WO2020230570A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020230570A1
WO2020230570A1 PCT/JP2020/017474 JP2020017474W WO2020230570A1 WO 2020230570 A1 WO2020230570 A1 WO 2020230570A1 JP 2020017474 W JP2020017474 W JP 2020017474W WO 2020230570 A1 WO2020230570 A1 WO 2020230570A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light emitting
inorganic
inorganic light
display device
Prior art date
Application number
PCT/JP2020/017474
Other languages
English (en)
French (fr)
Inventor
耀博 小川
池田 雅延
晋 木村
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020230570A1 publication Critical patent/WO2020230570A1/ja
Priority to US17/519,886 priority Critical patent/US11798505B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a display device.
  • the display device for displaying an image includes a plurality of pixels.
  • Patent Document 1 describes a so-called MIP (Memory In Pixel) type display device in which each of a plurality of pixels includes a memory.
  • the MIP type display device may be used as a reflective liquid crystal display device that displays an image by taking in and reflecting external light such as natural light.
  • the MIP type display device may express the gradation of color by the area gradation.
  • Area gradation is a technique for expressing color gradation by adjusting the number of pixels for displaying the same color and adjusting the area for displaying the color.
  • the MIP type display device is equipped with a memory for each pixel, and the number of pixels that can be arranged is also limited. Therefore, in the MIP type display device, the number of color gradations may be insufficient, and it is desired to increase the number of color gradations.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device capable of increasing the number of color gradations in a MIP type display device.
  • the display device includes a reflecting electrode, a counter electrode provided facing the reflecting electrode, a plurality of divided pixels including a holding portion for holding a potential corresponding to gradation expression, and the counter electrode.
  • An inorganic illuminant provided on the side opposite to the side facing the reflective electrode and irradiating light toward the divided pixel.
  • FIG. 1 is a schematic view of a display device according to the present embodiment.
  • FIG. 2 is a schematic diagram showing an example of a pixel array according to the present embodiment.
  • FIG. 3 is a diagram showing a circuit configuration example of the display device according to the present embodiment.
  • FIG. 4 is a block diagram showing an example of the circuit configuration of the divided pixels according to the present embodiment.
  • FIG. 5 is a timing chart provided for explaining the operation of the divided pixels of the present embodiment.
  • FIG. 6 is a schematic cross-sectional view of the display device according to the present embodiment.
  • FIG. 7 is a schematic view showing an example of the position where the inorganic illuminant is provided.
  • FIG. 8 is a block diagram showing a configuration example of the signal processing circuit according to the present embodiment.
  • FIG. 1 is a schematic view of a display device according to the present embodiment.
  • FIG. 2 is a schematic diagram showing an example of a pixel array according to the present embodiment.
  • FIG. 3 is a diagram
  • FIG. 9 is a schematic diagram showing an example of gradation expression.
  • FIG. 10 is a diagram illustrating color gradation expression in a color space.
  • FIG. 11 is a schematic cross-sectional view of a display device according to another example of the present embodiment.
  • FIG. 12 is a schematic diagram showing an example of a pixel array according to another example of the present embodiment.
  • FIG. 1 is a schematic view of a display device according to this embodiment.
  • the display device 1 according to the present embodiment is a reflection type display device. That is, the display device 1 displays an image by receiving the external light L in the display region OA, reflecting the received external light L, and emitting it as the light L1.
  • the display device 1 is a so-called MIP (Memory In Pixel) type display device in which each of the plurality of pixels includes a memory.
  • MIP Memory In Pixel
  • the direction X is one direction parallel to the display area OA
  • the direction Y is one direction parallel to the display area and orthogonal to the direction X.
  • the direction orthogonal to the display area that is, the direction orthogonal to the direction X and the direction Y is defined as the direction Z.
  • FIG. 2 is a schematic diagram showing an example of the pixel arrangement according to the present embodiment.
  • the display device 1 is provided with pixels P for expressing colors in the display area OA.
  • a plurality of pixels P are provided, and are arranged in a matrix in directions X and Y.
  • the pixel P has a plurality of sub-pixels P1.
  • a plurality of sub-pixels P1 in one pixel P display different colors from each other.
  • the pixel P has sub-pixels P1R, P1G, and P1B as three sub-pixels P1.
  • the sub-pixel P1R is a sub-pixel that displays red as a primary color in the present embodiment
  • the sub-pixel P1G is a sub-pixel that displays green as a primary color in the present embodiment
  • the sub-pixel P1B is the sub-pixel in the present embodiment. Is a sub-pixel that displays blue as the primary color.
  • the color displayed by each sub-pixel P1 is not limited to red, green, and blue as the primary colors.
  • the sub-pixels P1R, P1G, and P1B are arranged in a striped sub-pixel array along the direction X.
  • the sub-pixel array is not limited to the striped shape.
  • the sub-pixel P1 includes a plurality of divided pixels P2.
  • a plurality of divided pixels P2 included in one sub-pixel P1 display the same color as each other.
  • one sub-pixel P1 includes three divided pixels P2.
  • the sub-pixel P1R includes divided pixels P2R1, P2R2, and P2R3 that display red as a primary color, respectively.
  • the sub-pixel P1G includes divided pixels P2G1, P2G2, and P2G3 that display green as a primary color, respectively.
  • the sub-pixel P1B includes divided pixels P2B1, P2B2, and P2B3 that display blue as a primary color, respectively.
  • the number of divided pixels P2 included in one sub-pixel P1 is not limited to three and is arbitrary. Further, the color displayed by each of the divided pixels P2 is not limited to red, green, and blue as the primary colors. Further, in the example of FIG. 2, in one sub-pixel P1, the divided pixels P2 are arranged in the direction Y, but the divided pixel array is arranged in the direction Y. Not limited.
  • the display device 1 includes the plurality of divided pixels P2 in this way, and by driving each divided pixel P2, the gradation of the pixel P is expressed by the area gradation.
  • the gradation is a value that indicates the shade of color stepwise, and the larger the number of gradation values, the smoother the shade of color can be expressed.
  • the area gradation will be described later.
  • FIG. 3 is a diagram showing a circuit configuration example of the display device according to the present embodiment.
  • the display device 1 includes pixels P, that is, a plurality of divided pixels P2 and a plurality of inorganic light emitters U.
  • the inorganic light emitting body U includes an inorganic light emitting element LED.
  • the inorganic light emitting element LED is an inorganic light emitting diode (LED: Light Emitting Diode) chip having a size of, for example, about 3 ⁇ m or more and 300 ⁇ m or less in a plan view, and is called a micro LED (micro LED).
  • LED Light Emitting Diode
  • the display device 1 provided with a micro LED in each pixel is also called a micro LED display device.
  • the micro of the micro LED does not limit the size of the inorganic light emitting element LED.
  • FIG. 3 for convenience of explanation, the inorganic light emitting body U is described as being provided on the direction X side of the divided pixel P2, but the actual position of the inorganic light emitting body U is shown in FIG. Not limited to. The positions where the inorganic light emitting body U and the inorganic light emitting element LED are provided will be described later.
  • the divided pixel P2 includes, for example, a circuit unit 51, a reflecting electrode 12, and a counter electrode 16.
  • the circuit unit 51 includes at least a drive circuit unit 58 described later.
  • the reflection electrode 12 is provided for each divided pixel P2 and is connected to the circuit unit 51.
  • the counter electrode 16 is provided so as to face one, a plurality, or all of the reflective electrodes 12.
  • the liquid crystal capacity 52 is a capacity component of the liquid crystal material generated between the reflective electrode 12 and the counter electrode 16.
  • the divided pixel P2 is provided at an intersection position of the signal line 61 and the scanning line 62 in the display area OA.
  • Signal lines 61 (61 1, 61 2, 61 3,...) One end of each of is connected to an output terminal corresponding to each column of the signal output circuit 70.
  • a plurality of scanning lines 62 (62 1, 62 2, 62 3,...) One end of each of is connected to an output terminal corresponding to each row of the scanning circuit 80.
  • a plurality of signal lines 61 (61 1, 61 2, 61 3, ...) is a signal for driving the divided pixel P2, i.e., a video signal outputted from the signal output circuit 70 to the divided pixel P2 for each pixel column This is the wiring to be transmitted.
  • a plurality of scanning lines 62 (62 1, 62 2, 62 3, ...) is a signal for selecting the divided pixel P2 in units of rows, i.e., the scanning signal output from the scanning circuit 80 for each pixel row This is the wiring to be transmitted.
  • the display device 1 includes a signal output circuit 70, a scanning circuit 80, a signal processing circuit 100, and an inorganic illuminant control circuit 130.
  • the signal output circuit 70 and the scanning circuit 80 are circuits for driving the divided pixel P2
  • the inorganic illuminant control circuit 130 is a circuit for driving the inorganic illuminant U.
  • the signal output circuit 70, the scanning circuit 80, and the inorganic illuminant control circuit 130 are connected to the signal processing circuit 100.
  • the signal processing circuit 100 calculates each gradation value of the sub-pixel P1 of each pixel P based on the input gradation value.
  • the signal processing circuit 100 outputs the calculation result of the gradation value to the signal output circuit 70 as an area gradation signal of each pixel P, and outputs the gradation signal of the inorganic illuminant control circuit 130 to the inorganic illuminant control circuit 130. To do.
  • the signal output circuit 70 outputs a video signal including an area gradation signal to each divided pixel P2.
  • the inorganic light emitting body control circuit 130 outputs a light emission control signal based on the gradation signal to each inorganic light emitting body U.
  • the signal processing circuit 100 transmits a clock signal that synchronizes the operations of the signal output circuit 70, the scanning circuit 80, and the inorganic illuminant control circuit 130 to the signal output circuit 70, the scanning circuit 80, and the inorganic illuminant control circuit 130.
  • Output The signal output circuit 70 and the inorganic illuminant control circuit 130 output the video signal and the luminescence control signal in synchronization, and the scanning circuit 80 outputs the video signal from the signal output circuit 70 and the inorganic illuminant control circuit 130.
  • the split pixel P2 is scanned in synchronization with the light emission control signal.
  • the inorganic illuminant control circuit 130 drives the inorganic illuminant U in synchronization with the divided pixels P2 in this way.
  • the inorganic illuminant control circuit 130 may drive the inorganic illuminant U by analog drive, PWM (Pulse Width Modulation) drive, or a combination of analog drive and PWM drive.
  • PWM Pulse Width Modulation
  • the signal output circuit 70 and the signal processing circuit 100 may be included in one IC chip 140, or the signal output circuit 70 and the signal processing circuit 100 may be included in a separate circuit chip. You may. Further, the inorganic illuminant control circuit 130 may be mounted on the IC chip 140.
  • a circuit chip such as an IC chip 140 is provided in the peripheral region SA of the display device 1 by using Chip On Glass (COG), but this is an example of mounting the circuit chip and is limited to this. Not a thing.
  • the circuit chip may be provided, for example, on a flexible printed circuit board (FPC: Flexible Printed Circuits) connected to the display device 1 by using Chip On Film (COF).
  • FPC Flexible Printed Circuits
  • FIG. 4 is a block diagram showing an example of the circuit configuration of the divided pixels according to the present embodiment.
  • FIG. 5 is a timing chart provided for explaining the operation of the divided pixels of the present embodiment.
  • the divided pixel P2 in addition to the liquid crystal capacity (liquid crystal cell) 52, the divided pixel P2 includes a drive circuit unit 58 having three switching elements 54, 55, 56 and a latch unit 57 as the circuit unit 51. ..
  • the drive circuit unit 58 has a SRAM (Static Random Access Memory) function.
  • the divided pixel P2 including the drive circuit unit 58 has a pixel configuration with an SRAM function.
  • the switching element 54 is connected to the signal line 61.
  • the switching element 54 is turned on (closed) by being given a scanning signal ⁇ V (see FIG. 5) from the scanning circuit 80, and takes in the data SIG supplied from the signal output circuit 70 via the signal line 61.
  • the latch portion 57 has inverters 571 and 572 connected in parallel in opposite directions to each other, and holds (latch) the potential corresponding to the data SIG captured by the switching element 54.
  • Each one terminal of the switching element 55 and 56, the control pulse FRP of the control pulse XFRP and phase reverse-phase (see FIG. 5) is applied to the common potential V COM.
  • the other terminals of the switching elements 55 and 56 are commonly connected, and the common connection node becomes an output node N out .
  • One of the switching elements 55 and 56 is turned on according to the polarity of the holding potential of the latch portion 57. By this operation, the counter electrode 16 to the liquid crystal capacitor 52 the common potential V COM is applied, the control pulse FRP or the control pulse XFRP is applied to the reflective electrode 12.
  • the pixel potential of the liquid crystal capacity 52 is in phase with the common potential V COM , so that no potential difference occurs between the reflecting electrode 12 and the counter electrode 16. Therefore, no electric field is generated in the liquid crystal layer 18 (see FIG. 6). Therefore, in this case, the liquid crystal molecules do not twist from the initial orientation state, and the normally black state is maintained. As a result, the divided pixel P2 does not transmit light.
  • the holding potential of the latch portion 57 is positive, the pixel potential of the liquid crystal capacity 52 is in the opposite phase to the common potential VCOM , so that a potential difference occurs between the reflecting electrode 12 and the counter electrode 16, and the liquid crystal layer. An electric potential is generated at 18.
  • the display device 1 is provided with a holding unit (latch unit 57) for holding the potential corresponding to the gradation expression in each of the plurality of divided pixels P2.
  • one of the switching elements 55 and 56 is turned on according to the polarity of the holding potential of the latch portion 57, so that the control pulse FRP or the control pulse FRP or the control pulse FRP or The control pulse XFRP is applied.
  • the on / off of the light transmission of the divided pixel P2 is controlled.
  • the SRAM formed by the Latch circuit is used as the memory built in the divided pixel P2 has been described as an example, but the SRAM is only an example and is formed by another memory, for example, one transistor and one capacitor.
  • a configuration using a DRAM may be adopted.
  • the potential VU is applied to the inorganic light emitting body U from the inorganic light emitting body control circuit 130.
  • the inorganic light emitting element LED of the inorganic light emitting body U is driven (light emitting).
  • FIG. 6 is a schematic cross-sectional view of the display device according to the present embodiment.
  • the display device 1 is provided with the substrate SUB1 and the substrate SUB2 facing each other in the direction Z.
  • the direction side from the substrate SUB1 to the substrate SUB2 is the upper side
  • the direction side from the substrate SUB2 to the substrate SUB1 is the lower side.
  • the substrate SUB1 is, for example, a glass substrate.
  • a drive circuit portion 58 including a latch portion 57 and the like, an insulating layer 10, and a reflecting electrode 12 are provided on the upper side of the substrate SUB1.
  • the drive circuit unit 58 including the latch unit 57 and the like is laminated on the upper surface of the substrate SUB1.
  • the drive circuit unit 58 is provided for each divided pixel P2.
  • wiring such as a signal line 61 and electrodes may be provided on the upper surface of the substrate SUB1.
  • An insulating layer 10 is laminated on the upper side of the drive circuit unit 58.
  • the insulating layer 10 is a layer made of a translucent insulating member, and is made of, for example, a resin.
  • a reflective electrode 12 is laminated on the upper side of the insulating layer 10. That is, the reflective electrode 12 is a film-like electrode formed on the upper surface of the insulating layer 10.
  • the reflection electrode 12 is provided for each divided pixel P2.
  • the reflective electrode 12 is made of a member capable of reflecting light, and is, for example, a thin metal electrode made of silver (Ag), aluminum (Al), or the like.
  • the reflective electrode 12 and the drive circuit unit 58 are connected to each other via a through hole or the like provided in the insulating layer 10.
  • the substrate SUB2 is, for example, a glass substrate and transmits light.
  • a color filter 14, a black matrix BM, and a counter electrode 16 are provided on the lower side of the substrate SUB2.
  • the color filter 14 is laminated on the lower surface of the substrate SUB2.
  • the color filter 14 is a filter that transmits light in a predetermined wavelength band of visible light.
  • the color filter 14 is provided for each divided pixel P2. For example, each of the divided pixels P2R1, P2R2, and P2R3 is provided with a color filter 14 that transmits light in the red wavelength band, and each of the divided pixels P2G1, P2G2, and P2G3 is provided with light in the green wavelength band.
  • a color filter 14 that transmits light is provided, and each of the divided pixels P2B1, P2B2, and P2B3 is provided with a color filter 14 that transmits light in the blue wavelength band. That is, each of the divided pixels P2 included in one sub-pixel P1 is provided with a color filter 14 that transmits light in the same wavelength band. Further, a black matrix BM is provided between the plurality of color filters 14. That is, a black matrix BM is provided between the color filters 14 of the adjacent divided pixels P2.
  • a counter electrode 16 is provided on the lower side of the color filter 14. That is, the counter electrode 16 is a film-like electrode formed on the lower surface of the color filter 14.
  • the counter electrode 16 is an electrode (translucent electrode) that transmits light, which is formed by using, for example, ITO (Indium Tin Oxide) or the like.
  • the counter electrode 16 faces the reflective electrode 12 in the direction Z.
  • the counter electrode 16 may be provided for each divided pixel P2, that is, for each reflecting electrode 12, or may be provided in common for a plurality of divided pixels P2 (reflecting electrodes 12).
  • a liquid crystal layer 18 is provided between the counter electrode 16 and the reflection electrode 12 in the direction Z.
  • the liquid crystal layer 18 is sealed with a sealing material (not shown).
  • the sealing material is sealed by adhering the sides of the substrate SUB1 and the substrate SUB2. Further, the distance between the counter electrode 16 and the reflective electrode 12 is determined by a spacer (not shown).
  • the initial alignment state of the liquid crystal molecules of the liquid crystal layer 18 is determined by an alignment film (not shown) provided on the substrate SUB1 and the substrate SUB2. In the initial orientation state, the liquid crystal molecules do not transmit light.
  • the state in which light is not transmitted in the initial orientation state in which an electric field is not applied to the liquid crystal layer 18 is referred to as normal black.
  • the reflective electrode 12, the liquid crystal layer 18, the counter electrode 16, the color filter 14, and the drive circuit unit 58 (latch unit 57), which are laminated as described above, constitute one divided pixel P2.
  • the display device 1 is provided with a dimming layer 20, a substrate SUB3, and a cover portion G on the upper side of the substrate SUB2.
  • the dimming layer 20 has, for example, a polarizing plate 20A provided on the upper side and a scattering layer 20B provided between the polarizing plate 20A and the substrate SUB2.
  • the polarizing plate 20A transmits light polarized in a specific direction.
  • the scattering layer 20B scatters the light L1 reflected by the reflecting electrode 12.
  • the dimming layer 20 may be provided on the upper surface of the substrate SUB3, for example. Further, the dimming layer 20 is not an essential configuration and may not be provided.
  • the substrate SUB3 is provided above the substrate SUB2, here above the dimming layer 20.
  • the substrate SUB3 is, for example, a glass substrate and transmits light.
  • the substrate SUB3 is provided with an inorganic light emitting body U and an insulating layer 22 on the lower side.
  • the inorganic light emitter U is provided on the lower surface of the substrate SUB3. That is, the inorganic illuminant U is provided above the counter electrode 16, that is, on the display surface side on which the image is displayed, above the counter electrode 16.
  • the inorganic light emitting body U has a plurality of inorganic light emitting element LEDs. In the example of FIG.
  • the inorganic light emitting body U includes three inorganic light emitting elements LED R , LED G , and LED B.
  • the inorganic light emitting element LED R emits light of the same color as the color displayed by the sub-pixel P1R (the color of the light transmitted by the color filter 14 of the divided pixels P2R1, P2R2, P2R3), and here, red light.
  • the inorganic light emitting element LED G emits light of the same color as the color displayed by the sub-pixel P1G (the color of the light transmitted by the color filters 14 of the divided pixels P2G1, P2G2, and P2G3), and here, green light. Lights up.
  • the inorganic light emitting element LED B emits light of the same color as the color displayed by the sub-pixel P1B (the color of the light transmitted by the color filter 14 of the divided pixels P2B1, P2B2, P2B3), and here, blue light. Lights up.
  • the inorganic light emitting body U includes a plurality of inorganic light emitting element LEDs that emit light of the same color as each of the sub-pixels P1 (divided pixels P2) in one pixel P.
  • the color emitted by the inorganic light emitting element LED of the inorganic light emitting body U is arbitrary, and the number of inorganic light emitting element LEDs of the inorganic light emitting body U is also arbitrary.
  • the number of inorganic light emitting element LEDs that emit the same color may be two or more.
  • the inorganic light emitting body U has a configuration in which an inorganic light emitting element LED is provided on the upper side of the shielding film 24.
  • the shielding film 24 is a film that shields (reflects or absorbs) the light emitted by the inorganic light emitting element LED.
  • the light La emitted by the inorganic light emitting element LED is emitted toward the lower side, that is, the reflective electrode 12.
  • the inorganic light emitting body U (inorganic light emitting element LED) is provided at a position where it overlaps with the divided pixel P2 when viewed from the direction Z.
  • the (inorganic light emitting element LED) may be provided at a position deviated from the divided pixel P2 without superimposing on the divided pixel P2 when viewed from the direction Z.
  • the inorganic light emitting body U inorganic light emitting element LED
  • the inorganic light emitting element LED may be provided at a position superimposed on the black matrix BM when viewed from the direction Z.
  • the insulating layer 22 is provided under the inorganic light emitting body U and covers the inorganic light emitting body U.
  • the insulating layer 22 is a layer made of a translucent insulating member, and is made of, for example, a resin.
  • the cover portion G is a cover provided on the upper side of the substrate SUB3, and constitutes a surface of the display device 1 in the display area OA.
  • the cover portion G is made of a member that transmits light, and is, for example, a member made of glass.
  • the display device 1 has the above-mentioned laminated structure. Therefore, when the liquid crystal molecules of the liquid crystal layer 18 are in a state of transmitting light, the external light L is the cover portion G, the substrate SUB3, the insulating layer 22, the dimming layer 20, the substrate SUB2, the color filter 14, and the counter electrode 16. , The reflective electrode 12 is irradiated through the liquid crystal layer 18. Further, the light La emitted by the inorganic light emitting element LED is irradiated to the reflecting electrode 12 through the insulating layer 22, the dimming layer 20, the substrate SUB2, the color filter 14, the counter electrode 16, and the liquid crystal layer 18.
  • the reflective electrode 12 reflects the irradiated external light L and light La, and transmits the light L1 which is the reflected light of the external light L and the light La to the liquid crystal layer 18, the counter electrode 16, the color filter 14, and the substrate SUB2.
  • the light is emitted to the outside through the dimming layer 20, the insulating layer 22, the substrate SUB3, and the cover portion G.
  • IPS Flexible Field Switching: fringe field switching
  • FFS Flexible Field Switching
  • the counter electrode 16 is provided on the substrate SUB1 side and above the reflection electrode 12.
  • FIG. 7 is a schematic view showing an example of the position where the inorganic illuminant is provided.
  • FIG. 7 shows the position of the inorganic light emitter U with respect to the pixel P when viewed from the direction Z.
  • One inorganic light emitting body U is provided for each of the plurality of pixels P, in other words, one is provided for each pixel group P0 composed of the plurality of pixels P.
  • the pixel group P0 includes 16 pixels P arranged in 4 rows and 4 columns. Since the inorganic light emitting element LED has a large angle at which the emitted light spreads, for example, about 80 degrees, one inorganic light emitting body U can irradiate a plurality of pixels P with light in this way.
  • the number of pixels P included in the pixel group P0 is not limited to this and is arbitrary.
  • the inorganic light emitting body U is not limited to being provided for each of a plurality of pixels P, and may be provided for, for example, one for each pixel P.
  • the inorganic light emitting body U since the inorganic light emitting body U is drawn large for convenience of explanation, a part of the inorganic light emitting body U overlaps the pixel P when viewed from the direction Z, but in reality, the inorganic light emitting body U is in the direction Z. It is preferable that the pixels P do not overlap with each other.
  • the inorganic light emitter U is preferably provided outside the region where the pixel P is provided when viewed from the direction Z, and the color of the color filter is located at a position superimposed on the black matrix BM shown in FIG. It is preferable that it is provided in the overlapping portion.
  • the inorganic light emitter U is preferably provided between the pixels P and the pixels P when viewed from the direction Z.
  • the pixel P and the region where the pixel P is provided here refer to the color filter 14 of the pixel P. Therefore, it can be said that the space between the pixel P and the pixel P is between the color filter 14 and the color filter 14.
  • the inorganic light emitting body U is preferably provided in the central portion of the region occupied by the pixel group P0 when viewed from the direction Z, for example.
  • the position where the inorganic illuminant U is provided is not limited to the above description and may be arbitrary, and may overlap the color filter 14 of the pixel P when viewed from the direction Z, for example.
  • FIG. 8 is a block diagram showing a configuration example of the signal processing circuit according to the present embodiment.
  • the signal processing circuit 100 includes a first processing unit 110, a second processing unit 120, a third processing unit 125, and a look-up table (LUT: Look Up Table) 115.
  • the first processing unit 110 is the floor of each sub-pixel P1 of the pixel P based on the gradation values (R, G, B) for each of the input RGB (red, blue, and green in this embodiment).
  • the adjustment price (R1, G1, B1) is specified.
  • the gradation value R1 is the gradation value of the sub-pixel P1R
  • the gradation value G1 is the gradation value of the sub-pixel P1G
  • the gradation value B1 is the gradation value of the sub-pixel P1B.
  • the LUT 115 is table data including information indicating the gradation value (R1, G1, B1) of the sub-pixel P1 predetermined with respect to the gradation value (R, G, B).
  • the first processing unit 110 refers to the LUT 115 and identifies the gradation values (R1, G1, B1) corresponding to the input gradation values (R, G, B).
  • the second processing unit 120 acquires the gradation values (R1, G1, B1) of the sub-pixel P1 from the first processing unit 110.
  • the second processing unit 120 outputs the area gradation signal (R2, G2, B2) for each of the plurality of divided pixels corresponding to the gradation value (R1, G1, B1) of the sub-pixel P1 to the signal output circuit 70. ..
  • the area gradation signal (R2) is a signal indicating which of the divided pixels P2R1, P2R2, and P2R3 is driven.
  • the area gradation signal (G2) is a signal indicating which of the divided pixels P2G1, P2G2, and P2G3 is driven.
  • the area gradation signal (B2) is a signal indicating which of the divided pixels P2B1, P2B2, and P2B3 is driven.
  • the signal output circuit 70 outputs a video signal based on the area gradation signal (R2, G2, B2) to each divided pixel P2 to express the area gradation.
  • driving the divided pixel P2 means making the divided pixel P2 capable of emitting light L1, and further, a potential difference is generated between the reflecting electrode 12 and the counter electrode 16 of the divided pixel P2. It means that an electric field is generated in the liquid crystal layer 18.
  • the third processing unit 125 acquires the gradation values (R1, G1, B1) of the sub-pixel P1 from the first processing unit 110.
  • the third processing unit 125 outputs the light emission control signal (R3, G3, B3) corresponding to the gradation value (R1, G1, B1) of the sub-pixel P1 to the inorganic light emitter control circuit 130.
  • Emission control signal (R3) either drives the inorganic light-emitting element LED R, that is, a signal indicating whether to emit inorganic light-emitting element LED R.
  • Emission control signal (G3) either drives the inorganic light-emitting element LED G, that is, a signal indicating whether to emit inorganic light-emitting element LED G.
  • Emission control signal (B3) either drives the inorganic light-emitting element LED B, that is, a signal indicating whether to emit inorganic light-emitting element LED B.
  • the inorganic light emitting body control circuit 130 controls the light emission of the inorganic light emitting elements LED R , LED G , and LED B based on the light emission control signals (R3, G3, B3).
  • the pixel P can express gradation by adding light emission of the inorganic light emitting elements LED R , LED G , and LED B to the area gradation based on the area gradation signal (R2, G2, B2). ..
  • FIG. 9 is a schematic diagram showing an example of gradation expression.
  • FIG. 9 illustrates the gradation expression of the sub-pixel P1R as an example.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal indicating that the divided pixels P2R1, P2R2, and P2R3 of the sub-pixel P1R are not driven, and emits light emission control signal (R3) as an inorganic light emission. It is a signal that the element LED R does not emit light.
  • the signal output circuit 70 does not drive the divided pixels P2R1, P2R2, and P2R3, and the inorganic light emitter control circuit 130 does not cause the inorganic light emitting element LED R to emit light. Therefore, in the case of (1), for example, the gradation value of red is 0. Further, even if the inorganic light emitting element LED R emits light, the divided pixels P2R1, P2R2, and P2R3 are not driven, that is, the liquid crystal layer 18 does not move. Therefore, if it is normally black, black remains black and the inorganic light emitting element LED. The light emission of R does not contribute to the tone.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal to drive only the divided pixel P2R1 of the sub-pixel P1R, and the light emission control signal (R3) as the inorganic light emitting element LED R. It is a signal that the light is not emitted. Therefore, in the case of (2), the signal output circuit 70 drives the split pixel P2R1, and the inorganic light emitter control circuit 130 does not cause the inorganic light emitting element LED R to emit light. Therefore, in the case of (2), the light L1 is emitted only from the divided pixel P2R1, and for example, the gradation value of red is 1, which is larger than that of (1).
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal for driving the divided pixels P2R2 and P2R3 of the sub-pixel P1R, and emits light emission control signal (R3) as an inorganic light emission. It is a signal that the element LED R does not emit light. Therefore, in the case of (3), the signal output circuit 70 drives the divided pixels P2R2 and P2R3, and the inorganic light emitter control circuit 130 does not cause the inorganic light emitting element LED R to emit light. Therefore, in the case of (3), the light L1 is emitted from the divided pixels P2R2 and P2R3, and for example, the gradation value of red is larger than that of (2) and becomes 2.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal for driving the divided pixels P2R1, P2R2, and P2R3 of the sub-pixel P1R, and uses the light emission control signal (R3) as a signal.
  • R2 area gradation signal
  • R3 light emission control signal
  • a signal indicating that the inorganic light emitting element LED R does not emit light is used. Therefore, in the case of (4), the signal output circuit 70 drives the divided pixels P2R1, P2R2, and P2R3, and the inorganic light emitting body control circuit 130 does not cause the inorganic light emitting element LED R to emit light. Therefore, in the case of (4), the light L1 is emitted only from the divided pixels P2R1, P2R2, and P2R3, and for example, the gradation value of red is 3, which is larger than that of (3).
  • the control by changing the gradation value by changing the area where the light L1 is emitted by selecting the divided pixels P2R1, P2R2, and P2R3 to be driven is the control by the area gradation.
  • the gradation value is further increased by switching between the light emission and the light emission stop of the inorganic light emitting element LED R.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal to drive only the divided pixel P2R1 of the sub-pixel P1R, and the light emission control signal (R3) as the inorganic light emitting element LED. It is a signal to make R emit light. Therefore, in the case of (5), the signal output circuit 70 drives the split pixel P2R1, and the inorganic light emitter control circuit 130 causes the inorganic light emitting element LED R to emit light. Therefore, in the case of (5), the gradation value is higher than that in the case of (2) by the amount of light emitted from the inorganic light emitting element LED R. For example, the gradation value of red is 4.
  • the gradation value in the case of (5) may be different from the gradation value in the cases of (1) to (4).
  • the magnitude relationship with the gradation value in the cases of (3) to (4) is It is optional.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal for driving the divided pixels P2R2 and P2R3 of the sub-pixel P1R, and emits light emission control signal (R3) as an inorganic light emission. It is a signal to cause the element LED R to emit light. Therefore, in the case of (6), the signal output circuit 70 drives the divided pixels P2R2 and P2R3, and the inorganic light emitter control circuit 130 causes the inorganic light emitting element LED R to emit light.
  • the gradation value is higher than that in the case of (3) by the amount of light emitted from the inorganic light emitting element LED R.
  • the gradation value of red is 5.
  • the gradation value in the case of (6) may be different from the gradation value in the cases (1) to (5), and for example, the magnitude relationship with the gradation value in the case of (4) is arbitrary.
  • the signal processing circuit 100 uses the area gradation signal (R2) as a signal for driving the divided pixels P2R1, P2R2, and P2R3 of the sub-pixel P1R, and uses the light emission control signal (R3) as a signal It is a signal to the effect that the inorganic light emitting element LED R emits light. Therefore, in the case of (7), the signal output circuit 70 drives the divided pixels P2R1, P2R2, and P2R3, and the inorganic light emitting body control circuit 130 causes the inorganic light emitting element LED R to emit light.
  • the gradation value is higher than that in the case of (4) by the amount of light emitted from the inorganic light emitting element LED R.
  • the gradation value of red is 6.
  • the gradation value in the case of (7) is higher than the gradation value in the cases (1) to (6).
  • the display device 1 controls the divided pixel P2 driven by the area gradation signal and controls the light emission of the inorganic light emitting element LED by the light emission control signal. As a result, the display device 1 switches the gradation of the color to be displayed. Furthermore, the number of gradations that can be expressed can be the number obtained by multiplying the number of gradations by the area gradation signal by the number of gradations that can be expressed by the inorganic light emitting element LED, and can be expressed. The number of gradations can be increased.
  • the number of gradation values that can be expressed includes the number of divided pixels P2 included in the sub-pixel P1, the number of inorganic light emitting element LEDs, and the number of inorganic light emitting element LEDs. It depends on the color to be expressed. For example, when the number of divided pixels P2 included in the sub-pixel P1 is four with respect to FIG. 9, 16 gradation values can be expressed. Further, with respect to FIG. 9, when the number of driveable inorganic light emitting elements LED R is two, 16 gradation values can be expressed. Further, when expressing complementary colors such as yellow, cyan, and magenta, since the two primary colors are combined, 16 gradation values can be expressed.
  • the number TR of the gradation value of red is shown by the equation (1), including the fact that the inorganic light emitting element LED in normal black (displayed in black) does not contribute to the gradation, and the number of gradation values of green.
  • the TG is represented by the equation (2)
  • the number TB of the blue gradation values is expressed by the equation (3)
  • the number TY of the yellow gradation values is expressed by the equation (4).
  • the number TC of the cyan gradation values is shown by the formula (5)
  • the number TM of the gradation values of magenta is shown by the formula (6).
  • the number of gradations that can be expressed by the area gradation of the divided pixel P2 included in one sub-pixel P1 is n
  • the number of gradations that can be expressed by the light emission of the inorganic light emitting element LED R is i
  • the number of gradations that can be expressed by the light emission of the element LED G is j
  • the number of gradations that can be expressed by the light emission of the inorganic light emitting element LED B is k.
  • n, i, j, and k are integers.
  • TR i ⁇ n-1 ⁇ ⁇ ⁇ (1)
  • TG j ⁇ n-1 ⁇ ⁇ ⁇ (2)
  • TB k ⁇ n-1 ⁇ ⁇ ⁇ (3)
  • TY i ⁇ j ⁇ n-2 ⁇ ⁇ ⁇ (4)
  • TC i ⁇ k ⁇ n-2 ⁇ ⁇ ⁇ (5)
  • TM j ⁇ k ⁇ n-2 ⁇ ⁇ ⁇ (6)
  • FIG. 10 is a diagram illustrating color gradation expression in a color space.
  • FIG. 10 shows an XY chromaticity diagram by CIE.
  • the area A1 in FIG. 10 shows a color space that can be expressed only by controlling the area gradation of the divided pixels P2.
  • Region A2 in FIG. 10 shows a color space that can be expressed by light emission from the inorganic light emitting element LED. Since the display device 1 according to the present embodiment controls the area gradation of the divided pixels P2 and also controls the light emission of the inorganic light emitting element LED, the color space that can be expressed is as shown in the area A.
  • the area A is narrower than the area A2 but wider than the area A1. Therefore, according to the present embodiment, by providing the inorganic light emitting element LED, the color space that can be expressed becomes wider and the gradation that can be expressed can be increased as compared with the control by the area gradation of the divided pixel P2. I understand.
  • the display device 1 includes a plurality of divided pixels P2 and an inorganic light emitting body U.
  • the divided pixel P2 includes a reflecting electrode 12, a counter electrode 16 provided to face the reflecting electrode 12, and a holding portion (latch portion 57) that holds a potential corresponding to gradation expression.
  • the inorganic illuminant U is provided on the side of the counter electrode 16 opposite to the side facing the reflection electrode 12, that is, on the upper side, and irradiates light toward the divided pixel P2.
  • the display device 1 according to the present embodiment can increase the number of gradations of the MIP type display device by irradiating the divided pixels P2 with light by the inorganic light emitting body U.
  • warm colors and yellow can be suitably displayed.
  • the color filter 14 is provided on the split pixel P2 on the side opposite to the side of the counter electrode 16 facing the reflecting electrode 12, that is, on the upper side.
  • the inorganic light emitter U is provided on the side of the color filter 14 opposite to the side facing the counter electrode 16, that is, on the upper side.
  • the inorganic light emitting body U functions as a front light and appropriately increases the number of gradations of the MIP type display device. be able to.
  • a plurality of divided pixels P2 including a color filter 14 of the same color constitute one sub-pixel P1.
  • a plurality of sub-pixels P1 including color filters 14 of different colors form one pixel P.
  • Pixels P are arranged in a matrix.
  • the pixel P is composed of a plurality of sub-pixels P1 displaying different colors
  • the sub-pixel P1 is composed of a plurality of divided pixels P2 displaying the same color.
  • the display device 1 according to the present embodiment can appropriately control the area gradation by the divided pixels P2, and in combination with the light emission control of the inorganic light emitter U, the number of gradations of the MIP type display device. Can be increased appropriately.
  • One inorganic light emitter U is provided for each of a plurality of pixels P.
  • the display device 1 according to the present embodiment by providing one inorganic light emitting body U for each of the plurality of pixels P, it is possible to suppress the number of the inorganic light emitting bodies U from becoming too large, and the power generated by lighting the inorganic light emitting body U. It is possible to suppress high consumption.
  • the inorganic light emitting body U includes a plurality of inorganic light emitting element LEDs that emit light of different colors from each other. By providing a plurality of inorganic light emitting element LEDs that emit light of different colors in this way, it is possible to appropriately increase the gradation of each color.
  • the display device 1 further includes an inorganic illuminant control unit (inorganic illuminant control circuit 130) that controls the irradiation of the light of the inorganic illuminant U.
  • the inorganic light emitting body control unit switches the gradation expressed by the divided pixel P2 by switching between light emission and light emission stop of the inorganic light emitting body U.
  • the display device 1 has the number of gradations of the MIP type display device by switching the drive of the divided pixel P2 by the divided pixel control unit (signal output circuit 70) and switching the light emission of the inorganic light emitting body U by the inorganic light emitting body control unit. Can be increased appropriately.
  • the inorganic light emitting body U includes a plurality of inorganic light emitting element LEDs that emit light of different colors, but the inorganic light emitting body U includes an inorganic light emitting element LED that emits light of one color. You may.
  • FIG. 11 is a schematic cross-sectional view of a display device according to another example of the present embodiment. As shown in FIG. 11, the inorganic light emitting body U may include one inorganic light emitting element LED and emit light of only one color. In this case, the inorganic light emitting element LED emits, for example, white light La. However, the color of the light emitted when only one color of light is emitted is not limited to white and is arbitrary. Further, the inorganic light emitting body U may include a plurality of inorganic light emitting element LEDs that emit light of the same color.
  • the number T of gradation values that can be expressed by the display device 1 is expressed by the following equation (7).
  • l is a gradation value that can be expressed by the light emission of the inorganic light emitter U, and l is an integer. Further, the number of gradation values in this case is the same for each color.
  • one pixel P has three sub-pixels P1, but the number of sub-pixels P1 possessed by the pixel P is not limited to three, and may be, for example, four.
  • FIG. 12 is a schematic diagram showing an example of a pixel array according to another example of the present embodiment.
  • FIG. 12 shows an example of a pixel arrangement when the number of sub-pixels P1 included in the pixel P is four.
  • the pixel P has sub-pixels P1G, P1W, P1R, and P1B.
  • the sub-pixels P1G, P1W, P1R, and P1B are arranged in 2 rows and 2 columns, and have different areas from each other.
  • the sub-pixel P1W displays a color different from that of the sub-pixels P1G, P1R, and P1B, and here, for example, white is displayed.
  • the sub-pixel P1W also has a plurality of divided pixels P2 like the other sub-pixels P1, and here, it has the divided pixels P2W1, P2W2, and P2W3.
  • the divided pixels P2W1, P2W2, and P2W3 display the same color, here, white.
  • the color displayed by the sub-pixels P1W (divided pixels P2W1, P2W2, P2W3) is not limited to white, and may be any color, for example, green that is closer to blue.
  • the arrangement order and area ratio of the sub-pixels P1G, P1W, P1R, and P1B are not limited to the example of FIG. 12 and are arbitrary. Further, the number of sub-pixels P1 included in the pixel P is not limited to three or four, and the number of divided pixels P2 possessed by the sub-pixel P1 is also not limited to three.
  • the display device 1 has, for example, an inorganic illuminant drive mode in which the inorganic illuminant U emits light and an inorganic illuminant stop mode in which the inorganic illuminant U is not emitted, depending on the intensity of the external light L. You may switch.
  • the inorganic light emitting body drive mode is a mode for controlling whether to make the inorganic light emitting body U emit light or stop emitting light according to the input gradation
  • the inorganic light emitting body stop mode is a mode for controlling light emission. In this mode, the body U is always stopped to emit light, and the gradation is switched only by the area gradation.
  • the display device 1 sets the inorganic illuminant drive mode when the intensity of the external light L is equal to or less than a predetermined value, and sets the inorganic illuminant stop mode when the intensity of the external light L is greater than the predetermined value.
  • the display device 1 causes the inorganic light emitting element LED to function as an optical sensor by passing a reverse bias current through at least a part of the inorganic light emitting element LED.
  • the inorganic light emitting element LED that functions as an optical sensor generates a current corresponding to the external light L.
  • the display device 1 determines that the intensity of the external light L is larger than the predetermined value, and from the inorganic light emitting element LED functioning as the optical sensor.
  • the current value of is not more than the threshold value, it is determined that the intensity of the external light L is not more than a predetermined value.
  • the intensity of the external light L is sufficient, visibility may be ensured without increasing the gradation. Therefore, in this way, the power consumption can be suppressed by driving the inorganic light emitter U only when the intensity of the external light L is low.
  • Display device 12 Reflective electrode 14 Color filter 16 Opposite electrode 18 Liquid crystal layer 57 Latch part (holding part) 58 Drive circuit unit LED inorganic light emitting element P pixel P1 sub pixel P2 divided pixel U inorganic light emitting body

Abstract

MIP型の表示装置において、色の階調数を増加させる。表示装置(1)は、反射電極(12)、反射電極(12)と対向して設けられる対向電極(16)、及び、階調表現に応じた電位を保持する保持部を含む複数の分割画素(P2)と、対向電極(16)の反射電極(12)に対向する側とは反対側に設けられ、分割画素(P2)に向けて光を照射する無機発光体(U)と、を備える。

Description

表示装置
 本発明は、表示装置に関する。
 画像を表示する表示装置は、複数の画素を備える。特許文献1には、複数の画素の各々がメモリを含む、いわゆるMIP(Memory In Pixel)型の表示装置が記載されている。MIP型の表示装置は、自然光などの外光を取り込んで反射することで画像を表示する反射型の液晶表示装置として用いられる場合がある。
特開平9-212140号公報
 ここで、MIP型の表示装置は、色の階調を面積階調によって表現する場合がある。面積階調とは、同じ色を表示する画素数を調整して色を表示する面積を調整することで、色の階調を表現する技術である。MIP型の表示装置は、画素毎にメモリを搭載しており、配置可能な画素数にも制限がある。従って、MIP型の表示装置においては、色の階調数が不足するおそれがあり、色の階調数を増加させることが望まれている。
 本発明は、上記の課題に鑑みてなされたもので、MIP型の表示装置において、色の階調数を増加させることが可能な表示装置を提供することを目的とする。
 本発明の一態様による表示装置は、反射電極、前記反射電極と対向して設けられる対向電極、及び、階調表現に応じた電位を保持する保持部を含む複数の分割画素と、前記対向電極の前記反射電極に対向する側とは反対側に設けられ、前記分割画素に向けて光を照射する無機発光体と、を備える。
図1は、本実施形態に係る表示装置の模式図である。 図2は、本実施形態に係る画素配列の一例を示す模式図である。 図3は、本実施形態に係る表示装置の回路構成例を示す図である。 図4は、本実施形態に係る分割画素の回路構成の一例を示すブロック図である。 図5は、本実施形態の分割画素の動作説明に供するタイミングチャートである。 図6は、本実施形態に係る表示装置の概略断面図である。 図7は、無機発光体の設けられる位置の一例を示す模式図である。 図8は、本実施形態に係る信号処理回路の構成例を示すブロック図である。 図9は、階調表現の一例を示す模式図である。 図10は、色の階調表現を色空間で説明した図である。 図11は、本実施形態の他の例に係る表示装置の概略断面図である。 図12は、本実施形態の他の例に係る画素配列の一例を示す模式図である。
 以下に、本発明の各実施形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 図1は、本実施形態に係る表示装置の模式図である。図1に示すように、本実施形態に係る表示装置1は、反射型の表示装置である。すなわち、表示装置1は、外光Lを表示領域OAで受光して、受光した外光Lを反射して光L1として出射することで、画像を表示する。さらに、表示装置1は、複数の画素の各々がメモリを含む、いわゆるMIP(Memory In Pixel)型の表示装置である。なお、以下、表示領域OAに平行な一方向を方向Xとし、表示領域に平行な一方向であって方向Xと直交する方向を、方向Yとする。また、表示領域に直交する方向、すなわち方向X及び方向Yに直交する方向を、方向Zとする。
 図2は、本実施形態に係る画素配列の一例を示す模式図である。表示装置1は、表示領域OA内において、色を表現する画素Pが設けられている。画素Pは、複数設けられており、方向X及び方向Yにおいてマトリクス状に並んでいる。画素Pは、複数の副画素P1を有する。1つの画素P内における複数の副画素P1は、互いに異なる色を表示する。本実施形態においては、画素Pは、3つの副画素P1として、副画素P1R、P1G、P1Bを有する。副画素P1Rは、本実施形態では原色としての赤色を表示する副画素であり、副画素P1Gは、本実施形態では原色としての緑色を表示する副画素であり、副画素P1Bは、本実施形態では原色としての青色を表示する副画素である。ただし、それぞれの副画素P1が表示する色は、原色としての赤色、緑色、青色に限られない。また、図2の例では、1つの画素P内において、副画素P1R、P1G、P1Bが、方向Xに沿って並んだストライプ状の副画素配列となっている。ただし、副画素配列はストライプ状に限られない。
 副画素P1は、複数の分割画素P2を含む。1つの副画素P1に含まれる複数の分割画素P2は、互いに同じ色を表示する。図2の例では、1つの副画素P1に3つの分割画素P2が含まれている。具体的には、副画素P1Rは、それぞれ原色としての赤色を表示する分割画素P2R1、P2R2、P2R3を含む。また、副画素P1Gは、それぞれ原色としての緑色を表示する分割画素P2G1、P2G2、P2G3を含む。また、副画素P1Bは、それぞれ原色としての青色を表示する分割画素P2B1、P2B2、P2B3を含む。ただし、1つの副画素P1に含まれる分割画素P2の数は、3つに限られず任意である。また、それぞれの分割画素P2が表示する色は、原色としての赤色、緑色、青色に限られない。また、図2の例では、1つの副画素P1内において、分割画素P2が、方向Yに沿って並んだ分割画素配列となっているが、分割画素配列は、方向Yに沿って並ぶことに限られない。
 表示装置1は、このように複数の分割画素P2を含み、分割画素P2毎に駆動することで、面積階調による画素Pの階調表現を行う。階調とは、色の濃淡を段階的に示す値であり、階調値の数が多いほど、色の濃淡を滑らかに表現することができる。面積階調については、後述する。
 次に、本実施形態に係る表示装置1の回路構成について説明する。図3は、本実施形態に係る表示装置の回路構成例を示す図である。図3に示すように、表示装置1は、画素P、すなわち複数の分割画素P2と、複数の無機発光体Uとを備える。無機発光体Uは、無機発光素子LEDを備える。無機発光素子LEDは、平面視で、例えば、3μm以上、300μm以下程度の大きさを有する無機発光ダイオード(LED:Light Emitting Diode)チップであり、マイクロLED(micro LED)と呼ばれる。各画素にマイクロLEDを備える表示装置1は、マイクロLED表示装置とも呼ばれる。なお、マイクロLEDのマイクロは、無機発光素子LEDの大きさを限定するものではない。なお、図3においては、説明の便宜上、無機発光体Uが分割画素P2の方向X側に設けられているように記載されているが、無機発光体Uの実際の位置は図3に示すものに限られない。無機発光体U及び無機発光素子LEDの設けられる位置などについては、後述する。
 分割画素P2は、例えば、回路ユニット51と、反射電極12と、対向電極16とを含む。回路ユニット51は、走査線62(62、62、62、・・・)と、信号線61(61、61、61、・・・)とに、電気的に接続されている。回路ユニット51は、少なくとも後述する駆動回路部58を含む。
 反射電極12は、分割画素P2毎に設けられ、回路ユニット51に接続されている。対向電極16は、1つ、複数、又は全部の反射電極12に対向して設けられる。液晶容量52は、反射電極12と対向電極16との間で発生する液晶材料の容量成分である。
 分割画素P2は、表示領域OA内における信号線61と走査線62との交差位置に設けられている。信号線61(61、61、61、・・・)の各一端は、信号出力回路70の各列に対応した出力端に接続されている。複数の走査線62(62、62、62、・・・)の各一端は、走査回路80の各行に対応した出力端に接続されている。複数の信号線61(61、61、61、・・・)は、分割画素P2を駆動する信号、すなわち、信号出力回路70から出力される映像信号を画素列毎に分割画素P2に伝送する配線である。また、複数の走査線62(62、62、62、・・・)は、分割画素P2を行単位で選択する信号、すなわち、走査回路80から出力される走査信号を画素行毎に伝送する配線である。
 表示装置1は、信号出力回路70と、走査回路80と、信号処理回路100と、無機発光体制御回路130とを備える。信号出力回路70及び走査回路80は、分割画素P2を駆動する回路であり、無機発光体制御回路130は、無機発光体Uを駆動する回路である。信号出力回路70、走査回路80、及び無機発光体制御回路130は、信号処理回路100と接続されている。信号処理回路100は、入力された階調値に基づいて、それぞれの画素Pが有する副画素P1のそれぞれの階調値を演算する。信号処理回路100は、階調値の演算結果を、各画素Pの面積階調信号として信号出力回路70に出力し、無機発光体制御回路130の階調信号として無機発光体制御回路130に出力する。信号出力回路70は、面積階調信号を含む映像信号を、それぞれの分割画素P2に出力する。無機発光体制御回路130は、階調信号に基づいた発光制御信号を、それぞれの無機発光体Uに出力する。また、信号処理回路100は、信号出力回路70と走査回路80と無機発光体制御回路130との動作を同期させるクロック信号を、信号出力回路70、走査回路80、及び無機発光体制御回路130に出力する。信号出力回路70と無機発光体制御回路130とは、映像信号と発光制御信号とを同期させて出力し、走査回路80は、信号出力回路70からの映像信号及び無機発光体制御回路130からの発光制御信号とに同期して、分割画素P2を走査する。無機発光体制御回路130は、このように分割画素P2に同期させて無機発光体Uを駆動する。無機発光体制御回路130は、アナログ駆動、PWM(Pulse Width Modulation)駆動、又は、アナログ駆動とPWM駆動との組み合わせにより、無機発光体Uを駆動してよい。
 なお、信号出力回路70と信号処理回路100は、一つのICチップ140に含まれる構成であってもよいし、信号出力回路70と信号処理回路100とを個別の回路チップとする構成を採用してもよい。また、ICチップ140に無機発光体制御回路130を搭載してもよい。図3では、ICチップ140等の回路チップが表示装置1の周辺領域SAにChip On Glass(COG)を用いて設けられているが、これは回路チップの実装の一例であってこれに限られるものでない。回路チップは、例えば、表示装置1と接続されているフレキシブルプリント基板(FPC:Flexible Printed Circuits)にChip On Film(COF)を用いて設けられていてもよい。
 図4は、本実施形態に係る分割画素の回路構成の一例を示すブロック図である。図5は、本実施形態の分割画素の動作説明に供するタイミングチャートである。図4に示すように、分割画素P2は、液晶容量(液晶セル)52に加えて、回路ユニット51として、3個のスイッチング素子54、55、56及びラッチ部57を有する駆動回路部58を備える。駆動回路部58は、SRAM(Static Random Access Memory)機能を備えている。駆動回路部58を備える分割画素P2は、SRAM機能付きの画素構成となっている。
 スイッチング素子54は、信号線61に一端が接続されている。スイッチング素子54は、走査回路80から走査信号φV(図5参照)が与えられることによってオン(閉)状態となり、信号出力回路70から信号線61を介して供給されるデータSIGを取り込む。ラッチ部57は、互いに逆向きに並列接続されたインバータ571、572を有しており、スイッチング素子54によって取り込まれたデータSIGに応じた電位を保持(ラッチ)する。
 スイッチング素子55、56の各一方の端子には、コモン電位VCOMとは逆相の制御パルスXFRP及び同相の制御パルスFRP(図5参照)が与えられる。スイッチング素子55,56の各他方の端子は共通に接続され、その共通接続ノードが、出力ノードNoutとなる。スイッチング素子55,56は、ラッチ部57の保持電位の極性に応じていずれか一方がオン状態となる。このような動作により、対向電極16にコモン電位VCOMが印加されている液晶容量52に対して、制御パルスFRP又は制御パルスXFRPが反射電極12に印加される。
 ラッチ部57の保持電位が負側極性の場合、液晶容量52の画素電位がコモン電位VCOMと同相になるため、反射電極12と対向電極16との間で電位差が生じない。このため、液晶層18(図6参照)には電界が発生することはない。したがって、この場合、液晶分子は初期配向状態からツイストすることはなく、ノーマリブラックの状態が維持される。この結果、かかる分割画素P2においては、光を透過しない。一方、ラッチ部57の保持電位が正側極性の場合、液晶容量52の画素電位がコモン電位VCOMと逆相になるため、反射電極12と対向電極16との間に電位差が生じ、液晶層18に電界が発生する。かかる電界によって液晶分子は初期配向状態からツイストして向きを変える。これによって、当該分割画素P2では光が透過する(透過状態)。このように、表示装置1は、階調表現に応じた電位を保持する保持部(ラッチ部57)が、複数の分割画素P2の各々に設けられている。
 それぞれの分割画素P2は、ラッチ部57の保持電位の極性に応じてスイッチング素子55,56のいずれか一方がオン状態となることで、液晶容量52の反射電極12に対して、制御パルスFRP又は制御パルスXFRPが印加される。これによって、当該分割画素P2の光透過のオン/オフが制御される。
 本例では、分割画素P2が内蔵するメモリとしてLatch回路で形成されるSRAMを用いる場合を例に挙げて説明したが、SRAMは一例に過ぎず、他のメモリ、例えば1トランジスタ1キャパシタで形成されるDRAM(Dynamic Random Access Memory)を用いる構成を採るようにしてもよい。
 また、本実施形態では、図5に示すように、例えば画素Pが白表示などの所定の階調値を表現する際に、無機発光体制御回路130から無機発光体Uに電位VUを印加して、無機発光体Uの無機発光素子LEDを駆動(発光)させる。
 次に、表示装置1の積層構造について説明する。図6は、本実施形態に係る表示装置の概略断面図である。図6に示すように、表示装置1は、方向Zにおいて、基板SUB1と基板SUB2が対向して設けられている。以下、方向Zにおいて、基板SUB1から基板SUB2に向かう方向側を、上側とし、基板SUB2から基板SUB1に向かう方向側を、下側とする。
 基板SUB1は、例えばガラス基板である。基板SUB1の上側には、ラッチ部57などを含む駆動回路部58と、絶縁層10と、反射電極12とが設けられている。ラッチ部57などを含む駆動回路部58は、基板SUB1の上側の表面に積層されている。駆動回路部58は、分割画素P2毎に設けられる。基板SUB1の上側の表面には、駆動回路部58以外にも、信号線61等の配線や電極などが設けられていてよい。駆動回路部58の上側には、絶縁層10が積層されている。絶縁層10は、透光性がある絶縁性の部材で構成される層であり、例えば樹脂によって構成される。絶縁層10の上側には、反射電極12が積層されている。すなわち、反射電極12は、絶縁層10の上側の表面に形成された膜状の電極である。反射電極12は、分割画素P2毎に設けられている。反射電極12は、光を反射可能な部材で構成されており、例えば、薄膜の銀(Ag)あるいはアルミニウム(Al)等によるメタル電極である。なお、反射電極12と駆動回路部58とは、絶縁層10内に設けられたスルーホールなどを介して互いに接続されている。
 基板SUB2は、例えばガラス基板であり、光を透過させる。基板SUB2の下側には、カラーフィルタ14と、ブラックマトリクスBMと、対向電極16とが設けられている。カラーフィルタ14は、基板SUB2の下側の表面に積層されている。カラーフィルタ14は、可視光のうち所定の波長帯の光を透過するフィルタである。カラーフィルタ14は、分割画素P2毎に設けられている。例えば、分割画素P2R1、P2R2、P2R3のそれぞれには、赤色の波長帯の光を透過するカラーフィルタ14が設けられており、分割画素P2G1、P2G2、P2G3のそれぞれには、緑色の波長帯の光を透過するカラーフィルタ14が設けられており、分割画素P2B1、P2B2、P2B3のそれぞれには、青色の波長帯の光を透過するカラーフィルタ14が設けられている。すなわち、1つの副画素P1に含まれるそれぞれの分割画素P2には、それぞれ同じ波長帯の光を透過するカラーフィルタ14が設けられている。また、複数のカラーフィルタ14同士の間には、ブラックマトリクスBMが設けられている。すなわち、隣り合う分割画素P2のカラーフィルタ14同士の間に、ブラックマトリクスBMが設けられている。
 カラーフィルタ14の下側には、対向電極16が設けられている。すなわち、対向電極16は、カラーフィルタ14の下側の表面に形成された膜状の電極である。対向電極16は、例えばITO(Indium Tin Oxide)等を用いて形成された、光を透過させる電極(透光電極)である。対向電極16は、方向Zにおいて反射電極12と対向する。なお、対向電極16は、分割画素P2毎に、すなわち反射電極12毎に設けられてもよいし、複数の分割画素P2(反射電極12)に対して共通に設けられてもよい。
 方向Zにおける対向電極16と反射電極12との間には、液晶層18が設けられる。液晶層18は、図示しないシール材で封止されている。シール材は、基板SUB1と基板SUB2の側方を接着して封止する。また、図示しないスペーサによって対向電極16と反射電極12の間隔が決定されている。液晶層18の液晶分子は、基板SUB1と基板SUB2とに設けられた図示しない配向膜によって初期配向状態が定められている。初期配向状態においては、液晶分子は光を透過させない。なお、このように液晶層18に電界を付与しない初期配向状態で光を透過させない状態をノーマリブラックと称する。
 以上のように積層される反射電極12と、液晶層18と、対向電極16と、カラーフィルタ14と、駆動回路部58(ラッチ部57)とで、1つの分割画素P2が構成される。
 また、表示装置1は、基板SUB2の上側に、調光層20と基板SUB3とカバー部Gとが設けられる。調光層20は、例えば上側に設けられた偏光板20Aと、偏光板20Aと基板SUB2との間に設けられた散乱層20Bとを有する。偏光板20Aは、特定方向に偏光した光を透過させる。散乱層20Bは、反射電極12に反射された光L1を散乱させる。ただし、調光層20は、例えば基板SUB3の上側の表面に設けられてもよい。また、調光層20は、必須の構成ではなく、設けられていなくてもよい。
 基板SUB3は、基板SUB2の上側、ここでは調光層20の上側に設けられる。基板SUB3は、例えばガラス基板であり、光を透過する。基板SUB3は、下側に、無機発光体U及び絶縁層22が設けられる。無機発光体Uは、基板SUB3の下側の表面に設けられる。すなわち、無機発光体Uは、対向電極16よりも上側、すなわち対向電極16よりも画像を表示する表示面側に設けられている。本実施形態において、無機発光体Uは、複数の無機発光素子LEDを有している。図6の例では、無機発光体Uは、3つの無機発光素子LED、LED、LEDを備えている。無機発光素子LEDは、副画素P1Rが表示する色(分割画素P2R1、P2R2、P2R3のカラーフィルタ14が透過する光の色)と同じ色の光を発光するものであり、ここでは赤色の光を発光する。無機発光素子LEDは、副画素P1Gが表示する色(分割画素P2G1、P2G2、P2G3のカラーフィルタ14が透過する光の色)と同じ色の光を発光するものであり、ここでは緑色の光を発光する。無機発光素子LEDは、副画素P1Bが表示する色(分割画素P2B1、P2B2、P2B3のカラーフィルタ14が透過する光の色)と同じ色の光を発光するものであり、ここでは青色の光を発光する。このように、本実施形態に係る無機発光体Uは、1つの画素Pにおける副画素P1(分割画素P2)のそれぞれと同じ色の光を発光する複数の無機発光素子LEDを備える。ただし、無機発光体Uが有する無機発光素子LEDが発光する色は任意であり、また、無機発光体Uが有する無機発光素子LEDの数も任意である。例えば、同じ色を発光する無機発光素子LEDの数が2つ以上であってもよい。
 無機発光体Uは、遮蔽膜24の上側に、無機発光素子LEDが設けられる構成となっている。遮蔽膜24は、無機発光素子LEDが発光する光を遮蔽(反射あるいは吸収)する膜である。無機発光素子LEDが発光する光Laは、下側、すなわち反射電極12に向けて照射される。なお、図6では、説明の便宜上、無機発光体U(無機発光素子LED)が、方向Zから見た場合に、分割画素P2と重畳している位置に設けられているが、無機発光体U(無機発光素子LED)は、方向Zから見た場合に、分割画素P2と重畳せず、分割画素P2からずれた位置に設けられていてもよい。例えば、無機発光体U(無機発光素子LED)が、方向Zから見た場合に、ブラックマトリクスBMに重畳した位置に設けられてもよい。
 絶縁層22は、無機発光体Uの下側に設けられ、無機発光体Uを覆う。絶縁層22は、透光性がある絶縁性の部材で構成される層であり、例えば樹脂によって構成される。カバー部Gは、基板SUB3の上側に設けられたカバーであり、表示装置1の表示領域OAにおける表面を構成する。カバー部Gは、光を透過する部材で構成されており、例えばガラス製の部材である。
 表示装置1は、以上のような積層構造となっている。従って、液晶層18の液晶分子が光を透過させる状態である場合に、外光Lは、カバー部G、基板SUB3、絶縁層22、調光層20、基板SUB2、カラーフィルタ14、対向電極16、液晶層18を通って、反射電極12に照射される。また、無機発光素子LEDが発光した光Laは、絶縁層22、調光層20、基板SUB2、カラーフィルタ14、対向電極16、液晶層18を通って、反射電極12に照射される。反射電極12は、照射された外光Lと光Laとを反射して、外光Lと光Laとの反射光である光L1を、液晶層18、対向電極16、カラーフィルタ14、基板SUB2、調光層20、絶縁層22、基板SUB3、カバー部Gを通って外部に出射する。
 なお、図6の例では、液晶層18を介して反射電極12と対向電極16とが対向する縦電界型の積層構造を説明したが、FFS(Fringe Field Switching:フリンジフィールドスイッチング)を含むIPS(In-Plane Switching:インプレーンスイッチング)等の横電界モードの積層構造であってもよい。この場合、対向電極16が基板SUB1側であって反射電極12の上側に設けられる。
 図7は、無機発光体の設けられる位置の一例を示す模式図である。図7は、方向Zから見た場合において、無機発光体Uの画素Pに対する位置を示している。無機発光体Uは、複数の画素Pに対して1つ設けられており、言い換えれば、複数の画素Pで構成される画素群P0毎に1つずつ設けられている。画素群P0は、本実施形態では、4行4列で並ぶ16個の画素Pを含む。無機発光素子LEDは、発光する光の広がる角度が例えば80度程度と大きいため、1つの無機発光体Uでこのように複数の画素Pに対し光を照射できる。ただし、画素群P0に含まれる画素Pの数は、これに限られず任意である。また、無機発光体Uは、複数の画素Pに対して1つ設けられることに限られず、例えば1つの画素Pに対して1つ設けられてもよい。
 図7では、説明の便宜上、無機発光体Uを大きく描いているため、方向Zから見て無機発光体Uの一部が画素Pに重なるが、実際には、無機発光体Uは、方向Zから見て、画素Pに重ならないことが好ましい。言い換えれば、無機発光体Uは、方向Zから見て、画素Pが設けられる領域よりも外側に設けられることが好ましく、図6に示したブラックマトリクスBMに重畳した位置にあるいはカラーフィルタの色が重なる部分に設けられることが好ましい。言い換えれば、無機発光体Uは、方向Zから見て、画素Pと画素Pとの間に設けられることが好ましい。なお、ここでの画素Pや、画素Pが設けられる領域とは、画素Pが有するカラーフィルタ14を指している。従って、画素Pと画素Pとの間とは、カラーフィルタ14とカラーフィルタ14との間であるといえる。また、無機発光体Uは、例えば、方向Zから見て、画素群P0が占める領域の中央部分に設けられることが好ましい。ただし、無機発光体Uが設けられる位置は、以上の説明に限られず任意であり、例えば方向Zから見て画素Pのカラーフィルタ14に重なってもよい。
 表示装置1は、以上のような構成となっている。次に、表示装置1による分割画素P2毎の階調値の制御方法について説明する。図8は、本実施形態に係る信号処理回路の構成例を示すブロック図である。図8に示すように、信号処理回路100は、第1処理部110と、第2処理部120と、第3処理部125と、ルックアップテーブル(LUT:Look Up Table)115とを有する。第1処理部110は、入力されたRGB(本実施形態では赤色、青色、及び緑色)毎の階調値(R、G、B)に基づいて、画素Pが有するそれぞれの副画素P1の階調値(R1、G1、B1)と、を特定する。階調値R1が、副画素P1Rの階調値であり、階調値G1が、副画素P1Gの階調値であり、階調値B1が、副画素P1Bの階調値である。LUT115は、階調値(R、G、B)に対して予め定められた副画素P1の階調値(R1、G1、B1)を示す情報を含むテーブルデータである。第1処理部110は、LUT115を参照して、入力された階調値(R、G、B)に対応する階調値(R1、G1、B1)を特定する。
 第2処理部120は、第1処理部110から、副画素P1の階調値(R1、G1、B1)を取得する。第2処理部120は、副画素P1の階調値(R1、G1、B1)に対応した複数の分割画素の各々に対する面積階調信号(R2、G2、B2)を信号出力回路70に出力する。面積階調信号(R2)は、分割画素P2R1、P2R2、P2R3のいずれを駆動するかを示す信号である。面積階調信号(G2)は、分割画素P2G1、P2G2、P2G3のいずれを駆動するかを示す信号である。面積階調信号(B2)は、分割画素P2B1、P2B2、P2B3のいずれを駆動するかを示す信号である。信号出力回路70は、面積階調信号(R2、G2、B2)に基づいた映像信号をそれぞれの分割画素P2に出力して、面積階調を表現させる。なお、分割画素P2を駆動するとは、分割画素P2が光L1を出射可能な状態にすることを意味し、さらに言えば、分割画素P2の反射電極12と対向電極16との間に電位差を生じさせて、液晶層18に電界を発生させることを指す。
 また、第3処理部125は、第1処理部110から、副画素P1の階調値(R1、G1、B1)を取得する。第3処理部125は、副画素P1の階調値(R1、G1、B1)に対応した発光制御信号(R3、G3、B3)を、無機発光体制御回路130に出力する。発光制御信号(R3)は、無機発光素子LEDを駆動するか、すなわち無機発光素子LEDに発光させるかを示す信号である。発光制御信号(G3)は、無機発光素子LEDを駆動するか、すなわち無機発光素子LEDに発光させるかを示す信号である。発光制御信号(B3)は、無機発光素子LEDを駆動するか、すなわち無機発光素子LEDに発光させるかを示す信号である。無機発光体制御回路130は、発光制御信号(R3、G3、B3)に基づき、無機発光素子LED、LED、LEDの発光を制御する。これにより、画素Pは、面積階調信号(R2、G2、B2)に基づいた面積階調に、無機発光素子LED、LED、LEDの発光も加えた階調の表現が可能となる。
 次に、発光素子LEDも加えた階調表現の一例について説明する。図9は、階調表現の一例を示す模式図である。図9は、一例として、副画素P1Rの階調表現を説明している。図9の例に示すように、副画素P1Rにより赤色の階調を表現する場合、(1)から(7)の7つの階調表現が可能となる。(1)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R1、P2R2、P2R3を駆動しない旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させない旨の信号とする。従って、(1)の場合、信号出力回路70は、分割画素P2R1、P2R2、P2R3を駆動せず、無機発光体制御回路130は、無機発光素子LEDに発光させない。そのため、(1)の場合、例えば赤色の階調値は、0となる。また、無機発光素子LEDが発光したとしても分割画素P2R1、P2R2、P2R3は駆動せず、つまり液晶層18が動かないため、ノーマリブラックであれば黒は黒のままであり無機発光素子LEDの発光は諧調に寄与しないことになる。
 (2)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R1のみを駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させない旨の信号とする。従って、(2)の場合、信号出力回路70は、分割画素P2R1を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させない。そのため、(2)の場合、分割画素P2R1のみから光L1が出射され、例えば赤色の階調値は、(1)より大きい、1となる。また、(3)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R2、P2R3を駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させない旨の信号とする。従って、(3)の場合、信号出力回路70は、分割画素P2R2、P2R3を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させない。そのため、(3)の場合、分割画素P2R2、P2R3から光L1が出射され、例えば赤色の階調値は、(2)より大きい、2となる。また、(4)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R1、P2R2、P2R3を駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させない旨の信号とする。従って、(4)の場合、信号出力回路70は、分割画素P2R1、P2R2、P2R3を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させない。そのため、(4)の場合、分割画素P2R1、P2R2、P2R3のみから光L1が出射され、例えば赤色の階調値は、(3)より大きい、3となる。
 以上のように、駆動させる分割画素P2R1、P2R2、P2R3を選択することで、光L1が出射される面積を変化させて階調値を変える制御が、面積階調による制御である。それに対し、本実施形態においては、無機発光素子LEDの発光と発光停止とを切り替えることで、さらに階調値を多くする。
 例えば(5)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R1のみを駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させる旨の信号とする。従って、(5)の場合、信号出力回路70は、分割画素P2R1を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させる。そのため、(5)の場合、無機発光素子LEDから発光された分、(2)の場合よりも階調値が高くなり、例えば赤色の階調値は、4となる。なお、(5)の場合の階調値は、(1)から(4)の場合の階調値と異なればよく、例えば(3)から(4)の場合の階調値に対する大小関係は、任意である。また、(6)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R2、P2R3を駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させる旨の信号とする。従って、(6)の場合、信号出力回路70は、分割画素P2R2、P2R3を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させる。そのため、(6)の場合、無機発光素子LEDから発光された分、(3)の場合よりも階調値が高くなり、例えば赤色の階調値は、5となる。なお、(6)の場合の階調値は、(1)から(5)の場合の階調値と異なればよく、例えば(4)の場合の階調値に対する大小関係は、任意である。また、(7)の場合、信号処理回路100は、面積階調信号(R2)を、副画素P1Rの分割画素P2R1、P2R2、P2R3を駆動する旨の信号とし、発光制御信号(R3)を、無機発光素子LEDに発光させる旨の信号とする。従って、(7)の場合、信号出力回路70は、分割画素P2R1、P2R2、P2R3を駆動させ、無機発光体制御回路130は、無機発光素子LEDに発光させる。そのため、(7)の場合、無機発光素子LEDから発光された分、(4)の場合よりも階調値が高くなり、例えば赤色の階調値は、6となる。なお、(7)の場合の階調値は、(1)から(6)の場合の階調値より高くなる。
 このように、本実施形態に係る表示装置1は、面積階調信号によって駆動する分割画素P2を制御すると共に、発光制御信号によって無機発光素子LEDの発光を制御する。これにより、表示装置1は、表示する色の階調を切り替える。さらに言えば、表現可能な階調の数を、面積階調信号による階調の数に対し、無機発光素子LEDによって表現可能な階調の数を乗じた数とすることができ、表現可能な階調の数を多くすることができる。
 なお、図9の例では、7つの階調値を表現可能としたが、表現可能な階調値の数は、副画素P1に含まれる分割画素P2の数、無機発光素子LEDの数、及び表現する色に応じて、異なる。例えば、図9に対し、副画素P1に含まれる分割画素P2の数が4つになった場合、16つの階調値を表現可能となる。また、図9に対し、駆動可能な無機発光素子LEDの数が2つになった場合、16つの階調値を表現可能となる。また、黄色、シアン、マゼンダなどの補色を表現する場合、2つの原色を組み合わせるものとなるため、16つの階調値を表現可能となる。すなわち、ノーマリブラック(黒表示)における無機発光素子LEDが諧調に寄与しないことも含め、赤色の階調値の数TRは、式(1)のように示され、緑色の階調値の数TGは、式(2)のように示され、青色の階調値の数TBは、式(3)のように示され、黄色の階調値の数TYは、式(4)のように示され、シアンの階調値の数TCは、式(5)のように示され、マゼンダの階調値の数TMは、式(6)のように示される。なお、1つの副画素P1に含まれる分割画素P2の面積階調で表現可能な階調の数をnとし、無機発光素子LEDの発光により表現可能な階調の数をiとし、無機発光素子LEDの発光により表現可能な階調の数をjとし、無機発光素子LEDの発光により表現可能な階調の数をkとしている。n、i、j、kは整数である。
 TR=i・n-1 ・・・(1)
 TG=j・n-1 ・・・(2)
 TB=k・n-1 ・・・(3)
 TY=i・j・n-2 ・・・(4)
 TC=i・k・n-2 ・・・(5)
 TM=j・k・n-2 ・・・(6)
 図10は、色の階調表現を色空間で説明した図である。図10は、CIEによるXY色度図を示している。図10においては、面積が大きいほど、表現可能な色の階調が多くなる。図10の領域A1は、分割画素P2の面積階調の制御のみで表現可能な色空間を示している。図10の領域A2は、無機発光素子LEDの発光によって表現可能な色空間を示している。本実施形態に係る表示装置1は、分割画素P2の面積階調の制御と共に、無機発光素子LEDの発光制御も行っているため、表現可能な色空間は、領域Aのようになる。領域Aは、領域A2より狭いが、領域A1より広くなっている。従って、本実施形態によると、無機発光素子LEDを設けることで、分割画素P2の面積階調による制御よりも、表現可能な色空間が広くなり、表現可能な階調を多くすることが出来ることが分かる。
 ここで、MIP型であり反射型の表示装置においては、分割画素P2毎にラッチ部57を設けるため、配置可能な分割画素P2の数にも制限がある。従って、MIP型の表示装置においては、色の階調数が不足するおそれがあり、色の階調数を増加させることが望まれている。それに対し、本実施形態に係る表示装置1は、複数の分割画素P2と、無機発光体Uとを備える。分割画素P2は、反射電極12、反射電極12と対向して設けられる対向電極16、及び、階調表現に応じた電位を保持する保持部(ラッチ部57)を含む。無機発光体Uは、対向電極16の反射電極12に対向する側とは反対側、すなわち上側に設けられ、分割画素P2に向けて光を照射する。本実施形態に係る表示装置1は、無機発光体Uによって分割画素P2に向けて光を照射することで、MIP型の表示装置の階調数を増加させることができる。無機発光体Uを設けることで、例えば暖色や黄色などを好適に表示することもできる。
 分割画素P2は、対向電極16の反射電極12と対向する側とは反対側、すなわち上側に、カラーフィルタ14が設けられる。無機発光体Uは、カラーフィルタ14の、対向電極16と対向する側とは反対側、すなわち上側に設けられる。本実施形態に係る表示装置1は、カラーフィルタ14の上側に無機発光体Uを設けることで、無機発光体Uがフロントライトとして機能し、MIP型の表示装置の階調数を適切に増加させることができる。
 また、同じ色のカラーフィルタ14を含む複数の分割画素P2が、1つの副画素P1を構成する。そして、異なる色のカラーフィルタ14を含む複数の副画素P1が、1つの画素Pを構成する。画素Pは、マトリクス状に並ぶ。本実施形態に係る表示装置1は、このように、画素Pが、異なる色を表示する複数の副画素P1で構成され、副画素P1が、同じ色を表示する複数の分割画素P2で構成される。従って、本実施形態に係る表示装置1は、分割画素P2による面積階調の制御を適切に行う事が可能となり、無機発光体Uの発光制御と組み合わせて、MIP型の表示装置の階調数を適切に増加させることができる。
 無機発光体Uは、複数の画素P毎に1つ設けられる。本実施形態に係る表示装置1は、複数の画素P毎に1つの無機発光体Uを設けることで、無機発光体Uの数が多くなり過ぎることを抑制し、無機発光体Uの点灯による電力消費が高くなることを抑制できる。
 また、無機発光体Uは、互いに異なる色の光を発光する複数の無機発光素子LEDを備える。このように異なる色の光を発光する複数の無機発光素子LEDを設けることで、それぞれの色の階調を適切に増加させることが可能となる。
 また、表示装置1は、無機発光体Uの光の照射を制御する無機発光体制御部(無機発光体制御回路130)を更に備える。無機発光体制御部は、無機発光体Uの発光と発光停止とを切り替えることで、分割画素P2が表現する階調を切り替える。この表示装置1は、分割画素制御部(信号出力回路70)による分割画素P2の駆動切り替えと、無機発光体制御部による無機発光体Uの発光切り替えとにより、MIP型の表示装置の階調数を適切に増加させることができる。
 なお、本実施形態では、無機発光体Uが、異なる色の光を発光する複数の無機発光素子LEDを備えたが、無機発光体Uは、1色の光を発光する無機発光素子LEDを備えてもよい。図11は、本実施形態の他の例に係る表示装置の概略断面図である。図11に示すように、無機発光体Uは、1つの無機発光素子LEDを備えて、1つの色の光のみを発光させるものであってよい。この場合、無機発光素子LEDは、例えば白色の光Laを発光する。ただし、1つの色の光のみを発光する場合にける光の色は、白色に限られず任意である。また、無機発光体Uは、同じ色の光を発光する複数の無機発光素子LEDを備えていてもよい。
 なお、無機発光体Uが白色の光を発光する場合、表示装置1が表現可能な階調値の数Tは、以下の式(7)となる。なお、lが、無機発光体Uの発光により表現可能な階調値であり、lは整数である。また、この場合の階調値の数は、色毎に同じである。
 T=l・n ・・・(7)
 また、本実施形態では、1つの画素Pが3つの副画素P1を有していたが、画素Pが有する副画素P1の数は、3つに限られず、例えば4つであってもよい。図12は、本実施形態の他の例に係る画素配列の一例を示す模式図である。図12は、画素Pが有する副画素P1の数が4つの場合の画素配列の例を示している。図12においては、画素Pが、副画素P1G、P1W、P1R、P1Bを有している。副画素P1G、P1W、P1R、P1Bは、2行2列に並んでおり、互いに面積が異なる。副画素P1Wは、副画素P1G、P1R、P1Bとは異なる色を表示するものであり、ここではたとえば白色を表示する。副画素P1Wも、他の副画素P1と同様に、複数の分割画素P2を有しており、ここでは、分割画素P2W1、P2W2、P2W3を有している。分割画素P2W1、P2W2、P2W3は、互いに同じ色、ここでは白色を表示する。ただし、副画素P1W(分割画素P2W1、P2W2、P2W3)が表示する色は白色に限られず任意であり、例えば、青色寄りの緑色などを表示するものであってもよい。また、副画素P1G、P1W、P1R、P1Bの配列順や、面積比も、図12の例に限られず任意である。また、画素Pが有する副画素P1の数は、3つや4つに限られないし、副画素P1が有する分割画素P2の数も、3つに限られない。
 また、本実施形態に係る表示装置1は、例えば外光Lの強度に応じて、無機発光体Uに発光させる無機発光体駆動モードと、無機発光体Uを発光させない無機発光体停止モードとを切り替えてもよい。無機発光体駆動モードは、入力された階調に応じて、上述のように、無機発光体Uを発光させるか発光停止させるかの制御を行うモードであり、無機発光体停止モードは、無機発光体Uを常に発光停止としておき、面積階調だけで階調切り替えを行うモードである。例えば、表示装置1は、外光Lの強度が所定値以下である場合に、無機発光体駆動モードとし、外光Lの強度が所定値より大きい場合に、無機発光体停止モードとする。この場合、表示装置1は、無機発光素子LEDの少なくとも一部に逆バイアスの電流を流し、無機発光素子LEDを光センサとして機能させる。光センサとして機能させた無機発光素子LEDは、外光Lに応じた電流を発生させる。表示装置1は、光センサとして機能させた無機発光素子LEDからの電流値が閾値より大きい場合、外光Lの強度が所定値より大きいと判断し、光センサとして機能させた無機発光素子LEDからの電流値が閾値以下の場合、外光Lの強度が所定値以下と判断する。外光Lの強度が十分の場合は、階調を増やさなくても視認性を確保できる場合がある。従って、このように、外光Lの強度が低い場合にのみ無機発光体Uを駆動させることで、消費電力を抑えることができる。
 また、本実施形態において述べた態様によりもたらされる他の作用効果について本明細書記載から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。
 1 表示装置
 12 反射電極
 14 カラーフィルタ
 16 対向電極
 18 液晶層
 57 ラッチ部(保持部)
 58 駆動回路部
 LED 無機発光素子
 P 画素
 P1 副画素
 P2 分割画素
 U 無機発光体

Claims (7)

  1.  反射電極、前記反射電極と対向して設けられる対向電極、及び、階調表現に応じた電位を保持する保持部を含む複数の分割画素と、
     前記対向電極の前記反射電極に対向する側とは反対側に設けられ、前記分割画素に向けて光を照射する無機発光体と、
     を備える、表示装置。
  2.  前記分割画素は、前記対向電極の前記反射電極と対向する側とは反対側に設けられるカラーフィルタをさらに含み、
     前記無機発光体は、前記カラーフィルタの前記対向電極と対向する側とは反対側に設けられる、請求項1に記載の表示装置。
  3.  同じ色の前記カラーフィルタを含む複数の前記分割画素が1つの副画素を構成し、異なる色の前記カラーフィルタを含む複数の前記副画素が1つの画素を構成し、前記画素がマトリクス状に並ぶ、請求項2に記載の表示装置。
  4.  前記無機発光体は、複数の前記画素毎に1つ設けられる、請求項3に記載の表示装置。
  5.  前記無機発光体は、互いに異なる色の光を発光する複数の無機発光素子を備える、請求項1から請求項4のいずれか1項に記載の表示装置。
  6.  前記無機発光体は、1色の光を発光する無機発光素子を備える、請求項1から請求項4のいずれか1項に記載の表示装置。
  7.  前記無機発光体の光の照射を制御する無機発光体制御部を更に備え、
     前記無機発光体制御部は、前記無機発光体の発光と発光停止とを切り替えることで、前記分割画素が表現する階調を切り替える、請求項1から請求項6のいずれか1項に記載の表示装置。
PCT/JP2020/017474 2019-05-10 2020-04-23 表示装置 WO2020230570A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/519,886 US11798505B2 (en) 2019-05-10 2021-11-05 Multilayered structure of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-089974 2019-05-10
JP2019089974A JP2020187179A (ja) 2019-05-10 2019-05-10 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/519,886 Continuation US11798505B2 (en) 2019-05-10 2021-11-05 Multilayered structure of display device

Publications (1)

Publication Number Publication Date
WO2020230570A1 true WO2020230570A1 (ja) 2020-11-19

Family

ID=73222408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017474 WO2020230570A1 (ja) 2019-05-10 2020-04-23 表示装置

Country Status (3)

Country Link
US (1) US11798505B2 (ja)
JP (1) JP2020187179A (ja)
WO (1) WO2020230570A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764258B (zh) * 2020-12-22 2022-06-28 厦门天马微电子有限公司 一种显示装置及其控制方法
JP2022190913A (ja) 2021-06-15 2022-12-27 株式会社ジャパンディスプレイ 表示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249336A (ja) * 2000-03-06 2001-09-14 Canon Inc 液晶素子、該液晶素子を備えた液晶装置、及び該液晶素子の製造方法
WO2001069584A1 (fr) * 2000-03-14 2001-09-20 Mitsubishi Denki Kabushiki Kaisha Afficheur d'image et procede d'affichage d'image
JP2001350441A (ja) * 2000-06-06 2001-12-21 Funai Electric Co Ltd 表示装置、および、携帯型電子機器
JP2007086762A (ja) * 2005-08-24 2007-04-05 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2013186294A (ja) * 2012-03-08 2013-09-19 Japan Display West Co Ltd 表示装置及び電子機器
JP2013218057A (ja) * 2012-04-06 2013-10-24 Sony Corp 表示装置および電子機器
JP2016161763A (ja) * 2015-03-02 2016-09-05 株式会社ジャパンディスプレイ 表示装置
JP2017111384A (ja) * 2015-12-18 2017-06-22 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485229B2 (ja) 1995-11-30 2004-01-13 株式会社東芝 表示装置
JP4032696B2 (ja) * 2001-10-23 2008-01-16 日本電気株式会社 液晶表示装置
EP1758072A3 (en) 2005-08-24 2007-05-02 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US20110074301A1 (en) * 2009-09-30 2011-03-31 Dimitry Goder Pulse-Width Modulated Signal Generator for Light-Emitting Diode Dimming
JP2017111386A (ja) * 2015-12-18 2017-06-22 株式会社ジャパンディスプレイ 表示装置
US10490130B2 (en) * 2017-02-10 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Display system comprising controller which process data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249336A (ja) * 2000-03-06 2001-09-14 Canon Inc 液晶素子、該液晶素子を備えた液晶装置、及び該液晶素子の製造方法
WO2001069584A1 (fr) * 2000-03-14 2001-09-20 Mitsubishi Denki Kabushiki Kaisha Afficheur d'image et procede d'affichage d'image
JP2001350441A (ja) * 2000-06-06 2001-12-21 Funai Electric Co Ltd 表示装置、および、携帯型電子機器
JP2007086762A (ja) * 2005-08-24 2007-04-05 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2013186294A (ja) * 2012-03-08 2013-09-19 Japan Display West Co Ltd 表示装置及び電子機器
JP2013218057A (ja) * 2012-04-06 2013-10-24 Sony Corp 表示装置および電子機器
JP2016161763A (ja) * 2015-03-02 2016-09-05 株式会社ジャパンディスプレイ 表示装置
JP2017111384A (ja) * 2015-12-18 2017-06-22 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
JP2020187179A (ja) 2020-11-19
US11798505B2 (en) 2023-10-24
US20220059042A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP5403860B2 (ja) カラー液晶表示装置
EP1591987B1 (en) Display device, color filter, and electronic apparatus
JP2016161920A (ja) 表示装置
WO2006070559A1 (ja) 表示パネルの駆動装置、表示パネル及びそれを備えた表示装置並びに表示パネルの駆動方法
JP2018194592A (ja) 表示装置
JP2007334224A (ja) 液晶表示装置
US11798505B2 (en) Multilayered structure of display device
US11847987B2 (en) Display device
JP2016126337A (ja) 表示装置およびその駆動方法
US11391981B2 (en) Display device with improved luminance and saturation
KR100933111B1 (ko) 듀얼 모드 디스플레이
JP5098272B2 (ja) 液晶表示装置
US9804455B2 (en) Display device
KR20150055319A (ko) 백라이트 어셈블리 및 이를 포함하는 표시 장치
US20210255520A1 (en) Display device
JP7137934B2 (ja) 表示装置
US10636370B2 (en) Display device
JP7046666B2 (ja) 表示装置
WO2020049966A1 (ja) 表示装置
US10580370B2 (en) Display device
WO2016059847A1 (ja) 表示装置
JP7288352B2 (ja) 表示装置
JP2023084047A (ja) 表示装置
JP2023084048A (ja) 表示装置
US20190146268A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806486

Country of ref document: EP

Kind code of ref document: A1