WO2020230260A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2020230260A1
WO2020230260A1 PCT/JP2019/019060 JP2019019060W WO2020230260A1 WO 2020230260 A1 WO2020230260 A1 WO 2020230260A1 JP 2019019060 W JP2019019060 W JP 2019019060W WO 2020230260 A1 WO2020230260 A1 WO 2020230260A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
transistor
control
circuit
internal node
Prior art date
Application number
PCT/JP2019/019060
Other languages
English (en)
French (fr)
Inventor
山本 薫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/019060 priority Critical patent/WO2020230260A1/ja
Priority to CN201980095590.1A priority patent/CN113785349B/zh
Priority to US17/603,531 priority patent/US11741897B2/en
Publication of WO2020230260A1 publication Critical patent/WO2020230260A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the following disclosure relates to a display device and its driving method, and more particularly to a display device including a pixel circuit including a display element driven by an electric current such as an organic EL element and its driving method.
  • organic EL display device including a pixel circuit including an organic EL element
  • the organic EL element is also called an OLED (Organic Light-Emitting Diode), and is a self-luminous display element that emits light with brightness corresponding to the current flowing through the organic EL element. Since the organic EL element is a self-luminous display element in this way, the organic EL display device is easily thinner, consumes less power, and has higher brightness than a liquid crystal display device that requires a backlight and a color filter. It can be changed.
  • each pixel circuit includes a drive transistor that controls the supply of current to the organic EL element.
  • a thin film transistor TFT
  • the threshold voltage changes due to deterioration.
  • a large number of drive transistors are provided in the display unit of the organic EL display device, and the degree of deterioration differs for each drive transistor, so that the threshold voltage varies.
  • the current efficiency decreases with the passage of time.
  • the external compensation method is known as one of the compensation processing methods. According to the external compensation method, the current flowing through the drive transistor or the organic EL element under predetermined conditions is measured by a circuit provided outside the pixel circuit. Then, the input image signal is corrected based on the measurement result. As a result, deterioration of the drive transistor and deterioration of the organic EL element are compensated.
  • a series of processes for measuring the current flowing in the pixel circuit outside the pixel circuit in order to compensate for the deterioration of the drive transistor or the organic EL element (display element) is referred to as “monitor process” and is called a monitor.
  • the period during which processing is performed is called the “monitoring period”.
  • a line that is the target of monitor processing during a unit period such as one frame period is called a “monitor line”
  • a line other than the monitor line is called a "non-monitor line”.
  • TFT characteristics the characteristics of the organic EL element provided in the pixel circuit
  • OLED characteristics the characteristics of the organic EL element provided in the pixel circuit
  • writing applying a desired potential (voltage) to the data signal line to charge the holding capacitance (capacitor) in the pixel circuit is called “writing", and a plurality of pixels included in the i-th line (i is an integer). Writing to the circuit is simply called “writing on line i”.
  • FIG. 63 is a circuit diagram showing a configuration of a unit circuit in a conventional organic EL display device that employs an external compensation method. Regarding the configuration shown in FIG.
  • the output signal Q1 output from the output terminal 57 is given to another unit circuit and is given to the scanning signal line as a scanning signal, and the output signal Q2 output from the output terminal 58 is a monitor. It is given to the monitor control line arranged in the display unit as a monitor control signal for controlling whether or not the processing can be executed.
  • the unit circuit includes a transistor T13 related to the control of the output signal Q1 and a transistor T16 related to the control of the output signal Q2, and controls the first internal node N1 and the transistor T16 connected to the control terminal of the transistor T13.
  • a transistor T15 is provided between the second internal node N2 connected to the terminal.
  • a high-level potential VDD which is a fixed potential, is given to the control terminal of the transistor T15 (see the portion designated by reference numeral 9 in FIG. 63).
  • VDD which is a fixed potential
  • the transistor T15 is maintained in the ON state except when the potential of the first internal node N1 or the second internal node N2 is higher than the normal high level.
  • FIG. 64 is a signal waveform diagram for explaining the operation of the unit circuit of the i-th stage when the writing of the i-th line (writing for image display) is performed.
  • the set signal S becomes high level in the period P900
  • the capacitor C11 is charged and the potential of the first internal node N1 rises.
  • the transistor T15 is in the ON state
  • the capacitor C12 is also charged and the potential of the second internal node N2 rises.
  • the first clock CKA changes from a low level to a high level.
  • the first internal node N1 is in a boosted state due to the presence of the capacitor C11, and the potential of the output signal Q1 rises sufficiently.
  • FIG. 65 is a signal waveform diagram for explaining the operation of the unit circuit of the i-th stage when the monitor processing is performed. It is assumed that the i-th line is the monitor line.
  • the set signal S becomes high level in the period P910
  • the potential of the first internal node N1 and the potential of the second internal node N2 rise in the same manner as in the period P900.
  • the first clock CKA changes from a low level to a high level.
  • the enable signal EN also changes from a low level to a high level.
  • the second internal node N2 is in a boosted state due to the presence of the capacitor C12, and the potential of the output signal Q2 rises sufficiently.
  • the enable signal EN changes from a high level to a low level.
  • the potential of the output signal Q2 and the potential of the second internal node N2 decrease.
  • the pixel circuit is initialized, and in the period P912, the pixel circuit on the i-th line is used for writing for characteristic detection.
  • the first clock CKA changes from high level to low level.
  • the potential of the output signal Q1 and the potential of the first internal node N1 decrease.
  • the enable signal EN changes from a low level to a high level.
  • the second internal node N2 is in the boosted state, and the potential of the output signal Q2 is sufficiently increased.
  • the current flowing in the pixel circuit is read out.
  • the enable signal EN changes from high level to low level.
  • the potential of the output signal Q2 and the potential of the second internal node N2 decrease.
  • the first clock CKA changes from a low level to a high level, the first internal node N1 is in a boosted state, and the potential of the output signal Q1 rises sufficiently.
  • a period having a sufficient length is provided as a period for reading the current flowing in the pixel circuit (period P913 in FIG. 65).
  • the first internal node during the period P913 is shown by the thick dotted line with reference numeral 91 in FIG. 66 due to off-leakage in the transistors T11 and T12 (see FIG. 63) in the unit circuit.
  • the potentials of N1 and the second internal node N2 decrease. Therefore, during the period P913, the potential of the output signal Q2 decreases as shown by the thick dotted line with reference numeral 92 in FIG.
  • a current read failure occurs.
  • the result of the monitor processing becomes abnormal, and a malfunction occurs.
  • the potential of the output signal Q2 must be maintained at a high level in the unit circuit 94 corresponding to the monitor line, whereas the potential of the output signal Q2 in the unit circuit 93 corresponding to the non-monitor line. Must be maintained at a low level (see Figure 67).
  • the enable signal EN is maintained at a high level during the period P913, an off-leak may occur in the transistor T16 during the period P913 in the unit circuit 93 corresponding to the non-monitoring line (reference numeral 95 in FIG. 67). See the attached arrow).
  • the following disclosure aims at suppressing the occurrence of malfunction due to off-leakage in a transistor with respect to a display device having an external compensation function.
  • the display device includes a pixel circuit including a display element driven by an electric current and a drive transistor for controlling the drive current of the display element, and the drive transistor or the display element.
  • An n-row x m-column pixel matrix composed of n ⁇ m (n and m are integers of 2 or more) pixel circuits, scanning signal lines provided corresponding to each row of the pixel matrix, and the pixels.
  • a display unit having data signal lines provided so as to correspond to each column of the matrix, and A data signal line drive circuit that applies a data signal to the data signal line, A scanning signal line drive circuit that applies a scanning signal to the scanning signal line, The first control signal line and A control circuit that controls the potential of the first control signal line and Equipped with a first reference potential line that supplies the first reference potential,
  • the scanning signal line drive circuit is composed of a shift register composed of a plurality of unit circuits connected to each corresponding scanning signal line.
  • Each unit circuit A first internal node, a first output terminal connected to another unit circuit, a control terminal connected to the first internal node, a first conductive terminal, and a second conductive terminal connected to the first output terminal.
  • a first output control circuit including a first output control transistor having A second internal node to which the same logical level potential as the first internal node is given, and a second output terminal that outputs an on-level signal during at least a part of the monitoring period in which the monitoring process is performed.
  • a second output control circuit including a second output control transistor having a control terminal connected to the second internal node, a first conduction terminal, and a second conduction terminal connected to the second output terminal.
  • the display device includes a pixel circuit including a display element driven by an electric current and a drive transistor for controlling the drive current of the display element, and the drive transistor or the display.
  • a display device having a function of executing a monitor process, which is a series of processes for measuring a current flowing in the pixel circuit outside the pixel circuit in order to compensate for deterioration of the element.
  • An n-row x m-column pixel matrix composed of n ⁇ m (n and m are integers of 2 or more) pixel circuits, scanning signal lines provided corresponding to each row of the pixel matrix, and the pixels.
  • a display unit having data signal lines provided so as to correspond to each column of the matrix, and A data signal line drive circuit that applies a data signal to the data signal line, A scanning signal line drive circuit that applies a scanning signal to the scanning signal line, The first control signal line and A control circuit that controls the potential of the first control signal line and Equipped with a first reference potential line that supplies the first reference potential,
  • the scanning signal line drive circuit is composed of a shift register composed of a plurality of unit circuits connected to each corresponding scanning signal line.
  • Each unit circuit A first internal node, a first output terminal connected to another unit circuit, a control terminal connected to the first internal node, a first conductive terminal, and a second conductive terminal connected to the first output terminal.
  • a first output control circuit including a first output control transistor having A second internal node to which the same logical level potential as the first internal node is given, and a second output terminal that outputs an on-level signal during at least a part of the monitoring period in which the monitoring process is performed.
  • a second output control circuit including a second output control transistor having a control terminal connected to the second internal node, a first conduction terminal, and a second conduction terminal connected to the second output terminal.
  • a first internal node control transistor with terminals and A stabilizing transistor having a control terminal, a first conductive terminal connected to the first internal node, and a second conductive terminal connected to the first control signal line. It includes a stabilizing circuit that controls the potential of the control terminal of the stabilizing transistor based on the potential of the first internal node.
  • the display device includes a pixel circuit including a display element driven by an electric current and a drive transistor for controlling the drive current of the display element, and the drive transistor or the drive transistor.
  • An n-row x m-column pixel matrix composed of n ⁇ m (n and m are integers of 2 or more) pixel circuits, scanning signal lines provided corresponding to each row of the pixel matrix, and the pixels.
  • a display unit having data signal lines provided so as to correspond to each column of the matrix, and A data signal line drive circuit that applies a data signal to the data signal line, A scanning signal line drive circuit that applies a scanning signal to the scanning signal line, Equipped with a first reference potential line that supplies the first reference potential,
  • the scanning signal line drive circuit is composed of a shift register composed of a plurality of unit circuits connected to each corresponding scanning signal line.
  • Each unit circuit A first internal node, a first output terminal connected to another unit circuit, a control terminal connected to the first internal node, a first conductive terminal, and a second conductive terminal connected to the first output terminal.
  • a first output control circuit including a first output control transistor having A second internal node to which the same logical level potential as the first internal node is given, and a second output terminal that outputs an on-level signal during at least a part of the monitoring period in which the monitoring process is performed.
  • a second output control circuit including a second output control transistor having a control terminal connected to the second internal node, a first conductive terminal, and a second conductive terminal connected to the second output terminal.
  • a first reset transistor having a control terminal, a first conductive terminal connected to the second output terminal, and a second conductive terminal connected to the first reference potential line. It includes a reset circuit connected to the first reference potential line that controls the potential of the control terminal of the first reset transistor based on the potential of the first internal node or the second internal node.
  • the drive method (of the display device) is a drive method of a display device having a pixel circuit including a display element driven by an electric current and a drive transistor for controlling the drive current of the display element.
  • the display device is An n-row x m-column pixel matrix composed of n ⁇ m (n and m are integers of 2 or more) pixel circuits, scanning signal lines provided corresponding to each row of the pixel matrix, and the pixels.
  • a display unit having data signal lines provided so as to correspond to each column of the matrix, and A data signal line drive circuit that applies a data signal to the data signal line, A scanning signal line drive circuit that applies a scanning signal to the scanning signal line, The first control signal line and Equipped with a first reference potential line that supplies the first reference potential,
  • the driving method is A scanning step of scanning the scanning signal line in order to write an image display data signal applied to the data signal line by the data signal line driving circuit to each pixel circuit.
  • Including a monitor step of executing a monitor process which is a series of processes for measuring a current flowing in the pixel circuit outside the pixel circuit, in order to compensate for deterioration of the drive transistor or the display element.
  • the scanning signal line drive circuit is composed of a shift register composed of a plurality of unit circuits connected to each corresponding scanning signal line.
  • Each unit circuit A first internal node, a first output terminal connected to another unit circuit, a control terminal connected to the first internal node, a first conductive terminal, and a second conductive terminal connected to the first output terminal.
  • a first output control circuit including a first output control transistor having A second internal node to which the same logical level potential as the first internal node is given, and a second output terminal that outputs an on-level signal during at least a part of the monitoring period in which the monitoring process is performed.
  • a second output control circuit including a second output control transistor having a control terminal connected to the second internal node, a first conduction terminal, and a second conduction terminal connected to the second output terminal.
  • a first internal node control transistor with terminals and A stabilizing transistor having a control terminal, a first conductive terminal connected to the first internal node, and a second conductive terminal connected to the first control signal line.
  • a stabilizing circuit that controls the potential of the control terminal of the stabilizing transistor based on the potential of the first internal node, and A first reset transistor having a control terminal, a first conductive terminal connected to the second output terminal, and a second conductive terminal connected to the first reference potential line. It includes a reset circuit that controls the potential of the control terminal of the first reset transistor based on the potential of the first internal node or the second internal node.
  • the first reference potential is applied to the first control signal line.
  • the monitor step a part of the period during which the potential of the first internal node in the unit circuit corresponding to the row to be monitored should be maintained at the potential to turn on the first output control transistor. During the period of, a potential for turning on the first output control transistor is applied to the first control signal line.
  • the unit circuit comprises a stabilizing transistor having a first conducting terminal connected to a first internal node and a second conducting terminal connected to a first control signal line.
  • a stabilizing circuit for controlling the potential of the control terminal of the stabilizing transistor is provided.
  • the second conductive terminal of the first internal node control transistor having the control terminal to which the signal for turning off the potential of the first internal node is given is connected to the first control signal line.
  • the potential of the first control signal line is controlled by the control circuit.
  • the unit circuit includes a first reset transistor having a first conductive terminal connected to the second output terminal and a second conductive terminal connected to the first reference potential line, and a control terminal of the first reset transistor.
  • a reset circuit for controlling the potential is provided. Therefore, during the monitoring period, the first reset transistor in the unit circuit corresponding to the non-monitoring line is turned on so that the output signal from the second output terminal of the unit circuit corresponding to the non-monitoring line is maintained at the off level.
  • FIG. 5 is a block diagram showing an overall configuration of an organic EL display device in the first embodiment. It is a figure for demonstrating the function of the source driver in the said 1st Embodiment.
  • FIG. 5 is a circuit diagram showing a part of a pixel circuit and a source driver in the first embodiment.
  • FIG. 5 is a circuit diagram showing another configuration example of a pixel circuit in the first embodiment.
  • it is a block diagram which shows the structure of 5 stages of the shift register which constitutes a gate driver. It is a figure for demonstrating the schematic operation when the operation mode is set to a monitor mode in the said 1st Embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit (operation when writing is performed in the corresponding line) when the operation mode is set to the non-monitor mode in the first embodiment. It is a figure for demonstrating the state of the unit circuit when the operation mode is set to the non-monitor mode in the 1st Embodiment. It is a figure for demonstrating the state of the unit circuit when the operation mode is set to the non-monitor mode in the 1st Embodiment. It is a figure for demonstrating the state of the unit circuit when the operation mode is set to the non-monitor mode in the 1st Embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit (operation when writing is not performed in the corresponding line) when the operation mode is set to the non-monitor mode in the first embodiment. In the first embodiment, it is a signal waveform diagram of a continuous three-frame period when the operation mode is set to the monitor mode.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit (operation when writing is not performed in the corresponding line) when the operation mode is set to the non-monitor mode in the first embodiment. In the first embodiment, it is a signal waveform diagram of a continuous three-frame period when the operation mode is set to the monitor mode.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the first embodiment. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above.
  • FIG. 1 It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. FIG.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the pixel circuit and the current monitor unit when the monitor process is performed in the first embodiment.
  • it is a signal waveform diagram for demonstrating the operation of the unit circuit corresponding to the non-monitor line when the operation mode is set to the monitor mode. It is a figure for demonstrating the state of the unit circuit corresponding to the non-monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above. It is a figure for demonstrating the state of the unit circuit corresponding to the non-monitor line when the operation mode is set to the monitor mode in the 1st Embodiment above.
  • FIG. 5 is a block diagram showing a configuration of five stages of shift registers constituting a gate driver in a modified example of the first embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit when the operation mode is set to the first mode in the modified example of the first embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit during the pause period when the operation mode is set to the second mode in the modified example of the first embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line during the monitoring period in the modified example of the first embodiment. It is a figure for demonstrating the state of the unit circuit of the monitoring period in the modification of the 1st Embodiment. It is a figure for demonstrating the state of the unit circuit of the monitoring period in the modification of the 1st Embodiment. It is a figure for demonstrating the state of the unit circuit of the monitoring period in the modification of the 1st Embodiment. It is a figure for demonstrating the state of the unit circuit of the monitoring period in the modification of the 1st Embodiment. FIG.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the pixel circuit and the current monitor unit when the monitor process is performed in the modified example of the first embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the non-monitoring line during the monitoring period in the modified example of the first embodiment.
  • it is a block diagram which shows the structure for 5 stages of the shift register which constitutes a gate driver.
  • It is a circuit diagram which shows the structure of the unit circuit in the gate driver in the 2nd Embodiment above.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the second embodiment.
  • FIG. 5 is a block diagram showing a configuration of five stages of shift registers constituting a gate driver in a modified example of the second embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line during the monitoring period in the modified example of the second embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the non-monitoring line during the monitoring period in the modified example of the second embodiment.
  • it is a block diagram which shows the structure for 5 stages of the shift register which constitutes a gate driver.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line when the operation mode is set to the monitor mode in the third embodiment.
  • it is a signal waveform diagram for demonstrating the operation of the unit circuit corresponding to the non-monitoring line when the operation mode is set to the monitor mode.
  • FIG. 5 is a block diagram showing a configuration for five stages of shift registers constituting a gate driver in a modified example of the third embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the monitor line during the monitor period in the modified example of the third embodiment.
  • FIG. 5 is a signal waveform diagram for explaining the operation of the unit circuit corresponding to the non-monitoring line in the monitoring period in the modified example of the third embodiment. It is a circuit diagram which shows the structure of the unit circuit in the gate driver in the conventional example. It is a signal waveform diagram for demonstrating operation of a unit circuit at the time of writing for image display in a prior art example. It is a signal waveform diagram for demonstrating the operation of a unit circuit when a monitor process is performed in a conventional example. It is a figure for demonstrating the malfunction caused by the off-leakage in a transistor in the prior art. It is a figure for demonstrating the malfunction caused by the off-leakage in a transistor in the prior art. It is a figure for demonstrating the malfunction caused by the off-leakage in a transistor in the prior art. It is a figure for demonstrating the malfunction caused by the off-leakage in a transistor in the prior art.
  • n and n are integers of 2 or more, i is an odd number of 3 or more (n-2) or less, and j is an integer of 1 or more and m or less.
  • FIG. 2 is a block diagram showing the overall configuration of the active matrix type organic EL display device according to the first embodiment.
  • This organic EL display device includes a display control circuit 10, a gate driver (scanning signal line drive circuit) 20, a source driver (data signal line drive circuit) 30, and a display unit 40.
  • the display control circuit 10 includes a compensation processing unit 12 that compensates for deterioration of the drive transistor and the organic EL element. That is, the organic EL display device according to this embodiment has an external compensation function.
  • the gate driver 20 and the display unit 40 are integrally formed on the substrate constituting the display unit 40. That is, the gate driver 20 is monolithic.
  • the display unit 40 is provided with m data signal lines SL (1) to SL (m) and n scanning signal lines GL (1) to GL (n) orthogonal to these. Further, n monitor control lines ML (1) to ML (n) are arranged on the display unit 40 so as to have a one-to-one correspondence with n scanning signal lines GL (1) to GL (n). It is set up.
  • the scanning signal lines GL (1) to GL (n) and the monitor control lines ML (1) to ML (n) are typically parallel to each other.
  • the display unit 40 has (n ⁇ m) pieces corresponding to the intersections of the data signal lines SL (1) to SL (m) and the scanning signal lines GL (1) to GL (n).
  • a pixel circuit 410 is provided.
  • the display unit 40 is also provided with a power supply line (not shown) common to each pixel circuit 410. More specifically, a power supply line (hereinafter referred to as "high level power supply line”) for supplying a high-level power supply voltage EL VDD for driving the organic EL element and a low-level power supply voltage ELVSS for driving the organic EL element. A power supply line to be supplied (hereinafter referred to as "low level power supply line”) is arranged. The high level power supply voltage EL VDD and the low level power supply voltage ELVSS are supplied from a power supply circuit (not shown).
  • the scanning signals given to the scanning signal lines GL (1) to GL (n) are also assigned the reference numerals GL (1) to GL (n), and the monitor control line ML (
  • the monitor control signals given to each of 1) to ML (n) are also assigned the reference numerals ML (1) to ML (n), and the data signals given to the data signal lines SL (1) to SL (m) are also assigned.
  • the symbols SL (1) to SL (m) are attached.
  • the display control circuit 10 receives an input image signal DIN sent from the outside and a timing signal group (horizontal synchronization signal, vertical synchronization signal, etc.) TG, and receives a digital video signal VD and a source control signal that controls the operation of the source driver 30.
  • the SCTL and the gate control signal GCTL that controls the operation of the gate driver 20 are output.
  • the source control signal SCTL includes a source start pulse signal, a source clock signal, a latch strobe signal, and the like.
  • the gate control signal GCTL includes a gate start pulse signal, a gate clock signal, an enable signal, and the like.
  • the digital video signal VD for image display compensates the input image signal DIN according to the monitor data (data measured to obtain the TFT characteristics and OLED characteristics) MO given by the compensation processing unit 12 from the source driver 30. It is generated by performing arithmetic processing.
  • the gate driver 20 is connected to the scanning signal lines GL (1) to GL (n) and the monitor control lines ML (1) to ML (n). As will be described later, the gate driver 20 is composed of shift registers composed of a plurality of unit circuits. The gate driver 20 applies a scanning signal to the scanning signal lines GL (1) to GL (n) based on the gate control signal GCTL output from the display control circuit 10, and monitors the monitor control lines ML (1) to ML (n). A monitor control signal is applied to n).
  • the source driver 30 is connected to the data signal lines SL (1) to SL (m).
  • the source driver 30 selectively performs an operation of driving the data signal lines SL (1) to SL (m) and an operation of measuring the current flowing through the data signal lines SL (1) to SL (m). That is, as shown in FIG. 3, the source driver 30 functionally includes a portion that functions as a data signal line driving unit 310 that drives the data signal lines SL (1) to SL (m), and a pixel circuit 410. A portion that functions as a current monitor unit 320 for measuring the current output from the data signal lines SL (1) to SL (m) is included.
  • the current monitor unit 320 measures the current flowing through the data signal lines SL (1) to SL (m) and outputs the monitor data MO based on the measured value.
  • the data signal lines SL (1) to SL (m) are not only used for transmitting the data signal for image display, but also as a drive transistor or an organic EL during the monitoring process. It is also used as a signal line for passing a current according to the characteristics of the element.
  • a drive system called "DEMUX" that shares the output (that is, the data signal) from the source driver 30 with a plurality of data signal lines SL can also be adopted.
  • the scanning signal is applied to the scanning signal lines GL (1) to GL (n)
  • the monitor control signal is applied to the monitor control lines ML (1) to ML (n)
  • the data signal line SL (1) To SL (m), an image based on the input image signal DIN is displayed on the display unit 40 by applying a data signal as a brightness signal. Further, since the monitor process is executed and the input image signal DIN is subjected to the compensation calculation process according to the monitor data MO, the deterioration of the drive transistor and the organic EL element is compensated.
  • the source driver 30 When the source driver 30 functions as the data signal line driving unit 310, the source driver 30 performs the following operations.
  • the source driver 30 receives the source control signal SCTL output from the display control circuit 10 and applies a voltage corresponding to the target luminance to each of the m data signal lines SL (1) to SL (m) as a data signal. ..
  • the source driver 30 sequentially holds the digital video signal VD indicating the voltage to be applied to each data signal line SL at the timing when the pulse of the source clock signal is generated, triggered by the pulse of the source start pulse signal.
  • the held digital video signal VD is converted into an analog voltage.
  • the converted analog voltage is applied to all the data signal lines SL (1) to SL (m) all at once as a data signal.
  • the source driver 30 functions as the current monitor unit 320, the source driver 30 applies an appropriate voltage for monitoring processing as a data signal to the data signal lines SL (1) to SL (m), whereby the data signal line SL (1) Each of the currents flowing through SL (m) is converted into a voltage.
  • the converted data is output from the source driver 30 as monitor data MO.
  • FIG. 4 is a circuit diagram showing a part of the pixel circuit 410 and the source driver 30. Note that FIG. 4 shows the pixel circuit 410 in the i-th row and the j-th column and the portion of the source driver 30 corresponding to the data signal line SL (j) in the j-th column.
  • the pixel circuit 410 includes one organic EL element L1, three transistors T1 to T3 (write control transistor T1 that controls writing to the capacitor C, and a drive transistor that controls the supply of current to the organic EL element L1. It includes T2, a monitor control transistor T3) that controls whether to detect TFT characteristics or OLED characteristics, and one capacitor (capacitive element) C.
  • the transistors T1 to T3 are n-channel thin film transistors.
  • an oxide TFT thin film transistor using an oxide semiconductor as a channel layer
  • an amorphous silicon TFT or the like
  • the oxide TFT include a TFT containing InGaZnO (indium gallium zinc oxide).
  • the control terminal is connected to the scanning signal line GL (i), the first conduction terminal is connected to the data signal line SL (j), and the second conduction terminal is the control terminal and the capacitor of the drive transistor T2. It is connected to one end of C.
  • the control terminal is connected to the second conductive terminal of the write control transistor T1 and one end of the capacitor C, the first conductive terminal is connected to the other end of the capacitor C and the high level power supply line, and the second The conduction terminal is connected to the first conduction terminal of the monitor control transistor T3 and the anode terminal of the organic EL element L1.
  • the control terminal is connected to the monitor control line ML (i)
  • the first conduction terminal is connected to the second conduction terminal of the drive transistor T2 and the anode terminal of the organic EL element L1, and the second conduction terminal is connected.
  • the terminal is connected to the data signal line SL (j).
  • the capacitor C one end is connected to the second conduction terminal of the write control transistor T1 and the control terminal of the drive transistor T2, and the other end is connected to the first conduction terminal of the drive transistor T2 and the high level power supply line. ..
  • the anode terminal is connected to the second conductive terminal of the drive transistor T2 and the first conductive terminal of the monitor control transistor T3, and the cathode terminal is connected to the low level power supply line.
  • the organic EL element L1 corresponds to a display element
  • the anode terminal of the organic EL element L1 corresponds to the first terminal
  • the cathode terminal of the organic EL element L1 corresponds to the second terminal.
  • the driving method will be described later, but according to the configuration according to the present embodiment, there is a concern that the display quality may deteriorate due to a difference in the length of the light emitting period of the organic EL element L1 between the monitor row and the non-monitor row. To. Therefore, the following configuration may be adopted so that the length of the light emitting period of the organic EL element L1 is the same in all the rows.
  • a light emission control line is provided in the display unit 40 so as to correspond to each line. Further, a light emission control transistor for controlling the light emission of the organic EL element L1 is provided in the pixel circuit 410. As shown in FIG.
  • the control terminal is connected to the light emission control line EM (i), and the first conduction terminal is the second conduction terminal of the drive transistor T2 and the first conduction of the monitor control transistor T3. It is connected to the terminal, and the second conductive terminal is connected to the anode terminal of the organic EL element L1.
