WO2020232930A1 - 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用 - Google Patents

一种超高支pi-psa电纺纤维长线纱的制备工艺及应用 Download PDF

Info

Publication number
WO2020232930A1
WO2020232930A1 PCT/CN2019/106943 CN2019106943W WO2020232930A1 WO 2020232930 A1 WO2020232930 A1 WO 2020232930A1 CN 2019106943 W CN2019106943 W CN 2019106943W WO 2020232930 A1 WO2020232930 A1 WO 2020232930A1
Authority
WO
WIPO (PCT)
Prior art keywords
psa
drafting
ultra
electrospun fiber
residues
Prior art date
Application number
PCT/CN2019/106943
Other languages
English (en)
French (fr)
Inventor
侯豪情
潘萍萍
程楚云
王煜明
欧阳文
Original Assignee
江西先材纳米纤维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西先材纳米纤维科技有限公司 filed Critical 江西先材纳米纤维科技有限公司
Priority to ES19891680T priority Critical patent/ES2949831T3/es
Priority to EP19891680.1A priority patent/EP3767018B1/en
Publication of WO2020232930A1 publication Critical patent/WO2020232930A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • D01F6/905Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides of aromatic polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Definitions

  • the invention belongs to the technical field of chemical fiber spinning. More specifically, the invention relates to a preparation process and application of ultra-high count PI-PSA electrospun fiber long yarn.
  • Polyimide (PI) fiber is regarded as one of the most promising high-performance fiber materials due to its unique rigid aromatic heterocyclic structure. Because of its excellent mechanical, thermal and dielectric properties, it is widely used in aerospace, high temperature heat resistance, electronic devices and other fields.
  • PSA is one of the most important polyaramid fiber materials. It is a high-performance fiber with sulfone group (-SO 2 -), aromatic ring and amide bond (-CONH-) on the main chain of macromolecules. There are hydrogen bonds between molecules to enhance the interaction. Combining the high temperature resistance of polyimide and the intermolecular lateral reinforcement effect of polysulfone amide, it is very necessary to produce a composite nanofiber with good high temperature resistance and high mechanical strength, which has a huge potential application market.
  • the first aspect of the present invention provides a process for preparing ultra-high count PI-PSA electrospun fiber long yarn.
  • the steps include:
  • Step 1 After the monomer (I) and monomer (II) are purified, they are added to the polymerization reactor together with the solvent to obtain a polyamic acid solution, which is then mechanically mixed with PSA to obtain spinning raw materials for polyamic acid and PSA liquid;
  • Step 2 Perform electrospinning of the spinning raw material liquid in a high-voltage electric field, and use a stainless steel mesh belt as a collector to collect polyamic acid/PSA electrospun fiber felt or nonwoven fabric;
  • Step 3 The polyamic acid/PSA electrospun fiber felt or nonwoven fabric obtained above is slit into thin strips with a width of 0.5-5.0 cm, and the strips are thermally drawn and imidized to form oriented electrospun fibers bundle;
  • Step 4 Twist the above-mentioned electrospun fiber bundle to obtain ultra-high count electrospun PI/PSA composite fiber long yarn.
  • the monomer (I) is dianhydride, and its general structural formula is:
  • Monomer (II) is diamine, and its general structural formula is:
  • the obtained polyimide has the following general chemical structure:
  • the solvent in the process of preparing the spinning stock solution is a polar organic solvent, selected from N,N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, N , One or more of N-dimethylacetamide.
  • the reaction conditions during the preparation process of the spinning raw material solution are: the polymerization temperature of the stainless steel reactor is 0-30°C, and the reaction time is 1-10 hours to obtain a polyamic acid solution, and then Add PSA powder or PSA short fiber to the polyamic acid solution, mechanically stir to dissolve and mix at 0-30°C, and finally add N,N-dimethylacetamide for dilution.
  • the absolute viscosity of the spinning raw material liquid is 1.5-5.5 Pa ⁇ s.
  • the processing parameters of the electrospinning are: the distance between the spinneret and the stainless steel mesh belt collector is 8-50cm, the electric field intensity of the high-voltage electrostatic field is 100-650kV/m, and the stainless steel mesh belt The running speed is 0.2-5m/min.
  • the hot-drawing imidization process parameters are: the drafting process is three stages of 5-roll drafting: the first stage drafting and unwinding speed is 5-10m/min, and the drafting ratio is 1-5 times, the drafting temperature is 160-220°C; the second drafting and unwinding speed is 3-8m/min, the draft ratio is 1-5 times, the drafting temperature is 280-320°C; the third drafting The unwinding speed is 1-5m/min, the draft ratio is 1-3 times, and the draft temperature is 350-400°C.
  • R 2 is one or more of the following diamine residue structures:
  • the obtained polyimide has the following general chemical structure:
  • the ratio of the total amount of the dianhydride monomer to the total amount of the diamine monomer in the polycondensation reaction is always maintained at 1:1.
  • the solvent in the process of preparing the spinning stock solution is a polar organic solvent, selected from N,N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, One or more of N,N-dimethylacetamide.
  • the reaction conditions during the preparation of the spinning raw material solution are: the polymerization temperature of the stainless steel reactor is 0-30°C, and the reaction time is 1-10 hours to obtain the polyamic acid solution, and then Add PSA powder or PSA short fiber to the polyamic acid solution, mechanically stir to dissolve and mix at 0-30°C, and finally add N,N-dimethylacetamide for dilution.
  • the reaction conditions during the preparation of the spinning raw material solution are as follows: the polymerization temperature of the stainless steel reactor is 0-30°C, and the reaction time is 1-10 hours to obtain the polyamic acid solution , And then according to the mass ratio of polymer PI and PSA as (1-7): (1-8) Add PSA powder or PSA short fiber to the polyamic acid solution, stir to dissolve and mix at 0-30°C, and finally Add N,N-dimethylacetamide for dilution.
  • the absolute viscosity of the spinning raw material liquid is 1.5-5.5 Pa ⁇ s.
  • the absolute viscosity of the spinning stock solution is 2-5 Pa ⁇ s; further preferably, the absolute viscosity of the spinning stock solution is 2-4 Pa ⁇ s.
  • the inventors first used tetraacid dianhydride monomer and diamine monomer through polycondensation reaction, and blended with PSA solution to form a polyamic acid/PSA mixed solution, and the addition of PSA solution can increase
  • the effect of viscosity increases the viscosity of the system and avoids the appearance of solution droplets; in addition, the addition of PSA solution increases the continuous length.
  • the processing parameters of the electrostatic spinning are: the distance between the spinneret and the stainless steel mesh belt collector is 8-50 cm, the electric field strength of the high-voltage electrostatic field is 100-650 kV/m, and the stainless steel mesh The running speed of the belt is 0.2-5m/min.
  • the hot-drawing imidization process parameters are: the drafting process is three stages of 5-roll drafting: the first stage of drafting and unwinding speed is 5-10m/min, the draft ratio The drafting temperature is 160-220°C; the second drafting and unwinding speed is 3-8m/min, the drafting ratio is 1-5 times, and the drafting temperature is 280-320°C; the third drafting The unwinding speed is 1-5m/min, the drafting ratio is 1-3 times, and the drafting temperature is 350-400°C.
  • the fiber orientation degree of the oriented electrospun fiber bundle is greater than 75%.
  • the hot-drawing imidization process of the present invention is used after cutting to make the continuous length more than 2000 meters.
  • the first drafting temperature is 160-220°C. In this temperature range, the molecular mobility of the amorphous region of the disordered structure is enhanced.
  • tension drafting promotes the physical cross-linking between molecular chains to a certain degree of destruction, and the orientation is carried out under the action of internal stress.
  • the twisting process parameters are: the twisting and unwinding speed is 5-80 m/min, and the twist is 300-2500 twists/m.
  • the step 4 twisting the electrospun fiber bundle, wherein the twisting and unwinding speed is 5-80m/min, the twist is 300-2500 twists/m, and the final result is Super high count PI/PSA composite nano-fiber long yarn.
  • the single-strand yarn of the ultra-high count PI-PSA electrospun filament yarn has a count of 500-1500 male counts or 300-900 British counts, and a continuous length is greater than 2000 meters.
  • the third aspect of the present invention provides an ultra-high count PI-PSA electrospun fiber long yarn in high-grade fabrics, high-grade clothing, ultra-thin high-performance fiber cloth, high-performance composite membrane materials, high-performance composite board materials, and high-performance cables. And cable applications.
  • Example 1 provides a preparation process of ultra-high count PI-PSA electrospun fiber long yarn. The steps include:
  • the monomer (I) is a dianhydride with the general formula (I) whose R 1 is a residue of biphenyl dianhydride, and the monomer (II) is a dianhydride whose R 2 is a residue of p-phenylenediamine A diamine of the general formula (II);
  • the solvent is N,N-dimethylacetamide and N,N-dimethylformamide according to a volume ratio of 6.3:1 to obtain a mixed solvent;
  • Step 3 The polyamic acid/PSA electrospun nonwoven fabric obtained above is cut into thin strips with a width of 0.5 cm, and the strips are thermally drawn and imidized to form oriented electrospun fiber bundles.
  • the degree of orientation is 75%
  • the process parameters of the hot-drawing imidization process are as follows: the drafting process is three stages of 5-roll drafting: the first stage of drafting and unwinding speed is 5m/min, and the drafting ratio is 1 time , The drafting temperature is 160°C; the second drafting and unwinding speed is 3m/min, the draft ratio is 1 times, and the drafting temperature is 280°C; the third drafting and unwinding speed is 1m/min, and the draft ratio is 1 times, drawing temperature 350°C;
  • Step 4 Twist the above-mentioned electrospun fiber bundle, wherein the twisting and unwinding speed is 5m/min, the twist is 300 twists/m, and finally the ultra-high count PI/PSA composite nanofiber long yarn is obtained.
  • Example 2 provides a preparation process of ultra-high count PI-PSA electrospun fiber long yarn. The steps include:
  • Step 1 After purifying the monomer (I) and monomer (II), add them to the polymerization reactor at a molar ratio of 1:1, add a solvent of 5.5 times the total mass of the monomer at 30°C, and react for 1 hour Then, the polyamic acid solution was obtained, and then the PSA powder was added to the polyamic acid solution according to the mass ratio of polymer PI and PSA of 7:1, and the mixture was mechanically stirred at 30° C. to dissolve and mix. Finally, an appropriate amount of N,N-two was added. Dilute methylacetamide to an absolute viscosity of 3.4Pa ⁇ s to obtain a spinning raw material liquid of polyamic acid and PSA;
  • the monomer (I) is a dianhydride with general formula (I) in which R 1 is the residue of benzophenone dianhydride, and the monomer (II) is R 2 is dimethoxybiphenyl A diamine having a structure of general formula (II) of amine residue;
  • the solvent is N,N-dimethylacetamide and N,N-dimethylformamide according to a volume ratio of 6.3:1 to obtain a mixed solvent ;
  • Step 2 Perform electrospinning of the spinning raw material liquid in a high-voltage electric field, using a stainless steel mesh belt as the collector, wherein the distance between the spinneret and the stainless steel mesh belt collector is 50 cm, and the electric field strength of the high-voltage electrostatic field is 650kV/m, the running speed of the stainless steel mesh belt is 5m/min, and the polyamic acid/PSA electrospun nonwoven fabric is collected;
  • Step 3 The polyamic acid/PSA electrospun nonwoven fabric obtained above is slit into slender strips with a width of 5.0 cm, and the strips are thermally drawn and imidized to form oriented electrospun fiber bundles.
  • the degree of orientation is 82%
  • the process parameters of the hot-drawing imidization process are as follows: the drafting process is three stages of 5-roll drafting: the first stage of drafting and unwinding speed is 10m/min, and the drafting ratio is 5 times , The drafting temperature is 220°C; the second drafting and unwinding speed is 8m/min, the draft ratio is 5 times, and the drafting temperature is 320°C; the third drafting and unwinding speed is 5m/min, and the draft ratio is 3 times, the drawing temperature is 400°C;
  • Step 4 Twist the above-mentioned electrospun fiber bundle, wherein the twisting and unwinding speed is 60m/min, the twist is 2500 twists/m, and finally the ultra-high count PI/PSA composite nanofiber long yarn is obtained.
  • Embodiment 3 provides a preparation process of ultra-high count PI-PSA electrospun fiber yarn, the steps include:
  • Step 1 After purifying the monomer (I) and monomer (II), add them to the polymerization reactor at a molar ratio of 1:1, add a solvent of 5.5 times the total mass of the monomer at 20°C, and react for 5 hours Then, the polyamic acid solution was obtained, and then the PSA powder was added to the polyamic acid solution according to the mass ratio of polymer PI and PSA of 1:5, and the mixture was mechanically stirred at 20°C to dissolve and mix, and finally an appropriate amount of N,N-two was added. Dilute methylacetamide to an absolute viscosity of 2.9Pa ⁇ s to obtain a spinning raw material liquid of polyamic acid and PSA;
  • the monomer (I) is a dianhydride with general formula (I) in which R 1 is the residue of diphenyl sulfide dianhydride, and the monomer (II) is R 2 is 2-methyl diphenyl
  • R 1 is the residue of diphenyl sulfide dianhydride
  • R 2 is 2-methyl diphenyl
  • the diamine of ether diamine residue with general formula (II) structure; the solvent is N,N-dimethylacetamide and N,N-dimethylformamide according to the volume ratio of 6.3:1.
  • Mixed solvent is N,N-dimethylacetamide and N,N-dimethylformamide according to the volume ratio of 6.3:1.
  • Step 2 Electrospin the spinning material liquid in a high-voltage electric field, using a stainless steel mesh belt as the collector, wherein the distance between the spinneret and the stainless steel mesh belt collector is 10 cm, and the electric field strength of the high-voltage electrostatic field is 250kV/m, the running speed of the stainless steel mesh belt is 1m/min, and the polyamic acid/PSA electrospun nonwoven fabric is collected;
  • Step 3 The polyamic acid/PSA electrospun nonwoven fabric obtained above is cut into thin strips with a width of 1 cm, and the strips are thermally drawn and imidized to form oriented electrospun fiber bundles.
  • the degree of orientation is 85%
  • the process parameters of the hot-drawing imidization process are as follows: the drafting process is three stages of 5-roll drafting: the first stage drafting and unwinding speed is 7m/min, and the drafting ratio is 2 times , The drafting temperature is 180°C; the second drafting and unwinding speed is 4m/min, the draft ratio is 2 times, and the drafting temperature is 290°C; the third drafting and unwinding speed is 2m/min, and the draft ratio is 2 times, the drawing temperature is 360°C;
  • Step 4 Twist the above-mentioned electrospun fiber bundle, wherein the twisting and unwinding speed is 45m/min, the twist is 1100 twists/m, and finally the ultra-high count PI/PSA composite nanofiber long yarn is obtained.
  • Example 4 provides a preparation process of ultra-high count PI-PSA electrospun fiber long yarn. The steps include:
  • Step 1 After purifying the monomer (I) and monomer (II), add them to the polymerization reactor at a molar ratio of 1:1, add a solvent of 5.5 times the total mass of the monomer at 20°C, and react for 5 hours Then, the polyamic acid solution was obtained, and then the PSA powder was added to the polyamic acid solution according to the mass ratio of polymer PI and PSA of 3:4, and the mixture was mechanically stirred at 20° C. to dissolve and mix. Finally, an appropriate amount of N,N-two was added. Dilute methylacetamide to an absolute viscosity of 3.5 Pa ⁇ s to obtain a spinning raw material liquid of polyamic acid and PSA;
  • the monomer (I) is a dianhydride with the general formula (I) in which R 1 is the residue of biphenyl diphenyl diether dianhydride, and the monomer (II) is R 2 is diphenyl
  • R 1 is the residue of biphenyl diphenyl diether dianhydride
  • R 2 is diphenyl
  • the diamine of ether diamine residue with general formula (II) structure; the solvent is N,N-dimethylacetamide and N,N-dimethylformamide according to the volume ratio of 6.3:1.
  • Step 2 Electrospin the spinning raw material liquid in a high-voltage electric field, using a stainless steel mesh belt as a collector, wherein the distance between the spinneret and the stainless steel mesh belt collector is 40 cm, and the electric field strength of the high-voltage electrostatic field is 550kV/m, the running speed of the stainless steel mesh belt is 4m/min, and the polyamic acid/PSA electrospun nonwoven fabric is collected;
  • Step 4 Twist the above-mentioned electrospun fiber bundle, wherein the twisting and unwinding speed is 45m/min, the twist is 1100 twists/m, and finally the ultra-high count PI/PSA composite nanofiber long yarn is obtained.
  • Step 4 Twist the above-mentioned electrospun fiber bundle, wherein the twisting and unwinding speed is 45m/min, the twist is 1100 twists/m, and finally the ultra-high count PI/PSA composite nanofiber long yarn is obtained.
  • Comparative Example 3 provides a preparation process of ultra-high count PI-PSA electrospun fiber long yarn.
  • the preparation process is different from Example 5 in that the second drafting process is not included in the step three.
  • Comparative Example 5 provides a preparation process of ultra-high count PI-PSA electrospun fiber long yarn.
  • the preparation process is different from Example 5 in that the process parameters of the thermal drawing imidization in the step three are:
  • the drawing process is three stages of 5-roll drafting: the first stage of drafting and unwinding speed is 8m/min, the draft ratio is 3 times, the drafting temperature is 190°C; the second stage of drafting and unwinding speed is 3m/min, The drawing ratio is 2 times, the drawing temperature is 380°C; the third stage drawing and unwinding speed is 5m/min, the drawing ratio is 3 times, and the drawing temperature is 300°C.
  • Comparative Example 7 provides a preparation process of ultra-high count PI-PSA electrospun fiber yarn.
  • the difference between the preparation process and Example 5 is that the nonwoven fabric is cut into 10 cm wide in the third step. Slender bar, and does not contain the second drafting process.
  • the mechanical properties of the fiber The tensile strength of the fiber is measured by the Instron-12111 energy material testing machine of the US INSTRON company; the number of test samples in each group is 5, and the average value is used.
  • Single strand count The single strand count is expressed in metric count, that is, the length of the fiber or yarn per unit mass (g). The number of test samples in each group is 5, and the average value is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

涉及化学纤维纺丝技术领域,具体涉及一种超高支PI-PSA电纺纤维长线纱的制备工艺及应用,制备工艺步骤包括:步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后,与溶剂一起加入到聚合反应釜中,得到聚酰胺酸溶液,随后与PSA机械混合,得到聚酰胺酸和PSA的纺丝原料液;步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,收集得到聚酰胺酸/PSA电纺纤维毡或非织造布;步骤三:将上述所得聚酰胺酸/PSA电纺纤维毡或非织造布分切成宽度在0.5-5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束;步骤四:将上述电纺纤维束加捻得到超高支电纺PI/PSA复合纤维长线纱。

Description

一种超高支PI-PSA电纺纤维长线纱的制备工艺及应用 技术领域
本发明属于化学纤维纺丝技术领域,更具体地,本发明涉及一种超高支PI-PSA电纺纤维长线纱的制备工艺及应用。
背景技术
聚酰亚胺(PI)纤维由于具有独特的刚性芳杂环结构,被视为最具潜力的高性能纤维材料之一。由于其具有优异的力学,热学及介电性能等,从而被广泛应用在航空航天,高温耐热,电子器件等领域。而芳砜纶(PSA)是最重要的聚芳酰胺纤维材料之一,是大分子主链上含有砜基(-SO 2-)、芳环和酰胺键(-CONH-)的高性能纤维,分子间有氢键的相互作用而增强。将聚酰亚胺的耐高温性和聚砜酰胺的分子间横向增强效果结合起来,制造一种耐高温性能好、机械强度高的复合纳米纤维是非常必要的,有潜在的巨大应用市场。
目前,制备PI纤维较常用的方法为两步法,即通过二酐与二胺单体在极性溶剂中进行缩聚反应得到聚酰胺酸(PAA)预聚体,通过湿法纺丝工艺制备PAA初生纤维,再经过热亚胺化或化学亚胺化过程得到PI纤维。
然而对于目前静电纺丝技术还只是用来制造非织造布或在工业非织造布上喷涂一个纳米蛛网薄层,一般面密度在1g/m 2左右,也能制造不连续的、线密度较大的粗纱线,一般的常规纤维纱线的线密度在6Tex以上,纱线的支数一般小于150支,绝大多数在100支以下,因此还没有技术能连续制造同时满足超小线密度或超高支数、耐温性好、机械性能优异的电纺PI/PSA复合(纳米)纤维纱。
发明内容
为了解决上述问题,本发明第一个方面提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后,与溶剂一起加入到聚合反应釜中,得到聚酰胺酸溶液,随后与PSA机械混合,得到聚酰胺酸和PSA的纺丝原料液;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,收集得到聚酰胺酸/PSA电纺纤维毡或非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺纤维毡或非织造布分切成宽度在 0.5-5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束;
步骤四:将上述电纺纤维束加捻得到超高支电纺PI/PSA复合纤维长线纱。
其中,所述单体(I)为二酐,其结构通式为:
Figure PCTCN2019106943-appb-000001
单体(II)为二胺,其结构通式为:
H 2N-R 2-NH 2            (Ⅱ);
所得到的聚酰亚胺具有以下化学结构通式:
Figure PCTCN2019106943-appb-000002
其中n和m值分别为100-500之间的自然数;R 1为C4-C30的二酐单体的残基结构,选自均苯四酸二酐残基、联苯二酐残基、二苯砜二酐残基、三苯二醚二酐残基、联三苯二酐残基、2.6-联二苯嘧啶二酐残基、二苯酮二酐残基、3,6桥烯环己四酸二酐残基、六氟丙酮二苯二酐残基、联苯二酚二苯二醚二酐残基、二苯硫醚二酐残基、二苯硫醚二酐残基、2,2-丙酮联二苯二酐残基中的一种或多种;R 2为C6-C30二胺单体的残基结构,选自二苯醚二胺残基、对苯二胺残基、二甲氧基联苯二胺残基、二苯基甲烷二胺残基、间苯二胺残基、联苯二胺残基、二苯氧基二苯酚二胺残基、2-甲基二苯醚二胺残基、2,6-嘧啶联二苯二胺残基、(3,3’-二甲基)二苯甲烷二胺残基中的一种或多种;两种聚合物PI和PSA的比例,即质量比x/y=(1-9):(1-9)。
作为一种优选的技术方案,所述纺丝原料液制备过程中的溶剂为极性有机溶剂,选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基乙酰胺中的一种或多种。
作为一种优选的技术方案,所述纺丝原料液制备过程中反应条件为:不锈钢反应釜的聚合反应温度为0-30℃,反应时间为1-10小时后,得到聚酰胺酸溶液, 随后在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在0-30℃下机械搅拌溶解混合,最后加入N,N-二甲基乙酰胺进行稀释。
作为一种优选的技术方案,所述纺丝原料液的绝对粘度为1.5-5.5Pa·s。
作为一种优选的技术方案,所述静电纺丝的加工参数为:喷丝口到不锈钢网带收集器的间距为8-50cm,高压静电场的电场强度为100-650kV/m,不锈钢网带的走带速度为0.2-5m/min。
作为一种优选的技术方案,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为5-10m/min,牵伸比为1-5倍,牵伸温度160-220℃;第二段牵伸放卷速度为3-8m/min,牵伸比为1-5倍,牵伸温度280-320℃;第三段牵伸放卷速度为1-5m/min,牵伸比为1-3倍,牵伸温度350-400℃。
作为一种优选的技术方案,所述加捻工艺参数为:加捻放卷速度为5-80m/min,捻度为300-2500捻/m。
本发明第二个方面提供了一种超高支PI-PSA电纺纤维长线纱,根据上述制备工艺制备得到。
作为一种优选的技术方案,所述超高支PI-PSA电纺纤维长线纱的单股纱线的支数为500-1500公支或300-900英支,连续长度大于2000米。
本发明第三个方面提供了一种超高支PI-PSA电纺纤维长线纱在高档面料、高档服装、超薄高性能纤维布、高性能复合膜材料、高性能复合板材料、高性能缆绳和拉索中的应用。
有益效果:采用本发明所述的制备工艺制备得到的超高支PI-PSA电纺纤维长线纱的支数在1000-1500公支,连续长度大于2000米,且同时具有优异的机械性能,解决了目前难以连续制造超小线密度或超高支数的电纺(纳米)纤维纱的技术难题,为制造这种纤维提供了一种高效且先进的制备工艺。
具体实施方式
下面结合具体实施方式对本发明提供技术方案中的技术特征作进一步清楚、完整的描述,并非对其保护范围的限制。
本发明中的词语“优选的”、“更优选的”等是指,在某些情况下可提供某些有益效果的本发明实施方案。然而,在相同的情况下或其他情况下,其他实施方案 也可能是优选的。此外,对一个或多个优选实施方案的表述并不暗示其他实施方案不可用,也并非旨在将其他实施方案排除在本发明的范围之外。
当本文中公开一个数值范围时,上述范围视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。例如,从“1至10”的指定范围应视为包括最小值1与最大值10之间的任何及所有的子范围。范围1至10的示例性子范围包括但不限于1至6.1、3.5至7.8、5.5至10等。
为了解决上述问题,本发明第一个方面提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后,与溶剂一起加入到聚合反应釜中,得到聚酰胺酸溶液,随后与PSA机械混合,得到聚酰胺酸和PSA的纺丝原料液;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,收集得到聚酰胺酸/PSA电纺纤维毡或非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺纤维毡或非织造布分切成宽度在0.5-5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束;
步骤四:将上述电纺纤维束加捻得到超高支电纺PI/PSA复合纤维长线纱。
步骤一
本发明所述的超高支PI-PSA电纺纤维长线纱,其化学组成或结构是由单体(Ⅰ)和(Ⅱ)两类单体通过缩合聚合得到聚酰胺酸,并与PSA溶液共混形成纺丝原料液,再进行下一步。
在一种优选的实施方式中,所述单体(I)为二酐,其结构通式为:
Figure PCTCN2019106943-appb-000003
其中R 1是以下二酐残基结构的一种或多种:
Figure PCTCN2019106943-appb-000004
在一种优选的实施方式中,所述单体(II)为二胺,其结构通式为:
H 2N-R 2-NH 2            (Ⅱ);
其中R 2是以下二胺残基结构中的一种或多种:
Figure PCTCN2019106943-appb-000005
Figure PCTCN2019106943-appb-000006
在一些实施方式中,所得到的聚酰亚胺具有以下化学结构通式:
Figure PCTCN2019106943-appb-000007
在一种优选的实施方式中,上述n和m值分别为100-500之间的自然数;R 1为C4-C30的二酐单体的残基结构,选自均苯四酸二酐残基、联苯二酐残基、二苯砜二酐残基、三苯二醚二酐残基、联三苯二酐残基、2.6-联二苯嘧啶二酐残基、二苯酮二酐残基、3,6桥烯环己四酸二酐残基、六氟丙酮二苯二酐残基、联苯二酚二苯二醚二酐残基、二苯硫醚二酐残基、二苯硫醚二酐残基、2,2-丙酮联二苯二酐残基中的一种或多种;R 2为C6-C30二胺单体的残基结构,选自二苯醚二胺残基、对苯二胺残基、二甲氧基联苯二胺残基、二苯基甲烷二胺残基、间苯二胺残基、联苯二胺残基、二苯氧基二苯酚二胺残基、2-甲基二苯醚二胺残基、2,6-嘧啶联二苯二胺残基、(3,3’-二甲基)二苯甲烷二胺残基中的一种或多种;两种聚合物PI和PSA的比例,即质量比x/y=(1-9):(1-9)。
在一种优选的实施方式中,所述缩聚反应中二酐单体的物质总量与二胺单体的物质总量之比始终保持为1:1。
在一种优选的实施方式中,所述纺丝原料液制备过程中的溶剂为极性有机溶剂,选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基乙酰胺中的一种或多种。
更优选的,所述纺丝原料液制备过程中的溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺的混合溶剂;进一步优选的,所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为(3-8):1复配得到混合溶剂;最优选的,所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂。
在一种优选的实施方式中,所述纺丝原料液制备过程中反应条件为:不锈钢反应釜的聚合反应温度为0-30℃,反应时间1-10小时后,得到聚酰胺酸溶液,随后在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在0-30℃下机械搅拌溶解混合,最后加入N,N-二甲基乙酰胺进行稀释。
在一种优选的实施方式中,所述纺丝原料液制备过程中反应条件为:不锈钢反应釜的聚合反应温度为0-30℃,反应时间1-10小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为(1-9):(1-9)在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在0-30℃下机械搅拌溶解混合,最后加入N,N-二甲基乙酰胺进行稀释。
在一种更优选的实施方式中,所述纺丝原料液制备过程中反应条件为:不锈钢反应釜的聚合反应温度为0-30℃,反应时间为1-10小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为(1-7):(1-8)在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在0-30℃下机械搅拌溶解混合,最后加入N,N-二甲基乙酰胺进行稀释。
在一种优选的实施方式中,所述纺丝原料液的绝对粘度为1.5-5.5Pa·s。
更优选的,所述纺丝原料液的绝对粘度为2-5Pa·s;进一步优选的,所述纺丝原料液的绝对粘度为2-4Pa·s。
这里描述的绝对粘度也叫动力黏度,它是液体以1cm/s的流速流动时,在每平方厘米液面上所需切向力的大小,单位为“Pa·s”。绝对粘度数值采用数字显示粘度计SNB-1测量。
在一种优选的实施方式中,所述步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合反应釜中,在0-30℃加入质量为单体总质量的5.5倍的溶剂,反应1-10小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为(1-9):(1-9)在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在 0-30℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为1.5-5.5Pa·s,得到聚酰胺酸和PSA的纺丝原料液。
发明人在上述制备过程中先采用以四酸二酐单体和二胺单体通过缩聚反应,并与PSA溶液共混形成聚酰胺酸/PSA混合溶液,而其中PSA溶液的加入可以起到增粘的效果,提高体系的粘度,避免出现溶液液滴;此外PSA溶液的加入使得连续长度增加,推测可能是其与聚酰胺酸反应进行物理交联,进一步增加其粘性,且其具有的刚性结构分散在聚酰亚胺聚合物中,其还通过与杂原子间的氢键缔合等分子间作用力,进一步限制因高温结晶过程中产生的收缩,避免纤维表面出现裂纹等缺陷,有利于形成超高支的长线纱。
步骤二
本发明步骤二是将上述得到的纺丝原料液经静电纺丝成聚酰胺酸/PSA复合纤维毡或非织造布,再进行下一步。
在一种优选的实施方式中,所述静电纺丝的加工参数为:喷丝口到不锈钢网带收集器的间距为8-50cm,高压静电场的电场强度为100-650kV/m,不锈钢网带的走带速度为0.2-5m/min。
更优选的,所述静电纺丝的加工参数为:喷丝口到不锈钢网带收集器的间距为10-40cm,高压静电场的电场强度为250-550kV/m,不锈钢网带的走带速度为1-4m/min。
在一种优选的实施方式中,所述步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为8-50cm,高压静电场的电场强度为100-650kV/m,不锈钢网带的走带速度为0.2-5m/min,收集得到聚酰胺酸/PSA电纺纤维毡或非织造布。
步骤三
本发明所述步骤三是将上述得到的聚酰胺酸/PSA电纺纤维毡或非织造布分切成条、之后再高温下亚胺化牵伸成超细取向丝束,再进行下一步。
在一种优选的实施方式中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为5-10m/min,牵伸比为1-5倍,牵伸温度160-220℃;第二段牵伸放卷速度为3-8m/min,牵伸比为1-5倍,牵伸温度280-320℃;第三段牵伸放卷速度为1-5m/min,牵伸比为1-3倍,牵伸温度 350-400℃。
在一种优选的实施方式中,所述取向电纺纤维束的纤维取向度大于75%。
这里描述的取向度是指指大分子或链段等各种不同结构单元包括微晶体沿纤维轴规则排列程度。取向度数值采用MC68VZ328的数字式纤维声速取向度测量仪测量。
在一种优选的实施方式中,所述步骤三:将上述所得聚酰胺酸/PSA电纺纤维毡或非织造布分切成宽度在0.5-5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为5-10m/min,牵伸比为1-5倍,牵伸温度160-220℃;第二段牵伸放卷速度为3-8m/min,牵伸比为1-5倍,牵伸温度280-320℃;第三段牵伸放卷速度为1-5m/min,牵伸比为1-3倍,牵伸温度350-400℃。
发明人在研究的过程中发现不采用切条直接拉伸时,纤维由于缔合现象容易缠结或断丝,所以将其分切成细条,意外的发现当宽度在0.5-5.0厘米时,得到的纤维具有很高的支数以及较长的长度,发明人推测这可能是因为在聚酰亚胺热牵伸过程中使得纤维取向增大。
其次,发明人发现为了使得本发明长纱线的连续长度达到最好时,在切条之后再采用本发明所述的热牵伸亚胺化工艺使得连续长度能达到2000米以上,这是因为第一段牵伸温度为160-220℃,在此温度区间内,无序结构的非晶区分子运动力增强,为降低因引入的PSA溶液与体系之间过多的杂原子缔合作用,采用1-5倍张力牵伸促进分子链间的物理交联作用发生一定程度的破坏,在内应力作用下进行取向,而在该阶段若温度在此之下,由于分子链间的缔合交联以及有序取向分子链运动不足,则使得分子太过刚性,后续阶段不能够完全亚胺化因此难以得到较高的分子量,使纤维变脆不利于得到超长纱线。采用第二阶段温度为280-320℃进行1-5倍牵伸,非晶区开始发生亚胺化反应,随着取向度的增加,亚胺化结构含量增多,使得分子链取向结构更加有利于形成具有较大面积的芳香层结构,增加内应力,之后采用第三阶段温度为350-400℃,随着晶区亚胺化反应,体系形变量减少,断裂伸长率降低,调整拉伸倍数1-3,有效避免过量酰亚胺环与引入的芳杂环之间发生不必要的交联后导致的纤维缺陷,在提高机械性能 的同时获得超高支的长纱线。
步骤四
本发明所述步骤四是将上述电纺纤维束进行加捻形成超高支PI/PSA复合纳米纤维长线纱。
在一种优选的实施方式中,所述加捻工艺参数为:加捻放卷速度为5-80m/min,捻度为300-2500捻/m。
在一种优选的实施方式中,所述步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为5-80m/min,捻度为300-2500捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
本发明第二个方面提供了一种超高支PI-PSA电纺纤维长线纱,根据上述制备工艺制备得到。
在一种优选的实施方式中,所述超高支PI-PSA电纺纤维长线纱的单股纱线的支数为500-1500公支或300-900英支,连续长度大于2000米。
这里描述的支数有公支和英支,都是表示纱线的粗细,支数越高,纱线越细,公制支数=1.715英制支数。
本发明第三个方面提供了一种超高支PI-PSA电纺纤维长线纱在高档面料、高档服装、超薄高性能纤维布、高性能复合膜材料、高性能复合板材料、高性能缆绳和拉索中的应用。
下面通过实施例对本发明进行具体描述,另外,如果没有其它说明,所用原料都是市售的。
实施例
实施例1
实施例1提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合反应釜中,在0℃加入质量为单体总质量的5.5倍的溶剂,反应10小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为3:8在该聚酰胺酸溶液中加入PSA粉末,在0℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为2.8Pa·s,得到聚酰胺酸和PSA的纺丝原料液;
其中,所述单体(Ⅰ)是R 1为联苯二酐残基的具有通式(Ⅰ)结构的二酐, 所述单体(Ⅱ)是R 2为对苯二胺残基的具有通式(Ⅱ)结构的二胺;所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为8cm,高压静电场的电场强度为100kV/m,不锈钢网带的走带速度为0.5m/min,收集得到聚酰胺酸/PSA电纺非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺非织造布分切成宽度在0.5厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,纤维束的取向度为75%,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为5m/min,牵伸比为1倍,牵伸温度160℃;第二段牵伸放卷速度为3m/min,牵伸比为1倍,牵伸温度280℃;第三段牵伸放卷速度为1m/min,牵伸比为1倍,牵伸温度350℃;
步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为5m/min,捻度为300捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
实施例2
实施例2提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合反应釜中,在30℃加入质量为单体总质量的5.5倍的溶剂,反应1小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为7:1在该聚酰胺酸溶液中加入PSA粉末,在30℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为3.4Pa·s,得到聚酰胺酸和PSA的纺丝原料液;
其中,所述单体(Ⅰ)是R 1为二苯酮二酐残基的具有通式(Ⅰ)结构的二酐,所述单体(Ⅱ)是R 2为二甲氧基联苯二胺残基的具有通式(Ⅱ)结构的二胺;所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为50cm,高压静电场的电场强度为650kV/m,不锈钢网带的走带速度为5m/min,收集得到聚酰胺酸/PSA电纺 非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺非织造布分切成宽度在5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,纤维束的取向度为82%,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为10m/min,牵伸比为5倍,牵伸温度220℃;第二段牵伸放卷速度为8m/min,牵伸比为5倍,牵伸温度320℃;第三段牵伸放卷速度为5m/min,牵伸比为3倍,牵伸温度400℃;
步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为60m/min,捻度为2500捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
实施例3
实施例3提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合反应釜中,在20℃加入质量为单体总质量的5.5倍的溶剂,反应5小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为1:5在该聚酰胺酸溶液中加入PSA粉末,在20℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为2.9Pa·s,得到聚酰胺酸和PSA的纺丝原料液;
其中,所述单体(Ⅰ)是R 1为二苯硫醚二酐残基的具有通式(Ⅰ)结构的二酐,所述单体(Ⅱ)是R 2为2-甲基二苯醚二胺残基的具有通式(Ⅱ)结构的二胺;所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为10cm,高压静电场的电场强度为250kV/m,不锈钢网带的走带速度为1m/min,收集得到聚酰胺酸/PSA电纺非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺非织造布分切成宽度在1厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,纤维束的取向度为85%,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为7m/min,牵伸比为2倍,牵伸温度180℃;第二段牵伸放卷速度为4m/min,牵伸比为2倍,牵伸温度290℃;第三段牵伸放卷速度为2m/min, 牵伸比为2倍,牵伸温度360℃;
步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为45m/min,捻度为1100捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
实施例4
实施例4提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合反应釜中,在20℃加入质量为单体总质量的5.5倍的溶剂,反应5小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为3:4在该聚酰胺酸溶液中加入PSA粉末,在20℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为3.5Pa·s,得到聚酰胺酸和PSA的纺丝原料液;
其中,所述单体(Ⅰ)是R 1为联苯二酚二苯二醚二酐残基的具有通式(Ⅰ)结构的二酐,所述单体(Ⅱ)是R 2为二苯醚二胺残基的具有通式(Ⅱ)结构的二胺;所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为40cm,高压静电场的电场强度为550kV/m,不锈钢网带的走带速度为4m/min,收集得到聚酰胺酸/PSA电纺非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺非织造布分切成宽度在4厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,纤维束的取向度为88%,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为9m/min,牵伸比为4倍,牵伸温度200℃;第二段牵伸放卷速度为6m/min,牵伸比为4倍,牵伸温度310℃;第三段牵伸放卷速度为4m/min,牵伸比为2倍,牵伸温度390℃;
步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为45m/min,捻度为1100捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
实施例5
实施例5提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,步骤包括:
步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后按照摩尔比为1:1加入到聚合 反应釜中,在20℃加入质量为单体总质量的5.5倍的溶剂,反应5小时后,得到聚酰胺酸溶液,随后按照聚合物PI和PSA的质量比为7:4在该聚酰胺酸溶液中加入PSA粉末,在20℃下机械搅拌溶解混合,最后加入适量N,N-二甲基乙酰胺稀释至绝对粘度为3.2Pa·s,得到聚酰胺酸和PSA的纺丝原料液;
其中,所述单体(Ⅰ)是R 1为三苯二醚二酐残基的具有通式(Ⅰ)结构的二酐,所述单体(Ⅱ)是R 2为联苯二胺残基的具有通式(Ⅱ)结构的二胺;所述溶剂为N,N-二甲基乙酰胺和N,N-二甲基甲酰胺按照体积比为6.3:1复配得到混合溶剂;
步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,其中,所述喷丝口到不锈钢网带收集器的间距为30cm,高压静电场的电场强度为320kV/m,不锈钢网带的走带速度为3m/min,收集得到聚酰胺酸/PSA电纺非织造布;
步骤三:将上述所得聚酰胺酸/PSA电纺非织造布分切成宽度在3.5厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束,纤维束的取向度为94%,其中,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为8m/min,牵伸比为3倍,牵伸温度190℃;第二段牵伸放卷速度为5m/min,牵伸比为3倍,牵伸温度300℃;第三段牵伸放卷速度为3m/min,牵伸比为2倍,牵伸温度380℃;
步骤四:将上述电纺纤维束加捻,其中,所述加捻放卷速度为45m/min,捻度为1100捻/m,最后得到超高支PI/PSA复合纳米纤维长线纱。
对比例1
对比例1提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中非织造布分切成宽度在0.1厘米的细长条。
对比例2
对比例2提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中非织造布分切成宽度在20厘米的细长条。
对比例3
对比例3提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中不含第二段牵伸工艺。
对比例4
对比例4提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中不含第三段牵伸工艺。
对比例5
对比例5提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为8m/min,牵伸比为3倍,牵伸温度190℃;第二段牵伸放卷速度为3m/min,牵伸比为2倍,牵伸温度380℃;第三段牵伸放卷速度为5m/min,牵伸比为3倍,牵伸温度300℃。
对比例6
对比例6提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中非织造布分切成宽度在0.2厘米的细长条,且不含第二段牵伸工艺。
对比例7
对比例7提供了一种超高支PI-PSA电纺纤维长线纱的制备工艺,制备工艺与实施例5的不同之处在于,所述步骤三中非织造布分切成宽度在10厘米的细长条,且不含第二段牵伸工艺。
性能评价
1.纤维的力学性能:使用美国INSTRON公司型号为Instron-12111能材料实验机测定纤维的拉伸强度;每组测试试样个数为5个,取其平均值。
2.单股支数:单股支数以公制支数表示,即表示单位质量(g)的纤维或纱线所具有的长度,每组测试试样个数为5个,取其平均值。
3.连续长度:连续长度即连续制造纱线的长度,每组测试试样个数为5个,取其平均值。
表1
Figure PCTCN2019106943-appb-000008
Figure PCTCN2019106943-appb-000009

Claims (10)

  1. 一种超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,步骤包括:
    步骤一:将单体(Ⅰ)和单体(Ⅱ)提纯后,与溶剂一起加入到聚合反应釜中,得到聚酰胺酸溶液,随后与PSA机械混合,得到聚酰胺酸和PSA的纺丝原料液;
    步骤二:将纺丝原料液在高压电场中实施静电纺丝,用不锈钢网带为收集器,收集得到聚酰胺酸/PSA电纺纤维毡或非织造布;
    步骤三:将上述所得聚酰胺酸/PSA电纺纤维毡或非织造布分切成宽度在0.5-5.0厘米的细长条,并将此长条进行热牵伸亚胺化形成取向电纺纤维束;
    步骤四:将上述电纺纤维束加捻得到超高支电纺PI/PSA复合纤维长线纱。
    其中,所述单体(I)为二酐,其结构通式为:
    Figure PCTCN2019106943-appb-100001
    单体(II)为二胺,其结构通式为:
    H 2N-R 2-NH 2           (Ⅱ);
    所得到的聚酰亚胺具有以下化学结构通式:
    Figure PCTCN2019106943-appb-100002
    其中n和m值分别为100-500之间的自然数;R 1为C4-C30的二酐单体的残基结构,选自均苯四酸二酐残基、联苯二酐残基、二苯砜二酐残基、三苯二醚二酐残基、联三苯二酐残基、2.6-联二苯嘧啶二酐残基、二苯酮二酐残基、3,6桥烯环己四酸二酐残基、六氟丙酮二苯二酐残基、联苯二酚二苯二醚二酐残基、二苯硫醚二酐残基、二苯硫醚二酐残基、2,2-丙酮联二苯二酐残基中的一种或多种;R 2为C6-C30二胺单体的残基结构,选自二苯醚二胺残基、对苯二胺残基、二甲氧基联苯二胺残基、二苯基甲烷二胺残基、间苯二胺残基、联 苯二胺残基、二苯氧基二苯酚二胺残基、2-甲基二苯醚二胺残基、2,6-嘧啶联二苯二胺残基、(3,3’-二甲基)二苯甲烷二胺残基中的一种或多种;两种聚合物PI和PSA的比例,即质量比x/y=(1-9):(1-9)。
  2. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述纺丝原料液制备过程中的溶剂为极性有机溶剂,选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基乙酰胺中的一种或多种。
  3. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述纺丝原料液制备过程中反应条件为:不锈钢反应釜的聚合反应温度为0-30℃,反应时间为1-10小时后,得到聚酰胺酸溶液,随后在该聚酰胺酸溶液中加入PSA粉末或PSA短纤,在0-30℃下机械搅拌溶解混合,最后加入N,N-二甲基乙酰胺进行稀释。
  4. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述纺丝原料液的绝对粘度为1.5-5.5Pa·s。
  5. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述静电纺丝的加工参数为:喷丝口到不锈钢网带收集器的间距为8-50cm,高压静电场的电场强度为100-650kV/m,不锈钢网带的走带速度为0.2-5m/min。
  6. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述热牵伸亚胺化工艺参数为:牵伸加工为三段5辊牵伸:第一段牵伸放卷速度为5-10m/min,牵伸比为1-5倍,牵伸温度160-220℃;第二段牵伸放卷速度为3-8m/min,牵伸比为1-5倍,牵伸温度280-320℃;第三段牵伸放卷速度为1-5m/min,牵伸比为1-3倍,牵伸温度350-400℃。
  7. 根据权利要求1所述的超高支PI-PSA电纺纤维长线纱的制备工艺,其特征在于,所述加捻工艺参数为:加捻放卷速度为5-80m/min,捻度为300-2500捻/m。
  8. 一种超高支PI-PSA电纺纤维长线纱,其特征在于,根据权利要求1-7中任一项所述的制备工艺制备得到。
  9. 根据权利要求8所述的超高支PI-PSA电纺纤维长线纱,其特征在于,所述超高支PI-PSA电纺纤维长线纱的单股纱线的支数为500-1500公支或 300-900英支,连续长度大于2000米。
  10. 一种根据权利要求9所述的超高支PI-PSA电纺纤维长线纱在高档面料、高档服装、超薄高性能纤维布、高性能复合膜材料、高性能复合板材料、高性能缆绳和拉索中的应用。
PCT/CN2019/106943 2019-05-21 2019-09-20 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用 WO2020232930A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES19891680T ES2949831T3 (es) 2019-05-21 2019-09-20 Proceso para preparar hilo de filamentos de recuento ultra alto de fibra electrohilada de PI-PSA y uso del mismo
EP19891680.1A EP3767018B1 (en) 2019-05-21 2019-09-20 Preparation process for and use of super-high-count pi-psa electrospun fiber long-staple yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910422374.5 2019-05-21
CN201910422374.5A CN110195278B (zh) 2019-05-21 2019-05-21 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用

Publications (1)

Publication Number Publication Date
WO2020232930A1 true WO2020232930A1 (zh) 2020-11-26

Family

ID=67753032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106943 WO2020232930A1 (zh) 2019-05-21 2019-09-20 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用

Country Status (4)

Country Link
EP (1) EP3767018B1 (zh)
CN (1) CN110195278B (zh)
ES (1) ES2949831T3 (zh)
WO (1) WO2020232930A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112790453A (zh) * 2020-12-30 2021-05-14 湖州贝彩纳米科技有限公司 一种静电纺纳米纤维的口罩制备工艺
CN115449936A (zh) * 2022-09-15 2022-12-09 青岛大学 一种高性能膜卷微纳米纤维纱线及其制备工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195278B (zh) * 2019-05-21 2021-04-06 江西先材纳米纤维科技有限公司 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用
CN111808423B (zh) * 2020-06-16 2022-05-20 浙江中科玖源新材料有限公司 一种高耐热低热膨胀系数的聚酰亚胺薄膜及其制备方法
CN112695402B (zh) * 2020-12-24 2022-12-20 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974828A (zh) * 2010-09-30 2011-02-16 江西先材纳米纤维科技有限公司 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
CN102383222A (zh) * 2010-09-01 2012-03-21 江西先材纳米纤维科技有限公司 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用
CN102493015A (zh) * 2011-12-05 2012-06-13 江西先材纳米纤维科技有限公司 一种高强度耐高温聚酰亚胺粗纤维的制备方法
CN104674452A (zh) * 2015-01-14 2015-06-03 上海特安纶纤维有限公司 一种含有聚酰亚胺纤维和含砜基的共混型纤维的过滤材料及其制造方法
CN106087243A (zh) * 2016-06-12 2016-11-09 中材装备集团有限公司 一种聚酰亚胺和聚砜酰胺共混的过滤毡及其制备方法
CN109735917A (zh) * 2018-12-19 2019-05-10 长沙新材料产业研究院有限公司 一种三元共聚聚酰亚胺纺丝液及制备方法
CN110195278A (zh) * 2019-05-21 2019-09-03 江西先材纳米纤维科技有限公司 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048224A1 (en) * 2013-09-25 2015-04-02 Johnson Jed K Fiber scaffolds for use creating implantable structures
CN104947211A (zh) * 2015-05-27 2015-09-30 西安工程大学 膜裂法静电纺连续纳米纤维纱装置及制备纳米纤维纱方法
KR101758204B1 (ko) * 2015-07-28 2017-07-17 주식회사 아모그린텍 나노섬유 기반 복합 가연사 및 그의 제조방법
CN105603561B (zh) * 2016-03-15 2018-02-09 吉林高琦聚酰亚胺材料有限公司 一种聚酰亚胺纳米纤维纱线及其适合工业化生产的制备方法
TR201612129A2 (tr) * 2016-08-26 2018-03-21 Univ Istanbul Teknik SÜLFONLANMIŞ POLİSÜLFON (sPSf) POLİMERİ KULLANILARAK ELDE EDİLEN İLERİ OZMOS MEMBRANI VE BUNUN ÜRETİM YÖNTEMİ
CN106835412B (zh) * 2017-02-23 2020-02-04 嘉兴学院 一种静电纺纳米纤维带加捻成纱线的方法和装置
CN107354589A (zh) * 2017-09-13 2017-11-17 哈尔滨工业大学 一种耐磨、耐高温多孔纤维膜的制备方法
CN109056102B (zh) * 2018-08-13 2021-06-29 长春高琦聚酰亚胺材料有限公司 一种黑色系聚酰亚胺纳米纤维长丝纱线及其批量化制备方法
CN109295525B (zh) * 2018-09-21 2020-11-20 义乌华鼎锦纶股份有限公司 一种聚酰亚胺纤维长丝的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383222A (zh) * 2010-09-01 2012-03-21 江西先材纳米纤维科技有限公司 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用
CN101974828A (zh) * 2010-09-30 2011-02-16 江西先材纳米纤维科技有限公司 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
CN102493015A (zh) * 2011-12-05 2012-06-13 江西先材纳米纤维科技有限公司 一种高强度耐高温聚酰亚胺粗纤维的制备方法
CN104674452A (zh) * 2015-01-14 2015-06-03 上海特安纶纤维有限公司 一种含有聚酰亚胺纤维和含砜基的共混型纤维的过滤材料及其制造方法
CN106087243A (zh) * 2016-06-12 2016-11-09 中材装备集团有限公司 一种聚酰亚胺和聚砜酰胺共混的过滤毡及其制备方法
CN109735917A (zh) * 2018-12-19 2019-05-10 长沙新材料产业研究院有限公司 一种三元共聚聚酰亚胺纺丝液及制备方法
CN110195278A (zh) * 2019-05-21 2019-09-03 江西先材纳米纤维科技有限公司 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112790453A (zh) * 2020-12-30 2021-05-14 湖州贝彩纳米科技有限公司 一种静电纺纳米纤维的口罩制备工艺
CN112790453B (zh) * 2020-12-30 2023-11-10 湖州贝彩纳米科技有限公司 一种静电纺纳米纤维的口罩制备工艺
CN115449936A (zh) * 2022-09-15 2022-12-09 青岛大学 一种高性能膜卷微纳米纤维纱线及其制备工艺
CN115449936B (zh) * 2022-09-15 2023-08-15 青岛大学 一种高性能膜卷微纳米纤维纱线及其制备工艺

Also Published As

Publication number Publication date
CN110195278A (zh) 2019-09-03
CN110195278B (zh) 2021-04-06
EP3767018A1 (en) 2021-01-20
EP3767018B1 (en) 2023-05-10
EP3767018A4 (en) 2021-08-11
ES2949831T3 (es) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2020232930A1 (zh) 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用
Wang et al. Enhanced mechanical performance of self‐bundled electrospun fiber yarns via post‐treatments
Chang et al. Structures and properties of polyimide fibers containing ether units
CN105603561B (zh) 一种聚酰亚胺纳米纤维纱线及其适合工业化生产的制备方法
JPWO2007018136A1 (ja) 耐炎繊維、炭素繊維およびそれらの製造方法
CN110195277B (zh) 石墨烯涂敷碳掺杂pi复合导电纳米纤维长线纱的制备方法
US20130183525A1 (en) Methods of Preparing Polyimide Fibers with Kidney-Shaped Cross-Sections
CN110067084B (zh) 一种超高支pi电纺纤维长线纱的制备工艺及应用
CN110129934A (zh) 电纺聚丙烯腈纳米纤维连续长线纱的制备方法和应用
Song et al. The structure and properties of polyethylene oxide reinforced poly (metaphenylene isophthalamide) fibers
CN110359114B (zh) 一种聚丙烯腈纤维、聚丙烯腈基碳纤维及其制备方法
CN102978734A (zh) 一种细旦/超细旦聚酰亚胺纤维的制备方法
CN102383217A (zh) 一种聚酰亚胺纤维及其制备方法
CN110205726B (zh) 一种电纺碳掺杂聚酰亚胺导电纳米纤维长线纱的制备工艺
CN106835342A (zh) 使用bpda/pda系列聚酰亚胺制备高强度的聚合物纳米纤维
CN110184705B (zh) 一种高抗菌性Ag@Cu纳米颗粒修饰PI纳米纤维长线纱
CN110106635B (zh) 一种超短电纺聚酰亚胺纳米纤维及其制备方法
CN114686997B (zh) 亚微米杂环芳纶纤维及其制备方法
CN110184678A (zh) 一种石墨烯与液晶聚酯协同增强型聚合物纤维的制备方法
Su et al. Preparation and characterization of ternary copolyimide fibers via partly imidized method
CN110184684B (zh) 高分散性电纺聚丙烯腈基碳纳米超短纤维的制备方法
KR102181615B1 (ko) 폴리이미드와 폴리아크릴로니트릴을 주성분으로 하는 피브릴화가 용이한 2성분 복합섬유 및 그 제조방법
CN110144649B (zh) 一种电纺聚丙烯腈基纳米碳纤维连续长线纱及其制备方法
CN110184679B (zh) 一种电纺碳杂化聚酰亚胺超短纳米纤维及其制备方法
CN111088536B (zh) 聚丙烯腈原丝的上油方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019891680

Country of ref document: EP

Effective date: 20200609

NENP Non-entry into the national phase

Ref country code: DE