WO2020232769A1 - 电子传输层墨水及其制备方法、电致发光器件 - Google Patents

电子传输层墨水及其制备方法、电致发光器件 Download PDF

Info

Publication number
WO2020232769A1
WO2020232769A1 PCT/CN2019/090613 CN2019090613W WO2020232769A1 WO 2020232769 A1 WO2020232769 A1 WO 2020232769A1 CN 2019090613 W CN2019090613 W CN 2019090613W WO 2020232769 A1 WO2020232769 A1 WO 2020232769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron transport
transport layer
layer ink
surface tension
small molecule
Prior art date
Application number
PCT/CN2019/090613
Other languages
English (en)
French (fr)
Inventor
王士攀
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020232769A1 publication Critical patent/WO2020232769A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the invention relates to the fields of displays and the like, in particular to an electron transport layer ink, a preparation method thereof, and an electroluminescent device.
  • OLED Organic electroluminescent diode
  • OLED has a series of outstanding advantages such as self-luminescence, high contrast, wide color gamut, large viewing angle, fast response speed, and flexible display.
  • a new generation of flat panel display technology At present, commercialized OLED products are mainly prepared by high-vacuum thermal evaporation method, which has disadvantages such as complicated equipment and processes, high energy consumption, large material waste, and high cost.
  • Printed display technology provides an effective way for low-cost preparation of high-performance OLED products.
  • the inkjet printing technology greatly improves the material utilization rate by dropping the configured ink containing functional materials into the pixel pits drop by drop.
  • high vacuum equipment is not required, which can effectively reduce costs, and has great advantages in preparing large-size OLED panels.
  • inkjet printing technology can also be used to prepare quantum dot electroluminescent diodes (QLEDs). Except for quantum dot materials, the process of other materials has high compatibility with the process of inkjet printing OLED.
  • QLEDs quantum dot electroluminescent diodes
  • the hole injection layer, the hole transport layer, and the light emitting layer have been printed, but the electron transport layer and the cathode are still vapor deposition processes. This is because most of the electron transport layer materials are materials that are dissolved in organic solvents. After being configured into inks, they are prone to miscibility with the light-emitting layer, which leads to difficulties in the preparation of devices in a full-solution process. In order to achieve a full solution process, it is necessary to develop an organic electron transport layer ink that does not damage the light-emitting layer.
  • the present invention provides an electron transport layer ink and a preparation method thereof, and an electroluminescent device.
  • the prepared electron transport layer ink can be formed in the electron transport layer by printing technology. At the same time, it can prevent the solvent in the electron transport layer ink from damaging the lower light-emitting layer.
  • the present invention provides an electron transport layer ink, the components of which include organic small molecule electron transport materials in percentage by weight, 0.5 wt%-30wt%; alkali metal complex doping material, 0.1wt%-5wt%; surface tension regulator, 0.1wt%-5wt%; viscosity regulator, 0.1wt%-5wt%; polar mixed solvent, 69wt %-99wt%; auxiliary solvent, 0.1wt%-30wt%.
  • the viscosity of the electron transport layer ink is 1 cps-100 cps; and the surface tension is 20 dyne/cm-60 dyne/cm.
  • the organic small molecule electron transport material includes 1,3,5-tris(1-phenyl-benzo[D]pyrazol-2-yl)benzene, 2,2'-( 1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole], tris[2,4,6-trimethyl-3-(3-pyridine) Yl)phenyl]borane, 3,3'-[5'-[3-(3-pyridyl)yl][1,1':3',1''-terphenyl]-3,3'' -Diyl] At least one of bipyridine and 2,7-bis(diphenylphosphinyl)-9,9'-spirobifluorene.
  • the alkali metal complex doping material includes 8-quinolinolato lithium.
  • the surface tension adjusting agent includes at least one of a co-solvent, a surfactant, and a small molecule compound that adjusts surface tension; the small molecule compound that adjusts surface tension includes imidazole and its derivatives At least one of phenol and hydroquinone.
  • the viscosity modifier includes at least one of alcohol, ether, ester, phenol, and amine compound.
  • the polar mixed solvent is a polyol compound.
  • the auxiliary solvent is one of alcohols, ketones, ethers, esters, and amide compounds.
