TW200922941A - Iridium complex compounds, organic electroluminescent devices and uses thereof - Google Patents

Iridium complex compounds, organic electroluminescent devices and uses thereof Download PDF

Info

Publication number
TW200922941A
TW200922941A TW97126954A TW97126954A TW200922941A TW 200922941 A TW200922941 A TW 200922941A TW 97126954 A TW97126954 A TW 97126954A TW 97126954 A TW97126954 A TW 97126954A TW 200922941 A TW200922941 A TW 200922941A
Authority
TW
Taiwan
Prior art keywords
group
compound
organic
carbon atoms
electron
Prior art date
Application number
TW97126954A
Other languages
Chinese (zh)
Inventor
Takeshi Igarashi
Isamu Taguchi
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200922941A publication Critical patent/TW200922941A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds

Abstract

Blue-emitting phosphorescent compounds show high solubility in solvents for coating solutions in the production of organic EL devices and have excellent thermal stability-Organic EL devices having the blue-emitting phosphorescent compounds have high luminous efficiency and long life. A blue-emitting phosphorescent compound is an iridium complex compound represented by Formula (1) below: wherein R1 is a C2-30 organic group; R2 to R4 are each independently a hydrogen atom or a C1-10 alkyl group; R5 to R8 are each independently an electron-withdrawing group selected from the group consisting of halogen atoms, C1-10 fluorine-substituted alkyl groups, C1-10 fluorine-substituted alkoxy groups, cyano group, aldehyde group, C2-10 acyl groups, C2-10 alkoxycarbonyl groups, C1-10 aminocarbonyl groups, thiocyanate group and C1-10 sulfonyl groups, a C1-10 organic group optionally having a heteroatom (except the electron-withdrawing groups) or a hydrogen atom; and at least one of R5 to R8 is the electron-withdrawing group.

Description

200922941 九、發明說明 【發明所屬之技術領域】 本發明係關於發光性金屬錯合物化合物,使用發光性 金屬錯合物化合物之有機電致發光元件及其用途。 【先前技術】 磷光發光性化合物,由於具有高發光效率,故近年以 有機電致發光元件(本說明書中,亦稱爲有機EL元件)之 發光材料型式被活躍地進行硏究開發。 使用磷光發光性化合物的有機E L元件,期待擴大至 各式各樣的用途,但特別於顯示器用途的展開上,必須開 發出高發光效率並且持續元件之安定驅動的材料。 於全色彩顯示器所必要之三原色中,使用綠色發光及 紅色發光的有機EL元件,雖發現具有充分實用之發光效 率、耐久性及溶解性等特性的磷光發光性化合物,但使用 藍色發光的有機EL元件中並未發現此類磷光發光性化合 物。 於是’期望開發出具有高發光效率,且具有高耐久性 的磷光藍色發光性化合物。 於特表2003 _5268 76號公報(專利文獻1)中,揭示使用 有機銥錯合物作爲磷光發光性化合物,可大爲提高有機 EL元件的發光效率。銥錯合物已例示三(2_(2_吡啶基)苯 基)銥及其衍生物,記載經由令芳香族構造之配合基的取 代基變更成烷基或芳基,則可改變銥錯合物的發光色。 -4- 200922941 於特開200卜247859號公報(專利文獻2)中,例示作爲 三(2-(2-吡啶基)苯基)銥之取代基的各式各樣基。 於特開2002- 1 70684號公報(專利文獻3)中,揭示具有 磷系配位基之銥錯合物,作爲高效率發光元件及實現其的 新穎金屬錯合物。 於特表2004-5063 05號公報(專利文獻4)中,記載示出 藍色發光的金屬錯合物化合物,例示該金屬錯合物化合物 中含有銥。 另一方面,形成有機EL元件之發光層的方法,一般 有低分子量有機化合物的真空蒸鍍法、及高分子量化合物 溶液的塗佈法,但塗佈法於元件之製造費用低和元件容易 大面積方面有利。 但是,先前,磷光藍色發光性化合物爲缺乏溶解性, 難以塗佈成膜。已知爲了提高憐光藍色發光性化合物的溶 解性’乃導入長鏈烷基作爲芳香族構造之配位基的取代基 。例如,於Polyhedron 25(非專利文獻1)中,報導導入己 氧基的銥錯合物作爲芳香族構造之配位基的取代基(參照 下述式(4)及(5))。200922941 IX. Description of the Invention [Technical Field] The present invention relates to an illuminating metal complex compound, an organic electroluminescence device using a luminescent metal complex compound, and use thereof. [Prior Art] Since the phosphorescent compound has high luminous efficiency, the luminescent material type of the organic electroluminescent device (also referred to as an organic EL device in the present specification) has been actively developed in recent years. An organic EL element using a phosphorescent compound is expected to be expanded to various applications. However, in particular, in the development of display applications, it is necessary to develop a material having high luminous efficiency and continuous driving of the element. In the three primary colors necessary for a full-color display, an organic EL device that uses green light emission and red light emission has been found to have a phosphorescent compound having sufficiently useful characteristics such as luminous efficiency, durability, and solubility, but organic light using blue light is used. Such a phosphorescent compound is not found in EL elements. Thus, it has been desired to develop a phosphorescent blue luminescent compound having high luminous efficiency and high durability. Japanese Patent Publication No. 2003-526876 (Patent Document 1) discloses the use of an organic ruthenium complex as a phosphorescent compound, which can greatly improve the luminous efficiency of an organic EL device. The ruthenium complex is exemplified by tris(2-(2-pyridyl)phenyl)anthracene and its derivatives, and it is described that the substitution of a substituent of an aromatic structure to an alkyl group or an aryl group can change the entanglement The luminescent color of the object. In JP-A-200-247859 (Patent Document 2), each of the various groups which are substituents of tris(2-(2-pyridyl)phenyl)anthracene is exemplified. JP-A-2002-170702 (Patent Document 3) discloses a ruthenium complex having a phosphorus-based ligand as a high-efficiency light-emitting device and a novel metal complex thereof. Japanese Patent Publication No. 2004-5063 05 (Patent Document 4) discloses a metal complex compound which exhibits blue light emission, and exemplified by the fact that the metal complex compound contains ruthenium. On the other hand, a method of forming a light-emitting layer of an organic EL device generally includes a vacuum deposition method of a low molecular weight organic compound and a coating method of a high molecular weight compound solution, but the coating method is low in manufacturing cost of the device and the component is easily large. The area is favorable. However, in the past, the phosphorescent blue light-emitting compound has a lack of solubility and is difficult to apply to form a film. It is known that in order to improve the solubility of the blue light-emitting compound, it is a substituent in which a long-chain alkyl group is introduced as a ligand of an aromatic structure. For example, in Polyhedron 25 (Non-Patent Document 1), a ruthenium complex having a hexyloxy group is introduced as a substituent of a ligand of an aromatic structure (see the following formulas (4) and (5)).

200922941 [化2]200922941 [Chemical 2]

但是,式(4)及(5 )之化合物爲缺乏熱安定性’使用此 等化合物的有機EL元件具有耐久性低之問題。 專利文獻1 :特表2 〇 〇 3 - 5 2 6 8 7 6號公報 專利文獻2:特開2 00 1 -247 8 5 9號公報 專利文獻3 :特開2002-1 70684號公報 專利文獻4 :特表2〇〇4-5063〇5號公報 非專利文獻 1 : Inamur R.Laskar,Shih-Feng Hsu,Teng-Ming Chen, 「 Investigating photolurainescence and electroluminescence of iridium(III)-based blue-emitting phosphors」,Po1yhed r ο n, 2006年,25 , p _ 1 1 67 - 1 1 76。 【發明內容】 (發明所欲解決之課題) 本發明爲以提供對於有機EL元件製造時之塗佈溶液 用溶劑的溶解性高,且熱安定性優良的磷光藍色發光性化 合物爲其目的。 又’以提供使用此等磷光藍色發光性化合物的有機 -6- 200922941 EL元件,發光效率高,且壽命長的有機EL元件爲其目的 (解決課題之手段) 本發明者等人爲了解決上述課題而致力硏究之結果, 發現磷光藍色發光性化合物中,具有特定構造的銥錯合物 化合物,對於有機EL元件製造時之塗佈溶液用溶劑的溶 解性高,且熱安定性優良。又’發現有機EL元件製造時 ,溶解該銥錯合物化合物的塗佈溶液可於基板上均勻塗料 ,且成膜性良好,更且,發光層含有該銥錯合物化合物的 有機EL元件爲發光效率高’且壽命長’並達到完成本發 明。即,本發明可摘要如下。 [1] 一種下述式(1)所示之銥錯合物化合物。 [化3]However, the compounds of the formulae (4) and (5) lack heat stability. The organic EL device using these compounds has a problem of low durability. Patent Document 1: Japanese Patent Publication No. 2 5 3 - 5 2 6 8 7 6 Patent Document 2: Japanese Patent Laid-Open No. 00 1 - 247 No. 5, No. 9 Patent Publication No. JP-A No. 2002-1 70684 Patent Document 4 :Special Table 2〇〇4-5063〇5 Bulletin Non-Patent Document 1: Inamur R.Laskar, Shih-Feng Hsu, Teng-Ming Chen, "Investigating photolurainescence and electroluminescence of iridium(III)-based blue-emitting phosphors" , Po1yhed r ο n, 2006, 25, p _ 1 1 67 - 1 1 76. [Explanation of the Invention] The present invention has an object of providing a phosphorescent blue luminescent compound having high solubility in a solvent for a coating solution at the time of production of an organic EL device and excellent thermal stability. Further, in order to solve the above problem, an organic EL device having a high luminous efficiency and a long lifetime is provided for the organic -6-200922941 EL device using the phosphorescent blue luminescent compound. As a result of the investigation, it has been found that a ruthenium complex compound having a specific structure among the phosphorescent blue luminescent compounds has high solubility in a solvent for a coating solution at the time of production of an organic EL device, and is excellent in thermal stability. In addition, when the organic EL device is produced, the coating solution in which the ruthenium complex compound is dissolved can be uniformly coated on the substrate, and the film forming property is good, and the organic EL device in which the luminescent layer contains the ruthenium complex compound is The luminous efficiency is high 'and the life is long' and the completion of the present invention is achieved. That is, the present invention can be summarized as follows. [1] A ruthenium complex compound represented by the following formula (1). [Chemical 3]

• · · (1) (式(1)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數1〜10之烷基, R5〜R8分別獨立爲選自鹵原子、碳數1〜1〇之經氟取 -7- 200922941 代的烷基、碳數1〜1 0之經氟取代的烷氧基、氰基、醛基 、碳數2〜10之醯基、碳數2〜10之烷氧羰基、碳數1〜10 之胺羰基、硫氰酸酯基及碳數1〜之磺醯基之電子吸引 性的取代基、碳數1〜1 0之亦可具有雜原子的有機基(前述 電子吸引性的取代基除外)或氫原子, R5〜R8中之至少一者爲該電子吸引性的取代基)。 [2] 如[1 ]記載之銥錯合物化合物,其中前述電子吸引性 之取代基爲氟原子、碳數1〜10之經氟取代的烷基、碳數1 〜1 〇之經氟取代的烷氧基或氰基。 [3] 如[1]或[2]記載之銥錯合物化合物,其下述式(2)所示 [化4](1) (In the formula (1), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R5 to R8 are each independently selected from the group consisting of A halogen atom, a carbon number of 1 to 1 fluorene, a fluorine-based -7-200922941 alkyl group, a carbon number of 1 to 10, a fluorine-substituted alkoxy group, a cyano group, an aldehyde group, and a carbon number of 2 to 10 Substituent, electron-attractive substituent having a carbon number of 2 to 10, an amine carbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, and a carbon number of 1 to 10; The organic group having a hetero atom (except for the electron-attracting substituent) or the hydrogen atom may be used, and at least one of R5 to R8 is a substituent capable of attracting the electron. [2] The oxime complex compound according to [1], wherein the electron-attracting substituent is a fluorine atom, a fluorine-substituted alkyl group having a carbon number of 1 to 10, and a fluorine substitution of a carbon number of 1 to 1? Alkoxy or cyano group. [3] The ruthenium complex compound as described in [1] or [2], which is represented by the following formula (2) [Chemical 4]

(式(2)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數1〜10之烷基)。 如[1]〜[3]中任一項記載之銥錯合物化合物,其爲下 -8- [4] 200922941 述式(3 )所示。 [化5](In the formula (2), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms). The ruthenium complex compound according to any one of [1] to [3], which is represented by the following formula (3). [Chemical 5]

• · (3) (式(3)中,R1爲碳數2〜30之有機基)。 [5] 如[1 ]〜[4 ]中任一項記載之銥錯合物化合物,其中R1 爲碳數2〜30之烷基或碳數7〜30之芳烷基。 [6] 如[1 ]〜[5 ]中任一項記載之銥錯合物化合物,其爲面 式(facial)體。 [7] 一種有機電致發光元件,其爲具備基板、和前述基板 上所形成之一對電極、和於前述一對電極間含有發光層之 一層或數層有機層的有機電致發光元件,其特徵爲 上述發光層爲含有如Π]〜[6]中任一項之銥錯合物化 合物。 [8] 如[7]記載之有機電致發光元件,其中發光層爲含有 電荷輸送性的非共軛高分子化合物。 -9- 200922941 [9] 一種影像顯示裝置,其特徵爲使用如[7]或[8]記載之 有機電致發光元件。 [10] 一種面發光光源,其特徵爲使用如[7]或[8]記載之有 機電致發光元件。 [11] 一種銥錯合物化合物之製造方法,其爲如Π ]記載之 銥錯合物化合物的製造方法,其特徵爲 令氯化銥(111)三水合物與下述式(1 · 1)所示之苯基吡啶 衍生物,於醇與水的混合溶劑中加熱反應取得下述式(1 -2)所示之銥的二核錯合物, 令該二核錯合物與下述式(1 -1)所示之苯基吡啶衍生 物於鹼及/或銀鹽的存在下,於溶劑中加熱反應。 [化6]• (3) (In the formula (3), R1 is an organic group having 2 to 30 carbon atoms). [5] The oxime complex compound according to any one of [1] to [4] wherein R1 is an alkyl group having 2 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms. [6] The oxime complex compound according to any one of [1] to [5], which is a facial body. [7] An organic electroluminescence device comprising: a substrate; and a counter electrode formed on the substrate; and an organic electroluminescence device comprising a layer of the light-emitting layer or a plurality of organic layers between the pair of electrodes, It is characterized in that the luminescent layer is a ruthenium complex compound containing any one of Π] to [6]. [8] The organic electroluminescence device according to [7], wherein the light-emitting layer is a non-conjugated polymer compound containing a charge transport property. -9- 200922941 [9] An image display device using the organic electroluminescence device according to [7] or [8]. [10] A surface-emitting light source characterized by using the electroluminescent element as described in [7] or [8]. [11] A method for producing a ruthenium complex compound, which is a method for producing a ruthenium complex compound as described in Π], characterized in that ruthenium chloride (111) trihydrate is represented by the following formula (1 · 1) The phenylpyridine derivative shown is heated in a mixed solvent of an alcohol and water to obtain a fluorene dinuclear complex represented by the following formula (1-2), and the dinuclear complex is described below. The phenylpyridine derivative represented by the formula (1-1) is heated in a solvent in the presence of a base and/or a silver salt. [Chemical 6]

