JP2009023938A - Iridium complex compound, organic electroluminescent device and use thereof - Google Patents

Iridium complex compound, organic electroluminescent device and use thereof Download PDF

Info

Publication number
JP2009023938A
JP2009023938A JP2007188259A JP2007188259A JP2009023938A JP 2009023938 A JP2009023938 A JP 2009023938A JP 2007188259 A JP2007188259 A JP 2007188259A JP 2007188259 A JP2007188259 A JP 2007188259A JP 2009023938 A JP2009023938 A JP 2009023938A
Authority
JP
Japan
Prior art keywords
group
organic
carbon atoms
compound
iridium complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188259A
Other languages
Japanese (ja)
Inventor
Takeshi Igarashi
威史 五十嵐
Isamu Taguchi
勇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007188259A priority Critical patent/JP2009023938A/en
Priority to TW97126954A priority patent/TW200922941A/en
Priority to PCT/JP2008/063219 priority patent/WO2009011447A2/en
Publication of JP2009023938A publication Critical patent/JP2009023938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blue-emitting phosphorescent compound exhibiting high solubility in solvents in the process for the production of organic EL devices and having excellent thermal stability. <P>SOLUTION: The iridium complex compound is expressed by formula (1) (in the formula (1), R<SP>1</SP>is a 2-30C organic group; R<SP>2</SP>to R<SP>4</SP>are each a hydrogen atom, an alkyl group or the like; and R<SP>5</SP>to R<SP>8</SP>are each a halogen atom, a 1-10C fluorine-substituted alkyl group or the like provided that at least one of R<SP>5</SP>to R<SP>8</SP>groups is an electron-withdrawing substituent). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は発光性金属錯体化合物、発光性金属錯体化合物を用いた有機エレクトロルミネッセンス素子およびその用途に関する。   The present invention relates to a luminescent metal complex compound, an organic electroluminescence device using the luminescent metal complex compound, and use thereof.

燐光発光性化合物は、高い発光効率を有することから、近年、有機エレクトロルミネッセンス素子(本明細書において、有機EL素子ともいう)における発光材料として、研究開発が活発に行われている。   In recent years, phosphorescent compounds have been actively researched and developed as light-emitting materials in organic electroluminescence elements (also referred to as organic EL elements in this specification) because they have high luminous efficiency.

燐光発光性化合物を用いた有機EL素子は、様々な用途へ拡大されることが期待されるが、特にディスプレイ用途へ展開させるためには、高い発光効率とともに素子の安定した駆動を持続する材料の開発が必須である。   Organic EL devices using phosphorescent compounds are expected to be expanded to various applications. In particular, in order to expand to display applications, a material that maintains a stable drive of the device with high luminous efficiency is expected. Development is essential.

フルカラーディスプレイに必要な3原色の中で、緑色発光および赤色発光を用いた有機EL素子では、実用的に充分な発光効率、耐久性および溶解性等の特性を有する燐光発光性化合物が見出されているが、青色発光を用いた有機EL素子ではそのような燐光発光性化合物は見出されていない。   Among the three primary colors required for full-color displays, phosphorescent compounds that have practically sufficient characteristics such as luminous efficiency, durability, and solubility have been found in organic EL devices using green light emission and red light emission. However, such a phosphorescent compound has not been found in an organic EL device using blue light emission.

そこで、高い発光効率を有し、かつ高い耐久性を有する燐光青色発光性化合物の開発が望まれている。
特表2003−526876号公報(特許文献1)には、燐光発光性化合物として有機イリジウム錯体を用いることで、有機EL素子の発光効率を大きく向上させ得ることが開示されている。イリジウム錯体としてはトリス(2−(2−ピリジル)フェニル)イリジウムおよびその誘導体が例示されており、芳香族構造の配位子の置換基をアルキル基またはアリール基に変更することによって、イリジウム錯体の発光色が変わることが記載されている。
Therefore, development of a phosphorescent blue light emitting compound having high luminous efficiency and high durability is desired.
Japanese Patent Application Publication No. 2003-526876 (Patent Document 1) discloses that the use of an organic iridium complex as the phosphorescent compound can greatly improve the light emission efficiency of the organic EL element. Examples of the iridium complex include tris (2- (2-pyridyl) phenyl) iridium and derivatives thereof. By changing the substituent of the ligand of the aromatic structure to an alkyl group or an aryl group, the iridium complex It is described that the emission color changes.

特開2001−247859号公報(特許文献2)には、トリス(2−(2−ピリジル)フェニル)イリジウムの置換基として様々な基が例示されている。
特開2002−170684号公報(特許文献3)には、高効率発光素子およびそれを実現する新規金属錯体として、燐系配位子を有するイリジウム錯体が開示されている。
JP 2001-247859 A (Patent Document 2) exemplifies various groups as substituents of tris (2- (2-pyridyl) phenyl) iridium.
Japanese Unexamined Patent Publication No. 2002-170684 (Patent Document 3) discloses a high-efficiency light-emitting element and an iridium complex having a phosphorus-based ligand as a novel metal complex for realizing the light-emitting element.

特表2004−506305号公報(特許文献4)には、青色発光を示す金属錯体化合物が記載されており、該金属錯体化合物にイリジウムを含むことが例示されている。
一方、有機EL素子の発光層を形成する方法としては、低分子量有機化合物の真空蒸着法、および高分子量化合物溶液の塗布法が一般的であるが、塗布法は素子の製造コストが低いことや素子の大面積が容易であることなどの点で有利である。
Japanese translations of PCT publication No. 2004-506305 (patent document 4) describes a metal complex compound that emits blue light, and exemplifies that the metal complex compound contains iridium.
On the other hand, as a method for forming a light emitting layer of an organic EL element, a vacuum deposition method of a low molecular weight organic compound and a coating method of a high molecular weight compound solution are generally used. This is advantageous in that the large area of the element is easy.

しかしながら、従来、燐光青色発光性化合物は溶解性に乏しく、塗布による成膜が困難であった。燐光青色発光性化合物の溶解性を高めるために、芳香族構造の配位子の置換基として長鎖アルキル基を導入することが知られている。例えば、Polyhedron25(非特許文献1)には、芳香族構造の配位子の置換基としてヘキシルオキシ基を導入したイリジウム錯体が報告されている(下記式(4)および(5)参照)。   Conventionally, however, phosphorescent blue light-emitting compounds have poor solubility, and film formation by coating has been difficult. In order to enhance the solubility of the phosphorescent blue light-emitting compound, it is known to introduce a long-chain alkyl group as a substituent of a ligand having an aromatic structure. For example, Polyhedron 25 (Non-patent Document 1) reports an iridium complex in which a hexyloxy group is introduced as a substituent of a ligand having an aromatic structure (see the following formulas (4) and (5)).

Figure 2009023938
Figure 2009023938

Figure 2009023938
Figure 2009023938

しかしながら、式(4)および(5)の化合物は、熱的安定性が乏しく、これらの化合物を用いた有機EL素子は耐久性が低いという問題点があった。
特表2003−526876号公報 特開2001−247859号公報 特開2002−170684号公報 特表2004−506305号公報 Inamur R.Laskar,Shih-Feng Hsu,Teng-Ming Chen、「Investigating photoluminescence and electroluminescence of iridium(III)-based blue-emitting phosphors」、Polyhedron、2006年、25、p.1167-1176
However, the compounds of formulas (4) and (5) have poor thermal stability, and organic EL devices using these compounds have a problem of low durability.
Special table 2003-526876 gazette JP 2001-247859 A JP 2002-170684 A Special table 2004-506305 gazette Inamur R. Laskar, Shih-Feng Hsu, Teng-Ming Chen, `` Investigating photoluminescence and electroluminescence of iridium (III) -based blue-emitting phosphors '', Polyhedron, 2006, 25, p.1167-1176

本発明は、有機EL素子製造の際の塗布溶液用溶媒に対する溶解性が高く、かつ熱的安定性に優れた燐光青色発光性化合物を提供することを目的としている。
また、これらの燐光青色発光性化合物を用いた有機EL素子であって、発光効率が高く、しかも寿命の長い有機EL素子を提供することを目的としている。
An object of the present invention is to provide a phosphorescent blue light-emitting compound that has high solubility in a solvent for a coating solution in the production of an organic EL device and is excellent in thermal stability.
Another object of the present invention is to provide an organic EL device using these phosphorescent blue light-emitting compounds, which has high luminous efficiency and long life.

本発明者らは、上記課題を解決すべく鋭意研究した結果、燐光青色発光性化合物において、特定の構造を有するイリジウム錯体化合物は、有機EL素子製造の際の塗布溶液用溶媒に対する溶解性が高く、かつ熱的安定性に優れていることを見出した。また、有機EL素子製造の際、該イリジウム錯体化合物を溶解させた塗布溶液は均一に基板上に塗布することができ、成膜性が良好であること、さらに、該イリジウム錯体化合物を発光層に含む有機EL素子は、発光効率が高く、寿命が長いことを見出し、本発明を完成するに至った。すなわち、本発明は以下のとおりに要約される。   As a result of diligent research to solve the above problems, the present inventors have found that phosphorescent blue light-emitting compounds have high solubility in coating solution solvents in the production of organic EL devices. And it discovered that it was excellent in thermal stability. In addition, when the organic EL device is produced, the coating solution in which the iridium complex compound is dissolved can be uniformly coated on the substrate, the film formability is good, and the iridium complex compound is used as a light emitting layer. The organic EL element to be included has high luminous efficiency and a long lifetime, and has completed the present invention. That is, the present invention is summarized as follows.

[1]
下記式(1)で表されるイリジウム錯体化合物。
[1]
The iridium complex compound represented by following formula (1).

Figure 2009023938
Figure 2009023938

(式(1)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基であり、
5〜R8はそれぞれ独立にハロゲン原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基、シアノ基、アルデヒド基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜10のアミノカルボニル基、チオシアネート基および炭素数1〜10のスルホニル基から選ばれる電子吸引性の置換基、炭素数1〜10の複素原子を有しても良い有機基(前記電子吸引性の置換基を除く)または水素原子であり、
5〜R8のうち少なくとも1つは該電子吸引性の置換基である。)
[2]
1が炭素数2〜30のアルキル基または置換基を有してもよい炭素数7〜30のアラルキル基である前記[1]に記載のイリジウム錯体化合物。
(In Formula (1), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
R 5 to R 8 are each independently a halogen atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a cyano group, an aldehyde group, or a carbon number having 2 to 10 carbon atoms. An electron-withdrawing substituent selected from an acyl group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an aminocarbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, An organic group which may have a hetero atom (excluding the electron-withdrawing substituent) or a hydrogen atom,
At least one of R 5 to R 8 is the electron-withdrawing substituent. )
[2]
The iridium complex compound according to the above [1], wherein R 1 is an alkyl group having 2 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms which may have a substituent.

[3]
前記電子吸引性の置換基がフッ素原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基またはシアノ基である前記[1]または[2]に記載のイリジウム錯体化合物。
[3]
In the above [1] or [2], the electron-withdrawing substituent is a fluorine atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, or a cyano group. The iridium complex compound described.

[4]
下記式(2)で表される前記[1]〜[3]のいずれかに記載のイリジウム錯体化合物。
[4]
The iridium complex compound according to any one of [1] to [3] represented by the following formula (2).

Figure 2009023938
Figure 2009023938

(式(2)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基である。)
[5]
下記式(3)で表される前記[1]〜[4]のいずれかに記載のイリジウム錯体化合物。
(In Formula (2), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. )
[5]
The iridium complex compound in any one of said [1]-[4] represented by following formula (3).

Figure 2009023938
Figure 2009023938

(式(3)において、R1は炭素数2〜30の有機基である。)
[6]
フェイシャル(facial)体であることを特徴とする前記[1]〜[5]のいずれかに記載のイリジウム錯体化合物。
(In Formula (3), R 1 is an organic group having 2 to 30 carbon atoms.)
[6]
It is a facial body, The iridium complex compound in any one of said [1]-[5] characterized by the above-mentioned.

[7]
基板と、前記基板上に形成された一対の電極と、前記一対の電極間に発光層を含む一層または複数層の有機層とを備えた有機エレクトロルミネッセンス素子であって、
上記発光層が前記[1]〜[6]のいずれかに記載のイリジウム錯体化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
[7]
An organic electroluminescence device comprising a substrate, a pair of electrodes formed on the substrate, and one or more organic layers including a light emitting layer between the pair of electrodes,
The said light emitting layer contains the iridium complex compound in any one of said [1]-[6], The organic electroluminescent element characterized by the above-mentioned.

[8]
発光層が電荷輸送性の非共役高分子化合物を含有することを特徴とする前記[7]に記載の有機エレクトロルミネッセンス素子。
[8]
The light emitting layer contains a non-conjugated polymer compound having a charge transporting property, and the organic electroluminescence device as described in [7] above.

[9]
前記[7]または[8]に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする画像表示装置。
[9]
An image display device using the organic electroluminescence element according to [7] or [8].

[9]
前記[7]または[8]に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする面発光光源。
[9]
A surface-emitting light source using the organic electroluminescence device according to [7] or [8].

