WO2020228729A1 - 喹唑啉酮类化合物的晶型及其制备方法 - Google Patents

喹唑啉酮类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2020228729A1
WO2020228729A1 PCT/CN2020/089972 CN2020089972W WO2020228729A1 WO 2020228729 A1 WO2020228729 A1 WO 2020228729A1 CN 2020089972 W CN2020089972 W CN 2020089972W WO 2020228729 A1 WO2020228729 A1 WO 2020228729A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
ray powder
powder diffraction
Prior art date
Application number
PCT/CN2020/089972
Other languages
English (en)
French (fr)
Inventor
黄婧婕
殷毅杰
姚婷
于涛
吴成德
董加强
施斌
唐伟
杨文谦
王铁林
Original Assignee
罗欣药业(上海)有限公司
山东罗欣药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗欣药业(上海)有限公司, 山东罗欣药业集团股份有限公司 filed Critical 罗欣药业(上海)有限公司
Priority to EP20806591.2A priority Critical patent/EP3971175A4/en
Priority to CN202080035113.9A priority patent/CN113874362A/zh
Priority to KR1020217040713A priority patent/KR20220008313A/ko
Priority to US17/610,835 priority patent/US20220213060A1/en
Priority to JP2021568418A priority patent/JP2022533151A/ja
Publication of WO2020228729A1 publication Critical patent/WO2020228729A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of a compound as a PI3K ⁇ inhibitor and a preparation method thereof, and to its application in the preparation of a medicine for treating solid tumors.
  • Phosphatidylinositol 3-kinase (phosphatidylinositol-3-kinase, PI3K) is composed of the regulatory subunit p85 or p101, and the catalytic subunit p110 (subdivided into four subtypes: p110 ⁇ , p110 ⁇ , p110 ⁇ , and p110 ⁇ ) Lipid kinase, by catalyzing the phosphorylation of the inositol ring 3'-OH of phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-triphosphate (phosphatidylinositol 4,5-bisphosphate, PIP2) 3,4,5-trisphosphate, PIP3) and activate downstream Akt, which plays a key role in cell proliferation, survival and metabolism. In tumor cells, PI3K is overexpressed, leading to rapid proliferation and growth of tumor cells.
  • the tumor suppressor gene PTEN (Phosphatase and TENsin homolog deleted on chromosome 10) dephosphorylates PIP3 to generate PIP2, leading to negative feedback regulation of the PI3K signaling pathway, inhibiting cell proliferation and promoting cell apoptosis.
  • PTEN Phosphatase and TENsin homolog deleted on chromosome 10.
  • the present invention provides crystal form A of the compound represented by formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.8 ⁇ 0.20°, 12.6 ⁇ 0.20°, 17.3 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.8 ⁇ 0.2°, 5.7 ⁇ 0.2°, 6.3 ⁇ 0.2°, 11.5 ⁇ 0.2°, 12.6 ⁇ 0.2°, 13.5 ⁇ 0.2°, 17.3 ⁇ 0.2°, 21.5 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.8 ⁇ 0.2°, 5.7 ⁇ 0.2°, 6.3 ⁇ 0.2°, 10.1 ⁇ 0.2°, 11.5 ⁇ 0.2°, 12.6 ⁇ 0.2°, 13.5 ⁇ 0.2°, 15.8 ⁇ 0.2°, 17.3 ⁇ 0.2°, 19.2 ⁇ 0.2°, 21.5 ⁇ 0.2°.
  • the XRPD pattern of the above crystal form A is shown in FIG. 1.
  • the XRPD pattern analysis data of the above-mentioned crystal form A is shown in Table 1:
  • the differential scanning calorimetry curve of the above-mentioned crystal form A has an endothermic peak at 195.5 ⁇ 3.0°C.
  • the DSC chart of the above-mentioned crystal form A is shown in FIG. 2.
  • thermogravimetric analysis curve of the above crystal form A has a weight loss of 0.16% at 151.6 ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned crystal form A is shown in FIG. 3.
  • the present invention provides the B crystal form of the compound represented by formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.0 ⁇ 0.2°, 9.9 ⁇ 0.2°, 12.3 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 5.0 ⁇ 0.2°, 9.9 ⁇ 0.2°, 12.3 ⁇ 0.2°, 14.9 ⁇ 0.2°, 20.2 ⁇ 0.2°, 24.4 ⁇ 0.2°, 27.1 ⁇ 0.2°, 30.1 ⁇ 0.2°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 5.
  • the XRPD pattern analysis data of the above-mentioned crystal form B is shown in Table 2:
  • the differential scanning calorimetry curve of the above-mentioned crystal form B has an endothermic peak at 178.7 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 6.
  • thermogravimetric analysis curve of the above-mentioned crystal form B has a weight loss of 1.03% at 63.4 ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned crystal form B is shown in FIG. 7.
  • the present invention provides crystal form C of the compound represented by formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.9 ⁇ 0.2°, 5.8 ⁇ 0.2°, 6.8 ⁇ 0.2°, 8.4 ⁇ 0.2°, 12.4 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 4.9 ⁇ 0.2°, 5.8 ⁇ 0.2°, 6.8 ⁇ 0.2°, 8.4 ⁇ 0.2°, 10.8 ⁇ 0.2°, 11.7 ⁇ 0.2°, 12.4 ⁇ 0.2°, 14.3 ⁇ 0.2°, 17.0 ⁇ 0.2°, 17.7 ⁇ 0.2°, 18.7 ⁇ 0.2°.
  • the XRPD pattern of the above-mentioned crystal form C is shown in FIG. 8.
  • the XRPD pattern analysis data of the above-mentioned crystal form C is shown in Table 3:
  • the present invention provides the D crystal form of the compound represented by formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.1 ⁇ 0.2°, 7.8 ⁇ 0.2°, 11.8 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the above crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 5.1 ⁇ 0.2°, 6.5 ⁇ 0.2°, 7.8 ⁇ 0.2°, 11.8 ⁇ 0.2°, 15.4 ⁇ 0.2°, 16.5 ⁇ 0.2°, 17.4 ⁇ 0.2°, 23.8 ⁇ 0.2°.
  • the XRPD pattern of the above-mentioned crystal form D is shown in FIG. 9.
  • the XRPD pattern analysis data of the above-mentioned crystal form D is shown in Table 4:
  • the present invention provides a method for preparing the crystal form of compound A represented by formula (I), including:
  • the solvent is selected from alcohol solvents and ester solvents.
  • the solvent is selected from ethanol, n-butanol, tert-butanol, isopropanol, ethyl formate and ethyl acetate.
  • the present invention provides a method for preparing the crystal form of compound B represented by formula (I), including:
  • the present invention provides a method for preparing the crystal form of compound A represented by formula (I), including:
  • the solvent is selected from methanol-water, ethanol-water, and acetone-water.
  • the above preparation method wherein the solvent is selected from methanol-water (2:1), ethanol-water (2:1), acetone-water (2:1), ethanol-water (1 :3).
  • the stirring temperature is 25°C-60°C.
  • the stirring time is 12 hours to 24 hours.
  • the weight-volume ratio of the compound to the solvent is 1 g:7-10 mL.
  • the present invention also provides the application of the above-mentioned crystal form in the preparation of drugs for treating PI3K ⁇ inhibitor-related diseases.
  • the above application is characterized in that the PI3K ⁇ inhibitor-related drugs are drugs for tumors.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the above-mentioned crystal form and pharmaceutically acceptable excipients.
  • the crystal form can be a therapeutically effective amount.
  • the present invention also provides the application of the above crystal form or the above pharmaceutical composition in the preparation of PI3K inhibitors.
  • the PI3K inhibitor may be one or more of PI3K ⁇ , PI3K ⁇ , PI3K ⁇ and PI3K ⁇ , preferably a PI3K ⁇ inhibitor.
  • the present invention also provides the application of the above-mentioned crystal form or the above-mentioned pharmaceutical and pharmaceutical composition in preparing medicine.
  • the drug can be a drug for treating tumors or a drug for PI3K-related disorders.
  • the PI3K-related disease may be a tumor.
  • the PI3K may be one or more of PI3K ⁇ , PI3K ⁇ , PI3K ⁇ and PI3K ⁇ , preferably PI3K ⁇ .
  • the present invention also provides a method for treating tumors or PI3K-related disorders, which comprises administering to a patient a therapeutically effective amount of the above-mentioned crystal form or the above-mentioned pharmaceutical composition.
  • the PI3K-related disease may be a tumor.
  • the PI3K may be one or more of PI3K ⁇ , PI3K ⁇ , PI3K ⁇ , and PI3K ⁇ , preferably PI3K ⁇ .
  • the tumor may be one or more of breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, lung cancer, cervical cancer, neuroendocrine prostate cancer, endometrial cancer, bladder cancer, and colorectal cancer , Preferably breast cancer and/or ovarian cancer.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations: DCM stands for dichloromethane; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; EtOH stands for ethanol; MeOH stands for methanol; TFA stands for trifluoroacetic acid; ATP stands for Adenosine triphosphate; HEPES stands for 4-hydroxyethylpiperazine ethanesulfonic acid; MgCl 2 stands for magnesium dichloride.
  • the crystal form of the compound of the present invention has good stability and is easy to prepare medicine; the compound of the present invention can well inhibit the activity of PI3K kinase, and at the same time has high subtype selectivity for PI3K ⁇ / ⁇ / ⁇ ; it can also inhibit well in cells
  • the phosphorylation level of Akt downstream of PI3K also shows high subtype selectivity at the cell level.
  • the compound of the present invention can have a significant inhibitory effect on tumor growth in vivo, and also exhibit a significant time-dependent and dose-dependent inhibitory effect on the phosphorylation level of Akt downstream of PI3K in animals.
  • the compound of the present invention has no obvious inhibitory effect on hERG and CYP enzymes, and is metabolically stable in liver cells of humans, rats, mice, dogs and monkeys.
  • Test method Approximately 10-20mg sample is used for XRPD detection.
  • Tube voltage 40kV
  • tube current 40mA
  • Test method Take a sample (0.5 ⁇ 1mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL/min N 2 and at a heating rate of 10°C/min, heat the sample from room temperature to 300°C.
  • Test method Take a sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under the condition of 25mL/min N 2 and at a heating rate of 10°C/min, heat the sample from room temperature to 300°C or a weight loss of 20%.
  • Test conditions Take samples (10-20mg) and place them in the DVS sample pan for testing.
  • Hygroscopicity classification ⁇ W% deliquescence Absorb enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% Hygroscopic 15%> ⁇ W% ⁇ 2% Slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
  • ⁇ W% represents the moisture absorption and weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Figure 1 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound A of formula (I).
  • Figure 2 is the DSC spectrum of the crystal form of compound A of formula (I).
  • Figure 3 is the TGA spectrum of the crystal form of compound A of formula (I).
  • Figure 4 is the DVS isotherm of the crystal form of compound A of formula (I).
  • Figure 5 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound B of formula (I).
  • Figure 6 is a DSC chart of the crystal form of compound B of formula (I).
  • Figure 7 is a TGA spectrum of the crystal form of compound B of formula (I).
  • Fig. 8 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form C of compound of formula (I).
  • Fig. 9 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form D of compound of formula (I).
  • Figure 10 shows the protein expression of p-AKT in the BT474 tumor tissue of the crystal form of compound A of formula (I) 0.5h, 4h, 24h after administration;
  • P-AKT represents phosphorylated Akt protein
  • ⁇ -actin represents ⁇ -actin
  • Figure 11 is the DVS isotherm of the crystal form of compound B of formula (I).
  • Step 1 Synthesis of compound 1-2.
  • Step 2 Synthesis of compound 1-3.
  • the solution is placed at room temperature to volatilize, and then vacuum-dried at 30° C. for 1 day to remove the residual solvent to obtain each crystal form of the compound of formula (I).
  • the moisture absorption and weight gain of the compound B crystal form of formula (I) at 25° C. and 80% RH is 2.332%, which is hygroscopic.
  • the crystal form of compound A of formula (I) has a strong inhibitory effect on both wild-type and mutant PI3K ⁇ kinases.
  • the IC 50 of compound A crystal form of formula (I) on wild-type PI3K ⁇ , mutant PI3K ⁇ (E545K) and PI3K ⁇ (H1047R) are 1.80, 1.13 and 0.69nM, respectively.
  • the crystal form of compound A of formula (I) has excellent selectivity to the other three subtypes of PI3K, and its inhibitory activity on PI3K ⁇ is 149/7.44/6.61 times that of PI3K ⁇ / ⁇ / ⁇ , respectively.
  • the specific experimental method is the same as experimental example 8.
  • the crystal form of compound A of formula (I) showed the Akt phosphorylation inhibitory activity of the specific cell line MDA-MB-468/Jeko-1/RAW264.7 with high expression of PI3K ⁇ / ⁇ / ⁇ . It has excellent selectivity, and its inhibitory activity on PI3K ⁇ is 195/23.0 694 times that of PI3K ⁇ / ⁇ / ⁇ , respectively. See Table 8 and Table 9 for details.
  • the specific experiment method is the same as experiment example 9.
  • the human BT-474 breast cancer cell phenotype is HR+/HER2+, and it has PIK3CA amplification.
  • This experiment evaluated the efficacy of compound A crystal form of formula (I) in human breast cancer xenograft tumor model, and BYL-719 was used as a reference.
  • Cell culture Human breast cancer BT474 cells are cultured in a monolayer in vitro. The culture conditions are Hybri-Care medium plus 10% fetal bovine serum, 37°C and 5% CO 2 incubator. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated.
  • mice BALB/c nude mice, female, 6-8 weeks old, weighing 18-20 grams. A total of 85 animals are required to be provided by Shanghai Bikai Laboratory Animal Co., Ltd.
  • Estrogen tablets (0.36mg/tablet) were subcutaneously inoculated on the left back of each mouse. Three days later, 0.2mL (10 ⁇ 106 cells) of BT474 cells (plus matrigel, volume ratio 1:1) ) Subcutaneously inoculated on the right back of each mouse. When the average tumor volume reaches 150mm 3 to 200mm 3 , group administration is started.
  • the plasma and tumor tissues of the animals were collected on the last day of administration for PK test.
  • the PK results showed that the plasma exposure of the crystal form of compound A of formula (I) increased linearly with the increase in dosage.
  • the plasma concentration reaches its peak 0.5-1 hour after administration.
  • the plasma exposure at the effective dose is 69300 nM*h.
  • the phenotype of human T47D breast cancer cells is HR+/HER2-, and they carry PIK3CA H1047R mutations.
  • This experiment evaluated the pharmacodynamics of compound A of formula (I) in a human breast cancer xenograft tumor model.
  • Cell culture human breast cancer T47D cells are cultured in a monolayer in vitro, and the culture conditions are RPMI-1640 medium plus 0.2U/mL bovine insulin plus 10% fetal bovine serum, 37°C and 5% CO 2 incubator. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated.
  • mice BALB/c nude mice, female, 6-8 weeks old, weighing 18-20 grams. A total of 75 animals are required to be provided by Shanghai Bikai Laboratory Animal Co., Ltd. or other qualified suppliers.
  • Formula (I) compound A crystal form (40mg/kg) group has a significant anti-tumor effect
  • formula (I) compound A crystal form (20mg/kg) has strong The anti-tumor effect.
  • the anti-tumor effect of the crystal form of compound A of formula (I) showed a certain dose-dependence in the dose set in this experiment, and the effective dose was 10 mg/kg. The specific results are shown in Table 11.
  • Cell culture Human ovarian cancer SKOV-3 cells are cultured in a monolayer in vitro. The culture conditions are RPMI-1640 medium plus 10% fetal bovine serum, 37°C and 5% CO 2 incubator. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated.
  • mice BALB/c nude mice, female, 6-8 weeks old, weighing 18-20 grams. A total of 67 pieces are required to be provided by Beijing Weitong Lihua Biotechnology Co., Ltd.
  • Tumor Seeding 0.2mL (10 ⁇ 106 th) SKOV-3 cells (baseplates glue to volume ratio of 1: 1) per mouse subcutaneously in the right rear, the average tumor volume reached 200mm 3 starts when 150mm3 ⁇ Group administration.
  • Formula (I) compound A crystal form (40mg/kg) group has a significant anti-tumor effect
  • formula (I) compound A crystal form (20mg/kg) have certain Anti-tumor effect.
  • the anti-tumor effect of the crystal form of compound A of formula (I) shows a certain dose-dependence in the dose set in this experiment. The specific results are shown in Table 12.
  • SD rats were given single and multiple oral gavage and single intravenous injection of the crystal form of compound A of formula (I), 6 rats in each group, half male and half male.
  • the single oral gavage dose was set at 3, 10 and 30mg/kg; the multiple dose was 10mg/kg, once a day for 7 consecutive days; the single intravenous injection dose was 1mg/kg.
  • the pharmacokinetic parameters were calculated according to the drug plasma concentration-time curve.
  • the results of male rats are shown in Table 13, and the results of female rats are shown in Table 14.
  • SD rats were provided by Beijing Weitonglihua Experimental Animal Technology Co., Ltd., and were divided into 4 groups (3/gender/group) according to similar body weight.
  • the rat jugular vein puncture method collects plasma samples.
  • the bioavailability was 53.1%.
  • the AUC 0-last was 27700 ⁇ 8720, 60900 ⁇ 10900 and 177000 ⁇ 48000 nM*h, respectively, reaching peak concentrations (C max ) are 6390 ⁇ 1710, 12100 ⁇ 3690 and 39100 ⁇ 7 310nM, respectively, and the peak time is 0.500 ⁇ 0.000h, 0.667 ⁇ 0.289h and 0.500 ⁇ 0.000h.
  • the C max on the 1st day and the 7th day of male rats were 6800 ⁇ 583 and 13900 ⁇ 1610 nM, respectively, and the AUC 0-last was 23700. ⁇ 721 and 48500 ⁇ 4640nM*h.
  • the C max of female rats on day 1 and day 7 were 12100 ⁇ 3690 and 20500 ⁇ 4600 nM, and AUC 0- last were 60900 ⁇ 10900 and 86000 ⁇ 19900 nM*h, respectively.
  • T max the time for the drug to reach the highest concentration in the body after oral administration
  • C 0 intravenous administration
  • T max the time for the drug to reach the highest concentration in the body after oral administration
  • C 0 intravenous administration
  • Beagle dogs were given single and multiple oral administrations and single intravenous injections of the crystal form of compound A of formula (I), 6 in each group, half male and half male.
  • the single oral dose is 0.3, 1, and 3 mg/kg respectively; the multiple dose is 1 mg/kg, once a day for 7 consecutive days; the single intravenous dose is 0.3 mg/kg.
  • the pharmacokinetic parameters were calculated according to the drug plasma concentration-time curve, and the results are shown in Table 15.
  • the second, third and fourth group solvents are 0.5% MC, 0.2% Tween80 aqueous solution.
  • T max the time for the drug to reach the highest concentration in the body after oral administration
  • C 0 intravenous administration
  • the plasma clearance (CL) of compound A of formula (I) was 6.18 ⁇ 1.49 mL/min/kg.
  • the steady-state apparent volume of distribution (Vdss) is 2.47 ⁇ 0.391L/kg, the elimination half-life (t 1/2 ) and the area under the plasma concentration curve (AUC 0-last ) from 0 to the last quantifiable time point They are 6.32 ⁇ 1.62h and 1470 ⁇ 353nM*h, respectively.
  • AUC 0-last was 4980 ⁇ 946 nM*h
  • C max was 656 ⁇ 30.7 nM
  • T 1/2 was 5.00 ⁇ 1.44h
  • AUC 0-last was 5880 ⁇ 697nM*h
  • Cmax was 850 ⁇ 106nM
  • T 1/2 was 5.18 ⁇ 0.487h.
  • Tissuelyser LT uses the highest frequency to break the tissue for 5 minutes.
  • Electrophoresis 80 volts, 30 minutes, after 120 volts, 90 minutes.
  • Sealing the membrane is sealed in a sealing solution (5% skimmed milk configured with 1xTBST), at room temperature, shaking for 1 hour.
  • Chemiluminescence Add the HRP substrate in the West Femto Ultra Sensitive Chemiluminescence Kit to the membrane.
  • the lipid kinase reaction is carried out under the conditions of a suitable substrate and ATP, followed by two steps to detect the kinase activity with the ADP-Glo TM kit.
  • the first step is to terminate the kinase reaction, in which the remaining ATP is completely removed, and only ADP is retained; the second step: adding a kinase detection reagent to convert ADP into ATP, accompanied by a luciferin/luciferase reaction.
  • the fluorescence value output is converted into kinase activity.
  • Table 16 The conditions for testing PI3K enzyme activity are shown in Table 16.
  • Kit ADP-Glo TM lipid kinase and PIP2:3PS kit (Promega#V1792)
  • the kit contains: 1mM PIP2:3PS, 10 ⁇ lipid dilution buffer, 1M magnesium chloride, 10mM ATP, 10mM ADP, ADP-Glo reagents, detection buffer and detection substrate.
  • reaction buffer 500mM HEPES, pH 7.5, 500mM NaCl, 9mM MgCl 2 ; BSA: 10% stock solution, homemade
  • Reaction system 3 ⁇ L enzyme and substrate mixture (1:1)+2 ⁇ L ATP/MgCl2 mixture+5 ⁇ L ADP-Glo reagent+10 ⁇ L detection reagent.
  • the compound was diluted three-fold from the highest concentration of 0.111 mM for a total of 10 concentrations.
  • the compound was diluted three-fold from the highest concentration of 1.11 mM for a total of 10 concentrations.
  • the inhibitory level of the test compound on the phosphorylation of the PI3K downstream protein Akt in the signaling pathway was measured in the MCF7 cell line to reflect the cell activity of the compound.
  • Cell culture medium cell complete medium (RPMI 1640+10% serum+1% L-glutamine+1% double antibody)
  • Serum-free medium without serum, RPMI 1640+1% L-glutamine+1% double antibody
  • MCF7 cells HTB-22 TM were seeded into 96-well plate, 100 L per well (2.5 104 cells per well) cells in complete medium, cells were incubated 24h at 37 °C, the conditions of 5% CO 2
  • lysis buffer Trishydroxymethylaminomethane hydrochloride, Invitrogen, #15567-1000ml
  • the compound of formula (I) can well inhibit the activity of PI3K kinase, and at the same time has a high subtype selectivity for PI3K ⁇ / ⁇ / ⁇ .
  • the phosphorylation level of Akt downstream of PI3K can be well inhibited in cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明涉及一种作为PI3Kα抑制剂的化合物式(I)的晶型及其制备方法,并涉及其在制备治疗实体瘤的药物中的应用。

Description

喹唑啉酮类化合物的晶型及其制备方法
本申请要求申请日为2019年5月13日的中国专利申请CN201910394653.5和申请日为2019年5月21日的中国专利申请CN201910423711.2的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种作为PI3Kα抑制剂的化合物的晶型及其制备方法,并涉及其在制备治疗实体瘤的药物中的应用。
背景技术
磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)为一种由调节亚单位p85或p101,以及催化亚单位p110(又分为p110α,p110β,p110δ,p110γ四种亚型)组成的脂激酶,通过催化磷脂酰肌醇4,5-二磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)的肌醇环3’-OH磷酸化为磷脂酰肌醇3,4,5-三磷酸(phosphatidylinositol 3,4,5-trisphosphate,PIP3)而激活下游的Akt等从而对细胞的增殖、生存和代谢等起关键作用。在肿瘤细胞中,PI3K过度表达,从而导致肿瘤细胞的快速增殖和生长。
肿瘤抑制基因PTEN(Phosphatase and TENsin homolog deleted on chromosome 10)使PIP3去磷酸化生成PIP2,从而导致PI3K信号通路的负反馈调节,抑制细胞增殖和促进细胞凋亡。PI3K基因突变和扩增在癌症中屡有发生,以及PTEN基因在癌症中缺失等都提示PI3K的过度表达与肿瘤发生密切相关。
Zhang hao等(Bioorganic Medicinal Chemistry,2015(23):7765-7776.)发现化合物A2和A10(对照例R011和R012)等对PI3K有良好的抑制作用。诺华公司研发的PI3Kα选择性抑制剂BYL-719(WO2010/029082)目前处于预注册阶段,是全球同类靶点抑制剂研究状态最高的化合物。
Figure PCTCN2020089972-appb-000001
发明内容
本发明提供了式(I)所示化合物的A晶型,其特征在于其X射线粉末衍射图谱在下 列2θ角处具有特征衍射峰:4.8±0.20°,12.6±0.20°,17.3±0.20°。
Figure PCTCN2020089972-appb-000002
本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,5.7±0.2°,6.3±0.2°,11.5±0.2°,12.6±0.2°,13.5±0.2°,17.3±0.2°,21.5±0.2°。
本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,5.7±0.2°,6.3±0.2°,10.1±0.2°,11.5±0.2°,12.6±0.2°,13.5±0.2°,15.8±0.2°,17.3±0.2°,19.2±0.2°,21.5±0.2°。
本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1 式(I)化合物A晶型的XRPD解析数据
Figure PCTCN2020089972-appb-000003
Figure PCTCN2020089972-appb-000004
本发明的一些方案中,上述A晶型,其差示扫描量热曲线在195.5±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述A晶型,其DSC图谱如图2所示。
本发明的一些方案中,上述A晶型,其热重分析曲线在151.6±3.0℃处失重达0.16%。
本发明的一些方案中,上述A晶型,其TGA图谱如图3所示。
本发明提供了式(I)所示化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.0±0.2°,9.9±0.2°,12.3±0.2°。
本发明的一些方案中,上述B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.0±0.2°,9.9±0.2°,12.3±0.2°,14.9±0.2°,20.2±0.2°,24.4±0.2°,27.1±0.2°,30.1±0.2°。
本发明的一些方案中,上述B晶型,其XRPD图谱如图5所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2 式(I)化合物B晶型的XRPD解析数据
Figure PCTCN2020089972-appb-000005
本发明的一些方案中,上述B晶型,其差示扫描量热曲线在178.7±3.0℃有一个吸热峰的起始点。
本发明的一些方案中,上述B晶型,其DSC图谱如图6所示。
本发明的一些方案中,上述B晶型,其热重分析曲线在63.4±3.0℃处失重达1.03%。
本发明的一些方案中,上述B晶型,其TGA图谱如图7所示。
本发明提供了式(I)所示化合物的C晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.9±0.2°,5.8±0.2°,6.8±0.2°,8.4±0.2°,12.4±0.2°。
本发明的一些方案中,上述C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.9±0.2°,5.8±0.2°,6.8±0.2°,8.4±0.2°,10.8±0.2°,11.7±0.2°,12.4±0.2°,14.3±0.2°,17.0±0.2°,17.7±0.2°,18.7±0.2°。
本发明的一些方案中,上述C晶型,其XRPD图谱如图8所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3 式(I)化合物C晶型的XRPD解析数据
Figure PCTCN2020089972-appb-000006
Figure PCTCN2020089972-appb-000007
本发明提供了式(I)所示化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.1±0.2°,7.8±0.2°,11.8±0.2°。
本发明的一些方案中,上述D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.1±0.2°,6.5±0.2°,7.8±0.2°,11.8±0.2°,15.4±0.2°,16.5±0.2°,17.4±0.2°,23.8±0.2°。
本发明的一些方案中,上述D晶型,其XRPD图谱如图9所示。
本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示:
表4 式(I)化合物D晶型的XRPD解析数据
Figure PCTCN2020089972-appb-000008
本发明提供了式(I)所示化合物A晶型的制备方法,包括:
(1)将式(I)所示化合物加入溶剂中,使其成混悬液或溶液;
(2)上述混悬液或溶液于恒温混匀仪中,振摇后离心,干燥,得到式(I)化合物的A晶型。
本发明的一些方案中,上述制备方法,其中,所述溶剂选自醇类溶剂和酯类溶剂。
本发明的一些方案中,上述制备方法,其中,所述溶剂选自乙醇、正丁醇、叔丁醇、异丙醇、甲酸乙酯和乙酸乙酯。
本发明提供了式(I)所示化合物B晶型的制备方法,包括:
(1)将式(I)所示化合物加入溶剂中,使其成混悬液或溶液;
(2)上述混悬液或溶液于恒温混匀仪中,振摇后离心,干燥,得到式(I)化合物的B晶型。
本发明提供了式(I)所示化合物A晶型的制备方法,包括:
(1)将式(I)所示化合物加入溶剂中加热溶解;
(2)上述溶液降温至固体析出,搅拌,过滤,得到式(I)化合物的A晶型。
本发明的一些方案中,上述制备方法,其中,所述溶剂选自甲醇-水、乙醇-水、丙酮-水。
本发明的一些方案中,上述制备方法,其中,所述溶剂选自甲醇-水(2:1)、乙醇-水(2:1)、丙酮-水(2:1)、乙醇-水(1:3)。
本发明的一些方案中,上述制备方法,其中,搅拌温度为25℃~60℃。
本发明的一些方案中,上述制备方法,其中,搅拌时间为12小时~24小时。
本发明的一些方案中,上述制备方法,其中,化合物与溶剂的重量-体积比为1g:7~10mL。
本发明还提供了上述晶型在制备治疗PI3Kα抑制剂相关病症的药物上的应用。
本发明的一些方案中,上述的应用,其特征在于,所述PI3Kα抑制剂相关药物是用于肿瘤的药物。
本发明还提供了一种药物组合物,其包含上述的晶型和药学上可接受的辅料。所述的晶型可为治疗有效量。
本发明还提供了上述晶型或上述的药物组合物在制备PI3K抑制剂中的应用。所述的PI3K抑制剂可为PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种的抑制剂,优选PI3Kα抑制剂。
本发明还提供了上述晶型或上述的药物药物组合物在制备药物中的应用。所述的药 物可为用于治疗肿瘤的药物或PI3K相关病症的药物。所述的PI3K相关病症可为肿瘤。所述的PI3K可为PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种,优选PI3Kα。
本发明还提供了一种肿瘤或PI3K相关病症的治疗方法,其包含向患者施用治疗有效量的上述的晶型或上述的药物组合物。所述的PI3K相关病症可为肿瘤。所述的PI3K可为PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种,优选PI3Kα。
本发明中,所述的肿瘤可为乳腺癌、卵巢癌、头颈癌、食道癌、肺癌、宫颈癌、神经内分泌前列腺癌、子宫内膜癌、膀胱癌和结直肠癌中的一种或多种,优选乳腺癌和/或卵巢癌。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;ATP代表三磷酸腺苷;HEPES代表4-羟乙基哌嗪乙磺酸;MgCl 2代表二氯化镁。
技术效果
本发明化合物的晶型稳定性好,易于成药;本发明化合物能够很好的抑制PI3K激酶活性,同时对PI3Kβ/γ/δ有较高的亚型选择性;在细胞中也能够很好地抑制PI3K下游Akt的磷酸化水平,并且在细胞层面也展示了较高的亚型选择性。本发明化合物能够在体内对肿瘤生长有明显的抑制作用,并且也在动物体内表现出了明显的时间依赖及剂量依赖对PI3K下游Akt的磷酸化水平的抑制作用。本发明化合物对hERG,CYP酶均无明显抑制作用,并且在人、大鼠、小鼠、犬及猴的肝细胞中代谢稳定。
1.1X-射线粉末衍射(X-ray powder diffractometer,XRPD)
仪器型号:Bruker D8 advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
X-ray发生器:Cu,kα,
Figure PCTCN2020089972-appb-000009
管电压:40kV,管电流:40mA.
发射狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围(2θ角):4-40deg.
步长:0.02deg
速率:0.1秒
样品盘转速:15rpm
1.2差热分析(Differential Scanning Calorimeter,DSC)
仪器型号:DSC Q2000差示扫描量热仪
测试方法:取样品(0.5~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
1.3热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Q5000IR热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到300℃或失重20%。
1.4本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~20mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如下:
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
1.5高效液相色谱分析方法
配样浓度:0.5mg/mL
固体稳定性试验HPLC方法色谱条件参见下表5:
表5
Figure PCTCN2020089972-appb-000010
Figure PCTCN2020089972-appb-000011
附图说明
图1为式(Ⅰ)化合物A晶型的Cu-Kα辐射的XRPD谱图。
图2为式(Ⅰ)化合物A晶型的DSC谱图。
图3为式(Ⅰ)化合物A晶型的TGA谱图。
图4为式(Ⅰ)化合物A晶型的DVS等温线。
图5为式(Ⅰ)化合物B晶型的Cu-Kα辐射的XRPD谱图。
图6为式(Ⅰ)化合物B晶型的DSC谱图。
图7为式(Ⅰ)化合物B晶型的TGA谱图。
图8为式(Ⅰ)化合物C晶型的Cu-Kα辐射的XRPD谱图。
图9为式(Ⅰ)化合物D晶型的Cu-Kα辐射的XRPD谱图。
图10为式(Ⅰ)化合物A晶型的BT474肿瘤组织在给药0.5h,4h,24h后p-AKT的蛋白表达情况;
其中,P-AKT表示磷酸化Akt蛋白,β-actin表示β-肌动蛋白。
图11为式(Ⅰ)化合物B晶型的DVS等温线。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物的制备
Figure PCTCN2020089972-appb-000012
步骤1:化合物1-2的合成。
将化合物1-1(20.00g,176.82mmol,18.87mL),碘甲烷(37.65g,265.23mmol,16.51mL,),碳酸钾(48.88g,353.64mmol)加入到DMF(100mL)中,体系25度搅拌48小时。反应完成后,减压除去溶剂,加水(200mL)稀释,用二氯甲烷(200mL)萃取,有机相减压浓缩,残留物经层析柱分离(乙酸乙酯:石油醚=0%~15%)得到化合物1-2。 1H NMR(400MHz,CDCl 3)δ:4.23-4.34(m,2H),3.56(q,J=7.4Hz,1H),1.61(dd,J=7.5,1.5Hz,3H),1.31-1.37(m,3H)。
步骤2:化合物1-3的合成。
将化合物1-2(2.30g,18.09mmol)溶解到乙醇(20.00mL)中,然后再氮气气流下加入雷尼镍(1.55g,18.09mmol),体系在50帕氢气压力下,25度搅拌24小时。反应完成后,体系过滤,滤液减压浓缩,残留物经层析柱分离(甲醇:二氯甲烷=0%~6%)得到化合物1-3。 1H NMR(400MHz,DMSO-d 6)δ:4.01-4.09(m,2H),2.72(dd,J=12.5,7.0Hz,1H),2.55-2.62(m,1H),2.35-2.45(m,1H),1.18(t,J=7.3Hz,3H),1.04(d,J=7.0Hz,3H)。
步骤3:化合物1-5的合成。
将化合物1-4(1.20g,5.55mmol),化合物1-3(800mg,6.11mmol),EDCI(1.09g,5.66mmol),2-羟基吡啶-N-氧化物(722mg,6.49mmol),三乙胺(2.25g,22.20mmol,3.08mL)加入到二氯甲烷(120mL)中,体系50度搅拌16小时。反应完成后,反应液用水(200mL)稀释,用二氯甲烷(200mL)萃取,有机相减压浓缩,残留物经层析柱分离(甲醇:二氯甲烷=0%~2%),得到化合物1-5。 1H NMR(400MHz,DMSO-d 6)δ:8.46 (t,J=5.6Hz,1H),7.61(d,J=2.3Hz,1H),7.26(dd,J=8.8,2.3Hz,1H),6.67(d,J=8.8Hz,1H),6.52(br s,2H),4.06(q,J=7.1Hz,2H),3.37-3.45(m,1H),3.21-3.29(m,1H),2.67-2.80(m,1H),1.17(t,J=7.2Hz,3H),1.08(d,J=7.0Hz,3H)。
步骤4:化合物1-6的合成
将化合物1-5(1.00g,2.86mmol,)加入到甲酸(24.40g,530.09mmol,20.00mL)中,体系100度搅拌16小时。反应完成后,反应液减压浓缩,残留物经层析柱分离(乙酸乙酯:石油醚=0%~40%)得到化合物1-6。MS-ESI m/z:340.8[M+H] +
步骤5:化合物1-8的合成
将化合物1-6(2g,5.90mmol)溶解于二氧六环(20mL)和水(4mL)向其中加入化合物1-7(1.77g,7.08mmol),Pd(dppf)Cl 2(963.06mg,1.18mmol)和醋酸钾(2.31g,23.59mmol),反应液在氮气保护条件下在100℃条件下搅拌3小时。反应完成后将反应液旋干。所得残留物经层析柱分离(洗脱剂:甲醇/二氯甲烷=5~10%)得到目标化合物1-8。MS-ESI m/z:383.1[M+H] +
步骤6:化合物1-9的合成
将化合物1-8(2.3g,6.01mmol)溶解于甲胺乙醇溶液(2M,50mL),反应液在80℃条件下搅拌10小时。反应完成后,将反应液旋干。得到目标化合物1-9。MS-ESI m/z:368.1[M+H] +
步骤7:化合物1-11的合成
将化合物1-9(0.3g,816.55μmol)溶解于吡啶(5mL)向其中加入化合物1-10(157.82mg,742.32μmol,99.88μL),反应液在25℃条件下搅拌10小时。反应完成后,将反应液旋干。通过制备HPLC分离进行分离(TFA)。得到目标化合物1-11。MS-ESI m/z:544.1[M+H] +
步骤8:式(I)化合物的合成
化合物1-11经过超临界流体色谱(分离条件:色谱柱:AD(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];B(乙腈)%:55%-55%)分离,可以得到式(I)化合物(保留时间0.711min), 1H NMR(400MHz,DMSO-d 6)δ=8.22-8.36(m,2H),8.18(s,1H),8.06(dd,J=8.4,2.1Hz,1H),7.82-7.93(m,2H),7.72-7.81(m,2H),7.50(br t,J=9.2Hz,1H),7.16-7.22(m,1H),4.03-4.17(m,1H),3.87-4.02(m,1H),3.70(s,3H),2.87(dq,J=14.5,7.1Hz,1H),2.48(br s,3H),1.08(d,J=7.0Hz,3H)。MS-ESI m/z:544.1[M+H] +
实施例2:
式(I)化合物A、B、C和D晶型的制备
称量大约50mg式(I)化合物于样品瓶中,加入一定体积下表中的溶剂,制备不同单一溶剂和混合溶剂的悬浊液或溶液。
混悬液在40℃条件下持续振摇3天后,离心后将残留固体放入真空干燥箱,在40℃条件下真空干燥过夜去除残留溶剂,得式(I)化合物的各晶型。
溶液放置室温下挥发,再在30℃条件下真空干燥1天去除残留溶剂,得式(I)化合物的各晶型。
结果见表6。
表6:式(I)化合物不同溶剂晶型筛选实验
序号 溶剂 溶剂体积(mL) 状态 晶型
1 乙醇 1.00 混悬液 晶型A
2 丙酮 0.60 溶液(溶清后有固体析出) 晶型C
3 乙酸乙酯 1.00 混悬液 晶型A
4 甲醇:水(2:1) 1.00 溶液(溶清后有固体析出) 晶型B
5 乙醇:水(2:1) 1.00 溶液(溶清后有固体析出) 晶型B
6 丙酮:水(2:1) 0.86 溶液(溶清后有固体析出) 晶型B
7 1.50 混悬液 晶型D
8 乙醇:水(1:3) 1.00 混悬液 晶型B
式(I)化合物A晶型的制备
将1kg式(I)化合物粗产品用乙酸乙酯(7000mL)转入反应釜中,加热至60℃搅拌至完全溶解后,再将溶液降温至40℃搅拌至有大量固体析出,随后继续在40℃温度下搅拌过夜后过滤,即为式(I)化合物晶型A。
实施例3:式(I)化合物A晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物A晶型的稳定性。
分别称取式(I)化合物A晶型5mg,置于干燥洁净的玻璃瓶中,一式两份,摊成薄薄一层,作为正式供试样品,放置于影响因素试验条件下(60℃,92.5%相对湿度)和加速条件下(30℃/65%相对湿度,40℃/75%相对湿度和60℃/75%相对湿度),其样品为完全暴露放样,用铝箔纸盖上,扎上小孔。在5天、10天、1月进行取样分析。光照(总照度1200000Lux·hr,近紫外200w·hr/m 2)条件下放置的样品为室温完全暴露放样。试验结 果见下表7所示:
表7 式(I)化合物A晶型的固体稳定性试验结果
Figure PCTCN2020089972-appb-000013
结论:式(I)化合物A晶型具有良好的稳定性。
实施例4:式(I)化合物A晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物A晶型20mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物A晶型的DVS谱图如图4所示,△W=0.885%。
实验结论:
式(I)化合物A晶型在25℃和80%RH下的吸湿增重为0.885%,略有吸湿性。
实施例5:式(I)化合物B晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物B晶型20mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物B晶型的DVS谱图如图11所示,△W=2.332%。
实验结论:
式(I)化合物B晶型在25℃和80%RH下的吸湿增重为2.332%,有吸湿性。
实验例1.式(I)化合物A晶型对PI3Kα/β/γ/δ激酶及细胞体外活性及选择性研究
式(I)化合物A晶型对野生型和突变型PI3Kα激酶均具有较强的抑制作用。式(I)化合物A晶型对野生型PI3Kα和突变型PI3Kα(E545K)、PI3Kα(H1047R)抑制作用的IC 50分别为1.80、1.13和0.69nM。式(I)化合物A晶型对PI3K其他三种亚型的选择性优,其对PI3Kα的抑制活性分别是PI3Kβ/δ/γ的149/7.44/6.61倍。具体实验方法同实验例8。在同等测试条件下,式(I)化合物A晶型分别对PI3Kβ/δ/γ高表达的特异性细胞株MDA-MB-468/Jeko-1/RAW264.7的Akt磷酸化抑制活性均表现出了优异的选择性,其对PI3Kα的抑制活性分别是PI3Kβ/δ/γ的195/23.0/>694倍,具体见表8,表9。具体实验方法同实验例9。
表8 式(I)化合物A晶型对野生型和突变型PI3Kα激酶体外活性,IC 50(nM)
Figure PCTCN2020089972-appb-000014
表9 式(I)化合物A晶型对PI3Kα/β/γ/δ激酶的选择性
Figure PCTCN2020089972-appb-000015
实验例2.式(I)化合物A晶型在HR+/HER2+的BT-474(PIK3CA扩增)裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效学研究
人源BT-474乳腺癌细胞表型为HR+/HER2+,并且自身带有PIK3CA扩增。本实验评价了式(I)化合物A晶型在人乳腺癌异种移植瘤模型中的药效,以BYL-719作为参照。
细胞培养:人乳腺癌BT474细胞体外单层培养,培养条件为Hybri-Care培养基中加10%胎牛血清,37℃5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
动物:BALB/c裸小鼠,雌性,6-8周龄,体重18-20克。共需85只由上海必凯实验动物有限公司提供。
肿瘤接种:将雌激素片(0.36mg/片)皮下接种于每只小鼠的左后背,三天后,将0.2mL(10×106个)BT474细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到150mm 3~200mm 3时开始分组给药。
口服一天一次给药20天后,BYL-719(40mg/kg)、式(I)化合物A晶型(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值分别为0.003、0.001),其T/C(相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%(TRTV:治疗组相对肿瘤体积平均值;CRTV:阴性对照组相对肿瘤体积平均值))分别为29.39%、21.16%,TGI(肿瘤生长抑制率,TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。)分别为95.31%、105.65%。式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.034、0.007),其T/C和分别为50.18%、37.92%,TGI分别为65.34%、80.21%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。BYL-719(40mg/kg)、式(I)化合物A晶型(40mg/kg)组均有显著抗肿瘤效果,式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)有较强的抗肿瘤作用。式(I)化合物A晶型的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性,起效剂量为10mg/kg。具体结果见表10。
给药最后一天采动物的血浆和肿瘤组织进行PK测试,PK结果显示,随给药剂量增加,式(I)化合物A晶型血浆暴露量呈线性增加。给药后0.5-1小时血药浓度达到峰值。在起效剂量下的血浆暴露量为69300nM*h。
表10 式(I)化合物A晶型对BT-474裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效研究结果
化合物 TGI% T/C%
BYL-719(40mpk) 95.31% 29.39%
式(I)化合物A晶型(40mpk) 105.65% 21.16%
式(I)化合物A晶型(20mpk) 80.21% 37.92%
式(I)化合物A晶型(10mpk) 65.34% 50.18%
实验例3.式(I)化合物A晶型在HR+/HER2-的T47D(PIK3CA H1047R突变)裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效学研究
人源T47D乳腺癌细胞表型为HR+/HER2-,并且自身带有PIK3CA H1047R突变。本实验评价了式(I)化合物A晶型化合物在人乳腺癌异种移植瘤模型中的药效。
细胞培养:人乳腺癌T47D细胞体外单层培养,培养条件为RPMI-1640培养基中加0.2U/mL牛胰岛素加10%胎牛血清,37℃5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
动物:BALB/c裸小鼠,雌性,6-8周龄,体重18-20克。共需75只由上海必凯实验动物有限公司或其他有资质的供应商提供。
肿瘤接种:将雌激素片(0.18mg/片)皮下接种于每只小鼠的左后背,三天后,将0.2mL(10×106个)T47D细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到150mm3~200mm 3时开始分组给药。
口服一天一次给药42天后,式(I)化合物A晶型(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值为<0.001),其T/C为37.91%,TGI为84.71%。式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.005和0.002),其T/C分别为50.40%和44.70%,TGI分别为67.58%和72.56%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。式(I)化合物A晶型(40mg/kg)组有显著抗肿瘤效果,式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)有较强的抗肿瘤作用。式(I)化合物A晶型的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性,起效剂量为10mg/kg。具体结果见表11。
表11 式(I)化合物A晶型对T47D裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效研究结果
化合物 TGI% T/C%
式(I)化合物A晶型(40mpk) 84.71% 37.91%
式(I)化合物A晶型(20mpk) 72.56% 44.70%
式(I)化合物A晶型(10mpk) 67.58% 50.40%
实验例4.式(I)化合物A晶型在SKOV-3(PIK3CA H1047R突变)裸鼠人源卵巢癌皮下异种移植瘤模型中的体内药效学研究
人源SKOV-3卵巢癌细胞自身带有PIK3CA H1047R突变。本实验评价了式(I)化合物A晶型在人卵巢癌异种移植瘤模型中的药效。
细胞培养:人卵巢癌SKOV-3细胞体外单层培养,培养条件为RPMI-1640培养基中加10%胎牛血清,37℃5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
动物:BALB/c裸小鼠,雌性,6-8周龄,体重18-20克。共需67只由北京维通利华生物技术有限公司提供。
肿瘤接种:将0.2mL(10×106个)SKOV-3细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到150mm3~200mm 3时开始分组给药。
口服一天一次给药28天后,式(I)化合物A晶型(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值<0.001),其T/C为37.79%,TGI为69.16%。式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.041、0.005),其T/C和分别为69.17%、60.61%,TGI分别为30.45%、41.42%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。式(I)化合物A晶型(40mg/kg)组有显著抗肿瘤效果,式(I)化合物A晶型(10mg/kg)、式(I)化合物A晶型(20mg/kg)有一定的抗肿瘤作用。式(I)化合物A晶型的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性。具体结果见表12。
表12 式(I)化合物A晶型对SKOV-3裸鼠人源卵巢癌皮下异种移植瘤模型中的体内药效研究结果
化合物 TGI% T/C%
式(I)化合物A晶型(40mpk) 69.16% 37.79%
式(I)化合物A晶型(20mpk) 41.42% 60.61%
式(I)化合物A晶型(10mpk) 30.45% 69.17%
实验例5.式(I)化合物A晶型的Sprague Dawley(SD)大鼠吸收试验
SD大鼠分别单次和多次口服灌胃以及单次静脉注射给予式(I)化合物A晶型,每组6只,雌雄各半。根据药效以及毒理实验结果,单次口服灌胃剂量分别定为3、10和30mg/kg;多次给药剂量为10mg/kg,每天1次,连续7天;单次静脉注射剂量为1mg/kg。根据药物血浆浓度-时间曲线计算药代动力学参数,雄性大鼠的结果见表13,雌性大鼠的结果见表14。本实验中SD大鼠由北京维通利华实验动物技术有限公司提供,按体重相近分成4组(3/性别/组)。静注组溶媒为5%HP-betaCD/5%Solutol水溶液(pH=8);口服组溶媒为0.5%MC/0.2%Tw80水溶液。大鼠颈静脉穿刺方法采集血浆样品。
单次静脉注射给药1mg/kg后,式(I)化合物A晶型在雌雄SD大鼠中的血浆清除率(CL)分别为1.79±0.457和3.12±0.431mL/min/kg,稳态表观分布容积(Vdss)分别为0.265±0.0500和0.257±0.0227L/kg,消除半衰期(t 1/2)为3.26±1.13h和1.63±0.809h,系统暴露量(AUC 0-last)的值为17400±4790nM*h和9890±1410nM*h。
雄性SD大鼠单次口服给药3mg/kg的式(I)化合物A晶型后,其生物利用度分别为34.7%。雄性SD大鼠单次口服给药3、10或30mg/kg的式(I)化合物A晶型后AUC 0- last分别为10300±4600、23700±721和45300±10900nM*h,达峰浓度(C max)分别为4770±1010、6800±583和14500±4730nM,达峰时间分别出现在给药后0.417±0.144h、0.500±0.000h和0.667±0.289h。雌性SD大鼠单次口服给药3mg/kg的式(I)化合物A晶型后,其生物利用度分别为53.1%。雌性SD大鼠单次口服给药3、10或30mg/kg的式(I)化合物A晶型后,AUC 0-last分别为27700±8720、60900±10900和177000±48000nM*h,达峰浓度(C max)分别为6390±1710、12100±3690和39100±7 310nM,达峰时间为0.500±0.000h、0.667±0.289h和0.500±0.000h。
SD大鼠每天一次、每次10mg/kg、连续7天灌胃给药后,雄性大鼠第1天和第7天C max分别为6800±583和13900±1610nM,AUC 0-last分别为23700±721和48500±4640nM*h。雌性大鼠第1天和第7天C max分别为12100±3690和20500±4600nM,AUC 0- last分别为60900±10900和86000±19900nM*h。
表13 雄性SD大鼠单次或多次给予式(I)化合物A晶型后,式(I)化合物A晶型的平均药代动力学参数(n=3)
Figure PCTCN2020089972-appb-000016
Figure PCTCN2020089972-appb-000017
T max:口服给药后药物在体内达到最高浓度的时间;C 0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
表14 雌性SD大鼠单次或多次给予式(I)化合物A晶型后,式(I)化合物A晶型的平均药代动力学参数(n=3)
Figure PCTCN2020089972-appb-000018
Figure PCTCN2020089972-appb-000019
T max:口服给药后药物在体内达到最高浓度的时间;C 0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
实验例6.式(I)化合物A晶型的比格犬吸收试验
比格犬分别单次和多次口服给药以及单次静脉注射给予式(I)化合物A晶型,每组6只,雌雄各半。单次口服剂量分别为0.3、1和3mg/kg;多次给药剂量为1mg/kg,每天1次,连续7天;单次静脉注射剂量为0.3mg/kg。根据药物血浆浓度-时间曲线计算药代动力学参数,结果见表15。第1组药物配制溶媒为5%HP-beta-CD,5%solutol,pH=8水溶液,第2、3和4组溶媒为0.5%MC,0.2%Tween80水溶液。
表15 雌雄比格犬单次或多次给予式(I)化合物A晶型后,式(I)化合物A晶型的平均药代动力学参数(n=6)
Figure PCTCN2020089972-appb-000020
T max:口服给药后药物在体内达到最高浓度的时间;C 0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
雌雄比格犬单次静脉注射给药0.3mg/kg的式(I)化合物A晶型后,式(I)化合物A晶型的血浆清除率(CL)为6.18±1.49mL/min/kg,稳态表观分布容积(Vdss)为2.47±0.391L/kg,消除半衰期(t 1/2)和0点到最后一个可定量时间点时间-血浆浓度曲线下面积(AUC 0-last)的值分别为6.32±1.62h和1470±353nM*h。
雌雄比格犬单次口服给药0.3mg/kg式(I)化合物A晶型后,其生物利用度为87.8%。雌雄比格犬单次口服给药0.3、1和3mg/kg式(I)化合物A晶型后,AUC 0-last分别为1290±715,4980±946和14800±2510nM*h,达峰浓度(C max)分别为158±68.4,656±30.7和1880±274nM,达峰时间(T max)分别出现在给药后2.00±1.10h,1.67±0.516h和3.08±1.50h。t 1/2分别为6.92±3.16、5.00±1.44和6.55±1.76h。
雌雄比格犬连续7天口服给予1mg/kg的式(I)化合物A晶型,给药1天后AUC 0-last为4980±946nM*h,C max为656±30.7nM,T 1/2为5.00±1.44h。给药7天后,AUC 0-last为5880±697nM*h,C max为850±106nM,T 1/2为5.18±0.487h。
参照上述的给药方式和计算方式,雌雄比格犬单次口服给药0.3mg/kg式(I)化合物无定型物后,其生物利用度为71.2%。
结论:式(I)化合物A晶型在两种动物种属中都表现出了良好的口服生物利用度,低清除率,较高的系统暴露量,具有优秀的药代动力学性质。
实验例7.免疫印迹法分析BT474肿瘤组织样品中p-AKT蛋白的表达水平
实验方法
7.1蛋白抽提及定量
1)-80℃冰箱中取出速冻组织样品。
2)干冰上操作,剪取部分组织(约30mg),放入2mL加有钢珠的离心管中,加500μL细胞裂解液RIPA(已新鲜加入1%的蛋白酶抑制剂和磷酸酶抑制剂)。
3)Tissuelyser LT使用最高频率破碎组织5分钟。
4)组织裂解液置于冰上裂解30分钟。
5)12,000rpm at 4℃离心10分钟,取上清放入新的1.5mL离心管中。
6)用BCA定量试剂盒进行蛋白定量。
7)根据定量结果,配置上样用的蛋白样品,统一样品蛋白浓度至2μg/μL,并加入LDS加样缓冲液(4X)和样品还原剂(10X),100℃恒温加热样品,10分钟。
8)蛋白印迹,或将已变性的样品-80℃冰箱保存。
7.2免疫印迹
1)上样样品解冻。
2)上样:SDS-PAGE胶中,每孔上样10μL(上样量取决于各自需要)。
3)电泳:80伏,30分钟,后120伏,90分钟。
4)转膜:利用iBlot2转膜套装及转膜仪转膜,P3程序运行7分钟。
5)转膜结束后,按所需检测蛋白的分子量大小裁剪膜,1xTBST洗膜,3次,5分钟每次,室温,摇动。
6)封闭:膜置于封闭液(用1xTBST配置的5%的脱脂牛奶)中封闭,室温,摇动,1小时。
7)1xTBST洗膜,3次,5分钟每次,室温,摇动。
8)孵育一抗:加入合适稀释度的一抗(用1xTBST配置的5%的脱脂牛奶或牛血清白蛋白稀释),4℃过夜,缓慢摇动。
9)1xTBST洗膜,3次,10分钟每次,室温,摇动。
10)孵育二抗:加入合适稀释度的二抗,室温,缓慢摇动,1小时。
11)1xTBST洗膜,3次,10分钟每次,室温,摇动。
12)化学发光:膜上加入West Femto超敏感化学发光试剂盒中的HRP底物。
13)Tanon 5200multi机器上检测化学发光并拍照。
结果见图10。PD(体内药效生物标志物检测)结果显示,式(I)化合物A晶型在BT-474裸鼠移植瘤模型中可以显著抑制PI3K下游的Akt磷酸化水平,并且展现了一定的时间和剂量依赖性。
实验例8.式(I)化合物体外酶活性测试
脂激酶反应通过在合适的底物及ATP的条件下进行,随后通过两个步骤用ADP-Glo TM试剂盒来检测激酶的活性。第一步:终止激酶反应,其中残留的ATP彻底清除,仅保留ADP;第二步:加入激酶检测试剂将ADP转化为ATP,并伴随荧光素/荧光素酶的反应。最终通过荧光数值输出值来转化为激酶活性。测试PI3K酶活性的条件如表16。
表16 测试PI3K酶活性的条件
Figure PCTCN2020089972-appb-000021
Figure PCTCN2020089972-appb-000022
实验材料及设备:
1)酶:PI3Kα   Millipore #14-602-K
PI3Kβ   Promega #V1751
PI3Kδ   Millipore #14-604-K
PI3Kγ   Millipore #14-558-K
2)试剂盒:ADP-Glo TM脂激酶及PIP2:3PS试剂盒(Promega#V1792)
试剂盒包含:1mM PIP2:3PS,10×脂质稀释缓冲液,1M氯化镁,10mM ATP,10mM ADP,ADP-Glo试剂,检测缓冲液及检测底物。
3)反应孔板:OptiPlate-384,白色透明(PerkinElmer#6007299)
试剂准备:
1)10×反应缓冲液:500mM HEPES,pH 7.5,500mM NaCl,9mM MgCl 2;BSA:10%储备液,自制
2)最终测试体系条件:1×反应体系:50mM HEPES,50mM NaCl,3mM MgCl 2,0.01%BSA(实验当天新鲜配制),1%DMSO(v/v)+/-化合物
3)反应体系:3μL酶和底物混合物(1:1)+2μL ATP/MgCl2混合物+5μL ADP-Glo试剂+10μL检测试剂。
具体实验操作如下:
1)化合物稀释:用Echo将50nL 100×化合物/DMSO转移至测试孔板中
-对于PI3Kα,化合物从最高浓度0.111mM三倍稀释,共10个浓度。
-对于PI3Kβ/PI3Kδ/PI3Kγ,化合物从最高浓度1.11mM三倍稀释,共10个浓度。
2)激酶反应:
(1)准备待测化合物,并加入50nL 100加化合物溶液或者DMSO至相应孔板中
(2)准备3.33×反应缓冲液
(3)准备3.33×PIP2:3PS,在使用前涡旋解冻PIP2:3PS至少1分钟
(4)准备含5.25mM MgCl 2的2.5mM
(5)准备3.33×PI3Kα/PI3Kβ/PI3Kδ/PI3Kγ溶液
(6)将脂激酶溶液和PIP2:3PS溶液按体积比1:1混合
(7)将3.33×脂激酶缓冲液与PIP2:3PS溶液按体积比1:1混合
(8)将3μL缓冲液和PIP2:3PS的混合溶液加入到孔板的第1列和第2列中
(9)将3μL酶和PIP2:3PS的混合溶液加入到孔板中除第1列和第2列外的孔中,离心10s(1000rpm)。23℃孵育20min
(10)加入2μL 2.5n1000rpm 2并摇匀
(11)盖上孔板并摇匀约30s,随后孔板在23℃孵育2h
(12)加入5μL含有10mM MgCl 2的ADP-Glo试剂
(13)1000rpm离心10s,盖上孔板并摇晃约30s,在23℃孵育60min
(14)加入10μL激酶检测试剂
(15)1000rpm离心10s,随后在23℃孵育60min
(16)在Envision仪器上测量荧光数值。
实验例9.式(I)化合物体外细胞活性测试
通过ELISA的方法,在MCF7细胞株中测定待测化合物对信号通路中PI3K下游蛋白Akt的磷酸化的抑制水平,来反映化合物的细胞活性。
细胞培养基:细胞完全培养基(RPMI 1640+10%血清+1%左旋谷氨酰胺+1%双抗)
无血清培养基(不含血清,RPMI 1640+1%左旋谷氨酰胺+1%双抗)
具体操作步骤如下:
(1)将MCF7细胞(
Figure PCTCN2020089972-appb-000023
HTB-22 TM)接种至96孔板中,每孔100μL(每孔2.5 10 4细胞)细胞完全培养基,在37℃,5%CO 2的条件下孵育细胞24h
(2)将细胞完全培养基用100μL无血清培养基替换,过夜饥饿培养
(3)准备化合物(化合物起始浓度为1mM,三倍稀释10个浓度。随后每个浓度的化合物再用无血清培养基进行100倍稀释),并加入25μL稀释好的化合物至含有细胞孔板中
(4)在37℃,5%CO 2的条件下孵育2h
(5)用10μg/mL的胰岛素(Sigma#I9278-5mL)刺激孔板中的细胞,孵育30min,随后室温下1000rpm离心5min
(6)每孔中加入250μL 1×平衡盐溶液(Invitrogen,#14065-056,4℃,含有1mM/L Na 3VO 4)洗涤细胞一次
(7)每孔中加入100μL的裂解缓冲液(三羟甲基氨基甲烷盐酸盐,Invitrogen,#15567-1000ml),4℃摇晃60min,随后4℃4000rpm离心10min
(8)后续操作步骤根据ELISA试剂盒(TGR BioSciences#EKT002)说明书进行。
结果见表17。
表17 式(I)化合物体外筛选试验结果
Figure PCTCN2020089972-appb-000024
“/”:表示未计算。
结论:式(I)化合物能够很好的抑制PI3K激酶活性,同时对PI3Kβ/γ/δ有较高的亚型选择性。此外,在细胞中也能够很好地抑制PI3K下游Akt的磷酸化水平。

Claims (19)

  1. 式(I)所示化合物的A晶型,其特征在于,
    Figure PCTCN2020089972-appb-100001
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.20°,12.6±0.2°,17.3±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,5.7±0.2°,6.3±0.2°,11.5±0.2°,12.6±0.2°,13.5±0.2°,17.3±0.2°,21.5±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,5.7±0.2°,6.3±0.2°,10.1±0.2°,11.5±0.2°,12.6±0.2°,13.5±0.2°,15.8±0.2°,17.3±0.2°,19.2±0.2°,21.5±0.2°;
    或者,其X射线粉末衍射图谱中,2θ角如下表所示:
    Figure PCTCN2020089972-appb-100002
    Figure PCTCN2020089972-appb-100003
  2. 根据权利要求1所述的A晶型,其XRPD图谱如图1所示;
    和/或,其差示扫描量热曲线在195.5±3.0℃有一个吸热峰的起始点;
    和/或,其DSC图谱如图2所示;
    和/或,其热重分析曲线在151.6±3.0℃处失重达0.16%;
    和/或,其TGA图谱如图3所示。
  3. 式(I)所示化合物的B晶型,其特征在于,
    Figure PCTCN2020089972-appb-100004
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.0±0.2°,9.9±0.2°,12.3±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.0±0.2°,9.9±0.2°,12.3±0.2°,14.9±0.2°,20.2±0.2°,24.4±0.2°,27.1±0.2°,30.1±0.2°;
    或者,其X射线粉末衍射图谱中,2θ角如下表所示:
    Figure PCTCN2020089972-appb-100005
    Figure PCTCN2020089972-appb-100006
  4. 根据权利要求3所述的B晶型,其XRPD图谱如图5所示;
    和/或,其差示扫描量热曲线在178.7±3.0℃有一个吸热峰的起始点;
    和/或,其DSC图谱如图6所示;
    和/或,其热重分析曲线在63.4±3.0℃处失重达1.03%;
    和/或,其TGA图谱如图7所示。
  5. 式(I)所示化合物的C晶型,其特征在于,
    Figure PCTCN2020089972-appb-100007
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.9±0.2°,5.8±0.2°,6.8±0.2°,8.4±0.2°,12.4±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.9±0.2°,5.8±0.2°,6.8±0.2°,8.4±0.2°,10.8±0.2°,11.7±0.2°,12.4±0.2°,14.3±0.2°,17.0±0.2°,17.7±0.2°,18.7±0.2°;
    或者,其X射线粉末衍射图谱中,2θ角如下表所示:
    Figure PCTCN2020089972-appb-100008
    Figure PCTCN2020089972-appb-100009
  6. 根据权利要求5所述的C晶型,其XRPD图谱如图8所示。
  7. 式(I)所示化合物的D晶型,其特征在于,
    Figure PCTCN2020089972-appb-100010
    其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.1±0.2°,7.8±0.2°,11.8±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.1±0.2°,6.5±0.2°,7.8±0.2°,11.8±0.2°,15.4±0.2°,16.5±0.2°,17.4±0.2°,23.8±0.2°;
    或者,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.1±0.2°,6.5±0.2°,7.8±0.2°,11.8±0.2°,12.0±0.2°,15.4±0.2°,16.5±0.2°,17.4±0.2°,19.5±0.2°,23.8±0.2°;
    或者,其X射线粉末衍射图谱中,2θ角如下表所示:
    Figure PCTCN2020089972-appb-100011
    Figure PCTCN2020089972-appb-100012
  8. 根据权利要求7所述的D晶型,其XRPD图谱如图9所示。
  9. 式(I)所示化合物A晶型的制备方法,其为方法一或方法二,
    方法一包括:
    (1)将式(I)所示化合物加入溶剂中,使其成混悬液或溶液;
    (2)上述混悬液或溶液于恒温混匀仪中,振摇后离心,干燥,得到式(I)化合物的A晶型;
    方法二包括:
    (1)将式(I)所示化合物加入溶剂中加热溶解;
    (2)上述溶液降温至固体析出,搅拌,过滤,得到式(I)化合物的A晶型。
  10. 根据权利要求9所述的制备方法,其中,所述溶剂选自醇类溶剂和酯类溶剂;
    和/或,所述溶剂选自乙醇、正丁醇、叔丁醇、异丙醇、甲酸乙酯和乙酸乙酯。
  11. 式(I)所示化合物B晶型的制备方法,包括:
    (1)将式(I)所示化合物加入溶剂中,使其成混悬液或溶液;
    (2)上述混悬液或溶液于恒温混匀仪中,振摇后离心,干燥,得到式(I)化合物的B晶型。
  12. 根据权利要求11所述的制备方法,其中,所述溶剂选自甲醇-水、乙醇-水和丙酮 -水;
    和/或,所述溶剂选自甲醇-水(2:1)、乙醇-水(2:1)、丙酮-水(2:1)和乙醇-水(1:3)。
  13. 根据权利要求9~12任意一项所述的制备方法,其中,搅拌温度为25℃~60℃;
    和/或,搅拌时间为12小时~24小时;
    和/或,化合物与溶剂的重量-体积比为1g:7~10mL。
  14. 根据权利要求1~8任意一项所述的晶型在制备治疗PI3Kα抑制剂相关病症的药物上的应用。
  15. 根据权利要求14所述的应用,其特征在于,所述PI3Kα抑制剂相关药物是用于肿瘤的药物。
  16. 一种药物组合物,其包含根据权利要求1-8中至少一项所述的晶型和药学上可接受的辅料。
  17. 一种根据权利要求1-8中至少一项所述的晶型或根据权利要求16所述的药物组合物在制备PI3K抑制剂中的应用;
    所述的PI3K抑制剂优选PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种的抑制剂,更优选PI3Kα抑制剂。
  18. 一种根据权利要求1-8中至少一项所述的晶型或根据权利要求16所述的药物组合物在制备药物中的应用;
    所述的药物优选用于治疗肿瘤或PI3K相关病症的药物;
    所述的PI3K相关病症优选肿瘤;
    所述的PI3K优选PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种,更优选PI3Kα。
  19. 一种肿瘤或PI3K相关病症的治疗方法,其包含向患者施用治疗有效量的根据权利要求1-8中至少一项所述的晶型或根据权利要求16所述的药物组合物;
    所述的PI3K相关病症优选肿瘤;
    所述的PI3K优选PI3Kα、PI3Kβ、PI3Kδ和PI3Kγ中的一种或多种,更优选PI3Kα。
PCT/CN2020/089972 2019-05-13 2020-05-13 喹唑啉酮类化合物的晶型及其制备方法 WO2020228729A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20806591.2A EP3971175A4 (en) 2019-05-13 2020-05-13 CRYSTAL FORM OF A QUINAZOLINONE COMPOUND AND PROCESS FOR THEIR PRODUCTION
CN202080035113.9A CN113874362A (zh) 2019-05-13 2020-05-13 喹唑啉酮类化合物的晶型及其制备方法
KR1020217040713A KR20220008313A (ko) 2019-05-13 2020-05-13 퀴나졸리논계 화합물의 결정형 및 이의 제조방법
US17/610,835 US20220213060A1 (en) 2019-05-13 2020-05-13 Crystal Form of Quinazolinone Compound and Preparation Method Therefor
JP2021568418A JP2022533151A (ja) 2019-05-13 2020-05-13 キナゾリノン化合物、結晶形及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910394653 2019-05-13
CN201910394653.5 2019-05-13
CN201910423711 2019-05-21
CN201910423711.2 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020228729A1 true WO2020228729A1 (zh) 2020-11-19

Family

ID=73289808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089972 WO2020228729A1 (zh) 2019-05-13 2020-05-13 喹唑啉酮类化合物的晶型及其制备方法

Country Status (6)

Country Link
US (1) US20220213060A1 (zh)
EP (1) EP3971175A4 (zh)
JP (1) JP2022533151A (zh)
KR (1) KR20220008313A (zh)
CN (1) CN113874362A (zh)
WO (1) WO2020228729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501819A (zh) * 2021-07-09 2021-10-15 贵州省中国科学院天然产物化学重点实验室(贵州医科大学天然产物化学重点实验室) 吡啶并咪唑取代的喹唑啉酮衍生物及其合成方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029082A1 (en) 2008-09-10 2010-03-18 Novartis Ag Organic compounds
CN108239067A (zh) * 2016-12-27 2018-07-03 沈阳药科大学 喹唑啉酮类衍生物及其制备方法和用途
WO2019091476A1 (zh) * 2017-11-13 2019-05-16 罗欣生物科技(上海)有限公司 喹唑啉酮类化合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146500A (zh) * 2015-03-26 2016-11-23 江苏豪森药业集团有限公司 5-氟-3-苯基-2-[(1s)-1-(9h-嘌呤-6-基氨基)丙基]-4(3h)-喹唑啉酮晶型及其制备方法
CN108602815B (zh) * 2015-12-16 2020-07-28 正大天晴药业集团股份有限公司 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法
CN107955019B (zh) * 2016-10-17 2021-09-14 广东众生药业股份有限公司 一种egfr抑制剂的盐型、晶型及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029082A1 (en) 2008-09-10 2010-03-18 Novartis Ag Organic compounds
CN108239067A (zh) * 2016-12-27 2018-07-03 沈阳药科大学 喹唑啉酮类衍生物及其制备方法和用途
WO2019091476A1 (zh) * 2017-11-13 2019-05-16 罗欣生物科技(上海)有限公司 喹唑啉酮类化合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971175A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501819A (zh) * 2021-07-09 2021-10-15 贵州省中国科学院天然产物化学重点实验室(贵州医科大学天然产物化学重点实验室) 吡啶并咪唑取代的喹唑啉酮衍生物及其合成方法和应用
CN113501819B (zh) * 2021-07-09 2024-02-02 贵州省中国科学院天然产物化学重点实验室(贵州医科大学天然产物化学重点实验室) 吡啶并咪唑取代的喹唑啉酮衍生物及其合成方法和应用

Also Published As

Publication number Publication date
EP3971175A4 (en) 2022-11-09
EP3971175A1 (en) 2022-03-23
KR20220008313A (ko) 2022-01-20
US20220213060A1 (en) 2022-07-07
JP2022533151A (ja) 2022-07-21
CN113874362A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
JP2020536917A (ja) キナーゼを調節するための化合物の固体形態
WO2017040304A1 (en) Malt1 inhibitors and uses thereof
WO2010003313A1 (zh) 埃克替尼盐酸盐及其制备方法、晶型、药物组合物和用途
JP2013512281A (ja) プロテインキナーゼc阻害剤およびその使用
EP3858830B1 (en) Crystal form of morpholino quinazoline compound, preparation method therefor and use thereof
KR20200130686A (ko) 선택적인 에스트로겐 수용체 분해제로서의 치환된 벤조티오펜 유사체
WO2020015745A1 (zh) 一种lsd1抑制剂的盐及其晶型
WO2021043208A1 (en) 3, 5-disubstituted pyrazole compounds as kinase inhibitors and uses thereof
EP3279201B1 (en) Cdk inhibitor, eutectic crystal of mek inhibitor, and preparation method therefor
WO2023078451A1 (zh) 用作cdk7激酶抑制剂的化合物及其应用
WO2020228729A1 (zh) 喹唑啉酮类化合物的晶型及其制备方法
US20240025908A1 (en) Compound used as kinase inhibitor and use thereof
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
CN102971296A (zh) 包含n-(4-(2-氨基-3-氯吡啶-4-基氧基)-3-氟苯基)-4-乙氧基-1-(4-氟苯基)-2-氧代-1, 2-二氢吡啶-3-羧酰胺的药物组合物
WO2022257965A1 (zh) 固体形式的周期蛋白依赖性激酶9抑制剂及其用途
WO2023081759A1 (en) Bifunctional pi3k-alpha inhibitors and uses thereof
CA3231246A1 (en) Pi3k-alpha inhibitors and methods of use thereof
WO2022016420A1 (zh) 一种喹唑啉酮类化合物的晶型、其制备方法及应用
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
CN110117272B (zh) 细胞周期蛋白依赖性激酶抑制剂的盐及其晶型
WO2020216188A1 (zh) 化合物晶型、其制备方法、药物组合物以及应用
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2022237682A1 (zh) 吡咯并三嗪类化合物的盐型、其晶型及其制备方法
WO2020043078A1 (zh) 新型氮杂三环类化合物的盐型、晶型及其用途
WO2019238088A1 (zh) 吡啶并吡啶酮衍生物的盐型及晶型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217040713

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020806591

Country of ref document: EP

Effective date: 20211213