  • the light emission control transistor T4 is turned off during a predetermined period during the monitor period (for example, periods P11 to P15 in FIG. 24).
  • the potential of the light emission control line EM (i) is controlled so that it is turned on during a period other than the above.
  • the current monitor unit 320 includes a D / A converter 306, an A / D converter 327, an operational amplifier 301, a capacitor 322, and three switches (switches 323, 324, and 325).
  • the operational amplifier 301 and the D / A converter 306 also function as components of the data signal line driving unit 310.
  • the current monitor unit 320 is given control signals S0, S1, and S2 for controlling the states of the three switches as source control signals SCTL.
  • the internal data line Sin (j) of the current monitor unit 320 is connected to the data signal line SL (j) via the switch 324.
  • the inverting input terminal is connected to the internal data line Sin (j), and the output from the D / A converter 306 is given to the non-inverting input terminal.
  • the capacitor 322 and the switch 323 are provided between the output terminal of the operational amplifier 301 and the internal data line Sin (j).
  • the control signal S2 is given to the switch 323.
  • An operational amplifier 301, a capacitor 322, and a switch 323 form an integrator circuit. Here, the operation of this integrator circuit will be described.
  • the switch 323 is in the ON state, the output terminal of the operational amplifier 301 and the inverting input terminal (that is, between the two electrodes of the capacitor 322) are in a short-circuit state.
  • the potentials of the output terminal of the operational amplifier 301 and the internal data line Sin (j) are equal to the output potentials from the D / A converter 306.
  • the switch 323 is switched from the on state to the off state, the capacitor 322 is charged based on the current flowing through the internal data line Sin (j). That is, the time integral value of the current flowing through the internal data line Sin (j) is accumulated in the capacitor 322.
  • the potential of the output terminal of the operational amplifier 301 changes according to the magnitude of the current flowing through the internal data line Sin (j).
  • the output from the operational amplifier 301 is converted into a digital signal by the A / D converter 327, and the digital signal is sent to the display control circuit 10 as monitor data MO.
  • the switch 324 is provided between the data signal line SL (j) and the internal data line Sin (j).
  • the control signal S1 is given to the switch 324. By switching the state of the switch 324 based on the control signal S1, the electrical connection state between the data signal line SL (j) and the internal data line Sin (j) is controlled. In the present embodiment, if the control signal S1 is at a high level, the data signal line SL (j) and the internal data line Sin (j) are electrically connected, and the control signal S1 is at a low level. For example, the data signal line SL (j) and the internal data line Sin (j) are electrically separated from each other.
  • the switch 325 is provided between the data signal line SL (j) and the control line CL.
  • the control signal S0 is given to the switch 325.
  • the electrical connection state between the data signal line SL (j) and the control line CL is controlled.
  • the control signal S0 is at a high level
  • the data signal line SL (j) and the control line CL are electrically connected
  • the control signal S0 is at a low level
  • the data signal The line SL (j) and the control line CL are electrically separated from each other.
  • the state of the data signal line SL (j) becomes high impedance.
  • the switch 324 when the switch 324 is turned off, the data signal line SL (j) and the internal data line Sin (j) are electrically separated from each other. At this time, if the switch 323 is in the off state, the potential of the internal data line Sin (j) is maintained.
  • AD conversion is performed by the A / D converter 327 while the potential of the internal data line Sin (j) is maintained in this way.
  • the gate driver 20 is composed of shift registers composed of a plurality of stages (a plurality of unit circuits: at least n unit circuits). A pixel matrix of n rows ⁇ m columns is formed in the display unit 40, and each stage (each unit circuit) of a shift register is provided so as to have a one-to-one correspondence with each row of the pixel matrix.
  • FIG. 6 is a block diagram showing a configuration for five stages of shift registers.
  • i is an odd number of 3 or more and (n-2) or less
  • a gate start pulse signal, a clock signal CK1, a clock signal CK2, an enable signal EN1, an enable signal EN2, a stabilization control signal VRD, and a stabilization control signal VRDB are given to this shift register as a gate control signal GCTL.
  • the signal line for transmitting the stabilization control signal VRD is referred to as a "first control signal line”
  • the signal line for transmitting the stabilization control signal VRDB is referred to as a "second control signal line”.
  • the control circuit for controlling the potentials of the first control signal line and the second control signal line is realized by the display control circuit 10.
  • the gate start pulse signal is a signal given to the unit circuit 22 (1) of the first stage as a set signal S, and is omitted in FIG.
  • Each unit circuit 22 has an input terminal for receiving a clock signal CK, an enable signal EN, a stabilization control signal VRD, a stabilization control signal VRDB, a set signal S, and a reset signal R, respectively, and an output signal Q1 and an output signal Q2. Includes an output terminal for outputting each.
  • the clock signal CK1 is given as the clock signal CK
  • the enable signal EN1 is given as the enable signal EN
  • the clock signal CK2 is given as the clock signal CK
  • the enable signal EN2 is given as the enable signal EN.
  • the stabilization control signal VRD and the stabilization control signal VRDB are commonly given to all unit circuits 22. That is, the first control signal line gives a common potential to all the unit circuits 22, and the second control signal line also gives a common potential to all the unit circuits 22.
  • the output signal Q1 from the unit circuit 22 in the previous stage is given as a set signal S to the unit circuit 22 in each stage, and the output signal Q1 from the unit circuit 22 in the next stage is given as a reset signal R.
  • the output signal Q1 from the unit circuit 22 of each stage is given to the unit circuit 22 of the previous stage as a reset signal R, is given to the unit circuit 22 of the next stage as a set signal S, and is given to the corresponding scanning signal line GL as a scanning signal.
  • the output signal Q2 from the unit circuit 22 of each stage is given to the corresponding monitor control line ML as a monitor control signal.
  • the scanning signal line GL is connected to the control terminal of the write control transistor T1 in the pixel circuit 410
  • the monitor control line ML is connected to the control terminal of the monitor control transistor T3 in the pixel circuit 410. Has been done.
  • FIG. 1 is a circuit diagram showing the configuration of the unit circuit 22 in this embodiment.
  • the unit circuit 22 includes twelve transistors M1 to M12 and two capacitors C1 and C2. Further, the unit circuit 22 has an input terminal connected to a power supply line (hereinafter referred to as "first reference potential line”) to which a low level potential VSS as a first reference potential is given, and a high as a second reference potential.
  • first reference potential line a power supply line
  • VSS low level potential
  • second reference potential line the input terminal connected to the power supply line to which the level potential VDD is given
  • a reference numeral 51 is attached to an input terminal for receiving a set signal S
  • a reference numeral 52 is attached to an input terminal for receiving a reset signal R
  • a reference numeral 53 is attached to an input terminal for receiving a clock signal CK.
  • the input terminal for receiving the enable signal EN is designated by the reference numeral 54
  • the input terminal for receiving the stabilization control signal VRD (the input terminal connected to the first control signal line) is designated by the reference numeral 55 to be stable.
  • the input terminal for receiving the conversion control signal VRDB (the input terminal connected to the second control signal line) is designated by a reference numeral 56
  • the output terminal for outputting the output signal Q1 is designated by a reference numeral 58
  • the output signal Q2 is assigned.
  • Reference numeral 59 is attached to the output terminal for outputting.
  • the output signal Q2 from the output terminal 59 is a high level (on level) output signal Q2 during a part of the monitoring period (periods P11, P13, and P14 in FIG. 16) in which the monitoring process is performed. Is output.
  • the high-level (on-level) output signal Q2 output from the output terminal 59 is a signal at a level that turns on the write control transistor T1 in the pixel circuit 410 to which the output terminal 59 is connected to perform monitor processing. (In other words, it is a signal at a level that causes the pixel circuit 410 to which the output terminal 59 is connected to operate for monitor processing).
  • the area (wiring) in which these are connected to each other is referred to as a "first internal node".
  • the first internal node is designated by the reference numeral N1.
  • the second conductive terminal of the transistor M11, the control terminal of the transistor M12, and one end of the capacitor C2 are connected to each other.
  • the area (wiring) in which these are connected to each other is referred to as a "second internal node".
  • the second internal node is designated by the reference numeral N2.
  • the control terminal of the transistor M3, the first conductive terminal of the transistor M4, and the second conductive terminal of the transistor M5 are connected to each other.
  • the area (wiring) in which these are connected to each other is referred to as a "third internal node".
  • the third internal node is designated by the reference numeral N3.
  • the first conductive terminal of the transistor M6, the second conductive terminal of the transistor M7, the control terminal of the transistor M8, and the control terminal of the transistor M9 are connected to each other.
  • the area (wiring) in which these are connected to each other is referred to as a "fourth internal node".
  • the fourth internal node is designated by the reference numeral N4.
  • the unit circuit 22 includes a first output control circuit 221 that controls the output of the output signal Q1, a second output control circuit 222 that controls the output of the output signal Q2, and stabilization of the potential of the first internal node N1.
  • a stabilizing circuit 223 for the purpose of achieving the above and a reset circuit 224 for suppressing the output of noise from the output terminals 58 and 59 are included.
  • the stabilization circuit 223 controls the potential of the control terminal of the transistor M3 based on the potential of the first internal node N1.
  • the reset circuit 224 controls the potentials of the control terminals of the transistors M8 and M9 based on the potentials of the first internal node N1.
  • the first output control circuit 221 includes a first internal node N1, a transistor M8, a transistor M10, a capacitor C1, an input terminal 53, and an output terminal 58.
  • the second output control circuit 222 includes a second internal node N2, a transistor M9, a transistor M12, a capacitor C2, an input terminal 54, and an output terminal 59.
  • the stabilization circuit 223 includes a third internal node N3, a transistor M4, a transistor M5, and an input terminal 56.
  • the reset circuit 224 includes a fourth internal node N4, a transistor M6, and a transistor M7.
  • the control terminal is connected to the input terminal 51, the first conduction terminal is connected to the second reference potential line, and the second conduction terminal is connected to the first internal node N1.
  • the control terminal is connected to the input terminal 52, the first conductive terminal is connected to the first internal node N1, and the second conductive terminal is connected to the input terminal 55.
  • the control terminal is connected to the third internal node N3, the first conductive terminal is connected to the first internal node N1, and the second conductive terminal is connected to the output terminal 55.
  • the control terminal is connected to the first internal node N1, the first conductive terminal is connected to the third internal node N3, and the second conductive terminal is connected to the first reference potential line.
  • the control terminal is connected to the second reference potential line, the first conduction terminal is connected to the input terminal 56, and the second conduction terminal is connected to the third internal node N3.
  • the control terminal is connected to the first internal node N1, the first conductive terminal is connected to the fourth internal node N4, and the second conductive terminal is connected to the first reference potential line.
  • the control terminal of the transistor M6 may be connected to the second internal node N2.
  • the control terminal and the first conduction terminal are connected to the second reference potential line (that is, a diode connection), and the second conduction terminal is connected to the fourth internal node N4.
  • the control terminal is connected to the fourth internal node N4, the first conductive terminal is connected to the output terminal 58, and the second conductive terminal is connected to the first reference potential line.
  • the control terminal is connected to the fourth internal node N4, the first conductive terminal is connected to the output terminal 59, and the second conductive terminal is connected to the first reference potential line.
  • the control terminal is connected to the first internal node N1, the first conductive terminal is connected to the input terminal 53, and the second conductive terminal is connected to the output terminal 58.
  • the control terminal is connected to the second reference potential line, the first conduction terminal is connected to the first internal node N1, and the second conduction terminal is connected to the second internal node N2.
  • the control terminal is connected to the second internal node N2, the first conductive terminal is connected to the input terminal 54, and the second conductive terminal is connected to the output terminal 59.
  • the second conductive terminal of the transistor M8 and the second conductive terminal of the transistor M9 are connected to the first reference potential line.
  • the low level potential VSS (first reference potential) applied to the first reference potential line is a potential that lowers the potentials of the output terminals 58 and 59 via the transistors M8 and M9 (details are detailed. , The potential at a level that turns off the write control transistor T1 and the monitor control transistor T3 in the pixel circuit 410 to which the output terminals 58 and 59 are connected).
  • one end is connected to the first internal node N1 and the other end is connected to the output terminal 58.
  • one end is connected to the second internal node N2 and the other end is connected to the output terminal 59.
  • a high level (on-level) potential VDD is given to the control terminal of the transistor M11.
  • This high level potential VDD is a potential at a level that keeps the transistor M11 in the on state except when the potential of the first internal node N1 or the second internal node N2 is higher than the normal high level. That is, the transistor M11 is maintained in the ON state except when the potential of the first internal node N1 or the second internal node N2 is higher than the normal high level.
  • the transistor M11 is turned off when the potential of the second internal node N2 becomes equal to or higher than a predetermined value, and electrically disconnects the first internal node N1 and the second internal node N2. As a result, the transistor M11 assists in raising the potential of the second internal node N2 when the second internal node N2 is in the boosted state.
  • the transistor M4 and the transistor M5 in the stabilization circuit 223 form a ratio circuit, and the capacity of the transistor M4 is sufficiently higher than the capacity of the transistor M5. That is, the on-current of the transistor M4 is sufficiently larger than the on-current of the transistor M5.
  • the transistor M6 and the transistor M7 in the reset circuit 224 form a ratio circuit, and the capacity of the transistor M6 is sufficiently higher than the capacity of the transistor M7. That is, the on-current of the transistor M6 is sufficiently larger than the on-current of the transistor M7.
  • the capacity of a transistor depends on the channel width and the channel length. Specifically, the larger the channel width, the higher the capacity of the transistor, and the shorter the channel length, the higher the capacity.
  • the transistor M2 realizes the first internal node control transistor
  • the transistor M3 realizes the stabilizing transistor
  • the transistor M4 realizes the first stabilizing control transistor
  • the transistor M5 realizes the second stabilizing.
  • the conversion control transistor is realized, the first reset control transistor is realized by the transistor M6, the second reset control transistor is realized by the transistor M7, the second reset transistor is realized by the transistor M8, and the first reset is realized by the transistor M9.
  • a transistor is realized, a first output control transistor is realized by a transistor M10, an output circuit control transistor is realized by a transistor M11, a second output control transistor is realized by a transistor M12, and a first output terminal is realized by an output terminal 58.
  • the second output terminal is realized by the output terminal 59.
  • ⁇ 1.4 Drive method> The driving method in this embodiment will be described.
  • the period from the start of scanning of the scanning signal line GL (1) for image display to the next start of scanning of the scanning signal line GL (1) is referred to as a “frame period”. That is.
  • a monitor mode and a non-monitor mode are prepared as operation modes related to the monitor process.
  • the monitor process is performed at any time during the operation of the organic EL display device. Specifically, monitoring processing is performed for at least one row in each frame period. The monitoring process is performed during the display period. The monitor processing performed during the display period is called "real-time monitor”.
  • the operation mode is set to the non-monitor mode, the monitor process is not performed during the operation of the organic EL display device. In other words, the display based on the input image signal DIN is performed in all lines throughout the period in which the organic EL display device is in operation.
  • each mode will be described with reference to FIGS. 7 and 8. Note that in FIGS. 7 and 8, the state of sequentially scanning from the scanning signal line GL (1) on the first line to the scanning signal line GL (n) on the nth line for writing for image display is oblique. It is schematically shown by a thick line (the same applies to FIGS. 37 to 39).
  • each frame period includes the monitor period as shown in FIG.
  • the period other than the monitoring period is the scanning period.
  • the scanning period is a period during which the scanning signal line GL is scanned for displaying an image. As described above, in the present embodiment, the above-mentioned real-time monitor is performed.
  • each frame period includes only the scanning period as shown in FIG. That is, the operation for writing is continuously performed without the monitor processing being performed.
  • the vertical period (the nth line from the scanning start time of the scanning signal line GL (1) of the first line) is higher than when the operation mode is set to the non-monitor mode.
  • the period until the end of scanning of the scanning signal line GL (n)) becomes longer.
  • the vertical period of the image display including the monitoring process is longer than the vertical period of the image display not including the monitoring process.
  • the present invention is not limited to this, and by adjusting the length of the return line period, the length of the vertical period of the image display including the monitor processing and the length of the vertical period of the image display not including the monitor processing are made the same. You can also do it.
  • the scanning step is realized by the operation during the scanning period
  • the monitor step is realized by the operation during the monitoring period
  • the clock signal CK1 is given as the clock signal CK and the enable signal EN1 is given as the enable signal EN to the unit circuit 22 (i) of the i-th stage.
  • the enable signal EN1, enable signal EN2, and stabilization control signal VRD are maintained at low level and the stabilization control signal VRDB is at high level, as shown in FIG. Be maintained.
  • FIG. 10 shows the state of the unit circuit 22 (i) in the period P00.
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at low levels. Focusing on the stabilization circuit 223, the transistor M5 is maintained in the on state, and the potential of the first internal node N1 is at a low level, so that the transistor M4 is in the off state. Since the stabilization control signal VRDB is at a high level in such a state, the potential of the third internal node N3 is at a high level.
  • the control terminal and the first conduction terminal of the transistor M7 are given a high level potential VDD, and the potential of the first internal node N1 is low level, so that the transistor M6 is in the off state. It has become. Therefore, the potential of the fourth internal node N4 is at a high level.
  • FIG. 11 shows the state of the unit circuit 22 (i) in the period P01.
  • the set signal S changes from a low level to a high level.
  • the pulse of the set signal S turns on the transistor M1 and charges the capacitor C1.
  • the potential of the first internal node N1 rises, and the transistor M10 is turned on.
  • the clock signal CK (clock signal CK1) is maintained at a low level, so that the output signal Q1 is maintained at a low level.
  • the capacitor C2 is also charged during the period P01.
  • the potential of the second internal node N2 rises, and the transistor M12 is turned on.
  • the enable signal EN (enable signal EN1) is maintained at a low level, so that the output signal Q2 is maintained at a low level.
  • the transistors M4 and M6 are turned on.
  • the "transistor M4 and the transistor M5" and the “transistor M6 and the transistor M7" each constitute a ratio circuit, and the capacity of the transistor M4 is sufficiently higher than the capacity of the transistor M5.
  • the capacity is sufficiently higher than the capacity of the transistor M7. Therefore, the potential of the third internal node N3 and the potential of the fourth internal node N4 are at low levels. As a result, the transistors M3, M8, and M9 are turned off.
  • FIG. 12 shows the state of the unit circuit 22 (i) in the period P02.
  • the clock signal CK clock signal CK1
  • the potential of the output terminal 58 rises as the potential of the input terminal 53 rises.
  • the capacitor C1 is provided between the first internal node N1-output terminal 58, the potential of the first internal node N1 also rises as the potential of the output terminal 58 rises (the first internal node N1 boosts). Become a state).
  • the clock signal CK (clock signal CK1) changes from high level to low level.
  • the potential of the output terminal 58 (the potential of the output signal Q1) decreases as the potential of the input terminal 53 decreases.
  • the potential of the output terminal 58 decreases, the potential of the first internal node N1 also decreases via the capacitor C1.
  • FIG. 13 shows the state of the unit circuit 22 (i) in the period P03.
  • the reset signal R changes from a low level to a high level.
  • the transistor M2 is turned on. Since the stabilization control signal VRD is maintained at a low level, the potential of the first internal node N1 becomes low level when the transistor M2 is turned on. As a result, the transistor M11 is turned on, and the potential of the second internal node N2 is also at a low level. Further, when the potential of the first internal node N1 becomes low level, the transistors M4 and M6 are turned off. As a result, the potential of the third internal node N3 and the potential of the fourth internal node N4 become high levels.
  • the pulse of the set signal S is not input to the unit circuit 22 (i) of the i-th stage. Therefore, as in the periods P00 and P03 of FIG. 9, the potential of the first internal node N1, the potential of the second internal node N2, the potential of the output signal Q1, and the potential of the output signal Q2 are maintained at a low level, and the potential of the third internal is maintained. The potential of node N3 and the potential of fourth internal node N4 are maintained at high levels (see FIG. 14).
  • FIG. 15 is a signal waveform diagram of consecutive three frame periods FR1 to FR3 when the operation mode is set to the monitor mode.
  • the frame period FR1 is monitored for the i-th line
  • the frame period FR2 is monitored for the (i + 1) line
  • the frame period FR3 is monitored for the (i + 2) line.
  • the monitoring process for one line is performed in each frame period.
  • monitoring processing for a plurality of lines may be performed during each frame period.
  • the scan signal GL corresponding to the non-monitored line is high level only once, but the scan signal GL corresponding to the monitor line is high level twice.
  • the scan signal line GL corresponding to the monitor line is given two scan pulses during each frame period.
  • the period from the rising point of the first scanning pulse to the falling point of the second scanning pulse is the monitoring period.
  • the monitor control signal ML corresponding to the non-monitoring line is maintained at a low level, but the monitor control signal ML corresponding to the monitor line becomes high level twice during the monitoring period.
  • the operation of the unit circuit 22 (i) in the i-th stage when the operation mode is set to the monitor mode will be described with reference to FIGS. 16 to 23.
  • the i-th line is the monitor line
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level
  • the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level.
  • the stabilization control signal VRD is at a low level
  • the stabilization control signal VRDB is at a high level.
  • the low-level stabilization control signal VRD (off-level signal applied to the first control signal line) is at a level at which the transistor M10 is turned off if it is given to the control terminal of the transistor M10. It is a signal.
  • the high-level stabilization control signal VRDB (on-level signal applied to the second control signal line) is at a level at which the transistor M3 is turned on if it is given to the control terminal of the transistor M3. It is a signal.
  • FIG. 17 shows the state of the unit circuit 22 (i) in the period P10.
  • the set signal S changes from a low level to a high level.
  • the pulse of the set signal S turns on the transistor M1 and charges the capacitor C1.
  • the capacitor C2 is also charged.
  • the potential of the first internal node N1 rises and the transistor M10 is turned on, and the potential of the second internal node N2 rises and the transistor M12 is turned on.
  • the clock signal CK clock signal CK1
  • the enable signal EN enable signal EN1
  • the potential of the third internal node N3 and the potential of the fourth internal node N4 become low levels as in the period P01 of FIG.
  • FIG. 18 shows the state of the unit circuit 22 (i) in the period P11.
  • the clock signal CK clock signal CK1
  • the potential of the output terminal 58 rises as the potential of the input terminal 53 rises.
  • the potential of the first internal node N1 also rises via the capacitor C1.
  • a large voltage is applied to the control terminal of the transistor M10, and the potential of the output signal Q1 rises to a level sufficient to turn on the write control transistor T1 to which the output terminal 58 is connected.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) rises as the potential of the input terminal 54 rises.
  • the potential of the second internal node N2 also rises via the capacitor C2 (the second internal node N2 is in the boost state).
  • a large voltage is applied to the control terminal of the transistor M12, and the potential of the output signal Q2 rises to a level sufficient to turn on the monitor control transistor T3 to which the output terminal 59 is connected.
  • FIG. 19 shows the state of the unit circuit 22 (i) in the period P12.
  • the enable signal EN (enable signal EN1) changes from a high level to a low level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) decreases as the potential of the input terminal 54 decreases.
  • the potential of the second internal node N2 also decreases via the capacitor C2.
  • the clock signal CK (clock signal CK1) changes from high level to low level.
  • the potential of the output terminal 58 (the potential of the output signal Q1) decreases as the potential of the input terminal 53 decreases.
  • the stabilization control signal VRDB changes from high level to low level (off-level potential is applied to the second control signal line).
  • This low-level stabilization control signal VRDB is a signal at a level at which the transistor M3 is turned off if it is given to the control terminal of the transistor M3.
  • FIG. 20 shows the state of the unit circuit 22 (i) in the periods P13 to P14.
  • the period P13 is a period for stabilizing the measurement current flowing through the data signal line SL
  • the period P14 is a period for measuring the current outside the pixel circuit 410.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the second internal node N2 and the potential of the output signal Q2 rise as in the period P11.
  • the stabilization control signal VRD changes from a low level to a high level (an on-level potential is applied to the first control signal line).
  • This high-level stabilization control signal VRD is a signal at a level at which the transistor M10 is turned on if it is given to the control terminal of the transistor M10 (in other words, the first internal node during the periods P13 to P14).
  • the voltage between the first conductive terminal and the second conductive terminal becomes smaller with respect to the transistors M2 and M3, so that the first caused by the off-leakage in the transistors M2 and M3 throughout the periods P13 to P14.
  • the decrease in potential of the internal node N1 and the second internal node N2 is suppressed.
  • the enable signal EN (enable signal EN1) changes from high level to low level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) decreases as the potential of the input terminal 54 decreases.
  • the potential of the second internal node N2 also decreases via the capacitor C2.
  • the stabilization control signal VRD changes from high level to low level.
  • FIG. 21 shows the state of the unit circuit 22 (i) in the period P15.
  • the stabilization control signal VRDB changes from low level to high level.
  • the transistor M4 since the potential of the first internal node N1 is maintained at a high level, the transistor M4 is maintained in the ON state. Therefore, the potential of the third internal node N3 is maintained at a low level.
  • FIG. 22 shows the state of the unit circuit 22 (i) in the period P16.
  • the clock signal CK (clock signal CK1) changes from a low level to a high level.
  • the potential of the first internal node N1 and the potential of the output signal Q1 rise as in the period P11.
  • the enable signal EN (enable signal EN1) is maintained at a low level during the period P16, the potential of the second internal node N2 does not rise.
  • the clock signal CK (clock signal CK1) changes from high level to low level.
  • the potential of the output terminal 58 (the potential of the output signal Q1) decreases as the potential of the input terminal 53 decreases.
  • the potential of the first internal node N1 also decreases via the capacitor C1.
  • FIG. 23 shows the state of the unit circuit 22 (i) in the period P17.
  • the reset signal R changes from a low level to a high level.
  • the transistor M2 is turned on.
  • the potentials of the first internal node N1 and the second internal node N2 are at a low level
  • the potentials of the third internal node N3 and the potential of the fourth internal node N4 are at a high level, as in the period P03 of FIG. Become.
  • the write control transistor T1 is turned on during the periods P11, P12, and P16, and the monitor control transistor T3 is turned on during the periods P11, P13, and P14.
  • the monitoring process for the pixel circuit 410 on the i-th row is performed during the periods P11 to P16.
  • writing is performed based on the data potential Vd (i-1) for image display in the (i-1) th line.
  • the scan signal GL (i) and the monitor control signal ML (i) are low level. Therefore, the write control transistor T1 and the monitor control transistor T3 are in the off state.
  • the control signals S2 and S1 are at a high level, and the control signals S0 are at a low level. Therefore, the switches 323 and 324 are in the on state, and the switch 325 is in the off state.
  • the data signal line SL (j) and the internal data line Sin (j) are electrically connected.
  • the scanning signal GL (i) and the monitor control signal ML (i) change from low level to high level.
  • the write control transistor T1 and the monitor control transistor T3 are turned on.
  • an initialization potential Vpc that initializes the state of the pixel circuit 410 is applied to the data signal line SL (j).
  • the state of the capacitor C and the anode potential of the organic EL element L1 are initialized.
  • the monitor control signal ML (i) changes from high level to low level.
  • the monitor control transistor T3 is turned off.
  • the characteristic detection potential Vr_TFT or the characteristic detection potential Vr_OLED is applied to the data signal line SL (j).
  • the characteristic detection potential Vr_TFT is a potential set so that a current flows through the drive transistor T2 but no current flows through the organic EL element L1.
  • the characteristic detection potential Vr_OLED is a potential set so that a current flows through the organic EL element L1 but no current flows through the drive transistor T2.
  • the scanning signal GL (i) changes from high level to low level
  • the monitor control signal ML (i) changes from low level to high level.
  • the write control transistor T1 is turned off, and the monitor control transistor T3 is turned on.
  • the current measurement potential Vm_TFT or the current measurement potential Vm_OLED is applied to the data signal line SL (j).
  • the current flowing through the drive transistor T2 flows to the current monitor unit 320 via the monitor control transistor T3 and the data signal line SL (j), and the OLED characteristics are measured.
  • a current flows from the current monitor unit 320 to the organic EL element L1 via the data signal line SL (j) and the monitor control transistor T3.
  • the switch 323 is in the ON state, and no charge is accumulated in the capacitor 322.
  • the period P13 is set to a length sufficient for the measurement current flowing through the data signal line SL (j) to be stable.
  • the control signal S2 changes from a high level to a low level.
  • the switch 323 is turned off, and the operational amplifier 301 and the capacitor 322 function as an integrating circuit.