  • the present invention also provides a preparation method for preparing the electron transport layer ink, including the following steps: obtaining each component of the electron transport layer ink according to the weight content percentage; transmitting the electrons of the organic small molecules The material and the alkali metal complex doping material are dissolved in the polar mixed solvent and mixed uniformly; the surface tension regulator and the viscosity regulator are added, and the temperature is 0°C-80°C and stirred for 0.5 hours -24 hours until completely dissolved; filtered to obtain the electron transport layer ink.
  • the present invention also provides an electroluminescent device, an electron transport layer formed by a printing method, and the material used is the electron transport layer ink according to claim 1.
  • the electron transport layer ink of the present invention uses organic small molecule electron transport materials as the main electron transport materials, and alkali metal complexes such as 8-hydroxyquinolate lithium (Liq) as doping materials, which can effectively enhance the electron injection and transport capabilities
  • alkali metal complexes such as 8-hydroxyquinolate lithium (Liq)
  • polyol solvents can effectively inhibit the destruction of the lower light-emitting layer
  • alcohols, ethers, ketones, esters and amides as auxiliary solvents can effectively dissolve organic electron transport and doping
  • the viscosity and surface tension of the ink in the electron transport layer can be adjusted by adjusting the ratio of each solvent component.
  • the preparation method of the electron transport layer ink of the present invention is simple, and it only needs to mix and stir the electron transport layer ink evenly at a certain temperature.
  • the ink can be used as the electron transport layer of the electroluminescent device, which can prevent the solvent in the electron transport layer ink from damaging the lower luminescent layer, which is beneficial to realize the requirement of forming the device under the all-organic printing process.
  • Fig. 1 is a schematic diagram of the structure of an electroluminescent device according to an embodiment of the present invention.
  • An electron transport layer ink of the present invention its components include organic small molecule electron transport materials in percentage by weight, 0.5 wt%-30 wt%; alkali metal complex doped materials, 0.1 wt%-5 wt%; surface tension adjustment Agent, 0.1 wt%-5wt%; viscosity modifier, 0.1 wt%-5wt%; polar mixed solvent, 69wt%-99wt%; auxiliary solvent, 0.1 wt%-30wt%.
  • the organic small molecule electron transport material includes 1,3,5-tris(1-phenyl-benzo[D]pyrazol-2-yl)benzene, 2,2'-(1,3-phenyl)two [5-(4-tert-butylphenyl)-1,3,4-oxadiazole], tris[2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane, 3,3'-[5'-[3-(3-pyridyl)yl][1,1':3',1''-terphenyl]-3,3''-diyl]dipyridine, 2 , At least one of 7-bis(diphenylphosphinyl)-9,9'-spirobifluorene.
  • the alkali metal complex doping material includes 8-quinolinolato lithium.
  • the surface tension adjusting agent includes at least one of a co-solvent, a surfactant, and a small molecule compound that adjusts the surface tension;
  • the co-solvent can be cyclohexane, tetrahydrofuran, or dimethylformamide;
  • the surfactant can be ionic, non-ionic, or a mixture of the two, including fatty acid salts such as sodium stearate, alkyl sulfate, sulfonate such as sodium alkylbenzene tripolyethylene sulfonate , Sodium alkylbenzene sulfonate, polyoxyethylene propylene glycol stearate, polyoxyethylene sorbitan laurate, etc.
  • the small molecule compound for adjusting surface tension includes at least one of imidazole and its derivatives, phenol, and hydroquinone.
  • the viscosity modifier includes at least one of alcohol, ether, ester, phenol, and amine compound.
  • the polar mixed solvent is a polyhydric alcohol compound, and ethylene glycol is selected in this embodiment.
  • the auxiliary solvent is one of alcohols, ketones, ethers, esters, and amide compounds.
  • the electron transport layer ink of the present invention its components include organic small molecule electron transport materials, 30wt%, alkali metal complex doped materials, 0.1wt%, and surface tension regulator, 0.1% by weight. wt%; viscosity modifier, 0.1 wt%; polar mixed solvent, 69 wt%; auxiliary solvent, 0.7 wt%.
  • the small organic molecule electron transport material is 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole].
  • the alkali metal complex doping material is 8-quinolinolato lithium.
  • dimethylformamide is used as a co-solvent
  • sodium alkylbenzene sulfonate is used as a surfactant
  • hydroquinone is used as a small molecule compound for adjusting surface tension;
  • the viscosity modifier is selected from an amine compound.
  • the polar mixed solvent is a polyhydric alcohol compound, and ethylene glycol is selected in this embodiment.
  • the auxiliary solvent is an amide compound.
  • This embodiment also provides a preparation method for preparing the electron transport layer ink, which includes the following steps: obtaining organic small molecule electron transport materials according to weight content percentage, 30wt%; alkali metal complex doped materials, 0.1wt%; surface tension regulator, 0.1 wt%; viscosity modifier, 0.1 wt%; polar mixed solvent, 69 wt%; auxiliary solvent, 0.7 wt%. Dissolve organic small molecule electron transport materials and alkali metal complex doping materials in a polar mixed solvent and mix well; add surface tension regulator and viscosity regulator, and stir for 0.5 hours at a temperature of 0°C-80°C Hours until it is completely dissolved; filter to obtain the electron transport layer ink.
  • the electron transport layer ink of the present invention its components include organic small molecule electron transport material, 10wt%, alkali metal complex doped material, 2wt%, surface tension regulator, 2wt%, viscosity regulator, 2wt%; polar mixed solvent, 80wt%; auxiliary solvent, 4wt%.
  • 1,3,5-tris(1-phenyl-benzo[D]pyrazol-2-yl)benzene is selected as the organic small molecule electron transport material.
  • the alkali metal complex doping material is 8-quinolinolato lithium.
  • cyclohexane is used as a co-solvent
  • sodium alkylbenzene tripolyethylene sulfonate is used as a surfactant
  • imidazole and its derivatives are small molecular compounds for adjusting surface tension.
  • the viscosity regulator is an ether compound.
  • the polar mixed solvent is a polyhydric alcohol compound, and ethylene glycol is selected in this embodiment.
  • the auxiliary solvent is an ether compound.
  • This embodiment also provides a preparation method for preparing the electron transport layer ink, including the following steps: obtaining organic small molecule electron transport materials in percentage by weight content, 10wt%; alkali metal complex doped materials, 2wt%; surface tension regulator, 2wt%; viscosity regulator, 2wt%; polar mixed solvent, 80wt%; auxiliary solvent, 4wt%. Dissolve organic small molecule electron transport materials and alkali metal complex doping materials in a polar mixed solvent and mix well; add surface tension regulator and viscosity regulator, and stir for 0.5 hours at a temperature of 0°C-80°C Hours until it is completely dissolved; filter to obtain the electron transport layer ink.
  • the electron transport layer ink of the present invention its components include organic small molecule electron transport material, 5wt%, alkali metal complex doped material, 5wt%, surface tension regulator, 5wt%, and viscosity regulator, 5wt%. %; Polar mixed solvent, 69wt%; auxiliary solvent, 11wt%.
  • the small organic molecule electron transport material is 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole].
  • the alkali metal complex doping material is 8-quinolinolato lithium.
  • dimethylformamide is used as a co-solvent
  • sodium alkylbenzene sulfonate is used as a surfactant
  • hydroquinone is used as a small molecule compound for adjusting the surface tension.
  • the viscosity modifier is selected from an amine compound.
  • the polar mixed solvent is a polyhydric alcohol compound, and ethylene glycol is selected in this embodiment.
  • the auxiliary solvent is an amide compound.
  • the electron transport layer ink prepared in Examples 1 to 3 of the present invention has a viscosity of 1 cps-100 cps and a surface tension of 20 dyne/cm
  • This embodiment also provides a preparation method for preparing the electron transport layer ink, which includes the following steps: obtaining an organic small molecule electron transport material according to the weight content percentage, 5wt%; alkali metal complex doped material, 5wt%; surface tension regulator, 5wt%; viscosity regulator, 5wt%; polar mixed solvent, 69wt%; auxiliary solvent, 11wt%. Dissolve organic small molecule electron transport materials and alkali metal complex doping materials in a polar mixed solvent and mix well; add surface tension regulator and viscosity regulator, and stir for 0.5 hours at a temperature of 0°C-80°C Hours until it is completely dissolved; filter to obtain the electron transport layer ink.
  • the present invention also provides an electroluminescent device 1, which is sequentially arranged with an anode 11, a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, an electron transport layer 15, and an electron injection layer.
  • the electron transport layer 15 is formed by a printing method, that is, the electron transport layer ink of the present invention is printed on the light-emitting layer by a printing method to form the electron transport layer 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

提供一种电子传输层墨水及其制备方法、电致发光器件。所述电子传输层墨水的组分按重量含量百分数包括有机小分子电子传输材料0.5wt%‑30wt%,碱金属配合物掺杂材料0.1wt%‑5wt%,表面张力调节剂0.1wt%‑5wt%,黏度调节剂0.1wt%‑5wt%,极性混合溶剂69wt%‑99wt%,辅助溶剂0.1wt%‑30wt%。所述电子传输层墨水能够通过印刷技术形成电子传输层,同时能够避免电子传输层墨水中的溶剂破坏下层发光层。

Description

电子传输层墨水及其制备方法、电致发光器件 技术领域
本发明涉及显示器等领域,具体为一种电子传输层墨水及其制备方法、电致发光器件。
背景技术
有机电致发光二极管(OLED)以其自身所具备的自发光、高对比、广色域、大视角、响应速度快、可实现柔性显示等一系列突出优点,而被认为是最具潜力的下一代新型平板显示技术。目前已经商品化的OLED产品主要是通过高真空热蒸镀法来制备的,其存在着设备和工艺复杂、能耗高、材料浪费大、成本高等缺点。
印刷显示技术为低成本制备高性能的OLED产品提供了一个有效的途径。其中喷墨打印技术通过将配置好的含有功能材料的墨水一滴一滴地滴入像素坑内,极大地提高了材料利用率。而且不需要高真空设备,可以有效降低成本,在制备大尺寸OLED面板方面具有极大的优势。同时,喷墨打印技术也可以用于制备量子点电致发光二极管(QLED),除发光材料为量子点材料外,其他材料制程与喷墨打印OLED制程工艺具有很高的兼容性。
目前常见的喷墨打印OLED器件结构中,空穴注入层、空穴传输层和发光层已实现打印制程,但电子传输层及阴极仍为蒸镀制程。这是因为大多数电子传输层材料为有机溶剂溶解的材料,配置成墨水后,与发光层之间容易存在互溶现象,导致全溶液制程的器件制备存在困难。为实现全溶液制程,需要开发不损伤发光层的有机电子传输层墨水。
技术问题
为解决上述技术问题:本发明提供一种电子传输层墨水及其制备方法、电致发光器件,所制备得到的电子传输层墨水,能够通过印刷技术将电子传输层墨水形成于电子传输层中,同时能够避免电子传输层墨水中的溶剂破坏下层发光层。
技术解决方案
解决上述问题的技术方案是:本发明提供一种电子传输层墨水,其组分按重量含量百分数包括有机小分子电子传输材料,0.5 wt%-30wt%;碱金属配合物掺杂材料,0.1wt%-5wt%;表面张力调节剂,0.1wt%-5wt%;黏度调节剂,0.1wt%-5wt%;极性混合溶剂,69wt%-99wt%;辅助溶剂,0.1wt%-30wt%。
在本发明一实施例中,所述的电子传输层墨水,其粘度为1 cps -100 cps;其表面张力为20dyne/cm-60dyne/cm。
在本发明一实施例中,所述有机小分子电子传输材料包括1,3,5-三(1-苯基-苯并[D]吡唑-2-基)苯、 2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]、 三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、3,3'-[5'-[3-(3-吡啶基)基][1,1':3',1''-三联苯]-3,3''-二基]二吡啶、 2,7-双(二苯基氧膦基)-9,9'-螺二芴中的至少一种。
在本发明一实施例中,所述碱金属配合物掺杂材料包括8-羟基喹啉合锂。
在本发明一实施例中,所述表面张力调节剂包括共溶剂、表面活性剂、调节表面张力的小分子化合物中的至少一种;所述调节表面张力的小分子化合物包括咪唑及其衍生物、苯酚、对苯二酚中的至少一种。
在本发明一实施例中,所述黏度调节剂包括醇、醚、酯、酚、胺类化合物中的至少一种。
在本发明一实施例中,所述极性混合溶剂为多元醇类化合物。
在本发明一实施例中,所述辅助溶剂为醇类、酮类、醚类、酯类、酰胺类化合物中的一种。
本发明还提供了一种制备方法,用以制备所述的电子传输层墨水,包括以下步骤:按重量含量百分数获取所述的电子传输层墨水的各组分;将所述有机小分子电子传输材料、所述碱金属配合物掺杂材料溶解于所述极性混合溶剂中混合均匀;加入所述表面张力调节剂及所述黏度调节剂,在温度为0℃-80℃下,搅拌0.5小时-24小时直至完全溶解;过滤即得到电子传输层墨水。
本发明还提供了一种电致发光器件,通过印刷法形成的电子传输层,其所用材料为如权利要求1所述的电子传输层墨水。
有益效果
本发明的电子传输层墨水,其采用有机小分子电子传输材料作为主要电子传输材料,碱金属配合物如8-羟基喹啉合锂(Liq)作为掺杂材料,能够有效增强电子注入及传输能力,多元醇类溶剂作为极性混合溶剂(主溶剂),能够有效抑制下层发光层被破坏;醇类、醚类、酮类、酯类及酰胺类作为辅助溶剂,能够有效溶解有机电子传输及掺杂材料,通过调整各溶剂组分比例,能够调整电子传输层墨水的黏度及表面张力。本发明的电子传输层墨水其制备方法简单,只需在一定温度下,将电子传输层墨水混合搅拌均匀即可。此墨水可用作电致发光器件的电子传输层,可避免电子传输层墨水中的溶剂破坏下层发光层,有利于实现在全有机印刷制程下形成器件的要求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合附图和实施例对本发明作进一步解释。
图1是本发明实施例的电致发光器件的结构示意图。
附图标记:
1电致发光器件;
11阳极;                   12空穴注入层;
13空穴传输层;             14发光层;
15电子传输层;             16电子注入层;
17阴极。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
本发明的一种电子传输层墨水,其组分按重量含量百分数包括有机小分子电子传输材料,0.5 wt%-30wt%;碱金属配合物掺杂材料,0.1wt%-5wt%;表面张力调节剂,0.1 wt%-5wt%;黏度调节剂,0.1 wt%-5wt%;极性混合溶剂,69wt%-99wt%;辅助溶剂,0.1 wt%-30wt%。
所述有机小分子电子传输材料包括1,3,5-三(1-苯基-苯并[D]吡唑-2-基)苯、2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]、 三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、3,3'-[5'-[3-(3-吡啶基)基][1,1':3',1''-三联苯]-3,3''-二基]二吡啶、 2,7-双(二苯基氧膦基)-9,9'-螺二芴中的至少一种。
所述碱金属配合物掺杂材料包括8-羟基喹啉合锂。
所述表面张力调节剂包括共溶剂、表面活性剂、调节表面张力的小分子化合物中的至少一种;本实施例中,所述共溶剂可以选择环己烷、四氢呋喃、二甲基甲酰胺;所述表面活性剂可选用离子型、非离子型、或两者的混合物,其中包括脂肪酸盐如硬脂酸钠盐,烷基硫酸盐,磺酸盐如烷基苯三聚乙烯磺酸钠、烷基苯磺酸钠、聚氧乙烯丙二醇硬脂酸酯、聚氧乙烯缩水山梨醇月桂酸酯等。所述调节表面张力的小分子化合物包括咪唑及其衍生物、苯酚、对苯二酚中的至少一种。所述黏度调节剂包括醇、醚、酯、酚、胺类化合物中的至少一种。所述极性混合溶剂为多元醇类化合物,本实施例中选择乙二醇。所述辅助溶剂为醇类、酮类、醚类、酯类、酰胺类化合物中的一种。
实施例1
本发明的电子传输层墨水,其组分按重量含量百分数包括有机小分子电子传输材料,30wt%;碱金属配合物掺杂材料,0.1wt%;表面张力调节剂,0.1 wt%;黏度调节剂,0.1 wt%;极性混合溶剂,69wt%;辅助溶剂,0.7 wt%。
所述有机小分子电子传输材料选择2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]。所述碱金属配合物掺杂材料为8-羟基喹啉合锂。所述表面张力调节剂中选用二甲基甲酰胺作为共溶剂、烷基苯磺酸钠作为表面活性剂、对苯二酚作为调节表面张力的小分子化合物;
所述黏度调节剂选择胺类化合物。所述极性混合溶剂为多元醇类化合物,本实施例中选择乙二醇。所述辅助溶剂选择酰胺类化合物。