(1-2) (式(1-1)及式(卜2)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數i〜10之烷基, R5〜R8分別獨立爲選自鹵原子、碳數1〜10之經氟取 -10- 200922941 代的烷基、碳數1〜10之經氟取代的烷氧基、氰基、醛基 、碳數2〜10之醯基、碳數2〜1〇之烷氧羰基、碳數1〜10 之胺羰基、硫氰酸酯基及碳數1〜10之磺醯基之電子吸引 性的取代基、碳數1〜10之亦可具有雜原子的有機基(前述 電子吸引性的取代基除外)或氫原子, R5〜R8中之至少一者爲該電子吸引性的取代基)。 (發明之效果) 若根據本發明,則可提供對於有機EL元件製造時之 塗佈溶液用溶劑的溶解性高,且熱安定性優良之藍色發光 性的銥錯合物化合物,又,提供使用該銥錯合物化合物的 有機EL元件,係爲發光效率高,且壽命長的有機EL元 件。更且,有機EL元件製造時,溶解該銥錯合物化合物 的塗佈溶液可均勻塗佈於基板上,且成膜性良好。 【實施方式】 以下,具體說明本發明。 <銥錯合物化合物> 本發明中,使用下述式(1)所示之銥錯合物化合物。 -11 - 200922941 [化7](1-2) (In the formula (1-1) and the formula (Bu 2), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having a carbon number of i 10, R 5 〜R8 are each independently selected from a halogen atom, a carbon number of 1 to 10, a fluorine-containing alkyl group of the group - 10, 2009, and a carbon number of 1 to 10, a fluorine-substituted alkoxy group having a carbon number of 1 to 10, a cyano group, an aldehyde group, and a carbon number. An electron-attractive substituent of a 2 to 10 fluorenyl group, an alkoxycarbonyl group having 2 to 1 carbon atom, an amine carbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms; The organic group having a hetero atom (except for the electron-attracting substituent) or a hydrogen atom having 1 to 10 carbon atoms, and at least one of R5 to R8 is a substituent capable of attracting electrons. (Effect of the Invention) According to the present invention, it is possible to provide a blue-emitting ruthenium complex compound which has high solubility in a solvent for a coating solution at the time of production of an organic EL device and excellent thermal stability, and further provides An organic EL device using the ruthenium complex compound is an organic EL device having high light-emitting efficiency and long life. Further, in the production of the organic EL device, the coating solution in which the ruthenium complex compound is dissolved can be uniformly applied onto the substrate, and the film formability is good. [Embodiment] Hereinafter, the present invention will be specifically described. <铱 complex compound> In the present invention, a ruthenium complex compound represented by the following formula (1) is used. -11 - 200922941 [Chem. 7]

(式中(1),中R1爲碳數2〜30之有機基, R2〜R4爲氫原子或碳數1〜10之烷基, R5〜R8分別獨立爲選自鹵原子、碳數1〜10之經氟取 代的烷基、碳數1〜1 〇之經氟取代的烷氧基、氰基、醛基 、碳數2〜10之醯基、碳數2〜10之烷氧羰基、碳數1〜10 之胺羰基、硫氰酸酯基及碳數1〜1〇之磺醯基之電子吸引 性的取代基、碳數1〜1 〇之亦可具有雜原子的有機基(前述 電子吸引性的取代基除外)或氫原子, R5〜R8中之至少一者爲該電子吸引性的取代基)。 爲了提高銥錯合物化合物對於有機EL元件製造時之 塗佈溶液用溶劑的溶解性,於上述式(1)中,R1爲碳數2〜 30之有機基,較佳爲碳數2〜30之烷基或碳數7〜30之芳烷 基’更佳爲具有分支構造及/或環狀構造之碳數3〜30的院 基,具有分支構造之碳數8〜30的芳烷基。具體例可列舉 乙基、正丙基、異丙基、正丁基、2-丁基、異丁基、第三 丁基、1-戊基、2-戊基、3-戊基、3-甲基丁基、1,1-二甲 基丙基、正己基、2 -己基、3 -己基、4 -甲基戊基、2 -乙基 丁基、正庚基、2·庚基、3-庚基、4-庚基、正辛基、2-辛 -12- 200922941 基、3-辛基、4-辛基、正乙基己基、正壬基、2-壬基、3-壬基、4-壬基、5壬基、正癸基、3,7-二甲基辛基、正-十 二烷基、正-十四烷基、正-十六烷基、2 -甲基十六烷基、 正-十八烷基、正-廿烷基、正-二十二烷基、環丙基、環 丁基、環戊基、環己基、環庚基、環己基甲基、金剛烷基 、3,5 -二甲基金剛烷基、苄基、1-苯乙基、2 -苯乙基、2-(1-苯基)丙基或3,3-二苯基丙基。較佳爲異丙基、2-丁基 、異丁基、第三丁基、2-戊基、3-戊基、3 -甲基丁基、 1,1-二甲基丙基、2-己基、3_己基、4-甲基戊基、2-乙基 丁基、2-庚基、3-庚基、4-庚基、2-辛基、3-辛基、4-辛 基、2-乙基己基、2-壬基、3-壬基、4-壬基、5-壬基、 3,7-二甲基辛基、2-甲基十六烷基、環丙基、環丁基、環 戊基、環己基、環庚基、環己基甲基、金剛烷基、3,5 -二 甲基金剛烷基、1-苯乙基、2 -苯乙基、2-(1-苯基)丙基或 3,3-二苯丙基,更佳爲2-丁基、2-戊基、2-乙基己基、環 戊基、環己基、環己基甲基或金剛烷基。 爲了提高熱安定性,於上述式(1)中,R2〜R4爲氫原 子或碳數1〜10之院基爲佳。 具體例可列舉氫原子、甲基、乙基、正丙基、異丙基 、正丁基、2-丁基、第三丁基、1-戊基、2-戊基、3-戊基 、3-甲基丁基、Μ-二甲基丙基、正己基、2-己基、3-己 基、4-甲基戊基、2-乙基丁基、正庚基、2-庚基、3-庚基 、4-庚基、正辛基、2-辛基、3-辛基、4-辛基、正乙基己 基、正壬基、2-壬基、3-壬基、4-壬基、5-壬基或正癸基 -13- 200922941 。再佳爲氫原子、甲基或乙基,特佳爲氫原子。 又’爲了取得藍色發光性化合物,於上述式(丨)中, R5〜R8中之至少一者爲電子吸引性的取代基。該電子吸引 性之取代基爲選自鹵原子、碳數1〜1〇之經集取代的院基 、碳數1〜10之經氟取代的院氧基、氰基、醛基、碳數2〜 10之醯基、碳數2〜1〇之烷氧羰基、碳數ι〜1〇之胺羰基、 硫氰酸酯基及碳數1〜10之磺醯基的電子吸引性取代基爲 佳。該電子吸引性的取代基更佳爲氟原子、碳數1〜丨〇之 經氟取代的烷基、碳數1〜1 〇之經氟取代的烷氧基或氰基 〇 具體例可列舉氟原子、氯原子、溴原子、碘原子、三 氧甲基、三氟甲氧基、氰基、醛基、乙醯基、苯甲醯基、 甲氧羰基、苯氧羰基、二甲胺羰基、硫氰酸酯基、甲磺醯 基 '苯磺醯基。更佳爲氟原子、三氟甲基、三氟甲氧基或 氰基,特佳爲氟原子。 於上述式(1)中,R5〜R8中之前述電子吸引性的取代 基以外,係爲碳數1〜10之亦可具有雜原子的有機基(前述 胃子吸引性的取代基除外)或氫原子。 本發明之銥錯合物化合物,對於有機EL元件製造時 β塗佈溶液用溶劑的溶解性高,且熱安定性優良方面而言 ’ &下述式(2)所示之化合物爲佳。 -14- 200922941(In the formula (1), R1 is an organic group having 2 to 30 carbon atoms, R2 to R4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R5 to R8 are each independently selected from a halogen atom and a carbon number of 1 to a fluorine-substituted alkyl group of 10, a fluorine-substituted alkoxy group having 1 to 1 carbon atom, a cyano group, an aldehyde group, a fluorenyl group having 2 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, and carbon An electron-attracting substituent of an amine carbonyl group, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, and an organic group having a carbon number of 1 to 1 Å or a hetero atom (the aforementioned electrons) Except for the attractive substituent) or a hydrogen atom, at least one of R5 to R8 is the electron-attracting substituent). In the above formula (1), R1 is an organic group having 2 to 30 carbon atoms, preferably a carbon number of 2 to 30, in order to improve the solubility of the ruthenium complex compound in the solvent for the coating solution in the production of the organic EL device. The alkyl group or the aralkyl group having 7 to 30 carbon atoms is more preferably a group having 3 to 30 carbon atoms having a branched structure and/or a cyclic structure, and having an aralkyl group having a branched structure and having 8 to 30 carbon atoms. Specific examples thereof include ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl, tert-butyl, 1-pentyl, 2-pentyl, 3-pentyl, 3- Methyl butyl, 1,1-dimethylpropyl, n-hexyl, 2-hexyl, 3-hexyl, 4-methylpentyl, 2-ethylbutyl, n-heptyl, 2·heptyl, 3 -heptyl, 4-heptyl, n-octyl, 2-oct-12- 200922941, 3-octyl, 4-octyl, n-ethylhexyl, n-decyl, 2-indenyl, 3-fluorenyl , 4-indenyl, 5-indenyl, n-decyl, 3,7-dimethyloctyl, n-dodecyl, n-tetradecyl, n-hexadecyl, 2-methyl-10- Hexaalkyl, n-octadecyl, n-decyl, n-docosyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclohexylmethyl, diamond Alkyl, 3,5-dimethyladamantyl, benzyl, 1-phenylethyl, 2-phenylethyl, 2-(1-phenyl)propyl or 3,3-diphenylpropyl. Preferred are isopropyl, 2-butyl, isobutyl, tert-butyl, 2-pentyl, 3-pentyl, 3-methylbutyl, 1,1-dimethylpropyl, 2- Hexyl, 3-hexyl, 4-methylpentyl, 2-ethylbutyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 2-ethylhexyl, 2-indenyl, 3-indenyl, 4-indenyl, 5-indenyl, 3,7-dimethyloctyl, 2-methylhexadecyl, cyclopropyl, cyclo Butyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclohexylmethyl, adamantyl, 3,5-dimethyladamantyl, 1-phenylethyl, 2-phenylethyl, 2-(1 -Phenyl)propyl or 3,3-diphenylpropyl, more preferably 2-butyl, 2-pentyl, 2-ethylhexyl, cyclopentyl, cyclohexyl, cyclohexylmethyl or adamantyl . In order to improve the thermal stability, in the above formula (1), R2 to R4 are preferably a hydrogen atom or a hospital having a carbon number of 1 to 10. Specific examples thereof include a hydrogen atom, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a 2-butyl group, a tert-butyl group, a 1-pentyl group, a 2-pentyl group, and a 3-pentyl group. 3-methylbutyl, hydrazine-dimethylpropyl, n-hexyl, 2-hexyl, 3-hexyl, 4-methylpentyl, 2-ethylbutyl, n-heptyl, 2-heptyl, 3 -heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, n-ethylhexyl, n-decyl, 2-indenyl, 3-indolyl, 4-anthracene Base, 5-mercapto or n-decyl-13- 200922941. Further preferred is a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom. Further, in order to obtain a blue light-emitting compound, in the above formula (丨), at least one of R5 to R8 is an electron-attracting substituent. The electron-attracting substituent is selected from the group consisting of a halogen atom, a carbon number of 1 to 1 经, a substituted group, a carbon number of 1 to 10, a fluorine-substituted alkoxy group, a cyano group, an aldehyde group, and a carbon number of 2. An electron-attractive substituent of a fluorenyl group having a fluorenyl group of 10 to 10, an alkoxycarbonyl group having 2 to 1 Å, an amine carbonyl group having a carbon number of 1 to 10, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms is preferred. . The electron-attracting substituent is more preferably a fluorine atom, a fluorine-substituted alkyl group having 1 to 1 carbon atom, a fluorine-substituted alkoxy group having 1 to 1 carbon atom or a cyanoguanidine. Specific examples thereof include fluorine. Atom, chlorine atom, bromine atom, iodine atom, trimethoxymethyl, trifluoromethoxy, cyano, aldehyde, ethyl fluorenyl, benzhydryl, methoxycarbonyl, phenoxycarbonyl, dimethylamine carbonyl, Thiocyanate group, methanesulfonyl 'benzenesulfonyl group. More preferably, it is a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group or a cyano group, and particularly preferably a fluorine atom. In the above formula (1), the electron-attracting substituents in R5 to R8 are an organic group having a carbon number of 1 to 10 and having a hetero atom (except for the aforementioned gastric attracting substituent) or A hydrogen atom. The oxime complex compound of the present invention is preferably a compound represented by the following formula (2) in terms of solubility in a solvent for a β coating solution at the time of production of an organic EL device, and excellent heat stability. -14- 200922941

(式(2),中,R1爲碳數2〜30之有機基’ R2〜R4爲氫原子或碳數1〜10之烷基 更佳爲下述式(3)所示之化合物。(In the formula (2), R1 is an organic group having 2 to 30 carbon atoms. R2 to R4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. More preferably, it is a compound represented by the following formula (3).

(式(3)中,R1爲碳數2〜30之有機基, 又,本發明之銥錯合物化合物若爲面式(facial)體, 則就提高該化合物的發光性方面而言爲佳。 本發明之銥錯合物化合物,若與先前之磷光藍色發光 性化合物,例如下述式所示之化合物相比較,則因不具有 與銥原子結合弱的甲基吡啶酸配位基,故具有熱安定性優 良的特徵。 -15- 200922941 [化 10](In the formula (3), R1 is an organic group having 2 to 30 carbon atoms, and when the oxime complex compound of the present invention is a facial body, it is preferable in terms of improving the luminosity of the compound. When the ruthenium complex compound of the present invention is compared with the conventional phosphorescent blue light-emitting compound, for example, a compound represented by the following formula, since it does not have a weakly bonded picidinic acid group with a ruthenium atom, Therefore, it has the characteristics of excellent thermal stability. -15- 200922941 [化10]

lr(F2HexOppy)2(pic) <銥錯合物化合物之製造方法> 本發明之銥錯合物化合物的製造方法並無特別限定, 例如,可依下述方法製造。 -16- 200922941 [化 11]Lr(F2HexOppy)2(pic) <Manufacturing method of ruthenium complex compound> The method for producing the ruthenium complex compound of the present invention is not particularly limited, and for example, it can be produced by the following method. -16- 200922941 [化11]

一邊參照上述流程圖,一邊說明本發明之銥錯合物化 合物的製造方法。 首先,令氯化銥(III)三水合物與苯基吡啶衍生物(1-1) ,於醇與水之混合溶劑中加熱反應取得銥的二核錯合物 (1 -2)。該加熱步驟亦可於迴流下進行。該混合溶劑中的 醇可列舉例如甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、第三丁醇、2 -甲氧基乙醇、2 -乙氧基乙醇、乙二醇 、:1,2-丙二醇、1,3-丙二醇、1,3-丁 二醇、1,4-丁二醇、二乙 -17- 200922941 二醇、二乙二醇單甲醚等。前述混合溶劑中之醇與水的比 例(醇:水(體積比))爲1〜9 9 : 1。前述混合溶劑之具體例 可列舉2 -乙氧基乙醇與水的混合溶劑(2 -乙氧基乙醇:水 =3 : 1(體積比))。 另外’式(1-1)、(1-2)中之R1〜R8分別與式(1)之R1〜 R8同義。 其次,令此二核錯合物與苯基吡啶衍生物(1 -1)於鹼 及/或銀鹽存在下,於溶劑中加熱反應則可取得本發明之 銥錯合物化合物(1)。該加熱步驟亦可於迴流下進行。前 述鹼可列舉例如碳酸鈉和碳酸鉀等之無機鹼化合物、三丁 胺和二甲基吡啶等之有機鹼。又,前述銀鹽可列舉例如氧 化銀(I)、硫化銀(I)、硫酸銀(I)、硝酸銀(I)、磷酸銀(I)、 醋酸銀(I)、三氟醋酸銀(I)、對-甲苯磺酸銀(I)、甲烷磺酸 銀(I)、三氟甲烷磺酸銀(I)等。 於此第二反應步驟中,若使用甲苯作爲溶劑,則面式 (facial)體及子午線圈(meridi〇nal)體的銥錯合物化合物有 時以混合物型式取得,若使用具有更高沸點的来等作爲溶 劑,則面式(facial)體的銥錯合物化合物爲以高產率且高 選擇性取得。 <有機EL元件> 本發明之有機EL元件爲具備基板、和該基板上所形 成之一對電極、和於該一對電極間含有發光層之一層或數 層有機層的有機EL元件,上述發光層爲含有本發明之銥 -18- 200922941 錯合物化合物爲其特徵的有機EL元件。 更且,上述發光層爲含有電荷輸送性之非共軛高分子 化合物爲其特徵的有機EL元件爲佳。 本發明之有機EL元件的構成一例示於圖1,但本發 明之有機EL元件的構成並非限定於此。圖1中’於透明 基板1上所設置之陽極2及陰極4之間,設置發光層3。上述 有機EL元件中,例如,於陽極2與發光層3之間亦可設置 電洞注入層,又,於發光層3與陰極4之間亦可設置電子注 入層。 於上述中,含有本發明之銥化合物及電荷輸送性之非 共軛高分子化合物的有機層,可利用作爲兼具電洞輸送性 及電子輸送性的發光層。因此,即使未設置其他有機材料 所構成之層,亦具有可作成具有高發光效率之有機EL元 件的優點。 上述有機層並無特別限定,例如,可如下製造。首先 ,調製令本發明之銥錯合物化合物及電荷輸送性之非共軛 高分子化合物溶解而成的溶液。調製上述溶液所用之溶劑 並無特別限定,例如,可使用氯仿、二氯甲烷、二氯乙烷 等之氯系溶劑、四氫呋喃、茴香醚等之醚系溶劑、甲苯、 二甲苯等之芳香族烴系溶劑、丙酮、甲基乙基酮等之酮系 溶劑、醋酸乙酯、醋酸丁酯、乙基溶纖劑醋酸酯等之酯系 溶劑等。其次,將如上調製之溶液,使用噴墨法、旋塗法 、浸塗法或印刷法等在基板上成膜。 本發明之銥錯合物化合物因爲對於塗佈溶液用溶劑的 -19- 200922941 溶解性高,故在塗佈溶解該化合物的塗佈溶液時’可在基 板上均勻成膜該化合物方面爲非常優良。 上述溶液的濃度爲依據所用之化合物及成膜條件等而 定,例如,於旋塗法和浸塗法之情形中,以0 · 1〜1 〇 W t °/。爲 佳。如此,因爲本發明之銥錯合物化合物對於溶劑的溶解 性高,故可簡單成膜,可實現製造步驟的簡略化,同時可 圖謀元件的大面積化。 另外’本發明之銥錯合物化合物單獨1種或組合2種以 上使用於有機EL元件的發光層亦可。 將本發明之銥錯合物化合物使用於發光層的有機E L 元件爲壽命長,且取得高發光效率。 <其他材料> 上述之各層爲混合筒分子材料作爲黏合劑,形成亦可 。上述高分子材料可列舉例如,聚甲基丙烯酸甲酯、聚碳 酸酯、聚酯、聚颯、聚苯醚等。 又’上述各層所用之材料爲混合不同機能的材料,例 如,發光材料' 電洞輸送材料、電子輸送材料等,形成各 層亦可。於曰有本發明之銨錯合物化合物的有機層中,於 彌補電荷輸送性之目的下,亦可再含有其他電洞輸送材料 及/或電子輸送材料。此類輸送材料可爲低分子化合物, 且亦可爲筒分子化合物。 形成上述電洞輸送層的電洞輸送材料、或發光層中所 混合的電洞輸送材料,可列舉例如TpD(N,N,·二甲基· -20- 200922941 N,N’-(3-甲苯基-聯苯·4,4,_ 二胺);α _NpD(4,4、雙 [N-(l -萘基)-N-苯胺基]聯苯);m_MTDATA(4,4,,4,,-5(3- 甲苯基苯胺基)二苯胺)等之低分子三苯胺衍生物;聚乙嫌 基咔唑;於上述三苯胺衍生物中導入聚合性取代基所聚合 的局分子化合物;聚對伸苯伸乙稀基、聚二院基苟等之螢 光發光性筒分子化合物等。上述高分子化合物可列舉例如 ,特開平8-157575號公報所揭示之三苯胺骨架的高分子化 合物等。上述電洞輸送材料可單獨1種,或混合使用2種以 上亦可’且亦可層合不同的電洞輸送材料供使用。電洞輸 送層的厚度因依賴電洞輸送層的導電率等而定,故無法一 槪決定’較佳爲1 nm〜5 μηι、更佳爲5nm〜1 μιη、特佳爲 10nm〜500nm 〇 形成上述電子輸送層的電子輸送材料、或發光層中所 混合的電子輸送材料’可列舉例如A1 q 3 (三羥基唾啉酸鋁) 等之羥基喹啉衍生物金屬錯合物,噚二唑衍生物、三唑衍 生物、咪唑衍生物、三哄衍生物、三芳基硼烷衍生物等之 低分子化合物;上述之低分子化合物中導入聚合性取代基 所聚α的闻分子化合物等。上述筒分子化合物可列舉例如 ’特開平1 0- 1 665號公報所揭示的聚PBD等。上述電子輸 送材料可單獨1種、或混合使用2種以上亦可,且亦可層合 不同的電子輸送材料供使用。電子輸送層的厚度因依賴電 子輸送層的導電率等而定,故無法一槪限定,較佳爲lnm 〜5μιη、更佳爲5nm〜Ιμηι、特佳爲10nm〜5〇〇nm。 又’鄰接至發光層的陰極側、抑制電洞通過發光層, -21 - 200922941 並於發光層內有效率再結合電洞與電子之目的下,亦可設 置電洞•阻擋層。爲了形成上述電洞•阻擋層,乃使用三 唑衍生物、啤二唑衍生物、菲咯啉衍生物等之公知材料。 於陽極與發光層之間’爲了緩和電洞注入中的注入阻 礙’亦可設置電洞注入層。爲了形成上述電洞注入層,乃 使用酞菁酮 '聚乙二氧基噻吩(PEDOT)與聚苯乙烯擴酸 (PSS)的混合體、碳氟化合物等公知材料。 於陰極與電子輸送層之間’或陰極與鄰接陰極所層合 之有機層之間’爲了提筒尚電子注入效率,亦可設置厚度 0· 1〜1 Onm的絕緣層。爲了形成上述絕緣層,乃使用氟化 鋰、氟化鎂、氧化鎂、氧化銘等公知材料。 上述陽極材料例如使用IT 0 (氧化銦錫)、氧化錫、氧 化辞、聚嚷吩、聚啦略、聚本胺等之導電性高分子等公知 的透明導電材料。經由此透明導電材料所形成的電極表面 電阻爲1〜50Ω/〇(歐姆/平方)爲佳。陽極的厚度爲5〇〜 3 0 0 n m爲佳。 上述陰極材料可使用例如,Li、Na、κ、Cs等之驗金 屬;Mg、Ca、Ba等之鹼土類金屬;Al ; MgAg合金; AlLi、AICa等之A1與鹼金屬或鹼土類金屬之合金等公知 的陰極材料。陰極的厚度較佳爲10nm〜 1μιη、更佳爲5〇〜 50〇nm。鹼金屬、鹼土類金屬等之活性高的金屬作爲陰極 使用的情形中’陰極厚度較佳爲0.1〜1〇〇nm、更佳爲〇.5 〜5〇nm。又,於此情形中,於保護上述陰極金屬之目的 下,於此陰極上,層合對於大氣安定的金屬層。形成上述 -22- 200922941 金屬層的金屬可列舉例如,A1、Ag、Au、Pt、Cu、Ni、 Cr等。上述金屬層的厚度較佳爲i〇ntn〜ΐμηι,更佳爲5〇 〜5 0 0 nm 〇 本發明之有機EL·元件的基板,可使用對於上述發光 材料之發光波長透明的絕緣性基板,除了玻璃以外,可使 用PET(聚對苯二甲酸乙二酯)、聚碳酸酯等之透明塑膠等 〇 上述電洞輸送層、發光層及電子輸送層的成膜方法, 例如’可使用電阻加熱蒸鑛法、電子束蒸鍍法、濺鍍法、 噴墨法、旋塗法、印刷法、噴霧法、分散器法等。低分子 化合物之情形’以電阻加熱蒸鑛或電子束蒸鍍爲適於使用 ’高分子化合物之情形’以噴墨法、旋塗法、或印刷法爲 適於使用。 又’上述陽極材料之成膜方法,例如,可使用電子束 蒸鍍法、溺鍍法、化學反應法、塗敷法等,上述陰極材料 之成膜方法’例如’可使用電阻加熱蒸鍍法、電子束蒸鍍 法、濺鍍法、離子電鍍法等。 <電荷輸送性之非共軛高分子化合物> 上述電荷輸送性之非共軛高分子化合物爲令含有選自 電洞輸送性之聚合性化合物及電子輸送性之聚合性化合物 所成群之至少一種的聚合性化合物之單體,共聚所得之聚 合物爲佳。另外,於本說明書中,將電洞輸送性之聚合性化 合物及電子輸送性之聚合性化合物,合倂稱爲電荷輸送性 -23- 200922941 之聚合性化合物。 即,上述電荷輸送性之非共軛高分子化合物,以含有 1種或2種以上電洞輸送性之聚合性化合物所導出的構造單 位,或1種或2種以上電子輸送性之聚合性化合物所導出的 構造單位之聚合物爲佳。若使用此類聚合物,可提高發光 層內之電荷移動度,且可以塗佈方式形成均質之薄膜,而 可得到更高的發光效率。 又,上述電荷輸送性之非共軛高分子化合物,以含有 1種或2種以上電洞輸送性之聚合性化合物所導出的構造單 位,和1種或2種以上電子輸送性之聚合性化合物所導出的 構造單位之聚合物所構成者爲更佳。若使用此類聚合物, 因該聚合物爲具備電洞輸送性及電子輸送性之機能,故於 上述磷光發光性化合物附近,電洞與電子爲更有效率再結 合,故取得更高的發光效率。 上述電洞輸送性之聚合性化合物及上述電子輸送性之 聚合性化合物,除了具有具聚合性官能基的取代基以外, 並無特別限制,可使用公知的電荷輸送性化合物。 上述聚合性官能基可爲自由基聚合性、陽離子聚合性 、陰離子聚合性、加成聚合性、及縮合聚合性之官能基的 任一者。其中,以自由基聚合性之官能基,因容易製造聚 合物故爲佳。 上述聚合性官能基可列舉例如,烯丙基、烯基、丙烯 酸酯基、甲基丙烯酸酯基、甲基丙烯醯氧乙基胺甲酸酯等 之胺甲酸酯(甲基)丙烯酸酯、乙烯醯胺基及其衍生物等。 -24- 200922941 其中,以烯基爲佳。 更具體而言,上述聚合性官能基爲烯基 聚合性官能基的取代基爲下述一般式(A 1 ), 取代基爲更佳。其中,下述式(Al)、(A5)、 示之取代基,因可於電荷輸送性之化合物中 性官能基故爲更佳。 時,具有上述 -(A12)所示之 (A8)、(12)所 輕易導入聚合 [化 12] -CH 'CH: CH3 —ΛThe method for producing the ruthenium complex compound of the present invention will be described with reference to the above-described flowchart. First, the ruthenium (III) chloride trihydrate and the phenylpyridine derivative (1-1) are heated and reacted in a mixed solvent of an alcohol and water to obtain a fluorene dinuclear complex (1 - 2). This heating step can also be carried out under reflux. The alcohol in the mixed solvent may, for example, be methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 2-methoxyethanol or 2-ethoxyl. Ethanol, ethylene glycol,: 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, diethyl-17-200922941 diol, diethylene glycol monomethyl Ether, etc. The ratio of the alcohol to water (alcohol: water (volume ratio)) in the above mixed solvent is from 1 to 9:1. Specific examples of the mixed solvent include a mixed solvent of 2-ethoxyethanol and water (2-ethoxyethanol: water = 3:1 (volume ratio)). Further, R1 to R8 in the formulas (1-1) and (1-2) are synonymous with R1 to R8 of the formula (1), respectively. Next, the ruthenium complex compound (1) of the present invention can be obtained by heating the dinuclear complex compound and the phenylpyridine derivative (1-1) in the presence of a base and/or a silver salt in a solvent. This heating step can also be carried out under reflux. The above-mentioned base may, for example, be an inorganic base compound such as sodium carbonate or potassium carbonate, or an organic base such as tributylamine or lutidine. Further, examples of the silver salt include silver oxide (I), silver sulfide (I), silver sulfate (I), silver nitrate (I), silver (I) phosphate, silver acetate (I), and silver trifluoroacetate (I). Silver (I) p-toluenesulfonate, silver (I) methanesulfonate, silver (I) trifluoromethanesulfonate, and the like. In the second reaction step, if toluene is used as the solvent, the ruthenium compound and the meridine compound of the meridian coil are sometimes obtained in a mixture type, if a higher boiling point is used. When used as a solvent, the pharmaceutically complex ruthenium complex compound is obtained in high yield and high selectivity. <Organic EL device> The organic EL device of the present invention includes a substrate, and a pair of electrodes formed on the substrate, and an organic EL device including one layer or a plurality of organic layers between the pair of electrodes. The above-mentioned light-emitting layer is an organic EL element which is characterized by containing the compound of 铱-18-200922941 of the present invention. Further, the light-emitting layer is preferably an organic EL device characterized by a charge transporting non-conjugated polymer compound. An example of the configuration of the organic EL device of the present invention is shown in Fig. 1, but the configuration of the organic EL device of the present invention is not limited thereto. In Fig. 1, a light-emitting layer 3 is provided between the anode 2 and the cathode 4 provided on the transparent substrate 1. In the organic EL device, for example, a hole injection layer may be provided between the anode 2 and the light-emitting layer 3, and an electron injection layer may be provided between the light-emitting layer 3 and the cathode 4. In the above, the organic layer containing the ruthenium compound of the present invention and the charge transporting non-conjugated polymer compound can be used as a light-emitting layer having both hole transporting property and electron transporting property. Therefore, even if a layer composed of other organic materials is not provided, there is an advantage that it can be made into an organic EL element having high luminous efficiency. The organic layer is not particularly limited, and for example, it can be produced as follows. First, a solution obtained by dissolving the ruthenium complex compound of the present invention and a charge transporting non-conjugated polymer compound is prepared. The solvent to be used for the preparation of the above-mentioned solution is not particularly limited. For example, a chlorine-based solvent such as chloroform, dichloromethane or dichloroethane, an ether solvent such as tetrahydrofuran or anisole, or an aromatic hydrocarbon such as toluene or xylene may be used. Examples of the solvent, a ketone solvent such as acetone or methyl ethyl ketone, an ester solvent such as ethyl acetate, butyl acetate or ethyl cellosolve acetate. Next, the solution prepared as above is formed into a film on a substrate by an inkjet method, a spin coating method, a dip coating method, a printing method, or the like. Since the ruthenium complex compound of the present invention has high solubility in the solvent for the coating solution from -19 to 200922941, it is excellent in that the compound can be uniformly formed on the substrate when the coating solution for dissolving the compound is applied. . The concentration of the above solution depends on the compound to be used, the film formation conditions, and the like. For example, in the case of the spin coating method and the dip coating method, it is 0·1 to 1 〇 W t °/. It is better. As described above, since the ruthenium complex compound of the present invention has high solubility in a solvent, it can be easily formed into a film, and the simplification of the production process can be achieved, and the area of the element can be reduced. Further, the ruthenium complex compound of the present invention may be used alone or in combination of two or more of the light-emitting layers used in the organic EL device. The organic EL element used in the light-emitting layer of the ruthenium complex compound of the present invention has a long life and high luminous efficiency. <Other Materials> Each of the above layers may be formed by mixing a molecular material of a cartridge as a binder. Examples of the polymer material include polymethyl methacrylate, polycarbonate, polyester, polyfluorene, and polyphenylene ether. Further, the materials used in the above layers are materials in which different functions are mixed, for example, a light-emitting material 'hole transport material, an electron transport material, and the like, and each layer may be formed. In the organic layer having the ammonium complex compound of the present invention, other hole transporting materials and/or electron transporting materials may be further contained for the purpose of compensating for charge transportability. Such transport materials can be low molecular weight compounds and can also be cartridge molecular compounds. The hole transporting material forming the above-described hole transporting layer or the hole transporting material mixed in the light emitting layer may, for example, be TpD (N, N, dimethyl -20- 200922941 N, N'-(3- Tolyl-biphenyl·4,4,-diamine); α _NpD (4,4, bis[N-(l-naphthyl)-N-anilino]biphenyl); m_MTDATA(4,4,,4 , a low molecular triphenylamine derivative such as -5 (3-tolylanilino)diphenylamine); a polyethyl carbazole; a local molecule compound obtained by introducing a polymerizable substituent into the above triphenylamine derivative; For example, a polymer compound of a triphenylamine skeleton disclosed in Japanese Laid-Open Patent Publication No. Hei 8-157575, and the like. The above-mentioned hole transporting material may be used alone or in combination of two or more types, and may be laminated with different hole transporting materials. The thickness of the hole transporting layer depends on the conductivity of the hole transporting layer. Depending on the determination, it is not possible to determine 'preferably 1 nm to 5 μηι, more preferably 5 nm to 1 μηη, and particularly preferably 10 nm to 500 nm. The electron transporting material of the electron transporting layer or the electron transporting material mixed in the light emitting layer may, for example, be a hydroxyquinoline derivative metal complex such as A1 q 3 (aluminum trishydroxygallinate), or an oxadiazole derivative. a low molecular compound such as a triazole derivative, an imidazole derivative, a triterpene derivative or a triarylborane derivative; or a molecular compound obtained by introducing a polymerizable substituent into the α in the above low molecular compound. For example, the above-mentioned electron transporting material may be used alone or in combination of two or more kinds, and different electron transporting materials may be laminated, for example, in the case of the poly-PBD disclosed in the above-mentioned Japanese Patent Publication No. Hei. The thickness of the electron transport layer depends on the conductivity of the electron transport layer and the like, and therefore cannot be limited, and is preferably 1 nm to 5 μm, more preferably 5 nm to Ιμηι, and particularly preferably 10 nm to 5 〇〇 nm. 'Attach to the cathode side of the light-emitting layer, suppress the hole from passing through the light-emitting layer, -21 - 200922941 and efficiently combine the holes and electrons in the light-emitting layer, and also provide a hole/barrier layer. The above-mentioned hole/barrier layer is a known material such as a triazole derivative, a thiazole derivative, or a phenanthroline derivative. It is also possible to "in order to alleviate the injection hindrance in the hole injection" between the anode and the light-emitting layer. A hole injection layer is provided. In order to form the hole injection layer, a known material such as a mixture of phthalocyanine 'polyethylenedioxythiophene (PEDOT) and polystyrene acid extension (PSS) or a fluorocarbon is used. Between the cathode and the electron transport layer 'or between the cathode and the organic layer laminated adjacent to the cathode', an insulating layer having a thickness of 0·1 to 1 Onm may be provided for the electron injection efficiency of the lift. In order to form the above insulating layer, a known material such as lithium fluoride, magnesium fluoride, magnesium oxide or oxidized metal is used. As the anode material, for example, a known transparent conductive material such as a conductive polymer such as IT 0 (indium tin oxide), tin oxide, oxidized poly, polydecene, polydole or polyamine is used. The surface resistance of the electrode formed by the transparent conductive material is preferably 1 to 50 Ω/〇 (ohm/square). The thickness of the anode is preferably 5 〇 to 3 0 0 n m. The cathode material may be, for example, a metal such as Li, Na, κ, or Cs; an alkaline earth metal such as Mg, Ca, or Ba; Al; a MgAg alloy; an alloy of Al1, AAICa, or the like, and an alkali metal or an alkaline earth metal. And other known cathode materials. The thickness of the cathode is preferably from 10 nm to 1 μm, more preferably from 5 Å to 50 Å. In the case where a metal having a high activity such as an alkali metal or an alkaline earth metal is used as a cathode, the thickness of the cathode is preferably 0.1 to 1 〇〇 nm, more preferably 〇 5 to 5 〇 nm. Further, in this case, a metal layer which is stable to the atmosphere is laminated on the cathode for the purpose of protecting the cathode metal. Examples of the metal forming the metal layer of the above -22-200922941 include A1, Ag, Au, Pt, Cu, Ni, Cr, and the like. The thickness of the metal layer is preferably i〇ntn to ΐμηι, more preferably 5 〇 to 500 nm. The substrate of the organic EL element of the present invention may be an insulating substrate transparent to the light-emitting wavelength of the luminescent material. In addition to glass, a film-forming method of the above-mentioned hole transport layer, light-emitting layer, and electron transport layer may be used, such as a transparent plastic such as PET (polyethylene terephthalate) or polycarbonate, for example, 'resistance heating can be used. A steaming method, an electron beam evaporation method, a sputtering method, an inkjet method, a spin coating method, a printing method, a spray method, a disperser method, and the like. In the case of a low molecular weight compound, it is suitable for use by an inkjet method, a spin coating method, or a printing method by using a resistance heating distillation or electron beam evaporation to suitably use a 'polymer compound'. Further, for the film forming method of the above anode material, for example, an electron beam vapor deposition method, a ruthenium plating method, a chemical reaction method, a coating method, or the like can be used, and the film forming method of the cathode material can be, for example, a resistance heating vapor deposition method. , electron beam evaporation method, sputtering method, ion plating method, and the like. <Charge-transporting non-conjugated polymer compound> The charge-transporting non-conjugated polymer compound is a group of a polymerizable compound selected from the group consisting of a hole transporting property and an electron transporting polymerizable compound. The monomer of at least one polymerizable compound is preferably a copolymerized polymer. In addition, in the present specification, a polymerizable compound having a hole transporting property and a polymerizable compound having an electron transporting property are collectively referred to as a polymerizable compound of charge transportability -23-200922941. In other words, the non-conjugated polymer compound having a charge transporting property is a structural unit derived from a polymerizable compound having one or more types of hole transporting properties, or one or more electron transporting polymerizable compounds. The derived structural unit of the polymer is preferred. If such a polymer is used, the degree of charge mobility in the light-emitting layer can be increased, and a homogeneous film can be formed by coating, and higher luminous efficiency can be obtained. In addition, the charge transporting non-conjugated polymer compound is a structural unit derived from a polymerizable compound having one or more types of hole transporting properties, and one or more kinds of electron transporting polymerizable compounds. It is more preferable that the derived structural unit polymer is composed. When such a polymer is used, since the polymer has a function of hole transporting property and electron transporting property, the hole and the electron are more efficiently combined in the vicinity of the phosphorescent compound, so that higher light is obtained. effectiveness. The above-mentioned transportable polymerizable compound and the electron transporting polymerizable compound are not particularly limited as long as they have a substituent having a polymerizable functional group, and a known charge transporting compound can be used. The polymerizable functional group may be any of a radical polymerizable property, a cationic polymerizable property, an anionic polymerizable property, an addition polymerizable property, and a condensation polymerizable functional group. Among them, a radical polymerizable functional group is preferred because it is easy to produce a polymer. The polymerizable functional group may, for example, be a urethane (meth) acrylate such as an allyl group, an alkenyl group, an acrylate group, a methacrylate group or a methacryloxyethyl urethane. Vinyl amidino groups and derivatives thereof and the like. -24- 200922941 Among them, alkenyl is preferred. More specifically, the substituent in which the polymerizable functional group is an alkenyl polymerizable functional group is the following general formula (A 1 ), and the substituent is more preferably. Among them, the following formulas (Al) and (A5) and the substituents shown above are more preferable because they are capable of a functional group of a charge transporting compound. When (A8) and (12) shown in the above -(A12) are easily introduced into the polymerization [Chemical 12] -CH 'CH: CH3 - Λ