なお上記特許文献には、置換基の種類や数、置換位置を適切に選択することによって有機EL素子の寿命低下を改善できることは何ら示されていない。   The above-mentioned patent document does not show that the lifetime reduction of the organic EL element can be improved by appropriately selecting the type and number of substituents and the substitution position.

本発明によれば、有機EL素子製造の際の塗布溶液用溶媒に対する溶解性が高く、かつ熱安定性の優れた青色発光性のイリジウム錯体化合物を提供でき、また、該イリジウム錯体化合物を用いた有機EL素子であって、発光効率が高く、しかも寿命の長い有機EL素子を提供できる。さらに、有機EL素子製造の際、該イリジウム錯体化合物を溶解させた塗布溶液は均一に基板上に塗布することができ、成膜性が良好である。   ADVANTAGE OF THE INVENTION According to this invention, the solubility with respect to the solvent for application | coating solutions at the time of organic electroluminescent element manufacture can be provided, and the blue luminescent iridium complex compound excellent in thermal stability can be provided, and this iridium complex compound was used. An organic EL element having high luminous efficiency and a long lifetime can be provided. Furthermore, when the organic EL element is manufactured, the coating solution in which the iridium complex compound is dissolved can be uniformly coated on the substrate, and the film formability is good.

以下、本発明について具体的に説明する。
<イリジウム錯体化合物>
本発明においては、下記式(1)で表されるイリジウム錯体化合物が用いられる。
Hereinafter, the present invention will be specifically described.
<Iridium complex compound>
In the present invention, an iridium complex compound represented by the following formula (1) is used.

Figure 2009023938
Figure 2009023938

(式(1)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基であり、
5〜R8はそれぞれ独立にハロゲン原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基、シアノ基、アルデヒド基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜10のアミノカルボニル基、チオシアネート基および炭素数1〜10のスルホニル基から選ばれる電子吸引性の置換基、炭素数1〜10の複素原子を有しても良い有機基(前記電子吸引性の置換基を除く)または水素原子であり、
5〜R8のうち少なくとも1つは該電子吸引性の置換基である。)
イリジウム錯体化合物の有機EL素子製造の際の塗布溶液用溶媒に対する溶解性を高くするため、上記式(1)において、R1は、炭素数2〜30の有機基、好ましくは炭素数2〜30のアルキル基または置換基を有してもよい炭素数7〜30のアラルキル基であり、さらに好ましくは分岐構造および/または環状構造を有する炭素数3〜30のアルキル基、分岐構造を有する炭素数8〜30のアラルキル基である。具体例としては、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、3−メチルブチル基、1,1−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、4−メチルペンチル基、2−エチルブチル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、n−オクチル基、2−オクチル基、3−オクチル基、4−オクチル基、n−エチルヘキシル基、n−ノニル基、2−ノニル基、3−ノニル基、4−ノニル基、5−ノニル基、n−デシル基、3,7−ジメチルオクチル基、n−ドデシル基、n−テトラデシル基、n−ヘキサデシル基、2−メチルヘキサデシル基、n−オクタデシル基、n−エイコシル基、n−ドコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロヘキシルメチル基、アダマンチル基、3,5−ジメチルアダマンチル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、2−(1−フェニル)プロピル基または3,3−ジフェニルプロピル基が挙げられる。好ましくはイソプロピル基、2−ブチル基、イソブチル基、tert−ブチル基、2−ペンチル基、3−ペンチル基、3−メチルブチル基、1,1−ジメチルプロピル基、2−ヘキシル基、3−ヘキシル基、4−メチルペンチル基、2−エチルブチル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、2−オクチル基、3−オクチル基、4−オクチル基、2−エチルヘキシル基、2−ノニル基、3−ノニル基、4−ノニル基、5−ノニル基、3,7−ジメチルオクチル基、2−メチルヘキサデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロヘキシルメチル基、アダマンチル基、3,5−ジメチルアダマンチル基、1−フェニルエチル基、2−フェニルエチル基、2−(1−フェニル)プロピル基または3,3−ジフェニルプロピル基であり、さらに好ましくは、2−ブチル基、2−ペンチル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基またはアダマンチル基である。
(In Formula (1), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
R 5 to R 8 are each independently a halogen atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a cyano group, an aldehyde group, or a carbon number having 2 to 10 carbon atoms. An electron-withdrawing substituent selected from an acyl group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an aminocarbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, An organic group which may have a hetero atom (excluding the electron-withdrawing substituent) or a hydrogen atom,
At least one of R 5 to R 8 is the electron-withdrawing substituent. )
In order to increase the solubility of the iridium complex compound in the solvent for the coating solution during the production of the organic EL device, in the above formula (1), R 1 is an organic group having 2 to 30 carbon atoms, preferably 2 to 30 carbon atoms. A C 7-30 aralkyl group which may have an alkyl group or a substituent, and more preferably a C 3-30 alkyl group having a branched structure and / or a cyclic structure, or a carbon number having a branched structure. 8 to 30 aralkyl groups. Specific examples include ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 3 -Methylbutyl group, 1,1-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 4-methylpentyl group, 2-ethylbutyl group, n-heptyl group, 2-heptyl group, 3- Heptyl, 4-heptyl, n-octyl, 2-octyl, 3-octyl, 4-octyl, n-ethylhexyl, n-nonyl, 2-nonyl, 3-nonyl, 4- Nonyl group, 5-nonyl group, n-decyl group, 3,7-dimethyloctyl group, n-dodecyl group, n-tetradecyl group, n-hexadecyl group, 2-methylhexadecyl group, n-octadecyl group N-eicosyl group, n-docosyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclohexylmethyl group, adamantyl group, 3,5-dimethyladamantyl group, benzyl group, 1-phenylethyl Group, 2-phenylethyl group, 2- (1-phenyl) propyl group or 3,3-diphenylpropyl group. Preferably isopropyl group, 2-butyl group, isobutyl group, tert-butyl group, 2-pentyl group, 3-pentyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 2-hexyl group, 3-hexyl group 4-methylpentyl group, 2-ethylbutyl group, 2-heptyl group, 3-heptyl group, 4-heptyl group, 2-octyl group, 3-octyl group, 4-octyl group, 2-ethylhexyl group, 2-nonyl Group, 3-nonyl group, 4-nonyl group, 5-nonyl group, 3,7-dimethyloctyl group, 2-methylhexadecyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclohexyl Methyl group, adamantyl group, 3,5-dimethyladamantyl group, 1-phenylethyl group, 2-phenylethyl group, 2- (1 -Phenyl) propyl group or 3,3-diphenylpropyl group, more preferably 2-butyl group, 2-pentyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group or adamantyl group.

熱的安定性を高めるために、上記式(1)において、R2〜R4は水素原子または炭素数1〜10のアルキル基であることが好ましい。
具体例としては、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、tert−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、3−メチルブチル基、1,1−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、4−メチルペンチル基、2−エチルブチル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、n−オクチル基、2−オクチル基、3−オクチル基、4−オクチル基、n−エチルヘキシル基、n−ノニル基、2−ノニル基、3−ノニル基、4−ノニル基、5−ノニル基またはn−デシル基が挙げられる。さらに好ましくは水素原子、メチル基またはエチル基であり、特に好ましくは水素原子である。
In order to improve thermal stability, in the above formula (1), R 2 to R 4 are preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Specific examples include hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, tert-butyl group, 1-pentyl group, 2-pentyl group, and 3-pentyl. Group, 3-methylbutyl group, 1,1-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 4-methylpentyl group, 2-ethylbutyl group, n-heptyl group, 2-heptyl group 3-heptyl group, 4-heptyl group, n-octyl group, 2-octyl group, 3-octyl group, 4-octyl group, n-ethylhexyl group, n-nonyl group, 2-nonyl group, 3-nonyl group 4-nonyl group, 5-nonyl group or n-decyl group. More preferred is a hydrogen atom, methyl group or ethyl group, and particularly preferred is a hydrogen atom.

また、青色発光性の材料を得るために、上記式(1)において、R5〜R8のうち少なくとも1つは電子吸引性の置換基である。該電子吸引性の置換基としては、ハロゲン原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基、シアノ基、アルデヒド基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜10のアミノカルボニル基、チオシアネート基および炭素数1〜10のスルホニル基から選ばれる電子吸引性の置換基が好ましい。該電子吸引性の置換基は、さらに好ましくは、フッ素原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基またはシアノ基である。 In order to obtain a blue light-emitting material, in the above formula (1), at least one of R 5 to R 8 is an electron-withdrawing substituent. Examples of the electron-withdrawing substituent include a halogen atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a cyano group, an aldehyde group, and 2 to 10 carbon atoms. And an electron-withdrawing substituent selected from an acyl group having 2 to 10 carbon atoms, an aminocarbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms. The electron-withdrawing substituent is more preferably a fluorine atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, or a cyano group.

具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、アルデヒド基、アセチル基、ベンゾイル基、メトキシカルボニル基、フェノキシカルボニル基、ジメチルアミノカルボニル基、チオシアネート基、メチルスルホニル基、フェニルスルホニル基が挙げられる。さらに好ましくはフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基またはシアノ基であり、特に好ましくはフッ素原子である。   Specific examples include fluorine atom, chlorine atom, bromine atom, iodine atom, trifluoromethyl group, trifluoromethoxy group, cyano group, aldehyde group, acetyl group, benzoyl group, methoxycarbonyl group, phenoxycarbonyl group, dimethylaminocarbonyl. Group, thiocyanate group, methylsulfonyl group, and phenylsulfonyl group. More preferred is a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group or a cyano group, and particularly preferred is a fluorine atom.

上記式(1)において、R5〜R8のうち前記電子吸引性の置換基以外は、炭素数1〜10の複素原子を有しても良い有機基(前記電子吸引性の置換基を除く)または水素原子である。 In the above formula (1), an organic group (excluding the electron-withdrawing substituent) which may have a C 1-10 hetero atom other than the electron-withdrawing substituent among R 5 to R 8. ) Or a hydrogen atom.

本発明のイリジウム錯体化合物としては、有機EL素子製造の際の塗布溶液用溶媒に対する溶解性が高く、熱的安定性が優れている点で、下記式(2)で表される化合物が好ましい。   As the iridium complex compound of the present invention, a compound represented by the following formula (2) is preferable in that it has high solubility in a coating solution solvent in the production of an organic EL device and is excellent in thermal stability.

Figure 2009023938
Figure 2009023938

(式(2)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基である。)
さらに好ましくは、下記式(3)で表される化合物である。
(In Formula (2), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. )
More preferably, it is a compound represented by following formula (3).

Figure 2009023938
Figure 2009023938

(式(3)において、R1は炭素数2〜30の有機基である。)
また、本発明のイリジウム錯体化合物がフェイシャル(facial)体であると、該化合物の発光性が向上する点で好ましい。
(In Formula (3), R 1 is an organic group having 2 to 30 carbon atoms.)
Moreover, it is preferable that the iridium complex compound of the present invention is a facial body in terms of improving the light-emitting property of the compound.

本発明のイリジウム錯体化合物は、従来の燐光青色発光性化合物、例えば下記式に示す化合物と比較してイリジウム原子との結合が弱いピコリン酸配位子を有さないため、熱的安定性に優れていることを特徴とする。   The iridium complex compound of the present invention does not have a picolinic acid ligand having a weak bond with an iridium atom as compared with a conventional phosphorescent blue light emitting compound, for example, a compound represented by the following formula, and thus has excellent thermal stability. It is characterized by.

Figure 2009023938
Figure 2009023938

<イリジウム錯体化合物の製造方法>
本発明のイリジウム錯体化合物の製造方法は特に限定されないが、例えば、以下の方法で製造することができる。
<Method for producing iridium complex compound>
Although the manufacturing method of the iridium complex compound of this invention is not specifically limited, For example, it can manufacture with the following method.

Figure 2009023938
Figure 2009023938

上記スキームを参照しながら、本発明のイリジウム錯体化合物の製造方法について説明する。
まず、塩化イリジウム(III)三水和物とフェニルピリジン誘導体(1−1)とを2−エトキシエタノールと水との混合溶媒(2−エトキシエタノール:水=3:1(体積比))中で加熱還流して反応させることによりイリジウムの2核錯体(1−2)を得る。
The method for producing the iridium complex compound of the present invention will be described with reference to the above scheme.
First, iridium chloride (III) trihydrate and phenylpyridine derivative (1-1) are mixed in a mixed solvent of 2-ethoxyethanol and water (2-ethoxyethanol: water = 3: 1 (volume ratio)). By reacting with heating under reflux, a binuclear complex (1-2) of iridium is obtained.

なお、式(1−1)、(1−2)におけるR1〜Rは、それぞれ式(1)中のR1〜R8と同義である。
次に、この2核錯体とフェニルピリジン誘導体(1−1)とをトリフルオロメタンスルホン酸銀(I)などの銀塩の存在下、溶媒中で加熱還流して反応させることにより本発明のイリジウム錯体化合物(1)を得ることができる。
In addition, R < 1 > -R < 8 > in Formula (1-1) and (1-2) is synonymous with R < 1 > -R < 8 > in Formula (1), respectively.
Next, the binuclear complex and the phenylpyridine derivative (1-1) are reacted by heating under reflux in a solvent in the presence of a silver salt such as silver (I) trifluoromethanesulfonate. Compound (1) can be obtained.

この第二の反応工程において、トルエンを溶媒として用いると、フェイシャル(facial)体およびメリヂオナル(meridional)体のイリジウム錯体化合物が、混合物として得られる場合があり、より高い沸点を有するメシチレンなどを溶媒として用いると、フェイシャル(facial)体のイリジウム錯体化合物が高収率且つ高選択的に得られる。
<有機EL素子>
本発明に係る有機EL素子は、基板と、前記基板上に形成された一対の電極と、前記一対の電極間に発光層を含む一層または複数層の有機層とを備えた有機EL素子であって、上記発光層が本発明のイリジウム錯体化合物を含有することを特徴とする有機EL素子である。
In this second reaction step, when toluene is used as a solvent, a iridium complex compound of a facial isomer and a meridional isomer may be obtained as a mixture, and mesitylene having a higher boiling point is used as a solvent. When used, a facial iridium complex compound can be obtained with high yield and high selectivity.
<Organic EL device>
The organic EL device according to the present invention is an organic EL device comprising a substrate, a pair of electrodes formed on the substrate, and one or more organic layers including a light emitting layer between the pair of electrodes. The organic EL device is characterized in that the light emitting layer contains the iridium complex compound of the present invention.

さらに、上記発光層が電荷輸送性の非共役高分子化合物を含有することを特徴とする有機EL素子であることが好ましい。
本発明に係る有機EL素子の構成の一例を図1に示すが、本発明に係る有機EL素子の構成は、これに限定されない。図1では、透明基板1上に設けた陽極2および陰極4の間に、発光層3を設けている。上記有機EL素子では、例えば、陽極2と発光層3の間にホール注入層を設けてもよく、また、発光層3と陰極4の間に電子注入層を設けてもよい。
Furthermore, the organic EL device is preferably characterized in that the light emitting layer contains a non-conjugated polymer compound having a charge transporting property.
An example of the configuration of the organic EL element according to the present invention is shown in FIG. 1, but the configuration of the organic EL element according to the present invention is not limited to this. In FIG. 1, a light emitting layer 3 is provided between an anode 2 and a cathode 4 provided on a transparent substrate 1. In the organic EL element, for example, a hole injection layer may be provided between the anode 2 and the light emitting layer 3, and an electron injection layer may be provided between the light emitting layer 3 and the cathode 4.

上記において、本発明のイリジウム化合物および電荷輸送性の非共役高分子化合物を含む有機層は、ホール輸送性および電子輸送性を併せ持つ発光層として利用できる。このため、他の有機材料からなる層を設けなくても、高い発光効率を有する有機EL素子を作成できる利点がある。   In the above, the organic layer containing the iridium compound of the present invention and the charge-transporting non-conjugated polymer compound can be used as a light-emitting layer having both hole-transporting properties and electron-transporting properties. For this reason, even if it does not provide the layer which consists of another organic material, there exists an advantage which can produce the organic EL element which has high luminous efficiency.

上記有機層は、特に限定されないが、例えば、以下のように製造することができる。まず、本発明のイリジウム錯体化合物および電荷輸送性の非共役高分子化合物を溶解させてなる溶液を調製する。上記溶液の調製に用いる溶媒としては、特に限定されないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン、アニソール等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒などが用いられる。次いで、このように調製した溶液を、インクジェット法、スピンコート法、ディップコート法または印刷法などを用いて基板上に成膜する。   Although the said organic layer is not specifically limited, For example, it can manufacture as follows. First, a solution is prepared by dissolving the iridium complex compound of the present invention and the charge transporting non-conjugated polymer compound. The solvent used for the preparation of the solution is not particularly limited. For example, a chlorine solvent such as chloroform, methylene chloride, dichloroethane, an ether solvent such as tetrahydrofuran and anisole, an aromatic hydrocarbon solvent such as toluene and xylene, Ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate are used. Next, the solution prepared in this manner is formed on a substrate using an inkjet method, a spin coating method, a dip coating method, a printing method, or the like.

本発明のイリジウム錯体化合物は、塗布溶液用溶媒に対する溶解性が高いので、該化合物を溶かした塗布溶液を塗布する際、該化合物を均一に基板上に成膜できる点で非常に優れている。   Since the iridium complex compound of the present invention has a high solubility in a solvent for a coating solution, it is very excellent in that the compound can be uniformly formed on a substrate when a coating solution in which the compound is dissolved is applied.

上記溶液の濃度としては、用いる化合物および成膜条件などに依存するが、例えば、スピンコート法やディップコート法の場合には、0.1〜10wt%であることが好ましい。このように、本発明のイリジウム錯体化合物は溶媒に対する溶解性が高いため、簡便に成膜され、製造工程の簡略化が実現できるとともに、素子の大面積化が図れる。   The concentration of the solution depends on the compound to be used and the film forming conditions, but is preferably 0.1 to 10 wt% in the case of, for example, spin coating or dip coating. As described above, since the iridium complex compound of the present invention has high solubility in a solvent, a film can be easily formed, the manufacturing process can be simplified, and the area of the device can be increased.

なお、本発明のイリジウム錯体化合物は、1種単独でまたは2種以上を組み合わせて有機EL素子の発光層に用いてもよい。
本発明のイリジウム錯体化合物を発光層に用いた有機EL素子は、寿命が長く、高い発光効率が得られる。
In addition, you may use the iridium complex compound of this invention for the light emitting layer of an organic EL element individually by 1 type or in combination of 2 or more types.
The organic EL device using the iridium complex compound of the present invention for the light emitting layer has a long life and high light emission efficiency.

<その他の材料>
上記の各層は、バインダとして高分子材料を混合して、形成されていてもよい。上記高分子材料としては、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイドなどが挙げられる。
<Other materials>
Each of the above layers may be formed by mixing a polymer material as a binder. Examples of the polymer material include polymethyl methacrylate, polycarbonate, polyester, polysulfone, and polyphenylene oxide.

また、上記の各層に用いられる材料は、機能の異なる材料、例えば、発光材料、ホール輸送材料、電子輸送材料などを混合して、各層を形成していてもよい。本発明のイリジウム錯体化合物を含む有機層においても、電荷輸送性を補う目的で、さらに他のホール輸送材料および/または電子輸送材料が含まれていてもよい。このような輸送材料としては、低分子化合物であっても、高分子化合物であってもよい。   In addition, the materials used for each of the layers may be formed by mixing materials having different functions, for example, a light emitting material, a hole transport material, an electron transport material, and the like. The organic layer containing the iridium complex compound of the present invention may further contain other hole transport materials and / or electron transport materials for the purpose of supplementing the charge transport property. Such a transport material may be a low molecular compound or a high molecular compound.

上記ホール輸送層を形成するホール輸送材料、または発光層中に混合させるホール輸送材料としては、例えば、TPD(N,N’−ジメチル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’ジアミン);α−NPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル);m−MTDATA(4、4’,4’’−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;上記トリフェニルアミン誘導体に重合性置換基を導入して重合した高分子化合物;ポリパラフェニレンビニレン、ポリジアルキルフルオレン等の蛍光発光性高分子化合物などが挙げられる。上記高分子化合物としては、例えば、特開平8−157575号公報に開示されているトリフェニルアミン骨格の高分子化合物などが挙げられる。上記ホール輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なるホール輸送材料を積層して用いてもよい。ホール輸送層の厚さは、ホール輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   As the hole transport material for forming the hole transport layer or the hole transport material mixed in the light emitting layer, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1 '-Biphenyl-4,4'diamine); α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4,4', 4 '' -Low molecular triphenylamine derivatives such as tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; a polymer compound obtained by polymerizing a triphenylamine derivative by introducing a polymerizable substituent; polyparaphenylene vinylene And fluorescent light-emitting polymer compounds such as polydialkylfluorene. Examples of the polymer compound include a polymer compound having a triphenylamine skeleton disclosed in JP-A-8-157575. The hole transport materials may be used singly or in combination of two or more, or different hole transport materials may be laminated and used. The thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. .

上記電子輸送層を形成する電子輸送材料、または発光層中に混合させる電子輸送材料としては、例えば、Alq3(アルミニウムトリスキノリノレート)等のキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体等の低分子化合物;上記の低分子化合物に重合性置換基を導入して重合した高分子化合物などが挙げられる。上記高分子化合物としては、例えば、特開平10−1665号公報に開示されているポリPBDなどが挙げられる。上記電子輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる電子輸送材料を積層して用いてもよい。電子輸送層の厚さは、電子輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   Examples of the electron transport material for forming the electron transport layer or the electron transport material mixed in the light emitting layer include quinolinol derivative metal complexes such as Alq3 (aluminum triskinolinolate), oxadiazole derivatives, triazole derivatives, imidazole. Low molecular compounds such as derivatives, triazine derivatives, and triarylborane derivatives; and high molecular compounds obtained by polymerizing a low molecular compound by introducing a polymerizable substituent. Examples of the polymer compound include poly PBD disclosed in JP-A-10-1665. The electron transport materials may be used singly or in combination of two or more, or different electron transport materials may be laminated and used. Since the thickness of the electron transport layer depends on the conductivity of the electron transport layer and the like, it cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. .

また、発光層の陰極側に隣接して、ホールが発光層を通過することを抑え、発光層内でホールと電子とを効率よく再結合させる目的で、ホール・ブロック層が設けられていてもよい。上記ホール・ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。   Further, a hole block layer may be provided adjacent to the cathode side of the light emitting layer for the purpose of suppressing holes from passing through the light emitting layer and efficiently recombining holes and electrons in the light emitting layer. Good. In order to form the hole block layer, known materials such as triazole derivatives, oxadiazole derivatives, and phenanthroline derivatives are used.

陽極と発光層との間に、ホール注入において注入障壁を緩和するために、ホール注入層が設けられていてもよい。上記ホール注入層を形成するためには、銅フタロシアニン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体、フルオロカーボンなどの公知の材料が用いられる。   A hole injection layer may be provided between the anode and the light emitting layer in order to relax the injection barrier in hole injection. In order to form the hole injection layer, known materials such as copper phthalocyanine, a mixture of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS), and fluorocarbon are used.

陰極と電子輸送層との間、または陰極と陰極に隣接して積層される有機層との間に、電子注入効率を向上するために、厚さ0.1〜10nmの絶縁層が設けられていてもよい。上記絶縁層を形成するために、フッ化リチウム、フッ化マグネシウム、酸化マグネシウム、アルミナなどの公知の材料が用いられる。   An insulating layer having a thickness of 0.1 to 10 nm is provided between the cathode and the electron transport layer or between the cathode and the organic layer laminated adjacent to the cathode in order to improve the electron injection efficiency. May be. In order to form the insulating layer, known materials such as lithium fluoride, magnesium fluoride, magnesium oxide, and alumina are used.

上記陽極材料としては、例えば、ITO(酸化インジウムスズ)、酸化錫、酸化亜鉛、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子など、公知の透明導電材料が用いられる。この透明導電材料によって形成された電極の表面抵抗は、1〜50Ω/□(オーム/スクエアー)であることが好ましい。陽極の厚さは50〜300nmであることが好ましい。   As the anode material, for example, a known transparent conductive material such as ITO (indium tin oxide), tin oxide, zinc oxide, polythiophene, polypyrrole, polyaniline or other conductive polymer is used. The surface resistance of the electrode formed of the transparent conductive material is preferably 1 to 50Ω / □ (ohm / square). The thickness of the anode is preferably 50 to 300 nm.

上記陰極材料としては、例えば、Li、Na、K、Cs等のアルカリ金属;Mg、Ca、Ba等のアルカリ土類金属;Al;MgAg合金;AlLi、AlCa等のAlとアルカリ金属またはアルカリ土類金属との合金など、公知の陰極材料が用いられる。陰極の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。アルカリ金属、アルカリ土類金属などの活性の高い金属を陰極として使用する場合には、陰極の厚さは、好ましくは0.1〜100nm、より好ましくは0.5〜50nmであることが望ましい。また、この場合には、上記陰極金属を保護する目的で、この陰極上に、大気に対して安定な金属層が積層される。上記金属層を形成する金属として、例えば、Al、Ag、Au、Pt、Cu、Ni、Crなどが挙げられる。上記金属層の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。   Examples of the cathode material include alkali metals such as Li, Na, K, and Cs; alkaline earth metals such as Mg, Ca, and Ba; Al; MgAg alloys; Al and alkali metals such as AlLi and AlCa, or alkaline earths Known cathode materials such as alloys with metals are used. The thickness of the cathode is preferably 10 nm to 1 μm, more preferably 50 to 500 nm. When a highly active metal such as an alkali metal or alkaline earth metal is used as the cathode, the thickness of the cathode is preferably 0.1 to 100 nm, more preferably 0.5 to 50 nm. In this case, a metal layer that is stable to the atmosphere is laminated on the cathode for the purpose of protecting the cathode metal. Examples of the metal forming the metal layer include Al, Ag, Au, Pt, Cu, Ni, and Cr. The thickness of the metal layer is preferably 10 nm to 1 μm, more preferably 50 to 500 nm.

本発明に係る有機EL素子の基板としては、上記発光材料の発光波長に対して透明な絶縁性基板が使用され、ガラスのほか、PET(ポリエチレンテレフタレート)、ポリカーボネート等の透明プラスチックなどが用いられる。   As the substrate of the organic EL device according to the present invention, an insulating substrate transparent to the emission wavelength of the light emitting material is used, and transparent plastics such as PET (polyethylene terephthalate) and polycarbonate are used in addition to glass.

上記のホール輸送層、発光層および電子輸送層の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、インクジェット法、スピンコート法、印刷法、スプレー法、ディスペンサー法などが用いられる。低分子化合物の場合は、抵抗加熱蒸着または電子ビーム蒸着が好適に用いられ、高分子材料の場合は、インクジェット法、スピンコート法、または印刷法が好適に用いられる。   Examples of the film formation method of the hole transport layer, the light emitting layer, and the electron transport layer include a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ink jet method, a spin coating method, a printing method, a spray method, and a dispenser method. Is used. In the case of a low molecular compound, resistance heating vapor deposition or electron beam vapor deposition is preferably used, and in the case of a polymer material, an ink jet method, a spin coating method, or a printing method is suitably used.

また、上記陽極材料の成膜方法としては、例えば、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法などが用いられ、上記陰極材料の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などが用いられる。   In addition, as a method for forming the anode material, for example, an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, or the like is used. As a method for forming the cathode material, for example, a resistance heating evaporation method, An electron beam evaporation method, a sputtering method, an ion plating method, or the like is used.

<電荷輸送性の非共役高分子化合物>
上記電荷輸送性の非共役高分子化合物は、ホール輸送性の重合性化合物および電子輸送性の重合性化合物からなる群より選択される少なくとも1種の重合性化合物を含む単量体を共重合して得られる重合体であることが好ましい。なお、本明細書において、ホール輸送性の重合性化合物および電子輸送性の重合性化合物を併せて、電荷輸送性の重合性化合物ともいう。
<Charge transporting non-conjugated polymer compound>
The charge transporting non-conjugated polymer compound is obtained by copolymerizing a monomer containing at least one polymerizable compound selected from the group consisting of a hole transporting polymerizable compound and an electron transporting polymerizable compound. It is preferable that it is a polymer obtained by this. Note that in this specification, the hole transport polymerizable compound and the electron transport polymerizable compound are also collectively referred to as a charge transport polymerizable compound.

すなわち、上記電荷輸送性の非共役高分子化合物は、1種または2種以上のホール輸送性の重合性化合物から導かれる構造単位、または1種または2種以上の電子輸送性の重合性化合物から導かれる構造単位を含む重合体であることが好ましい。このような重合体を用いると、発光層内における電荷の移動度が高く、また均質な薄膜を塗布によって形成することができるため、高い発光効率が得られる。   That is, the charge transporting non-conjugated polymer compound is a structural unit derived from one or more hole transporting polymerizable compounds, or one or more electron transporting polymerizable compounds. A polymer containing the derived structural unit is preferred. When such a polymer is used, the charge mobility in the light emitting layer is high, and a homogeneous thin film can be formed by coating, so that high light emission efficiency can be obtained.

また、上記電荷輸送性の非共役高分子化合物は、1種または2種以上のホール輸送性の重合性化合物から導かれる構造単位と、1種または2種以上の電子輸送性の重合性化合物から導かれる構造単位とを含む重合体からなることがより好ましい。このような重合体を用いると、該重合体はホール輸送性および電子輸送性の機能を備えているため、上記燐光発光性化合物付近において、ホールと電子とがさらに効率よく再結合するため、より高い発光効率が得られる。   The charge transporting non-conjugated polymer compound is composed of a structural unit derived from one or more hole transporting polymerizable compounds and one or more electron transporting polymerizable compounds. More preferably, it comprises a polymer containing a derived structural unit. When such a polymer is used, since the polymer has a hole transporting and electron transporting function, holes and electrons recombine more efficiently in the vicinity of the phosphorescent compound. High luminous efficiency can be obtained.

上記ホール輸送性の重合性化合物および上記電子輸送性の重合性化合物は、重合性官能基を有する置換基を有することのほか、特に制限されず、公知の電荷輸送性の化合物が用いられる。   The hole-transporting polymerizable compound and the electron-transporting polymerizable compound are not particularly limited except that they have a substituent having a polymerizable functional group, and known charge-transporting compounds are used.

上記重合性官能基は、ラジカル重合性、カチオン重合性、アニオン重合性、付加重合性、および縮合重合性の官能基のいずれであってもよい。これらのうちで、ラジカル重合性の官能基は、重合体の製造が容易であるため好ましい。   The polymerizable functional group may be any of radical polymerizable, cationic polymerizable, anionic polymerizable, addition polymerizable, and condensation polymerizable functional groups. Of these, the radical polymerizable functional group is preferable because the production of the polymer is easy.

上記重合性官能基としては、例えば、アリル基、アルケニル基、アクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、ビニルアミド基およびこれらの誘導体などを挙げることができる。これらのうちで、アルケニル基が好ましい。   Examples of the polymerizable functional group include urethane (meth) acrylate groups such as allyl group, alkenyl group, acrylate group, methacrylate group, methacryloyloxyethyl carbamate group, vinylamide group, and derivatives thereof. Of these, alkenyl groups are preferred.

より具体的には、上記重合性官能基がアルケニル基である場合、上記重合性官能基を有する置換基は下記一般式(A1)〜(A12)で表される置換基であることがより好ましい。これらのうちで、下記式(A1)、(A5)、(A8)、(A12)で表される置換基は、電荷輸送性の化合物に重合性官能基を容易に導入できるためさらに好ましい。   More specifically, when the polymerizable functional group is an alkenyl group, the substituent having the polymerizable functional group is more preferably a substituent represented by the following general formulas (A1) to (A12). . Among these, substituents represented by the following formulas (A1), (A5), (A8), and (A12) are more preferable because a polymerizable functional group can be easily introduced into a charge transporting compound.

Figure 2009023938
Figure 2009023938

上記ホール輸送性の重合性化合物としては、具体的には、下記一般式(E1)〜(E6)で表される化合物が好ましく、非共役高分子化合物中での電荷移動度の観点から、下記式(E1)〜(E3)で表される化合物がより好ましい。   As the hole transport polymerizable compound, specifically, compounds represented by the following general formulas (E1) to (E6) are preferable. From the viewpoint of charge mobility in the non-conjugated polymer compound, the following compounds are preferable. Compounds represented by formulas (E1) to (E3) are more preferable.

Figure 2009023938
Figure 2009023938

上記電子輸送性の重合性化合物としては、具体的には、下記一般式(E7)〜(E15)で表される化合物が好ましく、非共役高分子化合物中での電荷移動度の観点から、下記式(E7)および(E12)〜(E14)で表される化合物がより好ましい。   Specifically, the electron transport polymerizable compound is preferably a compound represented by the following general formulas (E7) to (E15), and from the viewpoint of charge mobility in the non-conjugated polymer compound, Compounds represented by formulas (E7) and (E12) to (E14) are more preferable.

Figure 2009023938
Figure 2009023938

なお、上記式(E1)〜(E15)において、上記式(A1)で表される置換基を、上記一般式(A2)〜(A12)で表される置換基に代えた化合物も好適に用いられるが、重合性化合物に官能基を容易に導入できるため、上記式(A1)、(A5)で表される置換基を有する化合物が特に好ましい。   In the above formulas (E1) to (E15), a compound in which the substituent represented by the above formula (A1) is replaced with the substituent represented by the above general formula (A2) to (A12) is also preferably used. However, since a functional group can be easily introduced into the polymerizable compound, compounds having substituents represented by the above formulas (A1) and (A5) are particularly preferable.

これらのうちで、上記ホール輸送性の重合性化合物として、上記式(E1)〜(E3)のいずれかで表される化合物と、上記電子輸送性の重合性化合物として、上記(E7)、(E12)〜(E14)のいずれかで表される化合物とを共重合させた化合物がより好ましい。これらの非共役高分子化合物を用いると、燐光発光性化合物上で、ホールと電子とがより効率よく再結合し、より高い発光効率が得られる。また、燐光発光性化合物とともに、均一な分布の有機層を形成でき、耐久性に優れた有機EL素子が得られる。   Among these, as the hole transport polymerizable compound, the compound represented by any one of the above formulas (E1) to (E3), and the electron transport polymerizable compound as the above (E7), ( A compound obtained by copolymerizing the compound represented by any one of E12) to (E14) is more preferable. When these non-conjugated polymer compounds are used, holes and electrons are recombined more efficiently on the phosphorescent compound, and higher luminous efficiency can be obtained. In addition, an organic layer having a uniform distribution can be formed together with the phosphorescent compound, and an organic EL element having excellent durability can be obtained.

本発明に係る有機EL素子に用いる、上記イリジウム錯体化合物と上記非共役高分子化合物とを含む有機層(発光層)においては、上記イリジウム錯体化合物が、上記非共役高分子化合物で形成されるマトリックス中に分散した状態で含まれている。このため、通常は利用が困難な発光、すなわち燐光発光性化合物の三重項励起状態を経由する発光が得られる。したがって、上記有機層を用いることにより、高い発光効率が得られる。   In the organic layer (light emitting layer) containing the iridium complex compound and the non-conjugated polymer compound used in the organic EL device according to the present invention, the iridium complex compound is formed of the non-conjugated polymer compound. It is included in a dispersed state. For this reason, it is possible to obtain light emission that is usually difficult to use, that is, light emission via the triplet excited state of the phosphorescent compound. Therefore, high luminous efficiency can be obtained by using the organic layer.

なお、上記電荷輸送性の非共役高分子化合物は、本発明の目的に反しない範囲で、さらに、他の重合性化合物から導かれる構造単位を含んでいてもよい。このような重合性化合物としては、例えば、アクリル酸メチル、メタクリル酸メチル等の(メタ)アクリル酸アルキルエステル、スチレンおよびその誘導体などの電荷輸送性を有しない化合物が挙げられるが、何らこれらに限定されるものではない。   The charge transporting non-conjugated polymer compound may further contain a structural unit derived from another polymerizable compound as long as the object of the present invention is not adversely affected. Examples of such polymerizable compounds include, but are not limited to, compounds having no charge transport properties such as (meth) acrylic acid alkyl esters such as methyl acrylate and methyl methacrylate, styrene and derivatives thereof. Is not to be done.

また、上記電荷輸送性の非共役高分子化合物の重量平均分子量は、1,000〜2,000,000であることが好ましく、5,000〜1,000,000であることがより好ましい。本明細書における分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法を用いて測定されるポリスチレン換算分子量をいう。上記分子量がこの範囲にあると、重合体が有機溶媒に可溶であり、均一な薄膜を得られるため好ましい。   The weight average molecular weight of the charge transporting non-conjugated polymer compound is preferably 1,000 to 2,000,000, and more preferably 5,000 to 1,000,000. The molecular weight in this specification means the polystyrene conversion molecular weight measured using GPC (gel permeation chromatography) method. It is preferable for the molecular weight to be in this range since the polymer is soluble in an organic solvent and a uniform thin film can be obtained.

上記電荷輸送性の非共役高分子化合物は、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれでもよい。
上記電荷輸送性の非共役高分子化合物の重合方法は、ラジカル重合、カチオン重合、アニオン重合、および付加重合のいずれでもよいが、ラジカル重合が好ましい。
<用途>
本発明に係る有機EL素子は、公知の方法で、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機EL素子は、画素を形成せずに、面発光光源としても好適に用いられる。
The charge transporting non-conjugated polymer compound may be any of a random copolymer, a block copolymer, and an alternating copolymer.
The polymerization method of the charge transporting non-conjugated polymer compound may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred.
<Application>
The organic EL device according to the present invention is suitably used in an image display device as a matrix or segment pixel by a known method. The organic EL element is also suitably used as a surface light source without forming pixels.

本発明に係る有機EL素子は、具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。   Specifically, the organic EL device according to the present invention includes a display device such as a computer, a television, a mobile terminal, a mobile phone, a car navigation, a viewfinder of a video camera, a backlight, an electrophotography, an illumination light source, a recording light source, and an exposure. It is suitably used for light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<測定装置等>
1)H−NMR
装置:日本電子(JEOL)製 JNM EX270
270Mz 溶媒:重クロロホルム
[合成例1]
(イリジウム錯体化合物(4a)の合成)
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
<Measurement equipment, etc.>
1) 1 H-NMR
Device: JNM EX270 manufactured by JEOL
270Mz Solvent: Deuterated chloroform [Synthesis Example 1]
(Synthesis of iridium complex compound (4a))

Figure 2009023938
Figure 2009023938

上記スキームを参照しながら説明する。
<2−クロロ−4−ヒドロキシピリジンの合成>
ナスフラスコに40%硫酸(50g)と4−アミノ−2−クロロピリジン(3.0g、23.3mmol)を加え溶解させた。0℃で攪拌しながら亜硝酸ナトリウム(1.93g、28.0mmol)を加え、室温で24時間攪拌した。反応後、水酸化ナトリウム水溶液と炭酸水素ナトリウム水溶液を加えて反応液を中和し、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去し、減圧下で乾燥して2−クロロ−4−ヒドロキシピリジン(薄茶色の固体)を得た。収量は2.78g、収率は92%であった。
This will be described with reference to the above scheme.
<Synthesis of 2-chloro-4-hydroxypyridine>
40% sulfuric acid (50 g) and 4-amino-2-chloropyridine (3.0 g, 23.3 mmol) were added to an eggplant flask and dissolved. Sodium nitrite (1.93 g, 28.0 mmol) was added with stirring at 0 ° C., and the mixture was stirred at room temperature for 24 hours. After the reaction, an aqueous sodium hydroxide solution and an aqueous sodium hydrogen carbonate solution were added to neutralize the reaction solution, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, and the solvent was distilled off, followed by drying under reduced pressure to obtain 2-chloro-4-hydroxypyridine (light brown solid). The yield was 2.78 g, and the yield was 92%.

1H-NMR (270 MHz, DMSO-d6) ppm: 11.20 (s, 1H, -OH), 8.09 (d, 1H, J = 5.4 Hz, ArH), 6.81 (s, 1H, ArH), 6.77 (d, 1H, J = 2.2 Hz, ArH).
<化合物(1a)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに上記で合成した2−クロロ−4−ヒドロキシピリジン(2.6g、20mmol)、炭酸カリウム(5.5g、40mmol)を加え、窒素置換した。さらに、脱水DMF(80ml)、1−ブロモブタン(4.1g、30mmol)を加え、100℃で3時間攪拌した。反応後、トルエンを加え、純水で2回洗浄し、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去し、減圧下で乾燥して化合物(1a)(無色の液体)を得た。収量は3.6g、収率は97%であった。
1 H-NMR (270 MHz, DMSO-d6) ppm: 11.20 (s, 1H, -OH), 8.09 (d, 1H, J = 5.4 Hz, ArH), 6.81 (s, 1H, ArH), 6.77 (d , 1H, J = 2.2 Hz, ArH).
<Synthesis of Compound (1a)>
2-Chloro-4-hydroxypyridine (2.6 g, 20 mmol) and potassium carbonate (5.5 g, 40 mmol) synthesized above were added to a two-necked flask equipped with a Jimroth condenser and a three-way cock, and the atmosphere was replaced with nitrogen. . Furthermore, dehydrated DMF (80 ml) and 1-bromobutane (4.1 g, 30 mmol) were added, and the mixture was stirred at 100 ° C. for 3 hours. After the reaction, toluene was added, washed twice with pure water, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, the solvent was distilled off, and the residue was dried under reduced pressure to obtain compound (1a) (colorless liquid). The yield was 3.6 g, and the yield was 97%.

<化合物(2a)の合成>
ジムロート氏冷却管と三方コックとを備えた三口フラスコに化合物(1a)(3.6g、19.4mmol)、2,4-ジフルオロフェニルボロン酸(3.7g、23.3mmol)、炭酸カリウム(5.5g、40mmol)、1,2-ジメトキシエンタン(50ml)、純水(20ml)を加え、5分間窒素バブリングした。さらに、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタンコンプレックス(326mg、0.4mmol)を加え、3時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加え、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)で精製した後、溶媒を留去し、減圧下で乾燥して化合物(2a)(無色の液体)を得た。収量は4.57g、収率は90%であった。
<Synthesis of Compound (2a)>
In a three-necked flask equipped with a Jimroth condenser and a three-way cock, compound (1a) (3.6 g, 19.4 mmol), 2,4-difluorophenylboronic acid (3.7 g, 23.3 mmol), potassium carbonate (5 0.5 g, 40 mmol), 1,2-dimethoxyentane (50 ml) and pure water (20 ml) were added, and nitrogen was bubbled for 5 minutes. Furthermore, [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (326 mg, 0.4 mmol) was added and refluxed with stirring for 3 hours. After the reaction, the mixture was cooled to room temperature, pure water was added, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, and the solvent was distilled off. The residue was purified by medium pressure silica gel column chromatography (eluent: chloroform), then the solvent was distilled off and dried under reduced pressure to obtain compound (2a) (colorless liquid). The yield was 4.57 g, and the yield was 90%.

<化合物(3a)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(2a)(2.0g、7.6mmol)、イリジウム(III)クロライド三水和物(1.07g、3.04mmol)、2−エトキシエタノール(36ml)、純水(12ml)を加え、窒素バブリングした後、22時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加えて生成物を沈殿させた。沈殿物をろ取し、メタノールで洗浄した後、減圧下で乾燥して化合物(3a)(黄色の粉末)を得た。収量は1.88g、収率は82%であった。
<Synthesis of Compound (3a)>
In a two-necked flask equipped with a Jimroth condenser and a three-way cock, compound (2a) (2.0 g, 7.6 mmol), iridium (III) chloride trihydrate (1.07 g, 3.04 mmol), 2- Ethoxyethanol (36 ml) and pure water (12 ml) were added, and after bubbling with nitrogen, the mixture was refluxed with stirring for 22 hours. After the reaction, the reaction mixture was cooled to room temperature, and pure water was added to precipitate the product. The precipitate was collected by filtration, washed with methanol, and then dried under reduced pressure to obtain compound (3a) (yellow powder). The yield was 1.88 g, and the yield was 82%.

<化合物(4a)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(3a)(400mg、0.27mmol)、炭酸カリウム(187mg、1.35mmol)、化合物(2a)(280mg、1.06mmol)を加え窒素置換した。さらに、メシチレン(6ml)、トリフルオロメタンスルホン酸銀(I)(171mg、0.67mmol)を加え、4時間攪拌しながら還流した。反応後、室温まで冷却し、クロロホルムを加え、セライトを用いてろ過し、不溶物を除いた。ろ液の溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン=1/1)で精製し、さらにメタノール/ジクロロメタンから再結晶し、真空乾燥して化合物(4a)(黄色の微結晶)を得た。収量は400mg、収率は76%であった。1H−NMRにより分析したところ、メリヂオナル(meridional)体に相当するピークは見られず、得られた化合物は、その全部がフェイシャル(facial)体であることが分かった。
1H-NMR (270 MHz, CDCl3) ppm: 7.78 (m, 3H, ArH), 7.28 (d, 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5, 2.4 Hz, ArH), 6.36 (m, 3H, ArH), 6.26 (dd, 3H, J = 9.2, 2.7 Hz, ArH), 3.93 (d, 6H, J = 5.7 Hz, CH2O), 1.74 (m, 1H, CH), 1.51-1.31 (m, 24H, CH2), 0.96-0.87 (m, 18H, CH3).
[合成例2]
(イリジウム錯体化合物(4b)の合成)
ジムロート氏冷却管と三方コックとを備えた二口フラスコに実施例1で合成した2−クロロ−4−ヒドロキシピリジン((1.30g、10mmol)、炭酸カリウム(2.76g、20mmol)を加え、窒素置換した。さらに、脱水DMF(20ml)、2−ブロモブタン(2.06g、15mmol)を加え、80℃で14時間攪拌した。反応後、クロロホルムを加え、純水で2回洗浄し、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン=1/1〜クロロホルムでグラジエント)で精製した後、溶媒を留去し、減圧下で乾燥して化合物(1b)(無色の液体)を得た。収量は1.85g、収率は100%であった。
<Synthesis of Compound (4a)>
Compound (3a) (400 mg, 0.27 mmol), potassium carbonate (187 mg, 1.35 mmol), compound (2a) (280 mg, 1.06 mmol) were added to a two-necked flask equipped with a Jimroth condenser and a three-way cock. Replaced with nitrogen. Further, mesitylene (6 ml) and silver (I) trifluoromethanesulfonate (171 mg, 0.67 mmol) were added and refluxed with stirring for 4 hours. After the reaction, the mixture was cooled to room temperature, chloroform was added, and the mixture was filtered through celite to remove insoluble matters. The filtrate was evaporated, the residue was purified by silica gel column chromatography (eluent: chloroform / hexane = 1/1), recrystallized from methanol / dichloromethane and dried in vacuo to give compound (4a) (yellow). Obtained). The yield was 400 mg and the yield was 76%. As a result of analysis by 1 H-NMR, no peak corresponding to the meridional form was observed, and it was found that the obtained compound was entirely a facial form.
1 H-NMR (270 MHz, CDCl 3 ) ppm: 7.78 (m, 3H, ArH), 7.28 (d, 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5, 2.4 Hz, ArH ), 6.36 (m, 3H, ArH), 6.26 (dd, 3H, J = 9.2, 2.7 Hz, ArH), 3.93 (d, 6H, J = 5.7 Hz, CH 2 O), 1.74 (m, 1H, CH ), 1.51-1.31 (m, 24H, CH 2 ), 0.96-0.87 (m, 18H, CH 3 ).
[Synthesis Example 2]
(Synthesis of iridium complex compound (4b))
2-Chloro-4-hydroxypyridine ((1.30 g, 10 mmol) synthesized in Example 1 and potassium carbonate (2.76 g, 20 mmol) were added to a two-necked flask equipped with a Jimroth condenser and a three-way cock, Further, dehydrated DMF (20 ml) and 2-bromobutane (2.06 g, 15 mmol) were added, and the mixture was stirred for 14 hours at 80 ° C. After the reaction, chloroform was added, and the mixture was washed twice with pure water, and then ethyl acetate was added. The organic layer obtained was dried over magnesium sulfate, filtered, and the solvent was distilled off.The residue was subjected to medium pressure silica gel column chromatography (eluent: chloroform / hexane = 1/1 to chloroform). The solvent was distilled off, and the residue was dried under reduced pressure to obtain compound (1b) (colorless liquid). It was 00%.

1H-NMR (270 MHz, CDCl3) ppm: 8.16 (d, 1H, J = 5.9 Hz, ArH), 6.80 (d, 1H, J = 2.4 Hz, ArH), 6.71 (dd, 1H, J = 5.8, 2.0 Hz, ArH), 4.38 (m, 1H, CH), 1.71 (m, 2H, CH2), 1.33 (d, 3H, J = 6.5 Hz, CH3), 0.97 (t, 3H, J = 7.4 Hz, CH3).
<化合物(2b)の合成>
ジムロート氏冷却管と三方コックとを備えた三口フラスコに化合物(1b)(1.85g、10mmol)、2,4-ジフルオロフェニルボロン酸(1.90g、12mmol)、炭酸ナトリウム(2.12g、20mmol)、1,2-ジメトキシエンタン(30ml)、純水(10ml)を加え、5分間窒素バブリングした。[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタンコンプレックス(163mg、0.2mmol)を加え、3時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加え、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン=1/1〜クロロホルム〜酢酸エチル/クロロホルム=2.5/97.5でグラジエント)で精製した後、溶媒を留去し、減圧下で乾燥して化合物(2b)(無色の液体)を得た。収量は2.10g、収率は80%であった。
1 H-NMR (270 MHz, CDCl 3 ) ppm: 8.16 (d, 1H, J = 5.9 Hz, ArH), 6.80 (d, 1H, J = 2.4 Hz, ArH), 6.71 (dd, 1H, J = 5.8 , 2.0 Hz, ArH), 4.38 (m, 1H, CH), 1.71 (m, 2H, CH 2 ), 1.33 (d, 3H, J = 6.5 Hz, CH 3 ), 0.97 (t, 3H, J = 7.4 Hz, CH 3 ).
<Synthesis of Compound (2b)>
In a three-necked flask equipped with a Jimroth condenser and a three-way cock, compound (1b) (1.85 g, 10 mmol), 2,4-difluorophenylboronic acid (1.90 g, 12 mmol), sodium carbonate (2.12 g, 20 mmol) ), 1,2-dimethoxyentane (30 ml) and pure water (10 ml) were added, and nitrogen was bubbled for 5 minutes. [1,1′-Bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (163 mg, 0.2 mmol) was added and refluxed with stirring for 3 hours. After the reaction, the mixture was cooled to room temperature, pure water was added, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, and the solvent was distilled off. The residue was purified by medium pressure silica gel column chromatography (eluent: chloroform / hexane = 1/1 to chloroform to ethyl acetate / chloroform = 2.5 / 97.5 gradient), then the solvent was distilled off under reduced pressure. To give compound (2b) (colorless liquid). The yield was 2.10 g, and the yield was 80%.

1H-NMR (270 MHz, CDCl3) ppm: 8.48 (d, 1H, J = 5.7 Hz, ArH), 7.97 (m, 1H, ArH), 7.24 (m, 1H, ArH), 6.99 (m, 1H, ArH), 6.90 (m, 1H, ArH), 6.75 (dd, 1H, J = 5.8, 2.6 Hz, ArH), 4.45 (m, 1H, CH), 1.74 (m, 1H, CH2), 1.35 (d, 3H, J = 5.9 Hz, CH3), 0.99 (t, 3H, J = 7.2 Hz, CH3).
<化合物(3b)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(2b)(885mg、3.4mmol)、イリジウム(III)クロライド三水和物(494mg、1.4mmol)、2−エトキシエタノール(21ml)、純水(7ml)を加え、窒素バブリングした後、69時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加えて生成物を沈殿させた。沈殿物をろ取し、メタノールで洗浄した後、減圧下で乾燥して化合物(3b)(黄色の粉末)を得た。収量は733mg、収率は70%であった。
1 H-NMR (270 MHz, CDCl 3 ) ppm: 8.48 (d, 1H, J = 5.7 Hz, ArH), 7.97 (m, 1H, ArH), 7.24 (m, 1H, ArH), 6.99 (m, 1H , ArH), 6.90 (m, 1H, ArH), 6.75 (dd, 1H, J = 5.8, 2.6 Hz, ArH), 4.45 (m, 1H, CH), 1.74 (m, 1H, CH 2 ), 1.35 ( d, 3H, J = 5.9 Hz, CH 3 ), 0.99 (t, 3H, J = 7.2 Hz, CH 3 ).
<Synthesis of Compound (3b)>
Compound (2b) (885 mg, 3.4 mmol), iridium (III) chloride trihydrate (494 mg, 1.4 mmol), 2-ethoxyethanol (21 ml) in a two-necked flask equipped with a Jimroth condenser and a three-way cock ), Pure water (7 ml) was added, and after bubbling with nitrogen, the mixture was refluxed with stirring for 69 hours. After the reaction, the reaction mixture was cooled to room temperature, and pure water was added to precipitate the product. The precipitate was collected by filtration, washed with methanol, and then dried under reduced pressure to obtain compound (3b) (yellow powder). The yield was 733 mg, and the yield was 70%.

<化合物(4b)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(3b)(301mg、0.2mmol)、炭酸カリウム(138mg、1.0mmol)、化合物(2b)(132mg、0.5mmol)を加え窒素置換した。さらに、メシチレン(4ml)、トリフルオロメタンスルホン酸銀(I)(123mg、0.48mmol)を加えた後、4時間攪拌しながら還流した。反応後、室温まで冷却し、クロロホルムを加え、セライトを用いてろ過し、不溶物を除いた。ろ液の溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン=1/3〜クロロホルムでグラジエント)で精製し、さらにメタノール/ジクロロメタンから再結晶し、真空乾燥して化合物(4b)(黄色の微結晶)を得た。収量は332mg、収率は85%であった。1H−NMRにより分析したところ、メリヂオナル(meridional)体に相当するピークは見られず、得られた化合物は、その全部がフェイシャル(facial)体であることが分かった。
1H-NMR (270 MHz, CDCl3) ppm: 7.76(m, 3H, ArH), 7.27(d, 3H, J = 6.8Hz, ArH), 6.46(dd, 3H, J = 6.3 2.3Hz, ArH), 6.36 (m, 3H, ArH), 6.26 (m, 3H, ArH), 4.41 (m, 3H, CH), 1.72 (m, 3H, CH2), 1.34 (d, 9H, J = 5.7 Hz, CH3), 0.98 (t, 9H, J = 7.0 Hz, CH3).
[合成例3]
<化合物(1c)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに実施例1で合成した2−クロロ−4−ヒドロキシピリジン(2.34g、18.1mmol)、炭酸カリウム(5.00g、36.2mmol)を加え、窒素置換した。さらに、脱水DMF(72ml)、2−エチルヘキシルブロミド(5.24g、27.15mmol)を加え、80℃で5時間攪拌した。反応後、トルエンを加え、純水で2回洗浄し、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム〜酢酸エチル/クロロホルム=2/8でグラジエント)で精製した後、溶媒を留去し、減圧下で乾燥して化合物(1c)(無色の液体)を得た。収量は2.12g、収率は48%であった。
<Synthesis of Compound (4b)>
Compound (3b) (301 mg, 0.2 mmol), potassium carbonate (138 mg, 1.0 mmol), compound (2b) (132 mg, 0.5 mmol) were added to a two-necked flask equipped with a Jimroth condenser and a three-way cock. Replaced with nitrogen. Further, mesitylene (4 ml) and silver (I) trifluoromethanesulfonate (123 mg, 0.48 mmol) were added, and the mixture was refluxed with stirring for 4 hours. After the reaction, the mixture was cooled to room temperature, chloroform was added, and the mixture was filtered through celite to remove insoluble matters. The solvent of the filtrate was distilled off, and the residue was purified by silica gel column chromatography (eluent: chloroform / hexane = 1 / 3-chloroform gradient), recrystallized from methanol / dichloromethane, vacuum dried and compound ( 4b) (yellow microcrystals) was obtained. The yield was 332 mg, and the yield was 85%. As a result of analysis by 1 H-NMR, no peak corresponding to the meridional body was observed, and it was found that the obtained compound was entirely a facial body.
1 H-NMR (270 MHz, CDCl 3 ) ppm: 7.76 (m, 3H, ArH), 7.27 (d, 3H, J = 6.8Hz, ArH), 6.46 (dd, 3H, J = 6.3 2.3Hz, ArH) , 6.36 (m, 3H, ArH ), 6.26 (m, 3H, ArH), 4.41 (m, 3H, CH), 1.72 (m, 3H, CH 2), 1.34 (d, 9H, J = 5.7 Hz, CH 3 ), 0.98 (t, 9H, J = 7.0 Hz, CH 3 ).
[Synthesis Example 3]
<Synthesis of Compound (1c)>
2-Chloro-4-hydroxypyridine (2.34 g, 18.1 mmol) and potassium carbonate (5.00 g, 36.2 mmol) synthesized in Example 1 in a two-necked flask equipped with a Jimroth condenser and a three-way cock Was added and replaced with nitrogen. Furthermore, dehydrated DMF (72 ml) and 2-ethylhexyl bromide (5.24 g, 27.15 mmol) were added, and the mixture was stirred at 80 ° C. for 5 hours. After the reaction, toluene was added, washed twice with pure water, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, and the solvent was distilled off. The residue was purified by medium pressure silica gel column chromatography (eluent: gradient from chloroform to ethyl acetate / chloroform = 2/8), the solvent was distilled off, and the residue was dried under reduced pressure to give compound (1c) (colorless liquid ) The yield was 2.12 g, and the yield was 48%.

1H-NMR (270 MHz, CDCl3) ppm: 8.17 (d, 1H, J = 5.9 Hz, ArH), 6.83 (d, 1H, J = 2.2 Hz, ArH), 6.74 (dd, 1H, J = 5.9, 2.4 Hz, ArH), 3.89 (d, 2H, J = 5.7 Hz, CH2O), 1.74 (m, 1H, CH), 1.54-1.31 (m, 8H, CH2), 0.96-0.88 (m, 6H, CH3).
<化合物(2c)の合成>
ジムロート氏冷却管と三方コックとを備えた三口フラスコに化合物(1c)(2.12g、8.77mmol)、2,4-ジフルオロフェニルボロン酸(1.66g、10.52mmol)、炭酸ナトリウム(1.86g、17.54mmol)、1,2-ジメトキシエンタン(27ml)、純水(9ml)を加え、5分間窒素バブリングした。[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタンコンプレックス(163mg、0.2mmol)を加え、2時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加え、酢酸エチルで有機層を抽出した。得られた有機層を硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン=5/95〜30/70でグラジエント)で精製した後、溶媒を留去し、減圧下で乾燥して化合物(2c)(無色の液体)を得た。収量は2.17g、収率は78%であった。
1 H-NMR (270 MHz, CDCl 3 ) ppm: 8.17 (d, 1H, J = 5.9 Hz, ArH), 6.83 (d, 1H, J = 2.2 Hz, ArH), 6.74 (dd, 1H, J = 5.9 , 2.4 Hz, ArH), 3.89 (d, 2H, J = 5.7 Hz, CH 2 O), 1.74 (m, 1H, CH), 1.54-1.31 (m, 8H, CH 2 ), 0.96-0.88 (m, 6H, CH 3 ).
<Synthesis of Compound (2c)>
In a three-necked flask equipped with a Jimroth condenser and a three-way cock, compound (1c) (2.12 g, 8.77 mmol), 2,4-difluorophenylboronic acid (1.66 g, 10.52 mmol), sodium carbonate (1 .86 g, 17.54 mmol), 1,2-dimethoxyentane (27 ml) and pure water (9 ml) were added, and nitrogen was bubbled for 5 minutes. [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (163 mg, 0.2 mmol) was added and refluxed with stirring for 2 hours. After the reaction, the mixture was cooled to room temperature, pure water was added, and the organic layer was extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and filtered, and the solvent was distilled off. The residue was purified by medium pressure silica gel column chromatography (eluent: ethyl acetate / hexane = 5/95 to 30/70 gradient), the solvent was distilled off, and the residue was dried under reduced pressure to give compound (2c) (colorless) Liquid). The yield was 2.17 g and the yield was 78%.

1H-NMR (270 MHz, CDCl3) ppm: 8.50 (d, 1H, J = 5.9 Hz, ArH), 7.97 (m, 1H, ArH), 7.25 (d, 1H, ArH), 6.98 (m, 1H, ArH), 6.90 (m, 1H, ArH), 6.79 (dd, 1H, J = 5.7, 2.4 Hz, ArH), 3.94 (d, 2H, J = 5.9 Hz, CH2O), 1.77 (m, 1H, CH), 1.55-1.32 (m, 8H, CH2), 0.97-0.88 (m, 6H, CH3).
<化合物(3c)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(2c)(767mg、2.4mmol)、イリジウム(III)クロライド三水和物(353mg、1.0mmol)、2−エトキシエタノール(15ml)、純水(5ml)を加え、窒素バブリングした後、23時間攪拌しながら還流した。反応後、室温まで冷却し、純水を加えて生成物を沈殿させた。沈殿物をろ取し、メタノールで洗浄した後、減圧下で乾燥して化合物(3c)(黄色の粉末)を得た。収量は736mg、収率は85%であった。
1 H-NMR (270 MHz, CDCl 3 ) ppm: 8.50 (d, 1H, J = 5.9 Hz, ArH), 7.97 (m, 1H, ArH), 7.25 (d, 1H, ArH), 6.98 (m, 1H , ArH), 6.90 (m, 1H, ArH), 6.79 (dd, 1H, J = 5.7, 2.4 Hz, ArH), 3.94 (d, 2H, J = 5.9 Hz, CH 2 O), 1.77 (m, 1H , CH), 1.55-1.32 (m, 8H, CH 2 ), 0.97-0.88 (m, 6H, CH 3 ).
<Synthesis of Compound (3c)>
Compound (2c) (767 mg, 2.4 mmol), iridium (III) chloride trihydrate (353 mg, 1.0 mmol), 2-ethoxyethanol (15 ml) in a two-necked flask equipped with a Jimroth condenser and a three-way cock ), Pure water (5 ml) was added, and after bubbling with nitrogen, the mixture was refluxed with stirring for 23 hours. After the reaction, the reaction mixture was cooled to room temperature, and pure water was added to precipitate the product. The precipitate was collected by filtration, washed with methanol, and dried under reduced pressure to obtain compound (3c) (yellow powder). The yield was 736 mg, and the yield was 85%.

<化合物(4c)の合成>
ジムロート氏冷却管と三方コックとを備えた二口フラスコに化合物(3c)(346mg、0.2mmol)、炭酸カリウム(138mg、1.0mmol)、化合物(2c)(160mg、0.5mmol)を加え窒素置換した。さらに、メシチレン(4ml)、トリフルオロメタンスルホン酸銀(I)(123mg、0.48mmol)を加えた後、3時間攪拌しながら還流した。反応後、室温まで冷却し、クロロホルムを加え、セライトを用いてろ過し、不溶物を除いた。ろ液の溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン=5/95〜20/80でグラジエント)で精製し、さらにメタノール/ジクロロメタンから再結晶し、真空乾燥して化合物(4c)(黄色の微結晶)を得た。収量は394mg、収率は86%であった。1H−NMRにより分析したところ、メリヂオナル(meridional)体に相当するピークは見られず、得られた化合物は、その全部がフェイシャル(facial)体であることが分かった。
1H-NMR (270 MHz, CDCl3) ppm: 7.78 (m, 3H, ArH), 7.28 (d, 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5, 2.4 Hz, ArH), 6.36 (m, 3H, ArH), 6.26 (dd, 3H, J = 9.2, 2.7 Hz, ArH), 3.93 (d, 6H, J = 5.7 Hz, CH2O), 1.74 (m, 1H, CH), 1.51-1.31 (m, 24H, CH2), 0.96-0.87 (m, 18H, CH3).
<溶解性試験>
[実施例1]
化合物(4a)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときに化合物(4a)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
<Synthesis of Compound (4c)>
Compound (3c) (346 mg, 0.2 mmol), potassium carbonate (138 mg, 1.0 mmol), compound (2c) (160 mg, 0.5 mmol) were added to a two-necked flask equipped with a Jimroth condenser and a three-way cock. Replaced with nitrogen. Furthermore, after adding mesitylene (4 ml) and silver (I) trifluoromethanesulfonate (123 mg, 0.48 mmol), the mixture was refluxed with stirring for 3 hours. After the reaction, the mixture was cooled to room temperature, chloroform was added, and the mixture was filtered through celite to remove insoluble matters. The filtrate was evaporated and the residue was purified by silica gel column chromatography (eluent: chloroform / hexane = 5/95 to 20/80 gradient), recrystallized from methanol / dichloromethane and dried in vacuo. Compound (4c) (yellow microcrystal) was obtained. The yield was 394 mg, and the yield was 86%. As a result of analysis by 1 H-NMR, no peak corresponding to the meridional form was observed, and it was found that the obtained compound was entirely a facial form.
1 H-NMR (270 MHz, CDCl 3 ) ppm: 7.78 (m, 3H, ArH), 7.28 (d, 3H, J = 6.2 Hz, ArH), 6.49 (dd, 3H, J = 6.5, 2.4 Hz, ArH ), 6.36 (m, 3H, ArH), 6.26 (dd, 3H, J = 9.2, 2.7 Hz, ArH), 3.93 (d, 6H, J = 5.7 Hz, CH 2 O), 1.74 (m, 1H, CH ), 1.51-1.31 (m, 24H, CH 2 ), 0.96-0.87 (m, 18H, CH 3 ).
<Solubility test>
[Example 1]
The compound (4a) was mixed with chloroform or toluene so as to have a predetermined concentration, and it was visually confirmed whether or not the compound (4a) was completely dissolved or not dissolved when stirred at room temperature for 1 hour. The test results are shown in Table 1.

[実施例2]
化合物(4b)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときに化合物(4b)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
[Example 2]
Compound (4b) was mixed with chloroform or toluene so as to have a predetermined concentration, and when stirred at room temperature for 1 hour, it was visually confirmed whether or not compound (4b) was completely dissolved or remained undissolved. The test results are shown in Table 1.

[実施例3]
化合物(4c)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときに化合物(4c)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
[Example 3]
The compound (4c) was mixed with chloroform or toluene so as to have a predetermined concentration, and it was visually confirmed whether the compound (4c) was completely dissolved or not dissolved when stirred at room temperature for 1 hour. The test results are shown in Table 1.

[比較例1]
Ir(FMeOppy)(フェイシャル(facial)体、下図参照)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときにIr(FMeOppy)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
[Comparative Example 1]
When Ir (FMeOppy) 3 (facial body, see the figure below) is mixed with chloroform or toluene to a predetermined concentration and stirred at room temperature for 1 hour, all of Ir (FMeOppy) 3 is dissolved or remains undissolved. It was confirmed visually. The test results are shown in Table 1.

[比較例2]
Ir(F2HexOppy)2(pic)(下図参照)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときにIr(F2HexOppy)2(pic)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
[Comparative Example 2]
Ir (F 2 HexOppy) 2 (pic) (see the figure below) is mixed with chloroform or toluene to a predetermined concentration, and all the Ir (F 2 HexOppy) 2 (pic) is dissolved when stirred at room temperature for 1 hour. It was visually confirmed whether it was dissolved or not melted. The test results are shown in Table 1.

[比較例3]
Ir(ppy)(facial体、下図参照)を所定の濃度になるようにクロロホルムあるいはトルエンと混合し、室温で1時間攪拌したときにIr(ppy)がすべて溶解したか溶け残ったかを目視により確認した。試験結果を表1に示す。
[Comparative Example 3]
Ir (ppy) 3 (facial body, see the figure below) was mixed with chloroform or toluene so as to have a predetermined concentration, and when stirring at room temperature for 1 hour, it was visually observed whether Ir (ppy) 3 was completely dissolved or not dissolved. Confirmed by The test results are shown in Table 1.

Figure 2009023938
Figure 2009023938

Figure 2009023938
Figure 2009023938

表1より、従来知られている青色発光性イリジウム錯体化合物であるIr(FMeOppy)や緑色発光性イリジウム錯体であるIr(ppy)と比較して、本発明に係る青色発光性イリジウム錯体化合物である化合物(4a)、(4b)および(4c)はいずれも有機溶剤への溶解性が高いことがわかった。また、従来知られている青色発光性イリジウム錯体化合物であるIr(F2HexOppy)2(pic)も有機溶剤への溶解性が高いことがわかった。 From Table 1, the blue light-emitting iridium complex compound according to the present invention is compared with Ir (FMeOppy) 3 which is a conventionally known blue light-emitting iridium complex compound and Ir (ppy) 3 which is a green light-emitting iridium complex. It was found that all of the compounds (4a), (4b) and (4c) having high solubility in organic solvents. It was also found that Ir (F 2 HexOppy) 2 (pic), which is a conventionally known blue light-emitting iridium complex compound, has high solubility in organic solvents.

[実施例4]
<有機EL素子の作製>
25mm角のガラス基板の一方の面に、陽極としての幅4mmの2本のITO電極がストライプ状に形成されたITO(酸化インジウム錫)付き基板(ニッポ電機、Nippo Electric Co., LTD.)を用いて有機EL素子を作製した。
[Example 4]
<Production of organic EL element>
A substrate with ITO (indium tin oxide) with two ITO electrodes with a width of 4 mm as an anode formed on one side of a 25 mm square glass substrate (Nippo Electric Co., LTD.) The organic EL element was produced using it.

はじめに、上記ITO付き基板のITO(陽極)上に、ポリ(3,4−エチレンジオキシチオフェン)・ポリスチレンスルホン酸(バイエル社製、商品名「バイトロンP」)を、スピンコート法により、回転数3500rpm、塗布時間40秒の条件で塗布した後、真空乾燥器で減圧下、60℃で2時間乾燥を行い、陽極バッファ層を形成した。得られた陽極バッファ層の膜厚は約50nmであった。   First, poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (trade name “Vitron P”, manufactured by Bayer Co., Ltd.) is rotated on the ITO (anode) of the substrate with ITO by a spin coating method. After coating under the conditions of 3500 rpm and coating time of 40 seconds, the anode buffer layer was formed by drying at 60 ° C. for 2 hours under reduced pressure in a vacuum dryer. The film thickness of the obtained anode buffer layer was about 50 nm.

次に、発光層を形成するための塗布溶液を調製した。すなわち、合成例1で合成した化合物(4a)15mg、ポリ(N−ビニルカルバゾール)135mgをクロロホルム(和光純薬工業製、特級)9850mgに溶解し、得られた溶液を孔径0.2μmのフィルターでろ過して塗布溶液とした。次に、陽極バッファ層上に、調製した塗布溶液をスピンコート法により、回転数3000rpm、塗布時間30秒の条件で塗布し、室温(25℃)にて30分間乾燥することにより、発光層を形成した。得られた発光層の膜厚は約100nmであった。次に発光層を形成した基板を蒸着装置内に載置し、バリウムを蒸着速度0.01nm/sで5nmの厚さに蒸着し、続いて陰極としてアルミニウムを蒸着速度1nm/sで150nmの厚さに蒸着し、有機EL素子1を作製した。尚、バリウムとアルミニウムの層は、陽極の延在方向に対して直交する2本の幅3mmのストライプ状に形成し、1枚のガラス基板当たり、縦4mm×横3mmの有機発光素子を4個作製した。   Next, a coating solution for forming a light emitting layer was prepared. That is, 15 mg of the compound (4a) synthesized in Synthesis Example 1 and 135 mg of poly (N-vinylcarbazole) were dissolved in 9850 mg of chloroform (special grade, manufactured by Wako Pure Chemical Industries), and the resulting solution was filtered with a filter having a pore size of 0.2 μm. It filtered and it was set as the application | coating solution. Next, the prepared coating solution is applied onto the anode buffer layer by spin coating under the conditions of a rotation speed of 3000 rpm and a coating time of 30 seconds, and dried at room temperature (25 ° C.) for 30 minutes, whereby the light emitting layer is formed. Formed. The film thickness of the obtained light emitting layer was about 100 nm. Next, the substrate on which the light emitting layer is formed is placed in a vapor deposition apparatus, barium is vapor-deposited to a thickness of 5 nm at a vapor deposition rate of 0.01 nm / s, and then aluminum is deposited as a cathode to a thickness of 150 nm at a vapor deposition rate of 1 nm / s. The organic EL element 1 was produced by vapor deposition. The barium and aluminum layers are formed in two stripes with a width of 3 mm perpendicular to the extending direction of the anode, and four organic light emitting elements of 4 mm length × 3 mm width per glass substrate. Produced.

<EL発光特性評価>
(株)アドバンテスト製 プログラマブル直流電圧/電流源 TR6143を用いて上記有機EL素子に電圧を印加して発光させ、その発光輝度を(株)トプコン製 輝度計 BM−8を用いて測定した。その結果得られた、発光色、発光の均一性、100cd/m点灯時の外部量子効率、および初期輝度100cd/mで定電流駆動させたときの輝度半減時間を表2に示す(外部量子効率および輝度半減時間の値は1枚の基板に形成された素子4個の平均値である。)。また、表2の輝度半減時間の測定結果は、後述する有機EL素子4の測定値を100とした時の相対値で表した。
<EL emission characteristic evaluation>
A voltage was applied to the organic EL element by using a programmable direct current voltage / current source TR6143 manufactured by Advantest Co., Ltd., and light emission luminance was measured using a luminance meter BM-8 manufactured by Topcon Corporation. Table 2 shows the emission color, emission uniformity, external quantum efficiency at 100 cd / m 2 lighting, and luminance half time when driven at a constant current at an initial luminance of 100 cd / m 2 (external). (The values of the quantum efficiency and the luminance half time are average values of four elements formed on one substrate.) Moreover, the measurement result of the brightness | luminance half time of Table 2 was represented by the relative value when the measured value of the organic EL element 4 mentioned later is set to 100. FIG.

[実施例5]
化合物(4a)を化合物(4b)に変更した以外は実施例4と同様にして有機EL素子2を作製し評価した。評価結果を表2に示す。
[Example 5]
An organic EL device 2 was prepared and evaluated in the same manner as in Example 4 except that the compound (4a) was changed to the compound (4b). The evaluation results are shown in Table 2.

[実施例6]
化合物(4a)を化合物(4c)に変更した以外は実施例4と同様にして有機EL素子3を作製し評価した。評価結果を表2に示す。
[Example 6]
An organic EL device 3 was produced and evaluated in the same manner as in Example 4 except that the compound (4a) was changed to the compound (4c). The evaluation results are shown in Table 2.

[比較例4]
化合物(4a)をIr(FMeOppy)に変更した以外は実施例4と同様にして有機EL素子4を作製し評価した。評価結果を表2に示す。
[Comparative Example 4]
An organic EL device 4 was prepared and evaluated in the same manner as in Example 4 except that the compound (4a) was changed to Ir (FMeOppy) 3 . The evaluation results are shown in Table 2.

[比較例5]
化合物(4a)を(Ir(FHexOppy)(pic))に変更した以外は実施例4と同様にして有機EL素子5を作製し評価した。評価結果を表2に示す。
[Comparative Example 5]
An organic EL device 5 was produced and evaluated in the same manner as in Example 4 except that the compound (4a) was changed to (Ir (F 2 HexOppy) 2 (pic)). The evaluation results are shown in Table 2.

[参考例1]
化合物(4a)をIr(ppy)に変更した以外は実施例4と同様にして有機EL素子6を作製し評価した。評価結果を表2に示す。
[Reference Example 1]
An organic EL device 6 was produced and evaluated in the same manner as in Example 4 except that the compound (4a) was changed to Ir (ppy) 3 . The evaluation results are shown in Table 2.

Figure 2009023938
Figure 2009023938

表2より、従来知られている青色発光性イリジウム錯体化合物(Ir(FMeOppy))を発光層に使用した有機EL素子(比較例4)では、発光材料であるイリジウム錯体化合物の会合・凝集により均一な発光が得られなかったのに対し、本発明のイリジウム錯体化合物を発光層に使用した有機EL素子(実施例4〜6)では均一な発光層が得られることがわかった。 From Table 2, in the organic EL device (Comparative Example 4) using the conventionally known blue light-emitting iridium complex compound (Ir (FMeOppy) 3 ) in the light-emitting layer, the association / aggregation of the iridium complex compound as the light-emitting material is caused. Although uniform light emission was not obtained, it turned out that a uniform light emitting layer is obtained in the organic EL element (Examples 4-6) which used the iridium complex compound of this invention for the light emitting layer.

また、従来知られている青色発光性イリジウム錯体化合物(Ir(FHexOppy)(pic))を発光層に使用した有機EL素子(比較例5)では、化合物自体が分解しやすいために輝度半減時間が短いのに対し、本発明のイリジウム錯体化合物を発光層に使用した有機EL素子(実施例4〜6)では外部量子効率および輝度半減時間の特性も向上し、従来知られている緑色発光性イリジウム錯体を使用した有機EL素子(参考例1)と同等以上であることがわかった。 In addition, in the organic EL device (Comparative Example 5) in which the conventionally known blue light emitting iridium complex compound (Ir (F 2 HexOppy) 2 (pic)) is used for the light emitting layer, the compound itself is easily decomposed. The organic EL device (Examples 4 to 6) using the iridium complex compound of the present invention for the light-emitting layer has improved external quantum efficiency and luminance half-time characteristics, while the half-life is short. It turned out that it is equivalent to or more than the organic EL element (Reference Example 1) using a luminescent iridium complex.

図1は、本発明に係る有機EL素子の例の断面図である。FIG. 1 is a cross-sectional view of an example of an organic EL element according to the present invention.

符号の説明Explanation of symbols

1: ガラス基板
2: 陽極
3: 発光層
4: 陰極
1: Glass substrate 2: Anode 3: Light emitting layer 4: Cathode

Claims (10)

下記式(1)で表されるイリジウム錯体化合物。
Figure 2009023938
(式(1)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基であり、
5〜R8はそれぞれ独立にハロゲン原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基、シアノ基、アルデヒド基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜10のアミノカルボニル基、チオシアネート基および炭素数1〜10のスルホニル基から選ばれる電子吸引性の置換基、炭素数1〜10の複素原子を有しても良い有機基(前記電子吸引性の置換基を除く)または水素原子であり、
5〜R8のうち少なくとも1つは該電子吸引性の置換基である。)
The iridium complex compound represented by following formula (1).
Figure 2009023938
(In Formula (1), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
R 5 to R 8 are each independently a halogen atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a cyano group, an aldehyde group, or a carbon number having 2 to 10 carbon atoms. An electron-withdrawing substituent selected from an acyl group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an aminocarbonyl group having 1 to 10 carbon atoms, a thiocyanate group, and a sulfonyl group having 1 to 10 carbon atoms, An organic group which may have a hetero atom (excluding the electron-withdrawing substituent) or a hydrogen atom,
At least one of R 5 to R 8 is the electron-withdrawing substituent. )
1が炭素数2〜30のアルキル基または置換基を有してもよい炭素数7〜30のアラルキル基である請求項1に記載のイリジウム錯体化合物。 The iridium complex compound according to claim 1, wherein R 1 is an alkyl group having 2 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms which may have a substituent. 前記電子吸引性の置換基がフッ素原子、炭素数1〜10のフッ素置換されたアルキル基、炭素数1〜10のフッ素置換されたアルコキシ基またはシアノ基である請求項1または2に記載のイリジウム錯体化合物。   The iridium according to claim 1 or 2, wherein the electron-withdrawing substituent is a fluorine atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, or a cyano group. Complex compound. 下記式(2)で表される請求項1〜3のいずれかに記載のイリジウム錯体化合物。
Figure 2009023938
(式(2)において、R1は炭素数2〜30の有機基であり、
2〜R4は水素原子または炭素数1〜10のアルキル基である。)
The iridium complex compound in any one of Claims 1-3 represented by following formula (2).
Figure 2009023938
(In Formula (2), R < 1 > is a C2-C30 organic group,
R 2 to R 4 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. )
下記式(3)で表される請求項1〜4のいずれかに記載のイリジウム錯体化合物。
Figure 2009023938
(式(3)において、R1は炭素数2〜30の有機基である。)
The iridium complex compound in any one of Claims 1-4 represented by following formula (3).
Figure 2009023938
(In Formula (3), R 1 is an organic group having 2 to 30 carbon atoms.)
フェイシャル(facial)体であることを特徴とする請求項1〜5のいずれかに記載のイリジウム錯体化合物。   It is a facial body, The iridium complex compound in any one of Claims 1-5 characterized by the above-mentioned. 基板と、前記基板上に形成された一対の電極と、前記一対の電極間に発光層を含む一層または複数層の有機層とを備えた有機エレクトロルミネッセンス素子であって、
上記発光層が請求項1〜6のいずれかに記載のイリジウム錯体化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device comprising a substrate, a pair of electrodes formed on the substrate, and one or more organic layers including a light emitting layer between the pair of electrodes,
The said light emitting layer contains the iridium complex compound in any one of Claims 1-6, The organic electroluminescent element characterized by the above-mentioned.
発光層が電荷輸送性の非共役高分子を含有することを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent device according to claim 7, wherein the light emitting layer contains a non-conjugated polymer having a charge transporting property. 請求項7または8に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする画像表示装置。   An image display device using the organic electroluminescence element according to claim 7. 請求項7または8に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする面発光光源。   A surface-emitting light source using the organic electroluminescence element according to claim 7 or 8.
JP2007188259A 2007-07-19 2007-07-19 Iridium complex compound, organic electroluminescent device and use thereof Pending JP2009023938A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007188259A JP2009023938A (en) 2007-07-19 2007-07-19 Iridium complex compound, organic electroluminescent device and use thereof
TW97126954A TW200922941A (en) 2007-07-19 2008-07-16 Iridium complex compounds, organic electroluminescent devices and uses thereof
PCT/JP2008/063219 WO2009011447A2 (en) 2007-07-19 2008-07-16 Iridium complex compounds, organic electroluminescent devices and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188259A JP2009023938A (en) 2007-07-19 2007-07-19 Iridium complex compound, organic electroluminescent device and use thereof

Publications (1)

Publication Number Publication Date
JP2009023938A true JP2009023938A (en) 2009-02-05

Family

ID=39789500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188259A Pending JP2009023938A (en) 2007-07-19 2007-07-19 Iridium complex compound, organic electroluminescent device and use thereof

Country Status (3)

Country Link
JP (1) JP2009023938A (en)
TW (1) TW200922941A (en)
WO (1) WO2009011447A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209317A (en) * 2009-02-10 2010-09-24 Mitsubishi Chemicals Corp Metal complex, composition for organic electroluminescent element, and organic electroluminescent element
JP2011105676A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Organometallic complex, luminescent material, material of organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
WO2011065454A1 (en) * 2009-11-30 2011-06-03 昭和電工株式会社 Iridium complex compound, organic electroluminescence element, and use therefor
JP2011136947A (en) * 2009-12-28 2011-07-14 Showa Denko Kk Iridium complex compound, organic electroluminescent element and use thereof
JP2011256129A (en) * 2010-06-08 2011-12-22 Mitsubishi Chemicals Corp Organometallic complex material, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, and organic el light
WO2012141185A1 (en) * 2011-04-15 2012-10-18 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
JP2015083587A (en) * 2012-08-08 2015-04-30 三菱化学株式会社 Iridium complex compound, compound including the compound, and organic electroluminescent element, display and luminaire
DE102016225271A1 (en) 2015-12-18 2017-06-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device and lighting device
US9768396B2 (en) 2011-12-23 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9843002B2 (en) 2015-10-29 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20180063152A (en) 2015-09-30 2018-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic metal complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
KR20180130515A (en) 2016-04-01 2018-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A light emitting device, a light emitting device, an electronic device, and a lighting device
US10170710B2 (en) 2015-05-20 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10256420B2 (en) 2015-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20190094201A (en) 2016-12-16 2019-08-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light emitting elements, light emitting devices, electronic devices, and lighting devices
US10497884B2 (en) 2016-04-01 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20200088367A (en) 2017-11-17 2020-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light emitting elements, light emitting devices, electronic devices, and lighting devices
KR20210111760A (en) 2018-12-28 2021-09-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light emitting devices, light emitting devices, electronic devices, and lighting devices
KR20230065246A (en) 2020-09-11 2023-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
KR20230123482A (en) 2020-12-25 2023-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
KR20240002706A (en) 2022-06-29 2024-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, light-emitting apparatus, electronic device, and lighting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402329B (en) * 2010-04-12 2013-07-21 Univ Nat Cheng Kung Green processes for preparing luminescent iridium complexes and precursors thereof
JP2013028757A (en) * 2011-07-29 2013-02-07 Canon Inc Organometallic complex and organic light emitting device including the same
CN102617652A (en) * 2012-03-07 2012-08-01 南京邮电大学 Binuclear phosphorescent iridium complex with two-photon absorption characteristics and application of binuclear phosphorescent iridium complex
JP6166557B2 (en) 2012-04-20 2017-07-19 株式会社半導体エネルギー研究所 Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20180086483A (en) 2016-01-14 2018-07-31 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Process for producing cyclometallated iridium complex

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154138B2 (en) * 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element, display device and metal coordination compound

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209317A (en) * 2009-02-10 2010-09-24 Mitsubishi Chemicals Corp Metal complex, composition for organic electroluminescent element, and organic electroluminescent element
JP2011105676A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Organometallic complex, luminescent material, material of organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
WO2011065454A1 (en) * 2009-11-30 2011-06-03 昭和電工株式会社 Iridium complex compound, organic electroluminescence element, and use therefor
JP5723292B2 (en) * 2009-11-30 2015-05-27 三星電子株式会社Samsung Electronics Co.,Ltd. Iridium complex compound, organic electroluminescence device and use thereof
JP2011136947A (en) * 2009-12-28 2011-07-14 Showa Denko Kk Iridium complex compound, organic electroluminescent element and use thereof
JP2011256129A (en) * 2010-06-08 2011-12-22 Mitsubishi Chemicals Corp Organometallic complex material, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, and organic el light
WO2012141185A1 (en) * 2011-04-15 2012-10-18 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
JP2012231137A (en) * 2011-04-15 2012-11-22 Semiconductor Energy Lab Co Ltd Organic light emitting element, organometallic complex, light emitting device, electronic apparatus, and lighting system
US9200022B2 (en) 2011-04-15 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
US9768396B2 (en) 2011-12-23 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
CN107501332A (en) * 2012-08-08 2017-12-22 三菱化学株式会社 Iridium complex compound and composition, organic electroluminescent device, display device and lighting device containing the compound
JPWO2014024889A1 (en) * 2012-08-08 2016-07-25 三菱化学株式会社 Iridium complex compound, composition containing the compound, organic electroluminescent element, display device and lighting device
US11430961B2 (en) 2012-08-08 2022-08-30 Mitsubishi Chemical Corporation Iridium complex compound, and composition, organic electroluminescent element, display device, and lighting device each containing the compound
JP2015083587A (en) * 2012-08-08 2015-04-30 三菱化学株式会社 Iridium complex compound, compound including the compound, and organic electroluminescent element, display and luminaire
US10170710B2 (en) 2015-05-20 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10256420B2 (en) 2015-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20180063152A (en) 2015-09-30 2018-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic metal complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
US9843002B2 (en) 2015-10-29 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10283722B2 (en) 2015-12-18 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9960371B2 (en) 2015-12-18 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
DE102016225271A1 (en) 2015-12-18 2017-06-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device and lighting device
KR20180130515A (en) 2016-04-01 2018-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A light emitting device, a light emitting device, an electronic device, and a lighting device
US10497884B2 (en) 2016-04-01 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20210130259A (en) 2016-04-01 2021-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, and lighting device
KR20190094201A (en) 2016-12-16 2019-08-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light emitting elements, light emitting devices, electronic devices, and lighting devices
KR20230107912A (en) 2016-12-16 2023-07-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20200088367A (en) 2017-11-17 2020-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light emitting elements, light emitting devices, electronic devices, and lighting devices
KR20210111760A (en) 2018-12-28 2021-09-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compounds, light emitting devices, light emitting devices, electronic devices, and lighting devices
KR20230065246A (en) 2020-09-11 2023-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
KR20230123482A (en) 2020-12-25 2023-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complexes, light-emitting devices, light-emitting devices, electronic devices, and lighting devices
KR20240002706A (en) 2022-06-29 2024-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, light-emitting apparatus, electronic device, and lighting device

Also Published As

Publication number Publication date
WO2009011447A2 (en) 2009-01-22
WO2009011447A3 (en) 2009-03-26
TW200922941A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
JP2009023938A (en) Iridium complex compound, organic electroluminescent device and use thereof
JP5281270B2 (en) Iridium complex compound, organic electroluminescence device using the same, and use thereof
JP4815184B2 (en) Cyclometalated transition metal complex and organic electroluminescence device using the same
JP4920217B2 (en) Cyclometalated transition metal complex and organic electroluminescence device using the same
JP5043329B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5043330B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5391427B2 (en) White organic electroluminescent device and method for manufacturing the same
JP5495783B2 (en) Phosphorescent polymer compound and organic electroluminescence device using the same
JP2006290781A (en) Iridium complex having good solubility
JP4896512B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5613941B2 (en) Blue light-emitting polymer compound, organic electroluminescence device and use thereof
JP5461793B2 (en) Phosphorescent polymer compound and organic electroluminescence device using the same
JP5723292B2 (en) Iridium complex compound, organic electroluminescence device and use thereof
JP5546238B2 (en) Iridium complex compound, organic electroluminescence device and use thereof
JP4823601B2 (en) Polymer light emitting material, organic electroluminescence element, and display device
US7670691B2 (en) Cyclometalated transition metal complex and organic electroluminescent display device using the same
JP2007084612A (en) High molecular light emission material, organic electroluminescent element and display
JP4932238B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5014705B2 (en) Organic electroluminescence device using phosphorescent compound
JP2008091894A (en) Organic electroluminescent device and its use
JP4790381B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4823580B2 (en) POLYMER LIGHT EMITTING MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING POLYMER LIGHT EMITTING MATERIAL
JP2008028119A (en) Organic electroluminescence element, and application thereof
KR101503767B1 (en) The new metal complex and blue phosphorescent organic light emitting device comprising the same