本实施例中还提供了一种制备方法,用以制备所述的电子传输层墨水,包括以下步骤:按重量含量百分数获取有机小分子电子传输材料,30wt%;碱金属配合物掺杂材料,0.1wt%;表面张力调节剂,0.1 wt%;黏度调节剂,0.1 wt%;极性混合溶剂,69wt%;辅助溶剂,0.7 wt%。将有机小分子电子传输材料、碱金属配合物掺杂材料溶解于极性混合溶剂中混合均匀;加入表面张力调节剂及黏度调节剂,在温度为0℃-80℃下,搅拌0.5小时-24小时直至完全溶解;过滤即得到电子传输层墨水。
实施例2
本发明的电子传输层墨水,其组分按重量含量百分数包括有机小分子电子传输材料,10wt%;碱金属配合物掺杂材料,2wt%;表面张力调节剂,2 wt%;黏度调节剂,2wt%;极性混合溶剂,80wt%;辅助溶剂,4wt%。
所述有机小分子电子传输材料选择1,3,5-三(1-苯基-苯并[D]吡唑-2-基)苯。所述碱金属配合物掺杂材料为8-羟基喹啉合锂。
所述表面张力调节剂中选用环己烷作为共溶剂、烷基苯三聚乙烯磺酸钠作为表面活性剂、咪唑及其衍生物为调节表面张力的小分子化合物。
所述黏度调节剂选择醚类化合物。所述极性混合溶剂为多元醇类化合物,本实施例中选择乙二醇。所述辅助溶剂选择醚类化合物。
本实施例中还提供了一种制备方法,用以制备所述的电子传输层墨水,包括以下步骤:按重量含量百分数获取有机小分子电子传输材料,10wt%;碱金属配合物掺杂材料,2wt%;表面张力调节剂,2 wt%;黏度调节剂,2wt%;极性混合溶剂,80wt%;辅助溶剂,4wt%。将有机小分子电子传输材料、碱金属配合物掺杂材料溶解于极性混合溶剂中混合均匀;加入表面张力调节剂及黏度调节剂,在温度为0℃-80℃下,搅拌0.5小时-24小时直至完全溶解;过滤即得到电子传输层墨水。
实施例3
本发明的电子传输层墨水,其组分按重量含量百分数包括有机小分子电子传输材料,5wt%;碱金属配合物掺杂材料,5wt%;表面张力调节剂,5wt%;黏度调节剂,5wt%;极性混合溶剂,69wt%;辅助溶剂,11wt%。
所述有机小分子电子传输材料选择2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]。所述碱金属配合物掺杂材料为8-羟基喹啉合锂。所述表面张力调节剂中选用二甲基甲酰胺作为共溶剂、烷基苯磺酸钠作为表面活性剂、对苯二酚作为调节表面张力的小分子化合物。
所述黏度调节剂选择胺类化合物。所述极性混合溶剂为多元醇类化合物,本实施例中选择乙二醇。所述辅助溶剂选择酰胺类化合物。
经试验检测,本发明的实施例1至实施例3制备得到的所述的电子传输层墨水,其粘度为1cps-100 cps;其表面张力为20dyne/cm
至60dyne/cm。
本实施例中还提供了一种制备方法,用以制备所述的电子传输层墨水,包括以下步骤:按重量含量百分数获取有机小分子电子传输材料,5wt%;碱金属配合物掺杂材料,5wt%;表面张力调节剂,5wt%;黏度调节剂,5wt%;极性混合溶剂,69wt%;辅助溶剂,11wt%。将有机小分子电子传输材料、碱金属配合物掺杂材料溶解于极性混合溶剂中混合均匀;加入表面张力调节剂及黏度调节剂,在温度为0℃-80℃下,搅拌0.5小时-24小时直至完全溶解;过滤即得到电子传输层墨水。
如图1所示,本发明还提供了一种电致发光器件1,其依次层级设置有阳极11、空穴注入层12、空穴传输层13、发光层14、电子传输层15、电子注入层16、阴极17。其中,所述电子传输层15通过印刷法形成,即通过印刷法将本发明的所述的电子传输层墨水印刷至所述发光层上形成所述电子传输层15。
以上仅为本发明的较佳实施例而已,应理解,本文所述的示例性实施方式应仅被认为是描述性的,用于帮助理解本发明的方法及其核心思想,而并不用于限制本发明。在每个示例性实施方式中对特征或方面的描述通常应被视作适用于其他示例性实施例中的类似特征或方面。尽管参考示例性实施例描述了本发明,但可建议所属领域的技术人员进行各种变化和更改。本发明意图涵盖所附权利要求书的范围内的这些变化和更改。

Claims (10)

  1. 一种电子传输层墨水,其组分按重量含量百分数包括
    有机小分子电子传输材料,  0.5 wt%-30wt%;
    碱金属配合物掺杂材料,    0.1wt%-5wt%;
    表面张力调节剂,0.1 wt%-5wt%;
    黏度调节剂,              0.1 wt%-5wt%;
    极性混合溶剂,            69wt%-99wt%;
    辅助溶剂,                0.1 wt%-30wt%。
  2. 根据权利要求1所述的电子传输层墨水,其中,所述电子传输层墨水的粘度为1 cps -100 cps;所述电子传输层墨水的表面张力为20dyne/cm-60dyne/cm。
  3. 根据权利要1所述的电子传输层墨水,其中,所述有机小分子电子传输材料包括1,3,5-三(1-苯基-苯并[D]吡唑-2-基)苯、2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]、 三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、3,3'-[5'-[3-(3-吡啶基)苯基][1,1':3',1''-三联苯]-3,3''-二基]二吡啶、 2,7-双(二苯基氧膦基)-9,9'-螺二芴中的至少一种。
  4. 根据权利要求1所述的电子传输层墨水,其中,所述碱金属配合物掺杂材料包括8-羟基喹啉合锂。
  5. 根据权利要求1所述的电子传输层墨水,其中,所述表面张力调节剂包括共溶剂、表面活性剂、调节表面张力的小分子化合物中的至少一种;所述调节表面张力的小分子化合物包括咪唑及其衍生物、苯酚、对苯二酚中的至少一种。
  6. 根据权利要求1所述的电子传输层墨水,其中,所述黏度调节剂包括醇、醚、酯、酚、胺类化合物中的至少一种。
  7. 根据权利要求1所述的电子传输层墨水,其中,所述极性混合溶剂为多元醇类化合物。
  8. 根据权利要求1所述的电子传输层墨水,其中,所述辅助溶剂为醇类、酮类、醚类、酯类、酰胺类化合物中的一种。
  9. 一种制备方法,用以制备如权利要求1所述的电子传输层墨水,其包括以下步骤:
    按重量含量百分数获取如权利要求1所述的电子传输层墨水的各组分;
    将所述有机小分子电子传输材料、所述碱金属配合物掺杂材料溶解于所述极性混合溶剂中混合均匀;
    加入所述表面张力调节剂及所述黏度调节剂,在温度为0℃-80℃下,搅拌0.5小时-24小时直至完全溶解;
    过滤即得到所述电子传输层墨水。
  10. 一种电致发光器件,其包括通过印刷法形成的电子传输层,其所用材料为如权利要求1所述的电子传输层墨水。
PCT/CN2019/090613 2019-05-22 2019-06-11 电子传输层墨水及其制备方法、电致发光器件 WO2020232769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910426766.9 2019-05-22
CN201910426766.9A CN110172275A (zh) 2019-05-22 2019-05-22 电子传输层墨水及其制备方法、电致发光器件

Publications (1)

Publication Number Publication Date
WO2020232769A1 true WO2020232769A1 (zh) 2020-11-26

Family

ID=67691793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090613 WO2020232769A1 (zh) 2019-05-22 2019-06-11 电子传输层墨水及其制备方法、电致发光器件

Country Status (2)

Country Link
CN (1) CN110172275A (zh)
WO (1) WO2020232769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376360A (zh) * 2023-05-24 2023-07-04 南京邮电大学 一种用于喷墨打印的电子传输材料墨水及其在发光器件中的应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876022A (zh) * 2019-09-24 2020-11-03 广东聚华印刷显示技术有限公司 复合墨水及其制备方法、电致发光器件
CN114058206A (zh) * 2020-11-04 2022-02-18 广东聚华印刷显示技术有限公司 电子传输层墨水及发光器件
CN112300631A (zh) * 2020-11-06 2021-02-02 广东聚华印刷显示技术有限公司 喷墨打印墨水及其制备方法与发光器件
CN112420937B (zh) * 2020-11-26 2023-01-13 合肥福纳科技有限公司 有机分子在制备具有改善的热稳定性的固态膜中的应用
CN116355460A (zh) * 2021-12-27 2023-06-30 广东聚华印刷显示技术有限公司 复合溶液及其制备方法、电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346259A (zh) * 2013-07-01 2013-10-09 苏州大学 一种有机太阳能电池
CN107623076A (zh) * 2017-09-29 2018-01-23 深圳市华星光电半导体显示技术有限公司 全溶液oled器件及其制作方法
CN107706318A (zh) * 2017-10-16 2018-02-16 深圳市华星光电半导体显示技术有限公司 电子传输层喷墨打印墨水及其制备方法
CN108963087A (zh) * 2017-11-29 2018-12-07 广东聚华印刷显示技术有限公司 量子点电致发光器件及显示器
CN109326743A (zh) * 2018-09-20 2019-02-12 苏州大学 一种基于纳米钨青铜的发光二极管的制备方法
CN109599508A (zh) * 2018-12-17 2019-04-09 嘉兴纳鼎光电科技有限公司 电致发光器件及其制备方法
CN109825129A (zh) * 2019-02-25 2019-05-31 深圳市华星光电半导体显示技术有限公司 电子传输层墨水及其配制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401791B2 (ja) * 2005-10-28 2014-01-29 日産化学工業株式会社 スプレー又はインクジェット塗布用電荷輸送性ワニス
CN108003196B (zh) * 2012-07-19 2021-07-23 Udc 爱尔兰有限责任公司 含有碳烯配体的双核金属配合物及其在oled中的用途
DE102014107658A1 (de) * 2014-05-30 2015-12-03 Osram Opto Semiconductors Gmbh Organisches optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102015200699A1 (de) * 2015-01-19 2016-07-21 Siemens Aktiengesellschaft Aminophosphazen-Basen als n-Dotierstoffe in der organischen Elektronik

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346259A (zh) * 2013-07-01 2013-10-09 苏州大学 一种有机太阳能电池
CN107623076A (zh) * 2017-09-29 2018-01-23 深圳市华星光电半导体显示技术有限公司 全溶液oled器件及其制作方法
CN107706318A (zh) * 2017-10-16 2018-02-16 深圳市华星光电半导体显示技术有限公司 电子传输层喷墨打印墨水及其制备方法
CN108963087A (zh) * 2017-11-29 2018-12-07 广东聚华印刷显示技术有限公司 量子点电致发光器件及显示器
CN109326743A (zh) * 2018-09-20 2019-02-12 苏州大学 一种基于纳米钨青铜的发光二极管的制备方法
CN109599508A (zh) * 2018-12-17 2019-04-09 嘉兴纳鼎光电科技有限公司 电致发光器件及其制备方法
CN109825129A (zh) * 2019-02-25 2019-05-31 深圳市华星光电半导体显示技术有限公司 电子传输层墨水及其配制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376360A (zh) * 2023-05-24 2023-07-04 南京邮电大学 一种用于喷墨打印的电子传输材料墨水及其在发光器件中的应用
CN116376360B (zh) * 2023-05-24 2023-08-11 南京邮电大学 一种用于喷墨打印的电子传输材料墨水及其应用

Also Published As

Publication number Publication date
CN110172275A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2020232769A1 (zh) 电子传输层墨水及其制备方法、电致发光器件
JP5252481B2 (ja) 発光素子
JP4519651B2 (ja) 発光装置及びその作製方法
JP7373994B2 (ja) 電子半導体デバイスおよびその製造方法
WO2019075866A1 (zh) 电子传输层喷墨打印墨水及其制备方法
TW200922941A (en) Iridium complex compounds, organic electroluminescent devices and uses thereof
JP2005197262A (ja) 有機電界発光素子
CN109825129A (zh) 电子传输层墨水及其配制方法
JP2009141339A (ja) 有機電界発光素子用組成物および有機電界発光素子
JP5661282B2 (ja) Oled用途のためのランタノイドエミッター
CN113429385B (zh) 噻吨衍生物及其应用
CN102292842A (zh) 有机电致发光元件
KR100781921B1 (ko) 카바졸 유도체 및 이를 이용한 유기 전계발광소자
CN107954996A (zh) 噻蒽-s,s-四氧化物衍生物及制备方法及在有机电致发光器件的应用
KR102164838B1 (ko) 유기 발광 다이오드 제조용 열 전사 필름 및 그의 제조 방법
JP3586240B2 (ja) 有機電界発光素子
KR20120052062A (ko) 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
CN105418356B (zh) 有机铱配合物、其制备方法及包含该配合物的发光材料、有机电致发光器件
KR102047679B1 (ko) 유기발광색소의 회수 방법
JP2014156441A (ja) 3,5−ジピリジルフェニル誘導体、それよりなる電子輸送材料及びそれを用いた有機エレクトロルミネッセンス素子
CN110317187B (zh) 一种有机主体材料及其制备方法与应用
TWI435877B (zh) 高效率低電壓之有機電激發光裝置及材料
KR100819760B1 (ko) 테트라키스페닐계 유기발광화합물 및 이를 이용한유기전계발광소자
KR100382490B1 (ko) 유기 전계발광 소자
WO2021082125A1 (zh) Oled显示面板及其制备方法、oled显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929442

Country of ref document: EP

Kind code of ref document: A1