H3C CH3 h2c —c. ch5 ch2 (A1) ch2 (A2) (A3) (A4) CHaH3C CH3 h2c —c. ch5 ch2 (A1) ch2 (A2) (A3) (A4) CHa

H2CH2C

-25- 200922941-25- 200922941

CH WCH W

(A12) CH2 上述電洞輸送性之聚合性化合物,具體而言,以下述 一般式(E1)〜(E6)所示之化合物爲佳,且由非共軛高分子 化合物中之電荷移動度的觀點而言,以下述式(E1)〜(E3) 所示之化合物爲更佳。 [化 13](A12) CH2 The above-mentioned polymerizable compound having a hole transport property is specifically a compound represented by the following general formulas (E1) to (E6), and the charge mobility in the non-conjugated polymer compound is preferable. From the viewpoint, a compound represented by the following formulas (E1) to (E3) is more preferable. [Chem. 13]

-26- 200922941-26- 200922941

上述電子輸送性之聚合性化合物,具體而言,以下述 一般式(E7)〜(E 15)所示之化合物爲佳,且由非共軛高分 子化合物中之電荷移動度的觀點而言,以下述式(E7)及 (E12)〜(E14)所示之化合物爲更佳。 [化 14]Specifically, the electron transporting polymerizable compound is preferably a compound represented by the following general formulas (E7) to (E15), and from the viewpoint of charge mobility in the non-conjugated polymer compound. The compounds represented by the following formulas (E7) and (E12) to (E14) are more preferred. [Chem. 14]

(E7)(E7)

mm

-27- 200922941-27- 200922941

(E13)(E13)

<E15) 另外’於上述式(El)〜(E15)中’將上述式(A1)所示之 取代基,以上述一般式(A2)〜(A12)所示之取代基代替的 化合物亦適於使用’但爲了令官能基可輕易導入聚合性化 合物,以具有上述(A1)、(A5)所示之取代基的化合物爲特 佳。 其中,令作爲上述電洞輸送性之聚合性化合物之上述 式(E1)〜(E 3)任一者所示之化合物,與作爲上述電子輸送 性之聚合性化合物之上述(E7)、(E 12)〜(E 14)任一者所示 之化合物共聚的化合物爲更佳。若使用此些非共軛高分子 化合物,則於磷光發光性化合物上,可更有效率再結合電 洞與電子,取得更高的發光效率。又,與磷光發光性化合 物同時可形成均勻分佈的有機層,且取得耐久性優良的有 機EL元件。 於本發明之有機EL元件所用之含有上述銥錯合物化 合物與上述非共軛高分子化合物的有機層(發光層)中,上 述銥錯合物化合物爲以於上述非共軛高分子化合物所形成 之基質中分散的狀態下被含有。因此,可取得通常難以利 -28- 200922941 用之發光,即經由磷光發光性化合物之三重激發狀態的發 光。因此,經由使用上述有機層,可取得高發光效率。 另外,上述電荷輸送性之非共軛高分子化合物’在不 違反本發明目的之範圍下,進一步,含有其他聚合性化合 物所導出之構造單位亦可。此類聚合性化合物可列舉例如 ,丙烯酸甲酯、甲基丙烯酸甲酯等之(甲基)丙烯酸烷酯、 苯乙烯及其衍生物等之不具有電荷輸送性的化合物,但並 非限定於此。 又,上述電荷輸送性之非共軛高分子化合物的重量平 均分子量爲1,000〜2,000,000爲佳,且以5,000〜1,000,000 爲更佳。本說明書中之分子量,係指使用GPC(膠滲透層 析)法所測定的聚苯乙烯換算分子量。上述分子量若爲此 範圍,則聚合物可溶於有機溶劑,取得均勻的薄膜故爲佳 〇 上述電荷輸送性之非共軛高分子化合物可爲無規共聚 物、分段共聚物、及交互共聚物的任一者。 上述電荷輸送性之非共軛高分子化合物的聚合方法可 爲自由基聚合、陽離子聚合、陰離子聚合、及加成聚合之 任一者’但以自由基聚合爲佳。 <用途> 本發明之有機EL元件爲以公知方法,以矩陣方式或 片段方式之像素型式適合使用於影像顯示裝置。又,上述 有機EL元件未形成像素,作爲面發光光源亦適於使用。 -29- 200922941 本發明之有機EL元件,具體而言,適合使用於電腦 、電視、攜帶式終端機、行動電話、汽車導航器、攝像機 之探視器等顯示裝置、背光、電子照片、照明光源、記錄 光源、曝光光源、讀取光源、標幟、看板、室內裝飾、光 通訊等。 實施例 以下,根據實施例進一步具體說明本發明,但本胃_ 不被限定於此些實施例。 <測定裝置等><E15) Further, in the above formulae (El) to (E15), the substituent represented by the above formula (A1) is replaced by a substituent represented by the above general formula (A2) to (A12). It is particularly preferable to use a compound having a substituent represented by the above (A1) or (A5) in order to allow a functional group to be easily introduced into a polymerizable compound. In addition, the compound represented by any one of the above formulas (E1) to (E3) which is the above-mentioned electron transporting polymerizable compound and the above (E7) and (E) which are the electron transporting polymerizable compounds are used. 12) A compound in which the compound represented by any of (E 14) is copolymerized is more preferable. When such a non-conjugated polymer compound is used, it is possible to further combine the holes and electrons on the phosphorescent compound to obtain higher luminous efficiency. Further, an organic layer having a uniform distribution can be formed simultaneously with the phosphorescent compound, and an organic EL element excellent in durability can be obtained. In the organic layer (light-emitting layer) containing the ruthenium complex compound and the non-conjugated polymer compound used in the organic EL device of the present invention, the ruthenium complex compound is used for the non-conjugated polymer compound. The formed matrix is contained in a dispersed state. Therefore, it is possible to obtain light emission which is generally difficult to use, that is, light emission by a triplet excitation state of a phosphorescent compound. Therefore, high luminous efficiency can be obtained by using the above organic layer. Further, the charge transporting non-conjugated polymer compound ' may further contain a structural unit derived from another polymerizable compound, without departing from the object of the present invention. The polymerizable compound may, for example, be a compound having no charge transporting property such as alkyl (meth)acrylate such as methyl acrylate or methyl methacrylate, or styrene or a derivative thereof, but is not limited thereto. Further, the charge transporting non-conjugated polymer compound preferably has a weight average molecular weight of 1,000 to 2,000,000, more preferably 5,000 to 1,000,000. The molecular weight in the present specification means a molecular weight in terms of polystyrene measured by a GPC (gel permeation chromatography) method. If the above molecular weight is in this range, the polymer is soluble in an organic solvent to obtain a uniform film. Therefore, the charge transporting non-conjugated polymer compound may be a random copolymer, a segmented copolymer, and an interactive copolymer. Any of the things. The method for polymerizing the charge transporting non-conjugated polymer compound may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred. <Application> The organic EL device of the present invention is suitably used in a video display device in a pixel form of a matrix method or a segment method by a known method. Further, the organic EL device does not form a pixel, and is also suitably used as a surface light source. -29- 200922941 The organic EL device of the present invention is specifically suitable for use in a display device such as a computer, a television, a portable terminal, a mobile phone, a car navigation device, a video camera, a backlight, an electronic photo, an illumination source, Record light source, exposure light source, reading light source, sign, kanban, interior decoration, optical communication, etc. EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. <Measurement device, etc.>

1)!Η NMR 裝置:曰本電子(JEOL)製JNMEX270 270MHz溶齊^ :重氯仿 [合成例1] (銥錯合物化合物(4a)之合成) -30- 2009229411)! NMR NMR apparatus: JNMEX270 manufactured by Sakamoto Electronics (JEOL) 270MHz dissolved in: ^: Heavy chloroform [Synthesis Example 1] (Synthesis of ruthenium compound (4a)) -30- 200922941

(HO(HO

RKRK

MiPP^NtjCO»MiPP^NtjCO»

[化 15][化15]

NM〇2 HO tVa ——-tya 、 柳· t广 _NM〇2 HO tVa ——-tya, Liu·t Guang _

(1«):R-n-X# (lb) :R-2-T# (lc) :R«2-乙基己基(1«): R-n-X# (lb) : R-2-T# (lc) : R«2-ethylhexyl

\α,,Κ {2e):R_n-丁基 (2b):R-2-TS (2e):R-2-乙基己基\α,,Κ {2e): R_n-butyl (2b): R-2-TS (2e): R-2-ethylhexyl

(3a): R = η-丁基 (3b):R=2-TS 之3c$: R * 2-乙基己基(3a): R = η-butyl (3b): R = 2-TS of 3c$: R * 2-ethylhexyl

(4e): R = n丁基 (4b):R = 2-T* (4ci:R«2·乙基己基 參照上述流程圖進行說明。 <2-氯-4-羥基吡啶之合成> 於茄型燒瓶中加入40%硫酸(50克)和4-胺基-2-氯基吡 啶(3.0克,23.3毫莫耳)並令其溶解。一邊於〇°C攪拌一邊 加入亞硝酸鈉(1.9 3克’ 2 8.0毫莫耳),並於室溫攪拌2 4小 時。反應後,加入氫氧化鈉水溶液和碳酸氫鈉水溶液令反 應液中和,且以醋酸乙酯萃取有機層。所得之有機層以硫 酸鎂乾燥後,過濾’蒸除溶劑’並於減壓下乾燥取得2- -31 - 200922941 氯-4-羥基吡啶(薄茶色之固體)。產量爲2.78克,產率爲 9 2%。 1H-NMR(270MHz,DMSO-d6)ppm : ll_20(s,1H,- OH),8.09(d,1H ’ J = 5_4Hz,ArH),6.81 (s,1H,ArH), 6.77(d,1 H,J = 2.2Hz,ArH)。 <化合物(1 a)之合成> 於具備迪姆羅(Dimroth)氏冷卻管和三方活栓的二口 燒瓶中,加入上述合成的2-氯-4-羥基吡啶(2.6克,20毫莫 耳)、碳酸鉀(5.5克,40毫莫耳),並進行氮氣更換。更且 ,加入脫水DMF(80毫升),1-溴丁烷(4.1克,30毫莫耳), 並於1 〇〇°C攪拌3小時。反應後,加入甲苯,並以純水洗淨 2次,以醋酸乙酯萃取有機層。所得之有機層以硫酸鎂乾 燥後,過濾,蒸除溶劑,並於減壓下乾燥取得化合物(1 a)( 無色液體)。產量爲3.6克,產率爲97%。 <化合物(2a)之合成> 於具備迪姆羅氏冷卻管和三方活栓的三口燒瓶中,加 入化合物(la)(3.6克,19.4毫莫耳)、2,4-二氟苯基硼酸(3.7 克,23.3毫莫耳)、碳酸鉀(5.5克’ 40毫莫耳)、1,2-二甲氧 基乙烷(50毫升)、純水(20毫升),並吹入氮氣5分鐘。更且 ’加入[1,1’ -雙(二苯膦基)二茂鐵]二氯鈀(II)二氯甲烷錯 合物(3 26毫克,0.4毫莫耳),一邊攪拌3小時一邊迴流。反 應後,冷卻至室溫,加入純水,並以醋酸乙酯萃取有機層 -32- 200922941 。所得之有機層以硫酸鎂乾燥後,過濾,蒸除溶劑。將殘 渣以中壓矽膠柱層析(溶離液:氯仿)精製後,蒸除溶劑, 並於減壓下乾燥取得化合物(2 a)(無色之液體)。產量爲 4.57克,產率爲90%。 <化合物(3 a)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入化合物(2a)(2.0克’ 7.6毫莫耳)、氯化銥(in)三水合物 (1.07克’ 3.04毫莫耳)、2 -乙氧基乙醇(36毫升)、純水(12 毫升)’並吹入氮氣後,一邊攪拌2 2小時一邊迴流。反應 後’冷卻至室溫’加入純水令產物沈澱。濾取沈澱物,以 甲醇洗淨後,減壓下乾燥取得化合物(3 a)(黃色之粉末)。 產量爲1.88克,產率爲82 %。 <化合物(4a)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入化合物(3a)(400毫克,0.27毫莫耳)、碳酸鉀(187毫克, 1_35毫莫耳)、化合物(2a)(2 8 0毫克、1.06毫莫耳)並進行氮 氣更換。更且,加入来(6毫升)、三氟甲烷磺酸銀(1)(171 毫克’ 0.67毫莫耳),一邊攪拌4小時一邊迴流。反應後, 冷卻至室溫,加入氯仿,使用矽藻土(Celite®)過濾,除去 不溶物。將濾液之溶劑蒸除,殘渣以矽膠柱層析(溶離液 :氯仿/己烷=1/1)精製,再由甲醇/二氯甲烷中再結晶,真 空乾燥取得化合物(4a)(黃色之微結晶)。產量爲400毫克, -33- 200922941 產率爲76%。以1H-NMR分析時,並未察見相當於子午線 圈(meridional)體的波峰,可知所得之化合物其全部爲面 式(facial)體。 1 Η - N M R (2 7 0 Μ Η z > CDCl3)ppm : 7.78(m ' 3H * ArH) > 7.28(d ’ 3H,J = 6.2Hz,ArH),6.49(dd,3H,J = 6.5, 2.4Hz > ArH),6.3 6 (m,3 H,Ar H),6.2 6 (d d,3 H,J = 9 · 2 ’ 2.7Hz,ArH),3 _ 9 3 ( d,6 H,J = 5.7 H z,C H 2 0),1 _ 7 4 (m ,1H,CH),1.51-l_31(m,24H,CH2),0.96-0.87(m, 18H,CH3)。 [合成例2] (銥錯合物化合物(4b)之合成) 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入合成例1合成的2-氯-4-羥基吡啶(1.30克,10毫莫耳)、 碳酸鉀(2.76克,20毫莫耳),並進行氮氣更換。更且,加 入脫水DMF(20毫升)、2-溴丁烷(2.06克,15毫莫耳),並 於8 0 °C攪拌1 4小時。反應後,加入氯仿,以純水洗淨2次 ,以醋酸乙酯萃取有機層。所得之有機層以硫酸鎂乾燥後 ,過濾,蒸除溶劑。殘渣以中壓矽膠柱層析(溶離液:氯 仿/己烷=1 /1〜氯仿以梯度)精製後,蒸除溶劑,並於減壓 下乾燥取得化合物(lb)(無色之液體)。產量爲1.8 5克’產 率爲1 0 0 %。 1 Η - NMR (2 7 0 ΜΗ z 1 CDCl3)ppm : 8.16(d > 1H ; J = 5.9Hz > ArH),6.8 0(d,1 H,J = 2 · 4Hz ’ ArH),6 · 7 1 ( dd, -34- 200922941 1H,J = 5.8,2·0Ηζ,ArH),4.38(m,1H,CH),1.71(m, 2H,CH2),1 .33(d,3H,J = 6.5Hz,CH3),0.97(t,3H, J = 7.4Hz,CH3)。 <化合物(2b)之合成> 於具備迪姆羅氏冷卻管和三方活栓的三口燒瓶中,加 入化合物(113)(1.85克,10毫莫耳)、2,4-二氟苯基硼酸 (1.90克,12毫莫耳)、碳酸鈉(2.12克,20毫莫耳)、1,2-二 甲氧基乙烷(30毫升)、純水(10毫升),並吹入氮氣5分鐘。 加入[1,1’ -雙(二苯膦基)二茂鐵]二氯鈀(II)二氯甲烷錯合 物(163毫克,0.2毫莫耳),一邊攪拌3小時一邊迴流。反應 後,冷卻至室溫,加入純水,並以醋酸乙酯萃取有機層。 所得之有機層以硫酸鎂乾燥後,過濾,蒸除溶劑。殘渣以 中壓矽膠柱層析(溶離液:氯仿/乙烷=1 /1〜氯仿〜醋酸乙 酯/氯仿=2.5/97.5梯度)精製後,蒸除溶劑,減壓下乾燥取 得化合物(2b)(無色之液體)。產量爲2.10克,產率爲80%。 'H-NMRClTOMHz , CDCl3)ppm : 8.48(d , 1Η , J = 5.7Hz,ArH),7.97(m,1H,ArH),7.24(m,1H,ArH) ,6.99(m,1H,ArH),6.90(m,1H,ArH),6.75(dd,1H ,J = 5.8,2_6Hz,ArH),4.45(m,1H,CH),1.74(m,1H ,CH2),1 .35(d,3H,J = 5.9Hz,CH3) , 0.99(t,3H, 1 = 7.21^,CH3) ° <化合物(3b)之合成> 35- 200922941 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入化合物(2b)(885毫克,3.4毫莫耳)、氯化銥(III)三水合 物(494毫克,1.4毫莫耳)、2-乙氧基乙醇(21毫升)、純水(7 毫升),並吹入氮氣後,一邊攪拌69小時一邊迴流。反應 後,冷卻至室溫,加入純水令產物沈殿。濾取沈殺物,以 甲醇洗淨後,減壓下乾燥取得化合物(3b)(黃色之粉末)。 產量爲73 3毫克,產率爲70%。 <化合物(4b)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入化合物(3b)(301毫克,0.2毫莫耳)、碳酸鉀(138毫克, 1.0毫莫耳)、化合物(2b)(132毫克、0.5毫莫耳)並進行氮氣 更換。更且,加入来(4毫升)、三氟甲烷磺酸銀(1)(123毫 克,0.48毫莫耳)後,一邊攪拌4小時一邊迴流。反應後, 冷卻至室溫,加入氯仿,使用矽藻土過濾,除去不溶物。 將濾液之溶劑蒸除,殘渣以矽膠柱層析(溶離液:氯仿/己 烷=1/3〜氯仿以梯度)精製,再由甲醇/二氯甲烷中再結晶 晶,真空乾燥取得化合物(4b)(黃色之微結晶)。產量爲332 毫克,產率爲8 5 %。以1 Η - N M R分析時,並未察見相當於 子午線圈(meridional)體的波峰,可知所得之化合物其全 部爲面式(facial)體。 1H-NMR(270MHz > C D C13 )ppm : 7 · 7 6 (m,3 Η,A r Η), 7.27(d ’ 3H,J = 6.8HZ,ArH),6.46(dd,3H,J = 6.3, 2 _ 3 H z ’ A r H) ’ 6 · 3 6 (m,3 H,A r H),6.2 6 ( m,3 H ’ A r H) ’ -36- 200922941 4.41(m,3H,CH) ’ 1.72(m ’ 3H,CH2),1.34(d,9H, J = 5.7Hz,CH3) ’ 0.98(t,9H,J = 7.〇Hz,CH3)。 [合成例3] <化合物(Ic)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入合成例1合成的2 -氯-4-羥基吡啶(2.34克,18.1毫莫耳)、 碳酸鉀(5.00克’ 36.2毫莫耳),並進行氮氣更換。更且, 加入脫水DMF(72毫升)、2 -乙基己基溴(5·24克,27.15毫 莫耳),並於80 °C攪拌5小時。反應後,加入甲苯,以純水 洗淨2次,以醋酸乙酯萃取有機層。所得之有機層以硫酸 鎂乾燥後,過濾,蒸除溶劑。殘渣以中壓矽膠柱層析(溶 離液:氯仿〜醋酸乙酯/氯仿=2/8梯度)精製後,蒸除溶劑 ,減壓下乾燥取得化合物(lc)(無色之液體)。產量爲2.12 克,產率爲4 8 %。 !Η-ΝΜΚ(270ΜΗζ , CDCl3)ppm : 8.17(d, 1Η , J = 5.9Hz,ArH),6.8 3 ( d,1 H,J = 2 · 2 H z,A r H),6 · 7 4 (d d, 1H,J = 5.9,2.4Hz,ArH),3.89(d,2H,J = 5.7Hz,CH20) ,1.74(m,lH,CH),1.54-1.31(m,8H,CH2),0.96-0.8 8 (m,6 H,C H 3)。 <化合物(2c)之合成> 於具備迪姆羅氏冷卻管和三方活栓的三口燒瓶中’加 入化合物(1〇(2.12克,8.77毫莫耳)、2,4-二氟苯基硼酸 -37- 200922941 (1.66克,10.52毫莫耳)、碳酸鈉(1.86克’ 17.54毫莫耳)、 1,2-二甲氧基乙烷(2 7毫升)、純水(9毫升)’並吹入氮氣5 分鐘。加入[1,1’ -雙(二苯膦基)二茂鐵]二氯鈀(Π)二氯甲 烷錯合物(163毫克,0.2毫莫耳),一邊攪拌2小時一邊迴流 。反應後,冷卻至室溫,加入純水,並以醋酸乙酯萃取有 機層。所得之有機層以硫酸鎂乾燥後,過濾,蒸除溶劑。 殘渣以中壓矽膠柱層析(溶離液:醋酸乙酯/己烷=5/95〜 3 0/7 0梯度)精製後,蒸除溶劑,減壓下乾燥取得化合物 (2c)(無色之液體)。產量爲2.17克,產率爲78%。 1H-NMR(270MHz , CDCl3)ppm : 8.50(d , 1Η , J = 5.9Hz,ArH),7.97(m,1Η,ArH),7.25(d,1Η,ArH) ’ 6.98(m,1H,ArH),6_90(m,1H,ArH),6.79(dd,1H ,J = 5.7,2.4Hz,ArH),3.9 4 (d,2 H,J = 5 _ 9 H z,C Η 2 O), 1.77(m,lH,CH),1.5 5 - 1.3 2(m,8H,CH2),0_97-0.88(m,6H,CH3)。 <化合物(3c)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中,加 入化合物(2c)(767毫克,2.4毫莫耳)、氯化銥(III)三水合 物(3 5 3毫克,1 .〇毫莫耳)、2-乙氧基乙醇(1 5毫升)、純水(5 毫升),並吹入氮氣後,一邊攪拌23小時一邊迴流。反應 後,冷卻至室溫,加入純水令產物沈澱。濾取沈澱物,以 甲醇洗淨後,減壓下乾燥取得化合物(3 c)(黃色之粉末)。 產量爲736克,產率爲85%。 -38- 200922941 <化合物(4c)之合成> 於具備迪姆羅氏冷卻管和三方活栓的二口燒瓶中’加 入化合物(3〇(3 46毫克,0.2毫莫耳)、碳酸鉀(138毫克, 1.0毫莫耳)、化合物(2c)(160毫克、0.5毫莫耳)並進行氮氣 更換。更且,加入来(4毫升)、三氟甲烷磺酸銀(1)(123毫 克,〇 . 4 8毫莫耳)後,一邊攪拌3小時一邊迴流。反應後, 冷卻至室溫,加入氯仿,使用矽藻土過濾,除去不溶物。 將濾液之溶劑蒸除,殘渣以矽膠柱層析(溶離液:氯仿/己 烷=5/95〜20/8 0以梯度)精製,再由甲醇/二氯甲烷中再結 晶,真空乾燥取得化合物(4c)(黃色之微結晶)。產量爲394 毫克,產率爲86%。以1H-NMR分析時,並未察見相當於 子午線圈(meridional)體的波峰,可知所得之化合物其全 部爲面式(facial)體。 1 H-NMR(2 7 0MHz > CDCl3)ppm : 7.78(m 5 3H 5 ArH) » 7.28(d,3H,J = 6.2Hz,ArH),6.49(dd,3H,J = 6.5, 24Hz > ArH) ’ 6_36(m,3H,ArH) ’ 6.2 6 (d d,3 H,J = 9 · 2 ,2.7Hz,ArH),3.93(d,6H,J = 5.7Hz,CH20),1.74(m ,:1H ’ CH),1.51-1.31(m,24H,CH2),0.96-0_87(m, 1 8H,CH3)。 <溶解性試驗> [實施例1] 將化合物(4 a)以指定之濃度般與氯仿或甲苯混合,並 -39- 200922941 以目視確認於室溫攪拌1小時之化合物(4a)是咨全部溶解 或者溶化剩下。試驗結果示於表1。 [實施例2] 將化合物(4b)以指定之濃度般與氯仿或甲苯混合,並 以目視確認於室溫攪拌1小時之化合物(4b)是杏全部溶解 或者溶化剩下。試驗結果示於表1。 [實施例3] 將化合物(4c)以指定之濃度般與氯仿或甲苯混合,並 以目視確認於室溫攪拌1小時之化合物(4 c)是否全部溶解 或者溶化剩下。試驗結果示於表1。 [比較例1 ] 將Ir(F2MeOppy)3(面式(facial)體,參照下圖)以指定 之濃度般與氯仿或甲苯混合,並以目視確認於室溫攪拌1 小時之Ir(F2MeOppy)3是否全部溶解或者溶化剩下。試驗 結果示於表1。 [比較例2 ] 將Ir(F2HexOppy)2(PiC)(參照下圖)以指定之濃度般與 氯仿或甲苯混合,並以目視確認於室溫攪拌1小時之 Ir(F2HexOppy)2(pic)是否全部溶解或者溶化剩下。試驗結 果示於表1。 -40 * 200922941 [比較例3 ] 將Ir(PPy)3(面式體,參照下圖)以指5 仿或甲苯混合,並以目視確認於室溫 I r (p p y) 3是否全部溶解或者溶化剩下。試驗 g之濃度般與氯 攪拌1小時之 結果示於表1。 [化 16](4e): R = n butyl (4b): R = 2-T* (4ci: R«2·ethylhexyl is described with reference to the above scheme. <Synthesis of 2-chloro-4-hydroxypyridine> 40% sulfuric acid (50 g) and 4-amino-2-chloropyridine (3.0 g, 23.3 mmol) were added to the eggplant flask and dissolved. The sodium nitrite was added while stirring at 〇 ° C ( 1.9 3 g '2 8.0 mmoles, and stirred at room temperature for 24 hours. After the reaction, the reaction solution was neutralized by adding aqueous sodium hydroxide solution and aqueous sodium hydrogencarbonate solution, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, and evaporated to dryness, and then evaporated to dryness to give 2-2-31 - 200922941 chloro-4-hydroxypyridine (thick brown solid). Yield 2.78 g, yield 9 2 1H-NMR (270MHz, DMSO-d6) ppm: ll_20(s, 1H, - OH), 8.09 (d, 1H 'J = 5_4Hz, ArH), 6.81 (s, 1H, ArH), 6.77 (d, 1 H, J = 2.2 Hz, ArH) <Synthesis of Compound (1 a)> In the two-necked flask equipped with a Dimroth cooling tube and a three-way stopcock, the above-mentioned synthesized 2-chloro- 4-hydroxypyridine (2.6 g, 20 mmol) Ear), potassium carbonate (5.5 g, 40 mmol), and nitrogen exchange. Also, add dehydrated DMF (80 ml), 1-bromobutane (4.1 g, 30 mmol), and at 1 〇 The mixture was stirred for 3 hours. After the reaction, toluene was added, and the mixture was washed twice with pure water, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, evaporated and evaporated. The compound (1 a) (colorless liquid) was obtained by the following drying. The yield was 3.6 g, and the yield was 97%. <Synthesis of Compound (2a)> In a three-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock, Compound (la) (3.6 g, 19.4 mmol), 2,4-difluorophenylboronic acid (3.7 g, 23.3 mmol), potassium carbonate (5.5 g '40 mmol), 1,2-two Methoxyethane (50 ml), pure water (20 ml), and blown with nitrogen for 5 minutes. Further, 'add [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium (II) The dichloromethane complex (3 26 mg, 0.4 mmol) was refluxed while stirring for 3 hours. After the reaction, it was cooled to room temperature, added with pure water, and extracted with ethyl acetate. Machine layer -32- 200922941. The obtained organic layer was dried over magnesium sulfate, filtered, and evaporated. The residue was purified by column chromatography (solvent: chloroform), and the solvent was evaporated and evaporated under reduced pressure. Drying gives compound (2 a) (colorless liquid). The yield was 4.57 g and the yield was 90%. <Synthesis of Compound (3 a)> In a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock, Compound (2a) (2.0 g '7.6 mAh), ruthenium chloride (in) trihydrate was added. (1.07 g of '3.04 mmol), 2-ethoxyethanol (36 ml), and pure water (12 ml) were placed and nitrogen was blown, and the mixture was refluxed while stirring for 2 hours. After the reaction, 'cooled to room temperature', pure water was added to precipitate the product. The precipitate was collected by filtration, washed with methanol and dried under reduced pressure to give compound (3a) (yellow powder). The yield was 1.88 g and the yield was 82%. <Synthesis of Compound (4a)> In a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock, a compound (3a) (400 mg, 0.27 mmol) and potassium carbonate (187 mg, 1 to 35 mmol) were added. Ear), compound (2a) (280 mg, 1.06 mmol) and nitrogen exchange. Further, (6 ml) and silver trifluoromethanesulfonate (1) (171 mg '0.67 mmol) were added, and the mixture was refluxed while stirring for 4 hours. After the reaction, the mixture was cooled to room temperature, and chloroform was added thereto, followed by filtration using Celite® to remove insolubles. The solvent of the filtrate was distilled off, and the residue was purified by silica gel chromatography (solvent: chloroform/hexane = 1/1), and then recrystallized from methanol/dichloromethane and dried in vacuo to give compound (4a) crystallization). The yield was 400 mg, and the yield was -33-200922941, 76%. When analyzed by 1H-NMR, no peak corresponding to a meridional body was observed, and it was found that all of the obtained compounds were facial bodies. 1 Η - NMR (2 7 0 Μ Η z > CDCl3) ppm : 7.78 (m ' 3H * ArH) > 7.28 (d ' 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5 , 2.4 Hz > ArH), 6.3 6 (m, 3 H, Ar H), 6.2 6 (dd, 3 H, J = 9 · 2 ' 2.7 Hz, ArH), 3 _ 9 3 (d, 6 H, J = 5.7 H z, CH 2 0), 1 _ 7 4 (m , 1H, CH), 1.51 - l_31 (m, 24H, CH 2 ), 0.96 - 0.87 (m, 18H, CH3). [Synthesis Example 2] (Synthesis of ruthenium complex compound (4b)) 2-chloro-4-hydroxypyridine synthesized in Synthesis Example 1 (1.30 g) was placed in a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock. , 10 millimoles), potassium carbonate (2.76 grams, 20 millimoles), and subjected to nitrogen replacement. Further, dehydrated DMF (20 ml), 2-bromobutane (2.06 g, 15 mmol) were added, and stirred at 80 ° C for 14 hours. After the reaction, chloroform was added, and the mixture was washed twice with pure water, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate, filtered, and evaporated. The residue was purified by medium pressure tannin column chromatography (solvent: chloroform / hexane = 1 / 1 to chloroform), and the solvent was evaporated and dried under reduced pressure to give compound ( lb) (colorless liquid). The yield is 1.8 5 grams' yield is 100%. 1 Η - NMR (2 7 0 ΜΗ z 1 CDCl3) ppm : 8.16 (d >1H; J = 5.9 Hz > ArH), 6.8 0 (d, 1 H, J = 2 · 4 Hz 'ArH), 6 · 7 1 ( dd, -34- 200922941 1H, J = 5.8, 2. 0Ηζ, ArH), 4.38 (m, 1H, CH), 1.71 (m, 2H, CH2), 1.33 (d, 3H, J = 6.5 Hz, CH3), 0.97 (t, 3H, J = 7.4 Hz, CH3). <Synthesis of Compound (2b)> In a three-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock, Compound (113) (1.85 g, 10 mmol) and 2,4-difluorophenylboronic acid ( 1.90 g, 12 mmol, sodium carbonate (2.12 g, 20 mmol), 1,2-dimethoxyethane (30 ml), pure water (10 ml), and nitrogen was blown for 5 min. A [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (163 mg, 0.2 mmol) was added, and the mixture was refluxed for 3 hours while stirring. After the reaction, it was cooled to room temperature, pure water was added, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate, filtered, and evaporated. The residue was purified by medium pressure tannin column chromatography (solvent: chloroform / hexane = 1 / 1 to chloroform - ethyl acetate / chloroform = 2.5 / 97.5 gradient), and the solvent was evaporated, and dried under reduced pressure to give compound (2b) (colorless liquid). The yield was 2.10 g and the yield was 80%. 'H-NMRClTOMHz, CDCl3) ppm: 8.48 (d , 1 Η , J = 5.7 Hz, ArH), 7.97 (m, 1H, ArH), 7.24 (m, 1H, ArH), 6.99 (m, 1H, ArH), 6.90 (m, 1H, ArH), 6.75 (dd, 1H, J = 5.8, 2_6Hz, ArH), 4.45 (m, 1H, CH), 1.74 (m, 1H, CH2), 1.35 (d, 3H, J = 5.9 Hz, CH3), 0.99 (t, 3H, 1 = 7.21^, CH3) ° <Synthesis of Compound (3b)> 35- 200922941 In a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock , compound (2b) (885 mg, 3.4 mmol), cerium (III) chloride trihydrate (494 mg, 1.4 mmol), 2-ethoxyethanol (21 ml), pure water (7) ML), and after blowing nitrogen gas, it was refluxed while stirring for 69 hours. After the reaction, it was cooled to room temperature, and pure water was added to precipitate the product. The precipitate was filtered off, washed with methanol, and dried under reduced pressure to give Compound (3b) (yellow powder). The yield was 73 3 mg and the yield was 70%. <Synthesis of Compound (4b)> In a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock, Compound (3b) (301 mg, 0.2 mmol) and potassium carbonate (138 mg, 1.0 mmol) were added. Ear), compound (2b) (132 mg, 0.5 mmol) and nitrogen exchange. Further, after adding (4 ml) and silver trifluoromethanesulfonate (1) (123 mg, 0.48 mmol), the mixture was refluxed for 4 hours while stirring. After the reaction, the mixture was cooled to room temperature, and chloroform was added thereto, and the mixture was filtered through Celite to remove insoluble materials. The solvent of the filtrate was distilled off, and the residue was purified by silica gel column chromatography (solvent: chloroform/hexane = 1/3 to chloroform), and then recrystallized from methanol/dichloromethane. ) (yellow crystals of yellow). The yield was 332 mg and the yield was 85 %. When analyzed by 1 Η - N M R , the peak corresponding to the meridional body was not observed, and it was found that all of the obtained compounds were facial bodies. 1H-NMR (270MHz > CD C13 ) ppm : 7 · 7 6 (m, 3 Η, A r Η), 7.27 (d ' 3H, J = 6.8HZ, ArH), 6.46 (dd, 3H, J = 6.3 , 2 _ 3 H z ' A r H) ' 6 · 3 6 (m,3 H,A r H),6.2 6 ( m,3 H ' A r H) ' -36- 200922941 4.41(m,3H, CH) ' 1.72(m ' 3H,CH2), 1.34(d,9H, J = 5.7Hz, CH3) ' 0.98(t,9H,J = 7.〇Hz, CH3). [Synthesis Example 3] <Synthesis of Compound (Ic)> 2-N-chloro-4-hydroxypyridine synthesized in Synthesis Example 1 was added to a two-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock (2.34 g, 18.1). Millol), potassium carbonate (5.00 g '36.2 mmol) and subjected to nitrogen replacement. Further, dehydrated DMF (72 ml), 2-ethylhexyl bromide (5·24 g, 27.15 mmol) was added, and stirred at 80 ° C for 5 hours. After the reaction, toluene was added, and the mixture was washed twice with pure water, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate, filtered, and evaporated. The residue was purified by column chromatography on EtOAc (EtOAc: EtOAc (EtOAc:EtOAc) The yield was 2.12 grams and the yield was 48%. !Η-ΝΜΚ(270ΜΗζ, CDCl3)ppm : 8.17(d, 1Η , J = 5.9Hz, ArH), 6.8 3 ( d,1 H,J = 2 · 2 H z,A r H),6 · 7 4 (dd, 1H, J = 5.9, 2.4 Hz, ArH), 3.89 (d, 2H, J = 5.7 Hz, CH20), 1.74 (m, lH, CH), 1.54-1.31 (m, 8H, CH2), 0.96 -0.8 8 (m, 6 H, CH 3). <Synthesis of Compound (2c)> A compound (1 〇 (2.12 g, 8.77 mmol), 2,4-difluorophenylboronic acid was added to a three-necked flask equipped with a Dim Roche cooling tube and a three-way stopcock. 37- 200922941 (1.66 g, 10.52 mmol), sodium carbonate (1.86 g '17.54 mmol), 1,2-dimethoxyethane (27 ml), pure water (9 ml)' and blowing Nitrogen gas was introduced for 5 minutes, and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium (Π) dichloromethane complex (163 mg, 0.2 mmol) was added while stirring for 2 hours. After the reaction, the mixture was cooled to room temperature, pure water was added, and the organic layer was extracted with ethyl acetate. The organic layer obtained was dried over magnesium sulfate, filtered, and evaporated to remove solvent. : ethyl acetate / hexane = 5/95 to 3 0/7 0 gradient) After purification, the solvent was evaporated, and dried under reduced pressure to give compound (2c) (colorless liquid). Yield: 2.17 g, yield 78 1H-NMR (270MHz, CDCl3) ppm: 8.50 (d , 1 Η , J = 5.9 Hz, ArH), 7.97 (m, 1 Η, ArH), 7.25 (d, 1 Η, ArH) ' 6.98 (m, 1H, ArH), 6_90 (m, 1H, ArH), 6.79 (dd, 1H, J = 5.7, 2.4 Hz, ArH), 3.9 4 (d, 2 H, J = 5 _ 9 H z, C Η 2 O), 1.77 (m , lH, CH), 1.5 5 - 1.3 2 (m, 8H, CH2), 0_97-0.88 (m, 6H, CH3). <Synthesis of Compound (3c)> With Dim Roche Cooling Tube and Three-way Stopcock In a two-necked flask, compound (2c) (767 mg, 2.4 mmol), ruthenium (III) chloride trihydrate (3 5 3 mg, 1. 〇 millimol), 2-ethoxyethanol were added. (15 ml), pure water (5 ml), and nitrogen gas, and refluxed while stirring for 23 hours. After the reaction, the mixture was cooled to room temperature, and pure water was added to precipitate the product. The precipitate was collected by filtration and washed with methanol. Thereafter, the compound (3c) (yellow powder) was obtained by drying under reduced pressure. Yield: 736 g, yield: 85%. -38 - 200922941 <Synthesis of Compound (4c)> with Dim Roche Cooling Tube Add compound (3 〇 (3 46 mg, 0.2 mmol), potassium carbonate (138 mg, 1.0 mmol), compound (2c) (160 mg, 0.5 mmol) in a two-necked flask with a three-way stopcock. And carry out nitrogen replacement. After addition to (4 ml), silver trifluoromethanesulfonate (1) (123 mg, square. 48 mmol), refluxed for three hours under stirring. After the reaction, the mixture was cooled to room temperature, and chloroform was added thereto, and the mixture was filtered through Celite to remove insoluble materials. The solvent of the filtrate was distilled off, and the residue was purified by silica gel column chromatography (solvent: chloroform/hexane = 5/95 to 20/8 0), and then recrystallized from methanol/dichloromethane. (4c) (yellow crystals of yellow). The yield was 394 mg and the yield was 86%. When analyzed by 1H-NMR, the peak corresponding to the meridional body was not observed, and it was found that all of the obtained compounds were facial bodies. 1 H-NMR (2 7 0 MHz > CDCl 3 ) ppm : 7.78 (m 5 3H 5 ArH) » 7.28 (d, 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5, 24 Hz > Ar6) '6_36(m,3H,ArH) ' 6.2 6 (dd,3 H,J = 9 · 2 , 2.7 Hz, ArH), 3.93 (d, 6H, J = 5.7 Hz, CH20), 1.74 (m , :1H 'CH), 1.51-1.31 (m, 24H, CH2), 0.96-0_87 (m, 1 8H, CH3). <Solubility Test> [Example 1] Compound (4a) was mixed with chloroform or toluene at a specified concentration, and -39-200922941 was visually confirmed to be stirred at room temperature for 1 hour. All dissolved or dissolved remaining. The test results are shown in Table 1. [Example 2] The compound (4b) was mixed with chloroform or toluene at a predetermined concentration, and it was visually confirmed that the compound (4b) was stirred at room temperature for 1 hour, and all of the apricots were dissolved or dissolved. The test results are shown in Table 1. [Example 3] The compound (4c) was mixed with chloroform or toluene at a specified concentration, and it was visually confirmed whether or not the compound (4c) which was stirred at room temperature for 1 hour was completely dissolved or dissolved. The test results are shown in Table 1. [Comparative Example 1] Ir(F2MeOppy) 3 (a facial body, see the following figure) was mixed with chloroform or toluene at a predetermined concentration, and it was visually confirmed that Ir(F2MeOppy) 3 was stirred at room temperature for 1 hour. Whether it is completely dissolved or dissolved remains. The test results are shown in Table 1. [Comparative Example 2] Ir(F2HexOppy) 2 (PiC) (refer to the following figure) was mixed with chloroform or toluene at a specified concentration, and it was visually confirmed whether Ir(F2HexOppy) 2 (pic) was stirred at room temperature for 1 hour. All dissolved or dissolved remaining. The test results are shown in Table 1. -40 * 200922941 [Comparative Example 3] Ir(PPy) 3 (surface type, see the following figure) was mixed with 5 fingers or toluene, and it was visually confirmed whether all of the room temperature Ir (ppy) 3 was dissolved or dissolved. The rest. The results of the test g were stirred for 1 hour with chlorine, and the results are shown in Table 1. [Chemistry 16]

lr(ppy)3 -41 - 200922941 [表i] 表1Lr(ppy)3 -41 - 200922941 [Table i] Table 1

材料 溶劑 • 濃度 0.1 wt% 0.5 wt% 1 wt% 化合物(4a) 氯仿 〇 〇 〇 甲苯 〇 X X 化合物(4b) 氯仿 〇 〇 〇 甲苯 〇 〇 X 化合物(4c) 氯仿 〇 〇 〇 甲苯 〇 〇 〇 Ir(F2MeOppy)3 面式體 氯仿 〇 X X 甲苯 X X X Ir(F2HexOppy)2(pic) 氯仿 〇 〇 〇 甲苯 〇 X X Ir(ppy)a面式體 氯仿 〇 X X 甲苯 〇 X X 〇:全部溶解 X :溶化劑下 由表1可知,若與先前所知之藍色發光性銥錯合物化 合物之Ir(F2MeOppy)3和綠色發光性之銥錯合物Ir(ppy)3 相比較,則本發明之藍色發光性銥錯合物化合物之化合物 (4a)、(4b)及(4c)均對於有機溶劑的溶解性高。又,得知先前 已知之之藍色發光性銥錯合物化合物之Ir(F2Hex〇ppy)2(pic) 亦對於有機溶劑的溶解性高。 [實施例4] <有機EL元件之製作> -42- 200922941Material Solvent • Concentration 0.1 wt% 0.5 wt% 1 wt% Compound (4a) Chloroform oxime toluene XX Compound (4b) Chloroform oxime toluene X Compound (4c) Chloroform oxime toluene Ir F2MeOppy) 3 surface chloroform 〇 XX toluene XXX Ir (F2HexOppy) 2 (pic) chloroform 〇〇〇 toluene XX Ir (ppy) a surface chloroform 〇 XX toluene 〇 〇 全部: all dissolved X: dissolved by As can be seen from Table 1, the blue luminosity of the present invention is compared with the Ir(F2MeOppy)3 of the blue luminescent ruthenium complex compound and the erbium complex Ir(ppy)3 of the green luminescent composition. The compounds (4a), (4b) and (4c) of the ruthenium complex compound have high solubility in an organic solvent. Further, it was found that Ir(F2Hex〇ppy) 2 (pic) of the previously known blue luminescent ruthenium complex compound has high solubility in an organic solvent. [Embodiment 4] <Production of Organic EL Element> -42- 200922941

使用於25mm正方之玻璃基板的—面,作爲陽極之寬 4 m m的二根IΤ Ο電極形成條紋狀之附有】τ 〇 (氧化銦錫)的 基板(Nippo 電機、Nippo Electric Co.,LTD),製作有機 EL 元件。 首先’於上述附有ITO之基板的IT〇(陽極)上,將聚 (3,4-乙二氧基噻吩)·聚苯乙烯磺酸(Bayer公司製,商品 名「Bitron P」)’以旋塗法,以迴轉數35〇〇rpm、塗佈時 間40秒鐘之條件塗佈後,以真空乾燥器於減壓下,以60°C 進行2小時乾燥,形成陽極緩衝層。所得之陽極緩衝層的 厚度爲約5 0 n m。 其次,調製用以形成發光層的塗佈溶液。即,將合成 例1所合成之化合物(4a)15毫克、聚(N -乙烯基咔唑)〗35毫 克溶解於氯仿(和光純藥工業製,特級)9 85 0毫克,並將所 得之溶液以孔徑0.2μιη之濾網過濾作成塗佈溶液。其次, 於陽極緩衝層上,將調製的塗佈溶液以旋塗法,以迴轉數 3000rpm、塗佈時間30秒鐘之條件塗佈,並於室溫(25°C) 乾燥30分鐘,形成發光層。所得之發光層的膜厚爲10 Onm 。其次,於蒸鍍裝置內載置形成發光層的基板’並以蒸鍍 速度〇.〇lnm/S蒸鍍5ntn厚度之鋇,接著將作爲陰極之鋁以 蒸鍍速度lnm/s蒸鍍150nm之厚度,製作有機EL元件1。 另外’鋇與鋁之層爲相對於陽極之延拉方向垂直形成2根 寬3 mm的條紋狀,每1張玻璃基板,製作4個縱4mmx橫 3mm之有機發光元件。 -43- 200922941 <EL發光特性評價> 使用(股)Ad vante st製Programmable直流電壓/電流源 TR6143,對上述有機EL元件外加電壓令其發光,並使用 (股)Topcon製亮度計BM-8測定其發光亮度。其結果,所 得之發光色、發光均勻性、l〇〇cd/m2點燈時之外部量子效 率,及以初期亮度l〇〇cd/m2驅動恆電流時的亮度半衰時間 示於表2(外部量子效率及亮度半衰時間値爲1張基板所形 成之4個元件的平均値)。又,表2之亮度半衰時間的測定 結果,係以後述之有機EL元件4之測定値視爲1 00時的相 對値表示。 [實施例5] 除了將化合物(4a)變更成化合物(4b)以外’同實施例4 處理製作有機EL元件2並評價。評價結果示於表2。 [實施例6] 除了將化合物(4a)變更成化合物(4c)以外’同實施例4 處理製作有機EL元件3並評價。評價結果示於表2。 [比較例4] 除了將化合物(4a)變更成Ir(F2MeOppy)3以外’同實 施例4處理製作有機EL元件4並評價。評價結果示於表2 -44 - 200922941 [比較例5] 除了將化合物(4a)變更成Ir(F2HexOppy)2(pic)以外, 同實施例4處理製作有機EL元件5並評價。評價結果示於 表2。 [參考例1] 除了將化合物(4a)變更成Ir(PPy)3以外,同實施例4處 理製作有機EL元件6並評價。評價結果示於表2。 元件No. 發光材料 發光色 發光均勻性 外部量子效率 r%i 亮度半衰時間 1 (實施例4) 化合物(4a) 藍色 均勻 5.3 147 2 (實施例5) 化合物(4b) 藍色 均勻 7.9 198 3 (實施例6) 化合物(4c) 藍色 均勻 7.8 202 4 (比較例4) Ir(F2MeOppy)3 藍色 不均勻 2.2 100 5 (比較例5) Ir(F2HexOppy)2(pic) 藍色 均勻 5.7 104 6 (參考例1) ' Mppy)3 綠色 均勻 5.5 144 由表2可知,將先前已知之藍色發光性銥錯合物化合 物(Ir(F2MeOppy)3)使用於發光層的有機EL元件(比較例4) 中,經由發光材料之銥錯合物化合物的會合,凝集而無法 取得均勻的發光,相對地,將本發明之銥錯合物化合物使 -45- 200922941 用於發光層的有機el元件(實施例4〜6)中,可取得均句 的發光層。 又’得知將先前已知之藍色發光性銥錯合物化合物 (Ir(F2Hex〇ppy)2(pic))使用於發光層的有機EL元件(比較 例5)中,因化合物本身易分解而令亮度半衰時間短,相對 地,將本發明之銥錯合物化合物使用於發光層的有機EL 元件(實施例4〜6)中,外部量子效率及亮度半衰時間的特 性亦提高,且與使用先前已知之綠色發光性銥錯合物的有 機EL元件(參考例1)爲同等以上。 【圖式簡單說明】 圖1爲本發明之有機E L元件例之剖面圖。 【主要元件符號說明】 1 :玻璃基板 2 :陽極 3 ··發光層 4 :陰極 46-The substrate of the glass substrate of 25 mm square is used as a substrate with two holes of 4 mm wide as an anode to form a stripe-shaped substrate with τ 〇 (indium tin oxide) (Nippo Electric, Nippo Electric Co., LTD) , making organic EL components. First, 'poly(3,4-ethylenedioxythiophene)·polystyrenesulfonic acid (manufactured by Bayer Co., Ltd., trade name "Bitron P") was used on the IT crucible (anode) on which the ITO substrate was attached. The spin coating method was applied under the conditions of a number of revolutions of 35 rpm and a coating time of 40 seconds, and then dried in a vacuum dryer at 60 ° C for 2 hours under reduced pressure to form an anode buffer layer. The resulting anode buffer layer had a thickness of about 50 nm. Next, a coating solution for forming a light-emitting layer is prepared. In other words, 15 mg of the compound (4a) synthesized in Synthesis Example 1 and 35 mg of poly(N-vinylcarbazole) were dissolved in chloroform (manufactured by Wako Pure Chemical Industries, Ltd., special grade), 980 mg, and the resulting solution was obtained. The coating solution was prepared by filtration through a sieve having a pore size of 0.2 μm. Next, on the anode buffer layer, the prepared coating solution was applied by spin coating at a number of revolutions of 3000 rpm and a coating time of 30 seconds, and dried at room temperature (25 ° C) for 30 minutes to form a light. Floor. The resulting light-emitting layer had a film thickness of 10 Onm. Next, the substrate ′ which forms the light-emitting layer was placed in the vapor deposition apparatus, and the thickness of 5 ntn was vapor-deposited at a deposition rate of 〇1 nm/S, and then aluminum as a cathode was vapor-deposited at a deposition rate of 1 nm/s at 150 nm. The organic EL element 1 was produced in thickness. Further, the layer of tantalum and aluminum was formed in a stripe shape having two widths of 3 mm perpendicularly to the extending direction of the anode, and four organic light-emitting elements of 4 mm in length and 3 mm in width were produced for each glass substrate. -43-200922941 <Evaluation of EL light-emitting characteristics> Using a programmable DC voltage/current source TR6143 manufactured by Ad vante St, a voltage was applied to the organic EL element to emit light, and a brightness meter BM-made by Topcon was used. 8 Determine the luminance of the light. As a result, the obtained luminescent color, uniformity of luminescence, external quantum efficiency at the time of lighting of l〇〇cd/m2, and luminance half-life of the case when the constant current was driven by the initial luminance l〇〇cd/m2 are shown in Table 2 ( The external quantum efficiency and the luminance half-life time 値 are the average 値 of the four elements formed by one substrate). In addition, the measurement result of the luminance half-life time of Table 2 is a relative 値 when the measurement of the organic EL element 4 described later is regarded as 100 Å. [Example 5] An organic EL device 2 was produced and treated in the same manner as in Example 4 except that the compound (4a) was changed to the compound (4b). The evaluation results are shown in Table 2. [Example 6] An organic EL device 3 was produced and treated in the same manner as in Example 4 except that the compound (4a) was changed to the compound (4c). The evaluation results are shown in Table 2. [Comparative Example 4] The organic EL device 4 was produced and treated in the same manner as in Example 4 except that the compound (4a) was changed to Ir(F2MeOppy)3. The evaluation results are shown in Table 2-44 - 200922941. [Comparative Example 5] The organic EL device 5 was produced and treated in the same manner as in Example 4 except that the compound (4a) was changed to Ir(F2HexOppy) 2 (pic). The evaluation results are shown in Table 2. [Reference Example 1] An organic EL device 6 was produced and treated in the same manner as in Example 4 except that the compound (4a) was changed to Ir(PPy)3. The evaluation results are shown in Table 2. Element No. Luminescent material Luminescence color Luminescence uniformity External quantum efficiency r%i Luminance half-life time 1 (Example 4) Compound (4a) Blue uniform 5.3 147 2 (Example 5) Compound (4b) Blue uniform 7.9 198 3 (Example 6) Compound (4c) Blue uniform 7.8 202 4 (Comparative Example 4) Ir(F2MeOppy) 3 Blue unevenness 2.2 100 5 (Comparative Example 5) Ir(F2HexOppy) 2 (pic) Blue uniform 5.7 104 6 (Reference Example 1) 'Mppy) 3 Green uniformity 5.5 144 It can be seen from Table 2 that the previously known blue luminescent ruthenium complex compound (Ir(F2MeOppy) 3) is used for the organic EL element of the light-emitting layer (Comparative In Example 4), the chelating complex compound of the luminescent material is agglomerated, and uniform luminescence cannot be obtained. In contrast, the erbium complex compound of the present invention is used for the organic EL element of the luminescent layer of -45-200922941. (Examples 4 to 6), a light-emitting layer of a uniform sentence can be obtained. Further, it was found that the previously known blue luminescent ruthenium complex compound (Ir(F2Hex〇ppy) 2 (pic)) was used in the organic EL device (Comparative Example 5) of the light-emitting layer, because the compound itself was easily decomposed. In the organic EL device (Examples 4 to 6) in which the ruthenium complex compound of the present invention is used in the light-emitting layer, the characteristics of the external quantum efficiency and the luminance half-life time are also improved. The organic EL device (Reference Example 1) using the previously known green luminescent ruthenium complex is equivalent or more. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of an organic EL element of the present invention. [Description of main component symbols] 1 : Glass substrate 2 : Anode 3 · · Light-emitting layer 4 : Cathode 46-

Claims (1)

200922941 十、申請專利範圍 1·一種下述式(1)所示之銥錯合物化合物, [化1]200922941 X. Patent application scope 1. A ruthenium complex compound represented by the following formula (1), [Chemical 1] (式(1)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數1〜1〇之烷基, R5〜R8分別獨立爲選自鹵原子、碳數1〜1〇之經氟取 代的烷基、碳數1〜1 0之經氟取代的烷氧基、氰基、醛基 、碳數2〜1〇之醯基、碳數2〜10之烷氧羰基、碳數1〜1〇 之胺羰基、硫氰酸酯基及碳數1〜10之磺醯基之電子吸引 性的取代基、碳數1〜1 0之亦可具有雜原子的有機基(前述 電子吸引性的取代基除外)或氫原子, R5〜R8中之至少一者爲該電子吸引性的取代基)。 2 ·如申請專利範圍第1項之銥錯合物化合物,其中前 述電子吸引性之取代基爲氟原子、碳數1〜1 〇之經氟取代 的烷基、碳數1〜10之經氟取代的烷氧基或氰基。 3 _如申請專利範圍第1項或第2項之銥錯合物化合物, 其爲下述式(2)所不, -47- 200922941(In the formula (1), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having 1 to 1 carbon number, and R5 to R8 are each independently selected from a halogen atom and a carbon number. Fluorine-substituted alkyl group of 1 to 1 fluorene, fluorine-substituted alkoxy group having 1 to 10 carbon atoms, cyano group, aldehyde group, fluorenyl group having 2 to 1 carbon number, and alkyl group having 2 to 10 carbon atoms An electron-attractive substituent of an oxycarbonyl group, an amine carbonyl group having 1 to 1 carbon atom, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, or an organic group having a carbon number of 1 to 10 or a hetero atom The group (except for the electron-attracting substituent) or the hydrogen atom, and at least one of R5 to R8 is the electron-attracting substituent). 2. The compound of the above formula, wherein the electron-attracting substituent is a fluorine atom, a fluorine-substituted alkyl group having a carbon number of 1 to 1 fluorene, and a fluorine having a carbon number of 1 to 10; Substituted alkoxy or cyano. 3 _If the compound of the bismuth compound of item 1 or item 2 of the patent application is not the following formula (2), -47- 200922941 (式(2)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數1〜10之烷基)。 4.如申請專利範圍第1項〜第3項中任一項之銥錯合物 化合物,其爲下述式(3)所示, [化3](In the formula (2), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms). 4. The compound of the ruthenium complex according to any one of the first to third aspects of the patent application, which is represented by the following formula (3), [Chemical 3] (式(3)中,R1爲碳數2〜30之有機基)。 5 .如申請專利範圍第1項〜第4項中任一項之銥錯合物 化合物,其中R1爲碳數2〜30之烷基或碳數7〜30之芳烷 基。 6.如申請專利範圍第1項〜第5項中任一項之銥錯合物 化合物,其爲面式(facial)體。 7 . —種有機電致發光元件,其爲具備基板、和該基板 -48- 200922941 上所形成之一對電極、和於該一對電極間含有發光層之一 層或數層有機層的有機電致發光元件,其特徵爲 上述發光層爲含有如申請專利範圍第1項〜第6項中任 一項之銥錯合物化合物。 8 ·如申請專利範圍第7項之有機電致發光元件,其中 發光層爲含有電荷輸送性的非共軛高分子化合物。 9 · 一種影像顯示裝置,其特徵爲使用如申請專利範圍 第7項或第8項之有機電致發光元件。 10. —種面發光光源,其特徵爲使用如申請專利範圍 第7項或第8項之有機電致發光元件。 1 1 · 一種銥錯合物化合物之製造方法’其爲如申請專 利範圍第1項之銥錯合物化合物的製造方法,其特徵爲 令氯化銥(III)三水合物與下述式(1-1)所示之苯基吡啶 衍生物,於醇與水的混合溶劑中加熱反應取得下述式(1 -2)所示之銥的二核錯合物, 令該二核錯合物與下述式(1 -1)所示之苯基吡啶衍生 物於鹼及/或銀鹽的存在下,於溶劑中加熱反應,(In the formula (3), R1 is an organic group having 2 to 30 carbon atoms). The compound of the ruthenium complex according to any one of claims 1 to 4, wherein R1 is an alkyl group having 2 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms. 6. The ruthenium complex compound according to any one of claims 1 to 5, which is a facial body. An organic electroluminescence device comprising a substrate, a counter electrode formed on the substrate-48-200922941, and an organic layer containing one or several organic layers of the light-emitting layer between the pair of electrodes A light-emitting element characterized in that the light-emitting layer is a ruthenium complex compound containing any one of items 1 to 6 of the patent application. 8. The organic electroluminescence device according to claim 7, wherein the light-emitting layer is a non-conjugated polymer compound containing a charge transporting property. An image display device characterized by using an organic electroluminescence device according to claim 7 or 8. 10. A surface-emitting light source characterized by using an organic electroluminescent element according to claim 7 or 8. 1 1 A method for producing a ruthenium complex compound, which is a method for producing a ruthenium complex compound according to the first aspect of the patent application, which is characterized in that ruthenium (III) chloride trihydrate has the following formula ( The phenylpyridine derivative shown in 1-1) is heated and reacted in a mixed solvent of an alcohol and water to obtain a dinuclear complex of the oxime represented by the following formula (1-2), and the dinuclear complex is obtained. The phenylpyridine derivative represented by the following formula (1-1) is heated in a solvent in the presence of a base and/or a silver salt, -49- 200922941 (式(卜υ及式(1-2)中,R1爲碳數2〜30之有機基, R2〜R4分別獨立爲氫原子或碳數10之烷基, R5〜R8分別獨立爲選自鹵原子、碳數1〜1〇之經氟取 代的院基、碳數1〜10之經氟取代的院氧基、氰基、醒基 、碳數2〜10之醯基、碳數2〜1〇之烷氧羰基、碳數1〜1〇 之胺羰基、硫氰酸酯基及碳數1〜10之磺醯基之電子吸引 性的取代基、碳數1〜10之亦可具有雜原子的有機基(前述 電子吸引性的取代基除外)或氫原子, R5〜R8中之至少一者爲該電子吸引性的取代基)。 -50--49- 200922941 (In the formula (1-2), R1 is an organic group having 2 to 30 carbon atoms, and R2 to R4 are each independently a hydrogen atom or an alkyl group having 10 carbon atoms, and R5 to R8 are each independently It is a fluorine-substituted courtyard group selected from a halogen atom, a carbon number of 1 to 1 fluorene, a fluorine-substituted alkoxy group having a carbon number of 1 to 10, a cyano group, a ketone group, a carbon number of 2 to 10, and a carbon group. An electron-attracting substituent of an alkoxycarbonyl group having 2 to 1 fluorene, an amine carbonyl group having 1 to 1 carbon atom, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, and a carbon number of 1 to 10 An organic group having a hetero atom (except for the electron-attracting substituent) or a hydrogen atom, and at least one of R5 to R8 is a substituent capable of attracting the electron.) -50-
TW97126954A 2007-07-19 2008-07-16 Iridium complex compounds, organic electroluminescent devices and uses thereof TW200922941A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188259A JP2009023938A (en) 2007-07-19 2007-07-19 Iridium complex compound, organic electroluminescent device and use thereof

Publications (1)

Publication Number Publication Date
TW200922941A true TW200922941A (en) 2009-06-01

Family

ID=39789500

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126954A TW200922941A (en) 2007-07-19 2008-07-16 Iridium complex compounds, organic electroluminescent devices and uses thereof

Country Status (3)

Country Link
JP (1) JP2009023938A (en)
TW (1) TW200922941A (en)
WO (1) WO2009011447A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402329B (en) * 2010-04-12 2013-07-21 Univ Nat Cheng Kung Green processes for preparing luminescent iridium complexes and precursors thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209317A (en) * 2009-02-10 2010-09-24 Mitsubishi Chemicals Corp Metal complex, composition for organic electroluminescent element, and organic electroluminescent element
JP2011105676A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Organometallic complex, luminescent material, material of organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
US20120235132A1 (en) * 2009-11-30 2012-09-20 Takashi Terashima Iridium complex compound, organic electroluminescent element, and uses thereof
JP5546238B2 (en) * 2009-12-28 2014-07-09 昭和電工株式会社 Iridium complex compound, organic electroluminescence device and use thereof
JP2011256129A (en) * 2010-06-08 2011-12-22 Mitsubishi Chemicals Corp Organometallic complex material, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, and organic el light
TWI529238B (en) * 2011-04-15 2016-04-11 半導體能源研究所股份有限公司 Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
JP2013028757A (en) * 2011-07-29 2013-02-07 Canon Inc Organometallic complex and organic light emitting device including the same
JP2013147490A (en) 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd Iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
CN102617652A (en) * 2012-03-07 2012-08-01 南京邮电大学 Binuclear phosphorescent iridium complex with two-photon absorption characteristics and application of binuclear phosphorescent iridium complex
JP6166557B2 (en) 2012-04-20 2017-07-19 株式会社半導体エネルギー研究所 Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
EP2883880B1 (en) 2012-08-08 2016-11-30 Mitsubishi Chemical Corporation Iridium complex compound, and composition, organic electroluminescent element, display device and lighting device each cotaining the compound
JP6847589B2 (en) 2015-05-20 2021-03-24 株式会社半導体エネルギー研究所 Organometallic complexes, light emitting elements, light emitting devices, electronic devices, and lighting devices
US10256420B2 (en) 2015-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
CN117551135A (en) 2015-09-30 2024-02-13 株式会社半导体能源研究所 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9843002B2 (en) 2015-10-29 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9960371B2 (en) 2015-12-18 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20180086483A (en) * 2016-01-14 2018-07-31 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Process for producing cyclometallated iridium complex
JP6929677B2 (en) 2016-04-01 2021-09-01 株式会社半導体エネルギー研究所 Light emitting elements, light emitting devices, electronic devices and lighting devices
JP6861551B2 (en) 2016-04-01 2021-04-21 株式会社半導体エネルギー研究所 Organometallic complexes, light emitting elements, light emitting devices, electronic devices, and lighting devices
WO2018109621A1 (en) 2016-12-16 2018-06-21 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP7275042B2 (en) 2017-11-17 2023-05-17 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US20220041635A1 (en) 2018-12-28 2022-02-10 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device
CN116057148A (en) 2020-09-11 2023-05-02 株式会社半导体能源研究所 Organometallic complex, light-emitting device, light-emitting apparatus, electronic device, and lighting apparatus
WO2022137033A1 (en) 2020-12-25 2022-06-30 株式会社半導体エネルギー研究所 Organic metal complex, light-emitting device, light-emitting apparatus, electronic equipment, and illumination apparatus
DE102023116570A1 (en) 2022-06-29 2024-01-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, light emitting device, electronic device and lighting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154138B2 (en) * 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element, display device and metal coordination compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402329B (en) * 2010-04-12 2013-07-21 Univ Nat Cheng Kung Green processes for preparing luminescent iridium complexes and precursors thereof

Also Published As

Publication number Publication date
WO2009011447A3 (en) 2009-03-26
JP2009023938A (en) 2009-02-05
WO2009011447A2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
TW200922941A (en) Iridium complex compounds, organic electroluminescent devices and uses thereof
KR101073232B1 (en) Iridium complex compound, organic electroluminescent device obtained by using the same, and uses of the device
US10079350B2 (en) Organometallic complex, composition and light emitting element including the organometallic complex
JP4953412B2 (en) Iridium (III) complex having heteroatom linking group and organic electroluminescence device using the same
TWI666300B (en) Phosphorescent compound
JP5165854B2 (en) Silyl-substituted cyclometalated transition metal complex and organic electroluminescent device using the same
US7601438B2 (en) Cyclometalated transition metal complex and organic electroluminescent display device using the same
US7579092B2 (en) Cyclometalated transition metal complex and organic electroluminescent device using the same
KR20060098859A (en) Red phosphorescent compounds and organic electroluminescence devices using the same
KR20060098860A (en) Red phosphorescent compounds and organic electroluminescence devices using the same
JP5613941B2 (en) Blue light-emitting polymer compound, organic electroluminescence device and use thereof
TWI523932B (en) Iridium compound compounds, organic electroluminescent elements and their use
JP5546238B2 (en) Iridium complex compound, organic electroluminescence device and use thereof
US7670691B2 (en) Cyclometalated transition metal complex and organic electroluminescent display device using the same
JP2011225498A (en) Organic platinum complex and organic electroluminescent device
JP2000306672A (en) Organic el element