  • the output voltage of the operational amplifier 301 becomes a voltage corresponding to the current flowing through the data signal line SL (j).
  • the control signal S1 changes from a high level to a low level
  • the control signal S0 changes from a low level to a high level.
  • the switch 324 is turned off and the switch 325 is turned on.
  • the data signal line SL (j) and the internal data line Sin (j) are electrically separated from each other.
  • the output voltage of the operational amplifier 301 (charging voltage of the capacitor 322) is converted into a digital signal by the A / D converter 327.
  • the digital signal is sent to the display control circuit 10 as monitor data MO and is used for correcting the input image signal DIN.
  • the control signals S2 and S1 change from low level to high level, and the control signal S0 changes from high level to low level.
  • the switches 323 and 324 are turned on, and the switch 325 is turned off.
  • the scanning signal GL (i) changes from a low level to a high level.
  • the write control transistor T1 is turned on.
  • the data potential Vd (i) for displaying an image is applied to the data signal line SL (j), and writing is performed based on the data potential Vd (i) in the pixel circuit 410 of the i-th row and the j-th column.
  • the scanning signal GL (i) changes from a high level to a low level.
  • the write control transistor T1 is turned off.
  • writing is performed on the (i + 1) th line based on the data potential Vd (i + 1) for displaying an image.
  • the organic EL element L1 emits light based on the writing in the period P16.
  • the period P11 corresponds to the initialization period
  • the period P12 corresponds to the measurement writing period
  • the period P14 corresponds to the measurement period
  • the period P16 corresponds to the second writing period.
  • the operation of the unit circuit 22 (i) in the i-th stage when it is assumed that the i-th line is a non-monitoring line will be described. However, it is assumed that the monitor processing is performed on the monitor line during the period of interest here.
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level, and the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level.
  • the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level.
  • FIG. 26 shows the state of the unit circuit 22 (i) in the period P10.
  • the clock signal CK2 changes from a low level to a high level, but the clock signal CK2 is not input to the unit circuit 22 (i). Therefore, the state of the unit circuit 22 (i) is maintained in the state immediately before the start time of the period P10.
  • FIG. 27 shows the state of the unit circuit 22 (i) in the period P11.
  • the clock signal CK clock signal CK1
  • the enable signal EN enable signal EN1
  • the potential of the first internal node N1 and the potential of the second internal node N2 are maintained at a low level
  • the potential of the output terminal 58 (the potential of the output signal Q1) and the potential of the output terminal 59 (the potential of the output signal Q2). Potential) is maintained at a low level.
  • FIG. 28 shows the state of the unit circuit 22 (i) in the period P12.
  • the enable signal EN (enable signal EN1) changes from a high level to a low level, but the state of the unit circuit 22 (i) is maintained in the state of the period P11.
  • the stabilization control signal VRDB changes from high level to low level. As a result, the potential of the third internal node N3 becomes low level.
  • FIG. 29 shows the state of the unit circuit 22 (i) in the periods P13 to P14.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) is maintained at a low level.
  • the stabilization control signal VRD changes from a low level to a high level.
  • the transistor M9 is kept on.
  • a low level potential VSS is given to the second conduction terminal of the transistor M9.
  • the potential of the output terminal 59 (potential of the output signal Q2) is maintained at a low level. Further, during the periods P13 to P14, the potential of the third internal node N3 is maintained at a low level, so that the transistor M3 is maintained in the off state. Therefore, it is prevented that a current flows from the output terminal 55 to the first internal node N1 via the transistor M3.
  • FIG. 30 shows the state of the unit circuit 22 (i) in the period P15.
  • the stabilization control signal VRDB changes from low level to high level.
  • the transistor M4 since the potential of the first internal node N1 is maintained at a low level, the transistor M4 is maintained in the off state. Therefore, when the stabilization control signal VRDB becomes high level, the potential of the third internal node N3 becomes high level.
  • FIG. 31 shows the state of the unit circuit 22 (i) in the period P16.
  • the clock signal CK clock signal CK1
  • the clock signal CK1 changes from a low level to a high level.
  • the potential of the output terminal 58 the potential of the output signal Q1 is maintained at a low level.
  • the period P17 is the same as the period P10 (see FIG. 26).
  • the stabilization control signal VRD is generated at the start of the period P13.
  • the stabilization control signal VRDB changes from low level to high level at the start of period P15. That is, the display control circuit 10 applies the potential applied to the first control signal line (potential of the stabilization control signal VRD) to the second control signal line before changing it from the low level to the high level during the monitoring period.
  • the potential (potential of the stabilization control signal VRDB) is changed from high level to low level, and the potential applied to the first control signal line is changed from high level to low level, and then applied to the second control signal line.
  • the potential to be changed is changed from low level to high level.
  • the transistor M3 is turned on in the unit circuit 22 corresponding to the non-monitoring line.
  • the potential of the output terminal 55 rises when it is maintained.
  • the stabilization control signal VRDB is changed from the low level to the high level before the stabilization control signal VRD is changed from the high level to the low level, it is stable when the potential of the output terminal 55 is at the high level.
  • the conversion control signal VRDB becomes high level, the transistor M3 is turned on. As a result, the potential of the first internal node N1 rises even though the potential of the first internal node N1 should be maintained at a low level. Therefore, the stabilization control signals VRD and VRDB are controlled as described above.
  • the transistor M3 in which the first conductive terminal is connected to the first internal node N1 and the second conductive terminal is connected to the first control signal line, and the control terminal of the transistor M3 A stabilizing circuit 223 that controls the potential is included.
  • the second conduction terminal of the transistor M2 having the control terminal to which the reset signal R for lowering the potential of the first internal node N1 is given is connected to the first control signal line.
  • the potential of the first control signal line is controlled by the display control circuit 10. Since the above configuration is adopted, as shown in FIG.
  • the period P13 for stabilizing the current and the period P14) for measuring the current outside the pixel circuit 410 the occurrence of off-leakage in the transistor M2 in the unit circuit 22 corresponding to the monitor line is suppressed.
  • a high level potential can be applied to the control signal line (the potential of the stabilization control signal VRD is set to a high level). Since the first conduction terminal of the transistor M1 is connected to the second reference potential line (power line to which the high level potential VDD is given), the occurrence of off-leakage in the transistor M1 is also suppressed.
  • a reset circuit 224 for controlling the potential) is provided. Therefore, during the monitoring period, as shown in FIG. 32, the unit circuit 22 corresponding to the monitor line maintains the potential of the fourth internal node N4 at a low level so that the output signal Q2 can reach a high level, and is not monitored.
  • the potential of the fourth internal node N4 can be maintained at a high level and the transistor M9 can be kept on so that the output signal Q2 is maintained at a low level. Therefore, in the unit circuit 22 corresponding to the non-monitoring line, even if an off-leak occurs in the transistor M12, the output signal Q2 is maintained at a low level. From the above, the occurrence of erroneous reading of current in the non-monitored line is suppressed. As described above, according to the present embodiment, with respect to the organic EL display device having an external compensation function, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed.
  • the organic EL display device is a display device capable of pause drive (also referred to as “low frequency drive”) in which an operation of writing a data signal to the pixel circuit 410 is intermittently performed.
  • pause drive also referred to as “low frequency drive”
  • the period during which the operation of writing the data signal to the pixel circuit 410 is interrupted is referred to as a “pause period”.
  • pause period the period during which the operation of writing the data signal to the pixel circuit 410 is interrupted.
  • FIG. 33 is a block diagram showing the overall configuration of the organic EL display device according to the present modification.
  • the display unit 40 has scanning signal lines GL (1) to GL (n), data signal lines SL (1) to SL (m), and monitor control lines ML (1) to ML (1). n) and were arranged.
  • the display unit 40 has scanning signal lines GL (1) to GL (n), data signal lines SL (1) to SL (m), and current monitor line MCL (1).
  • ⁇ MCL (m) is arranged.
  • the current monitor lines MCL (1) to MCL (m) are arranged so as to have a one-to-one correspondence with the data signal lines SL (1) to SL (m).
  • the current monitor lines MCL (1) to MCL (m) and the data signal lines SL (1) to SL (m) are typically parallel to each other.
  • the gate driver 20 is connected to the scanning signal lines GL (1) to GL (n). Similar to the first embodiment, the gate driver 20 is composed of shift registers including a plurality of unit circuits. The gate driver 20 applies a scanning signal to the scanning signal lines GL (1) to GL (n) based on the gate control signal GCTL output from the display control circuit 10.
  • the source driver 30 is connected to the data signal lines SL (1) to SL (m) and the current monitor lines MCL (1) to MCL (m).
  • the source driver 30 selectively performs an operation of driving the data signal lines SL (1) to SL (m) and an operation of measuring the current flowing through the current monitor lines MCL (1) to MCL (m). That is, the source driver 30 functionally includes a portion that functions as a data signal line driving unit 310 that drives the data signal lines SL (1) to SL (m), and a current monitor line MCL (1) from the pixel circuit 410. ) To a portion that functions as a current monitor unit 320 that measures the current output to the MCL (m) (see FIG. 3). The current monitor unit 320 measures the current flowing through the current monitor lines MCL (1) to MCL (m) and outputs monitor data MO based on the measured value.
  • the scanning signal is applied to the scanning signal lines GL (1) to GL (n), and the data signal as a brightness signal is applied to the data signal lines SL (1) to SL (m).
  • An image based on the input image signal DIN is displayed on the display unit 40. Further, since the monitor process is executed and the input image signal DIN is subjected to the compensation calculation process according to the monitor data MO, the deterioration of the drive transistor and the organic EL element is compensated.
  • FIG. 34 is a circuit diagram showing a part of the pixel circuit 410 and the source driver 30. Note that FIG. 34 shows the pixel circuit 410 in the i-th row and the j-th column and the portion of the source driver 30 corresponding to the data signal line SL (j) in the j-th column. Similar to the first embodiment, the pixel circuit 410 includes one organic EL element L1, three transistors T1 to T3 (write control transistor T1, drive transistor T2, and monitor control transistor T3), and one. It is provided with a capacitor (capacitive element) C.
  • the control terminal is connected to the scanning signal line GL (i), and the first conductive terminal is connected to the second conductive terminal of the drive transistor T2 and the anode terminal of the organic EL element L1.
  • the two conduction terminals are connected to the current monitor line MCL (j).
  • a light emitting control transistor T4 may be provided in the pixel circuit 410 as shown in FIG. 35.
  • the source driver 30 is separated into a portion that functions as a data signal line drive unit 310 and a portion that functions as a current monitor unit 320.
  • the data signal line drive unit 310 includes an operational amplifier 311 and a D / A converter 316.
  • the current monitor unit 320 includes a D / A converter 326, an A / D converter 327, an operational amplifier 321 and a capacitor 322, and three switches (switches 323, 324 and 325).
  • the operational amplifier 321 and the D / A converter 326 correspond to the operational amplifier 301 and the D / A converter 306 in the first embodiment (see FIG. 4, respectively). Since the operation of the current monitor unit 320 is the same as that of the first embodiment, the description thereof will be omitted. However, the current monitor unit 320 in this modification measures the current flowing through the current monitor line MCL.
  • FIG. 36 is a block diagram showing a configuration for five stages of shift registers.
  • the output signal Q1 from the unit circuit 22 of each stage is given to the unit circuit 22 of the previous stage as a reset signal R, and is given to the unit circuit 22 of the next stage as a set signal S.
  • the output signal Q2 from the unit circuit 22 of each stage is given as a scanning signal to the corresponding scanning signal line GL. Other than that, it is the same as that of the first embodiment.
  • the configuration of the unit circuit 22 is the same as that of the first embodiment (see FIG. 1).
  • a normal mode and a pause mode are prepared as operation modes related to the drive frequency.
  • the operation mode is set to the normal mode, the image display is repeatedly performed during the operation of the organic EL display device without interrupting the operation for writing.
  • the operation mode is set to the hibernate mode, the hibernate drive is performed to intermittently perform the operation for writing.
  • a monitor mode and a non-monitor mode are prepared.
  • the monitor process for at least one row is performed during the pause period.
  • the combination of the normal mode and the non-monitoring mode is referred to as the "first mode”
  • the combination of the hibernation mode and the non-monitoring mode is referred to as the “second mode”
  • the combination of the hibernation mode and the monitor mode is referred to as “the second mode”. It is called "third mode”. Normal mode and monitor mode are not combined. That is, in this modification, the monitor processing is performed only when the pause drive is performed.
  • each mode When the operation mode is set to the first mode, as shown in FIG. 37, the frame period in which the image is displayed (the frame period including only the scanning period) is continuous without the pause period being provided. As described above, the monitor process is not performed when the operation mode is set to the first mode.
  • each frame period includes only the scanning period. That is, during each frame period, only the operation for writing is performed without performing the monitor processing. During the pause period, only the shift operation in the shift register is performed without scanning the scanning signal line GL. From the above, the monitor process is not performed when the operation mode is set to the second mode.
  • the shift operation from the first stage unit circuit 22 (1) to the nth stage unit circuit 22 (n) is performed obliquely in the shift register without scanning the scanning signal line GL. It is schematically shown by a thick dotted line (the same applies to FIG. 39).
  • a pause period appears between the two frame periods as when the operation mode is set to the second mode.
  • the monitoring period during which the monitoring process is performed is included in the rest period.
  • the pause period other than the monitor period only the shift operation in the shift register is performed without scanning the scanning signal line GL.
  • the pause period is longer than when the operation mode is set to the second mode.
  • the pause period that includes monitor processing is longer than the pause period that does not include monitor processing.
  • the stabilization control signal VRD is maintained at a low level and the stabilization control signal VRDB is maintained at a high level.
  • the clock signal CK1 is given as the clock signal CK and the enable signal EN1 is given as the enable signal EN to the unit circuit 22 (i) of the i-th stage.
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level, and the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level. It has become.
  • the set signal S changes from a low level to a high level.
  • the pulse of the set signal S turns on the transistor M1 and charges the capacitor C1.
  • the capacitor C2 is also charged. From the above, the potential of the first internal node N1 rises and the transistor M10 is turned on, and the potential of the second internal node N2 rises and the transistor M12 is turned on.
  • the clock signal CK (clock signal CK1) and the enable signal EN (enable signal EN1) are maintained at a low level, so that the output signals Q1 and Q2 are maintained at a low level.
  • the potential of the first internal node N1 rises, the potential of the third internal node N3 and the potential of the fourth internal node N4 become low levels as in the period P01 of FIG. 9 in the first embodiment.
  • the clock signal CK (clock signal CK1) changes from a low level to a high level.
  • the potential of the output terminal 58 (the potential of the output signal Q1) rises as the potential of the input terminal 53 rises.
  • the potential of the first internal node N1 also rises via the capacitor C1.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) rises as the potential of the input terminal 54 rises.
  • the potential of the second internal node N2 also rises via the capacitor C2.
  • a large voltage is applied to the control terminal of the transistor M12, and the potential of the output signal Q2 is raised to a level sufficient to turn on the write control transistor T1 and the monitor control transistor T3 to which the output terminal 59 is connected.
  • Writing is performed by the pixel circuit 410 on the i-th line.
  • the clock signal CK (clock signal CK1) changes from high level to low level.
  • the potential of the output terminal 58 (the potential of the output signal Q1) decreases as the potential of the input terminal 53 decreases.
  • the potential of the first internal node N1 also decreases via the capacitor C1.
  • the enable signal EN (enable signal EN1) changes from a high level to a low level.
  • the potential of the output terminal 59 (the potential of the output signal Q2) decreases as the potential of the input terminal 54 decreases.
  • the potential of the output terminal 59 decreases, the potential of the second internal node N2 also decreases via the capacitor C2.
  • the reset signal R changes from low level to high level.
  • the potential of the first internal node N1 and the potential of the second internal node N2 become low levels, as in the period P03 of FIG. 9 in the first embodiment.
  • the potential of the third internal node N3 and the potential of the fourth internal node N4 become high level as in the period P03 of FIG. 9 in the first embodiment.
  • the pulse of the set signal S is not input to the unit circuit 22 (i) of the i-th stage, so that the potential of the first internal node N1 and the potential of the second internal node N2
  • the potential of, the potential of the output signal Q1, and the potential of the output signal Q2 are maintained at a low level, and the potential of the third internal node N3 and the potential of the fourth internal node N4 are maintained at a high level (reference numeral 62 in FIG. 40). (See the part indicated by the arrow with).
  • the operation of the unit circuit 22 (i) of the i-th stage during the pause period in this case will be described with reference to FIG. 41.
  • the part of the arrow with reference numeral 63 in FIG. 41 shows the waveform of each signal when the shift pulse (pulse of the set signal S) is applied to the unit circuit 22 (i) of the i-th stage.
  • the part of the arrow with reference numeral 64 in FIG. 41 shows the waveform of each signal during the period in which the shift pulse is not applied to the unit circuit 22 (i) in the i-th stage.
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level, and the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level.
  • the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level.
  • the set signal S changes from low level to high level.
  • the potential of the first internal node N1 and the potential of the second internal node N2 rise, and the potential of the third internal node N3 and the potential of the fourth internal node N4 become low levels, as in the period P20 of FIG. ..
  • the clock signal CK (clock signal CK1) changes from a low level to a high level.
  • the potential of the output signal Q1 rises sufficiently as in the period P21 of FIG. 40.
  • the enable signal EN (enable signal EN1) is maintained at a low level. Therefore, the potential of the output signal Q2 is maintained at a low level.
  • the clock signal CK (clock signal CK1) changes from high level to low level.
  • the potential of the output terminal 58 the potential of the output signal Q1 and the potential of the first internal node N1 decrease as in the end of the period P21 of FIG. 40.
  • the reset signal R changes from a low level to a high level.
  • the potential of the first internal node N1 and the potential of the second internal node N2 become low level as in the period P22 of FIG. 40, and the potential of the third internal node N3 and the potential of the fourth internal node N4 become low. It becomes a high level.
  • the operation of the unit circuit 22 (i) in the i-th stage of the monitoring period in the rest period in this case will be described with reference to FIGS. 42 to 46.
  • the i-th line is the monitor line
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level
  • the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level.
  • the stabilization control signal VRD is at a low level
  • the stabilization control signal VRDB is at a high level.
  • FIG. 43 shows the state of the unit circuit 22 (i) in the period P40.
  • the set signal S changes from a low level to a high level.
  • the potential of the first internal node N1 and the potential of the second internal node N2 rise, and the potential of the third internal node N3 and the potential of the fourth internal node N4 become low levels, as in the period P20 of FIG. ..
  • the stabilization control signal VRDB changes from high level to low level.
  • FIG. 44 shows the state of the unit circuit 22 (i) in the periods P41 to P45.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the output signal Q2 rises to a level sufficient to turn on the write control transistor T1 and the monitor control transistor T3 to which the output terminal 59 is connected, as in the period P21 of FIG. 40.
  • the stabilization control signal VRD changes from a low level to a high level.
  • the stabilization control signal VRD changes from high level to low level. From the above, the stabilization control signal VRD is maintained at a high level throughout the periods P41 to P45.
  • the voltage between the first conductive terminal and the second conductive terminal (drain-source voltage) of the transistors M2 and M3 becomes small. Therefore, the decrease in potential of the first internal node N1 and the second internal node N2 due to the off-leakage in the transistors M2 and M3 is suppressed throughout the periods P41 to P45.
  • FIG. 45 shows the state of the unit circuit 22 (i) in the period P46.
  • the stabilization control signal VRDB changes from low level to high level.
  • the transistor M4 is maintained in the ON state. Therefore, the potential of the third internal node N3 is maintained at a low level.
  • the clock signal CK (clock signal CK1) changes from a low level to a high level. As a result, the potential of the first internal node N1 rises and the potential of the output signal Q1 rises sufficiently, as in the period P21 of FIG. 40.
  • the clock signal CK (clock signal CK1) and enable signal EN (enable signal EN1) change from high level to low level.
  • the potential of the output signal Q1 and the potential of the output signal Q2 decrease as in the end of the period P21 in FIG. 40.
  • the potential of the first internal node N1 and the potential of the second internal node N2 decrease.
  • FIG. 46 shows the state of the unit circuit 22 (i) in the period P47.
  • the reset signal R changes from a low level to a high level.
  • the potentials of the first internal node N1 and the second internal node N2 become low levels
  • the potentials of the third internal node N3 and the potentials of the fourth internal node N4 become high levels, as in the period P22 of FIG.
  • the write control transistor T1 and the monitor control transistor T3 are maintained in the ON state during the periods P41 to P46.
  • the monitoring process for the pixel circuit 410 on the i-th row is performed during the periods P41 to P46.
  • the scanning signal GL (i) changes from a low level to a high level.
  • the write control transistor T1 and the monitor control transistor T3 are turned on.
  • the control signals S2 and S1 change from a low level to a high level, and the control signal S0 changes from a high level to a low level.
  • the switches 323 and 324 are turned on, and the switch 325 is turned off.
  • the current monitor line MCL (j) and the internal data line Sin (j) are electrically connected.
  • the characteristic detection potential Vr_TFT or the characteristic detection potential Vr_OLED is applied to the data signal line SL (j) under the above conditions, and the current measurement potential Vm_TFT or the current measurement potential Vm_OLED is current. It is applied to the monitor line MCL (j).
  • the characteristic detection potential Vr_TFT and the current measurement potential Vm_TFT are potentials set so that a current flows through the drive transistor T2 but no current flows through the organic EL element L1.
  • the characteristic detection potential Vr_OLED and the current measurement potential Vm_OLED are potentials set so that a current flows through the organic EL element L1 but no current flows through the drive transistor T2.
  • the periods P41 to P43 are set to a length sufficient for the measured current flowing through the current monitor line MCL (j) to be stable.
  • the control signal S2 changes from a high level to a low level.
  • the switch 323 is turned off, and the operational amplifier 321 and the capacitor 322 function as an integrating circuit.
  • the output voltage of the operational amplifier 321 becomes a voltage corresponding to the current flowing through the current monitor line MCL (j).
  • the control signal S1 changes from a high level to a low level
  • the control signal S0 changes from a low level to a high level.
  • the switch 324 is turned off and the switch 325 is turned on.
  • the current monitor line MCL (j) and the internal data line Sin (j) are electrically disconnected.
  • the output voltage of the operational amplifier 321 (charging voltage of the capacitor 322) is converted into a digital signal by the A / D converter 327.
  • the digital signal is sent to the display control circuit 10 as monitor data MO and is used for correcting the input image signal DIN.
  • the data potential Vd (i) for image display is applied to the data signal line SL (j).
  • the write control transistor T1 is in the ON state. Therefore, writing is performed based on the data potential Vd (i) in the pixel circuit 410 of the i-th row and the j-th column.
  • the scanning signal GL (i) changes from a high level to a low level.
  • the write control transistor T1 and the monitor control transistor T3 are turned off.
  • writing is performed based on the image display data potential Vd (i + 1) at the (i + 1) th line.
  • the organic EL element L1 emits light based on the writing in the period P46.
  • the operation of the unit circuit 22 (i) in the i-th stage when it is assumed that the i-th line is a non-monitoring line will be described. However, it is assumed that the monitor processing is performed on the monitor line during the period of interest here.
  • the potential of the first internal node N1 and the potential of the second internal node N2 are at a low level, and the potential of the third internal node N3 and the potential of the fourth internal node N4 are at a high level.
  • the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level.
  • the clock signal CK2 changes from a low level to a high level, but the clock signal CK2 is not input to the unit circuit 22 (i). Therefore, the state of the unit circuit 22 (i) is maintained in the state immediately before the start time of the period P40.
  • the stabilization control signal VRDB changes from high level to low level.
  • the enable signal EN (enable signal EN1) changes from a low level to a high level.
  • the potential of the second internal node N2 is maintained at a low level
  • the potential of the output terminal 59 (the potential of the output signal Q2) is maintained at a low level.
  • the stabilization control signal VRD changes from a low level to a high level.
  • the stabilization control signal VRD changes from high level to low level.
  • the clock signal CK (clock signal CK1) changes from a low level to a high level.
  • the potential of the first internal node N1 is maintained at a low level
  • the potential of the output terminal 58 is maintained at a low level.
  • the stabilization control signal VRDB changes from a low level to a high level.
  • the potential of the third internal node N3 becomes a high level.
  • the period P47 is the same as the period P40.
  • the occurrence of off-leakage in the transistor M2 is suppressed in the unit circuit 22 corresponding to the monitor line, and the off-leakage is tentatively in the transistor M12 in the unit circuit 22 corresponding to the non-monitor line. Is generated, the output signal Q2 is maintained at a low level. That is, also in this modification, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed in the organic EL display device having an external compensation function.
  • the unit circuit 22 constituting the gate driver 20 includes a stabilizing circuit 223 and a reset circuit 224 as components for suppressing the occurrence of malfunction due to off-leakage in the transistor. It was provided (Fig. 1). On the other hand, in the present embodiment, only the stabilizing circuit 223 of the stabilizing circuit 223 and the reset circuit 224 is provided in the unit circuit 22.
  • the overall configuration is the same as in the first embodiment (see FIG. 2).
  • the configuration of the pixel circuit 410 and the source driver 30 is the same as that of the first embodiment (see FIG. 4).
  • the configuration shown in FIG. 5 can also be adopted for the pixel circuit 410.
  • FIG. 49 is a block diagram showing a configuration for five stages of shift registers constituting the gate driver 20 in this embodiment.
  • Each unit circuit 22 includes an input terminal for receiving the clock signal CKB in addition to the input terminal provided in the first embodiment (see FIG. 6).
  • the clock signal CK1 is given as the clock signal CK
  • the clock signal CK2 is given as the clock signal CKB.
  • the clock signal CK2 is given as the clock signal CK
  • the clock signal CK1 is given as the clock signal CKB.
  • FIG. 50 is a circuit diagram showing the configuration of the unit circuit 22 in this embodiment.
  • reference numeral 57 is attached to an input terminal for receiving the clock signal CKB.
  • the configuration of the unit circuit 22 in the present embodiment is such that the reset circuit 224 is removed from the configuration of the unit circuit 22 (see FIG. 1) in the first embodiment.
  • the region (wiring) in which the input terminal 57, the control terminal of the transistor M8, and the control terminal of the transistor M9 are connected to each other is referred to as a “fourth internal node”.
  • ⁇ 2.3 Drive method> The driving method in this embodiment will be described. From the viewpoint of suppressing the occurrence of malfunction due to off-leakage in the transistor during monitor processing, the presence or absence of the reset circuit 224 determines the operation of the unit circuit 22 when the operation mode is set to the non-monitor mode. Does not affect. Therefore, here, only the operation when the operation mode is set to the monitor mode will be described.
  • the operation of the unit circuit 22 (i) in the i-th stage when the operation mode is set to the monitor mode will be described with reference to FIG. 51. However, assuming that the i-th line is the monitor line, attention is paid to the operation when the monitor processing for the i-th line is performed.
  • the periods P50 to P57 in this embodiment correspond to the periods P10 to P17 in the first embodiment.
  • the potential of the first internal node N1, the potential of the second internal node N2, and the potential of the fourth internal node N4 are at low levels, and the potential of the third internal node N3 is high.
  • the level is set, the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level. That is, the potential of the fourth internal node N4 is different from that of the first embodiment.
  • the clock signal CK2 changes from low level to high level.
  • the clock signal CK2 is given as the clock signal CKB to the unit circuit 22 (i) of the i-th stage. Therefore, in the unit circuit 22 (i) of the i-th stage, the potential of the fourth internal node N4 becomes high level in the period P50. As a result, the transistors M8 and M9 are turned on. Further, when the period P50 is reached, the set signal S changes from a low level to a high level. As a result, the potential of the first internal node N1 and the potential of the second internal node N2 rise.
  • the transistor M4 is turned on and the potential of the third internal node N3 becomes low level.
  • the clock signal CKB (clock signal CK2) changes from high level to low level.
  • the potential of the fourth internal node N4 becomes low level, and the transistors M8 and M9 are turned off.
  • the transistors M8 and M9 are turned on during the period P50, but since the output signals Q1 and Q2 should be maintained at a low level during the period P50, the transistors M8 and M9 are The on state does not affect the monitoring process.
  • the same operation as in the first embodiment is performed in the unit circuit 22 (i) of the i-th stage (see FIG. 16). Therefore, the decrease in potential of the first internal node N1 and the second internal node N2 due to the off-leakage in the transistors M2 and M3 is suppressed throughout the periods P53 to P54.
