CN115208226B - 一种模块化级联功放开关组合轮换多电平调制方法 - Google Patents

一种模块化级联功放开关组合轮换多电平调制方法 Download PDF

Info

Publication number
CN115208226B
CN115208226B CN202211134224.2A CN202211134224A CN115208226B CN 115208226 B CN115208226 B CN 115208226B CN 202211134224 A CN202211134224 A CN 202211134224A CN 115208226 B CN115208226 B CN 115208226B
Authority
CN
China
Prior art keywords
bridge arm
voltage
modulation
switch
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211134224.2A
Other languages
English (en)
Other versions
CN115208226A (zh
Inventor
肖牧轩
欧阳红林
朱颖达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202211134224.2A priority Critical patent/CN115208226B/zh
Publication of CN115208226A publication Critical patent/CN115208226A/zh
Application granted granted Critical
Publication of CN115208226B publication Critical patent/CN115208226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Abstract

本发明公开了一种模块化级联功放开关组合轮换多电平调制方法,应用在模块化级联功放上,所述模块化级联功放的输出侧由N个DC/AC模块单元级联组成,所述DC/AC模块单元采用全桥逆变单元结构,由左桥臂支路和右桥臂支路构成,该方法通过开关组合将多电平调制分为平台电压调制和脉冲电压调制两部分并在开关组合序列的约束下控制各桥臂的开通与关断,实现了桥臂间功率器件开关频率均衡与单元模块间功率均衡。同时,不同电平数的模块化级联功放调制均可以采用统一化的公式实现,计算复杂度不随着电平数目的增加而增多,便于功率放大器电压等级的扩展。

