WO2020232798A1 - 一种简化的多电平变换器空间矢量调制方法 - Google Patents

一种简化的多电平变换器空间矢量调制方法 Download PDF

Info

Publication number
WO2020232798A1
WO2020232798A1 PCT/CN2019/094457 CN2019094457W WO2020232798A1 WO 2020232798 A1 WO2020232798 A1 WO 2020232798A1 CN 2019094457 W CN2019094457 W CN 2019094457W WO 2020232798 A1 WO2020232798 A1 WO 2020232798A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
phase
converter
basic
reference vector
Prior art date
Application number
PCT/CN2019/094457
Other languages
English (en)
French (fr)
Inventor
王翠
欧阳俊铭
曾瑄
张兴旺
黄志开
杨小品
甘江华
陈思哲
Original Assignee
南昌工程学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌工程学院 filed Critical 南昌工程学院
Priority to US17/060,183 priority Critical patent/US11121642B2/en
Publication of WO2020232798A1 publication Critical patent/WO2020232798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Definitions

  • the invention relates to the field of space vector modulation methods for multilevel converters, in particular to a simplified space vector modulation method for multilevel converters.
  • CPS carrier phase shifted modulation
  • NLM nearest level modulation
  • SVM Space Vector Modulation
  • SVM strategy is widely used in three-level and five-level converters, but it is not common in industrial applications of high-voltage and large-capacity converters. The reason is that SVM technology requires 2/3 conversion and redundancy as the number of levels increases.
  • the switching state vector has greatly increased, and the calculation of redundant switching state vectors and the selection of suitable switching states have greatly increased the difficulty of implementing the SVM algorithm; therefore, the market urgently needs to develop a simplified multilevel converter space vector modulation method to help people solve the problem Existing problems.
  • the purpose of the present invention is to provide a simplified space vector modulation method for multilevel converters, which uses the relationship between the phase voltage and the line voltage of the star-connected converter to directly use the reference vector calculated from the phase voltage reference signal as the line Voltage reference vector, the component of the basic vector of the synthesized reference vector and the sum of the two components are directly used as the switching state signal of the control line voltage, which avoids 2/3 conversion and does not appear redundant switching state vector, which greatly simplifies the SVM algorithm , While ensuring that the common mode voltage of the system is zero.
  • a simplified space vector modulation method for a multilevel converter including the following steps:
  • Step 1 The expression of the basic vector V ⁇ (v ⁇ , v ⁇ ) corresponding to the phase voltage on the traditional Cartesian coordinate system ( ⁇ - ⁇ coordinate system for short) is:
  • v ⁇ , and v ⁇ represents a corresponding base vector V ⁇ coordinate component
  • v a, v b, and v c represent the three-phase multi-level inverter voltage corresponding to the level
  • (v a, v b, v c ) is called the switch state corresponding to the basic vector V ⁇ .
  • v a , v b , v c [(n-1), (n-2),..., 2, 1, 0] ;
  • the reference vector V r ⁇ (v r ⁇ , v r ⁇ ) calculated according to the phase voltage reference signal on the ⁇ - ⁇ coordinate system is:
  • v r ⁇ and v r ⁇ represent the coordinate components corresponding to the reference vector V r ⁇ ;
  • Step 2 Rotate the coordinate axis of the ⁇ - ⁇ plane by 45° counterclockwise and compress the axial ratio to obtain the ⁇ ′- ⁇ ′ coordinate system, and establish the reference vector trajectory model:
  • V′ (v′ ⁇ , v′ ⁇ ) on the ⁇ ′- ⁇ ′ coordinate system is:
  • v′ ⁇ and v′ ⁇ represent the coordinate components corresponding to the basic vector V′;
  • the reference vector V r ′ (v′ r ⁇ , v′ r ⁇ ) calculated according to the phase voltage reference signal on the ⁇ ′- ⁇ ′ coordinate system is:
  • v′ r ⁇ and v′ r ⁇ represent the coordinate components corresponding to the reference vector V r ′;
  • the reference vector trajectory model is:
  • Step 3 In the ⁇ ′- ⁇ ′ coordinate system, use the coordinate component of the reference vector V r ′ and the sum of the two coordinate components v′ r ⁇ , v′ r ⁇ , v′ r ⁇ + v′ r ⁇ to represent the line voltage reference signal respectively -u rca , -u rab , u rbc , use the coordinate component of the basic vector V′ and the sum of the two coordinate components v′ ⁇ , v′ ⁇ , v′ ⁇ +v′ ⁇ to represent the line voltage level signal -v ca , -v ab , v bc :
  • u rab , u rbc and u rca respectively represent the reference signals of three line voltages
  • v ab , v bc and v ca represent the corresponding levels of the three line voltages, v ab , v bc , v ca ⁇ [ ⁇ n, ⁇ (n-1),..., ⁇ 2, ⁇ 1, 0], each line voltage outputs 2n+1 levels;
  • Step 4 Construct a new star-connected multilevel converter so that its line voltage reference signal is the same as that of the controlled delta-connected multilevel converter;
  • Step 5 Sample the constructed star-connected multilevel converter reference vector trajectory model, calculate the three basic vectors closest to the sampled reference vector V r ′, and use these three basic vectors as equivalent basic vectors , Three equivalent basic vectors form a sector triangle, and use these three equivalent basic vectors to synthesize a reference vector;
  • Step 6 Use the volt-second balance principle to calculate the equivalent basic vector action time of the synthesized sample reference vector:
  • t 1 , t 2 , t 3 respectively represent the action time of the vectors V 1 ′, V 2 ′, and V 3 ′, and T S represents the sampling period;
  • t 0 , t 1 , t 3 respectively represent the action time of the vectors V 0 ′, V 1 ′, and V 3 ′;
  • Step 7 Use the component of the equivalent basic vector of the phase voltage reference vector of the star-connected multi-level converter and the sum of the two components as the switching state for controlling the line voltage of the delta-connected multi-level converter.
  • the sector triangles composed of three adjacent basic vectors are all isosceles right-angled triangles, and the right-angle side length is unit 1, and the shape has two types, I type and II type, which form type I and
  • the basic vector of the type II sector triangle includes V 0 ′(v′ ⁇ , v′ ⁇ ), V 1 ′(v′ ⁇ +1, v′ ⁇ ), V 2 ′(v′ ⁇ +1, v′ ⁇ ) +1) and V 3 ′(v′ ⁇ ,v′ ⁇ +1),
  • floor(*) represents the function of rounding down
  • the reference vector is located in the triangle of the I-type sector, and when the reference voltage vector V r ′ is synthesized by the time-sharing system of V 1 ′, V 2 ′, and V 3 ′, the switching state of the corresponding triangle connection multilevel converter They are (-v′ ⁇ , v′ ⁇ +v′ ⁇ +1, -(v′ ⁇ +1)), (-(v′ ⁇ +1), v′ ⁇ +v′ ⁇ +2, -( v′ ⁇ +1)), (-(v′ ⁇ +1), v′ ⁇ +v′ ⁇ +1, -v′ ⁇ ):
  • the reference vector is located in the type II sector, and when V 0 ′, V 1 ′, V 3 ′ is used to synthesize the reference voltage vector V r ′ by the time-sharing system, the corresponding switching states of the triangular-connected multilevel converter are respectively Is (-v′ ⁇ , v′ ⁇ + v′ ⁇ , -v′ ⁇ ), (-v′ ⁇ , v′ ⁇ +v′ ⁇ +1, -(v′ ⁇ +1)), (-( v′ ⁇ +1), v′ ⁇ +v′ ⁇ +1, -v′ ⁇ ):
  • the sum of the three components of the switching state at any time is 0, that is, the output common mode voltage of the three-phase converter is 0.
  • the switching state is used as a control signal for the line voltage of the delta-connected multilevel converter, wherein there are two components between each of the three switching states that differ by one level each, that is, within a reference vector sampling period, the switch
  • any one of the three switch states can be used as the starting point to use a four-segment switching method to realize the switching path closure.
  • the switch state switching sequence has three modes:
  • Mode1 The corresponding switching time is t 1 /2 ⁇ t 2 ⁇ t 3 ⁇ t 1 /2,
  • Mode 2 The corresponding switching time is t 2 /2 ⁇ t 3 ⁇ t 1 ⁇ t 2 /2,
  • Mode 3 The corresponding switching time is t 3 /2 ⁇ t 1 ⁇ t 2 ⁇ t 3 /2,
  • the switch state switching sequence has three modes:
  • Mode1 The corresponding switching time is t 0 /2 ⁇ t 1 ⁇ t 3 ⁇ t 0 /2,
  • Mode 2 The corresponding switching time is t 1 /2 ⁇ t 3 ⁇ t 0 ⁇ t 1 /2,
  • Mode 3 The corresponding switching time is t 3 /2 ⁇ t 0 ⁇ t 1 ⁇ t 3 /2,
  • each phase in the delta-connected multilevel converter is formed by cascading 2k H-bridge sub-modules, and the output line voltage has 4k+1 levels, and the star-connected multilevel
  • the phase voltage output by the converter has 2k+1 levels, and the output line voltage has 4k+1 levels, that is, the number of line voltage levels output by the star-connected converter cascaded by k H-bridge sub-modules and The number of line voltage levels output by the delta-connected converters cascaded by 2k H-bridge sub-modules is equal.
  • the simplified multi-level converter space vector modulation method is used to realize the modulation of the star-connected converter cascaded with 2k H-bridge sub-modules.
  • the steps are as follows:
  • Step 1 Create a fictitious star-connected converter, each phase of which is cascaded by k H-bridge sub-modules;
  • Step 2 Divide the phase voltage reference signal of the controlled converter by Get the phase voltage reference signal of the fictitious converter;
  • Step 3 In the ⁇ '- ⁇ ' coordinate system, sample the phase voltage reference vector trajectory model of the fictitious converter, and use the three equivalent basic vectors on the sector triangle to synthesize the reference vector, and use the equivalent basic vector
  • the coordinate component and the sum of the two coordinate components can be used as the three-phase switching state signal of the controlled converter to realize space vector modulation.
  • the coordinate component of the reference vector calculated from the phase voltage reference signal and the sum of the two components are equivalent to the line voltage reference signal
  • the coordinate component of the basic vector and the sum of the two components are equivalent to the switching state signal of the control line voltage.
  • the phase voltage reference signal is calculated by using the relationship between the phase voltage and the line voltage of the star-connected converter
  • the coordinate component of the reference vector and the sum of the two components are directly used as the line voltage reference signal, and the coordinate component of the equivalent basic vector of the synthesized reference vector and the sum of the two components are directly used as the switching state signal of the control line voltage.
  • This method avoids The 2/3 conversion process that must be completed in the traditional space vector modulation algorithm does not appear redundant switching state vectors, which greatly simplifies the SVM algorithm, while ensuring that the common mode voltage output by the system is zero, and increasing the converter output voltage
  • the performance can be easily applied to multi-level converters of any topology without increasing the difficulty of algorithm implementation.
  • Fig. 1 is a diagram of the spatial vector distribution and reference vector trajectory of the 5-level converter under the ⁇ - ⁇ coordinates of the present invention
  • Figure 2 is a diagram of the transformation relationship between the ⁇ '- ⁇ ' coordinate system and the ⁇ - ⁇ coordinate system of the present invention
  • Fig. 3 is a diagram of the spatial vector distribution and reference vector trajectory of the 5-level converter under the ⁇ '- ⁇ ' coordinates of the present invention
  • Figure 5 is a schematic diagram of the delta-connected cascaded H-bridge multilevel converter of the present invention.
  • Fig. 6 is a schematic diagram of the star-connected cascaded H-bridge multilevel converter of the present invention.
  • a simplified space vector modulation method for a multilevel converter including the following steps:
  • Step 1 Expression of basic vector and reference vector on traditional Cartesian coordinate system ( ⁇ - ⁇ coordinate system for short):
  • U r represents the expected output phase voltage amplitude of the converter, also known as the reference voltage amplitude
  • E represents the DC voltage corresponding to the unit level.
  • V r ⁇ (v r ⁇ , v r ⁇ ) is:
  • v r ⁇ and v r ⁇ represent the coordinate components corresponding to the reference vector V r ⁇ ;
  • v ⁇ v ⁇ represents a corresponding base vector V ⁇ coordinate component
  • v a, v b, and v c represent the three level phase voltages of multi-level converter, (v a, v b, v c) It is called the switching state corresponding to the basic vector V ⁇ .
  • v a , v b , v c [(n-1), (n-2),..., 2, 1, 0].
  • the maximum value U r max of the reference voltage amplitude of the n level converter is:
  • the utilization rate of the DC voltage is the largest, which is set to 1.
  • the actual DC voltage utilization rate varies according to the change of the reference voltage amplitude.
  • the actual reference voltage amplitude is:
  • m is the modulation coefficient
  • the change of m causes the radius of the reference vector track circle to change
  • the value of m reflects the utilization rate of the DC voltage
  • Step 2 Rotate the coordinate axis of the ⁇ - ⁇ plane by 45° counterclockwise and compress the axial ratio to obtain the ⁇ ′- ⁇ ′ coordinate system, calculate the basic vector expression on the ⁇ ′- ⁇ ′ coordinate system, and establish the reference vector Trajectory model.
  • the principle of coordinate transformation is shown in Figure 2:
  • C r is a 45°counterclockwise rotation transformation matrix
  • C c is the axial compression transformation matrix
  • v ' ⁇ and v' ⁇ represents a base vector V 'corresponding to the coordinate component.
  • V r ′(v′ r ⁇ , v′ r ⁇ ) on the ⁇ ′ - ⁇ ′ coordinate system is:
  • v′ r ⁇ and v′ r ⁇ represent the coordinate components corresponding to the reference vector V r ′.
  • the reference vector trajectory model is:
  • Step 3 In the ⁇ ′- ⁇ ′ coordinate system, use the coordinate component of the reference vector V r ′ and the sum of the two coordinate components v′ r ⁇ , v′ r ⁇ , v′ r ⁇ + v′ r ⁇ to represent the line voltage reference signal respectively -u rca , -u rab , u rbc , use the coordinate component of the basic vector V′ and the sum of the two coordinate components v′ ⁇ , v′ ⁇ , v′ ⁇ +v′ ⁇ to represent the line voltage level signal -v ca , -v ab , v bc :
  • u rab , u rbc and u rca respectively represent the reference signals of the three line voltages, and formula (10) is consistent with formula (8);
  • v ab , v bc and v ca represent the corresponding levels of the three line voltages, v ab , v bc , v ca ⁇ [ ⁇ n, ⁇ (n-1),..., ⁇ 2, ⁇ 1, 0], each line voltage outputs 2n+1 levels;
  • Step 4 Construct a new star-connected multilevel converter so that its line voltage reference signal is the same as that of the controlled delta-connected multilevel converter.
  • Step 5 Sample the constructed star-connected multilevel converter phase voltage reference vector trajectory model, calculate the three basic vectors closest to the sampled reference vector V r ′, and use these three basic vectors as equivalent Basic vector, three equivalent basic vectors form a sector triangle, and use these three equivalent basic vectors to synthesize a reference vector.
  • the sector triangles composed of three adjacent basic vectors are all isosceles right-angled triangles, and their right-angle side length is unit 1. There are two types of shapes: Type I and Type II. The sector triangle positioning principle adopted is shown in Figure 4.
  • V 0 ′(v′ ⁇ , v′ ⁇ ), V 1 ′(v′ ⁇ +1, v′ ⁇ ), V 2 ′(v′ ⁇ +1, v′ ⁇ +1) and V 3 ′(V′ ⁇ ,v′ ⁇ +1) form a unit square
  • floor(*) represents the function of rounding down
  • the reference vector is located in the I-type sector, using the vector V 1 ′(v′ ⁇ +1, v′ ⁇ ), V 2 ′(v′ ⁇ +1, v′ ⁇ +1) and V 3 ′(v′ ⁇ , v′ ⁇ +1) composite reference vector;
  • the reference vector is located in the type II sector, use the vector V 0 ′(v′ ⁇ ,v′ ⁇ ), V 1 ′ (v′ ⁇ +1, v′ ⁇ ) and V 3 ′(v′ ⁇ , v′ ⁇ +1) composite reference vector;
  • Step 6 Use the volt-second balance principle to calculate the equivalent basic vector action time of the synthesized sample reference vector:
  • t 1 , t 2 , t 3 respectively represent the action time of the vectors V 1 ′, V 2 ′, and V 3 ′, and T S represents the sampling period;
  • t 0 , t 1 , t 3 respectively represent the action time of the vectors V 0 ′, V 1 ′, and V 3 ′,
  • Step 7 Use the component of the equivalent basic vector of the phase voltage reference vector of the star-connected multi-level converter and the sum of the two components as the switching state for controlling the line voltage of the delta-connected multi-level converter.
  • the multi-level converter includes a delta connection converter cascaded with H-bridge sub-modules (as shown in Figure 5) and a star-connected converter cascaded with H-bridge sub-modules (as shown in Figure 6) to Take the delta connection converter with H-bridge sub-modules cascaded as an example.
  • each phase is formed by cascading 2k H-bridge sub-modules (as shown in Figure 5(b)).
  • the input voltage of the H-bridge sub-module is E ,
  • the line voltage output by the connected delta connection converter has 4k+1 levels.
  • the phase voltage output by the star-connected converter cascaded by k sub-modules for each phase has a level of 2k+1, and the output line voltage has 4k+1 levels, that is, the star cascaded by k H-bridge sub-modules.
  • the number of line voltage levels output by the triangular connection converter is equal to the number of line voltage levels output by the delta connection converter cascaded by 2k H-bridge sub-modules.
  • the line voltage reference signal output by the delta-connected converter is equal to the line voltage reference signal output by the star-connected converter. According to equation (10):
  • u rAB , u rBC and u rCA respectively represent the line voltage reference signals of the delta connection converter
  • u rab , u rbc and u rca represent the line voltage reference signals of the star connection converter respectively.
  • v′ AB , v′ BC and v′ CA respectively represent the output level corresponding to the line voltage of the delta-connected converter, (v′ AB , v′ BC , v′ CA ) are called the delta-connected converter
  • the switch state, v'ab , v'bc and v'ca respectively represent the output level corresponding to the line voltage of the star-connected converter.
  • any reference vector V r ′(v′ r ⁇ , v′ r ⁇ ) uses three vectors V′ H (v′ ⁇ h , v′ ⁇ h ), V′ I (v′ ⁇ i , v′ ⁇ i ), V′ J (v′ ⁇ j , v′ ⁇ j ) synthesis, there are:
  • t h , t i and t j represent the action time of the vectors V′ H , V′ I and V′ J respectively;
  • the switching state of the line voltage of the star-connected converter can be used as the switching state signal of the line voltage of the delta-connected converter, that is, the line voltage switching state obtained by the star-connected converter can be directly matched Modulation of the line voltage of the delta connection converter.
  • the reference vector V r ′ is located in the I-type sector, and V 1 ′, V 2 ′, and V 3 ′ are used to synthesize V r ′, and there are:
  • V 0 ′, V 1 ′ and V 3 ′ are used to synthesize V r ′, there are:
  • the sum of the three components of the switching state at any time is 0, that is, the output common mode voltage of the three-phase converter is 0.
  • the switch state synthesizes the line voltage reference signal, in which there are two components between each of the three switch states with a difference of one level. In a reference vector sampling period, the switch state can be switched with one of the three switch states. Any one as the starting point adopts a four-segment switching method to achieve a closed switching path.
  • the reference vector V r ′ is located in the I-type sector, and the switch state switching sequence has three modes:
  • Mode1 The corresponding switching time is t 1 /2 ⁇ t 2 ⁇ t 3 ⁇ t 1 /2,
  • Mode 2 The corresponding switching time is t 2 /2 ⁇ t 3 ⁇ t 1 ⁇ t 2 /2,
  • Mode 3 The corresponding switching time is t 3 /2 ⁇ t 1 ⁇ t 2 ⁇ t 3 /2,
  • the reference vector V r ′ is located in the type II sector, and the switch state switching sequence has three modes:
  • Mode1 The corresponding switching time is t 0 /2 ⁇ t 1 ⁇ t 3 ⁇ t 0 /2,
  • Mode 2 The corresponding switching time is t 1 /2 ⁇ t 3 ⁇ t 0 ⁇ t 1 /2,
  • Mode 3 The corresponding switching time is t 3 /2 ⁇ t 0 ⁇ t 1 ⁇ t 3 /2,
  • the output line of the star-connected converter is equal to the output line voltage reference signal of the delta-connected converter, that is, the coordinate component of the phase voltage reference vector of the star-connected converter and the sum of the two components can be used as the reference vector signal of the line voltage of the delta-connected converter.
  • the coordinate component of the basic vector calculated by the connection converter according to the phase voltage and the sum of the two components are used as the switching state corresponding to the line voltage of the triangular connection converter, thereby realizing the space vector modulation of the triangular converter.
  • the simplified multi-level converter space vector modulation method proposed by the present invention can be used to realize the modulation of a star-connected converter in which 2k H-bridge sub-modules are cascaded.
  • the method is as follows: firstly create a star-connected converter (each phase of the converter is cascaded by k H-bridge sub-modules); second, divide the phase voltage reference signal of the controlled converter by That is, the phase voltage reference signal of the fictitious converter is obtained; third, in the ⁇ '- ⁇ ' coordinate system, the phase voltage reference vector trajectory model of the fictitious converter is sampled, and the three levels on the sector triangle are used.
  • Effective basic vector synthesis reference vector use the coordinate component of the equivalent basic vector and the sum of the two coordinate components as the three-phase switching state signal of the controlled converter, and use the space vector of the imaginary converter to directly control the controlled converter. Space vector modulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种简化的多电平变换器空间矢量调制方法,涉及多电平变换器空间矢量调制方法领域,为解决传统SVM技术随电平数增加冗余开关状态大大增加,冗余开关状态的计算以及合适的开关状态的选择导致SVM实现困难的问题。包括以下步骤:步骤一:建立矢量表达式;步骤二:建立参考矢量轨迹模型;步骤三:用参考矢量和基本矢量的坐标分量及相应分量和分别表示参考信号和电平信号;步骤四:构造星型连接多电平变换器;步骤五:对星型连接多电平变换器相电压参考矢量轨迹模型采样,并合成参考矢量;步骤六:计算等效基本矢量作用时间;步骤七:将星型连接多电平变换器的等效基本矢量的分量及分量和作为控制三角形连接多电平变换器线电压的开关状态。

Description

一种简化的多电平变换器空间矢量调制方法 技术领域
本发明涉及多电平变换器空间矢量调制方法领域,具体为一种简化的多电平变换器空间矢量调制方法。
背景技术
当前大容量多电平变流装置多采用载波移相调制(Carrier Phase Shifted Modulation,CPS)和最近电平调制(Nearest Level Modulation,NLM)。载波移相调制技术随着级联子模块数量的增多,对载波同步性要求更高,需要大量的硬件资源和严苛的逻辑时序。因此,采用CPS的多电平变换器,其电平数不高,限制了变换器电压等级的提升。最近电平调制技术,当电平数较小时电压跟踪误差大,且其输出电压的频谱中,大量谐波分量广泛地分布于较宽的频带内,并没有特征次谐波出现,从而对滤波器的设计造成了很大困难。综上,载波移相调制和最近电平调制都有特殊的电平调制适应范围,与上述两种调制方法相比,空间矢量调制(Space Vector Modulation,SVM)很容易扩展到任意拓扑、任意电平数的多电平变换器,在相同直流电压下,SVM的直流电压利用率比载波调制的高15.47%,且具有电压跟踪误差小、开关频率低、开关损耗小等优点。
SVM策略被广泛应用于三电平和五电平变换器中,但在高压大容量变换器工业应用中却不普遍,原因在于SVM技术随着电平数的增加,需要2/3转换,冗余开关状态矢量大大增加,对冗余开关状态矢量的计算以及合适的开关状态的选择导致SVM算法实现难度大大增加;因此市场急需研制一种简化的多电平变换器空间矢量调制方法来帮助人们解决现有的问题。
发明内容
本发明的目的在于提供一种简化的多电平变换器空间矢量调制方法, 利用星形连接变换器的相电压与线电压之间的关系,将相电压参考信号计算出的参考矢量直接作为线电压参考矢量,将合成参考矢量的基本矢量的分量及两个分量的和直接作为控制线电压的开关状态信号,避免了2/3转换,不会出现冗余开关状态矢量,大大简化了SVM算法,同时又确保了系统的共模电压为零。
为实现上述目的,本发明提供如下技术方案:一种简化的多电平变换器空间矢量调制方法,包括以下步骤:
步骤一:传统笛卡尔坐标系(简称α-β坐标系)上相电压对应的基本矢量V αβ(v α,v β)的表达式为:
Figure PCTCN2019094457-appb-000001
式中,v α和v β表示基本矢量V αβ对应的坐标分量,v a、v b和v c分别表示多电平变换器三个相电压对应的电平,(v a,v b,v c)称为基本矢量V αβ对应的开关状态,对于n电平变换器,v a,v b,v c∈[(n-1),(n-2),…,2,1,0];
α-β坐标系上根据相电压参考信号计算的参考矢量V rαβ(v ,v )为:
Figure PCTCN2019094457-appb-000002
式中,v 和v 表示参考矢量V rαβ对应的坐标分量;
步骤二:将α-β平面的坐标轴逆时针旋转45°并压缩轴向比例,得α′-β′坐标系,建立参考矢量轨迹模型:
α′-β′坐标系上的基本矢量V′(v′ α,v′ β)为:
Figure PCTCN2019094457-appb-000003
式中,v′ α和v′ β表示基本矢量V′对应的坐标分量;
α′-β′坐标系上根据相电压参考信号计算的参考矢量V r′(v′ ,v′ )为:
Figure PCTCN2019094457-appb-000004
式中,v′ 和v′ 表示参考矢量V r′对应的坐标分量;
α′-β′坐标系上,参考矢量轨迹模型为:
Figure PCTCN2019094457-appb-000005
Figure PCTCN2019094457-appb-000006
步骤三:在α′-β′坐标系中,用参考矢量V r′的坐标分量及两个坐标分量之和v′ 、v′ 、v′ +v′ 分别表示线电压参考信号-u rca、-u rab、u rbc,用基本矢量V′的坐标分量及两个坐标分量之和v′ α、v′ β、v′ α+v′ β分别表示线电压电平信号-v ca、-v ab、v bc
Figure PCTCN2019094457-appb-000007
式中,u rab、u rbc和u rca分别表示三个线电压的参考信号;
Figure PCTCN2019094457-appb-000008
式中,v ab、v bc和v ca分别表示三个线电压对应的电平,v ab,v bc,v ca∈[±n,±(n-1),…,±2,±1,0],每个线电压输出2n+1个电平;
步骤四:构造一个新的星型连接多电平变换器,使其线电压参考信号与被控制的三角形连接多电平变换器的线电压参考信号相同;
步骤五:对被构造的星型连接多电平变换器参考矢量轨迹模型进行采样,计算最靠近被采样参考矢量V r′的三个基本矢量,并把这三个基本矢量作为等效基本矢量,三个等效基本矢量组成一个扇区三角形,利用这三个等效基本矢量合成参考矢量;
步骤六:利用伏秒平衡原理计算合成采样参考矢量的等效基本矢量作用时间:
当参考矢量位于I型扇区内,有:
Figure PCTCN2019094457-appb-000009
式中,t 1、t 2、t 3分别表示矢量V 1′、V 2′、V 3′的作用时间,T S表示采样周期;
当参考矢量位于II型扇区内,有:
Figure PCTCN2019094457-appb-000010
式中,t 0、t 1、t 3分别表示矢量V 0′、V 1′、V 3′的作用时间;
步骤七:将星型连接多电平变换器相电压参考矢量的等效基本矢量的分量及两个分量的和作为控制三角形连接多电平变换器线电压的开关状态。
优选的,所述步骤五中,相邻三个基本矢量组成的扇区三角形均为等腰直角三角形,且其直角边长为单位1,形状有I型和II型两种,组成I型和II型扇区三角形的基本矢量包括V 0′(v′ α,v′ β),V 1′(v′ α+1,v′ β),V 2′(v′ α+1,v′ β+1)和V 3′(v′ α,v′ β+1),
Figure PCTCN2019094457-appb-000011
式中,floor(*)表示向下取整函数;
第一种情况:当(v′ -v′ α)+(v′ -v′ β)≥1时,参考矢量位于I型扇区内,用矢量V 1′(v′ α+1,v′ β)、V 2′(v′ α+1,v′ β+1)和V 3′(v′ α,v′ β+1)合成参考矢量;
第二种情况:当(v′ -v′ α)+(v′ -v′ β)<1,参考矢量位于II型扇区内,用矢量V 0′(v′ α,v′ β)、V 1′(v′ α+1,v′ β)和V 3′(v′ α,v′ β+1)合成参考矢量。
优选的,所述参考矢量位于I型扇区三角形内,利用V 1′、V 2′、V 3′分时制合成参考电压矢量V r′时,对应三角形连接多电平变换器的开关状态分别为(-v′ β,v′ α+v′ β+1,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+2,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+1,-v′ α):
(1)在基本矢量V 1′作用时间段,即用-v′ β、v′ α+v′ β+1、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
(2)在基本矢量V 2′作用时间段,即用-(v′ β+1)、v′ α+v′ β+2、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
(3)在基本矢量V 3′作用时间段,即用-(v′ β+1)、v′ α+v′ β+1、-v′ α分别作 为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号。
优选的,所述参考矢量位于II型扇区内,利用V 0′、V 1′、V 3′分时制合成参考电压矢量V r′时,对应三角形连接多电平变换器的开关状态分别为(-v′ β,v′ α+v′ β,-v′ α)、(-v′ β,v′ α+v′ β+1,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+1,-v′ α):
(1)在基本矢量V 0′作用时间段,即用-v′ β、v′ α+v′ β、-v′ α分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
(2)在基本矢量V 1′作用时间段,即用-v′ β、v′ α+v′ β+1、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
(3)在基本矢量V 3′作用时间段,即用-(v′ β+1)、v′ α+v′ β+1、-v′ α分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号。
优选的,所述开关状态在任一时刻的三个分量之和都是0,即三相变换器输出共模电压为0。
优选的,所述开关状态作为三角形连接多电平变换器线电压的控制信号,其中三个开关状态两两之间有两个分量各相差一个电平,即在一个参考矢量采样周期内,开关状态切换的时候可以以三个开关状态中的任意一个为起点采用四段切换方法实现切换路径封闭,当所述参考矢量位于I型扇区三角形内时,开关状态切换序列有三种模式:
模式①:
Figure PCTCN2019094457-appb-000012
对应的切换时间为t 1/2→t 2→t 3→t 1/2,
模式②:
Figure PCTCN2019094457-appb-000013
对应的 切换时间为t 2/2→t 3→t 1→t 2/2,
模式③:
Figure PCTCN2019094457-appb-000014
对应的切换时间为t 3/2→t 1→t 2→t 3/2,
三种模式任选一种;
当所述参考矢量位于II型扇区三角形内时,开关状态切换序列有三种模式:
模式①:
Figure PCTCN2019094457-appb-000015
对应的切换时间为t 0/2→t 1→t 3→t 0/2,
模式②:
Figure PCTCN2019094457-appb-000016
对应的切换时间为t 1/2→t 3→t 0→t 1/2,
模式③:
Figure PCTCN2019094457-appb-000017
对应的切换时间为t 3/2→t 0→t 1→t 3/2,
三种模式任选一种。
优选的,所述的三角形连接多电平变换器中每一相由2k个H桥子模块级联而成,输出的线电压有4k+1个电平,所述的星形连接多电平变换器输出的相电压有2k+1个电平,输出的线电压有4k+1个电平,即由k个H桥子模块级联的星形连接变换器输出的线电压电平数与由2k个H桥子模块级联的三角形连接变换器输出的线电压电平数相等。
优选的,在α′-β′坐标系中,用简化的多电平变换器空间矢量调制方 法实现对2k个H桥子模块级联的星型连接变换器的调制,实现步骤如下:
步骤1:虚构一个星形连接变换器,该变换器每一相由k个H桥子模块级联;
步骤2:将被控变换器的相电压参考信号除以
Figure PCTCN2019094457-appb-000018
即得虚构的变换器的相电压参考信号;
步骤3:在α′-β′坐标系中,对虚构的变换器的相电压参考矢量轨迹模型进行采样,并采用扇区三角形上的三个等效基本矢量合成参考矢量,利用等效基本矢量的坐标分量及两个坐标分量之和作为被控变换器三相的开关状态信号即可实现空间矢量调制。
与现有技术相比,本发明的有益效果是:
通过分析45°旋转坐标系上参考矢量和基本矢量的物理意义,在这种坐标系上,由相电压参考信号计算出的参考矢量的坐标分量及两个分量的和等效为线电压参考信号,基本矢量的坐标分量及两个分量的和等效为控制线电压的开关状态信号,基于此,利用星形连接变换器的相电压与线电压之间的关系,将相电压参考信号计算出的参考矢量的坐标分量及两个分量的和直接作为线电压参考信号,将合成参考矢量的等效基本矢量的坐标分量及两个分量的和直接作为控制线电压的开关状态信号,此方法避免了传统空间矢量调制算法中必须完成的2/3转换过程,不会出现冗余开关状态矢量,大大简化了SVM算法,同时又确保了系统输出的共模电压为零,提高了变换器输出电压的性能,可以很方便的推广应用于任意拓扑的多电平变换器中,且不会增加算法实现的难度。
附图说明
图1为本发明的α-β坐标下5电平变换器空间矢量分布及参考矢量轨迹图;
图2为本发明的α′-β′坐标系与α-β坐标系的变换关系图;
图3为本发明的α′-β′坐标下5电平变换器空间矢量分布及参考矢量轨迹图;
图4为本发明的扇区三角形的定位及参考矢量合成原理图;
图5为本发明的三角形连接级联H桥多电平变换器原理图;
图6为本发明的星形连接级联H桥多电平变换器原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
请参阅图1-6,本发明提供的一种实施例:一种简化的多电平变换器空间矢量调制方法,包括以下步骤:
步骤一:传统笛卡尔坐标系(简称α-β坐标系)上基本矢量及参考矢量的表达式:
其中,设变换器相电压的参考信号为:
Figure PCTCN2019094457-appb-000019
式中U r表示变换器期望输出的相电压幅值,也称参考电压幅值,E表示单位电平对应的直流电压。
在α-β坐标系上,根据空间矢量的定义得参考矢量V rαβ(v ,v )为:
Figure PCTCN2019094457-appb-000020
式中v 和v 表示参考矢量V rαβ对应的坐标分量;
基本矢量V αβ(v α,v β)与三个相电压电平之间的关系为:
Figure PCTCN2019094457-appb-000021
式中v α和v β表示基本矢量V αβ对应的坐标分量,v a、v b和v c分别表示多电平变换器三个相电压的电平,(v a,v b,v c)称为基本矢量V αβ对应的开关状态,对于n电平变换器,v a,v b,v c∈[(n-1),(n-2),…,2,1,0]。
建立α-β坐标下5电平变换器参考矢量轨迹及空间矢量分布,其中相邻的三个矢量组成一个扇区三角形,如图1所示。
n电平变换器参考电压幅值的最大值U r max为:
Figure PCTCN2019094457-appb-000022
此时直流电压的利用率最大,设为1,实际直流电压利用率根据参考电压幅值的变化而变化,实际的参考电压幅值为:
U r=mU r max         (4),
式中,m为调制系数,m的变化导致参考矢量轨迹圆半径改变,m的值反映直流电压的利用率,
Figure PCTCN2019094457-appb-000023
将式(3)和(4)代入式(1)得:
Figure PCTCN2019094457-appb-000024
步骤二:将α-β平面的坐标轴逆时针旋转45°并压缩轴向比例,得α′-β′坐标系,计算α′-β′坐标系上的基本矢量表达式,并建立参考矢量轨迹模型。坐标变换原理如图2所示:
Figure PCTCN2019094457-appb-000025
式中C r为45°逆时针旋转变换矩阵,
Figure PCTCN2019094457-appb-000026
C c为轴向压缩变换矩阵,
Figure PCTCN2019094457-appb-000027
将式(2)代入式(6)得,α′-β′坐标系上的基本矢量V′(v′ α,v′ β)为:
Figure PCTCN2019094457-appb-000028
式中,v′ α和v′ β表示基本矢量V′对应的坐标分量。
α′-β′坐标系上的参考矢量V r′(v′ ,v′ )为:
Figure PCTCN2019094457-appb-000029
式中,v′ 和v′ 表示参考矢量V r′对应的坐标分量。
α′-β′坐标系上,参考矢量轨迹模型为:
Figure PCTCN2019094457-appb-000030
步骤三:在α′-β′坐标系中,用参考矢量V r′的坐标分量及两个坐标分量之和v′ 、v′ 、v′ +v′ 分别表示线电压参考信号-u rca、-u rab、u rbc,用基本矢量V′的坐标分量及两个坐标分量之和v′ α、v′ β、v′ α+v′ β分别表示线电压电平信号-v ca、-v ab、v bc
根据式(7)有
Figure PCTCN2019094457-appb-000031
式中,u rab、u rbc和u rca分别表示三个线电压的参考信号,式(10)与式(8)一致;
Figure PCTCN2019094457-appb-000032
式中,v ab、v bc和v ca分别表示三个线电压对应的电平,v ab,v bc,v ca∈[±n,±(n-1),…,±2,±1,0],每个线电压输出2n+1个电平;
α′-β′坐标下5电平变换器参考矢量轨迹及空间矢量分布,如图3所示。
步骤四:构造一个新的星型连接多电平变换器,使其线电压参考信号与被控制的三角形连接多电平变换器的线电压参考信号相同。
步骤五:对被构造的星型连接多电平变换器相电压参考矢量轨迹模型进行采样,计算最靠近被采样参考矢量V r′的三个基本矢量,并把这三个基 本矢量作为等效基本矢量,三个等效基本矢量组成一个扇区三角形,利用这三个等效基本矢量合成参考矢量。
相邻三个基本矢量组成的扇区三角形均为等腰直角三角形,且其直角边长为单位1,形状有I型和II型两种,采用的扇区三角形定位原理如图4所示,
四个矢量V 0′(v′ α,v′ β),V 1′(v′ α+1,v′ β),V 2′(v′ α+1,v′ β+1)和V 3′(v′ α,v′ β+1)组成单位正方形,
Figure PCTCN2019094457-appb-000033
式中,floor(*)表示向下取整函数;
当(v′ -v′ α)+(v′ -v′ β)≥1时,参考矢量位于I型扇区内,用矢量V 1′(v′ α+1,v′ β)、V 2′(v′ α+1,v′ β+1)和V 3′(v′ α,v′ β+1)合成参考矢量;
当(v′ -v′ α)+(v′ -v′ β)<1,参考矢量位于II型扇区内,用矢量V 0′(v′ α,v′ β)、V 1′(v′ α+1,v′ β)和V 3′(v′ α,v′ β+1)合成参考矢量;
步骤六:利用伏秒平衡原理计算合成采样参考矢量的等效基本矢量作用时间:
当参考矢量位于I型扇区内,根据伏秒平衡原理有
Figure PCTCN2019094457-appb-000034
式中,t 1、t 2、t 3分别表示矢量V 1′、V 2′、V 3′的作用时间,T S表示采样周期;
Figure PCTCN2019094457-appb-000035
当参考矢量位于II型扇区内,根据伏秒平衡原理有
Figure PCTCN2019094457-appb-000036
式中,t 0、t 1、t 3分别表示矢量V 0′、V 1′、V 3′的作用时间,
Figure PCTCN2019094457-appb-000037
步骤七:将星型连接多电平变换器相电压参考矢量的等效基本矢量的分量及两个分量的和作为控制三角形连接多电平变换器线电压的开关状态。
进一步,多电平变换器包括以H桥子模块级联的三角形连接变换器(如图5所示)和以H桥子模块级联的星形连接变换器(如图6所示),以H桥子模块级联的三角形连接变换器为例,图中每一相由2k个H桥子模块(如图5(b)所示)级联而成,H桥子模块的输入电压为E,输出电压为u sm,当S 1和S 4导通、S 2和S 3关断时,u sm=E,当S 1和S 4关断、S 2和S 3导通时,u sm=-E,当S 1和S 3导通、S 2和S 4关断或者S 1和S 3关断、S 2和S 4导通时,u sm=0,每相由2k个子模块级联的三角形连接变换器输出的线电压有4k+1个电平。
每相由k个子模块级联的星型连接变换器输出的相电压有个电平2k+1,输出的线电压有4k+1个电平,即由k个H桥子模块级联的星形连接变换器输出的线电压电平数与由2k个H桥子模块级联的三角形连接变 换器输出的线电压电平数相等。
三角形连接的变换器输出的线电压参考信号与星形连接的变换器输出的线电压参考信号相等,根据式(10)可得:
Figure PCTCN2019094457-appb-000038
式中,u rAB、u rBC和u rCA分别表示三角形连接变换器的线电压参考信号,u rab、u rbc和u rca分别表示星型连接变换器的线电压参考信号。
根据式(11)可得:
Figure PCTCN2019094457-appb-000039
式中,v′ AB、v′ BC和v′ CA分别表示三角形连接变换器的线电压对应的输出电平,(v′ AB,v′ BC,v′ CA)称为三角形连接的变换器的开关状态,v′ ab、v′ bc和v′ ca分别表示星型连接变换器的线电压对应的输出电平。
对于星形连接的变换器,任意参考矢量V r′(v′ ,v′ )用三个矢量V′ H(v′ αh,v′ βh)、V′ I(v′ αi,v′ βi)、V′ J(v′ αj,v′ βj)合成,有:
Figure PCTCN2019094457-appb-000040
式中,t h、t i和t j分别表示矢量V′ H、V′ I和V′ J的作用时间;
由式(19)可得:
Figure PCTCN2019094457-appb-000041
(-v′ βh,v′ αh+v′ βh,-v′ αh)、(-v′ βi,v′ αi+v′ βi,-v′ αi)、(-v′ βj,v′ αj+v′ βj,-v′ αj)分别表示基本矢量V′ H、V′ I和V′ J对应的星型连接变换器线电压的开关状态。根据式(17)和(18),可将星型连接变换器线电压的开关状态作为三角形连接变换器线电压的开关状态信号,即用星形连接变换器所得线电压开关状态可直接实现对三角形连接变换器线电压的调制。
以图4所示参考矢量V r′为例,参考矢量V r′位于I型扇区内,利用V 1′、V 2′和V 3′合成V r′,有:
Figure PCTCN2019094457-appb-000042
对式(21)进行线性变换得:
Figure PCTCN2019094457-appb-000043
根据(22),利用开关状态(-v′ β,v′ α+v′ β+1,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+2,-(v′ α+1))和(-(v′ β+1),v′ α+v′ β+1,-v′ α)分时制合成线电压参考信号(u′ rAB,u′ rBC,u′ rCA),即可实现对三角形连接变换器线电压的控制。
如果参考矢量V r′位于II型扇区内,利用V 0′、V 1′和V 3′合成V r′,有:
Figure PCTCN2019094457-appb-000044
对式(23)进行线性变换得:
Figure PCTCN2019094457-appb-000045
根据(24),利用开关状态(-v′ β,v′ α+v′ β,-v′ α)、(-v′ β,v′ α+v′ β+1,-(v′ α+1))和(-(v′ β+1),v′ α+v′ β+1,-v′ α)分时制合成线电压参考信号(u′ rAB,u′ rBC,u′ rCA),即可实现对三角形连接变换器线电压的控制。
进一步,开关状态在任一时刻的三个分量之和都是0,即三相变换器输出共模电压为0。
进一步,开关状态合成线电压参考信号,其中三个开关状态两两之间有两个分量各相差一个电平,在一个参考矢量采样周期内,开关状态切换的时候可以以三个开关状态中的任意一个为起点采用四段切换方法实现切换路径封闭。
参考矢量V r′位于I型扇区内,开关状态切换序列有三种模式:
模式①:
Figure PCTCN2019094457-appb-000046
对应的切换时间为t 1/2→t 2→t 3→t 1/2,
模式②:
Figure PCTCN2019094457-appb-000047
对应的切换时间为t 2/2→t 3→t 1→t 2/2,
模式③:
Figure PCTCN2019094457-appb-000048
对应的切换时间为t 3/2→t 1→t 2→t 3/2,
三种模式任选一种;
参考矢量V r′位于II型扇区内,开关状态切换序列有三种模式:
模式①:
Figure PCTCN2019094457-appb-000049
对应的切换时间为t 0/2→t 1→t 3→t 0/2,
模式②:
Figure PCTCN2019094457-appb-000050
对应的切换时间为t 1/2→t 3→t 0→t 1/2,
模式③:
Figure PCTCN2019094457-appb-000051
对应的切换时间为t 3/2→t 0→t 1→t 3/2,
三种模式任选一种。
根据以上推导可知,在α′-β′坐标系中,只要满足星形连接变换器的级联子模块数是三角形连接变换器的级联子模块数的一半,且星型连接变换器输出线电压参考信号等于三角形连接变换器输出线电压参考信号,即可将星形连接变换器的相电压参考矢量的坐标分量以及两个分量之和作为三角形连接变换器线电压的参考矢量信号,星形连接变换器根据相电压计算的基本矢量的坐标分量以及两个分量之和作为三角形连接变换器线电压对应的开关状态,从而实现三角形变换器的空间矢量调制。
进一步,在α′-β′坐标系中,可以用本发明提出的简化的多电平变换器空间矢量调制方法实现对2k个H桥子模块级联的星型连接变换器的调制,具体实现方法为:首先虚构一个星形连接变换器(该变换器每一相由k个H桥子模块级联);第二,将被控变换器的相电压参考信号除以
Figure PCTCN2019094457-appb-000052
即 得虚构的变换器的相电压参考信号;第三,在α′-β′坐标系中,对虚构的变换器的相电压参考矢量轨迹模型进行采样,并采用扇区三角形上的三个等效基本矢量合成参考矢量,利用等效基本矢量的坐标分量及两个坐标分量之和作为被控变换器三相的开关状态信号,利用虚构变换器的空间矢量直接控制被控变换器即可实现空间矢量调制。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (7)

  1. 一种简化的多电平变换器空间矢量调制方法,其特征在于,包括以下步骤:
    步骤一:传统笛卡尔坐标系(简称α-β坐标系)上相电压对应的基本矢量V αβ(v α,v β)的表达式为:
    Figure PCTCN2019094457-appb-100001
    式中,v α和v β表示基本矢量V αβ对应的坐标分量,v a、v b和v c分别表示多电平变换器三个相电压对应的电平,(v a,v b,v c)称为基本矢量V αβ对应的开关状态,对于n电平变换器,v a,v b,v c∈[(n-1),(n-2),…,2,1,0];
    α-β坐标系上根据相电压参考信号计算的参考矢量V rαβ(v ,v )为:
    Figure PCTCN2019094457-appb-100002
    式中,v 和v 表示参考矢量V rαβ对应的坐标分量;
    步骤二:将α-β平面的坐标轴逆时针旋转45°并压缩轴向比例,得α′-β′坐标系,建立参考矢量轨迹模型:
    α′-β′坐标系上的基本矢量V′(v′ α,v′ β)为:
    Figure PCTCN2019094457-appb-100003
    式中,v′ α和v′ β表示基本矢量V′对应的坐标分量;
    α′-β′坐标系上根据相电压参考信号计算的参考矢量V′ r(v′ ,v′ )为:
    Figure PCTCN2019094457-appb-100004
    式中,v′ 和v′ 表示参考矢量V′ r对应的坐标分量;
    α′-β′坐标系上,参考矢量轨迹模型为:
    Figure PCTCN2019094457-appb-100005
    Figure PCTCN2019094457-appb-100006
    步骤三:在α′-β′坐标系中,用参考矢量V′ r的坐标分量及两个分量之和v′ 、v′ 、v′ +v′ 分别表示线电压参考信号-u rca、-u rab、u rbc,用基本矢量V′的坐标分量及两个坐标分量之和v′ α、v′ β、v′ α+v′ β分别表示线电压电平信号-v ca、-v ab、v bc
    Figure PCTCN2019094457-appb-100007
    式中,u rab、u rbc和u rca分别表示三个线电压的参考信号;
    Figure PCTCN2019094457-appb-100008
    式中,v ab、v bc和v ca分别表示三个线电压对应的电平,v ab,v bc,v ca∈[±n,±(n-1),…,±2,±1,0],每个线电压输出2n+1个电平;
    步骤四:构造一个新的星型连接多电平变换器,使其线电压参考信号与被控制的三角形连接多电平变换器的线电压参考信号相同;
    步骤五:对被构造的星型连接多电平变换器相电压参考矢量轨迹模型进行 采样,计算最靠近被采样参考矢量V′ r的三个基本矢量,并把这三个基本矢量作为等效基本矢量,三个等效基本矢量组成一个扇区三角形,利用这三个等效基本矢量合成参考矢量;
    步骤六:利用伏秒平衡原理计算合成采样参考矢量的等效基本矢量作用时间:
    当参考矢量位于I型扇区内,有:
    Figure PCTCN2019094457-appb-100009
    式中,t 1、t 2、t 3分别表示矢量V′ 1、V′ 2、V′ 3的作用时间,T s表示采样周期;
    当参考矢量位于II型扇区内,有:
    Figure PCTCN2019094457-appb-100010
    式中,t 0、t 1、t 3分别表示矢量V′ 0、V′ 1、V′ 3的作用时间;
    步骤七:将星型连接多电平变换器相电压参考矢量的等效基本矢量的分量及两个分量的和作为控制三角形连接多电平变换器线电压的开关状态。
  2. 根据权利要求1所述的一种简化的多电平变换器空间矢量调制方法,其特征在于:所述步骤五中,相邻三个基本矢量组成的扇区三角形均为等腰直角三角形,且其直角边长为单位1,形状有I型和II型两种,组成I型和II型扇区三角形的基本矢量包括V′ 0(v′ α,v′ β),V′ 1(v′ α+1,v′ β),V′ 2(v′ α+1,v′ β+1)和V′ 3(v′ α,v′ β+1),
    Figure PCTCN2019094457-appb-100011
    式中,floor(*)表示向下取整函数;
    第一种情况:当(v′ -v′ α)+(v′ -v′ β)≥1时,参考矢量位于I型扇区内,用矢量V′ 1(v′ α+1,v′ β)、V′ 2(v′ α+1,v′ β+1)和V′ 3(v′ α,v′ β+1)合成参考矢量;
    第二种情况:当(v′ -v′ α)+(v′ -v′ β)<1,参考矢量位于II型扇区内,用矢量V′ 0(v′ α,v′ β)、V′ 1(v′ α+1,v′ β)和V′ 3(v′ α,v′ β+1)合成参考矢量。
  3. 根据权利要求2所述的一种简化的多电平变换器空间矢量调制方法,其特征在于:
    第一种情况:
    当利用V′ 1、V′ 2、V′ 3分时制合成参考电压矢量V′ r时,对应三角形连接多电平变换器的开关状态分别为(-v′ β,v′ α+v′ β+1,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+2,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+1,-v′ α):
    (1)在基本矢量V′ 1作用时间段,即用-v′ β、v′ α+v′ β+1、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
    (2)在基本矢量V′ 2作用时间段,即用-(v′ β+1)、v′ α+v′ β+2、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
    (3)在基本矢量V′ 3作用时间段,即用-(v′ β+1)、v′ α+v′ β+1、-v′ α分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
    第二种情况:
    当利用V′ 0、V′ 1、V′ 3分时制合成参考电压矢量V′ r时,对应三角形连接多电平变换器的开关状态分别为(-v′ β,v′ α+v′ β,-v′ α)、(-v′ β,v′ α+v′ β+1,-(v′ α+1))、(-(v′ β+1),v′ α+v′ β+1,-v′ α):
    (1)在基本矢量V′ 0作用时间段,即用-v′ β、v′ α+v′ β、-v′ α分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
    (2)在基本矢量V′ 1作用时间段,即用-v′ β、v′ α+v′ β+1、-(v′ α+1)分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号;
    (3)在基本矢量V′ 3作用时间段,即用-(v′ β+1)、v′ α+v′ β+1、-v′ α分别作为被控三角形连接多电平变换器AB相、BC相、CA相的控制信号。
  4. 根据权利要求3所述的一种简化的多电平变换器空间矢量调制方法,其特征在于:所述开关状态在任一时刻的三个分量之和都是0,即三相变换器输出共模电压为0。
  5. 根据权利要求3所述的一种简化的多电平变换器空间矢量调制方法,其特征在于:所述开关状态作为三角形连接多电平变换器线电压的控制信号,其中三个开关状态两两之间有两个分量各相差一个电平,在一个参考矢量采样周期内,开关状态切换的时候可以以三个开关状态中的任意一个为起点采用四段切换方法实现切换路径封闭,
    第一种情况的开关状态切换序列有三种模式:
    模式①:
    Figure PCTCN2019094457-appb-100012
    对应的切换时间为t 1/2→t 2→t 3→t 1/2,
    模式②:
    Figure PCTCN2019094457-appb-100013
    对应的切换时间为t 2/2→t 3→t 1→t 2/2,
    模式③:
    Figure PCTCN2019094457-appb-100014
    对应的切换 时间为t 3/2→t 1→t 2→t 3/2,
    三种模式任选一种;
    第二种情况的开关状态切换序列有三种模式:
    模式①:
    Figure PCTCN2019094457-appb-100015
    对应的切换时间为t 0/2→t 1→t 3→t 0/2,
    模式②:
    Figure PCTCN2019094457-appb-100016
    对应的切换时间为t 1/2→t 3→t 0→t 1/2,
    模式③:
    Figure PCTCN2019094457-appb-100017
    对应的切换时间为t 3/2→t 0→t 1→t 3/2,
    三种模式任选一种。
  6. 根据权利要求1所述的一种简化的多电平变换器空间矢量调制方法,其特征在于:所述的三角形连接多电平变换器中每一相由2k个H桥子模块级联而成,输出的线电压有4k+1个电平,所述的星形连接多电平变换器每一相由k个H桥子模块级联而成,输出的相电压有2k+1个电平,输出的线电压有4k+1个电平,即由k个H桥子模块级联的星形连接变换器输出的线电压电平数与由2k个H桥子模块级联的三角形连接变换器输出的线电压电平数相等。
  7. 根据权利要求1所述的一种简化的多电平变换器空间矢量调制方法,其特征在于,在α′-β′坐标系中,用简化的多电平变换器空间矢量调制方法实现对2k个H桥子模块级联的星型连接变换器的调制,实现步骤如下:
    步骤1:虚构一个星形连接变换器,该变换器每一相由k个H桥子模块级联;
    步骤2:将被控变换器的相电压参考信号除以
    Figure PCTCN2019094457-appb-100018
    即得虚构的变换器的相电压参考信号;
    步骤3:在α′-β′坐标系中,对虚构的变换器的相电压参考矢量轨迹模型进行采样,并采用扇区三角形上的三个等效基本矢量合成参考矢量,利用等效基本矢量的坐标分量及两个坐标分量之和作为被控变换器三相的开关状态信号即可实现空间矢量调制。
PCT/CN2019/094457 2019-05-21 2019-07-03 一种简化的多电平变换器空间矢量调制方法 WO2020232798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/060,183 US11121642B2 (en) 2019-05-21 2020-10-01 Simplified space vector modulation method for multi-level converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910426666.6A CN110071655B (zh) 2019-05-21 2019-05-21 一种简化的多电平变换器空间矢量调制方法
CN201910426666.6 2019-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/060,183 Continuation US11121642B2 (en) 2019-05-21 2020-10-01 Simplified space vector modulation method for multi-level converter

