備え、
     前記飛行条件変更部は、前記物理量検出ユニットによって前記構造体の物理量が検出された場合に、前記航空機の飛行条件を前記記憶装置に記憶された特定の飛行条件に変更させる一方、
     前記損傷検知部は、変更後の前記特定の飛行条件で飛行する前記航空機の前記構造体から前記物理量検出ユニットで検出された物理量と、変更後の前記特定の飛行条件に関連付けて前記記憶装置に記憶された、前記構造体に損傷が存在しない状態に対応する前記物理量とに基づいて、前記構造体に損傷が生じたか否かを判定するように構成される請求項1記載の損傷検知システム。
  3.  前記飛行条件変更部は、前記航空機の操縦者に対して前記特定の飛行条件への変更を通知することによって、前記航空機の飛行条件を前記操縦者の手動で変更させるように構成される請求項1又は2記載の損傷検知システム。
  4.  前記飛行条件変更部は、前記航空機の飛行制御システムを制御することによって、前記航空機の飛行条件を自動的に前記特定の飛行条件に変更させるように構成される請求項1又は2記載の損傷検知システム。
  5.  前記物理量検出ユニットは、
     前記構造体に超音波を伝播させる超音波発振器と、
     前記構造体を伝播する前記超音波を受信する超音波センサと、
     前記超音波センサで受信された前記超音波の波形の基準波形からの変化に基づいて前記構造体の歪量を検出する歪量検出部と、
    を有する請求項1乃至4のいずれか1項に記載の損傷検知システム。
  6.  前記物理量検出ユニットは、
     前記構造体において生じた歪を検出する歪センサと、
     前記歪センサからの検出信号に基づいて前記構造体の歪量を検出する歪量検出部と、
    を有する請求項1乃至4のいずれか1項に記載の損傷検知システム。
  7.  前記飛行条件は、前記航空機の荷重倍数、対気速度及び角速度の少なくとも1つを含む請求項1乃至6のいずれか1項に記載の損傷検知システム。
  8.  前記損傷検知部は、前記航空機に据付けられた温度センサから取得された温度、前記航空機に据付けられた加速度センサから取得された加速度及び前記航空機に据付けられた歪ゲージから取得された歪量の少なくとも1つに基づいて、前記構造体に損傷が生じたか否かを判定するように構成される請求項1乃至7のいずれか1項に記載の損傷検知システム。
  9.  前記物理量検出ユニットは、
     変更後の前記特定の飛行条件での前記航空機の飛行中において前記超音波発振器から発振される前記超音波の振幅及び周波数の少なくとも一方を変化させる超音波制御部を更に備え、
     前記損傷検知部は、振幅及び周波数の少なくとも一方を変化させて前記超音波発振器から発振され、前記構造体を伝播した複数の超音波の各波形のそれぞれの基準波形からの変化に基づいて検出された複数の歪量に基づいて、前記構造体に損傷が生じたか否かを判定するように構成される請求項5記載の損傷検知システム。
  10.  前記飛行条件変更部は、前記損傷検知部において前記構造体に損傷が生じたか否かを判定できない場合には、前記航空機の飛行条件を別の特定の飛行条件に変更させるように構成される請求項1乃至9のいずれか1項に記載の損傷検知システム。
  11.  航空機の飛行中において前記航空機を構成する構造体の物理量を検出するステップと、
     前記構造体の物理量が検出された場合に、前記航空機の飛行条件を特定の飛行条件に変更させるステップと、
     変更後の前記飛行条件で飛行する前記航空機の前記構造体から検出された物理量に基づいて、前記構造体に損傷が生じたか否かを判定するステップと、
    を有する損傷検知方法。
  12.  前記航空機の少なくとも1つの特定の飛行条件に対応する前記構造体の物理量であって前記構造体に損傷が存在しない状態に対応する物理量を、対応する特定の飛行条件と関連付けて予め記憶しておき、
     前記航空機の飛行中において前記構造体の物理量が検出された場合に、前記航空機の飛行条件を記憶された特定の飛行条件に変更させる一方、変更後の前記特定の飛行条件で飛行する前記航空機の前記構造体から検出された物理量と、変更後の前記特定の飛行条件に関連付けて記憶された前記構造体の物理量であって前記構造体に損傷が存在しない状態に対応する前記物理量とに基づいて、前記構造体に損傷が生じたか否かを判定する請求項11記載の損傷検知方法。
  13.  前記航空機の飛行条件を、前記構造体に生じた損傷が拡大する飛行条件に変更させ、拡大した損傷に起因して生じた歪量の検出結果に基づいて、前記構造体に損傷が生じたか否かを判定する請求項11記載の損傷検知方法。
  14.  前記航空機の飛行条件を、前記構造体に生じた損傷によって生じる歪量が増加する飛行条件に変更させ、増加した歪量の検出結果に基づいて、前記構造体に損傷が生じたか否かを判定する請求項11記載の損傷検知方法。
  15.  前記航空機の飛行条件を、前記航空機の飛行によって生じる前記構造体の歪量が低減されるように決定された特定の飛行条件に変更させる請求項11記載の損傷検知方法。
PCT/JP2017/016838 2016-09-26 2017-04-27 損傷検知システム及び損傷検知方法 WO2018055827A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780047745.5A CN109562843B (zh) 2016-09-26 2017-04-27 损伤检测系统和损伤检测方法
ES17852608T ES2928656T3 (es) 2016-09-26 2017-04-27 Sistema de detección de daños y método de detección de daños
EP17852608.3A EP3517445B1 (en) 2016-09-26 2017-04-27 Damage detection system and damage detection method
JP2017523545A JP6374608B1 (ja) 2016-09-26 2017-04-27 損傷検知システム及び損傷検知方法
US16/218,097 US11084601B2 (en) 2016-09-26 2018-12-12 In-flight damage detection system and damage detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186965 2016-09-26
JP2016-186965 2016-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/218,097 Continuation US11084601B2 (en) 2016-09-26 2018-12-12 In-flight damage detection system and damage detection method

Publications (1)

Publication Number Publication Date
WO2018055827A1 true WO2018055827A1 (ja) 2018-03-29

Family

ID=61690275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016838 WO2018055827A1 (ja) 2016-09-26 2017-04-27 損傷検知システム及び損傷検知方法

Country Status (6)

Country Link
US (1) US11084601B2 (ja)
EP (1) EP3517445B1 (ja)
JP (1) JP6374608B1 (ja)
CN (1) CN109562843B (ja)
ES (1) ES2928656T3 (ja)
WO (1) WO2018055827A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207200A (ja) * 2018-05-30 2019-12-05 株式会社Subaru 光検査システム、光検査方法及び航空機構造体
EP3885732A1 (en) 2020-03-27 2021-09-29 Subaru Corporation Structural health monitoring system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867933A (zh) * 2018-12-21 2020-10-30 乐天株式会社 飞行装置、飞行系统及信息处理装置
CN110371318B (zh) * 2019-05-17 2020-12-11 东南大学 一种动态变形下基于双重滤波器的传递对准方法
CN115812142A (zh) 2020-06-12 2023-03-17 亚德诺半导体国际无限责任公司 自校准聚合物纳米复合物(pnc)传感元件
CN112173168B (zh) * 2020-09-25 2022-04-05 中国直升机设计研究所 一种滑橇式起落架检查周期计算方法
WO2022093805A1 (en) 2020-10-27 2022-05-05 Analog Devices, Inc. Wireless integrity sensing acquisition module
GB202104305D0 (en) * 2021-03-26 2021-05-12 Rolls Royce Plc Computer-implemented methods for determining damage to an aircraft
CA3215000A1 (en) * 2021-04-07 2022-10-13 Nathan BOLANDER Systems and methods for hybrid prognostics
US11946421B2 (en) 2022-02-10 2024-04-02 General Electric Company Use of particulate sensor in engine power assurance
US12110825B1 (en) 2023-08-29 2024-10-08 General Electric Company Systems and method for detecting and responding to icing conditions in gas turbine engines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146746A (ja) * 1998-11-11 2000-05-26 Tech Res & Dev Inst Of Japan Def Agency 損傷・破損箇所検出装置
JP2005208000A (ja) * 2004-01-26 2005-08-04 Mitsubishi Electric Corp リブ構造体およびその構造体の製造方法
JP2013051413A (ja) * 2011-08-17 2013-03-14 Boeing Co:The 構造健全性の監視を目的としたナノ粒子インクによる圧電センサの分散ネットワークのための方法及びシステム

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524620A (en) * 1983-02-07 1985-06-25 Hughes Helicopters, Inc. In-flight monitoring of composite structural components such as helicopter rotor blades
US5814729A (en) * 1996-09-09 1998-09-29 Mcdonnell Douglas Corporation System for in-situ delamination detection in composites
US6006163A (en) * 1997-09-15 1999-12-21 Mcdonnell Douglas Corporation Active damage interrogation method for structural health monitoring
US6584847B1 (en) * 1999-03-01 2003-07-01 H & B System Co., Ltd. Ultrasonic detector and method for ultrasonic detection
GB0013932D0 (en) * 2000-06-08 2000-08-02 Bae Systems Plc Method and apparatus for detection of structural damage
US7024315B2 (en) * 2001-02-08 2006-04-04 University Of South Carolina In-situ structural health monitoring, diagnostics and prognostics system utilizing thin piezoelectric sensors
SE518997C2 (sv) * 2001-04-02 2002-12-17 Impressonic Ab Förfarande och anordning för att detektera skada i material eller föremål
US6709393B2 (en) * 2002-03-26 2004-03-23 Fuji Photo Film Co., Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
US6996480B2 (en) * 2002-06-14 2006-02-07 University Of South Carolina Structural health monitoring system utilizing guided lamb waves embedded ultrasonic structural radar
DE10236815A1 (de) * 2002-08-10 2004-02-26 Airbus Deutschland Gmbh Verfahren zur Verminderung von lateralen und/oder vertikalen Schwingungsamplituden im Rumpf eines Flugzeuges
WO2005084358A2 (en) * 2004-03-03 2005-09-15 Metis Design Corporation Damage detection device
US7817843B2 (en) * 2004-03-04 2010-10-19 The Boeing Company Manufacturing process or in service defects acoustic imaging using sensor array
US20060004499A1 (en) * 2004-06-30 2006-01-05 Angela Trego Structural health management architecture using sensor technology
GB2416207B (en) * 2004-07-15 2008-08-27 Ultra Electronics Ltd Acoustic structural integrity monitoring system and method
US7263446B2 (en) * 2004-10-29 2007-08-28 Honeywell International, Inc. Structural health management system and method for enhancing availability and integrity in the structural health management system
US7246514B2 (en) * 2004-10-29 2007-07-24 Honeywell International, Inc. Method for verifying sensors installation and determining the location of the sensors after installation in a structural health management system
US20090326834A1 (en) * 2004-11-12 2009-12-31 Sundaresan Mannur J Systems, methods and computer program products for characterizing structural events
FR2884605B1 (fr) 2005-04-18 2007-07-06 Eads Europ Aeronautic Defence Procede et dispositif de surveillance d'une structure d'un avion
DE102005018123B4 (de) * 2005-04-20 2016-10-20 Hottinger Baldwin Messtechnik Gmbh Verfahren zur Bewertung von Messwerten zur Erkennung einer Materialermüdung
US7654148B2 (en) * 2005-06-22 2010-02-02 Lockheed Martin Corporation Ultrasound communication system for metal structure and related methods
US8290747B2 (en) * 2005-10-21 2012-10-16 Microstrain, Inc. Structural damage detection and analysis system
JP4804957B2 (ja) * 2006-02-27 2011-11-02 富士重工業株式会社 損傷探知システム
US7571058B2 (en) * 2006-05-09 2009-08-04 Lockheed Martin Corporation System to monitor the health of a structure, program product and related methods
US9340278B2 (en) * 2006-05-17 2016-05-17 Textron Innovations, Inc. Flight control system
US7636618B2 (en) * 2006-09-14 2009-12-22 The Boeing Company Responding to aircraft excursions from flight envelopes
US8594882B2 (en) * 2008-01-16 2013-11-26 The Boeing Company Damage detection system
JPWO2009125843A1 (ja) * 2008-04-11 2011-08-04 日本電気株式会社 超音波伝搬時間測定システム
DE102008019578B4 (de) * 2008-04-18 2010-11-11 Wacker Neuson Se Vorrichtung und Verfahren zum Erkennen von Schäden an einer Arbeitsmaschine
US20100161244A1 (en) * 2008-12-18 2010-06-24 Sikorsky Aircraft Corporation Method and apparatus for monitoring structural health
US8886388B2 (en) * 2009-06-29 2014-11-11 The Boeing Company Embedded damage detection system for composite materials of an aircraft
US9026377B2 (en) * 2009-10-28 2015-05-05 Sikorsky Aircraft Corporation Method and system for detecting forces on aircraft
EP2354786A3 (en) * 2010-02-09 2013-03-06 Fuji Jukogyo Kabushiki Kaisha System and method for measuring damage length
EP2542884A4 (en) * 2010-03-05 2017-04-19 Socpra-Sciences Et Génie S.E.C. Method and apparatus for providing a structural condition of a structure
JP5629481B2 (ja) * 2010-03-16 2014-11-19 富士重工業株式会社 損傷診断システム
JP5586011B2 (ja) * 2010-03-18 2014-09-10 独立行政法人産業技術総合研究所 Fbg振動検出システム、該システムを用いた装置及び振動検出方法
JP5550398B2 (ja) 2010-03-18 2014-07-16 三菱重工業株式会社 舵面故障・損傷検出装置
US8355830B2 (en) * 2010-03-30 2013-01-15 Aurora Flight Sciences Corporation Aircraft health monitoring and design for condition
DE102010028311A1 (de) * 2010-04-28 2011-11-03 Airbus Operations Gmbh System und Verfahren zur Minimierung von Buffeting
US8499632B1 (en) * 2010-08-23 2013-08-06 The Boeing Company Characterizing anomalies in a laminate structure
ES2738909T3 (es) * 2011-02-08 2020-01-27 Boeing Co Sistema de supervisión de la salud estructural
US8880242B2 (en) * 2011-06-06 2014-11-04 The Boeing Company Structural health management with active control using integrated elasticity measurement
JP5757197B2 (ja) * 2011-08-24 2015-07-29 清水建設株式会社 制震構造
JP5931381B2 (ja) * 2011-09-13 2016-06-08 三菱日立パワーシステムズ株式会社 損傷評価方法およびメンテナンス評価指標の策定方法
US9020689B2 (en) * 2011-09-19 2015-04-28 The Boeing Company Method for real-time model based structural anomaly detection
US10126274B2 (en) * 2012-05-16 2018-11-13 Hidden Solutions Llc Method and system for multi-path active defect detection, localization and characterization with ultrasonic guided waves
JP6079776B2 (ja) * 2012-06-06 2017-02-15 日本電気株式会社 構造物の分析装置および構造物の分析方法
US9506836B2 (en) * 2012-10-09 2016-11-29 The Boeing Company Methods and systems for structural health monitoring
FR2999715B1 (fr) * 2012-12-18 2015-01-16 Airbus Operations Sas Dispositif et procede de detection d'un impact sur une structure en materiau composite.
EP2945865B1 (en) * 2013-01-18 2019-01-09 LORD Corporation Active vibration control devices, systems, and methods
JP6189227B2 (ja) * 2013-02-20 2017-08-30 株式会社東芝 超音波探傷装置およびその評価方法
US8775013B1 (en) * 2013-04-19 2014-07-08 The Boeing Company System and method for acoustic signature health monitoring of unmanned autonomous vehicles (UAVS)
DE102013110151A1 (de) * 2013-09-16 2015-04-02 Airbus Defence and Space GmbH Verfahren zum Detektieren eines Fehlers in einer Anordnung, Detektionsvorrichtung und Flugkörper
EP3127089A4 (en) * 2014-04-02 2017-10-04 Sikorsky Aircraft Corporation System and method for health assessment of aircraft structure
US10486803B2 (en) * 2014-04-15 2019-11-26 Lord Corporation Systems and methods for structural health monitoring and protection
US20150330950A1 (en) * 2014-05-16 2015-11-19 Eric Robert Bechhoefer Structural fatigue crack monitoring system and method
US9567106B2 (en) * 2014-11-21 2017-02-14 Taleris Global Llp System and method for identifying faults in an aircraft
JP6235508B2 (ja) * 2015-03-18 2017-11-22 株式会社Subaru 超音波探傷システム、超音波探傷方法及び航空機部品の製造方法
US9639089B2 (en) * 2015-06-04 2017-05-02 The Boeing Company Gust compensation system and method for aircraft
US10620063B2 (en) * 2015-07-31 2020-04-14 Sikorsky Aircraft Corporation Multifunctional piezoelectric load sensor assembly
US10605783B2 (en) * 2015-08-20 2020-03-31 United States Of America As Represented By The Administrator Of Nasa System and method for progressive damage monitoring and failure event prediction in a composite structure
EP3173762B1 (en) * 2015-11-25 2020-03-18 Sikorsky Aircraft Corporation Systems and methods for fatigue monitoring
DE102015120660A1 (de) * 2015-11-27 2017-06-01 Airbus Defence and Space GmbH Luftfahrzeuginspektionssystem
US10724994B2 (en) * 2015-12-15 2020-07-28 University Of South Carolina Structural health monitoring method and system
US10001776B2 (en) * 2016-03-21 2018-06-19 The Boeing Company Unmanned aerial vehicle flight control system
JP6346214B2 (ja) * 2016-03-24 2018-06-20 株式会社Subaru 複合材成形治具、複合材成形方法、超音波検査システム、超音波検査方法及び航空機構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146746A (ja) * 1998-11-11 2000-05-26 Tech Res & Dev Inst Of Japan Def Agency 損傷・破損箇所検出装置
JP2005208000A (ja) * 2004-01-26 2005-08-04 Mitsubishi Electric Corp リブ構造体およびその構造体の製造方法
JP2013051413A (ja) * 2011-08-17 2013-03-14 Boeing Co:The 構造健全性の監視を目的としたナノ粒子インクによる圧電センサの分散ネットワークのための方法及びシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517445A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207200A (ja) * 2018-05-30 2019-12-05 株式会社Subaru 光検査システム、光検査方法及び航空機構造体
JP7131967B2 (ja) 2018-05-30 2022-09-06 株式会社Subaru 光検査システム、光検査方法及び航空機構造体
EP3885732A1 (en) 2020-03-27 2021-09-29 Subaru Corporation Structural health monitoring system
US11656201B2 (en) 2020-03-27 2023-05-23 Subaru Corporation Structural health monitoring system

Also Published As

Publication number Publication date
EP3517445A1 (en) 2019-07-31
JPWO2018055827A1 (ja) 2018-09-27
EP3517445B1 (en) 2022-08-24
JP6374608B1 (ja) 2018-08-15
US11084601B2 (en) 2021-08-10
ES2928656T3 (es) 2022-11-21
CN109562843B (zh) 2021-01-01
US20190112072A1 (en) 2019-04-18
EP3517445A4 (en) 2020-05-27
CN109562843A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
JP6374608B1 (ja) 損傷検知システム及び損傷検知方法
EP1728081B1 (en) Accuracy enhancement of a sensor during an anomalous event
JP6706235B2 (ja) 航空機の制御システム、航空機の制御方法及び航空機
US9176165B2 (en) Vibrating micro-system with automatic gain control loop, with integrated control of the quality factor
JP6374609B1 (ja) 飛行制限設定システム、飛行制限設定方法及び飛行制限設定プログラム
US20180340898A1 (en) Acoustic event monitoring for triggering of health scan of a structure
JP6165908B1 (ja) 複合材料の損傷評価方法と装置
EP3575767B1 (en) Optical inspection system, optical inspection method, and aircraft structure
JP5832067B2 (ja) 光測距装置
CN110688705B (zh) 飞行器和用于估计对飞行器的蒙皮的撞击参数的方法
US11192643B2 (en) Method for predicting vibrations of an aircraft
JP2017227641A5 (ja)
US11155365B2 (en) Aircraft management system
JP2015082758A (ja) 遠隔操作受付システム、遠隔操作システム及びプログラム
JP2017095980A (ja) 橋梁点検支援システム、損傷判定方法及びプログラム
JP5940350B2 (ja) 振動計測装置および振動計測方法
JP6710653B2 (ja) センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法
US9766156B2 (en) Focused optical configuration for NSMS probes
CN111044758B (zh) 加速度传感器输出值校正方法及加速度传感器
KR101423152B1 (ko) 구조물 진동 위치 추적 방법 및 시스템
JP2015082834A (ja) 遠隔操作受付システム、遠隔操作システム及びプログラム
Habtour et al. Utilizing Force-State Mapping for Detecting Fatigue Damage Precursors in Aerospace Applications
KR101397310B1 (ko) 관성센서 제어모듈
SU564548A1 (ru) Струнный компенсационный датчик перемещени
JPH01254862A (ja) Aeセンサの感度確認方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017523545

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017852608

Country of ref document: EP