Description

一种模块化级联功放开关组合轮换多电平调制方法
技术领域
本发明属于电力电子装置技术领域,具体涉及一种模块化级联功放开关组合轮换多电平调制方法。
背景技术
模块化级联多电平数字功率放大器在海洋资源探索、海洋安全防卫以及新能源大规模并网系统中的核心装置,其主电路由多个输入并联输出串联功率模块组成。其中,每个功率模块包含一个AC/DC功率单元和一个DC/AC功率单元,AC/DC功率单元为输入端,DC/AC功率单元为输出端。AC/DC功率单元将交流电网电压转化为可调节直流电压,为DC/AC功率单元提供高隔离独立稳定的直流电源。DC/AC功率单元通过逆变桥将直流转化为频率和幅值均可以调节的交流脉冲,经多个模块串联后叠加输出高压脉冲,最终高压脉冲经LC滤波器后变为低谐波含量的高电压。模块化级联多电平数字功率放大器采用可调AC/DC单元与DC/AC单元级联的组合形式,输出电压调节较为灵活,因此输出端完全省去了庞大的负载匹配变压器。
模块化级联多电平数字功率放大器输出侧采用多个DC/AC级联而成,其输出波形的正弦特性由调制信号和调制策略决定。DC/AC功率单元拓扑由全桥逆变单元构成,通过改变全桥电路功率器件的开关状态控制输出电压变化。不同的调制策略可以在输出电压基波幅值、谐波含量、开关损耗以及实现难易度等方面有着不同的表现,因此,调制策略是模块化级联多电平数字功放中的关键技术。
目前常见的多电平变换器调制技术主要包括阶梯波调制和脉宽调制,阶梯波调制策略中最常用的是最近电平逼近调制(Nearest Level Modulation,NLM),脉宽调制策略的种类较多,主要包括特定次谐波消除PWM(Selected Harmonic Estimation PWM,SHEPWM),载波移相PWM(Phase Shift PWM,PS-PWM),载波层叠PWM(Phase Disposition PWM,PD-PWM)和空间矢量PWM (Space Vector PWM,SVPWM)技术。
上述五种调制策略中,NLM调制策略主要应用于模块数目较多的场合才能保证电压输出品质;特定谐波消去法需要求解超越计算量较大方程,所以需要离线计算好开关角度,灵活性较差;载波移相调制策略实现简单,谐波性能较优已经得到了广泛的应用;载波层叠调制策略,由于功率不平衡问题严重导致难以应用,但是其线电压谐波性能优于载波移相调制策略;多电平SVPWM由于其能够提供更高的直流电压利用率、更好的谐波效果,同时降低各单元功率器件的开关频率等特点受到了广泛关注,但由于其随着电平数的增多,该算法的实现时间急剧增加,限制了其在多电平领域的广泛应用。
发明内容
本发明为了解决上述问题,提出了一种模块化级联功放开关组合轮换多电平调制方法,其通过开关组合轮换策略与等效输出概念的相结合,统一了多种调制策略的实现方式,降低了功放控制系统复杂性,满足了多模式运行下低谐波输出与可靠运行的要求。
所述模块化级联功放的输出侧由N个DC/AC模块单元级联组成,所述DC/AC模块单元采用全桥逆变单元结构,由左桥臂支路和右桥臂支路构成,通过所述开关组合轮换多电平调制方法对N个DC/AC模块单元进行控制,所述开关组合轮换多电平调制方法具体为:
获取调制信号
Figure 100002_DEST_PATH_IMAGE001
,将调制信号
Figure 720501DEST_PATH_IMAGE002
输入平台调制模块和脉冲调制模块,分别得到平台电压
Figure 434379DEST_PATH_IMAGE003
与脉冲调制电压
Figure 100002_DEST_PATH_IMAGE004
Figure 151799DEST_PATH_IMAGE005
其中,floor为向下取整函数,mod为求余运算,V dc 为模块单元直流母线电压;
将脉冲调制电压与载波信号
Figure 100002_DEST_PATH_IMAGE006
进行比较得到开关信号
Figure 937222DEST_PATH_IMAGE007
,并通过平台电压计算得到由开关组合
Figure 100002_DEST_PATH_IMAGE008
构成的开关组合序列,其中,
Figure 954856DEST_PATH_IMAGE009
为需要导通的桥臂序号,
Figure 100002_DEST_PATH_IMAGE010
为需要关断的桥臂序号,所述开关组合序列由开关信号
Figure 42898DEST_PATH_IMAGE007
驱动,每当
Figure 464259DEST_PATH_IMAGE007
上升沿到来时,
Figure 459897DEST_PATH_IMAGE011
Figure 100002_DEST_PATH_IMAGE012
依次递增直至2N后返回到1再次轮换循环,每当脉冲
Figure 269721DEST_PATH_IMAGE007
下降沿到来时,
Figure 59822DEST_PATH_IMAGE013
Figure 100002_DEST_PATH_IMAGE014
通过开关组合序列计算得到桥臂控制信号
Figure 204365DEST_PATH_IMAGE015
m为桥臂序号,所述开关信号控制
Figure 100002_DEST_PATH_IMAGE016
满足:当
Figure 144639DEST_PATH_IMAGE017
,当
Figure 100002_DEST_PATH_IMAGE018
,当
Figure 933603DEST_PATH_IMAGE019
通过桥臂控制信号
Figure 520705DEST_PATH_IMAGE015
计算得到所有DC/AC模块单元左、右桥臂支路开关管驱动信号,
Figure 100002_DEST_PATH_IMAGE020
其中,n为DC/AC模块单元序号,
Figure 293489DEST_PATH_IMAGE021
为第n个DC/AC模块单元左桥臂支路的上开关管驱动信号,
Figure 100002_DEST_PATH_IMAGE022
为第n个DC/AC模块单元右桥臂支路的上开关管驱动信号。
进一步的,所述将脉冲调制电压与载波信号
Figure 771874DEST_PATH_IMAGE023
进行比较得到开关信号
Figure 71138DEST_PATH_IMAGE007
,具体为
Figure 100002_DEST_PATH_IMAGE024
进一步的,执行完毕一组开关组合
Figure 671883DEST_PATH_IMAGE025
控制之后,所述N个DC/AC模块级联的输出电压V o 为:
Figure 100002_DEST_PATH_IMAGE026
进一步的,所述载波采用三角载波。
进一步的,
Figure 807329DEST_PATH_IMAGE027
为第n个DC/AC模块单元左桥臂支路的上开关管导通,下开关管关断,
Figure 100002_DEST_PATH_IMAGE028
为第n个DC/AC模块单元左桥臂支路的上开关管关断,下开关管导通。
Figure 837209DEST_PATH_IMAGE029
为第n个DC/AC模块单元右桥臂支路的上开关管导通,下开关管关断,
Figure 100002_DEST_PATH_IMAGE030
为第n个DC/AC模块单元右桥臂支路的上开关管关断,下开关管导通。
本发明所述的开关组合轮换多电平调制方法通过开关组合将多电平调制分为平台电压调制和脉冲电压调制两部分并在开关组合序列的约束下控制桥臂的开通与关断,实现了桥臂间功率器件开关频率均衡与单元模块间功率均衡。同时,不同电平数的模块化级联功放调制均可以采用统一化的公式实现,计算复杂度不随着电平数目的增加而增多,便于功率放大器电压等级的扩展。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为模块化级联功放主电路拓扑图。
图2为开关组合轮换多电平调制方法流程框图。
图3为不同平台电压之间的切换规律。
图4为开关组合轮换多电平调制方法的基本波形。
图5为五电平开关组合轮换多电平调制方法脉冲分配细节。
图6为在不同调制度下载波移相总输出等效的轮换策略的电压和线电压波形。
图7为模块化级联功放工作在三相输出情况下原理图。
图8为在不同调制度下垂直载波总输出等效的轮换策略的相电压波形。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用于解释本申请,并不用于限定本申请。
一种模块化级联功放开关组合轮换多电平调制方法,所述模块化级联功放如图1所示,其主电路由N个输入并联输出串联的功率模块组成,所述功率模块的输入侧为AC/DC功率单元,输出侧为DC/AC模块单元,所述DC/AC模块单元由全桥逆变单元构成,所述全桥逆变单元由左桥臂支路和右桥臂支路构成,通过所述开关组合轮换多电平调制方法对N个DC/AC模块单元进行控制,所述开关组合轮换多电平调制方法实现过程如图2所示,具体为:
第一步,获取调制信号
Figure 600766DEST_PATH_IMAGE031
,将调制信号
Figure 778937DEST_PATH_IMAGE031
输入平台调制模块和脉冲调制模块,分别得到平台电压与脉冲调制电压,所述平台调制模块输出的平台电压为:
Figure DEST_PATH_IMAGE032
所述脉冲调制模块的脉冲调制电压为:
Figure 260734DEST_PATH_IMAGE033
其中,floor为向下取整函数,mod为求余运算,V dc 为模块单元直流母线电压。
第二步,将脉冲调制电压与三角载波信号
Figure 799032DEST_PATH_IMAGE006
进行比较得到开关信号
Figure 948253DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE034
通过平台电压计算得到由开关组合
Figure 31747DEST_PATH_IMAGE035
构成的开关组合序列,在所述开关组合序列中,
Figure 840DEST_PATH_IMAGE009
为需要导通的桥臂序号,
Figure 844293DEST_PATH_IMAGE010
为需要关断的桥臂序号。
开关组合
Figure DEST_PATH_IMAGE036
构成的开关组合序列由三角载波V tri V pluse 比较生成的脉冲V p 驱动,当脉冲V p 上升沿到来时导通桥臂序号
Figure 582442DEST_PATH_IMAGE011
,一系列的脉冲V p 上升沿使得
Figure 367996DEST_PATH_IMAGE009
依次递增直至2N后返回到1再次轮换循环。
当脉冲V p 下降沿到来时:
Figure 824385DEST_PATH_IMAGE014
由于与导通桥臂序号
Figure 783113DEST_PATH_IMAGE009
之间的约束关系,每当脉冲V p 下降沿到来时
Figure 765982DEST_PATH_IMAGE010
也会加1,其数值也将依次递增直至2N后返回到1再次轮换循环。
第三步,通过开关组合序列计算得到开关信号控制
Figure 581491DEST_PATH_IMAGE015
m为桥臂序号,所述开关信号控制
Figure 728439DEST_PATH_IMAGE015
在每个周期导通状态满足:当
Figure 162962DEST_PATH_IMAGE037
,当
Figure DEST_PATH_IMAGE038
,当
Figure 295610DEST_PATH_IMAGE019
平台电压部分采用开关组合序列生成,脉冲电压则可以由单个三角载波V tri V pluse 比较生成,三角载波V tri V pluse 比较生成的脉冲上升沿依次送至开关组合序列开通序列,S on 依次递增直至2N后返回到1再次轮换循环。三角载波V tri V pluse 比较生成的下降沿送依次至开关组合序列关断序,S off 满足第二步中的约束条件依次递增直至2N后返回到1再次轮换循环。
第四步,通过桥臂控制信号
Figure 16441DEST_PATH_IMAGE015
,计算得到所有DC/AC模块单元左、右桥臂支路开关管驱动信号,对各DC/AC模块单元的桥臂进行导通和关断控制,
Figure 650685DEST_PATH_IMAGE039
其中,n为DC/AC模块单元序号,
Figure DEST_PATH_IMAGE040
为第n个DC/AC模块单元左桥臂支路的上开关管驱动信号,
Figure 420058DEST_PATH_IMAGE041
为第n个DC/AC模块单元右桥臂支路的上开关管驱动信号。
Figure 456147DEST_PATH_IMAGE027
为第n个DC/AC模块单元左桥臂支路的上开关管导通,下开关管关断,
Figure 472513DEST_PATH_IMAGE028
为第n个DC/AC模块单元左桥臂支路的上开关管关断,下开关管导通;
Figure DEST_PATH_IMAGE042
为第n个DC/AC模块单元右桥臂支路的上开关管导通,下开关管关断,
Figure 62895DEST_PATH_IMAGE043
为第n个DC/AC模块单元右桥臂支路的上开关管关断,下开关管导通。
以5个DC/AC模块单元,即N=5,开关组合(1,1)为例,当桥臂1开通时电平数将加1,当桥臂1关闭时电平数将减1。同理,其他开关组合依此类推也具有相同的效应。为了使得开关动作有效,如果某个桥臂要执行开通动作那么该桥臂在开通之前必须关闭,且在该桥臂序号之前的桥臂也已经开通;如果某个桥臂要执行关断动作那么该桥臂在关断之前必须开通,且在该桥臂序号之前的桥臂也已经关断。
进一步令桥臂依次遵循开关组合序列的开通和关断要求,并满足开关动作有效性,则可以得到一系列脉冲电压。在该序列的基础上忽略桥臂序号,只关注桥臂总体电压输出,那么桥臂输出总电压只存在两种情况:
1) 10个桥臂全部关断,则输出电压为-5V dc
2) 9个桥臂全部关断,1个桥臂开通,则输出电压为-4V dc
将两种输出情况结合来看整体输出电压可以认为整体输出是以-5V dc 为平台的电压加一个脉冲电压。
从上述开关动作来看,每个桥臂开和关的动作均遵循着从桥臂1-10的循环,从而保证了每个桥臂开关频率的均匀性,满足多电平调制开关频率均衡的基本要求。
从上可知只要开关动作满足桥臂1-10的轮换顺序就可以保证桥臂开关频率的均匀性,所以不难推导出保证桥臂开关频率均匀性的其他开关组合序列。表1列出了5功率单元10桥臂开关组合序列以及相应的输出电压。从表1中可以看到,这10种不同的开关组合序列刚好可以输出-5V dc ~+5V dc 共计11个电平电压。
表1 5功率单元10桥臂开关组合序列
Figure 167117DEST_PATH_IMAGE045
从表1中可知,如果需要从低电平序列切换到相邻的高电平序列,则可以连续开通两个桥臂即可。例如从组合序列3的(7,5)切换到组合序列4的(9,6),执行完毕(7,5)后紧接着开通桥臂8,再执行序列(9,6)即从-3Vdc~-2Vdc电平变化切换到了-2Vdc~-Vdc的变换,平台电压抬升了一个电平;如果需要从高电平切换到相邻的低电平序列,则连续关闭两个桥臂即可。例如从组合序列4的(9,6)切换到序列3的(10,8),执行完毕(9,6)后紧接着关断桥臂7,再执行序列(10,8),则完成了一个平台电压的下降。图3展示了平台电压上升和平台电压下降的情况,其中,(a)为平台上升电压,(b)为平台下降电压。由于平台上升时只有上升沿,所以开关组合(8,5)只有8生效,平台下降时只有下降沿,开关组合(9,7)只有7生效。从上述操作来看,无论是同一电压平台下的开关组合序列,还是平台电压发生变化时的开关动作,均可以维持开关动作在桥臂之间轮流循环保证开关分配的均匀性。
同时,从表中不难发现输出电压幅值与开关组合之间的差值相关。以组合序列4为例,比如开关组合序列执行到了(8,5),并且开关动作有效,那么序号在8之前的桥臂均已经开通,序号5之前的桥臂均已经关断。所以开通的桥臂为5,6,7,共三个桥臂开通,其余桥臂关断,可以得到此时输出电压为-2V dc
推及一般场合,定义开关组合为
Figure DEST_PATH_IMAGE046
,且满足开关动作的有效性,那么序号在
Figure 11707DEST_PATH_IMAGE047
之前的桥臂均已经开通,且序号
Figure DEST_PATH_IMAGE048
之前的桥臂均已经关断。则有在执行完一组开关组合后开通桥臂数等于即将开通与即将关闭桥臂序号之差,可以得到在执行
Figure 74341DEST_PATH_IMAGE046
完毕后有:
Figure 355281DEST_PATH_IMAGE049
图4展示了模块化级联功放开关组合轮换多电平调制方法及到的基本波形,其中(a)是平台调制模块输出的平台电压波形,(b)是三角载波波形,(c)是脉冲调制模块输出的脉冲调制电压波形,(d)是脉冲电压波形与三角载波相比较后的开关信号波形,三角波比较后的输出波形送到根据平台电压数值计算出来的开关组合序列对桥臂进行导通和关断控制。平台电压部分用来计算开关组合序列,脉冲部分推动组合序列从前至后依次运行。
为了进一步看到脉冲分配的细节,图5展示了两个DC/AC功率单元模块的5电平轮换调制在平台电压等于V dc 时相关波形(V dc 等于100V),其中(a)是脉冲电压与三角载波相比的波形,(b)是比较后产生的开关信号波形,(c)-(f)是分配后桥臂1-4的开关控制信号
Figure DEST_PATH_IMAGE050
波形,上升沿依次分配到桥臂1-4,下降沿也依次分配桥臂1-4,(g)是DC/AC模块级联的输出电压波形,从图中也可以看出图5(b)中的脉冲波形均匀分配到了四个桥臂,这表明了轮换策略脉冲分配的正确性。从图5(g)中可以看到在遵循开关组合序列(1,2)组合生成了脉冲P1,(2,3)组合生成了脉冲P2,(3,4)组合生成了脉冲P3,(4,1)组合生成了脉冲P4,依次遵循开关组合序列(1,2) (2,3) (3,4) (4,1)则可以连续不断生成平台电压和脉冲波形的级联波形。此处只展示了平台电压V dc 时的情况,如果需要生成其他电平的平台电压,只需按照平台电压值调整开关组合
Figure 715724DEST_PATH_IMAGE051
构成的组合序列即可。
同时,不难发现与载波移相需要多个三角载波进行调制不同,开关组合轮换多电平调制策略只需要单个三角载波便可以完成脉冲调制,可以大幅减小三角载波对硬件资源的需求。
当功率放大器工作在单相输出模式下时,载波移相调制算法在单相调制时仍然具备比载波层叠制算法更好的输出电压谐波效果,所以在单相输出应用场合时,仍然可以采用载波移相等效总输出获得更好的输出电压品质。将模块化级联功放开关组合轮换多电平调制方法与PS-PWM组合,可得到一种基于开关组合轮换的单相PS-PWM等效调制方法,但是载波移相调制算法每经过一个垂直方向的区间,其等效载波的相位均会出现90°相移。所以如果要产生等效的载波移相总输出,那么三角调制波则需要在调制波穿越垂直区间界限时产生90°的相移。
图6给出了调制度0.3和0.9下相电压和线电压波形,其中(a)为调制度M=0.3的相电压和线电压波形,(b)为调制度M=0.9的相电压和线电压波形。从波形中可以看到相电压和线电压正弦化波形良好,功率单元电压输出和开关频率均衡,符合载波移相总输出等效开关组合轮换策略的预期效果。
当功率放大器工作在三相输出模式下时,其原理图如图7所示,载波层叠调制在谐波含量方面能够获得比载波移相更好的输出线电压品质。载波层叠调制其等效载波相位在各个垂直方向的区间是连续的,所以其调制三角波的处理比载波移相更为的简单,只需要生成一个连续的三角波即可,不需要在调制波区间穿越时进行相位切换。
图8给出了调制度0.3和0.9下相电压波形,其中(a)为调制度M=0.3的相电压波形,(b)为调制度M=0.9的相电压波形。从波形中可以看到相电压和线电压正弦化波形良好,并且线电压也维持了良好的阶梯化,由于采用开关组合轮换多电平调制方法,改变了原有PD-PWM开关信号分配的方式,所以功率单元电压输出和开关频率均衡也维持了很好的平衡。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (6)

1.一种模块化级联功放开关组合轮换多电平调制方法,所述模块化级联功放的输出侧由N个DC/AC模块单元级联组成,所述DC/AC模块单元采用全桥逆变单元结构,由左桥臂支路和右桥臂支路构成,其特征在于,通过所述开关组合轮换多电平调制方法对N个DC/AC模块单元进行控制,所述开关组合轮换多电平调制方法具体为:
获取调制信号
Figure DEST_PATH_IMAGE001
,将调制信号
Figure 97774DEST_PATH_IMAGE002
输入平台调制模块和脉冲调制模块,分别得到平台电压
Figure 472254DEST_PATH_IMAGE003
与脉冲调制电压
Figure DEST_PATH_IMAGE004
Figure 833966DEST_PATH_IMAGE005
其中,floor为向下取整函数,mod为求余运算,
Figure DEST_PATH_IMAGE006
为模块单元直流母线电压;
将脉冲调制电压与载波信号
Figure 998100DEST_PATH_IMAGE007
进行比较得到开关信号
Figure DEST_PATH_IMAGE008
,并通过平台电压计算得到由开关组合
Figure 4233DEST_PATH_IMAGE009
构成的开关组合序列,其中,
Figure DEST_PATH_IMAGE010
为需要导通的桥臂序号,
Figure 94155DEST_PATH_IMAGE011
为需要关断的桥臂序号,所述开关组合序列由开关信号
Figure 208742DEST_PATH_IMAGE008
驱动,每当
Figure 192878DEST_PATH_IMAGE008
上升沿到来时,
Figure DEST_PATH_IMAGE012
Figure 381414DEST_PATH_IMAGE013
依次递增直至2N后返回到1再次轮换循环,每当脉冲
Figure 346965DEST_PATH_IMAGE008
下降沿到来时,
Figure DEST_PATH_IMAGE014
Figure 948848DEST_PATH_IMAGE015
通过开关组合序列计算得到桥臂控制信号
Figure DEST_PATH_IMAGE016
m为桥臂序号,所述开关信号控制
Figure 143200DEST_PATH_IMAGE017
满足:当
Figure DEST_PATH_IMAGE018
,当
Figure 671395DEST_PATH_IMAGE019
,当
Figure DEST_PATH_IMAGE020
通过桥臂控制信号
Figure 683214DEST_PATH_IMAGE016
计算得到所有DC/AC模块单元左、右桥臂支路开关管驱动信号,
Figure 382179DEST_PATH_IMAGE021
其中,n为DC/AC模块单元序号,
Figure DEST_PATH_IMAGE022
为第n个DC/AC模块单元左桥臂支路的上开关管驱动信号,
Figure 691807DEST_PATH_IMAGE023
为第n个DC/AC模块单元右桥臂支路的上开关管驱动信号。
2.根据权利要求1所述的多电平调制方法,其特征在于,所述将脉冲调制电压与载波信号
Figure DEST_PATH_IMAGE024
进行比较得到开关信号
Figure 651673DEST_PATH_IMAGE008
,具体为
Figure 975338DEST_PATH_IMAGE025
3.根据权利要求1所述的多电平调制方法,其特征在于,执行完毕一组开关组合
Figure DEST_PATH_IMAGE026
控制之后,所述N个DC/AC模块级联的输出电压V o 为:
Figure 286233DEST_PATH_IMAGE027
4.根据权利要求1所述的多电平调制方法,其特征在于,
Figure DEST_PATH_IMAGE028
为第n个DC/AC模块单元左桥臂支路的上开关管导通,下开关管关断,
Figure 390366DEST_PATH_IMAGE029
为第n个DC/AC模块单元左桥臂支路的上开关管关断,下开关管导通。
5.根据权利要求1所述的多电平调制方法,其特征在于,
Figure DEST_PATH_IMAGE030
为第n个DC/AC模块单元右桥臂支路的上开关管导通,下开关管关断,
Figure 142421DEST_PATH_IMAGE031
为第n个DC/AC模块单元右桥臂支路的上开关管关断,下开关管导通。
6.根据权利要求1-5任一项所述的多电平调制方法,其特征在于,所述载波为三角载波。
CN202211134224.2A 2022-09-19 2022-09-19 一种模块化级联功放开关组合轮换多电平调制方法 Active CN115208226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211134224.2A CN115208226B (zh) 2022-09-19 2022-09-19 一种模块化级联功放开关组合轮换多电平调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211134224.2A CN115208226B (zh) 2022-09-19 2022-09-19 一种模块化级联功放开关组合轮换多电平调制方法

Publications (2)

Publication Number Publication Date
CN115208226A CN115208226A (zh) 2022-10-18
CN115208226B true CN115208226B (zh) 2022-12-06

Family

ID=83573223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211134224.2A Active CN115208226B (zh) 2022-09-19 2022-09-19 一种模块化级联功放开关组合轮换多电平调制方法

Country Status (1)

Country Link
CN (1) CN115208226B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594190A (zh) * 2012-04-11 2012-07-18 北京交通大学 一种模块组合多电平变换器的方波脉冲循环调制方法
CN110071655A (zh) * 2019-05-21 2019-07-30 南昌工程学院 一种简化的多电平变换器空间矢量调制方法
CN111262464A (zh) * 2018-12-03 2020-06-09 北京印刷学院 一种半桥级联型多电平逆变电路及控制方法
CN112701944A (zh) * 2020-03-26 2021-04-23 南京理工大学 基于分裂功率单元的多电平变换器的拓扑结构及控制策略
CN112737378A (zh) * 2021-01-06 2021-04-30 湖南大学 级联h桥多电平变换器混合拓扑结构及其控制方法
CN113395007A (zh) * 2021-06-15 2021-09-14 安徽理工大学 一种适用于级联h桥多电平逆变器的新型功率均衡调制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368103B2 (en) * 2019-05-20 2022-06-21 Virginia Tech Intellectual Properties, Inc. Hybrid-current-mode switching-cycle control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594190A (zh) * 2012-04-11 2012-07-18 北京交通大学 一种模块组合多电平变换器的方波脉冲循环调制方法
CN111262464A (zh) * 2018-12-03 2020-06-09 北京印刷学院 一种半桥级联型多电平逆变电路及控制方法
CN110071655A (zh) * 2019-05-21 2019-07-30 南昌工程学院 一种简化的多电平变换器空间矢量调制方法
CN112701944A (zh) * 2020-03-26 2021-04-23 南京理工大学 基于分裂功率单元的多电平变换器的拓扑结构及控制策略
CN112737378A (zh) * 2021-01-06 2021-04-30 湖南大学 级联h桥多电平变换器混合拓扑结构及其控制方法
CN113395007A (zh) * 2021-06-15 2021-09-14 安徽理工大学 一种适用于级联h桥多电平逆变器的新型功率均衡调制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
hybrid mode predictive control for modified modular multilevel switch-mode power amplifier;Peng Guo等;《IEEE transactions on power electronics》;20201015;第36卷(第5期);全文 *
模块组合多电平变换器(MMC)的调制策略研究;李要乾;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20151015;全文 *

Also Published As

Publication number Publication date
CN115208226A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Raju et al. Modular multilevel converters technology: a comprehensive study on its topologies, modelling, control and applications
Shehu et al. A review of multilevel inverter topology and control techniques
Ye et al. Research on power-balance control strategy of CHB multilevel inverter based on TPWM
CN110048629B (zh) 一种单输入开关电容多电平逆变器及其调制方法
CN105450059A (zh) 抑制两h桥级联逆变器漏电流的调制方法
CN104270023B (zh) 一种多电平逆变器的谐波优化调制方法
Khanfara et al. A multicarrier PWM technique for five level inverter connected to the grid
CN105207503A (zh) 一种基于混合脉宽调制的电力电子变压器控制方法
CN105337522B (zh) 一种模块化多电平换流器的双载波调制方法
CN108683351B (zh) 一种z源三电平逆变器的混合调制方法、控制器及系统
CN115208226B (zh) 一种模块化级联功放开关组合轮换多电平调制方法
CN111884532A (zh) 适用于三相高频链矩阵变换器的无窄脉冲调制方法
Chen et al. A single-phase double T-type seven-level inverter
Mhel et al. Total Harmonic Distortion Reduction of 9-Level Packed E-Cell (PEC9) Inverter
CN110350814B (zh) 一种控制三相多端口变流器中各个直流端口功率的矢量控制方法
CN113922687A (zh) 一种级联式多电平变换装置、控制方法及其控制器
Xu et al. Two variations of five-level hybrid-clamped converters and their voltage balancing control using three degrees of freedom
CN117614301B (zh) 一种多电平逆变器的混合调制方法及系统
Devi et al. Novel Configuration of Multilevel Inverter Topology with Less Number of Switches
Varghese et al. Design of a new five level MLM based multilevel inverter
CN113691156B (zh) 一种多电平变换器调制策略
CN109450337A (zh) 一种高压大功率五电平变频器特定谐波消除调制方法
Kerrouche et al. A New Three-Phase Multilevel Inverter for Electric Drive
Charles et al. FPGA Based Galvanically Isolated Cascaded Multilevel Inverter with Matlab GUI for Realtime Monitoring and Control
CN111464064B (zh) 多电平直流链路逆变器的谐波抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant