WO2019128674A1 - 单相五电平变流器的控制方法以及装置 - Google Patents

单相五电平变流器的控制方法以及装置 Download PDF

Info

Publication number
WO2019128674A1
WO2019128674A1 PCT/CN2018/119762 CN2018119762W WO2019128674A1 WO 2019128674 A1 WO2019128674 A1 WO 2019128674A1 CN 2018119762 W CN2018119762 W CN 2018119762W WO 2019128674 A1 WO2019128674 A1 WO 2019128674A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated wave
level
phase
initial
wave
Prior art date
Application number
PCT/CN2018/119762
Other languages
English (en)
French (fr)
Inventor
刘方诚
辛凯
刘云峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18897533.8A priority Critical patent/EP3723264B1/en
Publication of WO2019128674A1 publication Critical patent/WO2019128674A1/zh
Priority to US16/911,600 priority patent/US11146181B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a method and apparatus for controlling a single-phase five-level converter.
  • the modulation mode of the converter directly affects the switching state of the converter.
  • the commonly used modulation method is Pulse Width Modulation (PWM).
  • PWM Pulse Width Modulation
  • the PWM can include Continuous Pulse Width Modulation (CPWM) and Discontinuous Pulse Width Modulation (DPWM).
  • CPWM Continuous Pulse Width Modulation
  • DPWM Discontinuous Pulse Width Modulation
  • CPWM Continuous Pulse Width Modulation
  • DPWM Discontinuous Pulse Width Modulation
  • the number of switching bridge arms of a single-phase five-level converter is less than the number of switching bridge arms of a three-phase converter, so the control variable of the single-phase five-level converter is less than the control variable of the three-phase converter.
  • the control design of the single-phase five-level converter brings some difficulty.
  • the control method of the single-phase five-level converter is specifically: obtaining the voltage vector of the single-phase AC system, and acquiring another voltage vector orthogonal to the voltage vector through the delay link, and the two voltage vectors are obtained.
  • DPWM Discontinuous Pulse Width Modulation
  • the technical problem to be solved by the embodiments of the present invention is to provide a control method and device for a single-phase five-level converter, which can improve system response speed and system reliability.
  • an embodiment of the present application provides a control method for a single-phase five-level converter, wherein the control system can obtain a first phase initial modulated wave of a single-phase five-level converter, and a single-phase five-level
  • the second phase of the converter initially modulates the wave, and obtains a modulated wave of a first level output by the single-phase five-level converter, a modulated wave of a second level of the output of the single-phase five-level converter, and a single
  • the control system modulates the wave of the first level, the modulated wave of the second level, the modulated wave of the third level, the modulated wave of the fourth level, the modulated wave of the fifth level, the first phase initial modulation
  • the wave and the second phase initial modulated wave are calculated to obtain a common mode modulated wave
  • the first phase initial modulated wave, the second phase initial modulated wave, and the common mode modulated wave are calculated to obtain a pulse width modulated wave.
  • the first phase initial modulated wave and the second phase initial modulated wave are both sinusoidal waves, and the amplitude of the first phase initial modulated wave at any time and the amplitude of the second phase initial modulated wave at the moment are added to zero.
  • the first level is a DC side positive bus level
  • the second level is a level between a zero level and a DC side positive bus level
  • the third level is a zero level
  • the fourth level is a DC side.
  • the fifth level is the DC side negative bus level.
  • control system obtains a common mode modulated wave according to the initial modulated wave of the two bridges of the single-phase five-level converter (ie, the first phase initial modulated wave and the second phase initial modulated wave), which can be avoided.
  • the virtual third-phase algorithm process reduces the delay link and improves system response speed and system reliability.
  • the control system modulates a wave of a first level, a modulated wave of a second level, a modulated wave of a third level, a modulated wave of a fourth level, a modulated wave of a fifth level
  • the one-phase initial modulated wave and the second-phase initial modulated wave are calculated, and the specific mode of obtaining the common-mode modulated wave of the single-phase five-level converter may be: subtracting the first phase initial from the modulated wave corresponding to the positive bus level
  • the wave is modulated to obtain a first modulated wave.
  • the second phase initial modulated wave is subtracted from the modulated wave corresponding to the intermediate level to obtain a second modulated wave.
  • the first phase initial modulated wave is subtracted from the modulated wave corresponding to the zero level to obtain a third modulated wave.
  • the second phase initial modulated wave is subtracted from the modulated wave corresponding to the negative intermediate level to obtain a fourth modulated wave.
  • the first phase initial modulated wave is subtracted from the modulated wave corresponding to the negative bus level to obtain a fifth modulated wave.
  • the first modulated wave, the second modulated wave, the third modulated wave, the fourth modulated wave, and the fifth modulated wave are compared to determine a common mode modulated wave.
  • the amplitude of the common mode modulated wave at any one time is the amplitude of the absolute value of the amplitudes of the first modulated wave, the second modulated wave, the third modulated wave, the fourth modulated wave, and the fifth modulated wave at the time.
  • the common mode modulated wave obtained by the embodiment of the present application has no step continuously, and the common mode leakage current can be effectively reduced, thereby reducing the high frequency common mode voltage component.
  • the first level modulated wave, the second level modulated wave, the third level modulated wave, the fourth level modulated wave, the fifth level modulated wave, the first phase initial The amplitude of the modulated wave or the second phase initial modulated wave at any one time is greater than or equal to -1 and less than or equal to one.
  • the pulse width modulated wave may include a sixth modulated wave and a seventh modulated wave
  • the control system calculates the first phase initial modulated wave, the second phase initial modulated wave, and the common mode modulated wave to obtain a pulse width.
  • the specific method of modulating the wave may be: adding the first phase initial modulated wave and the common mode modulated wave to obtain a sixth modulated wave, and adding the second phase initial modulated wave and the common mode modulated wave to obtain a seventh modulated wave.
  • the clamping state of the two bridge arms can be allocated by using the characteristics that the single-phase five-level converter can output five levels per phase, thereby achieving the loss balance between the two bridge arms.
  • the embodiment of the present application provides a control device for a single-phase five-level converter, the control device of the single-phase five-level converter having the single-phase five-level converter implemented in the first aspect.
  • the function of controlling the behavior of the system in the control method example may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • FIG. 1 is a schematic structural diagram of a control system of a single-phase five-level converter disclosed in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a single-phase five-level photovoltaic grid-connected system disclosed in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a single-phase five-level photovoltaic grid-connected system disclosed in another embodiment of the present application;
  • FIG. 4 is a schematic flow chart of a method for controlling a single-phase five-level converter disclosed in an embodiment of the present application
  • FIG. 5 is a schematic diagram of waveforms of an initial modulated wave disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a waveform of a common mode modulated wave disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a waveform of a pulse width modulated wave disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an A-phase bridge arm loss and a B-phase bridge arm loss disclosed in the embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a control apparatus for a single-phase five-level converter disclosed in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a control system of a single-phase five-level converter disclosed in an embodiment of the present application.
  • the control system of the single-phase five-level converter may include a single-phase five-level converter, a common mode modulated wave calculation unit, a current sampling unit, a control unit, and a carrier modulation unit.
  • the single-phase five-level converter is respectively connected to the voltage sampling unit and the carrier modulation unit, the current sampling unit is connected to the control unit, and the control unit is respectively connected to the common mode modulated wave calculation unit and the carrier modulation unit.
  • a current sampling unit for taking an output current (for example, i g in FIG. 2 or FIG. 3) from a single-phase five-level converter and transmitting the output current to the control unit.
  • control unit configured to calculate an output current and a current reference value to obtain a first phase initial modulated wave and a second phase initial modulated wave, and transmit the first phase initial modulated wave and the second phase initial modulated wave to the common mode modulation Wave calculation unit.
  • a common mode modulated wave calculating unit for modulating a wave of a first level, a modulated wave of a second level, a modulated wave of a third level, a modulated wave of a fourth level, a modulated wave of a fifth level, The first phase initial modulated wave and the second phase initial modulated wave are calculated to obtain a common mode modulated wave.
  • the first phase initial modulated wave and the second phase initial modulated wave output by the control unit, and the common mode modulated wave output by the common mode modulated wave calculating unit are processed to obtain a pulse width modulated wave.
  • the pulse width modulated wave is output to the carrier modulation unit.
  • a carrier modulation unit for outputting a driving signal to the single-phase five-level converter according to the pulse width modulated wave to control each switch group in the single-phase five-level converter (for example, S a and S b in FIG. 2 , Or different on-off states of S a1 , S a2 , S a3 , S b1 , S b2 and S b3 ) in FIG. 3 , so that the single-phase five-level converter outputs different voltages.
  • the single-phase five-level photovoltaic grid-connected system may include a photovoltaic panel, a single-phase five-level converter, and an AC grid, single phase.
  • the DC side of the five-level converter is connected to the photovoltaic panel, and the AC side of the single-phase five-level converter is connected to the AC grid through a filter inductor (such as L1 or L2).
  • the single-phase five-level photovoltaic grid-connected system converts the direct current generated by the photovoltaic panel into alternating current into the alternating current grid.
  • the positive pole of the capacitor C1 is respectively connected to the photovoltaic panel, the switch group S a and the switch group S b , and the negative pole of the capacitor C1 and the positive pole and the switch group of the capacitor C2 respectively S a and the switch group S b are connected, and the negative pole of the capacitor C2 is respectively connected to the positive pole of the capacitor C3, the switch group S a and the switch group S b , and the negative pole of the capacitor C3 is respectively connected to the positive pole of the capacitor C4, the switch group S a and the switch group S b connection, the negative pole of the capacitor C4 is respectively connected with the photovoltaic panel, the switch group S a and the switch group S b , the switch group S a is connected with the filter inductor L1 , the filter inductor L1 is connected with the AC grid, the switch group S b and the filter inductor L2 Connected, the filter inductor L2 is connected to the AC grid.
  • Five level single-phase converter DC bus side is divided by four capacitors C 1, C 2, C 3 and C 4, to achieve a two-phase DC side and the arm side through the AC switch group S a and S b Electrical energy conversion.
  • five levels can be output at the AC port, for example, the A phase (ie, the first phase) outputs the positive bus line level (ie, the first level), and the positive bus line level corresponds to the voltage.
  • the positive intermediate level (ie, the second level), the positive intermediate level corresponding voltage is V 2 ;
  • the zero level (ie, the third level), the zero level corresponding voltage is 0;
  • the negative intermediate level ( That is, the fourth level), the negative intermediate level corresponding voltage is -V 2 ;
  • the negative bus line level (ie, the fifth level), and the negative bus line level corresponding voltage is -V 1 .
  • the B phase ie, the second phase
  • the positive bus line corresponding voltage is V 1
  • the positive intermediate level ie, the second level
  • the positive intermediate level corresponds to The voltage is V 2
  • the zero level ie, the third level
  • the zero level corresponding voltage is 0
  • the negative intermediate level ie, the fourth level
  • the negative intermediate level corresponding to the voltage is -V 2
  • the negative bus The level (ie, the fifth level) and the negative bus level correspond to a voltage of -V 1 .
  • the single-phase five-level energy storage system is similar in structure to the single-phase five-level photovoltaic grid-connected system. By replacing the photovoltaic panel in FIG. 2 with a battery, a single-phase five-level energy storage system can be obtained. Schematic diagram of the structure. A single-phase five-level energy storage system is used to achieve bidirectional energy exchange between the AC grid and the battery.
  • the single-phase five-level photovoltaic grid-connected system may include a photovoltaic panel, a single-phase five-level converter, and an AC grid, single phase.
  • the DC side of the five-level converter is connected to the photovoltaic panel, and the AC side of the single-phase five-level converter is connected to the AC grid through a filter inductor (such as L1 or L2).
  • the single-phase five-level photovoltaic grid-connected system converts the direct current generated by the photovoltaic panel into alternating current into the alternating current grid.
  • the positive pole of the capacitor C1 is respectively connected to the photovoltaic panel, the switch group S a1 and the switch group S b1 , and the negative pole of the capacitor C1 and the positive pole and the switch group of the capacitor C2 respectively.
  • switch group S a1 , switch group S a2 , switch group S b1 and switch group S b2 are connected, and the negative pole of capacitor C2 is respectively connected with photovoltaic panel, switch group S a2 and switch group S b2 , and the positive pole of capacitor C3 is respectively connected with switch group S a1
  • the switch group S a3 is connected, the negative pole of the capacitor C3 is respectively connected with the switch group S a2 and the switch group S a3
  • the switch group S a3 is connected with the filter inductor L1
  • the filter inductor L1 is connected with the AC power grid
  • the positive pole of the capacitor C4 is respectively connected with the switch group S B1 and the switch group S b3 are connected
  • the negative pole of the capacitor C4 is connected to the switch group S b2 and the switch group S b3
  • the switch group S b3 is connected to the filter inductor L2
  • the filter inductor L2 is connected to the AC grid.
  • the DC bus side of the single-phase five-level converter is divided by two capacitors C 1 and C 2 , and a flying capacitor C3 is also provided between the DC side and the AC side of the A phase (ie, the first phase) bridge arm. There is also a flying capacitor C4 between the DC side and the AC side of the B phase (ie, the second phase) bridge arm.
  • the two-phase bridge arm realizes power conversion between the DC side and the AC side through the switch groups S a1 , S a2 , S a3 , S b1 , S b2 , and S b3 .
  • five levels can be output at the AC port, such as the A-phase output positive bus level (ie, the first level), and the positive bus line level corresponding to the voltage V 1 ; Level (ie, second level), the positive intermediate level corresponds to voltage V 1 -V 2 ; zero level (ie, third level), zero level corresponds to voltage 0; negative intermediate level (ie, fourth Level), the negative intermediate level corresponds to voltage V 2 -V 1 ; and the negative bus level (ie, the fifth level), and the negative bus level corresponds to voltage -V 1 .
  • the B phase outputs the positive bus level (ie, the first level), the positive bus level corresponds to the voltage V 1 , the positive intermediate level (ie, the second level), and the positive intermediate level corresponds to the voltage V 1 -V. 2 ; zero level (ie third level), zero level corresponding voltage is 0; negative intermediate level (ie fourth level), negative intermediate level corresponding voltage is V 2 -V 1 ; and negative bus Flat (ie, the fifth level), the negative bus level corresponds to a voltage of -V 1 .
  • the single-phase five-level energy storage system is similar in structure to the single-phase five-level photovoltaic grid-connected system. By replacing the photovoltaic panel in FIG. 3 with a battery, a single-phase five-level energy storage system can be obtained. Schematic diagram of the structure. A single-phase five-level energy storage system is used to achieve bidirectional energy exchange between the AC grid and the battery.
  • FIG. 4 is a schematic diagram of a control system of a single-phase five-level converter according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for controlling a single-phase five-level converter according to an embodiment of the present application. Methods include, but are not limited to, the following steps:
  • Step S401 Acquire a first phase initial modulated wave of the single-phase five-level converter, and a second phase initial modulated wave of the single-phase five-level converter.
  • the control system can obtain the output current of the output of the single-phase five-level converter, and calculate the output current and the current reference value to obtain the first phase initial modulated wave and the second phase initial modulated wave.
  • the first phase initial modulated wave and the second phase initial modulated wave are both sinusoidal waves, wherein the amplitude of the first phase initial modulated wave at any one time is greater than or equal to -1, And less than or equal to 1, and the amplitude of the second phase initial modulated wave at any one time is greater than or equal to -1 and less than or equal to 1.
  • Step S402 Acquire a first-level modulated wave output by the single-phase five-level converter, a second-level modulated wave output from the single-phase five-level converter, and a single-phase five-level converter output.
  • the control system can also obtain a first-level modulated wave of the single-phase five-level converter output, a second-level modulated wave of the single-phase five-level converter output, and a single-phase five-level converter output.
  • the modulated wave of the first level, the modulated wave of the second level, the modulated wave of the third level, the modulated wave of the fourth level, and the modulated wave of the fifth level have a magnitude greater than or equal to -1 at any one time. And less than or equal to 1.
  • the amplitude of the first-level modulated wave output by the single-phase five-level converter is V 1
  • the amplitude of the second-level modulated wave is V 2
  • the amplitude of the modulated wave of the third level is 0,
  • the amplitude of the modulated wave of the fourth level is -V 2
  • the amplitude of the modulated wave of the fifth level is -V 1 .
  • the amplitude of the first-level modulated wave output by the single-phase five-level converter is V 1
  • the amplitude of the second-level modulated wave is V 1 - V 2
  • the amplitude of the modulated wave of the third level is 0,
  • the amplitude of the modulated wave of the fourth level is V 2 - V 1
  • the amplitude of the modulated wave of the fifth level is -V 1 .
  • the modulated wave of the first level in the embodiment of the present application may be obtained by normalizing the modulated wave of the first level output by the single-phase five-level converter, that is, the present application
  • the modulated wave of the first level in the embodiment has a voltage of 1 at any one time.
  • the modulated wave of the second level in the embodiment of the present application may be obtained by normalizing the modulated wave of the second level output by the single-phase five-level converter, that is, the present application.
  • the voltage of the second level modulated wave in the embodiment is 0.5 at any one time.
  • the third-level modulated wave in the embodiment of the present application may be obtained by normalizing the modulated wave of the third-level output of the single-phase five-level converter, that is, the present application.
  • the voltage of the third level modulated wave in the embodiment is zero at any one time.
  • the fourth-level modulated wave in the embodiment of the present application may be obtained by normalizing the fourth-level modulated wave output by the single-phase five-level converter, that is, the present application.
  • the voltage of the fourth level modulated wave in the embodiment is -0.5 at any time.
  • the modulated wave of the fifth level in the embodiment of the present application may be obtained by normalizing the modulated wave of the fifth level outputted by the single-phase five-level converter, that is, the present application
  • the voltage of the fifth-level modulated wave in the embodiment is -1 at any one time.
  • control system may perform step S401 after performing step S402, and the control system may perform step S401 and step S402 at the same time.
  • Step S403 a modulated wave of a first level, a modulated wave of a second level, a modulated wave of a third level, a modulated wave of a fourth level, a modulated wave of a fifth level, and a first phase initial modulated wave And calculating the second phase initial modulated wave to obtain a common mode modulated wave.
  • the specific manner in which the control system obtains the common mode modulated wave may be: subtracting the first phase initial modulated wave from the first level modulated wave to obtain the first modulated wave of the single phase five-level converter.
  • the second phase initial modulated wave is subtracted from the second level modulated wave to obtain a second modulated wave of the single phase five-level converter.
  • the first-phase initial modulated wave is subtracted from the third-level modulated wave to obtain a third modulated wave of the single-phase five-level converter.
  • the fourth-phase initial modulated wave is subtracted from the fourth-level modulated wave to obtain a fourth modulated wave of the single-phase five-level converter.
  • the first-phase initial modulated wave is subtracted from the fifth-level modulated wave to obtain a fifth modulated wave of the single-phase five-level converter.
  • the control system can compare the first modulated wave, the second modulated wave, the third modulated wave, the fourth modulated wave, and the fifth modulated wave to determine a common mode modulated wave, wherein the amplitude of the common mode modulated wave at any one time is The first modulated wave, the second modulated wave, the third modulated wave, the fourth modulated wave, and the fifth modulated wave have the smallest absolute value of the amplitude at the time.
  • the amplitude of the modulated wave of the first level is V 1
  • the amplitude of the modulated wave of the second level is V 2
  • the amplitude of the modulated wave of the third level is 0, and the modulation of the fourth level
  • the amplitude of the wave is -V 2
  • the amplitude of the modulation wave of the fifth level is -V 1
  • the initial modulation wave of the first phase is V a
  • the initial modulation wave of the second phase is V b
  • the control system can determine the first modulation
  • the amplitude of the wave is V 1 -V a
  • the amplitude of the second modulated wave is V 2 -V b
  • the amplitude of the third modulated wave is -V a
  • the amplitude of the fourth modulated wave is -V 2 -V b
  • fifth The amplitude of the modulated wave is -V 1 -V a .
  • the amplitude of the first level modulated wave is V 1
  • the amplitude of the second level modulated wave is V 1 -V 2
  • the amplitude of the third level modulated wave is 0, the fourth power
  • the amplitude of the flat modulated wave is V 2 -V 1
  • the amplitude of the modulated wave of the fifth level is -V 1
  • the initial modulated wave of the first phase is V a
  • the initial modulated wave of the second phase is V b
  • the control system It can be determined that the amplitude of the first modulated wave is V 1 -V a
  • the amplitude of the second modulated wave is V 1 -V 2 -V b
  • the amplitude of the third modulated wave is -V a
  • the amplitude of the fourth modulated wave is V 2 - V 1 - V b
  • the amplitude of the fifth modulated wave is -V 1 - V a .
  • the modulated wave of the first level, the modulated wave of the second level, the modulated wave of the third level, the modulated wave of the fourth level, and the modulated wave of the fifth level are all normalized.
  • the control system can determine that the amplitude of the first modulated wave is 1-V a , the amplitude of the second modulated wave is 0.5-V b , the amplitude of the third modulated wave is -V a , and the fourth modulated wave The amplitude is -0.5-V b and the amplitude of the fifth modulated wave is -1-V a .
  • the waveform diagram of the common mode modulated wave obtained by the above method can be as shown in FIG.
  • the obtained common mode modulated wave is continuous without step, which reduces the high frequency component and suppresses the generation of the leakage current. Moreover, the amplitude of the common mode modulated wave in FIG. 6 is small, and the amplitude of the equivalent common mode voltage source generated is also small, which is favorable for suppressing the common mode current.
  • control system may subtract the second phase initial modulated wave from the first level modulated wave to obtain the eighth modulated wave; and subtract the first phase initial modulated wave from the second level modulated wave.
  • Obtaining a ninth modulated wave subtracting the second-phase initial modulated wave from the third-level modulated wave to obtain a tenth modulated wave; and subtracting the first-phase initial modulated wave from the fourth-level modulated wave to obtain a tenth a modulated wave; subtracting the second-phase initial modulated wave from the second-level modulated wave to obtain a twelfth modulated wave; and the eighth modulated wave, the ninth modulated wave, the tenth modulated wave, the eleventh modulated wave, and The twelfth modulated wave is compared to determine a common mode modulated wave, wherein the amplitude of the common mode modulated wave at any one time is the eighth modulated wave, the ninth modulated wave, the tenth modulated wave, the eleventh modulated wave, and the twelfth modul
  • Step S404 Calculate the first phase initial modulated wave, the second phase initial modulated wave, and the common mode modulated wave to obtain a pulse width modulated wave.
  • control system may add the first phase initial modulated wave and the common mode modulated wave to obtain a sixth modulated wave, and add the second phase initial modulated wave and the common mode modulated wave to obtain a seventh modulated wave.
  • the sixth modulated wave and the seventh modulated wave form a pulse width modulated wave.
  • the waveform diagram of the pulse width modulated wave can be as shown in FIG. 7, wherein v a — mod represents a sixth modulated wave, and v b — mod represents a seventh modulated wave.
  • the A phase modulated wave has three clamp states, namely +1 clamp, 0 clamp and -1 clamp, corresponding to positive bus level clamp, zero level clamp and negative bus level clamp.
  • the B-phase modulated wave has two clamp states, +0.5 clamp and -0.5 clamp, corresponding to the positive intermediate level clamp and the negative intermediate level clamp.
  • the clamp states alternately appear without overlapping, which also proves that the common mode modulated wave in Figure 6 continuously changes between clamp states, and the clamp state covers the entire power frequency cycle, which can further improve the control efficiency.
  • the clamp state of the B-phase modulated wave is +0.5 clamp and -0.5 clamp, instead of the zero clamp state, which can improve the loss reduction effect of the B phase.
  • the schematic diagram of the A-phase bridge arm loss and the B-phase bridge arm loss can be as shown in FIG. 8.
  • the A-phase bridge arm loss is 53.36%, and the B-phase bridge arm loss is 46.64%, that is, the A-phase bridge arm loss reduction effect and B.
  • the phase bridge arm loss reduction effect is close to achieve the loss balance between the two bridge arms, which is beneficial to reduce the cost and volume of the heat dissipation system.
  • a modulated wave of a first level, a modulated wave of a second level, a modulated wave of a third level, a modulated wave of a fourth level, a modulated wave of a fifth level The first phase initial modulated wave and the second phase initial modulated wave are calculated to obtain a common mode modulated wave, and the first phase initial modulated wave, the second phase initial modulated wave, and the common mode modulated wave are calculated to obtain a pulse width modulated wave. It can avoid the use of the virtual third phase algorithm process, reduce the delay link, and improve the system response speed and system reliability.
  • FIG. 9 is a schematic structural diagram of a control apparatus for a single-phase five-level converter according to an embodiment of the present application, for implementing the method of the embodiment of FIG. 4, the single-phase five-level converter
  • the control device may include a control unit 901, a modulated wave acquiring unit 902, a common mode modulated wave calculating unit 903, and a pulse width modulated wave calculating unit 904, wherein the detailed description of each unit is as follows.
  • control unit 901 configured to acquire a first phase initial modulated wave of the single-phase five-level converter and a second phase initial modulated wave of the single-phase five-level converter, wherein the first phase initial modulated wave And the second phase initial modulated wave is a sine wave, and the amplitude of the first phase initial modulated wave at any one time is added to the amplitude of the second phase initial modulated wave at the time is zero;
  • a modulated wave acquiring unit 902 configured to acquire a modulated wave of a first level output by the single-phase five-level converter, a modulated wave of a second level output by the single-phase five-level converter, a third-level modulated wave outputted by the single-phase five-level converter, a fourth-level modulated wave output by the single-phase five-level converter, and the single-phase five-level converter output a fifth level modulated wave, wherein the first level is a DC side positive bus level, the second level is a level between a zero level and a DC side positive bus level, the third Level is zero level, the fourth level is a level between a DC side negative bus level and a zero level, and the fifth level is a DC side negative bus level;
  • a common mode modulated wave calculating unit 903 configured to modulate a wave of the first level, a modulated wave of the second level, a modulated wave of the third level, and a modulated wave of the fourth level And calculating, by the fifth-level modulated wave, the first-phase initial modulated wave, and the second-phase initial modulated wave, to obtain a common-mode modulated wave of the single-phase five-level converter;
  • the pulse width modulation wave calculating unit 904 is configured to calculate the first phase initial modulated wave, the second phase initial modulated wave, and the common mode modulated wave to obtain a pulse width of the single phase five-level converter Modulated wave.
  • the common mode modulated wave calculating unit 903 is specifically configured to:
  • the amplitude of the mode modulated wave at any one time is the amplitude of the first modulated wave, the second modulated wave, the third modulated wave, the fourth modulated wave, and the fifth modulated wave at the time
  • the absolute value is the smallest.
  • the first level modulated wave, the second level modulated wave, the third level modulated wave, the fourth level modulated wave, the fifth level The modulated wave, the first phase initial modulated wave, or the second phase initial modulated wave has an amplitude greater than or equal to -1 and less than or equal to one at any one time.
  • the pulse width modulated wave includes a sixth modulated wave and a seventh modulated wave
  • the pulse width modulated wave calculating unit 904 is specifically configured to:
  • each module may also correspond to the corresponding description of the embodiment shown in FIG. 4 .
  • each functional unit in the embodiment of the present application may be integrated into one unit, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function module.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

单相五电平变流器的控制方法以及装置,所述方法包括:获取单相五电平变流器的第一相初始调制波以及第二相初始调制波;获取单相五电平变流器输出的第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波以及第五电平的调制波;对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到单相五电平变流器的共模调制波;对第一相初始调制波、第二相初始调制波以及共模调制波进行计算,得到单相五电平变流器的脉宽调制波。可提升系统响应速度以及系统可靠性。

Description

单相五电平变流器的控制方法以及装置 技术领域
本申请涉及电子技术领域,尤其涉及单相五电平变流器的控制方法以及装置。
背景技术
变流器的调制方式直接影响变流器的开关状态。常用的调制方式为脉冲宽度调制(Pulse Width Modulation,PWM),PWM可以包括连续脉冲宽度调制(Continuous Pulse Width Modulation,CPWM)和不连续脉冲宽度调制(Discontinuous Pulse Width Modulation,DPWM)。和CPWM相比,DPWM的开关次数更少,因此开关损耗较小,能够提高变流器的效率。
单相五电平变流器的开关桥臂数量少于三相变流器的开关桥臂数量,所以单相五电平变流器的控制变量少于三相变流器的控制变量,为单相五电平变流器的控制设计带来一定难度。目前,单相五电平变流器的控制方法,具体为:获取单相交流系统的电压矢量,以及通过延时环节获取与该电压矢量正交的另一个电压矢量,将这两个电压矢量转换为三相调制波,根据三相交流系统已有的不连续脉冲宽度调制(Discontinuous Pulse Width Modulation,DPWM)方法,生成需要在三相调制波中注入的共模分量,并将单相系统初始调制波和注入的共模分量叠加,生成调制波,根据该调制波控制开关器件的开通和开关状态。但是上述单相五电平变流器的控制方法中的延时环节会增加系统延时,降低系统响应速度,影响系统控制特性。
发明内容
本发明实施例所要解决的技术问题在于,提供单相五电平变流器的控制方法以及装置,可提升系统响应速度以及系统可靠性。
第一方面,本申请实施例提供了一种单相五电平变流器的控制方法,控制系统可以获取单相五电平变流器的第一相初始调制波,以及单相五电平变流器的第二相初始调制波,并获取单相五电平变流器输出的第一电平的调制波、单相五电平变流器输出的第二电平的调制波、单相五电平变流器输出的第三电平的调制波、单相五电平变流器输出的第四电平的调制波以及单相五电平变流器输出的第五电平的调制波。然后,控制系统对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到共模调制波,并对第一相初始调制波、第二相初始调制波以及共模调制波进行计算,得到脉宽调制波。
其中,第一相初始调制波和第二相初始调制波均为正弦波,且第一相初始调制波在任一时刻的幅度与第二相初始调制波在该时刻的幅度相加为零。
其中,第一电平为直流侧正母线电平,第二电平为零电平和直流侧正母线电平之间的电平,第三电平为零电平,第四电平为直流侧负母线电平和零电平之间的电平,第五电平为直流侧负母线电平。
在该技术方案中,控制系统根据单相五电平变流器的两桥臂初始调制波(即第一相初始调制波和第二相初始调制波),得到共模调制波,可避免使用虚拟第三相的算法过程,减 少了延时环节,可提升系统响应速度以及系统可靠性。
在一个设计方案中,控制系统对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到单相五电平变流器的共模调制波的具体方式可以为:将正母线电平对应的调制波减去第一相初始调制波,得到第一调制波。将正中间电平对应的调制波减去第二相初始调制波,得到第二调制波。将零电平对应的调制波减去第一相初始调制波,得到第三调制波。将负中间电平对应的调制波减去第二相初始调制波,得到第四调制波。将负母线电平对应的调制波减去第一相初始调制波,得到第五调制波。将第一调制波、第二调制波、第三调制波、第四调制波以及第五调制波进行比较,确定共模调制波。其中,共模调制波在任一时刻的幅度为第一调制波、第二调制波、第三调制波、第四调制波以及第五调制波在该时刻的幅度中绝对值最小的幅度。
在该技术方案中,通过本申请实施例得到的共模调制波连续无阶跃,可有效减少共模漏电流,从而减少高频共模电压分量。
在一个设计方案中,第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波或者第二相初始调制波在任一时刻的幅度大于等于-1,且小于等于1。
在一个设计方案中,脉宽调制波可以包括第六调制波和第七调制波,则控制系统对第一相初始调制波、第二相初始调制波以及共模调制波进行计算,得到脉宽调制波的具体方式可以为:将第一相初始调制波与共模调制波相加,得到第六调制波,并将第二相初始调制波与共模调制波相加,得到第七调制波。
在该技术方案中,能够利用单相五电平变流器的每相能够输出五个电平的特点,对两个桥臂的钳位状态进行分配,实现两桥臂之间的损耗平衡。
第二方面,本申请实施例提供一种单相五电平变流器的控制装置,该单相五电平变流器的控制装置具有实现第一方面所述的单相五电平变流器的控制方法示例中控制系统行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种单相五电平变流器的控制系统的架构示意图;
图2是本申请实施例公开的一种单相五电平光伏并网系统的结构示意图;
图3是本申请另一实施例公开的一种单相五电平光伏并网系统的结构示意图;
图4是本申请实施例公开的一种单相五电平变流器的控制方法的流程示意图;
图5是本申请实施例公开的一种初始调制波的波形示意图;
图6是本申请实施例公开的一种共模调制波的波形示意图;
图7是本申请实施例公开的一种脉宽调制波的波形示意图;
图8是本申请实施例公开的一种A相桥臂损耗和B相桥臂损耗的示意图;
图9是本申请实施例公开的一种单相五电平变流器的控制装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
为了更好的理解本申请实施例公开的单相五电平变流器的控制方法以及装置,下面首先对本申请实施例适用的网络架构进行描述。请参见图1,图1是本申请实施例公开的一种单相五电平变流器的控制系统的架构示意图。如图1所示,该单相五电平变流器的控制系统可以包括单相五电平变流器、共模调制波计算单元、电流采样单元、控制单元以及载波调制单元。其中,单相五电平变流器分别与电压采样单元和载波调制单元连接,电流采样单元与控制单元连接,控制单元分别与共模调制波计算单元和载波调制单元连接。
电流采样单元,用于从单相五电平变流器中获取输出电流(例如图2或图3中的i g),并将输出电流发送给控制单元。
控制单元,用于对输出电流和电流参考值进行计算,得到第一相初始调制波和第二相初始调制波,并将第一相初始调制波和第二相初始调制波发送给共模调制波计算单元。
共模调制波计算单元,用于对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到共模调制波。
其中,控制单元输出的第一相初始调制波和第二相初始调制波,以及共模调制波计算单元输出的共模调制波经过处理,得到脉宽调制波。其中,该脉宽调制波输出至载波调制单元。
载波调制单元,用于根据脉宽调制波输出驱动信号至单相五电平变流器,以控制单相五电平变流器中各个开关组(例如图2中的S a和S b,或者图3中的S a1、S a2、S a3、S b1、S b2和S b3)的不同通断状态,以便单相五电平变流器输出不同电压。
以图2所示的单相五电平光伏并网系统的结构示意图为例,单相五电平光伏并网系统可以包括光伏电池板、单相五电平变流器和交流电网,单相五电平变流器直流侧与光伏电池板相连,单相五电平变流器交流侧通过滤波电感(例如L1或者L2)与交流电网相连。单相五电平光伏并网系统是将光伏电池板产生的直流电转换为交流电送入交流电网。
在图2所示的单相五电平变流器中,电容C1的正极分别与光伏电池板、开关组S a以及开关组S b连接,电容C1的负极分别与电容C2的正极、开关组S a以及开关组S b连接,电容C2的负极分别与电容C3的正极、开关组S a以及开关组S b连接,电容C3的负极分别与电容C4的正极、开关组S a以及开关组S b连接,电容C4的负极分别与光伏电池板、开关组S a以及开关组S b连接,开关组S a与滤波电感L1连接,滤波电感L1与交流电网连接,开关组S b与滤波电感L2连接,滤波电感L2与交流电网连接。其中经滤波电感L1(或者L2)输出的电流为输出电流i g
单相五电平变流器的直流母线侧通过四个电容C 1、C 2、C 3以及C 4进行分压,两相桥臂通过开关组S a和S b实现直流侧和交流侧的电能转换。通过控制桥臂开关组的不同通断状态,可以在交流端口输出五种电平,例如A相(即第一相)输出正母线电平(即第一电平), 正母线电平对应电压为V 1;正中间电平(即第二电平),正中间电平对应电压为V 2;零电平(即第三电平),零电平对应电压为0;负中间电平(即第四电平),负中间电平对应电压为-V 2;以及负母线电平(即第五电平),负母线电平对应电压为-V 1。又如B相(即第二相)输出正母线电平(即第一电平),正母线电平对应电压为V 1;正中间电平(即第二电平),正中间电平对应电压为V 2;零电平(即第三电平),零电平对应电压为0;负中间电平(即第四电平),负中间电平对应电压为-V 2;以及负母线电平(即第五电平),负母线电平对应电压为-V 1。其中,V 2<V 1,示例性的,V 2=V 1/2。
需要说明的是,单相五电平储能系统与单相五电平光伏并网系统的结构类似,将图2中的光伏电池板替换为蓄电池,即可得到单相五电平储能系统的结构示意图。单相五电平储能系统用于实现交流电网与蓄电池之间的双向能量交换。
以图3所示的单相五电平光伏并网系统的结构示意图为例,单相五电平光伏并网系统可以包括光伏电池板、单相五电平变流器和交流电网,单相五电平变流器直流侧与光伏电池板相连,单相五电平变流器交流侧通过滤波电感(例如L1或者L2)与交流电网相连。单相五电平光伏并网系统是将光伏电池板产生的直流电转换为交流电送入交流电网。
在图3所示的单相五电平变流器中,电容C1的正极分别与光伏电池板、开关组S a1以及开关组S b1连接,电容C1的负极分别与电容C2的正极、开关组S a1、开关组S a2、开关组S b1以及开关组S b2连接,电容C2的负极分别与光伏电池板、开关组S a2以及开关组S b2连接,电容C3的正极分别与开关组S a1以及开关组S a3连接,电容C3的负极分别与开关组S a2以及开关组S a3连接,开关组S a3滤波电感L1连接,滤波电感L1与交流电网连接,电容C4的正极分别与开关组S b1以及开关组S b3连接,电容C4的负极分别与开关组S b2以及开关组S b3连接,开关组S b3与滤波电感L2连接,滤波电感L2与交流电网连接。其中经滤波电感L1(或者L2)输出的电流为输出电流i g
单相五电平变流器的直流母线侧通过两个电容C 1以及C 2进行分压,A相(即第一相)桥臂的直流侧和交流侧之间还有一个飞跨电容C3,B相(即第二相)桥臂的直流侧和交流侧之间还有一个飞跨电容C4。两相桥臂通过开关组S a1、S a2、S a3、S b1、S b2和S b3实现直流侧和交流侧的电能转换。通过控制桥臂开关组的不同通断状态,可以在交流端口输出五种电平,例如A相输出正母线电平(即第一电平),正母线电平对应电压为V 1;正中间电平(即第二电平),正中间电平对应电压为V 1-V 2;零电平(即第三电平),零电平对应电压为0;负中间电平(即第四电平),负中间电平对应电压为V 2-V 1;以及负母线电平(即第五电平),负母线电平对应电压为-V 1。又如B相输出正母线电平(即第一电平),正母线电平对应电压为V 1;正中间电平(即第二电平),正中间电平对应电压为V 1-V 2;零电平(即第三电平),零电平对应电压为0;负中间电平(即第四电平),负中间电平对应电压为V 2-V 1;以及负母线电平(即第五电平),负母线电平对应电压为-V 1。其中,V 2<V 1,示例性的,V 2=V 1/2。
需要说明的是,单相五电平储能系统与单相五电平光伏并网系统的结构类似,将图3中的光伏电池板替换为蓄电池,即可得到单相五电平储能系统的结构示意图。单相五电平储能系统用于实现交流电网与蓄电池之间的双向能量交换。
基于图4所示的单相五电平变流器的控制系统的架构示意图,请参见图4,图4是本申请实施例提供的一种单相五电平变流器的控制方法,该方法包括但不限于如下步骤:
步骤S401:获取单相五电平变流器的第一相初始调制波,以及单相五电平变流器的第二相初始调制波。
具体地,控制系统可以获取单相五电平变流器输出的输出电流,对输出电流和电流参考值进行计算,得到第一相初始调制波以及第二相初始调制波。以图5所示的初始调制波的波形示意图为例,第一相初始调制波和第二相初始调制波均为正弦波,其中第一相初始调制波在任一时刻的幅度大于等于-1,且小于等于1,且第二相初始调制波在任一时刻的幅度大于等于-1,且小于等于1。第一相初始调制波和第二相初始调制波满足如下关系:第一相初始调制波在任一时刻的幅度与第二相初始调制波在该时刻的幅度相加为零,即V a=-V b,其中,V a表示第一相初始调制波,V b表示第二相初始调制波。
步骤S402:获取单相五电平变流器输出的第一电平的调制波、单相五电平变流器输出的第第二电平的调制波、单相五电平变流器输出的第第三电平的调制波、单相五电平变流器输出的第第四电平的调制波以及单相五电平变流器输出的第第五电平的调制波。
控制系统还可以获取单相五电平变流器输出的第一电平的调制波、单相五电平变流器输出的第二电平的调制波、单相五电平变流器输出的第三电平的调制波、单相五电平变流器输出的第四电平的调制波以及单相五电平变流器输出的第五电平的调制波。其中,第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波以及第五电平的调制波在任一时刻的幅度大于等于-1,且小于等于1。
在图2所示的单相五电平光伏并网系统中,单相五电平变流器输出的第一电平的调制波的幅度为V 1,第二电平的调制波的幅度为V 2,第三电平的调制波的幅度为0,第四电平的调制波的幅度为-V 2,第五电平的调制波的幅度为-V 1。在图3所示的单相五电平光伏并网系统中,单相五电平变流器输出的第一电平的调制波的幅度为V 1,第二电平的调制波的幅度为V 1-V 2,第三电平的调制波的幅度为0,第四电平的调制波的幅度为V 2-V 1,第五电平的调制波的幅度为-V 1
需要说明的是,本申请实施例中的第一电平的调制波可以是对单相五电平变流器输出的第一电平的调制波进行归一化处理后得到的,即本申请实施例中的第一电平的调制波在任一时刻的电压为1。
需要说明的是,本申请实施例中的第二电平的调制波可以是对单相五电平变流器输出的第二电平的调制波进行归一化处理后得到的,即本申请实施例中的第二电平的调制波在任一时刻的电压为0.5。
需要说明的是,本申请实施例中的第三电平的调制波可以是对单相五电平变流器输出的第三电平的调制波进行归一化处理后得到的,即本申请实施例中的第三电平的调制波在任一时刻的电压为0。
需要说明的是,本申请实施例中的第四电平的调制波可以是对单相五电平变流器输出的第四电平的调制波进行归一化处理后得到的,即本申请实施例中的第四电平的调制波在任一时刻的电压为-0.5。
需要说明的是,本申请实施例中的第五电平的调制波可以是对单相五电平变流器输出 的第五电平的调制波进行归一化处理后得到的,即本申请实施例中的第五电平的调制波在任一时刻的电压为-1。
需要说明的是,本申请实施例并不限定步骤S401和步骤S402的执行顺序,例如控制系统可以在执行步骤S402之后执行步骤S401,又如控制系统可以同时执行步骤S401和步骤S402。
步骤S403:对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到共模调制波。
具体地,控制系统得到共模调制波的具体方式可以为:将第一电平的调制波减去第一相初始调制波,得到单相五电平变流器的第一调制波。将第二电平的调制波减去第二相初始调制波,得到单相五电平变流器的第二调制波。将第三电平的调制波减去第一相初始调制波,得到单相五电平变流器的第三调制波。将第四电平的调制波减去第二相初始调制波,得到单相五电平变流器的第四调制波。将第五电平的调制波减去第一相初始调制波,得到单相五电平变流器的第五调制波。然后,控制系统可以将第一调制波、第二调制波、第三调制波、第四调制波以及第五调制波进行比较,确定共模调制波,其中共模调制波在任一时刻的幅度为第一调制波、第二调制波、第三调制波、第四调制波以及第五调制波在该时刻的幅度中绝对值最小的幅度。
以图2为例,第一电平的调制波的幅度为V 1,第二电平的调制波的幅度为V 2,第三电平的调制波的幅度为0,第四电平的调制波的幅度为-V 2,第五电平的调制波的幅度为-V 1,第一相初始调制波为V a,第二相初始调制波为V b,则控制系统可以确定第一调制波的幅度为V 1-V a,第二调制波的幅度为V 2-V b,第三调制波的幅度为-V a,第四调制波的幅度为-V 2-V b,第五调制波的幅度为-V 1-V a
以图3为例,第一电平的调制波的幅度为V 1,第二电平的调制波的幅度为V 1-V 2,第三电平的调制波的幅度为0,第四电平的调制波的幅度为V 2-V 1,第五电平的调制波的幅度为-V 1,第一相初始调制波为V a,第二相初始调制波为V b,则控制系统可以确定第一调制波的幅度为V 1-V a,第二调制波的幅度为V 1-V 2-V b,第三调制波的幅度为-V a,第四调制波的幅度为V 2-V 1-V b,第五调制波的幅度为-V 1-V a
需要说明的是,若第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波以及第五电平的调制波均是经过归一化处理后得到的,则控制系统可以确定第一调制波的幅度为1-V a,第二调制波的幅度为0.5-V b,第三调制波的幅度为-V a,第四调制波的幅度为-0.5-V b,第五调制波的幅度为-1-V a。通过上述方法得到的共模调制波的波形示意图可以如图6所示,得到的共模调制波均连续无阶跃,降低了高频分量,抑制了漏电流的产生。且图6中的共模调制波的幅值较小,产生的等效共模电压源幅值也较小,有利于抑制共模电流。
在另一种实现方式中,控制系统可以将第一电平的调制波减去第二相初始调制波,得到第八调制波;将第二电平的调制波减去第一相初始调制波,得到第九调制波;将第三电平的调制波减去第二相初始调制波,得到第十调制波;将第四电平的调制波减去第一相初始调制波,得到第十一调制波;将第五电平的调制波减去第二相初始调制波,得到第十二 调制波;将第八调制波、第九调制波、第十调制波、第十一调制波以及第十二调制波进行比较,确定共模调制波,其中共模调制波在任一时刻的幅度为第八调制波、第九调制波、第十调制波、第十一调制波以及第十二调制波在该时刻的幅度中绝对值最小的幅度。通过上述方法得到的共模调制波与图6所示的共模调制波在横轴上对称,得到的共模调制波连续无阶跃。
步骤S404:对第一相初始调制波、第二相初始调制波以及共模调制波进行计算,得到脉宽调制波。
具体的,控制系统可以将第一相初始调制波与共模调制波相加,得到第六调制波,并将第二相初始调制波与共模调制波相加,得到第七调制波。其中,第六调制波和第七调制波组成脉宽调制波。其中,脉宽调制波的波形示意图可以如图7所示,其中v a_mod表示第六调制波,v b_mod表示第七调制波。A相调制波出现了三个钳位状态,分别是+1钳位、0钳位和-1钳位,对应正母线电平钳位、零电平钳位和负母线电平钳位。B相调制波出现了两个钳位状态,分别是+0.5钳位和-0.5钳位,对应正中间电平钳位和负中间电平钳位。各钳位状态交替出现,没有重叠,这也证明了图6中共模调制波在各钳位状态之间连续变化,钳位状态覆盖了整个工频周期,能够进一步提升控制效率。另外,B相调制波的钳位状态为+0.5钳位和-0.5钳位,而非零钳位状态,能够提升B相的损耗降低效果。其中,A相桥臂损耗和B相桥臂损耗的示意图可以如图8所示,A相桥臂损耗为53.36%,B相桥臂损耗为46.64%,即A相桥臂损耗降低效果和B相桥臂损耗降低效果接近,实现两桥臂之间的损耗平衡,有利于减小散热系统的成本和体积。
以图8所示的单相五电平变流器的输出电压的波形示意图为例,A相输出电压和A相调制波的钳位状态之间存在对应关系,且B相输出电压和B相调制波的钳位状态之间存在对应关系。
在图4所描述的方法中,对第一电平的调制波、第二电平的调制波、第三电平的调制波、第四电平的调制波、第五电平的调制波、第一相初始调制波以及第二相初始调制波进行计算,得到共模调制波,并对第一相初始调制波、第二相初始调制波以及共模调制波进行计算,得到脉宽调制波,可避免使用虚拟第三相的算法过程,减少了延时环节,可提升系统响应速度以及系统可靠性。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图9,图9是本申请实施例提供的一种单相五电平变流器的控制装置的结构示意图,用于实现图4实施例的方法,该单相五电平变流器的控制装置可以包括控制单元901、调制波获取单元902、共模调制波计算单元903以及脉宽调制波计算单元904,其中,各个单元的详细描述如下。
控制单元901,用于获取单相五电平变流器的第一相初始调制波以及所述单相五电平变流器的第二相初始调制波,其中所述第一相初始调制波和所述第二相初始调制波均为正弦波,且所述第一相初始调制波在任一时刻的幅度与所述第二相初始调制波在所述时刻的幅度相加为零;
调制波获取单元902,用于获取所述单相五电平变流器输出的第一电平的调制波、所 述单相五电平变流器输出的第二电平的调制波、所述单相五电平变流器输出的第三电平的调制波、所述单相五电平变流器输出的第四电平的调制波以及所述单相五电平变流器输出的第五电平的调制波,其中所述第一电平为直流侧正母线电平,所述第二电平为零电平和直流侧正母线电平之间的电平,所述第三电平为零电平,所述第四电平为直流侧负母线电平和零电平之间的电平,所述第五电平为直流侧负母线电平;
共模调制波计算单元903,用于对所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波以及所述第二相初始调制波进行计算,得到所述单相五电平变流器的共模调制波;
脉宽调制波计算单元904,用于对所述第一相初始调制波、所述第二相初始调制波以及所述共模调制波进行计算,得到单相五电平变流器的脉宽调制波。
可选的,所述共模调制波计算单元903,具体用于:
将所述第一电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第一调制波;
将所述第二电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第二调制波;
将所述第三电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第三调制波;
将所述第四电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第四调制波;
将所述第五电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第五调制波;
将所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波进行比较,确定所述共模调制波,其中所述共模调制波在任一时刻的幅度为所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波在所述时刻的幅度中绝对值最小的幅度。
可选的,所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波或者所述第二相初始调制波在任一时刻的幅度大于等于-1,且小于等于1。
可选的,所述脉宽调制波包括第六调制波和第七调制波,则所述脉宽调制波计算单元904,具体用于:
将所述第一相初始调制波与所述共模调制波相加,得到所述第六调制波;
将所述第二相初始调制波与所述共模调制波相加,得到所述第七调制波。
需要说明的是,各个模块的实现还可以对应参照图4所示的实施例的相应描述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本申请实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (8)

  1. 一种单相五电平变流器的控制方法,其特征在于,所述方法包括:
    获取单相五电平变流器的第一相初始调制波以及所述单相五电平变流器的第二相初始调制波,其中所述第一相初始调制波和所述第二相初始调制波均为正弦波,且所述第一相初始调制波在任一时刻的幅度与所述第二相初始调制波在所述时刻的幅度相加为零;
    获取所述单相五电平变流器输出的第一电平的调制波、所述单相五电平变流器输出的第二电平的调制波、所述单相五电平变流器输出的第三电平的调制波、所述单相五电平变流器输出的第四电平的调制波以及所述单相五电平变流器输出的第五电平的调制波,其中所述第一电平为直流侧正母线电平,所述第二电平为零电平和直流侧正母线电平之间的电平,所述第三电平为零电平,所述第四电平为直流侧负母线电平和零电平之间的电平,所述第五电平为直流侧负母线电平;
    对所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波以及所述第二相初始调制波进行计算,得到所述单相五电平变流器的共模调制波;
    对所述第一相初始调制波、所述第二相初始调制波以及所述共模调制波进行计算,得到单相五电平变流器的脉宽调制波。
  2. 如权利要求1所述的方法,其特征在于,所述对所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波以及所述第二相初始调制波进行计算,得到所述单相五电平变流器的共模调制波,包括:
    将所述第一电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第一调制波;
    将所述第二电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第二调制波;
    将所述第三电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第三调制波;
    将所述第四电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第四调制波;
    将所述第五电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第五调制波;
    将所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波进行比较,确定所述共模调制波,其中所述共模调制波在任一时刻的幅度为所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波在所述时刻的幅度中绝对值最小的幅度。
  3. 如权利要求1所述的方法,其特征在于,所述第一电平的调制波、所述第二电平的 调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波或者所述第二相初始调制波在任一时刻的幅度大于等于-1,且小于等于1。
  4. 如权利要求1所述的方法,其特征在于,所述脉宽调制波包括第六调制波和第七调制波;
    所述对所述第一相初始调制波、所述第二相初始调制波以及所述共模调制波进行计算,得到脉宽调制波,包括:
    将所述第一相初始调制波与所述共模调制波相加,得到所述第六调制波;
    将所述第二相初始调制波与所述共模调制波相加,得到所述第七调制波。
  5. 一种单相五电平变流器的控制装置,其特征在于,所述装置包括:
    控制单元,用于获取单相五电平变流器的第一相初始调制波以及所述单相五电平变流器的第二相初始调制波,其中所述第一相初始调制波和所述第二相初始调制波均为正弦波,且所述第一相初始调制波在任一时刻的幅度与所述第二相初始调制波在所述时刻的幅度相加为零;
    调制波获取单元,用于获取所述单相五电平变流器输出的第一电平的调制波、所述单相五电平变流器输出的第二电平的调制波、所述单相五电平变流器输出的第三电平的调制波、所述单相五电平变流器输出的第四电平的调制波以及所述单相五电平变流器输出的第五电平的调制波,其中所述第一电平为直流侧正母线电平,所述第二电平为零电平和直流侧正母线电平之间的电平,所述第三电平为零电平,所述第四电平为直流侧负母线电平和零电平之间的电平,所述第五电平为直流侧负母线电平;
    共模调制波计算单元,用于对所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波以及所述第二相初始调制波进行计算,得到所述单相五电平变流器的共模调制波;
    脉宽调制波计算单元,用于对所述第一相初始调制波、所述第二相初始调制波以及所述共模调制波进行计算,得到单相五电平变流器的脉宽调制波。
  6. 如权利要求5所述的装置,其特征在于,所述共模调制波计算单元,具体用于:
    将所述第一电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第一调制波;
    将所述第二电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第二调制波;
    将所述第三电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的第三调制波;
    将所述第四电平的调制波减去所述第二相初始调制波,得到所述单相五电平变流器的第四调制波;
    将所述第五电平的调制波减去所述第一相初始调制波,得到所述单相五电平变流器的 第五调制波;
    将所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波进行比较,确定所述共模调制波,其中所述共模调制波在任一时刻的幅度为所述第一调制波、所述第二调制波、所述第三调制波、所述第四调制波以及所述第五调制波在所述时刻的幅度中绝对值最小的幅度。
  7. 如权利要求5所述的装置,其特征在于,所述第一电平的调制波、所述第二电平的调制波、所述第三电平的调制波、所述第四电平的调制波、所述第五电平的调制波、所述第一相初始调制波或者所述第二相初始调制波在任一时刻的幅度大于等于-1,且小于等于1。
  8. 如权利要求5所述的装置,其特征在于,所述脉宽调制波包括第六调制波和第七调制波;
    所述脉宽调制波计算单元,具体用于:
    将所述第一相初始调制波与所述共模调制波相加,得到所述第六调制波;
    将所述第二相初始调制波与所述共模调制波相加,得到所述第七调制波。
PCT/CN2018/119762 2017-12-26 2018-12-07 单相五电平变流器的控制方法以及装置 WO2019128674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18897533.8A EP3723264B1 (en) 2017-12-26 2018-12-07 Single-phase five-level converter control method and device
US16/911,600 US11146181B2 (en) 2017-12-26 2020-06-25 Control method and apparatus for common-mode modulated wave of single-phase five-level inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711439005.4A CN108092534B (zh) 2017-12-26 2017-12-26 单相五电平变流器的控制方法以及装置
CN201711439005.4 2017-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,600 Continuation US11146181B2 (en) 2017-12-26 2020-06-25 Control method and apparatus for common-mode modulated wave of single-phase five-level inverter

Publications (1)

Publication Number Publication Date
WO2019128674A1 true WO2019128674A1 (zh) 2019-07-04

Family

ID=62179295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119762 WO2019128674A1 (zh) 2017-12-26 2018-12-07 单相五电平变流器的控制方法以及装置

Country Status (4)

Country Link
US (1) US11146181B2 (zh)
EP (1) EP3723264B1 (zh)
CN (1) CN108092534B (zh)
WO (1) WO2019128674A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092534B (zh) * 2017-12-26 2020-02-21 华为技术有限公司 单相五电平变流器的控制方法以及装置
CN109495004B (zh) * 2018-12-14 2019-12-20 合肥工业大学 奇数相三电平变流器的非连续脉宽调制方法
CN112803823B (zh) * 2019-11-13 2022-09-23 华为技术有限公司 脉冲宽度调制方法、逆变器和控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268052A1 (en) * 2006-05-22 2007-11-22 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN101860244A (zh) * 2010-04-09 2010-10-13 南京航空航天大学 单相二极管箝位型五电平半桥逆变器的半周期控制方法
CN102843054A (zh) * 2012-09-06 2012-12-26 阳光电源股份有限公司 一种单相五电平逆变器
CN106100430A (zh) * 2016-08-23 2016-11-09 合肥工业大学 三相五电平逆变器低共模电压调制的载波实现方法
CN107070258A (zh) * 2017-05-22 2017-08-18 上海交通大学 一种单相多电平电流源变流器及变流器的控制方法
CN108092534A (zh) * 2017-12-26 2018-05-29 华为技术有限公司 单相五电平变流器的控制方法以及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830298B2 (ja) * 2011-08-04 2015-12-09 株式会社ダイヘン 系統連系インバータ装置
CN103580465B (zh) * 2013-11-21 2015-11-18 中国矿业大学 一种抑制三相pwm变流器共模电压的简化调制算法
US9325252B2 (en) * 2014-01-13 2016-04-26 Rockwell Automation Technologies, Inc. Multilevel converter systems and sinusoidal pulse width modulation methods
US10148093B2 (en) * 2015-06-16 2018-12-04 Koolbridge Solar, Inc. Inter coupling of microinverters
CN105790622B (zh) 2016-04-12 2020-02-18 中国科学院电工研究所 五电平有源中点箝位h桥逆变器的控制方法
CN106533236B (zh) * 2016-12-15 2018-10-16 电子科技大学 一种三电平逆变器的最小开关损耗实现方法
CN106655848B (zh) 2017-02-08 2021-06-01 华为技术有限公司 一种五电平变换器的控制方法
CN106961225B (zh) * 2017-03-21 2019-06-11 江苏固德威电源科技股份有限公司 不连续空间矢量脉冲宽度调制方法及逆变装置
CN107276445A (zh) * 2017-06-15 2017-10-20 上海电力学院 共模电压最小化的空间电压矢量调制方法
CN107070278B (zh) * 2017-06-26 2018-10-02 合肥工业大学 一种三电平变流器中点电位平衡的非连续脉宽调制方法
CN107508483A (zh) * 2017-08-19 2017-12-22 泽伦电气科技有限公司 一种降低开关损耗的三电平变流器非连续脉宽调制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268052A1 (en) * 2006-05-22 2007-11-22 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN101860244A (zh) * 2010-04-09 2010-10-13 南京航空航天大学 单相二极管箝位型五电平半桥逆变器的半周期控制方法
CN102843054A (zh) * 2012-09-06 2012-12-26 阳光电源股份有限公司 一种单相五电平逆变器
CN106100430A (zh) * 2016-08-23 2016-11-09 合肥工业大学 三相五电平逆变器低共模电压调制的载波实现方法
CN107070258A (zh) * 2017-05-22 2017-08-18 上海交通大学 一种单相多电平电流源变流器及变流器的控制方法
CN108092534A (zh) * 2017-12-26 2018-05-29 华为技术有限公司 单相五电平变流器的控制方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3723264A4 *

Also Published As

Publication number Publication date
US20200328697A1 (en) 2020-10-15
CN108092534B (zh) 2020-02-21
EP3723264A1 (en) 2020-10-14
EP3723264A4 (en) 2020-12-30
CN108092534A (zh) 2018-05-29
EP3723264B1 (en) 2024-01-24
US11146181B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
US11949343B2 (en) Systems and methods for controlling multi-level diode-clamped inverters using space vector pulse width modulation (SVPWM)
JP5806273B2 (ja) インバータの直流リンクコンデンサの容量推定装置
CN105429484B (zh) 基于任意周期延时的pwm整流器预测功率控制方法及系统
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
JP2019530418A (ja) 三相コンバータ及び三相コンバータ制御方法
Jing et al. Research on hybrid SHEPWM based on different switching patterns
CN109586590B (zh) 用于电流源型变流器的多功能空间矢量调制方法
CN109510496B (zh) 无电解电容npc三电平逆变器中点电压平衡控制方法及系统
CN106787805B (zh) 不平衡负载下五相六桥臂双级矩阵变换器载波pwm控制策略
CN102291030A (zh) 三电平光伏并网逆变器直流电压平衡控制方法
CN102291024A (zh) 三相多电平pwm变换器的并联结构
CN104753375A (zh) 一种三电平逆变器dpwm控制方法
Mekhilef et al. DC link capacitor voltage balancing in three level neutral point clamped inverter
CN104300817B (zh) 能量转换系统中的t型三电平svpwm的控制方法
CN103944433B (zh) 一种三相三电平逆变电路和不间断电源
CN101976967B (zh) 一种三电平逆变器及其直流母线电压的平衡控制方法
CN103633874B (zh) H桥级联多电平变换器的单极性spwm无死区调制方法
CN102255532A (zh) 单相多电平pwm变换器的并联结构
CN107994796B (zh) 单相变流器的控制方法以及装置
KR101434849B1 (ko) 삼상 tnpc 3레벨 컨버터와 인버터 적용을 위한 벡터 제어의 pwm 및 제어 스위칭 소자 전환 방법
Liu et al. An optimal predictive control method for three-level inverter with low switching losses under target current THD
CN116404926A (zh) 一种开绕组永磁同步电机低谐波优化同步调制方法与装置
CN107147130B (zh) 集散均衡式高压svg控制装置及控制方法
JP2016165201A (ja) インバータ装置および車両
Anjana et al. An efficient hybrid digital architecture for space vector PWM method for multilevel VSI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897533

Country of ref document: EP

Effective date: 20200706