WO2020221123A1 - 一种基于障碍物高度的车辆控制系统及车辆 - Google Patents

一种基于障碍物高度的车辆控制系统及车辆 Download PDF

Info

Publication number
WO2020221123A1
WO2020221123A1 PCT/CN2020/086686 CN2020086686W WO2020221123A1 WO 2020221123 A1 WO2020221123 A1 WO 2020221123A1 CN 2020086686 W CN2020086686 W CN 2020086686W WO 2020221123 A1 WO2020221123 A1 WO 2020221123A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
obstacle
distance
ranging
radar
Prior art date
Application number
PCT/CN2020/086686
Other languages
English (en)
French (fr)
Inventor
刘国荣
苏常军
黄琨
王辉
Original Assignee
郑州宇通客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州宇通客车股份有限公司 filed Critical 郑州宇通客车股份有限公司
Priority to EP20799488.0A priority Critical patent/EP3960561A4/en
Publication of WO2020221123A1 publication Critical patent/WO2020221123A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/35Data fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93273Sensor installation details on the top of the vehicles

Definitions

  • the invention relates to a vehicle control system and a vehicle based on the height of an obstacle, and belongs to the technical field of vehicle safety.
  • the driver’s visual blind zone will inevitably be formed during the driving of the vehicle.
  • the most commonly used solution is to install a radar and a camera on the vehicle and establish a 360-degree surround view system to solve the problem of the vehicle.
  • the blind spot problem But for passenger cars, the height of the vehicle also creates a blind spot that cannot be ignored. When the vehicle passes through the height limit bar, viaduct or low tree branch, the height information that the driver observes is limited. If judged by experience, it will Cause unnecessary accidents. For this reason, some people propose to install lidar on the front of the vehicle.
  • the Chinese invention patent application document with the application publication number CN107632308A provides a method for detecting the outline of obstacles in front of the vehicle.
  • the lidar is installed in the front of the vehicle, and the measurement results of the lidar are analyzed by the recursive superposition algorithm, so as to accurately obtain the contour height of the obstacle in front of the vehicle.
  • this solution can accurately obtain obstacle height information, it uses lidar, which has high cost and complex data processing, which affects the timeliness of subsequent vehicle control.
  • the purpose of the present invention is to provide a vehicle control system based on the height of obstacles, to solve the problems of high cost and complex data processing of the existing control system due to obstacle height detection using lidar; at the same time, it also provides a vehicle for Solve the problems of high cost and complex data processing of existing vehicles due to obstacle height detection using lidar.
  • the present invention proposes a vehicle control system based on obstacle height.
  • the vehicle control system includes an acquisition unit, a processing unit, and an execution unit.
  • the execution unit includes an alarm module
  • the acquisition unit includes a At least one set of detection modules, each set of detection modules includes a first ranging radar arranged on the front roof of the vehicle and a second ranging radar arranged on the front of the vehicle vertically below the first ranging radar Radar, the first ranging radar and the corresponding second ranging radar are used to detect the area in front of the vehicle, and the detection area is crossed
  • the processing unit judges the distance of the vehicle from the obstacle based on the obstacle information detected by each ranging radar Height and distance, if both the first and second ranging radars belonging to the same group of detection modules detect obstacles information, according to the height of the installation distance between the first and second ranging radars in the group
  • the distance between obstacles detected by two ranging radars determines the height difference between the obstacle and the top of the vehicle or the distance between the obstacle and the front of the vehicle;
  • the beneficial effect is that the system can detect the height of obstacles through the upper and lower two corresponding ranging radars, which greatly reduces the cost, and uses the fusion information of the two ranging radars to make judgments, and the data processing is simple, making the vehicle It can be controlled in time, and the obtained height difference or distance information between the obstacle and the vehicle is more accurate, which further ensures the safety of the vehicle.
  • the first group of detection modules and the second group of detection modules there are two groups of detection modules used to be arranged in the front of the vehicle, namely the first group of detection modules and the second group of detection modules, the first range-finding radar of the first group of detection modules and the second group of detection modules
  • the first ranging radar is evenly distributed laterally on the front roof of the vehicle.
  • the beneficial effect is: setting the number of detection modules to two groups can detect obstacles around the vehicle in all directions, increase the accuracy of detection, and avoid setting too many detection modules to cause more complicated data processing.
  • the acquisition unit also includes at least one set of detection modules for the rear of the vehicle, and each set of detection modules includes a third ranging radar set on the rear roof of the vehicle and a third ranging radar vertical.
  • the fourth ranging radar, the third ranging radar and the corresponding fourth ranging radar on the rear of the vehicle directly below are all used to detect the area behind the vehicle, and the detection area has an intersection.
  • the beneficial effect is that a detection module is provided at the rear of the vehicle to prevent the vehicle from colliding with obstacles when reversing, to fully consider the driving condition of the vehicle, and to further ensure the safety of the vehicle.
  • the execution unit further includes a braking system, and the processing unit is also used to control the braking system to perform forced braking if the vehicle does not decelerate after the alarm module gives an alarm.
  • the beneficial effect is: after the alarm module gives an alarm, if the driver does not decelerate, the vehicle is controlled to be forced to brake to further ensure the safety of the vehicle.
  • the processing unit when the top of the vehicle is higher than the top of the front of the vehicle, the processing unit also needs to determine the difference between the top of the vehicle and the top of the front of the vehicle. If the height difference is less than the safe distance after subtracting the difference, the alarm module in the control execution unit is controlled Alarm, if the height difference is less than 0 after subtracting the difference, the alarm module in the control execution unit will alarm, and control the braking system to perform forced braking when there is no deceleration after the alarm.
  • the beneficial effects are: comprehensive consideration of various shapes of vehicles, corresponding control strategies for different vehicles, wide application range and strong versatility.
  • the processing unit also needs to determine the difference between the front end of the vehicle and the front front end of the vehicle. If the distance minus the difference is less than the safety distance, the control execution unit The alarm module gives an alarm and controls the braking system to perform forced braking when there is no deceleration after the alarm.
  • the beneficial effects are: comprehensive consideration of various shapes of vehicles, corresponding control strategies for different vehicles, wide application range and strong versatility.
  • processing unit is a vehicle controller.
  • the beneficial effect is: adopting the vehicle controller as the processing unit of the control system can save a certain amount of space and cost for the vehicle.
  • the present invention also provides a vehicle including a vehicle body and a vehicle control system based on the height of obstacles.
  • the vehicle body is provided with a vehicle front roof and a vehicle rear roof.
  • the vehicle control system includes a collection unit, a processing unit, and an execution unit.
  • the unit includes an alarm module, and the acquisition unit includes at least one set of detection modules arranged on the front of the vehicle, and each set of detection modules includes a first ranging radar arranged on the front roof of the vehicle and a first ranging radar arranged on the front of the vehicle.
  • both the first and second ranging radars belonging to the same group of detection modules detect the obstacle information, according to the information in the group
  • the height difference of the installation distance between the first ranging radar and the second ranging radar, and the distance of obstacles detected by the two ranging radars determine the height difference between the obstacle and the top of the vehicle or the distance between the obstacle and the front of the vehicle; Only one ranging radar in a group of detection modules detects an obstacle, then the obstacle distance detected by the ranging radar is used as the height difference between the obstacle and the top of the vehicle or the distance between the obstacle and the front of the vehicle; when the vehicle is away from the obstacle When the height difference or the distance between the obstacle and the front of the vehicle is less than the safe distance, the alarm module in the control execution unit will give an alarm.
  • the beneficial effect is that the vehicle control system in the vehicle can detect the height of obstacles through the upper and lower two corresponding ranging radars, which greatly reduces the cost, and uses the fusion information of the two ranging radars to make judgments.
  • the processing is simple, so that the vehicle can be controlled in time, and the obtained height difference or distance information between the obstacle and the vehicle is more accurate, and the safety of the vehicle is further ensured.
  • FIG. 1 is a simplified structural diagram of the vehicle control system of the present invention
  • Figure 2a is a side view layout of the distance measuring radar of the present invention in a vehicle
  • Figure 2b is a top view of the vehicle's top-down layout of the ranging radar of the present invention.
  • Figure 2c is a front layout diagram of the distance measuring radar of the present invention at the front end of the vehicle;
  • FIG. 3 is a control logic diagram of the vehicle control system of the present invention.
  • Figure 4a is a schematic diagram of the control principle of the obstacle in front of the vehicle according to the present invention.
  • Figure 4b is a schematic diagram of the control principle of the obstacle in front of the vehicle according to the present invention.
  • 1, 2, 3, 4, 5, 6, 7, and 8 are ranging radars.
  • the vehicle control system based on obstacle height proposed in this embodiment includes a collection unit (ie, the perception system in Figure 1), a processing unit (ie, the central control in Figure 1), and an execution unit (That is, the implementing agency in Figure 1).
  • the acquisition unit is connected to the signal input end of the processing unit, and the signal output end of the processing unit is connected to the execution unit.
  • the acquisition unit shown in Figure 2a, Figure 2b, and Figure 2c is 8 ranging radars, namely ranging radar 1, ranging radar 2, ranging radar 3, ranging radar 4, ranging radar 5, ranging radar 6.
  • Ranging radar 7 and ranging radar 8 the distribution of acquisition units in the vehicle is: ranging radar 1 and ranging radar 3 are the first group of detection modules, ranging radar 2 and ranging radar 4 are the second group Detection modules, ranging radar 5 and ranging radar 7 are the third group of detection modules, ranging radar 6 and ranging radar 8 are the fourth group of detection modules, ranging radar 1, ranging radar 2, ranging radar 3,
  • the ranging radar 4 is installed in the front of the vehicle, and the ranging radar 3 and the ranging radar 4 are evenly distributed on the front roof of the vehicle laterally.
  • the ranging radar 1 is installed on the front of the vehicle vertically below the ranging radar 3,
  • the distance radar 2 is arranged on the front of the vehicle vertically below the distance measuring radar 4;
  • the distance measuring radar 5, the distance measuring radar 6, the distance measuring radar 7, and the distance measuring radar 8 are arranged at the rear of the vehicle, and the distance measuring radar 7, Ranging radar 8 is evenly distributed horizontally on the rear roof of the vehicle,
  • ranging radar 5 is installed on the rear of the vehicle vertically below the ranging radar 7, and ranging radar 6 is installed on the rear of the vehicle vertically below the ranging radar 8 Ministry.
  • the first group of detection modules and the second group of detection modules are used to detect the area in front of the vehicle, and the detection areas of the ranging radar in each group of detection modules overlap, the third group of detection modules and the fourth group of detection modules are used to detect the rear of the vehicle Area, and the detection area of the ranging radar in each group of detection modules crosses.
  • the processing unit is the vehicle controller, and the execution unit is the alarm module (that is, the alarm system) and the brake system.
  • the distance between the ranging radar 1 and the ranging radar 3, the ranging radar 2 and the ranging radar 4, the ranging radar 5 and the ranging radar 7, the ranging radar 6 and the ranging radar 8 are the same.
  • the difference is also possible, but the detection area of the ranging radar in each group of detection modules must cross.
  • the basis for the existence of the detection area is the distance between the ranging radars in each group of detection modules.
  • the distance is determined according to the ranging characteristics of the ranging radar, mainly the detection width and the ranging detection angle of the ranging radar.
  • the front part of the vehicle and the rear part of the vehicle are equipped with two sets of detection modules.
  • the detection width of the ranging radar used is about 0.7 meters, and the detection angle is at least 120°.
  • the installation angle of the ranging radar is consistent with that of the vehicle It is 45° (of course, the installation angle does not need to be exactly the same, as long as the detection area is crossed), this arrangement can cover the 165° sensing area of the front and rear of the roof, and the range-finding radar detects The larger the angle, the larger the coverage sensing area.
  • only one set of detection modules may be provided in the front and rear of the vehicle, and set in the middle of the front or rear of the vehicle; or it is possible to add three sets of detection modules, and if only detecting In the case of obstacles ahead, the detection module may not be provided at the rear of the vehicle.
  • Range-finding radar has the advantage of short-range detection. It can accurately perceive obstacles at close range. It will return a detection range value when working, but it cannot accurately describe the location of the obstacle. Therefore, the information of two range-finding radars is used for fusion
  • the ranging radar in this embodiment adopts an ultrasonic radar.
  • a ranging radar such as a millimeter wave radar can also be used.
  • the vehicle controller includes a data processing module and an analysis and decision module.
  • the processing module is used to analyze and calculate the received information, and the analysis and decision module is used to determine whether to perform an alarm or brake control.
  • the alarm module also includes on-board buzzer and instrument display.
  • the alarm module issues an alarm (that is, the on-board buzzer works)
  • the alarm position is displayed on the instrument display to inform the driver that the driver did not slow down or perform other protective actions after the alarm.
  • the braking system performs forced braking to make the vehicle decelerate to a stop.
  • the vehicle controller of the present invention uses the information collected by multiple ranging radars to fuse, accurately locates the height difference or distance information between the obstacle and the vehicle, and alarms or brakes deceleration through the actuator.
  • the specific control logic is shown in Figure 3. Show:
  • the control system After the vehicle is powered on, the control system performs a self-check to detect whether each ranging radar has reported a fault. If a fault is reported, the instrument prompts the driver to inform the driver that the system is abnormal and needs to be checked.
  • Each ranging radar starts to work to detect the distance of obstacles. Since the detection principle of each group of detection modules is the same, this embodiment takes the detection process of the first group of detection modules as an example for detailed description.
  • the detection principle is shown in Figure 4a, As shown in 4b, only the area that can be sensed by the ranging radar 3 is the second area (ie, area 2 in Figures 4a and 4b), and the area that can only be sensed by the ranging radar 1 is the first area (ie, the area that can be sensed by the ranging radar 1 is the first area (ie, the area in Figures 4a and 4b).
  • Area 1), the area that can be sensed by the ranging radar 3 and the ranging radar 1 is the third area (that is, the area 3 in Figures 4a and 4b).
  • the detection distance D1 is regarded as the distance between the obstacle and the front end of the vehicle, and the judgment warning is entered. Control phase
  • the detection distance D2 is regarded as the height difference between the obstacle and the top of the vehicle, and the judgment is entered Early warning control stage;
  • Obstacles are detected in the first area and the second area respectively; 2) Obstacles are detected in the third area .
  • the obstacle is detected in the third area to calculate the position relationship between the obstacle and the vehicle, and the height difference H between the top of the vehicle and the obstacle is obtained. Since the height information of the obstacle will not change suddenly, if the calculated The two periods before and after the height difference basically remain unchanged, it is considered that it belongs to the situation of 2), and the obstacle exists in the third area. If the calculated height difference changes, it means that it belongs to the situation of 1). Obstacles are detected in the first area and the second area respectively, and the corresponding early warning control is performed through the distances of D1 and D2 respectively;
  • h is the distance between the ranging radar 1 and the ranging radar 3
  • H is the height difference between the obstacle and the top of the vehicle
  • X is the distance between the obstacle and the front of the vehicle
  • D1 is the obstacle detected by the ranging radar 1.
  • Distance D2 is the distance of the obstacle detected by the ranging radar 3
  • is the angle between the obstacle and the straight line where the ranging radar 1 is located and the plane of the front of the vehicle.
  • ⁇ in the triangle formed by D1, D2, and h may be an acute angle or an obtuse angle
  • the basis for judging whether an obstacle affects the passage of vehicles can be obtained by judging the size of D1*cos ⁇ and h.
  • H>0 it means that the obstacle is higher than the top of the vehicle, and the height difference information is used for control.
  • H ⁇ 0 it means that the obstacle is lower than the top of the vehicle.
  • Distance control it means that the obstacle is lower than the top of the vehicle.
  • the faults can be divided into two levels, namely first-level fault and second-level fault.
  • first-level fault and second-level fault When 0 ⁇ H 0 ⁇ T, it is a second-level fault.
  • the vehicle controller controls the on-board buzzer to send out "dididi"
  • the continuous alarm sounds to warn the driver that there are dangerous obstacles affecting the passage of the vehicle, and prompt the driver to slow down and display H 0 on the instrument display.
  • H 0 is a positive value
  • H 0 ⁇ 0 it is a first-level fault
  • the vehicle controller controls the vehicle-mounted buzzer to prompt the driver to decelerate and displays H 0 on the instrument display.
  • H 0 is a negative value. If the vehicle does not decelerate within the set time, the vehicle braking system is controlled to perform forced braking.
  • the front end of some vehicles may extend the rearview mirror, causing the front end of the vehicle to protrude a part of X'than the front of the vehicle (that is, the front end of the vehicle).
  • the control is to compare X'with the obstacle distance X.
  • the fault is divided into two levels, the first level fault and the second level fault. Because the measuring distance of the ultrasonic radar itself is short, when an obstacle hindering the operation of the vehicle is detected in front and X-X' ⁇ D, D It is a safe distance and a secondary fault.
  • the vehicle controller controls the vehicle buzzer to prompt the driver to slow down; when X-X' ⁇ D, it is a primary fault, and the vehicle controller controls the vehicle buzzer to prompt the driver to slow down If the vehicle does not decelerate within the set time, the vehicle braking system is controlled to perform forced braking.
  • step 3) or 4) may not be adopted.
  • the control strategy is implemented on the basis of step 2).
  • the vehicle controller controls the on-board buzzer to prompt the driver to decelerate and displays the H value through the instrument display. If the vehicle does not decelerate within the set time, the vehicle braking system will be controlled. Forced braking.
  • the above is the control strategy of the first group of detection modules.
  • the control strategies of the second group of detection modules, the third group of detection modules and the fourth group of detection modules are the same. If the ranging radar 1, the ranging radar 2 , Ranging radar 3 and ranging radar 4 are detected at the same time, but the height difference measured by ranging radar 1 and ranging radar 3 is different from the height difference or distance obtained by ranging radar 2 and ranging radar 4. To judge the alarm level, the higher the alarm level, the higher the priority, and the altitude difference or distance with the higher priority is used for control.
  • the driving safety of the vehicle is further ensured, and the execution unit is an alarm module and a braking system.
  • the braking system may not be provided when the vehicle decelerates after the alarm is guaranteed.
  • the processing unit is a vehicle controller.
  • the processing unit may also be a separate controller, as long as the above calculation and control can be performed on the detected data.
  • the vehicle proposed in this embodiment includes a vehicle body and a vehicle control system based on obstacle height.
  • the vehicle body is provided with a vehicle front roof and a vehicle rear roof.
  • the structure, installation position and control process of the vehicle control system based on the obstacle height It has been introduced in the foregoing embodiment of the vehicle control system based on the height of the obstacle, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于障碍物高度的车辆控制系统及车辆,属于车辆安全技术领域。该车辆控制系统包括采集单元、处理单元和执行单元,执行单元包括报警模块,采集单元包括至少一组检测模块,各组检测模块均包括第一测距雷达(1、2、5、6)和第二测距雷达(3、4、7、8),根据该组中第一测距雷达(1、2、5、6)和第二测距雷达(3、4、7、8)之间安装距离的高度差、两个测距雷达检测到的障碍物距离确定障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;当车辆距离障碍物的高度差或距离小于安全距离时,控制执行单元中的报警模块进行报警。该车辆控制系统通过上下两个对应的测距雷达即可实现对障碍物高度的检测,使得成本大大降低,而且利用这两个测距雷达的融合信息进行判断,数据处理简单。

Description

一种基于障碍物高度的车辆控制系统及车辆 技术领域
本发明涉及一种基于障碍物高度的车辆控制系统及车辆,属于车辆安全技术领域。
背景技术
由于车辆结构设计的原因,车辆行驶过程中不可避免会形成驾驶者的视觉盲区,针对这种情况,目前最常用的解决方案就是在车辆上安装雷达和摄像头,建立360度环视系统,解决车辆的盲区问题。但是对于客车而言,车辆的高度也造成一个不可忽视的盲区,当车辆行驶通过限高杆,高架桥或树枝低矮的小路上时,驾驶员观察到的高度信息有限,若通过经验判断,会造成不必要的事故,为此,有人提出在车辆前部安装激光雷达,例如申请公布号为CN 107632308 A的中国发明专利申请文件,该文件提供了一种车辆前方障碍物轮廓检测方法,通过在车辆前部安装激光雷达,利用递归叠加算法对激光雷达的测量结果进行分析,从而准确得到车辆前方障碍物轮廓高度。虽然该方案能够准确获取障碍物高度信息,但是其采用的是激光雷达,成本高,且数据处理过程复杂,影响车辆后续控制的及时性。
发明内容
本发明的目的在于提供一种基于障碍物高度的车辆控制系统,用以解决现有控制系统由于障碍物高度检测采用激光雷达成本高、数据处理复杂的问题;同时还提供一种车辆,用以解决现有车辆由于障碍物高度检测采用激光雷达成本高、数据处理复杂的问题。
为实现上述目的,本发明提出一种基于障碍物高度的车辆控制系统,该车辆控制系统包括采集单元、处理单元和执行单元,执行单元包括报警模块,采集单元包括用于设置在车辆前部的至少一组检测模块,各组检测模块均包括用于设置在车辆前顶板上的第一测距雷达和用于设置在第一测距雷达竖直下方的车辆正前部上的第二测距雷达,第一测距雷达和与之对应的第二测距雷达均用于探测车辆前方区域,且探测区域存在交叉,处理单元根据各测距雷达检测到的障碍物信 息判断车辆距离障碍物的高度和距离,若属于同组检测模块的第一测距雷达和第二测距雷达均检测到障碍物信息,根据该组中第一测距雷达和第二测距雷达之间安装距离的高度差、两个测距雷达检测到的障碍物距离确定障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;若属于一组检测模块中只有一个测距雷达检测到障碍物,则以该测距雷达检测到的障碍物距离作为障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;当车辆距离障碍物的高度差或障碍物与车辆前端的距离小于安全距离时,控制执行单元中的报警模块进行报警。
有益效果是:该系统通过上下两个对应的测距雷达即可实现对障碍物高度的检测,使得成本大大降低,而且利用这两个测距雷达的融合信息进行判断,数据处理简单,使得车辆可以得到及时的控制,并且所得到的障碍物与车辆的高度差或者距离信息更加准确,进一步保证车辆的安全性。
进一步的,用于设置在车辆前部的检测模块为两组,分别为第一组检测模块和第二组检测模块,第一组检测模块的第一测距雷达和第二组检测模块中的第一测距雷达在车辆前顶板上横向均匀分布。
有益效果是:将检测模块的数量设置为两组,可以全方位对车辆周边障碍物进行检测,增加检测的准确性,也可以避免设置过多的检测模块而导致数据处理更加复杂。
进一步的,采集单元还包括用于车辆后部的至少一组检测模块,各组检测模块均包括用于设置在车辆后顶板上的第三测距雷达和用于设置在第三测距雷达竖直下方的车辆正后部上的第四测距雷达,第三测距雷达和与之对应的第四测距雷达均用于探测车辆后方区域,且探测区域存在交叉。
有益效果是:车辆后部设置检测模块用于车辆在倒车时避免与障碍物发生碰撞,全面考虑车辆的行驶状况,进一步保证车辆的安全。
进一步的,执行单元还包括制动系统,处理单元还用于在报警模块报警后若车辆没有减速则控制制动系统进行强制制动。
有益效果是:在报警模块报警后,若驾驶员没有进行减速的情况下,控制车辆强制制动,进一步保证车辆行驶的安全。
进一步的,当车辆最高处比车辆正面顶端高时,处理单元还需确定车辆最高处与车辆正面顶端的差值,若高度差减去差值后小于安全距离,则控制执行单元 中的报警模块进行报警,若高度差减去差值后小于0时,则控制执行单元中的报警模块进行报警,并在报警后无减速时控制制动系统进行强制制动。
有益效果是:全面考虑车辆的各种形状,针对不同的车辆采用对应的控制策略,适用范围广,通用性强。
进一步的,当车辆最前端处比车辆正面前端凸出时,处理单元还需确定车辆最前端处与车辆正面前端的差值,若距离减去差值后小于安全距离,则控制执行单元中的报警模块进行报警,并在报警后无减速时控制制动系统进行强制制动。
有益效果是:全面考虑车辆的各种形状,针对不同的车辆采用对应的控制策略,适用范围广,通用性强。
进一步的,处理单元为整车控制器。
有益效果是:采用整车控制器为该控制系统的处理单元,可以为车辆节省一定的空间和成本。
另外,本发明还提出一种车辆,包括车体和基于障碍物高度的车辆控制系统,车体上设置有车辆前顶板和车辆后顶板,车辆控制系统包括采集单元、处理单元和执行单元,执行单元包括报警模块,采集单元包括用于设置在车辆前部的至少一组检测模块,各组检测模块均包括用于设置在车辆前顶板上的第一测距雷达和用于设置在第一测距雷达竖直下方的车辆正前部上的第二测距雷达,第一测距雷达和与之对应的第二测距雷达的均用于探测车辆前方区域,且探测区域存在交叉,处理单元根据各测距雷达检测到的障碍物信息判断车辆距离障碍物的高度和距离,若属于同组检测模块的第一测距雷达和第二测距雷达均检测到障碍物信息,根据该组中第一测距雷达和第二测距雷达之间安装距离的高度差、两个测距雷达检测到的障碍物距离确定障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;若属于一组检测模块中只有一个测距雷达检测到障碍物,则以该测距雷达检测到的障碍物距离作为障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;当车辆距离障碍物的高度差或障碍物与车辆前端的距离小于安全距离时,控制执行单元中的报警模块进行报警。
有益效果是:该车辆中的车辆控制系统通过上下两个对应的测距雷达即可实现对障碍物高度的检测,使得成本大大降低,而且利用这两个测距雷达的融合信 息进行判断,数据处理简单,使得车辆可以得到及时的控制,并且所得到的障碍物与车辆的高度差或者距离信息更加准确,进一步保证车辆的安全性。
附图说明
图1为本发明车辆控制系统的结构简图;
图2a为本发明测距雷达在车辆的侧视布置图;
图2b为本发明测距雷达在车辆的俯视布置图;
图2c为本发明测距雷达在车辆前端的正视布置图;
图3为本发明车辆控制系统的控制逻辑图;
图4a为本发明障碍物在车辆上前方的控制原理图;
图4b为本发明障碍物在车辆正前方的控制原理图;
图中:1、2、3、4、5、6、7、8为测距雷达。
具体实施方式
基于障碍物高度的车辆控制系统实施例:
本实施例提出的基于障碍物高度的车辆控制系统,如图1所示的系统架构,包括采集单元(即图1中的感知系统)、处理单元(即图1中的中央控制)和执行单元(即图1中的执行机构)。采集单元连接处理单元的信号输入端,处理单元的信号输出端连接执行单元。
采集单元如图2a、图2b、图2c所示为8个测距雷达,分别为测距雷达1、测距雷达2、测距雷达3、测距雷达4、测距雷达5、测距雷达6、测距雷达7和测距雷达8,采集单元在车辆的分布情况为:测距雷达1与测距雷达3为第一组检测模块,测距雷达2与测距雷达4为第二组检测模块,测距雷达5与测距雷达7为第三组检测模块,测距雷达6与测距雷达8为第四组检测模块,测距雷达1、测距雷达2、测距雷达3、测距雷达4设置在车辆前部,并且测距雷达3、测距雷达4横向均匀分布在车辆前顶板上,测距雷达1设置在测距雷达3竖直下方的车辆正前部上,测距雷达2设置在测距雷达4竖直下方的车辆正前部上;测距雷达5、测距雷达6、测距雷达7、测距雷达8设置在车辆后部,并且测距雷达7、测距雷达8横向均匀分布在车辆后顶板上,测距雷达5设置在测距雷达7竖直下方的车辆正后部上,测距雷达6设置在测距雷达8竖直下方的车辆正后部上。第一组检测模块与第二组检测模块用于探测车辆前方区域,而且每组检测模块中的 测距雷达的探测区域存在交叉,第三组检测模块与第四组检测模块用于探测车辆后方区域,而且每组检测模块中的测距雷达的探测区域存在交叉。处理单元为整车控制器,执行单元为报警模块(即报警系统)以及制动系统。
一般情况下,测距雷达1与测距雷达3、测距雷达2与测距雷达4、测距雷达5与测距雷达7、测距雷达6与测距雷达8的间距相同,当然存在一定的差异也是可以的,但是每组检测模块中的测距雷达的探测区域要存在交叉。探测区域存在交叉的基础在于每组检测模块中的测距雷达之间的距离,该距离是根据测距雷达的测距特性决定的,主要是测距雷达的检测宽度以及测距探测角。本实施例中车辆前部和车辆后部分布两组检测模块,所采用的测距雷达的检测宽度约为0.7米,探测角至少120°,安装测距雷达时测距雷达的安装角度与车辆呈45°(当然,安装角度并不需要完全一致,只要保证探测区域存在交叉即可),如此布置即可覆盖车顶前部和车顶后部的165°的感知区域,而且测距雷达探测角越大,覆盖感知区域越大。作为其他实施方式,车辆前部和车辆后部也可以只设置一组检测模块,设置在车辆前部或者后部的正中间;或者增加到三组检测模块都是可以的,而且若只需探测前方情况障碍物的情况下,车辆后部也可以不设置检测模块。
测距雷达有近距探测的优势,能够准确的感知到近距离的障碍物,工作时会返回一个探测距离的值,但无法精确描述障碍物位置,因此利用两个测距雷达的信息进行融合,获得障碍物与车辆的高度差信息,本实施例中测距雷达采用超声波雷达,作为其他实施方式,也可以采用毫米波雷达等测距雷达。整车控制器包括数据处理模块和分析决策模块,处理模块用于对所接收的信息进行分析计算,分析决策模块用于判断是否进行报警或者制动控制。报警模块还包括车载蜂鸣器和仪表显示屏,报警模块发出报警(即车载蜂鸣器工作)的同时在仪表显示屏显示报警位置以告知驾驶员,驾驶员在报警后没有减速或者其他保护动作时,制动系统进行强制制动,使车辆减速停车。
本发明整车控制器利用多个测距雷达所采集的信息进行融合,准确定位障碍物与车辆的高度差或者距离信息,并通过执行机构进行报警或者制动减速,具体控制逻辑如图3所示:
1)车辆上电后,该控制系统进行自检,检测各测距雷达是否报出故障,若报出故障,进行仪表提示,告知驾驶员该系统异常,需进行检查。
2)各测距雷达开始工作,检测障碍物的距离,由于每组检测模块的检测原理相同,因此本实施例以第一组检测模块的检测过程为例进行详细描述,检测原理如图4a、4b所示,只有测距雷达3能感知的区域为第二区域(即图4a、4b中的区域2),只有测距雷达1能感知的区域为第一区域(即图4a、4b中的区域1),测距雷达3与测距雷达1共同可以感知的区域为第三区域(即图4a、4b中的区域3)。
当测距雷达1检测到障碍物,而测距雷达3未检测到,说明障碍物在第一区域内,影响车辆的正常行驶,将检测距离D1作为障碍物与车辆前端的距离,进入判断预警控制阶段;
当测距雷达3检测到障碍物,而测距雷达1未检测到,说明障碍物在第二区域内,影响车辆的正常行驶,将检测距离D2作为障碍物与车辆顶端的高度差,进入判断预警控制阶段;
当测距雷达1与测距雷达3同时检测到障碍物,存在两种可能,1)分别在第一区域和第二区域中同时检测到障碍物;2)在第三区域中检测到障碍物。先按照2)在第三区域中检测到障碍物来计算该障碍物与车辆的位置关系,获得车辆顶部与障碍物的高度差H,由于障碍物的高度信息不会突变,因此若计算出的高度差前后两个周期基本保持不变,则认为属于2)的情况,障碍物存在于第三区域中。若计算出的高度差发生变化则说明属于1)的情况,分别在第一区域和第二区域中同时检测到障碍物,则分别通过D1和D2的距离进行相应的预警控制;
当障碍物处于第三区域中时,计算障碍物与车辆的位置关系如下,根据余弦定理可知:
Figure PCTCN2020086686-appb-000001
H=D1*cosα-h,X=D1*sinα;
其中,h为测距雷达1与测距雷达3之间的距离,H为障碍物与车辆顶端的高度差,X为障碍物与车辆前端的距离,D1为测距雷达1检测到的障碍物距离,D2为测距雷达3检测到的障碍物距离,α为障碍物到测距雷达1所在直线与车头平面的夹角。
由于D1,D2,h组成的三角形中α可能为锐角,也可能为钝角,因此通过判断D1*cosα与h的大小来得到障碍物是否影响车辆通行的判断依据。当H>0时,说明此时障碍物高于车辆顶端,此时以高度差信息进行控制,当H<0时,说明此时障碍物低于车辆顶端,此时以障碍物与车辆前端的距离进行控制。
3)由于车辆的特殊性,很多车辆的顶部可能安装电池或空调舱盖,导致车辆最高处比车辆正面顶端(即车辆顶端)处高出一部分H',此时进行控制时是将H'与计算得到的高度差H进行比较,若H 0=H-H'>T,则车辆可以安全通过,T为安全距离,可取0.1米左右,若H 0≤0则不可通过。
根据H 0可以将故障划分为两个等级,为一级故障和二级故障,当0<H 0≤T时,为二级故障,整车控制器控制车载蜂鸣器发出“嘀嘀嘀”连续报警声,以告警驾驶员注意存在危险障碍物影响车辆通过,提示驾驶员减速并通过仪表显示器显示H 0,此时H 0为正值;当H 0≤0时,为一级故障,整车控制器控制车载蜂鸣器提示驾驶员减速并通过仪表显示器显示H 0,此时H 0为负值,若车辆在设定的时间内没有减速,则控制车辆制动系统进行强制制动。
4)有些车辆前端有可能会伸出后视镜,导致车辆最前端处比车辆正面(即车辆前端)凸出一部分X',此时进行控制时是将X'与障碍物距离X进行比较。同样,将故障划分为两个等级,为一级故障和二级故障,由于超声波雷达本身的测量距离较短,当检测到前方有阻碍车辆运行的障碍物且X-X'≥D时,D为安全距离,为二级故障,整车控制器控制车载蜂鸣器提示驾驶员减速;当X-X'<D时,为一级故障,整车控制器控制车载蜂鸣器提示驾驶员减速,若车辆在设定的时间内没有减速,则控制车辆制动系统进行强制制动。
当然在车辆最高处即车辆顶端的情况下并且车辆最前端处即车辆前端的情况下,也可以不采用步骤3)或者4)的控制策略,在步骤2)的基础上实施控制策略,控制策略为:H<T或者X<D时,整车控制器控制车载蜂鸣器提示驾驶员减速并通过仪表显示器显示H值,若车辆在设定的时间内没有减速,则控制车辆制动系统进行强制制动。
以上是第一组检测模块进行控制的控制策略,同理,第二组检测模块、第三组检测模块以及第四组检测模块的控制策略是相同的,若测距雷达1、测距雷达2、测距雷达3和测距雷达4同时检测到,但是测距雷达1和测距雷达3测得的 高度差与测距雷达2和测距雷达4得到的高度差或者距离不一样,分别进行报警等级的判断,报警等级越高优先级越高,取优先级高的高度差或者距离进行控制。
本实施例中进一步保证车辆行驶的安全性,执行单元为报警模块以及制动系统,当然在保证报警之后车辆减速的情况下制动系统也可以没有。
本实施例中为了节省车辆空间,处理单元为整车控制器,作为其他实施方式,处理单元也可以是单独的控制器,只要可以对所检测的数据进行以上计算以及控制即可。
车辆实施例:
本实施例提出的车辆,包括车体和基于障碍物高度的车辆控制系统,车体上设置有车辆前顶板和车辆后顶板,基于障碍物高度的车辆控制系统的结构组成、安装位置以及控制过程在上述基于障碍物高度的车辆控制系统实施例中已经介绍,这里不做赘述。

Claims (8)

  1. 一种基于障碍物高度的车辆控制系统,其特征在于,该车辆控制系统包括采集单元、处理单元和执行单元,所述执行单元包括报警模块,所述采集单元包括用于设置在车辆前部的至少一组检测模块,各组检测模块均包括用于设置在车辆前顶板上的第一测距雷达和用于设置在第一测距雷达竖直下方的车辆正前部上的第二测距雷达,第一测距雷达和与之对应的第二测距雷达均用于探测车辆前方区域,且探测区域存在交叉,处理单元根据各测距雷达检测到的障碍物信息判断车辆距离障碍物的高度和距离,若属于同组检测模块的第一测距雷达和第二测距雷达均检测到障碍物信息,根据该组中第一测距雷达和第二测距雷达之间安装距离的高度差、两个测距雷达检测到的障碍物距离确定障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;若属于一组检测模块中只有一个测距雷达检测到障碍物,则以该测距雷达检测到的障碍物距离作为障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;当车辆距离障碍物的高度差或障碍物与车辆前端的距离小于安全距离时,控制执行单元中的报警模块进行报警。
  2. 根据权利要求1所述的基于障碍物高度的车辆控制系统,其特征在于,用于设置在车辆前部的检测模块为两组,分别为第一组检测模块和第二组检测模块,第一组检测模块的第一测距雷达和第二组检测模块中的第一测距雷达在车辆前顶板上横向均匀分布。
  3. 根据权利要求1所述的基于障碍物高度的车辆控制系统,其特征在于,所述采集单元还包括用于车辆后部的至少一组检测模块,各组检测模块均包括用于设置在车辆后顶板上的第三测距雷达和用于设置在第三测距雷达竖直下方的车辆正后部上的第四测距雷达,第三测距雷达和与之对应的第四测距雷达均用于探测车辆后方区域,且探测区域存在交叉。
  4. 根据权利要求1所述的基于障碍物高度的车辆控制系统,其特征在于,所述执行单元还包括制动系统,所述处理单元还用于在报警模块报警后若车辆没有减速则控制制动系统进行强制制动。
  5. 根据权利要求4所述的基于障碍物高度的车辆控制系统,其特征在于,当车辆最高处比车辆正面顶端高时,所述处理单元还需确定车辆最高处与车辆正面顶端的差值,若所述高度差减去所述差值后小于安全距离,则控制执行单元中的报 警模块进行报警,若所述高度差减去所述差值后小于0时,则控制执行单元中的报警模块进行报警,并在报警后无减速时控制制动系统进行强制制动。
  6. 根据权利要求4所述的基于障碍物高度的车辆控制系统,其特征在于,当车辆最前端处比车辆正面前端凸出时,所述处理单元还需确定车辆最前端处与车辆正面前端的差值,若所述距离减去所述差值后小于安全距离,则控制执行单元中的报警模块进行报警,并在报警后无减速时控制制动系统进行强制制动。
  7. 根据权利要求1所述的基于障碍物高度的车辆控制系统,其特征在于,所述处理单元为整车控制器。
  8. 一种车辆,包括车体和基于障碍物高度的车辆控制系统,车体上设置有车辆前顶板和车辆后顶板,其特征在于,所述车辆控制系统包括采集单元、处理单元和执行单元,所述执行单元包括报警模块,所述采集单元包括用于设置在车辆前部的至少一组检测模块,各组检测模块均包括用于设置在车辆前顶板上的第一测距雷达和用于设置在第一测距雷达竖直下方的车辆正前部上的第二测距雷达,第一测距雷达和与之对应的第二测距雷达均用于探测车辆前方区域,且探测区域存在交叉,处理单元根据各测距雷达检测到的障碍物信息判断车辆距离障碍物的高度和距离,若属于同组检测模块的第一测距雷达和第二测距雷达均检测到障碍物信息,根据该组中第一测距雷达和第二测距雷达之间安装距离的高度差、两个测距雷达检测到的障碍物距离确定障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;若属于一组检测模块中只有一个测距雷达检测到障碍物,则以该测距雷达检测到的障碍物距离作为障碍物与车辆顶端的高度差或者障碍物与车辆前端的距离;当车辆距离障碍物的高度差或障碍物与车辆前端的距离小于安全距离时,控制执行单元中的报警模块进行报警。
PCT/CN2020/086686 2019-04-28 2020-04-24 一种基于障碍物高度的车辆控制系统及车辆 WO2020221123A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20799488.0A EP3960561A4 (en) 2019-04-28 2020-04-24 VEHICLE CONTROL SYSTEM BASED ON OBSTACLE HEIGHT, AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910348817.0A CN111845730B (zh) 2019-04-28 2019-04-28 一种基于障碍物高度的车辆控制系统及车辆
CN201910348817.0 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020221123A1 true WO2020221123A1 (zh) 2020-11-05

Family

ID=72964893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086686 WO2020221123A1 (zh) 2019-04-28 2020-04-24 一种基于障碍物高度的车辆控制系统及车辆

Country Status (3)

Country Link
EP (1) EP3960561A4 (zh)
CN (1) CN111845730B (zh)
WO (1) WO2020221123A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401054A (zh) * 2021-07-22 2021-09-17 上汽通用五菱汽车股份有限公司 车辆的防碰撞方法、车辆和可读存储介质
WO2023185183A1 (zh) * 2022-03-28 2023-10-05 海尔(深圳)研发有限责任公司 用于车辆的置顶式空调器及其控制方法
CN116883478A (zh) * 2023-07-28 2023-10-13 广州瀚臣电子科技有限公司 一种基于汽车摄像头的障碍物距离确认系统及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630791A (zh) * 2020-12-22 2021-04-09 北京北电科林电子有限公司 特种车限高测量方法
CN113219444A (zh) * 2021-04-25 2021-08-06 同致电子科技(昆山)有限公司 一种障碍物高度识别系统及方法
CN113085854A (zh) * 2021-05-10 2021-07-09 东风汽车集团股份有限公司 一种通过雷达摄像头识别车辆上方障碍物的系统和方法
CN113370979B (zh) * 2021-07-09 2022-10-18 北京福田戴姆勒汽车有限公司 行车安全预警方法及系统、车辆、电子设备和存储介质
CN114379801A (zh) * 2022-01-19 2022-04-22 上海今一科技发展有限公司 一种飞行汽车驾驶控制系统
CN114407901B (zh) * 2022-02-18 2023-12-19 北京小马易行科技有限公司 自动驾驶车辆的控制方法、装置以及自动驾驶系统
CN114407779A (zh) * 2022-02-28 2022-04-29 海丰县极电声学科技有限公司 汽车雷达障碍方向提醒系统
CN115848269A (zh) * 2023-01-03 2023-03-28 重庆长安汽车股份有限公司 车辆底盘剐蹭预警方法及装置、电子设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714928A (en) * 1992-12-18 1998-02-03 Kabushiki Kaisha Komatsu Seisakusho System for preventing collision for vehicle
CN102027389A (zh) * 2008-04-15 2011-04-20 卡特彼勒公司 障碍检测方法和系统
CN105122081A (zh) * 2013-02-15 2015-12-02 大众汽车有限公司 确定用于车辆的距离信息
CN105473402A (zh) * 2013-08-26 2016-04-06 丰田自动车株式会社 车载控制装置
CN205750535U (zh) * 2016-05-12 2016-11-30 深圳市朗驰欣创科技股份有限公司 一种路面检测系统及自动导航车
CN107632308A (zh) 2017-08-24 2018-01-26 吉林大学 一种基于递归叠加算法的车辆前方障碍物轮廓检测方法
CN207189671U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN109426268A (zh) * 2017-08-30 2019-03-05 苏州宝时得电动工具有限公司 自移动设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276313A (ja) * 1990-03-27 1991-12-06 Mazda Motor Corp 移動車の環境認識装置
US8935086B2 (en) * 2007-02-06 2015-01-13 GM Global Technology Operations LLC Collision avoidance system and method of detecting overpass locations using data fusion
DE102013104443B4 (de) * 2013-04-30 2022-03-17 Jenoptik Robot Gmbh Verkehrsüberwachungssystem zur Geschwindigkeitsmessung und Zuordnung von bewegten Fahrzeugen bei einem Mehrziel-Aufnahmemodul
DE102013209873B4 (de) * 2013-05-28 2019-07-11 Robert Bosch Gmbh Vorrichtung und Verfahren zur Kollisionsvermeidung für Fahrzeuglasten und -aufbauten
DE102015100719A1 (de) * 2015-01-20 2016-07-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Fahrerassistenzsystems eines Kraftfahrzeugs, Fahrerassistenzsystem sowie Kraftfahrzeug
CN106004659B (zh) * 2016-08-03 2017-08-04 安徽工程大学 车辆周围环境感知系统及其控制方法
DE102017214020B4 (de) * 2017-08-11 2023-12-21 Audi Ag Kraftfahrzeug mit mehreren Radarsensoren zur Umfelderfassung
CN107776558A (zh) * 2017-10-10 2018-03-09 西京学院 一种汽车防削顶装置及其使用方法
CN107845291A (zh) * 2017-10-26 2018-03-27 中国外运大件物流有限公司 车辆的防撞预警系统及包括其的车辆
CN109677377A (zh) * 2018-12-27 2019-04-26 张庭宇 一种车辆道路限高探知系统及主动刹车防撞保护装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714928A (en) * 1992-12-18 1998-02-03 Kabushiki Kaisha Komatsu Seisakusho System for preventing collision for vehicle
CN102027389A (zh) * 2008-04-15 2011-04-20 卡特彼勒公司 障碍检测方法和系统
CN105122081A (zh) * 2013-02-15 2015-12-02 大众汽车有限公司 确定用于车辆的距离信息
CN105473402A (zh) * 2013-08-26 2016-04-06 丰田自动车株式会社 车载控制装置
CN205750535U (zh) * 2016-05-12 2016-11-30 深圳市朗驰欣创科技股份有限公司 一种路面检测系统及自动导航车
CN107632308A (zh) 2017-08-24 2018-01-26 吉林大学 一种基于递归叠加算法的车辆前方障碍物轮廓检测方法
CN207189671U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN109426268A (zh) * 2017-08-30 2019-03-05 苏州宝时得电动工具有限公司 自移动设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960561A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401054A (zh) * 2021-07-22 2021-09-17 上汽通用五菱汽车股份有限公司 车辆的防碰撞方法、车辆和可读存储介质
WO2023185183A1 (zh) * 2022-03-28 2023-10-05 海尔(深圳)研发有限责任公司 用于车辆的置顶式空调器及其控制方法
CN116883478A (zh) * 2023-07-28 2023-10-13 广州瀚臣电子科技有限公司 一种基于汽车摄像头的障碍物距离确认系统及方法
CN116883478B (zh) * 2023-07-28 2024-01-23 广州瀚臣电子科技有限公司 一种基于汽车摄像头的障碍物距离确认系统及方法

Also Published As

Publication number Publication date
CN111845730B (zh) 2022-02-18
EP3960561A1 (en) 2022-03-02
CN111845730A (zh) 2020-10-30
EP3960561A4 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2020221123A1 (zh) 一种基于障碍物高度的车辆控制系统及车辆
CN106114422B (zh) 自主跟车系统及其最小安全车间距的控制方法
CN108845327B (zh) 一种大货车视野盲区障碍物的智能检测及提醒系统
CN105291978B (zh) 车辆变道辅助预警系统及其控制方法
CN109532829A (zh) 防碰撞控制装置及其方法
CN103625463B (zh) 一种车辆自动控制制动的方法及装置
CN106448190B (zh) 高速公路自车周围车流量实时监测预警装置及方法
CN107344552A (zh) 动态监测全方位汽车防撞预警系统
EP2151809B1 (en) Object detecting device, and object detecting method
CN105480229A (zh) 一种基于信息融合的智能变道辅助系统及其方法
CN206900319U (zh) 一种汽车及其雷达布置结构
CN111516677B (zh) 车辆行驶盲区监测方法、装置、计算机设备及存储介质
WO2014133425A1 (en) System and method for determining an aerodynamically favorable position between ground traveling vehicles
CN102785660A (zh) 车辆防碰撞预警装置
CN108657066A (zh) 加塞预警系统及加塞预警方法
CN208498373U (zh) 车辆侧向防撞系统
CN104494550A (zh) 一种车辆主动避撞装置及避撞距离的计算方法
CN103448720B (zh) 汽车爆胎防追尾控制方法及控制装置
CN111532274B (zh) 基于多传感器数据融合的智能车辆换道辅助系统及方法
CN109367529B (zh) 毫米波雷达组合安装结构及虚拟隧道构建与障碍判断方法
CN203255120U (zh) 一种商用车安全避撞系统
CN106080482A (zh) 一种汽车减速安全系统
CN109177976A (zh) 自适应巡航控制方法及系统
CN207106492U (zh) 动态监测全方位汽车防撞预警系统
CN111497832A (zh) 车辆内轮差风险监测方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020799488

Country of ref document: EP

Effective date: 20211125