Publications (1)

Publication Number Publication Date
WO2020232798A1 true WO2020232798A1 (zh) 2020-11-26

Family

ID=67371205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094457 WO2020232798A1 (zh) 2019-05-21 2019-07-03 一种简化的多电平变换器空间矢量调制方法

Country Status (3)

Country Link
US (1) US11121642B2 (zh)
CN (1) CN110071655B (zh)
WO (1) WO2020232798A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285476A (zh) * 2021-04-30 2021-08-20 华北电力大学(保定) 一种含交直流微网的直流配电系统稳定性判定方法
CN116191910A (zh) * 2023-04-03 2023-05-30 燕山大学 一种三相电流源整流器优化开关电压应力的调制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518822B (zh) * 2019-08-26 2020-08-07 浙江大学 任意多电平的级联h桥逆变器空间矢量脉宽调制方法
CN112290815B (zh) * 2020-09-28 2022-06-14 合肥精锐电力工程有限公司 一种多电平逆变器的通用svpwm算法
CN112865572B (zh) * 2021-01-29 2022-02-08 湖南工学院 一种基于s-k及svpwm的级联多电平变换器
CN112803809B (zh) * 2021-01-29 2022-03-29 南昌工程学院 基于s-k快速确定基本矢量的多电平变换器svm方法
CN114039361A (zh) * 2021-11-10 2022-02-11 特变电工西安电气科技有限公司 一种适用于大功率静止无功发生器的三电平svpwm算法
CN114257224B (zh) * 2022-03-01 2022-05-20 浙江飞旋科技有限公司 同步优化脉宽调制的处理方法、装置及电子设备
CN115208226B (zh) * 2022-09-19 2022-12-06 湖南大学 一种模块化级联功放开关组合轮换多电平调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 電圧形pwm変換器の制御方法
CN105245116A (zh) * 2015-10-19 2016-01-13 东北电力大学 一种减少双级矩阵变换器换流次数的载波调制方法
CN108377105A (zh) * 2018-04-04 2018-08-07 南昌工程学院 一种基于空间矢量调制方法的三角形连接级联h桥逆变器
CN108418461A (zh) * 2018-04-04 2018-08-17 南昌工程学院 一种三角形连接级联h桥逆变器的空间矢量调制方法
CN108683349A (zh) * 2018-04-27 2018-10-19 上海电力学院 一种三电平直接矩阵变换器双空间矢量调制方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752707A1 (de) * 1997-11-27 1999-06-02 Vectron Elektronik Gmbh Verfahren und Vorrichtung zur Regelung der Bewegungsbahn des Werkstückaufnahmekopfes eines Orbital-Vibrationsschweißsystems
US6735537B2 (en) * 2002-03-15 2004-05-11 Motorola, Inc. Procedure for measuring the current in each phase of a three-phase device via single current sensor
CN1487658A (zh) * 2003-08-22 2004-04-07 清华大学 一种基于空间矢量调制的多电平逆变器的控制方法
US7558089B2 (en) * 2005-12-13 2009-07-07 Advanced Energy Conversion, Llc Method and apparatus for space vector modulation in multi-level inverters
JP4957303B2 (ja) * 2007-03-14 2012-06-20 株式会社明電舎 交流−交流直接変換装置の空間ベクトル変調方法
JP4957304B2 (ja) * 2007-03-14 2012-06-20 株式会社明電舎 交流−交流直接変換装置の空間ベクトル変調方法
CN101699765A (zh) * 2009-11-09 2010-04-28 天津理工大学 一种基于移相式svpwm调制方法的级联多电平变频调速系统
EP2671316A1 (en) * 2011-02-01 2013-12-11 Power-One Italy S.p.a. Modulation of multi-phase inverter
EP2740209A1 (en) * 2011-08-02 2014-06-11 Power-One Italy S.p.a. Method for balancing capacitors in an inverter description
DE102012210667A1 (de) * 2012-06-22 2013-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ansteuern eines Wechselrichters
US8976556B2 (en) * 2012-07-12 2015-03-10 Mitsubishi Electric Research Laboratories, Inc. Space vector modulation for multilevel inverters
US8934276B2 (en) * 2012-08-16 2015-01-13 Mitsubishi Electric Research Laboratories, Inc. DC-link voltage balancing control for multilevel inverters
US9130482B2 (en) * 2013-02-20 2015-09-08 Infineon Technologies Ag Pseudo zero vectors for space vector modulation and enhanced space vector modulation
US9774190B2 (en) * 2013-09-09 2017-09-26 Inertech Ip Llc Multi-level medium voltage data center static synchronous compensator (DCSTATCOM) for active and reactive power control of data centers connected with grid energy storage and smart green distributed energy sources
US9520800B2 (en) * 2014-01-09 2016-12-13 Rockwell Automation Technologies, Inc. Multilevel converter systems and methods with reduced common mode voltage
WO2015138744A1 (en) * 2014-03-13 2015-09-17 Qatar Foundation For Education, Science And Community Development Modulation and control methods for quasi-z-source cascade multilevel inverters
US9559610B2 (en) * 2014-10-01 2017-01-31 Mitsubishi Electric Research Laboratories, Inc. Method to generate multilevel inverter modulation control signals
WO2016065087A1 (en) * 2014-10-21 2016-04-28 Inertech Ip Llc Systems and methods for controlling multi-level diode-clamped inverters using space vector pulse width modulation (svpwm)
WO2016069791A1 (en) * 2014-10-28 2016-05-06 Murata Manufacturing Co., Ltd. Space vector modulation for matrix converter and current source converter
FR3031423B1 (fr) * 2015-01-06 2018-11-30 Centre National De La Recherche Scientifique Procede et dispositif de conversion de courant et vehicule comportant un tel dispositif
EP3248279B1 (en) * 2015-03-25 2020-11-25 Murata Manufacturing Co., Ltd. Apparatus and method of fast commutation for matrix converter-based rectifier
CN104796024B (zh) * 2015-04-17 2017-04-05 西南交通大学 一种适用于三相级联h桥型变换器的简化多电平空间矢量脉宽调制方法及其调制软核
US9698722B2 (en) * 2015-06-19 2017-07-04 Deere & Company Method and inverter with thermal management for controlling an electric machine
JP6369423B2 (ja) * 2015-09-01 2018-08-08 株式会社安川電機 電力変換装置、制御装置および制御方法
US9590483B1 (en) * 2015-10-15 2017-03-07 Ge Energy Power Conversion Technology Ltd Control of balance of arm capacitor voltages in STATCOMS based on chain links of H bridge modules
US10574154B1 (en) * 2016-09-01 2020-02-25 Nutech Ventures Scalable universal space vector pulse width modulation scheme for multilevel inverters
US9979319B1 (en) * 2016-11-22 2018-05-22 Toshiba International Corporation Three-phase three-level inverter with active voltage balance
US10608571B2 (en) * 2018-01-19 2020-03-31 Huazhong University Of Science And Technology Open-winding motor drive topology and modulation method thereof
CN108233755B (zh) * 2018-02-12 2020-01-31 武汉大学 一种抑制多相电机共模电压的空间矢量脉宽调制方法
CN108471248B (zh) * 2018-04-04 2019-10-01 南昌工程学院 基于α’-β’坐标的星形级联逆变器空间矢量调制方法
CN109039124B (zh) * 2018-08-13 2020-06-09 南昌工程学院 基于移相空间矢量调制的mmc电容电压均衡控制方法
KR102396561B1 (ko) * 2019-07-15 2022-05-10 엘지전자 주식회사 모터 구동 장치 및 그 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 電圧形pwm変換器の制御方法
CN105245116A (zh) * 2015-10-19 2016-01-13 东北电力大学 一种减少双级矩阵变换器换流次数的载波调制方法
CN108377105A (zh) * 2018-04-04 2018-08-07 南昌工程学院 一种基于空间矢量调制方法的三角形连接级联h桥逆变器
CN108418461A (zh) * 2018-04-04 2018-08-17 南昌工程学院 一种三角形连接级联h桥逆变器的空间矢量调制方法
CN108683349A (zh) * 2018-04-27 2018-10-19 上海电力学院 一种三电平直接矩阵变换器双空间矢量调制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285476A (zh) * 2021-04-30 2021-08-20 华北电力大学(保定) 一种含交直流微网的直流配电系统稳定性判定方法
CN116191910A (zh) * 2023-04-03 2023-05-30 燕山大学 一种三相电流源整流器优化开关电压应力的调制方法
CN116191910B (zh) * 2023-04-03 2023-08-22 燕山大学 一种三相电流源整流器优化开关电压应力的调制方法

Also Published As

Publication number Publication date
CN110071655A (zh) 2019-07-30
CN110071655B (zh) 2020-06-09
US20210021208A1 (en) 2021-01-21
US11121642B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020232798A1 (zh) 一种简化的多电平变换器空间矢量调制方法
Corzine et al. Control of cascaded multilevel inverters
CN108923666B (zh) 基于载波pwm的双输出双级矩阵变换器调制方法
CN107276448B (zh) 一种基于移相空间矢量调制方法的h桥级联多电平逆变器
CN106160541A (zh) 基于开关状态优化的中点电压纹波抑制系统及方法
CN106787805B (zh) 不平衡负载下五相六桥臂双级矩阵变换器载波pwm控制策略
CN104410311B (zh) 一种三电平逆变器不连续pwm调制中点平衡方法
CN108471248B (zh) 基于α’-β’坐标的星形级联逆变器空间矢量调制方法
CN111064377A (zh) 避免三电平逆变器相电压两电平跳变的同步载波dpwm方法
CN107302318B (zh) 一种基于h桥级联多电平逆变器的移相空间矢量调制方法
CN108418461B (zh) 一种三角形连接级联h桥逆变器的空间矢量调制方法
CN106972773B (zh) 一种三电平并网逆变器恒定开关频率模型预测控制方法
CN106505896B (zh) 一种混合十一电平高压变频器
CN109067224B (zh) 一种二维坐标系下三相空间矢量快速调制方法
CN105245116A (zh) 一种减少双级矩阵变换器换流次数的载波调制方法
WO2019128674A1 (zh) 单相五电平变流器的控制方法以及装置
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
CN112886828B (zh) 一种电网模拟器拓扑结构及其控制方法
CN108377105B (zh) 一种基于空间矢量调制方法的三角形连接级联h桥逆变器
CN109802587B (zh) 基于耦合电感的模块化三电平npc变流器系统及控制方法
CN107994758A (zh) 九开关功率变换器的空间矢量调制方法
Aleenejad et al. A modified space vector modulation method for fault-tolerant operation of multilevel converters
CN104300816B (zh) 一种针对五相三电平变频器的低调制比脉冲输出方法
CN109067147A (zh) 级联型变流器子模块电容电压扰动量及不平衡度提取方法
CN113922687A (zh) 一种级联式多电平变换装置、控制方法及其控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929394

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19929394

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19929394

Country of ref document: EP

Kind code of ref document: A1