  • the operation of the unit circuit 22 (i) in the i-th stage when it is assumed that the i-th line is a non-monitoring line will be described. However, it is assumed that the monitor processing is performed on the monitor line during the period of interest here.
  • the potential of the first internal node N1, the potential of the second internal node N2, and the potential of the fourth internal node N4 are at low levels, and the potential of the third internal node N3 is high.
  • the level is set, the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level.
  • the clock signal CKB (clock signal CK2) changes from a low level to a high level.
  • the potential of the fourth internal node N4 becomes high level, and the transistors M8 and M9 are turned on.
  • the clock signal CKB (clock signal CK2) changes from high level to low level.
  • the potential of the fourth internal node N4 becomes low level, and the transistors M8 and M9 are turned off.
  • the periods P51 to P56 are the same as those of the first embodiment (see FIG. 25) except that the potential of the fourth internal node N4 is maintained at a low level.
  • the potential of the fourth internal node N4 is maintained at a low level throughout the periods P51 to P56, so that the transistors M8 and M9 are maintained in the off state. Therefore, unlike the first embodiment, it is not possible to obtain the effect of suppressing the occurrence of malfunction when an off-leak occurs in the transistor M12 in the unit circuit 22 corresponding to the non-monitoring line during the periods P53 to P54.
  • the period P57 is the same as the period P50.
  • the occurrence of off-leakage in the transistor M2 is suppressed in the unit circuit 22 corresponding to the monitor line. That is, with respect to the organic EL display device having an external compensation function, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed as compared with the conventional one.
  • the organic EL display device according to the present modification is a display device capable of pause driving as in the modification of the first embodiment.
  • the overall configuration is the same as the modified example of the first embodiment (see FIG. 33).
  • the configuration of the pixel circuit 410 and the source driver 30 is the same as that of the modification of the first embodiment (see FIG. 34).
  • the configuration shown in FIG. 35 can also be adopted for the pixel circuit 410.
  • FIG. 53 is a block diagram showing a configuration for five stages of shift registers constituting the gate driver 20 in this modification.
  • Each unit circuit 22 includes an input terminal for receiving the clock signal CKB in addition to the input terminal provided in the modified example (see FIG. 36) of the first embodiment.
  • the clock signal CK1 is given as the clock signal CK
  • the clock signal CK2 is given as the clock signal CKB.
  • the clock signal CK2 is given as the clock signal CK
  • the clock signal CK1 is given as the clock signal CKB.
  • the output signal Q1 from the unit circuit 22 of each stage is given as a reset signal R to the unit circuit 22 of the previous stage and as a set signal S to the unit circuit 22 of the next stage.
  • the output signal Q2 from the unit circuit 22 of each stage is given to the corresponding scanning signal line GL as a scanning signal.
  • the configuration of the unit circuit 22 is the same as that of the second embodiment (see FIG. 50). That is, of the stabilization circuit 223 and the reset circuit 224, only the stabilization circuit 223 is provided in the unit circuit 22.
  • the driving method in this modification will be described.
  • the operation modes prepared in this modification are the same as those in the first embodiment.
  • the operation of the unit circuit 22 (i) in the i-th stage of the monitoring period in the pause period will be described.
  • the periods P60 to P67 in this modification correspond to the periods P40 to P47 in the modification of the first embodiment.
  • the operation of the unit circuit 22 (i) of the i-th stage when the i-th line is assumed to be the monitor line will be described with reference to FIG. 54.
  • the potential of the first internal node N1, the potential of the second internal node N2, and the potential of the fourth internal node N4 are at low levels, and the potential of the third internal node N3 is high.
  • the level is set, the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level. That is, the potential of the fourth internal node N4 is different from the modified example of the first embodiment.
  • the clock signal CKB (clock signal CK2) changes from a low level to a high level.
  • the clock signal CKB (clock signal CK2) changes from high level to low level.
  • the potential of the fourth internal node N4 becomes high level and the transistors M8 and M9 are turned on, as in the period P50 of FIG. 51 in the second embodiment.
  • the output signals Q1 and Q2 should be maintained at a low level during the period P60, turning on the transistors M8 and M9 does not affect the monitor processing.
  • the set signal S changes from a low level to a high level.
  • the potential of the first internal node N1 and the potential of the second internal node N2 rise. Further, as the potential of the first internal node N1 rises, the transistor M4 is turned on and the potential of the third internal node N3 becomes low level.
  • the unit circuit 22 (i) in the i-th stage performs the same operation as the modification of the first embodiment (see FIG. 42). Therefore, the decrease in potential of the first internal node N1 and the second internal node N2 due to the off-leakage in the transistors M2 and M3 is suppressed throughout the periods P61 to P65.
  • the operation of the unit circuit 22 (i) in the i-th stage when it is assumed that the i-th line is a non-monitoring line will be described.
  • the potential of the first internal node N1, the potential of the second internal node N2, and the potential of the fourth internal node N4 are at low levels, and the potential of the third internal node N3 is high.
  • the level is set, the stabilization control signal VRD is at a low level, and the stabilization control signal VRDB is at a high level.
  • the clock signal CKB (clock signal CK2) changes from a low level to a high level.
  • the potential of the fourth internal node N4 becomes high level, and the transistors M8 and M9 are turned on.
  • the clock signal CKB (clock signal CK2) changes from high level to low level.
  • the potential of the fourth internal node N4 becomes low level, and the transistors M8 and M9 are turned off.
  • the periods P61 to P66 are the same as the modified example of the first embodiment (see FIG. 48) except that the potential of the fourth internal node N4 is maintained at a low level.
  • the potential of the fourth internal node N4 is maintained at a low level throughout the periods P61 to P66, so that the transistors M8 and M9 are maintained in the off state. Therefore, unlike the modification of the first embodiment, the effect of suppressing the occurrence of malfunction when an off-leak occurs in the transistor M12 in the unit circuit 22 corresponding to the non-monitoring line during the periods P63 to P64 is obtained. I can't.
  • the period P67 is the same as the period P60.
  • the occurrence of off-leakage in the transistor M2 is suppressed in the unit circuit 22 corresponding to the monitor line, as in the second embodiment. That is, with respect to the organic EL display device having an external compensation function, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed as compared with the conventional one.
  • the unit circuit 22 constituting the gate driver 20 includes a stabilizing circuit 223 and a reset circuit 224 as components for suppressing the occurrence of malfunction due to off-leakage in the transistor. It was provided (Fig. 1). On the other hand, in the present embodiment, only the reset circuit 224 of the stabilization circuit 223 and the reset circuit 224 is provided in the unit circuit 22.
  • the overall configuration is the same as in the first embodiment (see FIG. 2).
  • the configuration of the pixel circuit 410 and the source driver 30 is the same as that of the first embodiment (see FIG. 4).
  • the configuration shown in FIG. 5 can also be adopted for the pixel circuit 410.
  • FIG. 56 is a block diagram showing a configuration for five stages of shift registers constituting the gate driver 20 in this embodiment.
  • the stabilization control signals VRD and VRDB are not used in this embodiment. Therefore, each unit circuit 22 has an input terminal for receiving the stabilization control signal VRD and an input for receiving the stabilization control signal VRDB among the input terminals provided in the first embodiment (see FIG. 6). No terminals are provided. Other than that, it is the same as that of the first embodiment.
  • FIG. 57 is a circuit diagram showing the configuration of the unit circuit 22 in this embodiment.
  • the configuration of the unit circuit 22 in the present embodiment is such that the stabilization circuit 223 is removed from the configuration of the unit circuit 22 (see FIG. 1) in the first embodiment.
  • the second conduction terminal of the transistor M2 is connected to the first reference potential line (power line to which the low level potential VSS is given).
  • ⁇ 3.3 Drive method> The driving method in this embodiment will be described. From the viewpoint of suppressing the occurrence of malfunction due to off-leakage in the transistor during monitor processing, the presence or absence of the stabilizing circuit 223 is determined by the unit circuit 22 when the operating mode is set to the non-monitoring mode. It does not affect the operation. Therefore, here, only the operation when the operation mode is set to the monitor mode will be described.
  • the operation of the unit circuit 22 (i) of the i-th stage when the operation mode is set to the monitor mode will be described with reference to FIG. 58. However, assuming that the i-th line is the monitor line, attention is paid to the operation when the monitor processing for the i-th line is performed.
  • the periods P70 to P77 in this embodiment correspond to the periods P10 to P17 in the first embodiment.
  • the same operation as that of the first embodiment is performed in the unit circuit 22 (i) of the i-th stage throughout the periods P70 to P77.
  • the unit circuit 22 (i) is not provided with the stabilizing circuit 223, the effect of suppressing the decrease in the potential of the first internal node N1 due to the off-leak in the transistor M2 cannot be obtained. That is, the effect of suppressing the occurrence of malfunction when an off-leak occurs in the transistor M2 during the periods P73 to P74 cannot be obtained.
  • the same operation as that of the first embodiment is performed in the unit circuit 22 (i) of the i-th stage throughout the periods P70 to P77. That is, the potential of the fourth internal node N4 is maintained at a high level throughout the periods P70 to P77. Therefore, since the transistor M9 is maintained in the ON state, the potential of the output terminal 59 (the potential of the output signal Q2) is low even if an off-leak occurs in the transistor M12 during the periods P73 to P74, as in the first embodiment. Maintained at the level.
  • the output signal Q2 is maintained at a low level. That is, with respect to the organic EL display device having an external compensation function, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed as compared with the conventional one.
  • the organic EL display device according to the present modification is a display device capable of pause driving as in the modification of the first embodiment.
  • the overall configuration is the same as the modified example of the first embodiment (see FIG. 33).
  • the configuration of the pixel circuit 410 and the source driver 30 is the same as that of the modification of the first embodiment (see FIG. 34).
  • the configuration shown in FIG. 35 can also be adopted for the pixel circuit 410.
  • FIG. 60 is a block diagram showing a configuration for five stages of shift registers constituting the gate driver 20 in this modification.
  • Each unit circuit 22 is provided with an input terminal for receiving the stabilization control signal VRD and a stabilization control signal VRDB among the input terminals provided in the modification of the first embodiment (see FIG. 36). No input terminal is provided. Other than that, it is the same as the modified example of the first embodiment.
  • the configuration of the unit circuit 22 is the same as that of the third embodiment (see FIG. 57). That is, of the stabilization circuit 223 and the reset circuit 224, only the reset circuit 224 is provided in the unit circuit 22.
  • the driving method in this modification will be described.
  • the operation modes prepared in this modification are the same as those in the first embodiment.
  • the operation of the unit circuit 22 (i) in the i-th stage of the monitoring period in the pause period will be described.
  • the periods P80 to P87 in this modification correspond to the periods P40 to P47 in the modification of the first embodiment.
  • the operation of the unit circuit 22 (i) of the i-th stage when it is assumed that the i-th line is the monitor line will be described with reference to FIG. 61.
  • the unit circuit 22 (i) in the i-th stage performs the same operation as the modification of the first embodiment.
  • the unit circuit 22 (i) is not provided with the stabilizing circuit 223, the effect of suppressing the decrease in the potential of the first internal node N1 due to the off-leak in the transistor M2 cannot be obtained. That is, the effect of suppressing the occurrence of malfunction when an off-leak occurs in the transistor M2 during the monitoring period cannot be obtained.
  • the unit circuit 22 (i) in the i-th stage performs the same operation as the modification of the first embodiment. That is, the potential of the fourth internal node N4 is maintained at a high level throughout the periods P80-P87. Therefore, since the transistor M9 is maintained in the ON state, the potential of the output terminal 59 (the potential of the output signal Q2) remains at a low level even if an off-leak occurs in the transistor M12, as in the modification of the first embodiment. Be maintained.
  • the output signal Q2 is maintained at a low level even if an off-leak occurs in the transistor M12 in the unit circuit 22 corresponding to the non-monitoring line, as in the third embodiment. That is, with respect to the organic EL display device having an external compensation function, the occurrence of malfunction due to off-leakage in the transistor in the unit circuit 22 constituting the gate driver 20 is suppressed as compared with the conventional one.
  • monitor line sequentially transitions from the first line to the nth line one by one, but the description is not limited to this.
  • the monitor lines may be randomly transitioned.
  • an organic EL display device has been described as an example, but the present invention is not limited to this.
  • the present invention can be applied to any display device provided with a display element driven by an electric current (a display element whose brightness or transmittance is controlled by an electric current).
  • the present invention can be applied to an inorganic EL display device provided with an inorganic light emitting diode, a QLED display device provided with a quantum dot light emitting diode (QLED), and the like.
  • QLED quantum dot light emitting diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

外部補償機能を有する表示装置に関し、トランジスタでのオフリークに起因する動作不良の発生を抑制する。 ゲートドライバを構成する単位回路に、制御端子と第1内部ノード(N1)に接続された第1導通端子と第1制御信号線に接続された第2導通端子とを有する安定化トランジスタ(M3)と、第1内部ノード(N1)の電位に基づいて安定化トランジスタ(M3)の制御端子の電位を制御する安定化回路223と、制御端子と第2出力端子(59)に接続された第1導通端子と第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタ(M9)と、第1内部ノード(N1)の電位に基づいて第1リセットトランジスタ(M9)の制御端子の電位を制御するリセット回路(224)とが設けられる。

Description

表示装置およびその駆動方法
 以下の開示は、表示装置およびその駆動方法に関し、より詳しくは、有機EL素子などの電流によって駆動される表示素子を含む画素回路を備える表示装置およびその駆動方法に関する。
 近年、有機EL素子を含む画素回路を備えた有機EL表示装置が実用化されている。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれており、それに流れる電流に応じた輝度で発光する自発光型の表示素子である。このように有機EL素子は自発光型の表示素子であるので、有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。
 アクティブマトリクス型の有機EL表示装置には、複数の画素回路がマトリクス状に形成されている。各画素回路には、有機EL素子への電流の供給を制御する駆動トランジスタが含まれている。その駆動トランジスタとしては、典型的には、薄膜トランジスタ(TFT)が採用されている。しかしながら、薄膜トランジスタに関しては、劣化によって閾値電圧が変化する。有機EL表示装置の表示部には多数の駆動トランジスタが設けられており、劣化の程度は駆動トランジスタ毎に異なるので、閾値電圧にばらつきが生じる。その結果、輝度のばらつきが生じ、表示品位が低下する。また、有機EL素子に関しては、時間の経過とともに電流効率が低下する。すなわち、たとえ一定電流が有機EL素子に供給されたとしても、時間の経過とともに輝度が徐々に低下する。その結果、焼き付きが生じる。以上のようなことから、アクティブマトリクス型の有機EL表示装置では、駆動トランジスタの劣化や有機EL素子の劣化を補償する処理が従来より行われている。
 補償処理の方式の1つとして外部補償方式が知られている。外部補償方式によれば、所定条件下で駆動トランジスタあるいは有機EL素子を流れる電流が画素回路の外部に設けられた回路で測定される。そして、その測定結果に基づき、入力画像信号に補正が施される。これにより、駆動トランジスタの劣化や有機EL素子の劣化が補償される。
 なお、以下においては、駆動トランジスタまたは有機EL素子(表示素子)の劣化を補償するために画素回路内を流れる電流を画素回路外で測定する一連の処理のことを「モニタ処理」といい、モニタ処理が行われる期間のことを「モニタ期間」という。また、1フレーム期間などの単位期間中にモニタ処理の対象となっている行のことを「モニタ行」といい、モニタ行以外の行のことを「非モニタ行」という。また、画素回路内に設けられている駆動トランジスタの特性のことを「TFT特性」といい、画素回路内に設けられている有機EL素子の特性のことを「OLED特性」という。また、データ信号線に所望の電位(電圧)を印加して画素回路内の保持容量(コンデンサ)を充電することを「書き込み」といい、i行目(iは整数)に含まれる複数の画素回路に対する書き込みのことを単に「i行目の書き込み」という。
 外部補償方式を採用した有機EL表示装置に関する発明は、例えば国際公開2015/190407号パンフレットに開示されている。アクティブマトリクス型の有機EL表示装置は表示部に配設された複数の走査信号線を駆動するゲートドライバ(走査信号線駆動回路)を備えており、ゲートドライバは複数の走査信号線と1対1で対応する複数の段(複数の単位回路)からなるシフトレジスタによって構成されている。図63は、外部補償方式を採用する従来の有機EL表示装置における単位回路の構成を示す回路図である。図63に示す構成に関し、例えば、出力端子57から出力される出力信号Q1は他の単位回路に与えられるとともに走査信号として走査信号線に与えられ、出力端子58から出力される出力信号Q2はモニタ処理の実行の可否を制御するモニタ制御信号として表示部に配設されているモニタ制御線に与えられる。また、単位回路には出力信号Q1の制御に関わるトランジスタT13および出力信号Q2の制御に関わるトランジスタT16が含まれており、トランジスタT13の制御端子に接続された第1内部ノードN1とトランジスタT16の制御端子に接続された第2内部ノードN2との間にトランジスタT15が設けられている。そのトランジスタT15の制御端子には、固定電位であるハイレベル電位VDDが与えられている(図63で符号9を付した部分を参照)。これにより、トランジスタT15は、第1内部ノードN1または第2内部ノードN2の電位が通常のハイレベルよりも高いときを除いてオン状態で維持される。
 図64は、i行目の書き込み(画像表示用の書き込み)が行われる際のi段目の単位回路の動作について説明するための信号波形図である。期間P900にセット信号Sがハイレベルになると、コンデンサC11が充電されて第1内部ノードN1の電位が上昇する。このとき、トランジスタT15はオン状態となっているので、コンデンサC12も充電されて第2内部ノードN2の電位が上昇する。期間P901になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、コンデンサC11の存在に起因して第1内部ノードN1がブースト状態となり、出力信号Q1の電位が充分に上昇する。その結果、i行目の画素回路で画像表示用の書き込みが行われる。なお、期間P901には、イネーブル信号ENはローレベルで維持されるので、出力信号Q2はローレベルで維持される。期間P902になると、リセット信号Rがハイレベルとなる。これにより、トランジスタT12がオン状態となり、第1内部ノードN1の電位および第2内部ノードN2の電位がローレベルとなる。
 図65は、モニタ処理が行われる際のi段目の単位回路の動作について説明するための信号波形図である。なお、i行目がモニタ行であると仮定する。期間P910にセット信号Sがハイレベルになると、上記期間P900と同様に、第1内部ノードN1の電位および第2内部ノードN2の電位が上昇する。期間P911になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、上記期間P901と同様に、第1内部ノードN1がブースト状態となって出力信号Q1の電位が充分に上昇する。また、期間P911には、イネーブル信号ENもローレベルからハイレベルに変化する。これにより、コンデンサC12の存在に起因して第2内部ノードN2がブースト状態となり、出力信号Q2の電位が充分に上昇する。期間P912になると、イネーブル信号ENがハイレベルからローレベルに変化する。これにより、出力信号Q2の電位および第2内部ノードN2の電位が低下する。なお、期間P911には画素回路の初期化が行われ、期間P912にはi行目の画素回路で特性検出用の書き込みが行われる。期間P912の終了時点には、第1クロックCKAがハイレベルからローレベルに変化する。これにより、出力信号Q1の電位および第1内部ノードN1の電位が低下する。期間P913になると、イネーブル信号ENがローレベルからハイレベルに変化する。これにより、期間P911と同様に、第2内部ノードN2がブースト状態となって出力信号Q2の電位が充分に上昇する。この期間P913に、画素回路内を流れる電流の読み出しが行われる。期間P913の終了時点には、イネーブル信号ENがハイレベルからローレベルに変化する。これにより、出力信号Q2の電位および第2内部ノードN2の電位が低下する。期間P914になると、第1クロックCKAがローレベルからハイレベルに変化し、第1内部ノードN1がブースト状態となって出力信号Q1の電位が充分に上昇する。この期間P914に、i行目の画素回路で画像表示用の書き込みが行われる。期間P915になると、リセット信号Rがハイレベルとなる。これにより、上記期間P902と同様に、第1内部ノードN1の電位および第2内部ノードN2の電位がローレベルとなる。
 従来の有機EL表示装置では、以上のようにして画像表示用の書き込みやモニタ処理が行われ、モニタ処理の結果に基づき入力画像信号に補正を施すことによって駆動トランジスタの劣化や有機EL素子の劣化が補償されている。
国際公開2015/190407号パンフレット
 ところが、従来の構成によれば、モニタ処理の際に単位回路内のトランジスタでのオフリークに起因する動作不良が発生することがある。これについて、以下に説明する。
 モニタ処理に関し、駆動トランジスタや有機EL素子の劣化の程度を精度良く検出するためには、画素回路内を流れる電流を読み出すための期間(図65の期間P913)として充分な長さの期間を設ける必要がある。ところが、上記期間P913が長ければ、単位回路内のトランジスタT11,T12(図63参照)でのオフリークによって、図66において符号91を付した太点線で示すように当該期間P913中に第1内部ノードN1および第2内部ノードN2の電位が低下する。このため、期間P913中に、図66において符号92を付した太点線で示すように出力信号Q2の電位が低下する。これにより、電流の読み出し不良が発生する。その結果、モニタ処理の結果が異常となり、動作不良が発生する。
 また、上記期間P913中、モニタ行に対応する単位回路94では出力信号Q2の電位はハイレベルで維持されなければならないのに対して、非モニタ行に対応する単位回路93では出力信号Q2の電位はローレベルで維持されなければならない(図67参照)。ところが、上記期間P913にはイネーブル信号ENがハイレベルで維持されるため、非モニタ行に対応する単位回路93において当該期間P913中にトランジスタT16でオフリークが生じることがある(図67において符号95を付した矢印を参照)。このようなオフリークが生じると、上記期間P913中に、図68に示すように、非モニタ行に対応する単位回路93から出力される出力信号Q2の電位が上昇する。このようにして非モニタ行に対応するモニタ制御線にノイズが生じ、電流の誤読み出しが発生する。その結果、モニタ処理の結果が異常となり、動作不良が発生する。
 そこで、以下の開示は、外部補償機能を有する表示装置に関し、トランジスタでのオフリークに起因する動作不良の発生を抑制することを目的とする。
 本開示のいくつかの実施形態に係る表示装置は、電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
 n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
 前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
 前記走査信号線に走査信号を印加する走査信号線駆動回路と、
 第1制御信号線と、
 前記第1制御信号線の電位を制御する制御回路と、
 第1基準電位を供給する第1基準電位線と
を備え、
 前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
 各単位回路は、
  第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
  前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
  前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
  制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
  前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と、
  制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
  前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御する、前記第1基準電位線に接続されたリセット回路と
を含む。
 本開示の他のいくつかの実施形態に係る表示装置は、電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
 n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
 前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
 前記走査信号線に走査信号を印加する走査信号線駆動回路と、
 第1制御信号線と、
 前記第1制御信号線の電位を制御する制御回路と、
 第1基準電位を供給する第1基準電位線と
を備え、
 前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
 各単位回路は、
  第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
  前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
  前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
  制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
  前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と
を含む。
 本開示のさらに他のいくつかの実施形態に係る表示装置は、電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
 n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
 前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
 前記走査信号線に走査信号を印加する走査信号線駆動回路と、
 第1基準電位を供給する第1基準電位線と
を備え、
 前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
 各単位回路は、
  第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
  前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
  制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
  前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御する、前記第1基準電位線に接続されたリセット回路と
を含む。
 本開示のいくつかの実施形態に係る(表示装置の)駆動方法は、電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有する表示装置の駆動方法であって、
 前記表示装置は、
  n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
  前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
  前記走査信号線に走査信号を印加する走査信号線駆動回路と、
  第1制御信号線と、
  第1基準電位を供給する第1基準電位線と
を備え、
 前記駆動方法は、
  前記データ信号線駆動回路によって前記データ信号線に印加される画像表示用のデータ信号を各画素回路に書き込むために前記走査信号線の走査を行う走査ステップと、
  前記駆動トランジスタまたは前記表示素子の劣化を補償するために、前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行するモニタステップと
を含み、
 前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
 各単位回路は、
  第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
  前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
  前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
  制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
  前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と、
  制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
  前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御するリセット回路と
を含み、
 前記走査ステップでは、前記第1制御信号線に前記第1基準電位が印加され、
 前記モニタステップでは、前記モニタ処理の対象の行に対応する単位回路内の前記第1内部ノードの電位が前記第1出力制御トランジスタをオン状態にする電位で維持されるべき期間のうちの一部の期間に、前記第1制御信号線に前記第1出力制御トランジスタをオン状態にする電位が印加される。
 本開示のいくつかの実施形態によれば、単位回路には、第1内部ノードに接続された第1導通端子と第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、安定化トランジスタの制御端子の電位を制御する安定化回路とが設けられる。また、単位回路において、第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子を有する第1内部ノード制御トランジスタの第2導通端子は第1制御信号線に接続されている。ここで、第1制御信号線の電位は制御回路によって制御される。従って、モニタ行に対応する単位回路の第2出力端子からの出力信号がオンレベルで維持されるべき期間中に、モニタ行に対応する単位回路内の第1内部ノード制御トランジスタでのオフリークの発生が抑制されるよう、第1制御信号線にオンレベルの電位を印加することができる。また、単位回路には、第2出力端子に接続された第1導通端子と第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、第1リセットトランジスタの制御端子の電位を制御するリセット回路とが設けられる。このため、モニタ期間中に、非モニタ行に対応する単位回路の第2出力端子からの出力信号がオフレベルで維持されるよう、非モニタ行に対応する単位回路内の第1リセットトランジスタをオン状態で維持することができる。従って、非モニタ行に対応する単位回路において、仮に第2出力制御トランジスタでオフリークが生じても、第2出力端子からの出力信号はオフレベルで維持される。以上より、外部補償機能を有する表示装置に関し、トランジスタでのオフリークに起因する動作不良の発生が抑制される。
第1の実施形態において、ゲートドライバ内の単位回路の構成を示す回路図である。 上記第1の実施形態において、有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態において、ソースドライバの機能について説明するための図である。 上記第1の実施形態において、画素回路およびソースドライバの一部を示す回路図である。 上記第1の実施形態において、画素回路の別の構成例を示す回路図である。 上記第1の実施形態において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの概略動作について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの概略動作について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の動作(対応する行で書き込みが行われるときの動作)について説明するための信号波形図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードが非モニタモードに設定されているときの単位回路の動作(対応する行で書き込みが行われないときの動作)について説明するための信号波形図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの連続する3フレーム期間の信号波形図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、モニタ処理が行われる際の画素回路および電流モニタ部の動作について説明するための信号波形図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である 上記第1の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の状態について説明するための図である。 上記第1の実施形態において、効果について説明するための信号波形図である。 上記第1の実施形態の変形例に係る有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態の変形例において、画素回路およびソースドライバの一部を示す回路図である。 上記第1の実施形態の変形例において、画素回路の別の構成例を示す回路図である。 上記第1の実施形態の変形例において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第1の実施形態の変形例において、動作モードが第1モードに設定されているときの概略動作について説明するための図である。 上記第1の実施形態の変形例において、動作モードが第2モードに設定されているときの概略動作について説明するための図である。 上記第1の実施形態の変形例において、動作モードが第3モードに設定されているときの概略動作について説明するための図である。 上記第1の実施形態の変形例において、動作モードが第1モードに設定されているときの単位回路の動作について説明するための信号波形図である。 上記第1の実施形態の変形例において、動作モードが第2モードに設定されているときの休止期間中の単位回路の動作について説明するための信号波形図である。 上記第1の実施形態の変形例において、モニタ期間におけるモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第1の実施形態の変形例において、モニタ期間の単位回路の状態について説明するための図である。 上記第1の実施形態の変形例において、モニタ期間の単位回路の状態について説明するための図である。 上記第1の実施形態の変形例において、モニタ期間の単位回路の状態について説明するための図である。 上記第1の実施形態の変形例において、モニタ期間の単位回路の状態について説明するための図である。 上記第1の実施形態の変形例において、モニタ処理が行われる際の画素回路および電流モニタ部の動作について説明するための信号波形図である。 上記第1の実施形態の変形例において、モニタ期間における非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 第2の実施形態において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第2の実施形態において、ゲートドライバ内の単位回路の構成を示す回路図である。 上記第2の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第2の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第2の実施形態の変形例において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第2の実施形態の変形例において、モニタ期間におけるモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第2の実施形態の変形例において、モニタ期間における非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 第3の実施形態において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第3の実施形態において、ゲートドライバ内の単位回路の構成を示す回路図である。 上記第3の実施形態において、動作モードがモニタモードに設定されているときのモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第3の実施形態において、動作モードがモニタモードに設定されているときの非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第3の実施形態の変形例において、ゲートドライバを構成するシフトレジスタの5段分の構成を示すブロック図である。 上記第3の実施形態の変形例において、モニタ期間におけるモニタ行に対応する単位回路の動作について説明するための信号波形図である。 上記第3の実施形態の変形例において、モニタ期間における非モニタ行に対応する単位回路の動作について説明するための信号波形図である。 従来例におけるゲートドライバ内の単位回路の構成を示す回路図である。 従来例において、画像表示用の書き込みが行われる際の単位回路の動作について説明するための信号波形図である。 従来例において、モニタ処理が行われる際の単位回路の動作について説明するための信号波形図である。 従来例において、トランジスタでのオフリークに起因する動作不良について説明するための図である。 従来例において、トランジスタでのオフリークに起因する動作不良について説明するための図である。 従来例において、トランジスタでのオフリークに起因する動作不良について説明するための図である。
 以下、添付図面を参照しつつ、実施形態について説明する。なお、以下において、mおよびnは2以上の整数、iは3以上(n-2)以下の奇数、jは1以上m以下の整数であると仮定する。
<1.第1の実施形態>
<1.1 全体構成>
 図2は、第1の実施形態に係るアクティブマトリクス型の有機EL表示装置の全体構成を示すブロック図である。この有機EL表示装置は、表示制御回路10とゲートドライバ(走査信号線駆動回路)20とソースドライバ(データ信号線駆動回路)30と表示部40とを備えている。表示制御回路10には、駆動トランジスタおよび有機EL素子の劣化を補償する補償処理部12が含まれている。すなわち、本実施形態に係る有機EL表示装置は外部補償機能を有している。ゲートドライバ20と表示部40とは、表示部40を構成する基板上に一体的に形成されている。すなわち、ゲートドライバ20はモノリシック化されている。
 表示部40には、m本のデータ信号線SL(1)~SL(m)およびこれらに直交するn本の走査信号線GL(1)~GL(n)が配設されている。また、表示部40には、n本の走査信号線GL(1)~GL(n)と1対1で対応するように、n本のモニタ制御線ML(1)~ML(n)が配設されている。走査信号線GL(1)~GL(n)とモニタ制御線ML(1)~ML(n)とは典型的には互いに平行になっている。さらにまた、表示部40には、データ信号線SL(1)~SL(m)と走査信号線GL(1)~GL(n)との交差部に対応して、(n×m)個の画素回路410が設けられている。これにより、n行×m列の画素マトリクスが表示部40に形成されている。表示部40には、また、各画素回路410に共通の図示しない電源線が配設されている。より詳細には、有機EL素子を駆動するためのハイレベル電源電圧ELVDDを供給する電源線(以下、「ハイレベル電源線」という。)および有機EL素子を駆動するためのローレベル電源電圧ELVSSを供給する電源線(以下、「ローレベル電源線」という。)が配設されている。ハイレベル電源電圧ELVDDおよびローレベル電源電圧ELVSSは、図示しない電源回路から供給される。
 なお、以下においては、必要に応じて、走査信号線GL(1)~GL(n)にそれぞれ与えられる走査信号にも符号GL(1)~GL(n)を付し、モニタ制御線ML(1)~ML(n)にそれぞれ与えられるモニタ制御信号にも符号ML(1)~ML(n)を付し、データ信号線SL(1)~SL(m)にそれぞれ与えられるデータ信号にも符号SL(1)~SL(m)を付している。
 表示制御回路10は、外部から送られる入力画像信号DINとタイミング信号群(水平同期信号、垂直同期信号など)TGとを受け取り、デジタル映像信号VDと、ソースドライバ30の動作を制御するソース制御信号SCTLと、ゲートドライバ20の動作を制御するゲート制御信号GCTLとを出力する。ソース制御信号SCTLには、ソーススタートパルス信号,ソースクロック信号,ラッチストローブ信号などが含まれている。ゲート制御信号GCTLには、ゲートスタートパルス信号,ゲートクロック信号,イネーブル信号などが含まれている。なお、画像表示用のデジタル映像信号VDは、補償処理部12がソースドライバ30から与えられるモニタデータ(TFT特性やOLED特性を求めるために測定されたデータ)MOに応じて入力画像信号DINに補償演算処理を施すことによって生成される。
 ゲートドライバ20は、走査信号線GL(1)~GL(n)およびモニタ制御線ML(1)~ML(n)に接続されている。後述するように、ゲートドライバ20は、複数の単位回路からなるシフトレジスタによって構成されている。ゲートドライバ20は、表示制御回路10から出力されたゲート制御信号GCTLに基づいて、走査信号線GL(1)~GL(n)に走査信号を印加し、モニタ制御線ML(1)~ML(n)にモニタ制御信号を印加する。
 ソースドライバ30は、データ信号線SL(1)~SL(m)に接続されている。ソースドライバ30は、データ信号線SL(1)~SL(m)を駆動する動作と、データ信号線SL(1)~SL(m)を流れる電流を測定する動作とを選択的に行う。すなわち、図3に示すように、ソースドライバ30には、機能的には、データ信号線SL(1)~SL(m)を駆動するデータ信号線駆動部310として機能する部分と、画素回路410からデータ信号線SL(1)~SL(m)に出力された電流を測定する電流モニタ部320として機能する部分とが含まれている。電流モニタ部320は、データ信号線SL(1)~SL(m)を流れる電流を測定し、測定値に基づくモニタデータMOを出力する。以上のように、本実施形態においては、データ信号線SL(1)~SL(m)は、画像表示用のデータ信号の伝達に用いられるだけでなく、モニタ処理の際に駆動トランジスタまたは有機EL素子の特性に応じた電流を流すための信号線としても用いられる。なお、ソースドライバ30からの出力(すなわちデータ信号)を複数のデータ信号線SLで共有する「DEMUX」と呼ばれる駆動方式を採用することもできる。
 以上のように、走査信号線GL(1)~GL(n)に走査信号が印加され、モニタ制御線ML(1)~ML(n)にモニタ制御信号が印加され、データ信号線SL(1)~SL(m)に輝度信号としてのデータ信号が印加されることによって、入力画像信号DINに基づく画像が表示部40に表示される。また、モニタ処理が実行され、モニタデータMOに応じて入力画像信号DINに補償演算処理が施されるので、駆動トランジスタや有機EL素子の劣化が補償される。
<1.2 画素回路およびソースドライバ>
 次に、画素回路410およびソースドライバ30について詳しく説明する。ソースドライバ30は、データ信号線駆動部310として機能するときには次のような動作を行う。ソースドライバ30は、表示制御回路10から出力されたソース制御信号SCTLを受け取り、m本のデータ信号線SL(1)~SL(m)にそれぞれ目標輝度に応じた電圧をデータ信号して印加する。このとき、ソースドライバ30では、ソーススタートパルス信号のパルスをトリガーとして、ソースクロック信号のパルスが発生するタイミングで、各データ信号線SLに印加すべき電圧を示すデジタル映像信号VDが順次に保持される。そして、ラッチストローブ信号のパルスが発生するタイミングで、上記保持されたデジタル映像信号VDがアナログ電圧に変換される。その変換されたアナログ電圧は、データ信号として全てのデータ信号線SL(1)~SL(m)に一斉に印加される。ソースドライバ30は、電流モニタ部320として機能するときには、モニタ処理用の適宜の電圧をデータ信号としてデータ信号線SL(1)~SL(m)に印加し、それによってデータ信号線SL(1)~SL(m)を流れる電流をそれぞれ電圧に変換する。その変換後のデータは、モニタデータMOとしてソースドライバ30から出力される。
 図4は、画素回路410およびソースドライバ30の一部を示す回路図である。なお、図4には、第i行第j列の画素回路410と、ソースドライバ30のうちのj列目のデータ信号線SL(j)に対応する部分とが示されている。この画素回路410は、1個の有機EL素子L1と、3個のトランジスタT1~T3(コンデンサCへの書き込みを制御する書き込み制御トランジスタT1、有機EL素子L1への電流の供給を制御する駆動トランジスタT2、およびTFT特性あるいはOLED特性を検出するか否かを制御するモニタ制御トランジスタT3)と、1個のコンデンサ(容量素子)Cとを備えている。本実施形態においては、トランジスタT1~T3は、nチャネル型の薄膜トランジスタである。なお、トランジスタT1~T3としては、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)やアモルファスシリコンTFTなどを採用することができる。酸化物TFTとしては、例えば、InGaZnO(酸化インジウムガリウム亜鉛)を含むTFTが挙げられる。酸化物TFTを採用することによって、例えば、高精細化や低消費電力化を図ることが可能となる。
 書き込み制御トランジスタT1については、制御端子は走査信号線GL(i)に接続され、第1導通端子はデータ信号線SL(j)に接続され、第2導通端子は駆動トランジスタT2の制御端子とコンデンサCの一端とに接続されている。駆動トランジスタT2については、制御端子は書き込み制御トランジスタT1の第2導通端子とコンデンサCの一端とに接続され、第1導通端子はコンデンサCの他端とハイレベル電源線とに接続され、第2導通端子はモニタ制御トランジスタT3の第1導通端子と有機EL素子L1のアノード端子とに接続されている。モニタ制御トランジスタT3については、制御端子はモニタ制御線ML(i)に接続され、第1導通端子は駆動トランジスタT2の第2導通端子と有機EL素子L1のアノード端子とに接続され、第2導通端子はデータ信号線SL(j)に接続されている。コンデンサCについては、一端は書き込み制御トランジスタT1の第2導通端子と駆動トランジスタT2の制御端子とに接続され、他端は駆動トランジスタT2の第1導通端子とハイレベル電源線とに接続されている。有機EL素子L1については、アノード端子は駆動トランジスタT2の第2導通端子とモニタ制御トランジスタT3の第1導通端子とに接続され、カソード端子はローレベル電源線に接続されている。本実施形態においては、有機EL素子L1が表示素子に相当し、有機EL素子L1のアノード端子が第1端子に相当し、有機EL素子L1のカソード端子が第2端子に相当する。
 駆動方法については後述するが、本実施形態に係る構成によれば、モニタ行と非モニタ行とで有機EL素子L1の発光期間の長さに差が生じて表示品位が低下することが懸念される。そこで、有機EL素子L1の発光期間の長さが全ての行で同じになるよう、次のような構成を採用しても良い。表示部40内に、各行に対応するよう発光制御線を設ける。また、画素回路410内に、有機EL素子L1の発光を制御する発光制御トランジスタを設ける。図5に示すように、発光制御トランジスタT4については、制御端子は発光制御線EM(i)に接続され、第1導通端子は駆動トランジスタT2の第2導通端子とモニタ制御トランジスタT3の第1導通端子とに接続され、第2導通端子は有機EL素子L1のアノード端子に接続される。以上のような構成において、i行目がモニタ行であると仮定すると、発光制御トランジスタT4がモニタ期間中の所定の期間(例えば、図24における期間P11~P15)にはオフ状態となってそれ以外の期間にはオン状態となるよう、発光制御線EM(i)の電位を制御する。
 次に、ソースドライバ30のうち電流モニタ部320として機能する部分について説明する。図4に示すように、電流モニタ部320は、D/Aコンバータ306とA/Dコンバータ327とオペアンプ301とコンデンサ322と3つのスイッチ(スイッチ323,324,および325)とによって構成される。なお、オペアンプ301およびD/Aコンバータ306は、データ信号線駆動部310の構成要素としても機能する。電流モニタ部320には、ソース制御信号SCTLとして、3つのスイッチの状態を制御する制御信号S0,S1,およびS2が与えられる。電流モニタ部320の内部データ線Sin(j)は、スイッチ324を介して、データ信号線SL(j)に接続されている。オペアンプ301については、反転入力端子は内部データ線Sin(j)に接続され、非反転入力端子にはD/Aコンバータ306からの出力が与えられる。コンデンサ322およびスイッチ323は、オペアンプ301の出力端子と内部データ線Sin(j)との間に設けられている。スイッチ323には、制御信号S2が与えられる。オペアンプ301とコンデンサ322とスイッチ323とによって、積分回路が構成されている。ここで、この積分回路の動作について説明する。スイッチ323がオン状態になっている時には、オペアンプ301の出力端子-反転入力端子間(すなわち、コンデンサ322の2つの電極間)が短絡状態となっている。このとき、コンデンサ322に電荷は蓄積されず、オペアンプ301の出力端子および内部データ線Sin(j)の電位がD/Aコンバータ306からの出力電位と等しくなっている。スイッチ323がオン状態からオフ状態に切り替えられると、内部データ線Sin(j)を流れる電流に基づいてコンデンサ322への充電が行われる。すなわち、内部データ線Sin(j)を流れている電流の時間積分値がコンデンサ322に蓄積される。これにより、内部データ線Sin(j)を流れる電流の大きさに応じてオペアンプ301の出力端子の電位が変化する。そのオペアンプ301からの出力はA/Dコンバータ327によってデジタル信号に変換され、当該デジタル信号はモニタデータMOとして表示制御回路10に送られる。
 スイッチ324は、データ信号線SL(j)と内部データ線Sin(j)との間に設けられている。スイッチ324には、制御信号S1が与えられる。この制御信号S1に基づいてスイッチ324の状態が切り替えられることによって、データ信号線SL(j)と内部データ線Sin(j)との電気的な接続状態が制御される。本実施形態においては、制御信号S1がハイレベルであれば、データ信号線SL(j)と内部データ線Sin(j)とが電気的に接続された状態となり、制御信号S1がローレベルであれば、データ信号線SL(j)と内部データ線Sin(j)とが電気的に切り離された状態となる。
 スイッチ325は、データ信号線SL(j)と制御線CLとの間に設けられている。スイッチ325には、制御信号S0が与えられる。この制御信号S0に基づいてスイッチ325の状態が切り替えられることによって、データ信号線SL(j)と制御線CLとの電気的な接続状態が制御される。本実施形態においては、制御信号S0がハイレベルであれば、データ信号線SL(j)と制御線CLとが電気的に接続された状態となり、制御信号S0がローレベルであれば、データ信号線SL(j)と制御線CLとが電気的に切り離された状態となる。データ信号線SL(j)と制御線CLとが電気的に接続されると、データ信号線SL(j)の状態はハイ・インピーダンスとなる。
 上述したように、スイッチ324がオフ状態になると、データ信号線SL(j)と内部データ線Sin(j)とは電気的に切り離された状態となる。このとき、スイッチ323がオフ状態になっていれば、内部データ線Sin(j)の電位は維持される。本実施形態においては、このようにして内部データ線Sin(j)の電位が維持されている状態で、A/Dコンバータ327でのAD変換が行われる。
<1.3 ゲートドライバ>
 本実施形態におけるゲートドライバ20の詳細な構成について説明する。ゲートドライバ20は、複数段(複数の単位回路:少なくともn個の単位回路)からなるシフトレジスタによって構成されている。表示部40にはn行×m列の画素マトリクスが形成されているところ、それら画素マトリクスの各行と1対1で対応するようにシフトレジスタの各段(各単位回路)が設けられている。
 図6は、シフトレジスタの5段分の構成を示すブロック図である。ここでは、iを3以上(n-2)以下の奇数と仮定して、(i-2)段目、(i-1)段目、i段目、(i+1)段目、および(i+2)段目の単位回路22(i-2)、22(i-1)、22(i)、22(i+1)、および22(i+2)に着目している。このシフトレジスタには、ゲート制御信号GCTLとして、ゲートスタートパルス信号、クロック信号CK1、クロック信号CK2、イネーブル信号EN1、イネーブル信号EN2、安定化制御信号VRD、および安定化制御信号VRDBが与えられる。以下、便宜上、安定化制御信号VRDを伝達する信号線を「第1制御信号線」といい、安定化制御信号VRDBを伝達する信号線を「第2制御信号線」という。本実施形態においては、これら第1制御信号線および第2制御信号線の電位を制御する制御回路が表示制御回路10によって実現されている。なお、ゲートスタートパルス信号は、セット信号Sとして1段目の単位回路22(1)に与えられる信号であり、図6では省略している。
 各単位回路22は、クロック信号CK、イネーブル信号EN、安定化制御信号VRD、安定化制御信号VRDB、セット信号S、およびリセット信号Rをそれぞれ受け取るための入力端子と、出力信号Q1および出力信号Q2をそれぞれ出力するための出力端子とを含んでいる。
 奇数段目の単位回路22については、クロック信号CK1がクロック信号CKとして与えられ、イネーブル信号EN1がイネーブル信号ENとして与えられる。偶数段目の単位回路22については、クロック信号CK2がクロック信号CKとして与えられ、イネーブル信号EN2がイネーブル信号ENとして与えられる。安定化制御信号VRDおよび安定化制御信号VRDBについては、全ての単位回路22に共通的に与えられる。すなわち、第1制御信号線は全ての単位回路22に共通の電位を与え、第2制御信号線も全ての単位回路22に共通の電位を与える。また、各段の単位回路22には、前段の単位回路22からの出力信号Q1がセット信号Sとして与えられ、次段の単位回路22からの出力信号Q1がリセット信号Rとして与えられる。各段の単位回路22からの出力信号Q1は、前段の単位回路22にリセット信号Rとして与えられ、次段の単位回路22にセット信号Sとして与えられ、対応する走査信号線GLに走査信号として与えられる。各段の単位回路22からの出力信号Q2は、対応するモニタ制御線MLにモニタ制御信号として与えられる。なお、図4に示したように、走査信号線GLは画素回路410内の書き込み制御トランジスタT1の制御端子に接続され、モニタ制御線MLは画素回路410内のモニタ制御トランジスタT3の制御端子に接続されている。
 図1は、本実施形態における単位回路22の構成を示す回路図である。図1に示すように、単位回路22は、12個のトランジスタM1~M12と2個のコンデンサC1,C2とを備えている。また、単位回路22は、第1基準電位としてのローレベル電位VSSが与えられている電源線(以下、「第1基準電位線」という)に接続された入力端子および第2基準電位としてのハイレベル電位VDDが与えられている電源線(以下、「第2基準電位線」という)に接続された入力端子のほか、6個の入力端子51~56および2個の出力端子58,59を有している。図1では、セット信号Sを受け取るための入力端子に符号51を付し、リセット信号Rを受け取るための入力端子に符号52を付し、クロック信号CKを受け取るための入力端子に符号53を付し、イネーブル信号ENを受け取るための入力端子に符号54を付し、安定化制御信号VRDを受け取るための入力端子(第1制御信号線に接続された入力端子)に符号55を付し、安定化制御信号VRDBを受け取るための入力端子(第2制御信号線に接続された入力端子)に符号56を付し、出力信号Q1を出力するための出力端子に符号58を付し、出力信号Q2を出力するための出力端子に符号59を付している。なお、後述するように、出力端子59からは、モニタ処理が行われるモニタ期間のうちの一部の期間(図16の期間P11,P13,およびP14)にハイレベル(オンレベル)の出力信号Q2が出力される。出力端子59から出力されるハイレベル(オンレベル)の出力信号Q2は、当該出力端子59の接続先の画素回路410内の書き込み制御トランジスタT1をモニタ処理を行うためにオン状態にするレベルの信号(換言すれば、当該出力端子59の接続先の画素回路410にモニタ処理用の動作をさせるレベルの信号)である。
 トランジスタM1の第2導通端子、トランジスタM2の第1導通端子、トランジスタM3の第1導通端子、トランジスタM4の制御端子、トランジスタM6の制御端子、トランジスタM10の制御端子、トランジスタM11の第1導通端子、およびコンデンサC1の一端は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを「第1内部ノード」という。第1内部ノードには符号N1を付す。トランジスタM11の第2導通端子、トランジスタM12の制御端子、およびコンデンサC2の一端は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを「第2内部ノード」という。第2内部ノードには符号N2を付す。トランジスタM3の制御端子、トランジスタM4の第1導通端子、およびトランジスタM5の第2導通端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを「第3内部ノード」という。第3内部ノードには符号N3を付す。トランジスタM6の第1導通端子、トランジスタM7の第2導通端子、トランジスタM8の制御端子、およびトランジスタM9の制御端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを「第4内部ノード」という。第4内部ノードには符号N4を付す。
 ところで、単位回路22には、出力信号Q1の出力を制御する第1出力制御回路221と、出力信号Q2の出力を制御する第2出力制御回路222と、第1内部ノードN1の電位の安定化を図る安定化回路223と、出力端子58,59からのノイズの出力を抑制するためのリセット回路224とが含まれている。安定化回路223は、第1内部ノードN1の電位に基づいてトランジスタM3の制御端子の電位を制御する。リセット回路224は、第1内部ノードN1の電位に基づいてトランジスタM8,M9の制御端子の電位を制御する。第1出力制御回路221は、第1内部ノードN1とトランジスタM8とトランジスタM10とコンデンサC1と入力端子53と出力端子58とを含んでいる。第2出力制御回路222は、第2内部ノードN2とトランジスタM9とトランジスタM12とコンデンサC2と入力端子54と出力端子59とを含んでいる。安定化回路223は、第3内部ノードN3とトランジスタM4とトランジスタM5と入力端子56とを含んでいる。リセット回路224は、第4内部ノードN4とトランジスタM6とトランジスタM7とを含んでいる。
 トランジスタM1については、制御端子は入力端子51に接続され、第1導通端子は第2基準電位線に接続され、第2導通端子は第1内部ノードN1に接続されている。トランジスタM2については、制御端子は入力端子52に接続され、第1導通端子は第1内部ノードN1に接続され、第2導通端子は入力端子55に接続されている。トランジスタM3については、制御端子は第3内部ノードN3に接続され、第1導通端子は第1内部ノードN1に接続され、第2導通端子は出力端子55に接続されている。トランジスタM4については、制御端子は第1内部ノードN1に接続され、第1導通端子は第3内部ノードN3に接続され、第2導通端子は第1基準電位線に接続されている。トランジスタM5については、制御端子は第2基準電位線に接続され、第1導通端子は入力端子56に接続され、第2導通端子は第3内部ノードN3に接続されている。トランジスタM6については、制御端子は第1内部ノードN1に接続され、第1導通端子は第4内部ノードN4に接続され、第2導通端子は第1基準電位線に接続されている。なお、トランジスタM6の制御端子は、第2内部ノードN2に接続されていても良い。
 トランジスタM7については、制御端子および第1導通端子は第2基準電位線に接続され(すなわち、ダイオード接続となっている)、第2導通端子は第4内部ノードN4に接続されている。トランジスタM8については、制御端子は第4内部ノードN4に接続され、第1導通端子は出力端子58に接続され、第2導通端子は第1基準電位線に接続されている。トランジスタM9については、制御端子は第4内部ノードN4に接続され、第1導通端子は出力端子59に接続され、第2導通端子は第1基準電位線に接続されている。トランジスタM10については、制御端子は第1内部ノードN1に接続され、第1導通端子は入力端子53に接続され、第2導通端子は出力端子58に接続されている。トランジスタM11については、制御端子は第2基準電位線に接続され、第1導通端子は第1内部ノードN1に接続され、第2導通端子は第2内部ノードN2に接続されている。トランジスタM12については、制御端子は第2内部ノードN2に接続され、第1導通端子は入力端子54に接続され、第2導通端子は出力端子59に接続されている。上述のように、トランジスタM8の第2導通端子およびトランジスタM9の第2導通端子は第1基準電位線に接続されている。その第1基準電位線に印加されているローレベル電位VSS(第1基準電位)は、トランジスタM8,M9を介して出力端子58,59の電位をローレベル(オフレベル)にする電位(詳しくは、出力端子58,59の接続先の画素回路410内の書き込み制御トランジスタT1,モニタ制御トランジスタT3をオフ状態にするレベルの電位)である。
 コンデンサC1については、一端は第1内部ノードN1に接続され、他端は出力端子58に接続されている。コンデンサC2については、一端は第2内部ノードN2に接続され、他端は出力端子59に接続されている。
 ここで、トランジスタM11に着目する。トランジスタM11の制御端子には、ハイレベル(オンレベル)電位VDDが与えられている。このハイレベル電位VDDは、第1内部ノードN1または第2内部ノードN2の電位が通常のハイレベルよりも高いときを除いてトランジスタM11をオン状態で維持するレベルの電位である。すなわち、トランジスタM11は、第1内部ノードN1または第2内部ノードN2の電位が通常のハイレベルよりも高いときを除いてオン状態で維持される。トランジスタM11は、第2内部ノードN2の電位が所定以上になるとオフ状態となり、第1内部ノードN1と第2内部ノードN2とを電気的に切り離す。これにより、トランジスタM11は、第2内部ノードN2がブースト状態になったときの当該第2内部ノードN2の電位の上昇を補助する。
 安定化回路223内のトランジスタおよびリセット回路224内のトランジスタに関し、本実施形態においては以下のような関係が成立している。安定化回路223内のトランジスタM4とトランジスタM5はレシオ回路を構成しており、トランジスタM4の能力は、トランジスタM5の能力よりも十分高い。すなわち、トランジスタM4のオン電流は、トランジスタM5のオン電流よりも十分大きい。リセット回路224内のトランジスタM6とトランジスタM7はレシオ回路を構成しており、トランジスタM6の能力は、トランジスタM7の能力よりも十分高い。すなわち、トランジスタM6のオン電流は、トランジスタM7のオン電流よりも十分大きい。なお、一般に、トランジスタの能力は、チャネル幅およびチャネル長に依存する。具体的には、トランジスタの能力は、チャネル幅が大きいほど高く、チャネル長が短いほど高い。
 本実施形態においては、トランジスタM2によって第1内部ノード制御トランジスタが実現され、トランジスタM3によって安定化トランジスタが実現され、トランジスタM4によって第1の安定化制御トランジスタが実現され、トランジスタM5によって第2の安定化制御トランジスタが実現され、トランジスタM6によって第1のリセット制御トランジスタが実現され、トランジスタM7によって第2のリセット制御トランジスタが実現され、トランジスタM8によって第2リセットトランジスタが実現され、トランジスタM9によって第1リセットトランジスタが実現され、トランジスタM10によって第1出力制御トランジスタが実現され、トランジスタM11によって出力回路制御トランジスタが実現され、トランジスタM12によって第2出力制御トランジスタが実現され、出力端子58によって第1出力端子が実現され、出力端子59によって第2出力端子が実現されている。
<1.4 駆動方法>
 本実施形態における駆動方法について説明する。なお、ここでは、画像表示のために走査信号線GL(1)の走査が開始されてから当該走査信号線GL(1)の走査が次に開始されるまでの期間のことを「フレーム期間」という。
<1.4.1 概要>
 本実施形態においては、モニタ処理に関する動作モードとして、モニタモードと非モニタモードとが用意されている。動作モードがモニタモードに設定されているときには、有機EL表示装置の動作中、随時、モニタ処理が行われる。詳しくは、各フレーム期間に少なくとも1つの行についてのモニタ処理が行われる。そのモニタ処理は、表示期間中に行われる。このように表示期間中に行われるモニタ処理のことを「リアルタイムモニタ」という。動作モードが非モニタモードに設定されているときには、有機EL表示装置の動作中、モニタ処理は行われない。換言すれば、有機EL表示装置が動作している期間を通じて、全ての行で入力画像信号DINに基づく表示が行われている。
 図7および図8を参照しつつ、各モードの動作について説明する。なお、図7および図8では、画像表示用の書き込みのために1行目の走査信号線GL(1)からn行目の走査信号線GL(n)までを順次に走査する様子を斜めの太線で模式的に示している(図37~図39も同様)。
 動作モードがモニタモードに設定されているときには、図7に示すように、各フレーム期間にモニタ期間が含まれる。各フレーム期間に関し、モニタ期間以外の期間は走査期間となっている。走査期間は、画像表示のために走査信号線GLの走査が行われている期間である。このように、本実施形態においては、上述したリアルタイムモニタが行われる。
 動作モードが非モニタモードに設定されているときには、動作モードがモニタモードに設定されているときとは異なり、図8に示すように各フレーム期間には走査期間のみが含まれる。すなわち、モニタ処理が行われることなく、書き込みのための動作が連続して行われる。
 動作モードがモニタモードに設定されているときには、動作モードが非モニタモードに設定されているときよりも、垂直期間(1行目の走査信号線GL(1)の走査開始時点からn行目の走査信号線GL(n)の走査終了時点までの期間)が長くなる。換言すれば、モニタ処理を含む画像表示の垂直期間は、モニタ処理を含まない画像表示の垂直期間よりも長い。但し、これには限定されず、帰線期間の長さを調整することによって、モニタ処理を含む画像表示の垂直期間の長さとモニタ処理を含まない画像表示の垂直期間の長さとを同じにすることもできる。
 なお、本実施形態においては、走査期間の動作によって走査ステップが実現され、モニタ期間の動作によってモニタステップが実現される。
<1.4.2 動作モードが非モニタモードに設定されているときの動作>
 図9~図13を参照しつつ、動作モードが非モニタモードに設定されているときのi段目の単位回路22(i)の動作について説明する。但し、i行目の書き込みが行われる(選択対象の行がi行目である)際の動作に着目する。なお、図10等では、信号やノードの電位を太字の「H」および「L」で表している。「H」はハイレベルを意味し、「L」はローレベルを意味する。また、図10等では、オフ状態となるトランジスタの近傍に「OFF」と記している。i段目の単位回路22(i)には、上述したように、クロック信号CK1がクロック信号CKとして与えられ、イネーブル信号EN1がイネーブル信号ENとして与えられる。動作モードが非モニタモードに設定されているときには、図9に示すように、イネーブル信号EN1、イネーブル信号EN2、および安定化制御信号VRDはローレベルで維持され、安定化制御信号VRDBはハイレベルで維持される。
 図10に期間P00における単位回路22(i)の状態を示す。期間P00には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっている。安定化回路223に着目すると、トランジスタM5はオン状態で維持されていて、第1内部ノードN1の電位がローレベルであるのでトランジスタM4はオフ状態となっている。このような状態で安定化制御信号VRDBがハイレベルとなっているので、第3内部ノードN3の電位はハイレベルとなっている。リセット回路224に着目すると、トランジスタM7の制御端子および第1導通端子にはハイレベル電位VDDが与えられており、また、第1内部ノードN1の電位がローレベルであるのでトランジスタM6はオフ状態となっている。従って、第4内部ノードN4の電位はハイレベルとなっている。
 図11に期間P01における単位回路22(i)の状態を示す。期間P01になると、セット信号Sがローレベルからハイレベルに変化する。このセット信号SのパルスによってトランジスタM1がオン状態となり、コンデンサC1が充電される。これにより、第1内部ノードN1の電位は上昇し、トランジスタM10がオン状態となる。しかしながら、期間P01には、クロック信号CK(クロック信号CK1)はローレベルで維持されるので、出力信号Q1はローレベルで維持される。また、トランジスタM11はオン状態となっているので、期間P01にはコンデンサC2も充電される。これにより、第2内部ノードN2の電位は上昇し、トランジスタM12がオン状態となる。しかしながら、期間P01には、イネーブル信号EN(イネーブル信号EN1)はローレベルで維持されるので、出力信号Q2はローレベルで維持される。また、第1内部ノードN1の電位が上昇することによって、トランジスタM4,M6がオン状態となる。ここで、上述したように、「トランジスタM4とトランジスタM5」、「トランジスタM6とトランジスタM7」はそれぞれレシオ回路を構成しており、トランジスタM4の能力はトランジスタM5の能力よりも十分高く、トランジスタM6の能力はトランジスタM7の能力よりも十分高い。従って、第3内部ノードN3の電位および第4内部ノードN4の電位はローレベルとなる。これにより、トランジスタM3,M8,およびM9はオフ状態となる。
 図12に期間P02における単位回路22(i)の状態を示す。期間P02になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。このとき、トランジスタM10はオン状態となっているので、入力端子53の電位の上昇とともに出力端子58の電位(出力信号Q1の電位)が上昇する。ここで、第1内部ノードN1-出力端子58間にはコンデンサC1が設けられているので、出力端子58の電位の上昇とともに第1内部ノードN1の電位も上昇する(第1内部ノードN1がブースト状態となる)。その結果、トランジスタM10の制御端子には大きな電圧が印加され、出力端子58の接続先の書き込み制御トランジスタT1がオン状態となるのに充分なレベルにまで出力信号Q1の電位が上昇する。これにより、i行目の画素回路410で書き込みが行われる。イネーブル信号EN(イネーブル信号EN1)はローレベルで維持されるので、この期間P02にも出力信号Q2はローレベルで維持される。なお、第1内部ノードN1がブースト状態となる(図12では、この状態を「2H」と記している)ことによってトランジスタM11はオフ状態となる。
 期間P02の終了時点には、クロック信号CK(クロック信号CK1)がハイレベルからローレベルに変化する。これにより、入力端子53の電位の低下とともに出力端子58の電位(出力信号Q1の電位)が低下する。出力端子58の電位が低下すると、コンデンサC1を介して、第1内部ノードN1の電位も低下する。
 図13に期間P03における単位回路22(i)の状態を示す。期間P03になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、トランジスタM2がオン状態となる。安定化制御信号VRDはローレベルで維持されているので、トランジスタM2がオン状態となることによって第1内部ノードN1の電位はローレベルとなる。これにより、トランジスタM11がオン状態となり、第2内部ノードN2の電位もローレベルとなる。また、第1内部ノードN1の電位がローレベルとなることによってトランジスタM4,M6がオフ状態となる。これにより、第3内部ノードN3の電位および第4内部ノードN4の電位がハイレベルとなる。
 i行目以外の行の書き込みが行われる(選択対象の行がi行目以外の行である)際には、i段目の単位回路22(i)にはセット信号Sのパルスが入力されないので、図9の期間P00,P03と同様、第1内部ノードN1の電位、第2内部ノードN2の電位、出力信号Q1の電位、および出力信号Q2の電位はローレベルで維持され、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルで維持される(図14参照)。
<1.4.3 動作モードがモニタモードに設定されているときの動作>
 図15は、動作モードがモニタモードに設定されているときの連続する3フレーム期間FR1~FR3の信号波形図である。フレーム期間FR1にはi行目についてのモニタ処理が行われ、フレーム期間FR2には(i+1)行目についてのモニタ処理が行われ、フレーム期間FR3には(i+2)行目についてのモニタ処理が行われる。このように、本実施形態においては、各フレーム期間に1行分についてのモニタ処理が行われる。但し、各フレーム期間に複数行分についてのモニタ処理が行われても良い。図15から把握されるように、各フレーム期間に、非モニタ行に対応する走査信号GLについては1回だけハイレベルとなるが、モニタ行に対応する走査信号GLについては2回ハイレベルとなる。このように、各フレーム期間に、モニタ行に対応する走査信号線GLには走査パルスが2回与えられる。1回目の走査パルスの立ち上がり時点から2回目の走査パルスの立ち下がり時点までの期間がモニタ期間である。各フレーム期間において、非モニタ行に対応するモニタ制御信号MLはローレベルで維持されるが、モニタ行に対応するモニタ制御信号MLについてはモニタ期間中に2回ハイレベルとなる。
 図16~図23を参照しつつ、動作モードがモニタモードに設定されているときのi段目の単位回路22(i)の動作について説明する。但し、i行目がモニタ行であると仮定し、i行目についてのモニタ処理が行われる際の動作に着目する。期間P10の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。なお、ローレベルの安定化制御信号VRD(第1制御信号線に印加されるオフレベルの信号)は、それが仮にトランジスタM10の制御端子に与えられるとトランジスタM10がオフ状態となるようなレベルの信号である。また、ハイレベルの安定化制御信号VRDB(第2制御信号線に印加されるオンレベルの信号)は、それが仮にトランジスタM3の制御端子に与えられるとトランジスタM3がオン状態となるようなレベルの信号である。
 図17に期間P10における単位回路22(i)の状態を示す。期間P10になると、セット信号Sがローレベルからハイレベルに変化する。このセット信号SのパルスによってトランジスタM1がオン状態となり、コンデンサC1が充電される。このとき、トランジスタM11がオン状態となっているので、コンデンサC2も充電される。以上より、第1内部ノードN1の電位が上昇してトランジスタM10がオン状態になるとともに第2内部ノードN2の電位が上昇してトランジスタM12がオン状態になる。しかしながら、期間P10には、クロック信号CK(クロック信号CK1)およびイネーブル信号EN(イネーブル信号EN1)はローレベルで維持されるので、出力信号Q1,Q2はローレベルで維持される。また、期間P10には、図9の期間P01と同様、第3内部ノードN3の電位および第4内部ノードN4の電位がローレベルとなる。
 図18に期間P11における単位回路22(i)の状態を示す。期間P11になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。このとき、トランジスタM10はオン状態となっているので、入力端子53の電位の上昇とともに出力端子58の電位(出力信号Q1の電位)が上昇する。これに伴い、コンデンサC1を介して第1内部ノードN1の電位も上昇する。その結果、トランジスタM10の制御端子には大きな電圧が印加され、出力端子58の接続先の書き込み制御トランジスタT1がオン状態となるのに充分なレベルにまで出力信号Q1の電位が上昇する。また、期間P11になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。このとき、トランジスタM12はオン状態となっているので、入力端子54の電位の上昇とともに出力端子59の電位(出力信号Q2の電位)が上昇する。これに伴い、コンデンサC2を介して第2内部ノードN2の電位も上昇する(第2内部ノードN2がブースト状態となる)。その結果、トランジスタM12の制御端子には大きな電圧が印加され、出力端子59の接続先のモニタ制御トランジスタT3がオン状態となるのに充分なレベルにまで出力信号Q2の電位が上昇する。
 図19に期間P12における単位回路22(i)の状態を示す。期間P12になると、イネーブル信号EN(イネーブル信号EN1)がハイレベルからローレベルに変化する。これにより、入力端子54の電位の低下とともに出力端子59の電位(出力信号Q2の電位)が低下する。出力端子59の電位が低下すると、コンデンサC2を介して、第2内部ノードN2の電位も低下する。期間P12の終了時点には、クロック信号CK(クロック信号CK1)がハイレベルからローレベルに変化する。これにより、入力端子53の電位の低下とともに出力端子58の電位(出力信号Q1の電位)が低下する。出力端子58の電位が低下すると、コンデンサC1を介して、第1内部ノードN1の電位も低下する。また、期間P12の終了時点には、安定化制御信号VRDBがハイレベルからローレベルに変化する(第2制御信号線にオフレベルの電位が印加される)。このローレベルの安定化制御信号VRDBは、それが仮にトランジスタM3の制御端子に与えられるとトランジスタM3がオフ状態となるようなレベルの信号である。
 図20に期間P13~P14における単位回路22(i)の状態を示す。なお、期間P13はデータ信号線SLを流れる測定電流を安定化させるための期間であり、期間P14は画素回路410外で電流の測定を行う期間である。期間P13になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。これにより、期間P11と同様、第2内部ノードN2の電位および出力信号Q2の電位が上昇する。また、期間P13には、安定化制御信号VRDがローレベルからハイレベルに変化する(第1制御信号線にオンレベルの電位が印加される)。このハイレベルの安定化制御信号VRDは、それが仮にトランジスタM10の制御端子に与えられるとトランジスタM10がオン状態となるようなレベルの信号(換言すれば、期間P13~P14中の第1内部ノードN1の電位に相当するレベルの信号)である。これにより、トランジスタM2,M3に関して第1導通端子-第2導通端子間の電圧(ドレイン-ソース間電圧)が小さくなるので、期間P13~P14を通じて、トランジスタM2,M3でのオフリークに起因する第1内部ノードN1および第2内部ノードN2の電位の低下が抑制される。期間P14の終了時点には、イネーブル信号EN(イネーブル信号EN1)がハイレベルからローレベルに変化する。これにより、入力端子54の電位の低下とともに出力端子59の電位(出力信号Q2の電位)が低下する。これに伴い、コンデンサC2を介して、第2内部ノードN2の電位も低下する。また、期間P14の終了時点には、安定化制御信号VRDがハイレベルからローレベルに変化する。
 図21に期間P15における単位回路22(i)の状態を示す。期間P15になると、安定化制御信号VRDBがローレベルからハイレベルに変化する。このとき、第1内部ノードN1の電位はハイレベルで維持されているので、トランジスタM4はオン状態で維持されている。従って、第3内部ノードN3の電位はローレベルで維持される。
 図22に期間P16における単位回路22(i)の状態を示す。期間P16になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。これにより、期間P11と同様、第1内部ノードN1の電位および出力信号Q1の電位が上昇する。なお、期間P16には、イネーブル信号EN(イネーブル信号EN1)はローレベルで維持されるので、第2内部ノードN2の電位は上昇しない。期間P16の終了時点には、クロック信号CK(クロック信号CK1)がハイレベルからローレベルに変化する。これにより、入力端子53の電位の低下とともに出力端子58の電位(出力信号Q1の電位)が低下する。これに伴い、コンデンサC1を介して、第1内部ノードN1の電位も低下する。
 図23に期間P17における単位回路22(i)の状態を示す。期間P17になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、トランジスタM2がオン状態となる。その結果、図9の期間P03と同様にして、第1内部ノードN1および第2内部ノードN2の電位はローレベルとなり、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなる。
 以上のようにして、i行目の画素回路410では、期間P11,P12,およびP16に書き込み制御トランジスタT1がオン状態となり、期間P11,P13,およびP14にモニタ制御トランジスタT3がオン状態となる。これにより、期間P11~P16に、i行目の画素回路410についてのモニタ処理が行われる。
 次に、図24を参照しつつ、モニタ処理が行われる際の画素回路410および電流モニタ部320の動作について説明する。ここでは、第i行第j列の画素回路410およびj列目に対応する電流モニタ部320に着目する。
 期間P10には、(i-1)行目で画像表示用のデータ電位Vd(i-1)に基づく書き込みが行われる。期間P10の終了時点直前には、走査信号GL(i)およびモニタ制御信号ML(i)はローレベルである。従って、書き込み制御トランジスタT1およびモニタ制御トランジスタT3はオフ状態である。また、期間P10の終了時点直前には、制御信号S2,S1はハイレベルであり、制御信号S0はローレベルである。従って、スイッチ323,324はオン状態であり、スイッチ325はオフ状態である。このとき、データ信号線SL(j)と内部データ線Sin(j)とは電気的に接続されている。
 期間P11になると、走査信号GL(i)およびモニタ制御信号ML(i)はローレベルからハイレベルに変化する。これにより、書き込み制御トランジスタT1およびモニタ制御トランジスタT3はオン状態となる。期間P11には、画素回路410の状態を初期化する初期化電位Vpcがデータ信号線SL(j)に印加される。これにより、コンデンサCの状態および有機EL素子L1のアノード電位が初期化される。
 期間P12になると、モニタ制御信号ML(i)がハイレベルからローレベルに変化する。これにより、モニタ制御トランジスタT3がオフ状態となる。この状態で、特性検出用電位Vr_TFTまたは特性検出用電位Vr_OLEDがデータ信号線SL(j)に印加される。特性検出用電位Vr_TFTは、駆動トランジスタT2には電流が流れるが有機EL素子L1には電流が流れないように設定された電位である。特性検出用電位Vr_OLEDは、有機EL素子L1には電流が流れるが駆動トランジスタT2には電流が流れないように設定された電位である。
 期間P13になると、走査信号GL(i)はハイレベルからローレベルに変化し、モニタ制御信号ML(i)はローレベルからハイレベルに変化する。これにより、書き込み制御トランジスタT1はオフ状態となり、モニタ制御トランジスタT3はオン状態となる。このような状態で、電流測定用電位Vm_TFTまたは電流測定用電位Vm_OLEDがデータ信号線SL(j)に印加される。これにより、TFT特性の測定が行われているときには駆動トランジスタT2を流れる電流がモニタ制御トランジスタT3およびデータ信号線SL(j)を介して電流モニタ部320へと流れ、OLED特性の測定が行われているときには電流モニタ部320からデータ信号線SL(j)およびモニタ制御トランジスタT3を介して有機EL素子L1へと電流が流れる。このとき、制御信号S2はハイレベルであるので、スイッチ323はオン状態となっていて、コンデンサ322に電荷は蓄積されない。なお、期間P13については、データ信号線SL(j)を流れる測定電流が安定するのに充分な長さに設定されている。
 期間P14になると、制御信号S2がハイレベルからローレベルに変化する。これにより、スイッチ323がオフ状態となり、オペアンプ301とコンデンサ322とが積分回路として機能する。その結果、オペアンプ301の出力電圧は、データ信号線SL(j)を流れている電流に応じた電圧となる。
 期間P15になると、制御信号S1がハイレベルからローレベルに変化し、制御信号S0がローレベルからハイレベルに変化する。これにより、スイッチ324がオフ状態となり、スイッチ325がオン状態となる。スイッチ324がオフ状態となることによって、データ信号線SL(j)と内部データ線Sin(j)とが電気的に切り離された状態となる。この状態で、オペアンプ301の出力電圧(コンデンサ322の充電電圧)がA/Dコンバータ327によってデジタル信号に変換される。そのデジタル信号は、モニタデータMOとして表示制御回路10に送られ、入力画像信号DINの補正に用いられる。
 期間P16になると、制御信号S2,S1がローレベルからハイレベルに変化し、制御信号S0がハイレベルからローレベルに変化する。これにより、スイッチ323,324がオン状態となり、スイッチ325がオフ状態となる。また、期間P16には、走査信号GL(i)がローレベルからハイレベルに変化する。これにより、書き込み制御トランジスタT1がオン状態となる。この状態で画像表示用のデータ電位Vd(i)がデータ信号線SL(j)に印加され、第i行第j列の画素回路410において当該データ電位Vd(i)に基づく書き込みが行われる。
 期間P17になると、走査信号GL(i)がハイレベルからローレベルに変化する。これにより、書き込み制御トランジスタT1がオフ状態となる。なお、期間P17には、(i+1)行目で画像表示用のデータ電位Vd(i+1)に基づく書き込みが行われる。期間P17以降の期間には、第i行第j列の画素回路410では、期間P16における書き込みに基づいて有機EL素子L1が発光する。
 なお、期間P11が初期化期間に相当し、期間P12が測定用書き込み期間に相当し、期間P14が測定期間に相当し、期間P16が第2書き込み期間に相当する。
 次に、図25~図31を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。但し、ここで着目する期間中にモニタ行でモニタ処理が行われるものとする。期間P10の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 図26に期間P10における単位回路22(i)の状態を示す。期間P10になると、クロック信号CK2がローレベルからハイレベルに変化するが、クロック信号CK2は単位回路22(i)には入力されない。従って、単位回路22(i)の状態は、期間P10の開始時点直前の状態で維持される。
 図27に期間P11における単位回路22(i)の状態を示す。期間P11になると、クロック信号CK(クロック信号CK1)およびイネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。しかしながら、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルで維持されているので、出力端子58の電位(出力信号Q1の電位)および出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。
 図28に期間P12における単位回路22(i)の状態を示す。期間P12になるとイネーブル信号EN(イネーブル信号EN1)がハイレベルからローレベルに変化するが、単位回路22(i)の状態は期間P11の状態で維持される。期間P12の終了時点には、安定化制御信号VRDBがハイレベルからローレベルに変化する。これにより、第3内部ノードN3の電位がローレベルとなる。
 図29に期間P13~P14における単位回路22(i)の状態を示す。期間P13になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。しかしながら、第2内部ノードN2の電位はローレベルで維持されているので、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。また、期間P13には、安定化制御信号VRDがローレベルからハイレベルに変化する。ところで、第4内部ノードN4の電位はハイレベルで維持されている。従って、トランジスタM9はオン状態で維持されている。ここで、トランジスタM9の第2導通端子にはローレベル電位VSSが与えられている。それ故、期間P13~P14にトランジスタM12でオフリークが生じても、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。また、期間P13~P14には、第3内部ノードN3の電位はローレベルで維持されるので、トランジスタM3はオフ状態で維持される。それ故、出力端子55からトランジスタM3を介して第1内部ノードN1へと電流が流れることが防止される。
 図30に期間P15における単位回路22(i)の状態を示す。期間P15になると、安定化制御信号VRDBがローレベルからハイレベルに変化する。このとき、第1内部ノードN1の電位はローレベルで維持されているので、トランジスタM4はオフ状態で維持されている。従って、安定化制御信号VRDBがハイレベルとなることによって、第3内部ノードN3の電位はハイレベルとなる。
 図31に期間P16における単位回路22(i)の状態を示す。期間P16になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。しかしながら、第1内部ノードN1の電位はローレベルで維持されているので、出力端子58の電位(出力信号Q1の電位)はローレベルで維持される。期間P17については、期間P10と同様である(図26参照)。
 ところで、図25において安定化制御信号VRD,VRDBに着目すると、期間P12の終了時点に安定化制御信号VRDBがハイレベルからローレベルに変化した後、期間P13の開始時点に安定化制御信号VRDがローレベルからハイレベルに変化し、期間P14の終了時点に安定化制御信号VRDがハイレベルからローレベルに変化した後、期間P15の開始時点に安定化制御信号VRDBがローレベルからハイレベルに変化している。すなわち、表示制御回路10は、モニタ期間において、第1制御信号線に印加する電位(安定化制御信号VRDの電位)をローレベルからハイレベルに変化させる前に、第2制御信号線に印加する電位(安定化制御信号VRDBの電位)をハイレベルからローレベルに変化させ、また、第1制御信号線に印加する電位をハイレベルからローレベルに変化させた後に、第2制御信号線に印加する電位をローレベルからハイレベルに変化させる。このような制御が行われる理由は以下のとおりである。
 仮に安定化制御信号VRDBをハイレベルからローレベルに変化させる前に安定化制御信号VRDをローレベルからハイレベルに変化させると、非モニタ行に対応する単位回路22において、トランジスタM3がオン状態で維持されている時に出力端子55の電位が上昇する。これにより、第1内部ノードN1の電位がローレベルで維持されるべきであるにもかかわらず、第1内部ノードN1の電位が上昇してしまう。また、仮に安定化制御信号VRDをハイレベルからローレベルに変化させる前に安定化制御信号VRDBをローレベルからハイレベルに変化させると、出力端子55の電位がハイレベルとなっている時に、安定化制御信号VRDBがハイレベルとなることによってトランジスタM3がオン状態となる。これにより、第1内部ノードN1の電位がローレベルで維持されるべきであるにもかかわらず、第1内部ノードN1の電位が上昇してしまう。そこで、安定化制御信号VRD,VRDBに関して、上述のような制御が行われる。
<1.5 効果>
 本実施形態によれば、単位回路22には、第1導通端子が第1内部ノードN1に接続され第2導通端子が第1制御信号線に接続されたトランジスタM3と、トランジスタM3の制御端子の電位を制御する安定化回路223とが含まれている。また、単位回路22において、第1内部ノードN1の電位をローレベルにするためのリセット信号Rが与えられる制御端子を有するトランジスタM2の第2導通端子は第1制御信号線に接続されている。ここで、第1制御信号線の電位は表示制御回路10によって制御される。以上のような構成が採用されているため、モニタ処理中において、図32に示すように、モニタ行に対応する単位回路22から出力される出力信号Q2がハイレベルで維持されるべき期間(測定電流を安定化させるための期間P13および画素回路410外で電流の測定を行う期間P14)中に、モニタ行に対応する単位回路22内のトランジスタM2でのオフリークの発生が抑制されるよう、第1制御信号線にハイレベルの電位を印加する(安定化制御信号VRDの電位をハイレベルにする)ことができる。なお、トランジスタM1の第1導通端子は第2基準電位線(ハイレベル電位VDDが与えられている電源線)に接続されているので、トランジスタM1でのオフリークの発生も抑制される。以上より、モニタ処理の際の電流の読み出し不良の発生が抑制される。また、単位回路22には、第1導通端子が出力端子59に接続され第2導通端子が第1基準電位線に接続されたトランジスタM9と、トランジスタM9の制御端子の電位(第4内部ノードN4の電位)を制御するリセット回路224とが設けられている。このため、モニタ期間中に、図32に示すように、モニタ行に対応する単位回路22では出力信号Q2がハイレベルとなり得るよう第4内部ノードN4の電位をローレベルで維持しつつ、非モニタ行に対応する単位回路22では出力信号Q2がローレベルで維持されるよう、第4内部ノードN4の電位をハイレベルで維持してトランジスタM9をオン状態で維持することができる。従って、非モニタ行に対応する単位回路22において、仮にトランジスタM12でオフリークが生じても、出力信号Q2はローレベルで維持される。以上より、非モニタ行での電流の誤読み出しの発生が抑制される。以上のように、本実施形態によれば、外部補償機能を有する有機EL表示装置に関し、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<1.6 変形例>
 第1の実施形態の変形例について説明する。本変形例に係る有機EL表示装置は、画素回路410にデータ信号を書き込む動作を間欠的に行う休止駆動(「低周波駆動」とも呼ばれる)が可能な表示装置である。なお、休止駆動に関し、画素回路410にデータ信号を書き込む動作が中断されている期間のことを「休止期間」という。以下、第1の実施形態と同様の点については、適宜、説明を省略する。
<1.6.1 全体構成>
 図33は、本変形例に係る有機EL表示装置の全体構成を示すブロック図である。第1の実施形態においては、表示部40には、走査信号線GL(1)~GL(n)とデータ信号線SL(1)~SL(m)とモニタ制御線ML(1)~ML(n)とが配設されていた。これに対して、本変形例においては、表示部40には、走査信号線GL(1)~GL(n)とデータ信号線SL(1)~SL(m)と電流モニタ線MCL(1)~MCL(m)とが配設されている。電流モニタ線MCL(1)~MCL(m)は、データ信号線SL(1)~SL(m)と1対1で対応するように配設されている。電流モニタ線MCL(1)~MCL(m)とデータ信号線SL(1)~SL(m)とは典型的には互いに平行になっている。
 ゲートドライバ20は、走査信号線GL(1)~GL(n)に接続されている。第1の実施形態と同様、ゲートドライバ20は、複数の単位回路からなるシフトレジスタによって構成されている。ゲートドライバ20は、表示制御回路10から出力されたゲート制御信号GCTLに基づいて、走査信号線GL(1)~GL(n)に走査信号を印加する。
 ソースドライバ30は、データ信号線SL(1)~SL(m)と電流モニタ線MCL(1)~MCL(m)とに接続されている。ソースドライバ30は、データ信号線SL(1)~SL(m)を駆動する動作と、電流モニタ線MCL(1)~MCL(m)を流れる電流を測定する動作とを選択的に行う。すなわち、ソースドライバ30には、機能的には、データ信号線SL(1)~SL(m)を駆動するデータ信号線駆動部310として機能する部分と、画素回路410から電流モニタ線MCL(1)~MCL(m)に出力された電流を測定する電流モニタ部320として機能する部分とが含まれている(図3参照)。電流モニタ部320は、電流モニタ線MCL(1)~MCL(m)を流れる電流を測定し、測定値に基づくモニタデータMOを出力する。
 以上のように、走査信号線GL(1)~GL(n)に走査信号が印加され、データ信号線SL(1)~SL(m)に輝度信号としてのデータ信号が印加されることによって、入力画像信号DINに基づく画像が表示部40に表示される。また、モニタ処理が実行され、モニタデータMOに応じて入力画像信号DINに補償演算処理が施されるので、駆動トランジスタや有機EL素子の劣化が補償される。
<1.6.2 画素回路およびソースドライバ>
 図34は、画素回路410およびソースドライバ30の一部を示す回路図である。なお、図34には、第i行第j列の画素回路410と、ソースドライバ30のうちのj列目のデータ信号線SL(j)に対応する部分とが示されている。第1の実施形態と同様、画素回路410は、1個の有機EL素子L1と、3個のトランジスタT1~T3(書き込み制御トランジスタT1、駆動トランジスタT2、およびモニタ制御トランジスタT3)と、1個のコンデンサ(容量素子)Cとを備えている。但し、モニタ制御トランジスタT3については、制御端子は走査信号線GL(i)に接続され、第1導通端子は駆動トランジスタT2の第2導通端子と有機EL素子L1のアノード端子とに接続され、第2導通端子は電流モニタ線MCL(j)に接続されている。なお、有機EL素子L1の発光期間の長さを全ての行で同じにするために、図35に示すように画素回路410内に発光制御トランジスタT4を設けても良い。
 ソースドライバ30については、図34に示すように、データ信号線駆動部310として機能する部分と電流モニタ部320として機能する部分とが分離されている。データ信号線駆動部310には、オペアンプ311とD/Aコンバータ316とが含まれている。電流モニタ部320は、D/Aコンバータ326とA/Dコンバータ327とオペアンプ321とコンデンサ322と3つのスイッチ(スイッチ323,324,および325)とによって構成される。なお、オペアンプ321およびD/Aコンバータ326はそれぞれ第1の実施形態(図4参照)におけるオペアンプ301およびD/Aコンバータ306に相当する。電流モニタ部320の動作については第1の実施形態と同様であるので説明を省略する。但し、本変形例における電流モニタ部320は、電流モニタ線MCLを流れる電流を測定する。
<1.6.3 ゲートドライバ>
 本変形例におけるゲートドライバ20の詳細な構成について説明する。図36は、シフトレジスタの5段分の構成を示すブロック図である。各段の単位回路22からの出力信号Q1は、前段の単位回路22にリセット信号Rとして与えられ、次段の単位回路22にセット信号Sとして与えられる。各段の単位回路22からの出力信号Q2は、対応する走査信号線GLに走査信号として与えられる。それ以外の点については、第1の実施形態と同様である。単位回路22の構成についても第1の実施形態と同様である(図1参照)。
<1.6.4 駆動方法>
<1.6.4.1 概要>
 本変形例においては、駆動周波数に関する動作モードとして、通常モードと休止モードとが用意されている。動作モードが通常モードに設定されているときには、有機EL表示装置の動作中、書き込みのための動作が中断されることなく、画像表示が繰り返し行われる。動作モードが休止モードに設定されているときには、書き込みのための動作を間欠的に行う休止駆動が行われる。また、モニタ処理に関する動作モードとして、モニタモードと非モニタモードとが用意されている。本変形例においては、動作モードがモニタモードに設定されているとき、休止期間中に少なくとも1つの行についてのモニタ処理が行われる。以下、便宜上、通常モードと非モニタモードとの組み合わせを「第1モード」といい、休止モードと非モニタモードとの組み合わせを「第2モード」といい、休止モードとモニタモードとの組み合わせを「第3モード」という。通常モードとモニタモードとが組み合わされることはない。すなわち、本変形例においては、休止駆動が行われているときに限ってモニタ処理が行われる。
 以下、図37~図39を参照しつつ、各モードの動作について説明する。動作モードが第1モードに設定されているときには、図37に示すように、休止期間が設けられることなく、画像表示が行われるフレーム期間(走査期間のみを含むフレーム期間)が連続する。このように、動作モードが第1モードに設定されているときにはモニタ処理は行われない。
 動作モードが第2モードに設定されているときには、図38に示すように、2つのフレーム期間の間に休止期間が現れる。各フレーム期間には走査期間のみが含まれる。すなわち、各フレーム期間には、モニタ処理が行われることなく、書き込みのための動作のみが行われる。休止期間には、走査信号線GLの走査が行われることなくシフトレジスタ内でのシフト動作のみが行われる。以上より、動作モードが第2モードに設定されているときにはモニタ処理は行われない。なお、図38では、走査信号線GLを走査することなくシフトレジスタにおいて1段目の単位回路22(1)からn段目の単位回路22(n)へのシフト動作が行われる様子を斜めの太点線で模式的に示している(図39も同様)。
 動作モードが第3モードに設定されているときには、動作モードが第2モードに設定されているときと同様、2つのフレーム期間の間に休止期間が現れる。但し、図39に示すように、モニタ処理を行うモニタ期間が休止期間に含まれている。休止期間のうちモニタ期間以外の期間には、走査信号線GLの走査が行われることなくシフトレジスタ内でのシフト動作のみが行われる。
 動作モードが第3モードに設定されているときには、動作モードが第2モードに設定されているときよりも、休止期間が長くなる。換言すれば、モニタ処理を含む休止期間は、モニタ処理を含まない休止期間よりも長い。
<1.6.4.2 動作モードが第1モードに設定されているときの動作>
 図40を参照しつつ、動作モードが第1モードに設定されているときのi段目の単位回路22(i)の動作について説明する。図40で符号61を付した矢印の部分には、i行目の書き込みが行われる(選択対象の行がi行目である)際の各信号の波形を示している。図40で符号62を付した矢印の部分には、i行目以外の行の書き込みが行われる(選択対象の行がi行目以外の行である)際の各信号の波形を示している。図40に示すように、安定化制御信号VRDはローレベルで維持され、安定化制御信号VRDBはハイレベルで維持されている。なお、第1の実施形態と同様、i段目の単位回路22(i)には、クロック信号CK1がクロック信号CKとして与えられ、イネーブル信号EN1がイネーブル信号ENとして与えられる。
 期間P20の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっている。期間P20になると、セット信号Sがローレベルからハイレベルに変化する。このセット信号SのパルスによってトランジスタM1がオン状態となり、コンデンサC1が充電される。このとき、トランジスタM11がオン状態となっているので、コンデンサC2も充電される。以上より、第1内部ノードN1の電位が上昇してトランジスタM10がオン状態になるとともに第2内部ノードN2の電位が上昇してトランジスタM12がオン状態になる。しかしながら、期間P20には、クロック信号CK(クロック信号CK1)およびイネーブル信号EN(イネーブル信号EN1)はローレベルで維持されるので、出力信号Q1,Q2はローレベルで維持される。また、第1内部ノードN1の電位が上昇することによって、第1の実施形態における図9の期間P01と同様、第3内部ノードN3の電位および第4内部ノードN4の電位がローレベルとなる。
 期間P21になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。このとき、トランジスタM10はオン状態となっているので、入力端子53の電位の上昇とともに出力端子58の電位(出力信号Q1の電位)が上昇する。これに伴い、コンデンサC1を介して第1内部ノードN1の電位も上昇する。その結果、トランジスタM10の制御端子には大きな電圧が印加され、出力信号Q1の電位が充分に上昇する。また、期間P21になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。このとき、トランジスタM12はオン状態となっているので、入力端子54の電位の上昇とともに出力端子59の電位(出力信号Q2の電位)が上昇する。これに伴い、コンデンサC2を介して第2内部ノードN2の電位も上昇する。その結果、トランジスタM12の制御端子には大きな電圧が印加され、出力端子59の接続先の書き込み制御トランジスタT1およびモニタ制御トランジスタT3がオン状態となるのに充分なレベルにまで出力信号Q2の電位が上昇する。これにより、i行目の画素回路410で書き込みが行われる。
 期間P21の終了時点には、クロック信号CK(クロック信号CK1)がハイレベルからローレベルに変化する。これにより、入力端子53の電位の低下とともに出力端子58の電位(出力信号Q1の電位)が低下する。出力端子58の電位が低下すると、コンデンサC1を介して、第1内部ノードN1の電位も低下する。また、期間P21の終了時点には、イネーブル信号EN(イネーブル信号EN1)がハイレベルからローレベルに変化する。これにより、入力端子54の電位の低下とともに出力端子59の電位(出力信号Q2の電位)が低下する。出力端子59の電位が低下すると、コンデンサC2を介して、第2内部ノードN2の電位も低下する。
 期間P22になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、第1の実施形態における図9の期間P03と同様、第1内部ノードN1の電位および第2内部ノードN2の電位がローレベルとなる。また、第1内部ノードN1の電位がローレベルとなることによって、第1の実施形態における図9の期間P03と同様、第3内部ノードN3の電位および第4内部ノードN4の電位がハイレベルとなる。
 i行目以外の行の書き込みが行われる際には、i段目の単位回路22(i)にはセット信号Sのパルスが入力されないので、第1内部ノードN1の電位、第2内部ノードN2の電位、出力信号Q1の電位、および出力信号Q2の電位はローレベルで維持され、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルで維持される(図40で符号62を付した矢印の部分を参照)。
<1.6.4.3 動作モードが第2モードに設定されているときの動作>
 このケースにおいて、画像表示が行われるフレーム期間(走査期間)(図38参照)には、単位回路22は、動作モードが第1モードに設定されているときと同様に動作する(図40参照)。
 図41を参照しつつ、このケースにおける休止期間中のi段目の単位回路22(i)の動作について説明する。図41で符号63を付した矢印の部分には、i段目の単位回路22(i)にシフトパルス(セット信号Sのパルス)が与えられた際の各信号の波形を示している。図41で符号64を付した矢印の部分には、i段目の単位回路22(i)にシフトパルスが与えられない期間の各信号の波形を示している。期間P30の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 期間P30になると、セット信号Sがローレベルからハイレベルに変化する。これにより、図40の期間P20と同様、第1内部ノードN1の電位および第2内部ノードN2の電位が上昇し、第3内部ノードN3の電位および第4内部ノードN4の電位がローレベルとなる。
 期間P31になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。これにより、図40の期間P21と同様、出力信号Q1の電位が充分に上昇する。期間P31には、イネーブル信号EN(イネーブル信号EN1)はローレベルで維持される。従って、出力信号Q2の電位はローレベルで維持される。期間P31の終了時点には、クロック信号CK(クロック信号CK1)がハイレベルからローレベルに変化する。これにより、図40の期間P21の終了時点と同様、出力端子58の電位(出力信号Q1の電位)および第1内部ノードN1の電位が低下する。
 期間P32になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、図40の期間P22と同様、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルはローレベルとなり、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなる。
 なお、i段目の単位回路22(i)にシフトパルスが与えられない期間には、i段目の単位回路22(i)では、第1内部ノードN1の電位、第2内部ノードN2の電位、出力信号Q1の電位、および出力信号Q2の電位はローレベルで維持され、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルで維持される(図41で符号64を付した矢印の部分を参照)。
<1.6.4.4 動作モードが第3モードに設定されているときの動作>
 このケースにおいて、画像表示が行われるフレーム期間(走査期間)(図39参照)には、単位回路22は、動作モードが第1モードに設定されているときと同様に動作する(図40参照)。このケースにおいて、休止期間のうちのモニタ期間以外の期間には、単位回路22は、動作モードが第2モードに設定されているときの休止期間と同様に動作する(図41を参照)。
 図42~図46を参照しつつ、このケースにおける休止期間のうちのモニタ期間のi段目の単位回路22(i)の動作について説明する。但し、i行目がモニタ行であると仮定し、i行目についてのモニタ処理が行われる際の動作に着目する。期間P40の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 図43に期間P40における単位回路22(i)の状態を示す。期間P40になると、セット信号Sがローレベルからハイレベルに変化する。これにより、図40の期間P20と同様、第1内部ノードN1の電位および第2内部ノードN2の電位が上昇し、第3内部ノードN3の電位および第4内部ノードN4の電位がローレベルとなる。期間P40の終了時点には、安定化制御信号VRDBがハイレベルからローレベルに変化する。
 図44に期間P41~P45における単位回路22(i)の状態を示す。期間P41になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。これにより、図40の期間P21と同様と同様、出力端子59の接続先の書き込み制御トランジスタT1およびモニタ制御トランジスタT3がオン状態となるのに充分なレベルにまで出力信号Q2の電位が上昇する。また、期間P41になると、安定化制御信号VRDがローレベルからハイレベルに変化する。その後、期間P45の終了時点に、安定化制御信号VRDがハイレベルからローレベルに変化する。以上より、期間P41~P45を通じて、安定化制御信号VRDはハイレベルで維持される。このため、トランジスタM2,M3に関して第1導通端子-第2導通端子間の電圧(ドレイン-ソース間電圧)が小さくなる。従って、期間P41~P45を通じて、トランジスタM2,M3でのオフリークに起因する第1内部ノードN1および第2内部ノードN2の電位の低下が抑制される。
 図45に期間P46における単位回路22(i)の状態を示す。期間P46になると、安定化制御信号VRDBがローレベルからハイレベルに変化する。このとき、第1内部ノードN1の電位はハイレベルで維持されているので、トランジスタM4はオン状態で維持されている。従って、第3内部ノードN3の電位はローレベルで維持される。また、期間P46になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。これにより、図40の期間P21と同様、第1内部ノードN1の電位が上昇して、出力信号Q1の電位が充分に上昇する。期間P46の終了時点には、クロック信号CK(クロック信号CK1)およびイネーブル信号EN(イネーブル信号EN1)がハイレベルからローレベルに変化する。これにより、図40における期間P21の終了時点と同様、出力信号Q1の電位および出力信号Q2の電位が低下する。これに伴い、第1内部ノードN1の電位および第2内部ノードN2の電位が低下する。
 図46に期間P47における単位回路22(i)の状態を示す。期間P47になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、図40の期間P22と同様、第1内部ノードN1および第2内部ノードN2の電位はローレベルとなり、第3内部ノードN3の電位および第4内部ノードN4の電位がハイレベルとなる。
 以上のようにして、i行目の画素回路410では、期間P41~P46に書き込み制御トランジスタT1およびモニタ制御トランジスタT3がオン状態で維持される。これにより、期間P41~P46に、i行目の画素回路410についてのモニタ処理が行われる。
 次に、図47を参照しつつ、モニタ処理が行われる際の画素回路410および電流モニタ部320の動作について説明する。ここでは、第i行第j列の画素回路410およびj列目に対応する電流モニタ部320に着目する。
 期間P40には、(i-1)行目で画像表示用のデータ電位Vd(i-1)に基づく書き込みが行われる。期間P40の終了時点直前には、走査信号GL(i)はローレベルである。従って、書き込み制御トランジスタT1およびモニタ制御トランジスタT3はオフ状態である。また、期間P40の終了時点直前には、制御信号S2,S1はローレベルであり、制御信号S0はハイレベルである。従って、スイッチ323,324はオフ状態であり、スイッチ325はオン状態である。このとき、電流モニタ線MCL(j)と内部データ線Sin(j)とは電気的に切り離されている。
 期間P41になると、走査信号GL(i)はローレベルからハイレベルに変化する。これにより、書き込み制御トランジスタT1およびモニタ制御トランジスタT3はオン状態となる。また、期間P41には、制御信号S2,S1はローレベルからハイレベルに変化し、制御信号S0はハイレベルからローレベルに変化する。これにより、スイッチ323,324はオン状態となり、スイッチ325はオフ状態となる。その結果、電流モニタ線MCL(j)と内部データ線Sin(j)とが電気的に接続される。期間P41~P43には、以上のような状態で、特性検出用電位Vr_TFTまたは特性検出用電位Vr_OLEDがデータ信号線SL(j)に印加され、電流測定用電位Vm_TFTまたは電流測定用電位Vm_OLEDが電流モニタ線MCL(j)に印加される。特性検出用電位Vr_TFTおよび電流測定用電位Vm_TFTは、駆動トランジスタT2には電流が流れるが有機EL素子L1には電流が流れないように設定された電位である。特性検出用電位Vr_OLEDおよび電流測定用電位Vm_OLEDは、有機EL素子L1には電流が流れるが駆動トランジスタT2には電流が流れないように設定された電位である。なお、期間P41~P43については、電流モニタ線MCL(j)に流れる測定電流が安定するのに充分な長さに設定されている。
 期間P44になると、制御信号S2がハイレベルからローレベルに変化する。これにより、スイッチ323がオフ状態となり、オペアンプ321とコンデンサ322とが積分回路として機能する。その結果、オペアンプ321の出力電圧は、電流モニタ線MCL(j)を流れている電流に応じた電圧となる。
 期間P45になると、制御信号S1がハイレベルからローレベルに変化し、制御信号S0がローレベルからハイレベルに変化する。これにより、スイッチ324がオフ状態となり、スイッチ325がオン状態となる。スイッチ324がオフ状態となることによって、電流モニタ線MCL(j)と内部データ線Sin(j)とが電気的に切り離された状態となる。この状態で、オペアンプ321の出力電圧(コンデンサ322の充電電圧)がA/Dコンバータ327によってデジタル信号に変換される。そのデジタル信号は、モニタデータMOとして表示制御回路10に送られ、入力画像信号DINの補正に用いられる。
 期間P46になると、画像表示用のデータ電位Vd(i)がデータ信号線SL(j)に印加される。このとき、書き込み制御トランジスタT1はオン状態である。従って、第i行第j列の画素回路410において当該データ電位Vd(i)に基づく書き込みが行われる。
 期間P47になると、走査信号GL(i)がハイレベルからローレベルに変化する。これにより、書き込み制御トランジスタT1およびモニタ制御トランジスタT3がオフ状態となる。なお、期間P47には、(i+1)行目で画像表示用のデータ電位Vd(i+1)に基づく書き込みが行われる。期間P47以降の期間には、第i行第j列の画素回路410では、期間P46における書き込みに基づいて有機EL素子L1が発光する。
 次に、図48を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。但し、ここで着目する期間中にモニタ行でモニタ処理が行われるものとする。期間P40の開始時点直前には、第1内部ノードN1の電位および第2内部ノードN2の電位はローレベルとなっており、第3内部ノードN3の電位および第4内部ノードN4の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 期間P40になると、クロック信号CK2がローレベルからハイレベルに変化するが、クロック信号CK2は単位回路22(i)には入力されない。従って、単位回路22(i)の状態は、期間P40の開始時点直前の状態で維持される。期間P40の終了時点には、安定化制御信号VRDBがハイレベルからローレベルに変化する。
 期間P41になると、イネーブル信号EN(イネーブル信号EN1)がローレベルからハイレベルに変化する。しかしながら、第2内部ノードN2の電位はローレベルで維持されているので、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。また、期間P41になると、安定化制御信号VRDがローレベルからハイレベルに変化する。
 期間P42~P45には、単位回路22(i)の状態は、期間P41と同様の状態で維持される。従って、第4内部ノードN4の電位はハイレベルで維持される。それ故、トランジスタM9はオン状態で維持されるので、トランジスタM12でオフリークが生じても、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。期間P45の終了時点には、安定化制御信号VRDがハイレベルからローレベルに変化する。
 期間P46になると、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化する。しかしながら、第1内部ノードN1の電位はローレベルで維持されているので、出力端子58の電位(出力信号Q1の電位)はローレベルで維持される。また、期間P46になると、安定化制御信号VRDBがローレベルからハイレベルに変化する。これにより、第3内部ノードN3の電位がハイレベルとなる。期間P47については、期間P40と同様である。
<1.6.5 効果>
 本変形例によれば、第1の実施形態と同様、モニタ行に対応する単位回路22においてトランジスタM2でのオフリークの発生が抑制され、非モニタ行に対応する単位回路22において仮にトランジスタM12でオフリークが生じても出力信号Q2はローレベルで維持される。すなわち、本変形例においても、外部補償機能を有する有機EL表示装置に関し、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<2.第2の実施形態>
<2.1 概略構成>
 第1の実施形態においては、ゲートドライバ20を構成する単位回路22には、トランジスタでのオフリークに起因する動作不良の発生を抑制するための構成要素として、安定化回路223とリセット回路224とが設けられていた(図1)。これに対して、本実施形態においては、安定化回路223およびリセット回路224のうち安定化回路223のみが単位回路22に設けられる。全体構成については第1の実施形態と同様である(図2参照)。画素回路410およびソースドライバ30の構成についても第1の実施形態と同様である(図4参照)。画素回路410については図5に示した構成を採用することもできる。
<2.2 ゲートドライバ>
 図49は、本実施形態におけるゲートドライバ20を構成するシフトレジスタの5段分の構成を示すブロック図である。各単位回路22には、第1の実施形態(図6参照)で設けられている入力端子に加えて、クロック信号CKBを受け取るための入力端子が含まれている。奇数段目の単位回路22については、クロック信号CK1がクロック信号CKとして与えられ、クロック信号CK2がクロック信号CKBとして与えられる。偶数段目の単位回路22については、クロック信号CK2がクロック信号CKとして与えられ、クロック信号CK1がクロック信号CKBとして与えられる。
 図50は、本実施形態における単位回路22の構成を示す回路図である。図50では、クロック信号CKBを受け取るための入力端子に符号57を付している。本実施形態における単位回路22の構成は、第1の実施形態における単位回路22(図1参照)の構成からリセット回路224を取り除いた構成となっている。なお、本実施形態においては、入力端子57とトランジスタM8の制御端子とトランジスタM9の制御端子とが互いに接続されている領域(配線)のことを「第4内部ノード」という。
<2.3 駆動方法>
 本実施形態における駆動方法について説明する。なお、モニタ処理の際のトランジスタでのオフリークに起因する動作不良の発生を抑制するという観点では、リセット回路224の有無は、動作モードが非モニタモードに設定されているときの単位回路22の動作には影響を及ぼさない。従って、ここでは、動作モードがモニタモードに設定されているときの動作についてのみ説明する。
 図51を参照しつつ、動作モードがモニタモードに設定されているときのi段目の単位回路22(i)の動作について説明する。但し、i行目がモニタ行であると仮定し、i行目についてのモニタ処理が行われる際の動作に着目する。本実施形態における期間P50~P57は第1の実施形態における期間P10~P17に相当する。期間P50の開始時点直前には、第1内部ノードN1の電位、第2内部ノードN2の電位、および第4内部ノードN4の電位はローレベルとなっており、第3内部ノードN3の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。すなわち、第4内部ノードN4の電位が第1の実施形態とは異なっている。
 期間P50になると、クロック信号CK2がローレベルからハイレベルに変化する。i段目の単位回路22(i)には、クロック信号CK2がクロック信号CKBとして与えられる。従って、i段目の単位回路22(i)では、期間P50になると第4内部ノードN4の電位がハイレベルとなる。これにより、トランジスタM8,M9がオン状態となる。また、期間P50になると、セット信号Sがローレベルからハイレベルに変化する。これにより、第1内部ノードN1の電位および第2内部ノードN2の電位が上昇する。また、第1内部ノードN1の電位の上昇に伴い、トランジスタM4がオン状態となって第3内部ノードN3の電位がローレベルとなる。期間P50の終了時点には、クロック信号CKB(クロック信号CK2)がハイレベルからローレベルに変化する。これにより、第4内部ノードN4の電位がローレベルとなり、トランジスタM8,M9がオフ状態となる。以上のように本実施形態では期間P50にトランジスタM8,M9がオン状態となるが、当該期間P50には出力信号Q1,Q2がローレベルで維持されるべき期間であるので、トランジスタM8,M9がオン状態となることがモニタ処理に影響を及ぼすことはない。
 期間P51~P57には、i段目の単位回路22(i)では、第1の実施形態と同様の動作が行われる(図16参照)。従って、期間P53~P54を通じて、トランジスタM2,M3でのオフリークに起因する第1内部ノードN1および第2内部ノードN2の電位の低下が抑制される。
 次に、図52を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。但し、ここで着目する期間中にモニタ行でモニタ処理が行われるものとする。期間P50の開始時点直前には、第1内部ノードN1の電位、第2内部ノードN2の電位、および第4内部ノードN4の電位はローレベルとなっており、第3内部ノードN3の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 期間P50になると、クロック信号CKB(クロック信号CK2)がローレベルからハイレベルに変化する。これにより、第4内部ノードN4の電位がハイレベルとなり、トランジスタM8,M9がオン状態となる。期間P50の終了時点には、クロック信号CKB(クロック信号CK2)がハイレベルからローレベルに変化する。これにより、第4内部ノードN4の電位がローレベルとなり、トランジスタM8,M9がオフ状態となる。
 期間P51~P56については、第4内部ノードN4の電位がローレベルで維持される点を除いて第1の実施形態(図25参照)と同様である。本実施形態においては、期間P51~P56を通じて、第4内部ノードN4の電位がローレベルで維持されるので、トランジスタM8,M9がオフ状態で維持される。従って、第1の実施形態とは異なり、期間P53~P54に非モニタ行に対応する単位回路22内のトランジスタM12でオフリークが生じた場合の動作不良の発生を抑制するという効果は得られない。期間P57については、期間P50と同様である。
<2.4 効果>
 本実施形態によれば、モニタ行に対応する単位回路22において、トランジスタM2でのオフリークの発生が抑制される。すなわち、外部補償機能を有する有機EL表示装置に関し、従来と比較して、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<2.5 変形例>
<2.5.1 概略構成>
 第2の実施形態の変形例について説明する。本変形例に係る有機EL表示装置は、第1の実施形態の変形例と同様、休止駆動が可能な表示装置である。全体構成については第1の実施形態の変形例と同様である(図33参照)。画素回路410およびソースドライバ30の構成についても第1の実施形態の変形例と同様である(図34参照)。画素回路410については図35に示した構成を採用することもできる。
<2.5.2 ゲートドライバ>
 図53は、本変形例におけるゲートドライバ20を構成するシフトレジスタの5段分の構成を示すブロック図である。各単位回路22には、第1の実施形態の変形例(図36参照)で設けられている入力端子に加えて、クロック信号CKBを受け取るための入力端子が含まれている。奇数段目の単位回路22については、クロック信号CK1がクロック信号CKとして与えられ、クロック信号CK2がクロック信号CKBとして与えられる。偶数段目の単位回路22については、クロック信号CK2がクロック信号CKとして与えられ、クロック信号CK1がクロック信号CKBとして与えられる。第1の実施形態の変形例と同様、各段の単位回路22からの出力信号Q1は、前段の単位回路22にリセット信号Rとして与えられるとともに次段の単位回路22にセット信号Sとして与えられ、各段の単位回路22からの出力信号Q2は、対応する走査信号線GLに走査信号として与えられる。
 単位回路22の構成については第2の実施形態と同様である(図50参照)。すなわち、安定化回路223およびリセット回路224のうち安定化回路223のみが単位回路22に設けられている。
<2.5.3 駆動方法>
 本変形例における駆動方法について説明する。本変形例で用意されている動作モードについては、第1の実施形態の変形例と同じである。ここでは、休止期間のうちのモニタ期間のi段目の単位回路22(i)の動作について説明する。なお、本変形例における期間P60~P67は第1の実施形態の変形例における期間P40~P47に相当する。
 図54を参照しつつ、i行目がモニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。期間P60の開始時点直前には、第1内部ノードN1の電位、第2内部ノードN2の電位、および第4内部ノードN4の電位はローレベルとなっており、第3内部ノードN3の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。すなわち、第4内部ノードN4の電位が第1の実施形態の変形例とは異なっている。
 期間P60になると、クロック信号CKB(クロック信号CK2)がローレベルからハイレベルに変化する。期間P60の終了時点には、クロック信号CKB(クロック信号CK2)がハイレベルからローレベルに変化する。これにより、期間P60には、第2の実施形態における図51の期間P50と同様、第4内部ノードN4の電位がハイレベルとなって、トランジスタM8,M9がオン状態となる。しかしながら、当該期間P60には出力信号Q1,Q2がローレベルで維持されるべき期間であるので、トランジスタM8,M9がオン状態となることがモニタ処理に影響を及ぼすことはない。また、期間P60になると、セット信号Sがローレベルからハイレベルに変化する。これにより、第1内部ノードN1の電位および第2内部ノードN2の電位が上昇する。また、第1内部ノードN1の電位の上昇に伴い、トランジスタM4がオン状態となって第3内部ノードN3の電位がローレベルとなる。
 期間P61~P67には、i段目の単位回路22(i)では、第1の実施形態の変形例と同様の動作が行われる(図42参照)。従って、期間P61~P65を通じて、トランジスタM2,M3でのオフリークに起因する第1内部ノードN1および第2内部ノードN2の電位の低下が抑制される。
 次に、図55を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。期間P60の開始時点直前には、第1内部ノードN1の電位、第2内部ノードN2の電位、および第4内部ノードN4の電位はローレベルとなっており、第3内部ノードN3の電位はハイレベルとなっており、安定化制御信号VRDはローレベルとなっており、安定化制御信号VRDBはハイレベルとなっている。
 期間P60になると、クロック信号CKB(クロック信号CK2)がローレベルからハイレベルに変化する。これにより、第4内部ノードN4の電位がハイレベルとなり、トランジスタM8,M9がオン状態となる。期間P60の終了時点には、クロック信号CKB(クロック信号CK2)がハイレベルからローレベルに変化する。これにより、第4内部ノードN4の電位がローレベルとなり、トランジスタM8,M9がオフ状態となる。
 期間P61~P66については、第4内部ノードN4の電位がローレベルで維持される点を除いて第1の実施形態の変形例(図48参照)と同様である。本変形例においては、期間P61~P66を通じて、第4内部ノードN4の電位がローレベルで維持されるので、トランジスタM8,M9がオフ状態で維持される。従って、第1の実施形態の変形例とは異なり、期間P63~P64に非モニタ行に対応する単位回路22内のトランジスタM12でオフリークが生じた場合の動作不良の発生を抑制するという効果は得られない。期間P67については、期間P60と同様である。
<2.5.4 効果>
 本変形例によれば、第2の実施形態と同様、モニタ行に対応する単位回路22において、トランジスタM2でのオフリークの発生が抑制される。すなわち、外部補償機能を有する有機EL表示装置に関し、従来と比較して、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<3.第3の実施形態>
<3.1 概略構成>
 第1の実施形態においては、ゲートドライバ20を構成する単位回路22には、トランジスタでのオフリークに起因する動作不良の発生を抑制するための構成要素として、安定化回路223とリセット回路224とが設けられていた(図1)。これに対して、本実施形態においては、安定化回路223およびリセット回路224のうちリセット回路224のみが単位回路22に設けられる。全体構成については第1の実施形態と同様である(図2参照)。画素回路410およびソースドライバ30の構成についても第1の実施形態と同様である(図4参照)。画素回路410については図5に示した構成を採用することもできる。
<3.2 ゲートドライバ>
 図56は、本実施形態におけるゲートドライバ20を構成するシフトレジスタの5段分の構成を示すブロック図である。図56から把握されるように、本実施形態においては、安定化制御信号VRD,VRDBは用いられない。従って、各単位回路22には、第1の実施形態(図6参照)で設けられている入力端子のうち安定化制御信号VRDを受け取るための入力端子および安定化制御信号VRDBを受け取るための入力端子が設けられていない。それ以外の点については、第1の実施形態と同様である。
 図57は、本実施形態における単位回路22の構成を示す回路図である。本実施形態における単位回路22の構成は、第1の実施形態における単位回路22(図1参照)の構成から安定化回路223を取り除いた構成となっている。但し、トランジスタM2の第2導通端子は第1基準電位線(ローレベル電位VSSが与えられている電源線)に接続されている。
<3.3 駆動方法>
 本実施形態における駆動方法について説明する。なお、モニタ処理の際のトランジスタでのオフリークに起因する動作不良の発生を抑制するという観点では、安定化回路223の有無は、動作モードが非モニタモードに設定されているときの単位回路22の動作には影響を及ぼさない。従って、ここでは、動作モードがモニタモードに設定されているときの動作についてのみ説明する。
 図58を参照しつつ、動作モードがモニタモードに設定されているときのi段目の単位回路22(i)の動作について説明する。但し、i行目がモニタ行であると仮定し、i行目についてのモニタ処理が行われる際の動作に着目する。本実施形態における期間P70~P77は第1の実施形態における期間P10~P17に相当する。
 図16および図58から把握されるように、期間P70~P77を通じて、i段目の単位回路22(i)では、第1の実施形態と同様の動作が行われる。但し、単位回路22(i)には安定化回路223が設けられていないので、トランジスタM2でのオフリークに起因する第1内部ノードN1の電位の低下を抑制するという効果は得られない。すなわち、期間P73~P74にトランジスタM2でオフリークが生じた場合の動作不良の発生を抑制するという効果は得られない。
 次に、図59を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。但し、ここで着目する期間中にモニタ行でモニタ処理が行われるものとする。
 図25および図59から把握されるように、期間P70~P77を通じて、i段目の単位回路22(i)では、第1の実施形態と同様の動作が行われる。すなわち、期間P70~P77を通じて、第4内部ノードN4の電位はハイレベルで維持される。それ故、トランジスタM9はオン状態で維持されるので、第1の実施形態と同様、期間P73~P74にトランジスタM12でオフリークが生じても、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。
<3.4 効果>
 本実施形態によれば、非モニタ行に対応する単位回路22において、仮にトランジスタM12でオフリークが生じても、出力信号Q2はローレベルで維持される。すなわち、外部補償機能を有する有機EL表示装置に関し、従来と比較して、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<3.5 変形例>
<3.5.1 概略構成>
 第3の実施形態の変形例について説明する。本変形例に係る有機EL表示装置は、第1の実施形態の変形例と同様、休止駆動が可能な表示装置である。全体構成については第1の実施形態の変形例と同様である(図33参照)。画素回路410およびソースドライバ30の構成についても第1の実施形態の変形例と同様である(図34参照)。画素回路410については図35に示した構成を採用することもできる。
<3.5.2 ゲートドライバ>
 図60は、本変形例におけるゲートドライバ20を構成するシフトレジスタの5段分の構成を示すブロック図である。各単位回路22には、第1の実施形態の変形例(図36参照)で設けられている入力端子のうち安定化制御信号VRDを受け取るための入力端子および安定化制御信号VRDBを受け取るための入力端子が設けられていない。それ以外の点については、第1の実施形態の変形例と同様である。
 単位回路22の構成については第3の実施形態と同様である(図57参照)。すなわち、安定化回路223およびリセット回路224のうちリセット回路224のみが単位回路22に設けられている。
<3.5.3 駆動方法>
 本変形例における駆動方法について説明する。本変形例で用意されている動作モードについては、第1の実施形態の変形例と同じである。ここでは、休止期間のうちのモニタ期間のi段目の単位回路22(i)の動作について説明する。なお、本変形例における期間P80~P87は第1の実施形態の変形例における期間P40~P47に相当する。
 図61を参照しつつ、i行目がモニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。図42および図61から把握されるように、期間P80~P87を通じて、i段目の単位回路22(i)では、第1の実施形態の変形例と同様の動作が行われる。但し、単位回路22(i)には安定化回路223が設けられていないので、トランジスタM2でのオフリークに起因する第1内部ノードN1の電位の低下を抑制するという効果は得られない。すなわち、モニタ期間中にトランジスタM2でオフリークが生じた場合の動作不良の発生を抑制するという効果は得られない。
 次に、図62を参照しつつ、i行目が非モニタ行であると仮定したときのi段目の単位回路22(i)の動作について説明する。図48および図62から把握されるように、期間P80~P87を通じて、i段目の単位回路22(i)では、第1の実施形態の変形例と同様の動作が行われる。すなわち、期間P80~P87を通じて、第4内部ノードN4の電位はハイレベルで維持される。それ故、トランジスタM9はオン状態で維持されるので、第1の実施形態の変形例と同様、トランジスタM12でオフリークが生じても、出力端子59の電位(出力信号Q2の電位)はローレベルで維持される。
<3.5.4 効果>
 本変形例によれば、第3の実施形態と同様、非モニタ行に対応する単位回路22において、仮にトランジスタM12でオフリークが生じても、出力信号Q2はローレベルで維持される。すなわち、外部補償機能を有する有機EL表示装置に関し、従来と比較して、ゲートドライバ20を構成する単位回路22内のトランジスタでのオフリークに起因する動作不良の発生が抑制される。
<4.その他>
 上記においてはモニタ行が1行目からn行目へと1行ずつ順次に遷移することを前提に説明しているが、これには限定されない。モニタ行がランダムに遷移するようにしても良い。
 上記各実施形態(変形例を含む)では有機EL表示装置を例に挙げて説明したが、これには限定されない。電流で駆動される表示素子(電流によって輝度または透過率が制御される表示素子)を備えた表示装置であれば、本発明を適用することができる。例えば、無機発光ダイオードを備えた無機EL表示装置や量子ドット発光ダイオード(Quantum dot Light Emitting Diode(QLED))を備えたQLED表示装置などにも本発明を適用することができる。
 10…表示制御回路
 20…ゲートドライバ
 22…単位回路
 30…ソースドライバ
 40…表示部
 221…第1出力制御回路
 222…第2出力制御回路
 223…安定化回路
 224…リセット回路
 320…電流モニタ部
 410…画素回路
 GL、GL(1)~GL(n)…走査信号線
 ML、ML(1)~ML(n)…モニタ制御線
 SL、SL(1)~SL(m)…データ信号線
 MCL、MCL(1)~MCL(m)…電流モニタ線
 L1…有機EL素子
 T1…書き込み制御トランジスタ
 T2…駆動トランジスタ
 T3…モニタ制御トランジスタ
 M1~M12…単位回路内のトランジスタ
 N1~N4…第1~第4内部ノード
 VRD、VRDB…安定化制御信号

Claims (30)

  1.  電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
     n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
     前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
     前記走査信号線に走査信号を印加する走査信号線駆動回路と、
     第1制御信号線と、
     前記第1制御信号線の電位を制御する制御回路と、
     第1基準電位を供給する第1基準電位線と
    を備え、
     前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
     各単位回路は、
      第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
      前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
      前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
      制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
      前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と、
      制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
      前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御する、前記第1基準電位線に接続されたリセット回路と
    を含むことを特徴とする、表示装置。
  2.  電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
     n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
     前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
     前記走査信号線に走査信号を印加する走査信号線駆動回路と、
     第1制御信号線と、
     前記第1制御信号線の電位を制御する制御回路と、
     第1基準電位を供給する第1基準電位線と
    を備え、
     前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
     各単位回路は、
      第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
      前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
      前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
      制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
      前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と
    を含むことを特徴とする、表示装置。
  3.  電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有し、前記駆動トランジスタまたは前記表示素子の劣化を補償するために前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行する機能を有する表示装置であって、
     n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
     前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
     前記走査信号線に走査信号を印加する走査信号線駆動回路と、
     第1基準電位を供給する第1基準電位線と
    を備え、
     前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
     各単位回路は、
      第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
      前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
      制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
      前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御する、前記第1基準電位線に接続されたリセット回路と
    を含むことを特徴とする、表示装置。
  4.  前記モニタ期間は、前記駆動トランジスタまたは前記表示素子の特性に応じた電流を流すためのデータ信号を前記画素回路に書き込む測定用書き込み期間および前記画素回路外で電流を測定する測定期間を含み、
     前記制御回路は、少なくとも前記測定用書き込み期間の終了時点から前記測定期間の終了時点までの期間に、前記第1制御信号線にオンレベルの電位を印加することを特徴とする、請求項1または2に記載の表示装置。
  5.  前記モニタ期間において前記第1制御信号線にオンレベルの電位が印加されている時には、
      前記モニタ処理の対象となっている行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオン状態にする電位であり、前記安定化回路は前記安定化トランジスタをオフ状態にする電位を出力し、
      前記モニタ処理の対象となっていない行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオフ状態にする電位であり、前記安定化回路は前記安定化トランジスタをオフ状態にする電位を出力し、
     前記モニタ期間において前記第1制御信号線にオフレベルの電位が印加されている時には、
      前記モニタ処理の対象となっている行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオン状態にする電位であり、前記安定化回路は前記安定化トランジスタをオフ状態にする電位を出力し、
      前記モニタ処理の対象となっていない行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオフ状態にする電位であり、前記安定化回路は前記安定化トランジスタをオン状態にする電位を出力することを特徴とする、請求項1、2、4のいずれか1項に記載の表示装置。
  6.  前記制御回路は、画像表示のために前記走査信号線の走査が行われる走査期間を通じて前記第1制御信号線にオフレベルの電位を印加し、
     前記走査期間には、
      選択対象の行に対応する単位回路では、前記第1内部ノードの電位が前記第1出力制御トランジスタをオン状態にする電位である時には前記安定化回路は前記安定化トランジスタをオフ状態にする電位を出力し、前記第1内部ノードの電位が前記第1出力制御トランジスタをオフ状態にする電位である時には前記安定化回路は前記安定化トランジスタをオン状態にする電位を出力し、
      非選択対象の行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオフ状態にする電位であり、前記安定化回路は前記安定化トランジスタをオン状態にする電位を出力することを特徴とする、請求項1、2、4、5のいずれか1項に記載の表示装置。
  7.  第2制御信号線と、
     第2基準電位を供給する第2基準電位線と
    を更に備え、
     前記制御回路は、さらに前記第2制御信号線の電位を制御し、
     前記安定化回路は、
      前記安定化トランジスタの制御端子に接続された第3内部ノードと、
      前記第1内部ノードに接続された制御端子と、前記第3内部ノードに接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1の安定化制御トランジスタと、
      前記第2基準電位線に接続された制御端子と、前記第2制御信号線に接続された第1導通端子と、前記第3内部ノードに接続された第2導通端子とを有する第2の安定化制御トランジスタと
    を含み、
     前記第2基準電位は、前記第2の安定化制御トランジスタをオン状態にする電位であることを特徴とする、請求項1、2、4~6のいずれか1項に記載の表示装置。
  8.  前記第1の安定化制御トランジスタのオン電流は、前記第2の安定化制御トランジスタのオン電流よりも大きいことを特徴とする、請求項7に記載の表示装置。
  9.  前記第1制御信号線は、前記複数の単位回路に共通の電位を与え、
     前記第2制御信号線は、前記複数の単位回路に共通の電位を与えることを特徴とする、請求項7または8に記載の表示装置。
  10.  前記モニタ期間には、
      前記モニタ処理の対象となっている行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオン状態にする電位であり、前記リセット回路は前記第1リセットトランジスタをオフ状態にする電位を出力し、
      前記モニタ処理の対象となっていない行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオフ状態にする電位であり、前記リセット回路は前記第1リセットトランジスタをオン状態にする電位を出力することを特徴とする、請求項1または3に記載の表示装置。
  11.  画像表示のために前記走査信号線の走査が行われる走査期間には、
      選択対象の行に対応する単位回路では、前記第1内部ノードの電位が前記第1出力制御トランジスタをオン状態にする電位である時には前記リセット回路は前記第1リセットトランジスタをオフ状態にする電位を出力し、前記第1内部ノードの電位が前記第1出力制御トランジスタをオフ状態にする電位である時には前記リセット回路は前記第1リセットトランジスタをオン状態にする電位を出力し、
      非選択対象の行に対応する単位回路では、前記第1内部ノードの電位は前記第1出力制御トランジスタをオフ状態にする電位であり、前記リセット回路は前記第1リセットトランジスタをオン状態にする電位を出力することを特徴とする、請求項1、3、10のいずれか1項に記載の表示装置。
  12.  第2基準電位を供給する第2基準電位線を更に備え、
     前記リセット回路は、
      前記第1リセットトランジスタの制御端子に接続された第4内部ノードと、
      前記第1内部ノードに接続された制御端子と、前記第4内部ノードに接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1のリセット制御トランジスタと、
      前記第2基準電位線に接続された制御端子と、前記第2基準電位線に接続された第1導通端子と、前記第4内部ノードに接続された第2導通端子とを有する第2のリセット制御トランジスタと
    を含み、
     前記第2基準電位は、前記第2のリセット制御トランジスタをオン状態にする電位であることを特徴とする、請求項1、3、10、11のいずれか1項に記載の表示装置。
  13.  前記第1のリセット制御トランジスタのオン電流は、前記第2のリセット制御トランジスタのオン電流よりも大きいことを特徴とする、請求項12に記載の表示装置。
  14.  前記単位回路は、前記リセット回路に接続された制御端子と、前記第1出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第2リセットトランジスタを含むことを特徴とする、請求項1、3、10~13のいずれか1項に記載の表示装置。
  15.  前記モニタ処理に関する動作モードとして、前記モニタ処理が随時行われるモニタモードと前記モニタ処理が行われない非モニタモードとが用意され、
     動作モードが前記モニタモードに設定されているとき、前記制御回路は、前記モニタ期間のうちの少なくとも一部の期間に前記第1制御信号線にオンレベルの電位を印加し、それ以外の期間に前記第1制御信号線にオフレベルの電位を印加することを特徴とする、請求項1または2に記載の表示装置。
  16.  前記モニタ期間は、前記駆動トランジスタまたは前記表示素子の特性に応じた電流を流すためのデータ信号を前記画素回路に書き込む測定用書き込み期間および前記画素回路外で電流を測定する測定期間を含み、
     前記制御回路は、少なくとも前記測定用書き込み期間の終了時点から前記測定期間の終了時点までの期間に前記第1制御信号線にオンレベルの電位を印加し、それ以外の期間に前記第1制御信号線にオフレベルの電位を印加することを特徴とする、請求項15に記載の表示装置。
  17.  前記制御回路は、動作モードが前記非モニタモードに設定されている期間を通じて前記第1制御信号線にオフレベルの電位を印加することを特徴とする、請求項15または16に記載の表示装置。
  18.  前記表示部は、前記画素マトリクスの各行に対応するように設けられたモニタ制御線を更に有し、
     前記走査信号線駆動回路は、前記モニタ制御線にモニタ制御信号を印加し、
     前記第1出力端子は、対応する走査信号線に接続され、
     前記第2出力端子は、対応するモニタ制御線に接続されていることを特徴とする、請求項1から17までのいずれか1項に記載の表示装置。
  19.  前記データ信号線は、前記モニタ処理の際に前記駆動トランジスタまたは前記表示素子の特性に応じた電流を流すための信号線としても用いられ、
     前記モニタ処理の際、前記データ信号線を流れる電流の測定が行われることを特徴とする、請求項18に記載の表示装置。
  20.  前記画素回路に前記データ信号を書き込む動作を間欠的に行う休止駆動が可能であって、
     動作モードとして、前記休止駆動を行わない第1モードと、前記休止駆動を行って前記モニタ処理を行わない第2モードと、前記休止駆動を行って前記モニタ処理を行う第3モードとが用意され、
     前記制御回路は、
      動作モードが前記第1モードに設定されている期間を通じて前記第1制御信号線にオフレベルの電位を印加し、
      動作モードが前記第2モードに設定されている期間を通じて前記第1制御信号線にオフレベルの電位を印加し、
      動作モードが前記第3モードに設定されているときには、前記モニタ期間のうちの少なくとも一部の期間に前記第1制御信号線にオンレベルの電位を印加し、それ以外の期間に前記第1制御信号線にオフレベルの電位を印加することを特徴とする、請求項1または2に記載の表示装置。
  21.  前記モニタ期間は、少なくとも、前記画素回路を初期化する初期化期間、前記駆動トランジスタまたは前記表示素子の特性に応じた電流を流すためのデータ信号を前記画素回路に書き込む測定用書き込み期間、および前記画素回路外で電流を測定する測定期間を含み、
     前記制御回路は、少なくとも前記初期化期間の開始時点から前記測定期間の終了時点までの期間を通じて前記第1制御信号線にオンレベルの電位を印加することを特徴とする、請求項20に記載の表示装置。
  22.  前記第1制御信号線に印加されるオンレベルの電位は、当該電位が前記第1内部ノードに与えられると前記第1出力制御トランジスタをオン状態にする電位であることを特徴とする、請求項4、20、21のいずれか1項に記載の表示装置。
  23.  前記表示部は、前記画素マトリクスの各列に対応するように設けられた電流モニタ線を更に有し、
     前記データ信号線駆動回路は、前記電流モニタ線を流れる電流を測定する機能を有し、
     前記画素回路は、
      第1端子と第2端子とを有する前記表示素子と、
      制御端子と第1導通端子と第2導通端子とを有する前記駆動トランジスタと、
      前記走査信号線に接続された制御端子と、前記データ信号線に接続された第1導通端子と、前記駆動トランジスタの制御端子に接続された第2導通端子とを有する書き込み制御トランジスタと、
      前記走査信号線に接続された制御端子と、前記駆動トランジスタの第2導通端子と前記表示素子の第1端子とに接続された第1導通端子と、前記電流モニタ線に接続された第2導通端子とを有するモニタ制御トランジスタと、
      前記駆動トランジスタの制御端子の電位を保持するために一端が前記駆動トランジスタの制御端子に接続された容量素子と
    を含み、
     前記第2出力端子は、対応する走査信号線に接続されていることを特徴とする、請求項1~14、20~22のいずれか1項に記載の表示装置。
  24.  前記モニタ期間において、
      前記モニタ処理の対象となっている行に対応する単位回路では、前記リセット回路は前記第1リセットトランジスタをオフ状態にする電位を出力し、
      前記モニタ処理の対象となっていない行に対応する単位回路では、前記リセット回路は前記第1リセットトランジスタをオン状態にする電位を出力することを特徴とする、請求項1、3、10~14のいずれか1項に記載の表示装置。
  25.  前記モニタ期間において、
      前記モニタ処理の対象となっている行に対応する単位回路では、前記リセット回路は前記第1リセットトランジスタと前記第2リセットトランジスタとをオフ状態にする電位を出力し、
      前記モニタ処理の対象となっていない行に対応する単位回路では、前記リセット回路は前記第1リセットトランジスタと前記第2リセットトランジスタとをオン状態にする電位を出力することを特徴とする、請求項14に記載の表示装置。
  26.  前記制御回路は、前記モニタ期間において、前記第1制御信号線に印加する電位をオフレベルからオンレベルに変化させる前に、前記第2制御信号線に印加する電位をオンレベルからオフレベルに変化させることを特徴とする、請求項7に記載の表示装置。
  27.  前記制御回路は、前記モニタ期間において、前記第1制御信号線に印加する電位をオンレベルからオフレベルに変化させた後に、前記第2制御信号線に印加する電位をオフレベルからオンレベルに変化させることを特徴とする、請求項7または26に記載の表示装置。
  28.  前記単位回路は、オンレベルの電位が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第2内部ノードに接続された第2導通端子とを有する出力回路制御トランジスタを含むことを特徴とする、請求項1から27までのいずれか1項に記載の表示装置。
  29.  前記第1基準電位は、前記第1出力端子の電位および前記第2出力端子の電位をオフレベルにする電位であることを特徴とする、請求項1から28までのいずれか1項に記載の表示装置。
  30.  電流によって駆動される表示素子と前記表示素子の駆動電流を制御する駆動トランジスタとを含む画素回路を有する表示装置の駆動方法であって、
     前記表示装置は、
      n×m個(nおよびmは2以上の整数)の前記画素回路からなるn行×m列の画素マトリクスと、前記画素マトリクスの各行に対応するように設けられた走査信号線と、前記画素マトリクスの各列に対応するように設けられたデータ信号線とを有する表示部と、
      前記データ信号線にデータ信号を印加するデータ信号線駆動回路と、
      前記走査信号線に走査信号を印加する走査信号線駆動回路と、
      第1制御信号線と、
      第1基準電位を供給する第1基準電位線と
    を備え、
     前記駆動方法は、
      前記データ信号線駆動回路によって前記データ信号線に印加される画像表示用のデータ信号を各画素回路に書き込むために前記走査信号線の走査を行う走査ステップと、
      前記駆動トランジスタまたは前記表示素子の劣化を補償するために、前記画素回路内を流れる電流を前記画素回路外で測定する一連の処理であるモニタ処理を実行するモニタステップと
    を含み、
     前記走査信号線駆動回路は、それぞれが対応する走査信号線に接続された複数の単位回路からなるシフトレジスタによって構成され、
     各単位回路は、
      第1内部ノードと、他の単位回路に接続された第1出力端子と、前記第1内部ノードに接続された制御端子と第1導通端子と前記第1出力端子に接続された第2導通端子とを有する第1出力制御トランジスタとを含む第1出力制御回路と、
      前記第1内部ノードと同じ論理レベルの電位が与えられる第2内部ノードと、前記モニタ処理が行われるモニタ期間のうちの少なくとも一部の期間にオンレベルの信号を出力する第2出力端子と、前記第2内部ノードに接続された制御端子と第1導通端子と前記第2出力端子に接続された第2導通端子とを有する第2出力制御トランジスタとを含む第2出力制御回路と、
      前記第1内部ノードの電位をオフレベルにするための信号が与えられる制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する第1内部ノード制御トランジスタと、
      制御端子と、前記第1内部ノードに接続された第1導通端子と、前記第1制御信号線に接続された第2導通端子とを有する安定化トランジスタと、
      前記第1内部ノードの電位に基づいて前記安定化トランジスタの制御端子の電位を制御する安定化回路と、
      制御端子と、前記第2出力端子に接続された第1導通端子と、前記第1基準電位線に接続された第2導通端子とを有する第1リセットトランジスタと、
      前記第1内部ノードまたは前記第2内部ノードの電位に基づいて前記第1リセットトランジスタの制御端子の電位を制御するリセット回路と
    を含み、
     前記走査ステップでは、前記第1制御信号線に前記第1基準電位が印加され、
     前記モニタステップでは、前記モニタ処理の対象の行に対応する単位回路内の前記第1内部ノードの電位が前記第1出力制御トランジスタをオン状態にする電位で維持されるべき期間のうちの一部の期間に、前記第1制御信号線に前記第1出力制御トランジスタをオン状態にする電位が印加されることを特徴とする、駆動方法。
PCT/JP2019/019060 2019-05-14 2019-05-14 表示装置およびその駆動方法 WO2020230260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/019060 WO2020230260A1 (ja) 2019-05-14 2019-05-14 表示装置およびその駆動方法
CN201980095590.1A CN113785349B (zh) 2019-05-14 2019-05-14 显示装置及其驱动方法
US17/603,531 US11741897B2 (en) 2019-05-14 2019-05-14 Display device and method for driving same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019060 WO2020230260A1 (ja) 2019-05-14 2019-05-14 表示装置およびその駆動方法

Publications (1)

Publication Number Publication Date
WO2020230260A1 true WO2020230260A1 (ja) 2020-11-19

Family

ID=73289934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019060 WO2020230260A1 (ja) 2019-05-14 2019-05-14 表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US11741897B2 (ja)
CN (1) CN113785349B (ja)
WO (1) WO2020230260A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230001050A (ko) * 2021-06-25 2023-01-04 삼성디스플레이 주식회사 송수신 장치 및 그 구동 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107807A (ja) * 2006-09-29 2008-05-08 Semiconductor Energy Lab Co Ltd 液晶表示装置および電子機器
US20140072092A1 (en) * 2012-09-07 2014-03-13 Lg Display Co., Ltd. Shift register
WO2015190407A1 (ja) * 2014-06-10 2015-12-17 シャープ株式会社 表示装置およびその駆動方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514347B (zh) * 2006-09-29 2015-12-21 Semiconductor Energy Lab 顯示裝置和電子裝置
JP5063706B2 (ja) * 2007-12-27 2012-10-31 シャープ株式会社 シフトレジスタおよび表示装置
CN105830144B (zh) * 2013-12-20 2018-09-11 夏普株式会社 显示装置及其驱动方法
KR20180050083A (ko) * 2016-11-04 2018-05-14 엘지디스플레이 주식회사 실시간 외부 보상용 구동회로와 그를 포함한 전계발광 표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107807A (ja) * 2006-09-29 2008-05-08 Semiconductor Energy Lab Co Ltd 液晶表示装置および電子機器
US20140072092A1 (en) * 2012-09-07 2014-03-13 Lg Display Co., Ltd. Shift register
WO2015190407A1 (ja) * 2014-06-10 2015-12-17 シャープ株式会社 表示装置およびその駆動方法

Also Published As

Publication number Publication date
CN113785349A (zh) 2021-12-10
CN113785349B (zh) 2023-12-26
US20220148509A1 (en) 2022-05-12
US11741897B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
KR102246726B1 (ko) 시프트 레지스터 유닛, 게이트 구동 회로, 디스플레이 디바이스 및 구동 방법
EP1649442B1 (en) Oled display with ping pong current driving circuit and simultaneous scanning of lines
US11735119B2 (en) Shift register unit, gate driving circuit and control method thereof and display apparatus
JP3800050B2 (ja) 表示装置の駆動回路
WO2020007054A1 (zh) 移位寄存器单元、栅极驱动电路及其驱动方法、显示装置
US10706803B2 (en) Shift register circuit
US8395570B2 (en) Active matrix type display apparatus
WO2012053462A1 (ja) 表示装置およびその駆動方法
US11263973B2 (en) Shift register unit, gate drive circuit, display device and driving method
US11823623B2 (en) Display device including pixel circuits with different transistor types and method for driving same
KR100432289B1 (ko) 화상 표시 장치 및 그 구동 방법
US20190392773A1 (en) Display device and display controller
WO2020230260A1 (ja) 表示装置およびその駆動方法
US10796659B2 (en) Display device and method for driving the same
WO2020202243A1 (ja) 表示装置およびその駆動方法
WO2021161505A1 (ja) 表示装置およびその駆動方法
US20230222981A1 (en) Display device
WO2021214855A1 (ja) 表示装置およびその駆動方法
JP2007108247A (ja) 表示装置及びその駆動方法
WO2021161506A1 (ja) 表示装置およびその駆動方法
US11942040B2 (en) Display device and method for driving same
US11749225B2 (en) Scanning signal line drive circuit and display device provided with same
US20230343285A1 (en) Shift Register Unit and Driving Method Thereof, Gate Driving Circuit, and Display Panel
JP2023096257A (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP