WO2020220521A1 - 无皮带式汽车全自动机械化采样系统 - Google Patents

无皮带式汽车全自动机械化采样系统 Download PDF

Info

Publication number
WO2020220521A1
WO2020220521A1 PCT/CN2019/101642 CN2019101642W WO2020220521A1 WO 2020220521 A1 WO2020220521 A1 WO 2020220521A1 CN 2019101642 W CN2019101642 W CN 2019101642W WO 2020220521 A1 WO2020220521 A1 WO 2020220521A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
drive
beltless
frame
sampling system
Prior art date
Application number
PCT/CN2019/101642
Other languages
English (en)
French (fr)
Inventor
姜英
罗陨飞
姜国宁
周璐
Original Assignee
力源智信(苏州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力源智信(苏州)科技有限公司 filed Critical 力源智信(苏州)科技有限公司
Priority to US17/436,816 priority Critical patent/US11959839B2/en
Publication of WO2020220521A1 publication Critical patent/WO2020220521A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/30Driving mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • B02C2013/2808Shape or construction of beater elements the beater elements are attached to disks mounted on a shaft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Definitions

  • This application relates to the technical field of bulk material quality inspection, for example, it relates to a beltless auto mechanized sampling system.
  • the mechanized sampler is a mechanical device that can obtain a test result from a batch of materials to represent the entire batch of samples.
  • sampling machines There are many types of sampling machines, and different industries and different places adopt different structure of sampling machines.
  • Power plants, mines, docks, and shipping stations usually transport bulk minerals by automobiles.
  • the mechanized train sampling system is one of the bulk mineral transportation.
  • the system is set to sample solid minerals transported by automobiles.
  • the system integrates sampling, crushing, The mechanism of shrinkage, aggregate and discarding is integrated.
  • the structure is reasonable, the operation is reliable and the operation is convenient. It is widely used in the road transportation of coal, coke, steel and other solid minerals. It can complete the import of bulk solid mineral materials for road transportation.
  • Sample collection and primary sample preparation are carried out when unloading the truck or loading the truck at the factory, and provide representative samples that meet the weight specified by the corresponding national standards for the next step of laboratory sample preparation. Therefore, the representativeness of the sample is the core indicator that determines the automotive mechanized sampling system.
  • the present application provides a beltless automatic mechanized sampling system for automobiles, which can solve the problem of manual handling of discarded materials after the reduction of the scraping divider in the related art.
  • the present application provides a beltless automobile fully automatic mechanized sampling system.
  • the beltless automobile fully automatic mechanized sampling system includes: a work platform, including a transportation channel and a slide rail extending in a first direction, and the transportation channel is arranged at the The bottom of the sliding rail is set to allow cars to pass through; the first frame is configured to be slidably engaged with the sliding rail; a first horizontal drive mechanism is connected to the first frame in transmission and is configured to drive the first frame The frame slides in the first direction; the sampling mechanism is configured to slide in a second direction relative to the first frame, the sampling mechanism is also configured to collect materials from the compartment of the automobile, and the first direction is in line with the The second direction is vertical, and the first direction and the second direction are arranged horizontally; an integrated sample preparation assembly, including a waste disposal mechanism and a feeder, a crusher, and a fixed mass arranged in order from top to bottom The feeder is configured to transport materials to the crusher, and the crusher is configured to crush the materials and transport the crushed materials to the fixed mass reduction machine
  • FIG. 1 is a schematic diagram of the structure of a beltless automobile fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 2 is a schematic diagram of the structure of the feeder in the beltless automatic mechanized sampling system for automobiles in an embodiment of the application;
  • FIG. 3 is a schematic diagram of the structure of the crusher in the beltless automatic mechanized sampling system for automobiles in an embodiment of the application;
  • FIG. 4 is a schematic diagram of the structure of a constant mass reduction machine in a beltless auto mechanized sampling system in an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a spoiled material return mechanism in a beltless automatic mechanized sampling system for automobiles in an embodiment of the application;
  • FIG. 6 is a schematic diagram of the structure of a sampler in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 7 is a schematic diagram of the connection between the rotary drive member and the screw in the sampler of the beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a vertical driving mechanism in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 9 is a schematic structural diagram of the first horizontal driving mechanism in the beltless train fully automatic mechanized sampling system in an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a second horizontal driving mechanism in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 11 is a schematic structural diagram of a first driving device in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • Figure 12 is a schematic diagram of the structure of the first slide pipe in the beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 13 is a schematic structural diagram of a second driving device in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 14 is a schematic diagram of the structure of the reduced section in the beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • 15 is a partial structural diagram of a multi-bucket elevator in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • 16 is a schematic diagram of a part of the structure of a rotary unloader in a beltless train fully automatic mechanized sampling system in an embodiment of the application;
  • FIG. 17 is a schematic structural diagram of an automatic filling mechanism in a beltless train automatic mechanized sampling system in an embodiment of the application;
  • FIG. 18 is a schematic structural diagram of a spare slide pipe in a fully automatic mechanized sampling system for a beltless train in an embodiment of the application.
  • Sampling mechanism 21. Second frame; 22. Pulley; 23. Sampler; 231. Screw; 232. Barrel; 233. Rotary drive; 234. Sampling head; 24. Vertical drive mechanism; 241. A motor; 242, the first driving wheel; 243, the first rack; 25, the second horizontal drive mechanism; 251, the second motor; 252, the second driving wheel; 2531, the first fixing plate; 2532, the second fixing Plate; 2541, the first connecting shaft; 2542, the second connecting shaft;
  • the third driving device 521, the fifth motor; 522, the first transmission assembly;
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the automotive mechanized sampling system is mainly divided into sampling mechanism and sample processing mechanism.
  • the main function of the sampling mechanism is to take samples of a predetermined weight at the specified level and depth of the carriage according to the setting of the automatic control program; the main function of the sample processing mechanism is to crush and reduce the samples collected by the sampling mechanism according to the requirements of the national standard. Process and prepare a retained sample with preset particle size and weight for laboratory use, and return the remaining sample to the designated location by a preset method.
  • the sampling mechanism includes a drilling sampling head and a sampling head moving and lifting device.
  • the sample processing mechanism includes a crusher, a reduction belt conveyor and a sweeping reduction separator.
  • the crusher mostly uses a horizontal crusher with a screen. After the ore sample is extracted by the drill sampling machine, the ore sample falls into the receiving hopper of the feeder, and then is transported by the closed feeding belt conveyor into the crusher (the crusher is usually located in the middle of the closed feeding belt conveyor Position), the crusher completes the crushing operation of the ore sample, the crushed ore sample enters the reduction belt conveyor, the reduction belt conveyor performs the initial reduction while being transported, and is transported by the reduction belt conveyor to the sweeping reduction separator , And then the crushed ore sample is reduced and retained by the scraping and reduction device. The excess ore sample is continuously transported to the residual material processing system through the reduction belt conveyor, and the residual material processing system is returned to the carriage or Drain directly back to the mine. The materials are all driven by belts to circulate in the entire sample preparation process.
  • the horizontal crushing method with a sieve plate screens out materials whose particle size is larger than the mesh of the sieve, which affects the representativeness of subsequent samples to a certain extent.
  • the materials are all driven by belts to circulate in the whole sample preparation process.
  • the conveying distance is long and the water loss in the materials is large.
  • the sample after the reduction of the scraping and dividing device is usually collected in the retention sample bucket, but the discarded materials after the reduction are usually piled up next to the scraping and dividing device. When a large amount of waste is discarded, manual labor is required. Will be moved elsewhere.
  • the beltless automotive fully automated mechanized sampling system includes a working platform 1, a first frame 12, and a first horizontal drive. Mechanism 15, sampling mechanism 2, and integrated sample preparation assembly 100.
  • the work platform 1 is a steel truss structure. In this embodiment, there is a transportation channel 14 below the work platform 1 for cars to pass through.
  • the work platform 1 is provided with a slide rail 11, and the slide rail 11 is located above the transportation channel 14.
  • the rail 11 extends along the first direction.
  • the first rack 12 is slidably disposed on the sliding rail 11, and the first rack 12 can be driven to slide along the sliding rail 11 through the first horizontal driving mechanism 15.
  • the sampling mechanism 2 is configured to collect materials from the compartment 13 of the automobile, and the sampling mechanism 2 can slide relative to the first frame 12 in a second direction, the second direction is perpendicular to the first direction, and the second direction and the first direction are both along the horizontal direction.
  • the sampling mechanism 2 includes a second frame 21, a pulley 22, a sampler 23, a second horizontal drive mechanism 25 and a vertical drive mechanism 24, wherein the pulley 22 is rotatably arranged on the second frame 21 and slides Set on the first frame 12, the sampler 23 is slidably arranged on the second frame 21 and the sampler 23 is set to collect materials from the carriage 13, and the second horizontal drive mechanism 25 can drive the second frame 21 relative to the first frame.
  • the frame 12 slides in the second direction, the vertical drive mechanism 24 can drive the sampler 23 to move in the vertical direction, and the sampler 23 can collect materials from the carriage 13.
  • the sampler 23 can take materials in three mutually perpendicular directions, so that the sampler 23 can collect materials.
  • the range covers the entire carriage 13.
  • the sampler 23 includes a barrel 232, a rotary drive 233, a sampling head 234, and a screw 231.
  • the barrel 232 is slidably arranged on the second frame 21, the vertical drive mechanism 24 and the barrel 232
  • the vertical drive mechanism 24 can drive the barrel 232 to move in the vertical direction.
  • the rotary drive member 233 is fixed to the barrel 232, and the rotary drive member 233 is connected to the screw 231 in transmission.
  • the sampling head 234 is installed at the bottom of the barrel 232.
  • the rotary driving member 233 is a motor. In other embodiments, the rotary driving member 233 may also be a hydraulic motor.
  • the screw 231 is driven to rotate by the rotary driving member 233. The screw 231 rotates while gradually squeezing the material into Inside the barrel 232.
  • the vertical drive mechanism 24 includes a first motor 241, a first driving wheel 242 drivingly connected to the output shaft of the first motor 241, and a first rack gear meshing with the first driving wheel 242. 243 and sampling head hanger 244.
  • the first rack 243 and the sampling head hanger 244 are fixedly connected, the barrel 232 is connected to the sampling head hanger 244, the first motor 241 is fixedly mounted on the second frame 21, and the first driving wheel 242 is rotatably mounted on the second frame.
  • the sampling head hanger 244 is driven up and down in the vertical direction by the first rack 243, thereby driving the barrel 232 and the rotary driving member 233 fixed on the barrel 232 along Vertical lift.
  • the sampling head hanger 244 is provided to ensure that the direction of the material cylinder 232 is stable during lifting.
  • the first horizontal driving mechanism 15 includes a driving motor 151, a driving wheel 152 and a horizontal transmission wheel 153.
  • the driving motor 151 is fixedly connected to the first frame 12
  • the horizontal transmission wheel 153 is connected with the output shaft of the driving motor 151
  • the horizontal transmission wheel 153 is engaged with the driving wheel 152 for transmission
  • the driving wheel 152 is slidably arranged on the slide rail 11.
  • the driving wheel 152 is rotatably connected to the first frame 12, and the driving motor 151 can drive the horizontal transmission wheel 153 to rotate, thereby driving the driving wheel 152 to rotate, thereby causing the first frame 12 to move along the sliding rail 11.
  • the work platform 1 is provided with two sliding rails 11 spaced apart and in parallel.
  • two first horizontal drive mechanisms 15 are respectively provided at both ends of the first frame 12 along the second direction.
  • the driving motor 151 needs to ensure that it can also drive the first frame 12 to move normally in the upwind direction when the wind speed is high.
  • the second horizontal driving mechanism includes a second motor, a second driving wheel connected in transmission with the output shaft of the second motor, a first driven wheel spaced apart from the second driving wheel in a second direction, and a second driving wheel at the same time
  • the belt on the first driven wheel, the second driving wheel and the first driven wheel are rotatably arranged on the first frame 12, the second motor is also fixed on the first frame 12, and the belt extends in the second direction and It is fixedly connected to the second frame 21, and when the second motor rotates, the sampler 23 is driven to move in the second direction relative to the first frame 12 through a belt.
  • the second horizontal drive mechanism 25 includes a second motor 251, a first fixing plate 2531, a second fixing plate 2532, a first connecting shaft 2541, a second connecting shaft 2542, and a The output shaft of the second motor 251 drives the connected second driving wheel 252.
  • the first fixing plate 2531 and the second fixing plate 2532 are arranged in parallel, the second motor 251 is fixed on the second fixing plate 2532, and the output shaft of the second motor 251 passes through the second fixing plate 2532 and connects with the second driving wheel 252 Connection;
  • the first connecting shaft 2541 is vertically connected between the first fixing plate 2531 and the second fixing plate 2532, and both ends of the first connecting shaft 2541 pass through the first fixing plate 2531 and the second fixing plate 2532, respectively
  • a pulley 22 is connected;
  • the two ends of the second connecting shaft 2542 respectively pass through the first fixing plate 2531 and the second fixing plate 2532, and are respectively connected with a pulley 22, that is, there are four pulleys 22 in this embodiment, of which,
  • the pulley 22 connected to the end of the second connecting shaft 2542 passing through the second fixing plate 2532 meshes with the second driving wheel 252 for transmission.
  • the second driving wheel 252 When the second motor 251 rotates, the second driving wheel 252 is driven to rotate.
  • the second driving wheel 252 drives the second connecting shaft 2542 and the pulleys 22 at both ends of the second connecting shaft 2542 to rotate simultaneously, thereby pushing the first connecting shaft 2541 and the first connecting shaft.
  • the pulleys 22 at both ends of the 2541 rotate, so that the four pulleys 22 slide in the second direction at the same time, so as to drive the sampler 23 to move in the second direction.
  • the opening size of the sampling head 234 is determined by the maximum nominal particle size of the collected material, and the opening size of the sampling head 234 is usually three times or more than the maximum nominal particle size.
  • the sampling mechanism 2 is suitable for the carriage 13 whose height above the ground is 1.25 m.
  • the first driving wheel 242 is also rotated with a crank, which is far away from the center of the first driving wheel 242, so that when the sampling head 234 descends to the carriage 13, the first motor 241 generates
  • the shaking handle can be manually rotated to drive the sampling head 234 to lift, without affecting the normal traffic of the car.
  • the integrated sample preparation assembly 100 is arranged on the side of the automobile track 12, and the integrated sample preparation assembly 100 includes a feeder 3, a crusher 4, a fixed mass reduction machine 5 and a sample storage barrel 7 which are connected in turn from top to bottom.
  • the material machine 3 is set to uniformly and continuously transport the materials to the crusher 4, the crusher 4 is set to crush the materials and the crushed materials are transported to the fixed mass reduction machine 5, and the fixed mass reduction machine 5 is set to crush the crushed materials.
  • the fixed mass reduction of materials that is, the fixed mass reduction machine 5 can reduce the material into samples and discards, and the fixed mass reduction machine 5 transports the sample to the sample storage barrel 7, and then can retain the sample and transport the discarded material to The spoiled material return mechanism 6, and the spoiled material is transported to the spoiled material storage place through the spoiled material return mechanism 6.
  • the feeder 3 includes a silo 31, a first rotating shaft 32, a first driving device 35 and a feeding part 33.
  • the inside of the silo 31 is provided with a cavity 3111.
  • the upper and lower ends of the cavity 3111 are respectively provided with a first inlet 3112 and a first outlet 3121.
  • the sampling mechanism 2 can transport materials to the silo 31.
  • the first rotation The shaft 32 passes through the first discharge port 3121.
  • the first end of the feeding part 33 is fixed to the first rotating shaft 32, the second end of the feeding part 33 is attached to the inner wall of the silo 31, and the second end of the feeding part 33 can be opposed to the inner wall of the silo 31 slide.
  • a gap may also be provided between the second end of the feeding portion 33 and the inner wall of the silo 31.
  • the feeding part 33 is located at the bottom of the cavity 3111, and the first driving device 35 is arranged to drive the first rotating shaft 32 to rotate, so that the first rotating shaft 32 drives the feeding part 33 to rotate.
  • the feeding part 33 rotates, it can drive the material to The first discharge port 3121 moves.
  • the axis of the first discharge port 3121 coincides with the axis of the first rotating shaft 32.
  • the material in contact with the feeding part 33 can be scraped from the inner wall of the silo 31 to the direction of the first outlet 3121, and the material can flow out of the first outlet 3121, which ensures The material in the silo 31 will not accumulate, and the uniformity of the discharge is ensured.
  • the material in the silo 31 will decrease layer by layer, which can ensure the continuity and stability of the discharge This ensures that there is no accumulation or blockage in the subsequent sample preparation process, and the representativeness of the samples prepared.
  • the feeder 3 also includes a first purging device, which is connected to an external high-pressure gas source through a pipeline, and the first purging device is set to treat the material stored on the inner wall of the cavity 3111 and the surface of the feeding portion 33
  • the cleaning of the materials can prevent residual materials on the surface of the cavity 3111 after the materials are processed. Avoid mixing of different batches of materials, and can effectively improve the working environment, and reduce the labor load of the operators, and improve the work efficiency.
  • a solenoid valve or a manual valve can be arranged on the pipeline, so that the first purge device can be started and stopped manually, or can be controlled by a controller.
  • the silo 31 includes an annular side wall 311 and a bottom plate 312 connected to the bottom of the side wall 311.
  • the opening at the top of the side wall 311 forms a first inlet 3112, and the first outlet 3121 is disposed on the bottom plate 312.
  • the first driving device 35 includes a third motor 351 and a transmission component.
  • the third motor 351 is connected to the first rotation shaft 32 through the transmission component and drives the first rotation shaft 32 to rotate.
  • the transmission assembly includes a first transmission wheel 352 and a second transmission wheel 353 meshed with the first transmission wheel 352, the first transmission wheel 352 is drivingly connected with the output shaft of the third motor 351, and the second transmission wheel 353 is connected to the first rotation The shaft 32 is connected.
  • the material falling speed is controlled.
  • the feeder 3 can feed the crusher 4 through the first chute 44.
  • the structure of the first chute 44 is shown in FIG. 12.
  • the first chute 44 may also be The chute allows the feeder 3 to feed the crusher 4 through the chute.
  • the feeder 3 can also feed the crusher 4 through the discharge pipe 34.
  • the top end of the discharge pipe 34 is connected to the bottom plate 312 and communicates with the first discharge port 3121.
  • the discharge pipe 34 is sleeved outside the first rotating shaft 32, and the discharge pipe 34 extends in the vertical direction or is arranged at a non-zero angle with the vertical direction, and flows out of the first discharge port 3121 through the discharge pipe 34 The material is introduced into the crusher 4.
  • the material By setting the discharge pipe 34, the material can slide down into the crusher 4 by its own weight.
  • the structure is simple and the material transmission is faster, which can effectively prevent the problem of long-term exposure of the material to the air that causes water loss and affects the representativeness of the sample.
  • the inner surface of the discharge pipe 34 should be as smooth as possible, so that the material flows smoothly and is not easy to adhere and is easy to clean.
  • the crusher 4 includes a casing 41, a crushing mechanism 43, and a second driving device 45.
  • the casing 41 is provided with a crushing cavity 413.
  • the upper and lower ends of the crushing cavity 413 are respectively provided with a second inlet 411 and a second discharge Port 412, the second feed port 411 is connected to the feeder 3 through a discharge pipe 34, and the second discharge port 412 is connected to the constant mass reduction machine 5 through a second chute, wherein the second chute is connected to the first chute
  • the tube 44 has the same structure.
  • the second chute may also be a chute, so that the second discharge port 412 and the constant mass shrinking machine 5 are connected through the chute; at least two crushing mechanisms 43 are arranged at intervals in the vertical direction, and the crushing mechanism 43 and There is a gap between the inner walls of the crushing cavity 413, and the size of the gap can be adjusted.
  • the second driving device 45 is configured to drive the crushing mechanism 43 to rotate. Driven by the second driving device 45, the crushing mechanism 43 rotates, and the material falls down along the gap between the crushing mechanism 43 and the inner wall of the crushing cavity 413. The material with a degree greater than the gap is crushed by the crushing mechanism 43 and the inner wall of the crushing cavity 413.
  • the feeder 3, the crusher 4 and the fixed-mass shrinking machine 5 are all connected by a chute or chute, which can effectively improve the transmission efficiency of the material in the equipment parts, and can effectively prevent the water loss of the material and ensure the representativeness of the samples.
  • the crusher 4 also includes a second rotating shaft 42 partially located in the crushing cavity 413, and the second driving device 45 is configured to drive the second rotating shaft 42 to rotate;
  • the crushing mechanism 43 includes a hammer plate 431 fixedly mounted on the second rotating shaft 42 And the multiple hammer plates 432 evenly distributed on the hammer plate 431, the rotation axis of the hammer plate 431 coincides with the axis of the second rotating shaft 42, the distance between the hammer plate 432 and the inner wall of the crushing chamber 413 can be adjusted, and the particle size The material larger than the gap is crushed under the pressure of the hammer 432 and the inner wall of the crushing cavity 413.
  • the second driving device 45 includes a fourth motor 451, a third driving wheel 452 fixedly connected to the output shaft of the fourth motor 451, a second driven wheel 453 fixedly connected to the top end of the second rotating shaft 42, and A chain 454 connecting the third driving wheel 452 and the second driven wheel 453.
  • the chain 454 can also be replaced with a belt.
  • the crusher 4 also includes a second purging device, which is arranged on the housing 41 and connected to an external high-pressure air source through a pipeline, and can be set to purify the remaining materials in the crushing cavity 413.
  • a solenoid valve or a manual control valve can be set on the pipeline, and the second purge device is controlled to start and stop through the solenoid valve or the manual control valve.
  • the second blowing device can clean the residual material dust on the inner wall of the crushing cavity 413 and the surface of the crushing mechanism 43, avoiding the mixing of different batches of materials, and effectively improving the working environment and reducing the labor of the operators. Load, improve work efficiency.
  • the crusher 4 crushes materials through a plurality of crushing mechanisms 43 arranged at intervals from top to bottom. By adjusting the size of the gap between the crushing mechanism 43 and the inner wall of the crushing cavity 413, samples of different particle sizes can be prepared, and There is no need to set a sieve plate.
  • the second purging device can automatically clean the material residues remaining on the inner wall of the crushing chamber 413 and the upper surface of the crushing mechanism 43 after crushing, which reduces The labor intensity of the operators improves the cleaning efficiency.
  • the fixed-mass reducing machine 5 includes a box body 51, a third driving device 52, a reducing part 55 and a sample retaining tube 53.
  • the box body 51 is provided with a shrinking chamber 511.
  • the top and bottom of the box body 51 are respectively provided with a third feed port 512 and a discharge port 513 communicating with the shrinking chamber 511.
  • the third feed port 512 is connected to the crusher 4 Connection; the third driving device 52 is installed on the box 51; the shrinking section 55 is located in the shrinking cavity 511, and is configured to shrink the material, a gap is provided between the shrinking section 55 and the inner wall of the shrinking cavity 511 ,
  • the third driving device 52 is fixedly connected to the shrinking portion 55, the shrinking portion 55 is provided with an opening 551, and the shrinking portion 55 is provided with a window 551 capable of completely overlapping the third feed port 512 in the vertical direction. In the first position and the second position where the window 551 can be completely non-overlapping with the third feed port 512 in the vertical direction, the third driving device 52 drives the reduced section 55 to rotate between the first position and the second position .
  • the third driving device 52 can drive the split portion 55 to continuously rotate in the same direction.
  • the top end of the reduced portion 55 is connected to the third driving device 52, and the bottom end of the reduced portion 55 is close to the bottom of the box 51.
  • the top of the sample retaining tube 53 is provided with an opening, which is located in the shrinking chamber 511 and directly below the third feed port 512.
  • the sample retaining tube 53 is connected to the sample retaining barrel 7, and the reduced sample passes through the retaining sample The tube 53 flows into the sample retention barrel 7.
  • the fixed mass reduction machine 5 also includes a waste pipe 54 whose top end is in communication with the discharge port 513.
  • the sample retention pipe 53 passes through the waste pipe 54, and the bottom end of the waste pipe 54 is connected to the waste return mechanism. 6Connect.
  • the material crushed by the crusher 4 enters the shrinking chamber 511 from the third feed port 512 through the second chute.
  • the shrinking portion 55 is driven by the third driving device 52 to rotate, and whenever it is opened
  • the window 551 turns under the third inlet 512
  • the material entering the shrinking chamber 511 can fall into the opening at the top of the sample retention tube 53 through the window 551, and can be introduced into the sample retention barrel through the sample retention tube 53 In 7, complete a sample cutting process.
  • the fixed mass reduction machine 5 also includes a third purge device, the third purge device is installed on the box 51, the third purge device is connected to an external high-pressure gas source through a pipeline, and is arranged to be in the shrinking chamber 511 Blow in the purge gas.
  • the third purge device cleans the remaining material residues in the shrinking chamber 511 and on the surface of the shrinking section 55 to avoid mixing of different batches of materials, effectively improving the working environment and reducing the labor of the operators Load, improve work efficiency.
  • a solenoid valve or a manual valve can also be provided on the pipeline connecting the third purge device and the external high-pressure gas source, so that automatic control or manual control of the third purge device can be realized.
  • the third driving device 52 includes a fifth motor 521 and a first transmission component 522 connected to the output shaft of the fifth motor 521, and the first transmission component 522 is connected to the reduced portion 55.
  • the fifth motor 521 drives the reduction section 55 to rotate through the first transmission component 522.
  • the first transmission component 522 can be a belt transmission component, a chain transmission component, or a gear transmission component. In this embodiment, the first transmission component 522 is a gear transmission assembly.
  • the spoiled material flowback mechanism 6 includes a horizontal feeder 61, a multi-bucket elevator 62 and a rotary unloader 63.
  • the horizontal feeder 61 is provided with an inlet .
  • the discarding pipe 54 is connected to the inlet through a pipeline, the horizontal feeder 61 can convey the material to the multi-bucket elevator 62, the multi-bucket elevator 62 can convey the discarded material to the rotary unloader 63, and the rotary unloading
  • the device 63 can transport the material to the waste storage place.
  • the horizontal feeder 61 includes a housing 611, a channel is provided in the housing 611, and a screw is provided in the channel.
  • One end of the screw is connected to a sixth motor 612.
  • the sixth motor 612 drives the screw to rotate.
  • 61 is provided with an inlet, which is located at the first end of the channel and communicates with the channel, so that after the discarded material enters the channel from the inlet, under the drive of the sixth motor 612, the screw rotates and discards The material is pushed to the second end of the channel, and the housing 611 is provided with a material outlet, which is located at the bottom of the second end of the channel.
  • the multi-bucket elevator 62 includes a fourth driving device and a lifting bucket.
  • the fourth driving device includes a fourth driving wheel and a third driven wheel arranged at intervals in the vertical direction.
  • the fourth driving wheel and the third driven wheel are connected by a chain, and
  • the fourth driving wheel is drivingly connected with the seventh motor, and the chain is fixedly connected with the lifting bucket, so that the chain can drive the lifting bucket to rise and fall in the vertical direction.
  • the chain is pivotally connected to the lifting bucket, so that when the lifting bucket passes the highest point, it can rotate relative to the chain and unload the material.
  • the number of lifting buckets is multiple. In one embodiment, as shown in FIG.
  • the multi-bucket elevator 62 further includes a casing 621, which covers the fourth driving device and the lifting bucket inside the casing 621, and the casing 621 is provided with
  • the chute is located directly below the discharge port on the housing 611, the chute is located between the fourth driving wheel and the third driven wheel, and the lifting bucket can be located below the chute, so that the discarded material can enter the lifting bucket through the chute.
  • the multi-bucket elevator 62 further includes a transfer slot, the transfer slot is located on both sides of the fourth driving wheel, the chute on the cover 621 is located on both sides of the third driven wheel, and the transfer slot is close to the fourth driving device the top of.
  • the lifting bucket passes the highest point, the lifting bucket is turned over, and the material in the lifting bucket can be poured into the transfer tank.
  • the rotary unloader 63 includes a rotary chute 631 and a fifth drive device 632.
  • the fifth drive device 632 is rotatably connected with the rotary chute 631.
  • the fifth drive device 632 can drive the rotary chute 631 to rotate relative to the cover 621.
  • the top of the rotating chute 631 is provided with a first opening, the first opening is located below the transfer tank, the bottom of the transfer tank is provided with a second opening, and the first opening is larger than the second opening, so that the transfer tank can convey the discarded material to the rotating chute 631 within.
  • the fifth driving device includes an eighth motor, a fifth driving wheel installed on the eighth motor, and a fourth driven wheel installed on the rotating chute 631.
  • the fifth driving wheel and the fourth driven wheel pass through a chain drive assembly or a belt drive assembly connection.
  • the eighth motor is installed on the housing 621 so that the rotating chute 631 can be driven to rotate by the eighth motor.
  • the axis of the first opening at the top of the rotating chute 631 coincides with the axis of rotation of the rotating chute 631, so as to ensure that during the rotation of the rotating chute 631, discarded materials can flow into the rotating chute 631 through the transfer chute.
  • the spoil storage place is the compartment 13 of the automobile. In other embodiments, it may also be another location away from the compartment 13 of the automobile. At the same time, by rotating the rotating chute 631, the discarded material can be discharged into the other compartments of the car other than the compartment 13 of the car set as the reclaimer.
  • the discarded material after being shrunk by the constant mass reduction machine 5 is transported to the carriage 13 through the discarded material return mechanism 6, which can replace manual processing of the discarded material at a fixed time and improve the operation efficiency.
  • the beltless automatic mechanized sampling system for automobiles also includes an automatic filling mechanism.
  • the automatic filling mechanism includes a turntable 81, a rotary drive device 82, and a jacking mechanism 83.
  • the turntable 81 is provided with multiple fillings. The multiple filling positions are evenly distributed along the circumference of the turntable 81, and the filling position is set to place the sample storage barrel 7; the rotary drive device 82 is set to drive the turntable 81 to rotate.
  • one of the filling positions is located at Just below the sample retaining tube 53, that is, during the rotation of the turntable 81, there is always a filling position that can be located directly below the sample retaining tube 53, so that the sample retaining tube 53 can be filled into the sample retaining barrel 7
  • the jacking mechanism 83 is installed on the turntable 81.
  • the number of jacking mechanisms 83 is equal to the number of filling positions, and the jacking mechanism 83 and the filling position are arranged in one-to-one correspondence.
  • the jacking mechanism 83 can Drive the sample retention barrel 7 up and down in the vertical direction; as shown in Figure 4, the sample retention tube 53 is set at a non-zero angle with the vertical direction, so as to facilitate a preset space between the sample and the discarded material, avoid mutual interference, and Along the extension direction of the sample retaining tube 53, the hole diameter of the sample retaining tube 53 remains the same.
  • the lower end of the sample retention tube 53 is flared, and the diameter of the top end of the sample retention barrel 7 is smaller than the diameter of the bottom end of the sample retention tube 53, so that the edge of the top opening of the sample retention barrel 7 can be connected to the sample retention tube 53.
  • the inner surface of the tube is fit to ensure that the material will not leak to the outside of the sample storage barrel 7 during filling, where up and down refer to the up and down directions in Figure 4.
  • the rotation driving device 82 is a motor, or may be a hydraulic motor, etc.
  • the jacking mechanism 83 may be a cylinder or an electric push rod.
  • the automatic filling mechanism can realize the automatic filling of multiple sample retention barrels 7, which can effectively save work manpower, and the sample retention barrel 7 and the sample retention tube 53 are close to each other, which can effectively prevent material moisture loss.
  • the beltless automobile fully automatic mechanized sampling system further includes an automatic capping device.
  • the automatic capping device and the sample retention tube 53 are respectively located at two adjacent filling positions. Right above, and the filling position corresponding to the automatic capping device is located downstream of the filling position corresponding to the sample retention tube 53.
  • the controller of the beltless automobile automatic mechanized sampling system obtains the vehicle information of the vehicle compartment 13 of the automobile under the work platform 1 from the upper terminal.
  • the vehicle information includes mineral information and collection methods.
  • the mineral information includes the type of mineral, the weight of the mineral, the batch of the mineral, and the source of the mineral.
  • the controller determines the sampling frequency, single sampling volume, and system matching the mineral information according to the mineral information.
  • the controller drives through the first horizontal drive mechanism 15 Adjust the position on the working platform 1 on the first frame 12, adjust the position of the sampler 23 on the first frame 12 by the second horizontal drive mechanism 25, and adjust the sampling depth of the sampler 23 by the vertical drive mechanism 24.
  • the sampling range of the sampler 23 covers the entire carriage 13. Within the range of the number of sampling times, the sampler 23 transports the collected materials to the silo 31 of the feeder 3, and within the range of the backup sampling number, the material collected by the sampler 23 is manually retained.
  • the material collected by the sampling mechanism 2 can be directly transported to the sample retention barrel 7 through the backup slide 9.
  • the spare slide 9 is fixed on the work platform 1.
  • the sample retention barrel 7 is fixed below the spare slide 9, and then the sampling mechanism 2 is moved to Above the standby slide pipe 9, so that the material collected by the sampler 23 enters the sample retention barrel 7 through the standby slide pipe 9.
  • the first collection method is: collect multiple sub-samples at one time and then sample them through the integrated sample preparation module 100; the second collection method is: separate each collected sub-sample through the integrated sample preparation module 100
  • the sample preparation assembly 100 performs sampling.
  • the first collection method is adopted, after the sampler 23 transports all the collected materials of sample preparation and sampling times to the silo 31, the feeder 3, the crusher 4 and the fixed mass reduction machine 5 of the integrated sample preparation assembly 100 The materials are sequentially fed, crushed, and reduced by quality.
  • the samples after the reduced quality are stored in the sample storage barrel 7, and the discarded materials are transported to the discarded material storage place through the discarded material return mechanism 6.
  • the sampler 23 transports the collected materials to the silo 31, and the integrated sample preparation assembly 100 prepares samples for this time. After the sample preparation is completed , The sampler 23 transports the next batch of materials to the bin 31.
  • the integrated sample preparation assembly 100 is processing two adjacent batches of materials.
  • the first purge device cleans the inner wall of the cavity 3111 and the materials stored on the surface of the material disperser 34.
  • the second purge device removes the material from the crushing chamber 413.
  • the residual material on the inner wall and the surface of the crushing mechanism 43 is purged, and the residual material in the shrinking cavity 511 and on the surface of the shrinking portion 55 is purged clean by the third purging device.
  • the working principle of the integrated sample preparation component 100 for collecting samples is as follows:
  • the fixed mass reduction machine 5 When the sample preparation is started, the fixed mass reduction machine 5, the crusher 4 and the distributor 3 are started in sequence, and the first purging device, the second purging device and the third purging device are turned on after the sample preparation is completed.
  • the first rotating shaft 32 drives the feeding part 33 to rotate, the feeding part 33 scrapes the material to the first discharge port 3121, and the material passes through the discharge pipe 34 evenly from the first discharge port 3121 Flow into the crushing cavity 413, the second rotating shaft 42 drives the crushing mechanism 43 to rotate, and the material is crushed by the hammer 432 on the crushing mechanism 43 and the inner wall of the crushing cavity 413.
  • the crushed material is directly removed from the crushing chamber without passing through the screen.
  • the second discharge port 412 flows into the constant mass reduction machine 5, the sample after the reduction flows into the sample storage barrel 7 through the sample retention tube 53 and is retained, and the waste material after the reduction flows into the discard return through the discard tube 54 The waste material is transported to the waste material storage place through the waste material return mechanism 6.
  • the reduction factor and the opening degree of the window 551 can be calculated according to the total mass of the crushed material and the mass of the required sample.
  • the opening degree of the window 551 can be controlled to be located at the opening degree, and the desired quality can be reduced. sample.
  • the same batch of materials of different quality is reduced, it can be satisfied that the materials of different quality are cut with the same cutting frequency, so that the representativeness of the samples obtained is consistent. It has a simple design structure, uniform reduction, adjustable cutting speed, and good reduction ratio stability, which can ensure the uniformity and representativeness of the reduction.
  • the beltless automatic mechanized sampling system for automobiles adopts a beltless, integrated sampling and sample preparation design scheme, which can effectively solve the coal leakage and stickiness in the sampling and sample preparation process of the automobile automatic mechanized sampling system in related technologies. Problems such as coal, coal blocking and residual mixing have reduced the moisture loss of coal samples, and ensured that the precision and overall bias of the entire sampling system meet the requirements of the national standard. It can be realized that all sub-samples in a sampling institution are collected from the top at one time. In the work of feeding, crushing, shrinking and retaining samples, it is also possible to continuously crush and shrink individual sub-samples in a sampling organization to retain samples.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种无皮带式汽车全自动机械化采样系统,包括:作业平台(1),包括运输通道(14)及沿第一方向延伸的滑轨(11),运输通道(14)设于滑轨(11)下方且设置为使汽车通过;第一机架(12),设置为沿滑轨(11)滑动;采样机构(2),设置为从汽车车厢(13)采集物料并沿第二方向滑动,第一方向与第二方向垂直且第一方向与第二方向水平设置;一体化制样组件(100),包括弃料返排机构(6)、给料机(3)、破碎机(4)、定质量缩分机(5)和留样桶(7),给料机(3)设置为输送物料至破碎机(4),破碎机(4)设置为将物料破碎并将破碎后的物料输送至定质量缩分机(5),定质量缩分机(5)设置为将破碎后的物料缩分为样品和弃料后将样品输送至留样桶(7),及将弃料输送至弃料返排机构(6)。

Description

无皮带式汽车全自动机械化采样系统
本申请要求申请日为2019年4月28日、申请号为201910351312.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及大宗物料质量检测技术领域,例如涉及一种无皮带式汽车全自动机械化采样系统。
背景技术
机械化采样机为一种机械装置,能够从一批物料中获得一个试验结果以代表整批被采样物料的试样。采样机的种类很多,不同的行业及不同的场所采用采样机的结构形式也不同。电厂、矿山、码头及集运站等通常通过汽车进行大宗矿物运输,火车机械化采样系统就是大宗矿物运输中的一种,该系统设置为对汽车运输的固态矿物进行采样,该系统集采样、破碎、缩分、集料及弃料等机构于一体,结构合理、运行可靠并且操作方便,被广泛应用于煤炭、焦炭及钢铁等固体矿物的公路运输领域,可完成对公路运输的大宗固体矿物物料在入厂卸车或出厂装车时进行样品采集和初级样品制备,为下一步实验室制样提供满足相应国家标准规定重量的并具有代表性的样品。因此,采样样品的代表性是决定汽车机械化采样系统的核心指标。
发明内容
本申请提供了一种无皮带式汽车全自动机械化采样系统,能够解决相关技术中刮扫缩分器缩分后的弃料需要人工搬运的问题。
本申请提供一种无皮带式汽车全自动机械化采样系统,该无皮带式汽车全自动机械化采样系统包括:作业平台,包括运输通道及沿第一方向延伸的滑轨,所述运输通道设置于所述滑轨的下方且设置为使汽车通过;第一机架,设置为与所述滑轨滑动配合;第一水平驱动机构,与所述第一机架传动连接且设置为驱动所述第一机架沿所述第一方向滑动;采样机构,设置为相对所述第一机架沿第二方向滑动,所述采样机构还设置为从汽车的车厢中采集物料,所述第一方向与所述第二方向垂直,且所述第一方向与所述第二方向水平设置;一体化 制样组件,包括弃料废排机构及由上至下依次设置的给料机、破碎机、定质量缩分机和留样桶,所述给料机设置为将物料输送至所述破碎机,所述破碎机设置为将物料破碎并将破碎后的物料输送至所述定质量缩分机,所述定质量缩分机设置为将破碎后的物料缩分为样品和弃料后将所述样品输送至所述留样桶,及将所述弃料输送至弃料返排机构,所述弃料返排机构设置为将所述弃料输送至所述车厢内。
附图说明
图1为本申请一实施例中无皮带式汽车全自动机械化采样系统的结构示意图;
图2为本申请一实施例中无皮带式汽车全自动机械化采样系统中给料机的结构示意图;
图3为本申请一实施例中无皮带式汽车全自动机械化采样系统中破碎机的结构示意图;
图4为本申请一实施例中无皮带式汽车全自动机械化采样系统中定质量缩分机的结构示意图;
图5为本申请一实施例中无皮带式汽车全自动机械化采样系统中弃料返排机构的结构示意图;
图6为本申请一实施例中无皮带式火车全自动机械化采样系统中采样器的结构示意图;
图7为本申请一实施例中无皮带式火车全自动机械化采样系统的采样器中旋转驱动件与螺杆连接的示意图;
图8为本申请一实施例中无皮带式火车全自动机械化采样系统中垂直驱动机构的结构示意图;
图9为本申请一实施例中无皮带式火车全自动机械化采样系统中第一水平驱动机构的结构示意图;
图10为本申请一实施例中无皮带式火车全自动机械化采样系统中第二水平驱动机构的结构示意图;
图11为本申请一实施例中无皮带式火车全自动机械化采样系统中第一驱动装置的结构示意图;
图12为本申请一实施例中无皮带式火车全自动机械化采样系统中第一溜管 的结构示意图;
图13为本申请一实施例中无皮带式火车全自动机械化采样系统中第二驱动装置的结构示意图;
图14为本申请一实施例中无皮带式火车全自动机械化采样系统中缩分部的结构示意图;
图15为本申请一实施例中无皮带式火车全自动机械化采样系统中多斗提升机的部分结构示意图;
图16为本申请一实施例中无皮带式火车全自动机械化采样系统中旋转卸料器的部分结构示意图;
图17为本申请一实施例中无皮带式火车全自动机械化采样系统中自动灌装机构的结构示意图;
图18为本申请一实施例中无皮带式火车全自动机械化采样系统中备用溜管的结构示意图。
图中:
1、作业平台;11、滑轨;12、第一机架;13、车厢;14、运输通道;15、第一水平驱动机构;151、驱动电机;152、驱动轮;153、水平传动轮;
2、采样机构;21、第二机架;22、滑轮;23、采样器;231、螺杆;232、料筒;233、旋转驱动件;234、采样头;24、垂直驱动机构;241、第一电机;242、第一主动轮;243、第一齿条;25、第二水平驱动机构;251、第二电机;252、第二主动轮;2531、第一固定板;2532、第二固定板;2541、第一连接轴;2542、第二连接轴;
100、一体化制样组件;3、给料机;4、破碎机;5、定质量缩分机;
31、料仓;311、侧壁;3111、空腔;3112、第一进料口;312、底板;3121、第一出料口;
32、第一旋转轴;33、给料部;34、出料管;35、第一驱动装置;351、第三电机;352、第一传动轮;353、第二传动轮;
41、壳体;411、第二进料口;412、第二出料口;413、破碎腔;42、第二旋转轴;43、破碎机构;431、锤盘;432、锤片;44、第一溜管;45、第二驱动装置;451、第四电机;452、第三主动轮;453、第二从动轮;454、链条;
51、箱体;511、缩分腔;512、第三进料口;513、排料口;
52、第三驱动装置;521、第五电机;522、第一传动组件;
53、留样管;54、弃料管;
55、缩分部;551、开窗;
6、弃料返排机构;61、水平输料器;611、外壳;612、第六电机;62、多斗提升机;621、罩壳;63、旋转卸料器;631、旋转溜槽;632、第五驱动装置;
7、留样桶;
81、转盘;82、旋转驱动装置;83、顶升机构;
9、备用溜管。
具体实施方式
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
从功能划分情况看,汽车机械化采样系统主要分为采样机构和样品处理机构。采样机构的主要功能是根据自控程序的设定,在车厢指定的水平和深度位置采取预定重量的样品;样品处理机构的主要功能是将采样机构采集的样品按照国标的要求经过破碎及缩分等流程并制备成具有预设粒度和重量的留存样品供实验室使用,并将剩余样品通过预设方式返回到指定位置。
采样机构包括钻取式采样头及采样头移动和升降装置,样品处理机构包括破碎机、缩分皮带机和刮扫缩分器,破碎机多采用卧式带筛板的破碎机。通过钻取式采样机提取矿样后,矿样落入给料机的接料斗内,然后由密闭式给料皮带输送机输送进入破碎机(破碎机通常位于密闭式给料皮带输送机的中间位置), 由破碎机完成对矿样的破碎作业,破碎的矿样进入缩分皮带机,缩分皮带机在运输的同时进行初次缩分,并由缩分皮带机运输至刮扫缩分器,然后由刮扫缩分器对破碎的矿样进行再次缩分和留样,多余的矿样则通过缩分皮带机继续运送至余料处理系统,并由余料处理系统返排回车厢或直接排回矿场。物料在整个制样环节中全部由皮带驱动进行流转。
以煤炭或焦炭为例,相关技术中的汽车机械化采样系统在实际使用过程中还存在以下问题:
1)、在样品的制取过程中,通常需要提取多个子样品,而相关技术中的汽车机械化采样系统的给料机若集聚多个子样品的物料,特别是物料水分较大的情况下,容易造成的物料积块,影响后续样品的采集精度。
2)、卧式带筛板的破碎方式,在长时间使用后,筛板的网眼容易堵塞,影响后续制样精度。
3)、采用皮带作为物料输送方式,容易造成不同批次的样品残留和混杂。
4)、卧式带筛板的破碎方式,将颗粒度大于筛网网眼的物料筛除,在一定程度上影响后续样品的代表性。
5)、缩分皮带机进行缩分时,通过刮板将皮带上表面高度以上的物料刮除,仅保留皮带上表面高度以下的物料,但该缩分方式容易导致缩分不均匀,造成整个系统偏倚较大。
6)、物料在整个制样环节中全部由皮带驱动进行流转,输送距离较长,物料中的水分损失较大。
7)、相关技术中的刮扫缩分器缩分后的样品通常收集在留样桶中,但是缩分后的弃料通常堆积在刮扫缩分器旁边,当弃料较多时,将需要人工将搬运至别处。
如图1-图18所示,本实施例提供一种无皮带式汽车全自动机械化采样系统,该无皮带式汽车全自动机械化采样系统包括作业平台1、第一机架12、第一水平驱动机构15、采样机构2和一体化制样组件100。
作业平台1为钢制桁架结构,本实施例中,作业平台1下方设有使汽车通过的运输通道14,作业平台1上设有滑轨11,并且滑轨11位于运输通道14的上方,滑轨11沿第一方向延伸,第一机架12滑动设置于滑轨11上,并且可通过第一水平驱动机构15驱动第一机架12沿滑轨11滑动。
采样机构2设置为从汽车的车厢13中采集物料,且采样机构2能够相对第一 机架12沿第二方向滑动,第二方向垂直于第一方向,并且第二方向和第一方向均沿水平方向。在一实施例中,采样机构2包括第二机架21、滑轮22、采样器23、第二水平驱动机构25和垂直驱动机构24,其中,滑轮22转动设置于第二机架21上且滑动设置于第一机架12上,采样器23滑动设置于第二机架21上且采样器23设置为从车厢13中采集物料,第二水平驱动机构25能够驱动第二机架21相对第一机架12沿第二方向滑动,垂直驱动机构24能够驱动采样器23沿竖直方向运动,采样器23能够从车厢13中采集物料。本实施例中,通过设置第二水平驱动机构25和垂直驱动机构24,并配合第一水平驱动机构15,可以使采样器23在相互垂直的三个方向上取料,使采样器23的采集范围覆盖整个车厢13。
如图6和图7所示,采样器23包括料筒232、旋转驱动件233、采样头234以及螺杆231,料筒232滑动设置于第二机架21上,垂直驱动机构24与料筒232传动连接,垂直驱动机构24能驱动料筒232沿竖直方向运动,旋转驱动件233与料筒232固接,并且旋转驱动件233与螺杆231传动连接,采样头234安装在料筒232底部的一端且采样头234呈锥形,便于采样器23采样时,采样器23能够顺利的插入物料内;螺杆231穿设于料筒232内且螺杆231底部的一端靠近采样头234。本实施例中,旋转驱动件233为电机,在其他实施例中,旋转驱动件233也可以为液压马达,通过旋转驱动件233驱动螺杆231转动,螺杆231在转动的同时将物料逐渐挤压进入料筒232内。
如图8所示,本实施例中,垂直驱动机构24包括第一电机241、与第一电机241的输出轴传动连接的第一主动轮242、与第一主动轮242啮合的第一齿条243以及采样头吊架244。第一齿条243和采样头吊架244固接,料筒232连接在采样头吊架244上,第一电机241固装在第二机架21上,第一主动轮242转动安装于第二机架21上,从而第一电机241转动时,通过第一齿条243带动采样头吊架244沿竖直方向升降,从而带动料筒232以及固装于料筒232上的旋转驱动件233沿竖直方向升降。本实施例中,通过设置采样头吊架244保证料筒232在升降时方向稳定。
如图9所示,第一水平驱动机构15包括驱动电机151、驱动轮152以及水平传动轮153。其中,驱动电机151固接在第一机架12上,水平传动轮153与驱动电机151的输出轴连接,且水平传动轮153与驱动轮152啮合传动,驱动轮152滑动设置于滑轨11上且驱动轮152转动连接于第一机架12上,驱动电机151能够驱动水平传动轮153转动,从而带动驱动轮152转动,从而使第一机架12沿滑轨11移动, 本实施例中,作业平台1上间隔且平行地设有两根滑轨11,相应地,第一机架12沿第二方向的两端分别设有两个第一水平驱动机构15。驱动电机151需要保证在风速很大时,也可沿逆风方向驱动第一机架12正常运动。
第二水平驱动机构包括第二电机、与第二电机的输出轴传动连接的第二主动轮、与第二主动轮沿第二方向间隔设置的第一从动轮以及同时套设在第二主动轮和第一从动轮上的皮带,第二主动轮和第一从动轮均转动设置在第一机架12上,第二电机同样固装于第一机架12上,皮带沿第二方向延伸且与第二机架21固接,第二电机转动时,通过皮带带动采样器23相对第一机架12沿第二方向运动。在一实施例中,如图10所示,第二水平驱动机构25包括第二电机251、第一固定板2531、第二固定板2532、第一连接轴2541、第二连接轴2542及与第二电机251的输出轴传动连接的第二主动轮252。其中,第一固定板2531与第二固定板2532平行设置,第二电机251固定在第二固定板2532上,第二电机251的输出轴穿出第二固定板2532后与第二主动轮252连接;第一连接轴2541垂直连接在第一固定板2531和第二固定板2532之间,且第一连接轴2541的两端分别穿出第一固定板2531和第二固定板2532后,分别连接有一个滑轮22;第二连接轴2542的两端分别穿出第一固定板2531和第二固定板2532,分别连接有一个滑轮22,即本实施例中共设置有四个滑轮22,其中,与第二连接轴2542穿出第二固定板2532的一端连接的滑轮22与第二主动轮252啮合传动。第二电机251转动时带动第二主动轮252转动,第二主动轮252带动第二连接轴2542及第二连接轴2542两端的滑轮22同时转动,进而推动第一连接轴2541及第一连接轴2541两端的滑轮22转动,从而实现四个滑轮22同时沿第二方向滑动,以便带动采样器23沿第二方向运动。
采样头234的开口尺寸由被采集物料的最大标称粒度决定,采样头234的开口尺寸通常为最大标称粒度的三倍及三倍以上。本实施例中,采样机构2适合离地面高度1.25m以上的车厢13。为了防止第一电机241发生故障,第一主动轮242上还转动设有摇把,摇把远离第一主动轮242的中心,从而当采样头234下潜至车厢13后,第一电机241发生故障并导致采样头234无法自动提升时,可手动转动摇把带动采样头234提升,不影响汽车的正常通行。
一体化制样组件100设置于汽车轨道12一侧,一体化制样组件100包括由上至下依次驱动连接的给料机3、破碎机4、定质量缩分机5和留样桶7,给料机3设置为将物料均匀且连续地输送至破碎机4,破碎机4设置为将物料破碎并将破碎 后的物料输送至定质量缩分机5,定质量缩分机5设置为将破碎后的物料定质量缩分,即定质量缩分机5能够将物料缩分为样品和弃料,并且,定质量缩分机5将样品输送至留样桶7,进而可以将样品留存,将弃料输送至弃料返排机构6,并通过弃料返排机构6将弃料输送至弃料存放处。
在一实施例中,给料机3包括料仓31、第一旋转轴32、第一驱动装置35和给料部33。料仓31的内部设有空腔3111,空腔3111的上端和下端分别设有第一进料口3112和第一出料口3121,采样机构2能够将物料输送至料仓31,第一旋转轴32穿设于第一出料口3121。给料部33的第一端与第一旋转轴32固接,给料部33的第二端与料仓31的内壁贴合,并且给料部33的第二端能够相对料仓31的内壁滑动。在一实施例中,给料部33的第二端与料仓31的内壁之间也可以设有间隙。给料部33位于空腔3111的底部,第一驱动装置35设置为驱动第一旋转轴32转动,从而第一旋转轴32带动给料部33转动,给料部33转动时,能够驱动物料向第一出料口3121移动。本实施例中,第一出料口3121的轴线与第一旋转轴32的轴线重合。当给料部33旋转时能够将与给料部33接触的物料从料仓31的内壁处向第一出料口3121的方向刮动,物料可以从第一出料口3121中流出,保证了料仓31内的物料不会堆积,且保证了出料的均匀性,随着给料部33的连续转动,料仓31内的物料将逐层减少,能够保证出料的连续性以及稳定性,从而保障了后续制样环节不积料、堵料,保障了所制取样品的代表性。
给料机3还包括第一吹扫装置,第一吹扫装置通过管路与外界高压气源连接,第一吹扫装置设置为对空腔3111的内壁存留的物料以及给料部33表面残留的物料进行清扫,可防止物料处理完毕后,空腔3111的表面残留有物料。避免不同批次的物料混样,且可有效改善工作环境,并降低了操作人员的劳动负荷,提高了作业效率。管路上可以设置电磁阀,或手控阀,从而第一吹扫装置可以通过人工控制启停,也可以通过控制器控制启停。
料仓31包括环形的侧壁311和与侧壁311底部连接的底板312,侧壁311顶端的开口构成第一进料口3112,第一出料口3121设置于底板312上。
如图11所示,第一驱动装置35包括第三电机351以及传动组件,第三电机351通过传动组件与第一旋转轴32连接,并带动第一旋转轴32转动。其中,传动组件包括第一传动轮352及与第一传动轮352啮合的第二传动轮353,第一传动轮352与第三电机351的输出轴传动连接,第二传动轮353与第一旋转轴32连接。本实施例通过控制第三电机351的转动速度,进而控制给料部33的转动速度,实现 对物料下落速度控制。
在一实施例中,给料机3可以通过第一溜管44给破碎机4供料,第一溜管44的结构如图12所示,在其他实施例,第一溜管44还可以为溜槽,使给料机3通过该溜槽给破碎机4供料。在一实施例中,给料机3还可以通过出料管34给破碎机4供料,如图2所示,出料管34顶部的一端与底板312连接并与第一出料口3121连通,出料管34套设在第一旋转轴32外,并且出料管34沿竖直方向延伸或者与竖直方向呈非零夹角设置,通过出料管34将流出第一出料口3121的物料导入破碎机4中。通过设置出料管34可以使物料靠自重滑落至破碎机4中,结构简单,物料传输更快,能够有效防止物料长时间暴露于空气中导致水分散失并影响样品代表性的问题。其中,出料管34的内表面应当尽量光滑,从而物料流通顺畅并且不易粘附,容易清扫。
破碎机4包括壳体41、破碎机构43和第二驱动装置45,壳体41的内部设有破碎腔413,破碎腔413的上下两端分别设有第二进料口411和第二出料口412,第二进料口411与给料机3通过出料管34连接,第二出料口412与定质量缩分机5通过第二溜管连接,其中,第二溜管与第一溜管44的结构相同。在其他实施例中,第二溜管还可以为溜槽,使第二出料口412与定质量缩分机5通过该溜槽连接;至少两个破碎机构43沿竖直方向间隔设置,破碎机构43与破碎腔413的内壁之间设有间隙,并且间隙的大小可调节。第二驱动装置45设置为驱动破碎机构43转动,在第二驱动装置45的驱动下,破碎机构43转动,物料沿破碎机构43和碎腔413的内壁之间的间隙向下掉落,对于颗粒度大于间隙的物料,在破碎机构43和破碎腔413的内壁的挤压下破碎。
给料机3、破碎机4和定质量缩分机5均通过溜管或溜槽连接,可有效提高物料在装置件的传输效率,并可有效防止物料水分散失,保证所制取样品的代表性。
破碎机4还包括部分位于破碎腔413中的第二旋转轴42,第二驱动装置45设置为驱动第二旋转轴42转动;破碎机构43包括固定安装在第二旋转轴42上的锤盘431和均布于锤盘431上的多个锤片432,锤盘431的旋转轴线和第二旋转轴42的轴线重合,锤片432与破碎腔413的内壁之间的间距可调节,对于颗粒度大于间隙的物料,在锤片432和破碎腔413的内壁的挤压下破碎。
如图13所示,第二驱动装置45包括第四电机451、与第四电机451的输出轴固定连接的第三主动轮452,与第二旋转轴42顶端固定连接的第二从动轮453以 及连接第三主动轮452和第二从动轮453的链条454。在其他实施例中,链条454还可以替换为皮带。
破碎机4还包括第二吹扫装置,第二吹扫装置设置在壳体41上并且通过管路与外界高压气源连接,可设置为对破碎腔413内残留的物料进行吹扫。管路上可以设置电磁阀或者手控阀,通过电磁阀或者手控阀控制第二吹扫装置启停。通过第二吹扫装置能够将破碎腔413内壁上以及破碎机构43表面残留的物料尘屑吹扫干净,避免不同批次的物料混样,且可有效改善工作环境,并降低了操作人员的劳动负荷,提高了作业效率。
破碎机4通过从上至下间隔设置的多个破碎机构43对物料进行破碎,通过使破碎机构43与破碎腔413的内壁之间的间隙大小可调节,可以制取不同颗粒度的样品,并且无需设置筛板,通过在壳体41内壁上设置第二吹扫装置,第二吹扫装置可以对破碎后残留在破碎腔413内壁以及破碎机构43上表面上的物料残留进行自动清理,降低了操作人员的劳动强度,提高了清理效率。
如图4和图14所示,定质量缩分机5包括箱体51、第三驱动装置52、缩分部55和留样管53。箱体51上设有缩分腔511,箱体51的顶部和底部分别设有与缩分腔511连通的第三进料口512和排料口513,第三进料口512与破碎机4连接;第三驱动装置52安装在箱体51上;缩分部55位于缩分腔511中,且设置为对物料进行缩分,缩分部55与缩分腔511的内壁之间设有间隙,第三驱动装置52与缩分部55固定连接,缩分部55上设有开窗551,缩分部55具有使开窗551能够与第三进料口512在竖直方向上完全重叠的第一位置以及使开窗551能够与第三进料口512在竖直方向上完全不重叠的第二位置,第三驱动装置52驱动缩分部55在第一位置和第二位置之间转动。本实施例中,第三驱动装置52可驱动缩分部55沿同一方向连续转动。缩分部55的顶部的一端与第三驱动装置52连接,缩分部55底部的一端靠近箱体51的底部。留样管53的顶部设有开口,该开口位于缩分腔511中且位于第三进料口512的正下方,留样管53则与留样桶7连接,缩分后的样品通过留样管53流入到留样桶7内。
定质量缩分机5还包括弃料管54,弃料管54的顶端与排料口513连通,留样管53穿设于弃料管54,弃料管54的底端与弃料返排机构6连接。
本实施例中,经破碎机4破碎的物料从第三进料口512经第二溜管进入到缩分腔511内,缩分部55在第三驱动装置52的驱动下旋转,每当开窗551转过第三进料口512的下方时,进入缩分腔511的物料能够经开窗551落入到留样管53顶端 的开口中,并可以经留样管53导入到留样桶7中,完成一次样品切割过程。当开窗551转动到和第三进料口512没有重叠时,物料落入到缩分部55的上表面,并经缩分部55和缩分腔511内壁之间的间隙落入到下方的排料口513,然后经弃料管54顶端的开口被弃料管54排出。
所述定质量缩分机5还包括第三吹扫装置,第三吹扫装置安装在箱体51上,第三吹扫装置通过管路与外界高压气源连接,设置为向缩分腔511中吹入吹扫气。通过第三吹扫装置将缩分腔511内以及缩分部55表面上残存的物料残留吹扫干净,避免不同批次的物料混样,且可有效改善工作环境,并降低了操作人员的劳动负荷,提高了作业效率。第三吹扫装置与外界高压气源连接的管路上同样可以设置电磁阀或手动阀,从而可以实现对第三吹扫装置的自动控制或手动控制。
如图4所示,第三驱动装置52包括第五电机521以及与第五电机521的输出轴连接的第一传动组件522,第一传动组件522与缩分部55连接。第五电机521通过第一传动组件522驱动缩分部55旋转,第一传动组件522可以是带传动组件,也可以为链传动组件,还可以是齿轮传动组件,本实施例中第一传动组件522为齿轮传动组件。
如图5和图4所示,本实施例中,弃料返排机构6包括水平输料器61、多斗提升机62和旋转卸料器63,水平输料器61上设有入料口,弃料管54与该入料口通过管路连接,水平输料器61能够将物料输送至多斗提升机62,多斗提升机62能够将弃料输送至旋转卸料器63,旋转卸料器63能够将物料输送至弃料存放处。
在一实施例中,水平输料器61包括外壳611,外壳611内设有通道,通道内设有螺杆,螺杆的一端与第六电机612连接,第六电机612驱动螺杆转动,水平输料器61上设有入料口,该入料口位于通道的第一端并且与通道连通,从而弃料从该入料口进入到通道后,在第六电机612的驱动下,螺杆转动并将弃料推动至通道的第二端,外壳611上设有出料口,该出料口位于通道的第二端的底部。
多斗提升机62包括第四驱动装置和提升斗,第四驱动装置包括沿竖直方向间隔设置的第四主动轮和第三从动轮,第四主动轮和第三从动轮通过链条连接,并且第四主动轮与第七电机驱动连接,链条与提升斗固接,从而链条可以带动提升斗沿竖直方向升降。在一实施例中,链条与提升斗枢接,从而提升斗通过最高点时,能够相对链条转动,并将物料卸载。本实施例中提升斗的数量为多个。在一实施例中,如图15所示,多斗提升机62还包括罩壳621,罩壳621将第 四驱动装置以及提升斗罩设于罩壳621的内部,并且罩壳621上设有溜槽,溜槽位于外壳611上的出料口的正下方,溜槽位于第四主动轮和第三从动轮之间,并且提升斗能够位于溜槽下方,从而弃料可以通过溜槽进入到提升斗内。
在一实施例中,多斗提升机62还包括中转槽,中转槽位于第四主动轮的两侧,罩壳621上的溜槽位于第三从动轮的两侧,并且中转槽靠近第四驱动装置的顶部。当提升斗通过最高点时,提升斗翻转,并且提升斗内的物料能够倒入到中转槽内。
如图16所示,旋转卸料器63包括旋转溜槽631和第五驱动装置632,第五驱动装置632与旋转溜槽631转动连接,第五驱动装置632能够驱动旋转溜槽631相对罩壳621转动,旋转溜槽631的顶部设有第一开口,该第一开口位于中转槽下方,中转槽的底部设有第二开口,并且第一开口大于第二开口,从而中转槽能够将弃料输送至旋转溜槽631内。
第五驱动装置包括第八电机、安装在第八电机上的第五主动轮以及安装在旋转溜槽631上的第四从动轮,第五主动轮和第四从动轮通过链传动组件或者带传动组件连接。第八电机安装在罩壳621上,从而可以通过第八电机驱动旋转溜槽631转动。其中,旋转溜槽631顶部第一开口的轴线与旋转溜槽631转动的轴线重合,从而能够保证在旋转溜槽631转动的过程中,弃料可以经中转槽流入到旋转溜槽631内。
本实施例中,弃料存放处为汽车的车厢13。在其他实施例中,也可以为远离汽车的车厢13的其他位置。同时通过转动旋转溜槽631,可以使弃料排放至设置为取料的汽车的车厢13之外的汽车的其他车厢内。
定质量缩分机5缩分后的弃料通过弃料返排机构6输送至车厢13内,可以替代人工对弃料进行定时处理,提高了操作效率。
如图17所示,该无皮带式汽车全自动机械化采样系统还包括自动灌装机构,自动灌装机构包括转盘81、旋转驱动装置82和顶升机构83,转盘81上设有多个灌装位,多个灌装位沿转盘81的周向均布,灌装位设置为放置留样桶7;旋转驱动装置82设置为驱动转盘81转动,在转盘81转动的过程中,其中一个灌装位位于留样管53的正下方,也就是说,在转盘81的转动过程中,总有一个灌装位能够位于留样管53的正下方,从而可通过留样管53向留样桶7内灌装缩分后的物料,顶升机构83安装在转盘81上,顶升机构83的数量和灌装位的数量相等,并且顶升机构83和灌装位一一对应设置,顶升机构83能够驱动留样桶7沿竖直方向升降; 如图4所示,留样管53与竖直方向呈非零夹角设置,从而便于使样品和弃料间隔预设的空间,避免相互干涉,并且沿留样管53的延伸方向,留样管53的孔径保持一致。在其他实施例中,留样管53的下端呈喇叭口状,留样桶7的顶端的口径小于留样管53底端的口径,从而留样桶7的顶部开口的边缘能够与留样管53的内表面贴合,保证灌装时,物料不会泄露至留样桶7的外面,其中,上下指的是图4中的上下方向。
本实施例中,旋转驱动装置82为电机,也可以为液压马达等,顶升机构83可以为气缸,也可以为电推杆等。通过设置自动灌装机构可实现对多个留样桶7的自动灌装,可有效节省作业人力,并且留样桶7和留样管53相互贴紧,能够有效防止物料水分丢失。
在一实施例中,该无皮带式汽车全自动机械化采样系统还包括自动封盖装置,沿转盘81的转动方向,自动封盖装置和留样管53分别位于相邻的两个灌装位的正上方,并且自动封盖装置对应的灌装位位于留样管53对应的灌装位的下游。通过设置自动封盖装置,能够实现自动作业,并在灌装完毕后自动对留样管53自动封口,避免水分散失。
该无皮带式汽车全自动机械化采样系统的工作原理如下:
无皮带式汽车全自动机械化采样系统的控制器从上位终端获取到达作业平台1下方的汽车的车厢13的车辆信息,车辆信息包括矿物信息以及采集方式。
在一实施例中,矿物信息包括矿物的种类、矿物的重量、矿物的批次以及矿源地等信息,控制器根据矿物信息进而确定和该矿物信息相匹配的采样频率、单次采样量、制样采样次数以及备份采样数量;采样机构2按照采样频率进行采集物料,并且每次采集的物料重量等同于单次采样量,采样机构2采集物料的过程中,控制器通过第一水平驱动机构15调整第一机架12上位于工作平台1上的位置,通过第二水平驱动机构25调整采样器23位于第一机架12上的位置,通过垂直驱动机构24调节采样器23的采样深度,可使采样器23的采集范围覆盖整个车厢13。在制样采样次数的数量范围内,采样器23将采集的物料均运送至给料机3的料仓31内,在备份采样数量的范围内,将采样器23采集的物料人工留存。
假如一体化制样组件100发生故障,可通过备用溜管9将采样机构2采集到的物料直接输送至留样桶7中。如图17所示,备用溜管9固接在作业平台1上,当一体化制样组件100发生故障时,将留样桶7固定在备用溜管9的下方,然后将采样机构2移动到备用溜管9的上方,从而使采样器23采集到的物料通过备用溜管9进 入留样桶7中。
采集方式包括两种,第一种采集方式为:将多个子样一次性采集完成然后整体通过一体化制样组件100进行采样;第二种采集方式为:将采集的每个子样分别通过一体化制样组件100进行采样。当采用第一种采集方式时,采样器23将采集的制样采样次数的物料全部运送至料仓31后,一体化制样组件100的给料机3、破碎机4和定质量缩分机5依次对物料依次进行给料、破碎和定质量缩分作业,定质量缩分后的样品存入留样桶7内,弃料则通过弃料返排机构6输送至弃料存放处。当为采用第二种采集方式时,在制样采集次数内,采样器23将采集的物料输送至料仓31内,一体化制样组件100对该次的物料进行制样,制样完成后,采样器23将下一批次的物料输送至料仓31内。一体化制样组件100在处理相邻两批物料之间,第一吹扫装置将空腔3111的内壁以及物料分散器34表面存留的物料进行清扫,通过第二吹扫装置将破碎腔413的内壁以及破碎机构43的表面残留的物料吹扫干净,通过第三吹扫装置将缩分腔511内以及缩分部55表面上残存的物料残留吹扫干净。
一体化制样组件100采集样品的工作原理如下:
开始制样时,将定质量缩分机5、破碎机4和分料机3依次启动,制样完成后将第一吹扫装置、第二吹扫装置以及第三吹扫装置依次打开。
分料机3启动后,第一旋转轴32带动给料部33转动,给料部33将物料刮动到第一出料口3121,物料从第一出料口3121中经出料管34均匀流入到破碎腔413中,第二旋转轴42带动破碎机构43转动,通过破碎机构43上的锤片432与破碎腔413的内壁将物料挤压破碎,破碎后的物料无需通过筛板便直接从第二出料口412流入到定质量缩分机5,缩分后的样品通过留样管53流入到留样桶7内并留存,缩分后的废弃物料则通过弃料管54流入弃料返排机构6,并通过弃料返排机构6将废弃物料其输送至废料弃料存放处。
在一实施例中,可以根据所破碎物料的总质量和所需样品的质量计算出缩分系数以及开窗551的开度,控制开窗551位于该开度,可以缩分出所需质量的样品。对于同一批次的不同质量的物料进行缩分时,可以满足不同质量的物料均以相同的切割次数进行切割,从而使所到的样品代表性一致。具有设计结构简单、缩分均匀,切割速度可调,缩分比稳定性较好,可以保证缩分的均匀性和代表性。
该无皮带式汽车全自动机械化采样系统采用无皮带式、采样和制样一体化 设计方案,可有效解决相关技术中的汽车全自动机械化采样系统在采样和制样过程中存在的漏煤、粘煤、堵煤及残留混料等问题,降低了煤样的水分损失,保证了整个采样系统的精密度和整体偏倚符合国标要求,可实现一个采样机构内全部子样采集完成后一次性从上到下给料、破碎、缩分及留样等工作,也可以在一个采样机构内对单个子样进行连续破碎及缩分后留样。

Claims (10)

  1. 一种无皮带式汽车全自动机械化采样系统,包括:
    作业平台(1),包括运输通道(14)及沿第一方向延伸的滑轨(11),所述运输通道(14)设置于所述滑轨(11)的下方且设置为使汽车通过;
    第一机架(12),设置为与所述滑轨(11)滑动配合;
    第一水平驱动机构(15),与所述第一机架(12)传动连接且设置为驱动所述第一机架(12)沿所述第一方向滑动;
    采样机构(2),设置为相对所述第一机架(12)沿第二方向滑动,所述采样机构(2)还设置为从汽车的车厢(13)中采集物料,所述第一方向与所述第二方向垂直,且所述第一方向与所述第二方向水平设置;及
    一体化制样组件(100),包括弃料返排机构(6)及由上至下依次设置的给料机(3)、破碎机(4)、定质量缩分机(5)和(7),所述给料机(3)设置为将物料输送至所述破碎机(4),所述破碎机(4)设置为将物料破碎并将破碎后的物料输送至所述定质量缩分机(5),所述定质量缩分机(5)设置为将破碎后的物料缩分为样品和弃料后将所述样品输送至所述留样桶(7),及将所述弃料输送至所述弃料返排机构(6),所述弃料返排机构(6)设置为将所述弃料输送至所述车厢(13)内。
  2. 根据权利要求1所述的无皮带式汽车全自动机械化采样系统,其中,所述采样机构(2)包括:
    第二机架(21),滑动设置于所述第一机架(12)上;
    转动设置于所述第二机架(21)上且滑动设置于所述第一机架(12)上的滑轮(22);
    滑动设置于所述第二机架(21)上的采样器(23);
    设置为驱动所述第二机架(21)相对所述第一机架(12)滑动的第二水平驱动机构(25);及
    设置为驱动所述采样器(23)沿竖直方向运动的垂直驱动机构(24)。
  3. 根据权利要求2所述的无皮带式汽车全自动机械化采样系统,其中,所述采样器(23)包括:
    料筒(232),滑动设置于所述第二机架(21)上,所述垂直驱动机构(24)与所述料筒(232)传动连接;
    旋转驱动件(233),与所述料筒(232)固接;
    采样头(234),安装在所述料筒(232)底部的一端,且所述采样头(234) 呈锥形;及
    螺杆(231),穿设于所述料筒(232)内且所述螺杆(231)底部的一端靠近所述采样头(234),所述旋转驱动件(233)与所述螺杆(231)传动连接。
  4. 根据权利要求1所述的无皮带式汽车全自动机械化采样系统,其中,所述给料机(3)包括料仓(31)、第一旋转轴(32)、第一驱动装置(35)及给料部(33);所述料仓(31)的内部设有空腔(3111),所述空腔(3111)的第一端设有第一进料口(3112),所述空腔(3111)的第二端设有第一出料口(3121),所述采样机构(2)设置为将物料输送至所述料仓(31),所述第一旋转轴(32)穿设于所述第一出料口(3121),所述给料部(33)的第一端与所述第一旋转轴(32)固接,所述给料部(33)的第二端与所述料仓(31)的内壁贴合,所述给料部(33)设置为当所述第一驱动装置(35)驱动所述第一旋转轴(32)带动所述给料部(33)转动时,驱动物料从所述第一出料口(3121)流出;所述第一出料口(3121)与所述破碎机(4)连接。
  5. 根据权利要求4所述的无皮带式汽车全自动机械化采样系统,其中,所述破碎机(4)包括:
    壳体(41),所述壳体(41)内部设有破碎腔(413),所述破碎腔(413)的上端设有第二进料口(411),所述破碎腔(413)的下端设有第二出料口(412);
    第一溜管(44)或第一溜槽,所述第二进料口(411)与所述第一出料口(3121)通过所述第一溜管(44)或所述第一溜槽连接;
    第二溜管或第二溜槽,所述第二出料口(412)与所述定质量缩分机(5)通过所述第二溜管或所述第二溜槽连接;
    至少两个破碎机构(43),所述至少两个破碎机构(43)沿竖直方向间隔设置,且设置为对物料进行破碎,所述破碎机构(43)与所述破碎腔(413)的内壁之间的间距可调节;及
    第二驱动装置(45),设置为驱动所述破碎机构(43)转动。
  6. 根据权利要求5所述的无皮带式汽车全自动机械化采样系统,其中,所述破碎机(4)还包括转动设置于所述壳体(41)内的第二旋转轴(42),所述第二驱动装置(45)设置为驱动所述第二旋转轴(42)转动;所述破碎机构(43)包括固定安装在所述第二旋转轴(42)上的锤盘(431)和均布于所述锤盘(431)上的多个锤片(432),所述锤片(432)设置为对所述物料进行破碎。
  7. 根据权利要求6所述的无皮带式汽车全自动机械化采样系统,其中,所述 定质量缩分机(5)包括:
    箱体(51),所述箱体(51)上设有缩分腔(511),所述缩分腔(511)的顶端设有第三进料口(512),所述缩分腔(511)的底端设有排料口(513),所述第三进料口(512)与所述破碎机(4)连接;
    第三驱动装置(52),安装在所述箱体(51)上;
    缩分部(55),位于所述缩分腔(511)中,所述缩分部(55)与所述缩分腔(511)的内壁之间设有间隙,所述缩分部(55)上设有开窗(551),所述开窗(551)设置为具有与所述第三进料口(512)在竖直方向上完全重叠的第一位置及与所述第三进料口(512)在竖直方向上完全不重叠的第二位置,所述第三驱动装置(52)设置为驱动所述缩分部(55)在所述第一位置和所述第二位置之间转动;及
    留样管(53),所述留样管(53)位于所述第三进料口(512)的正下方且位于所述开窗(551)的下方,所述留样管(53)与所述留样桶(7)连接。
  8. 根据权利要求7所述的无皮带式汽车全自动机械化采样系统,其中,所述定质量缩分机(5)还包括弃料管(54),所述弃料管(54)的顶端与所述排料口(513)连通,所述弃料管(54)的底端与所述弃料返排机构(6)连接,所述留样管(53)穿设于所述弃料管(54)。
  9. 根据权利要求7所述的无皮带式汽车全自动机械化采样系统,还包括自动灌装机构,所述自动灌装机构包括:
    转盘(81),沿所述转盘(81)的周向,所述转盘(81)上均布有多个灌装位,所述灌装位设置为放置所述留样桶(7);
    旋转驱动装置(82),设置为驱动所述转盘(81)转动时,使其中一个所述灌装位位于所述留样管(53)的正下方;及
    多个顶升机构(83),安装于所述转盘(81)上,所述多个顶升机构(83)位于所述灌装位的下方,且与所述多个灌装位一一对应设置,所述顶升机构(83)设置为驱动所述留样桶(7)沿竖直方向升降,所述留样管(53)的下端呈喇叭口状,所述留样桶(7)的顶部设有开口,且所述开口的边缘与所述留样管(53)的内表面贴合。
  10. 根据权利要求8所述的无皮带式汽车全自动机械化采样系统,其中,所述弃料返排机构(6)包括管路、水平输料器(61)、多斗提升机(62)和旋转卸料器(63),所述水平输料器(61)包括入料口,所述弃料管(54)与所述入 料口通过所述管路连接,所述水平输料器(61)设置为将所述物料输送至所述多斗提升机(62),所述多斗提升机(62)设置为将所述弃料输送至所述旋转卸料器(63),所述旋转卸料器(63)设置为将所述弃料输送至所述车厢(13)内。
PCT/CN2019/101642 2019-04-28 2019-08-20 无皮带式汽车全自动机械化采样系统 WO2020220521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/436,816 US11959839B2 (en) 2019-04-28 2019-08-20 Belt-free fully-automatic mechanical truck sampling system with improved operation efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351312.X 2019-04-28
CN201910351312.XA CN109959526B (zh) 2019-04-28 2019-04-28 一种无皮带式汽车全自动机械化采样系统

Publications (1)

Publication Number Publication Date
WO2020220521A1 true WO2020220521A1 (zh) 2020-11-05

Family

ID=67026712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101642 WO2020220521A1 (zh) 2019-04-28 2019-08-20 无皮带式汽车全自动机械化采样系统

Country Status (3)

Country Link
US (1) US11959839B2 (zh)
CN (1) CN109959526B (zh)
WO (1) WO2020220521A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418735A (zh) * 2021-05-31 2021-09-21 邹屹洋 一种可自动进料与退料的连续采样装置
CN114414327A (zh) * 2021-12-21 2022-04-29 镇江市丰泰化验制样设备有限公司 一种湿煤混样旋转缩分机
CN114451365A (zh) * 2022-01-23 2022-05-10 浙江大学 基于深海潜水器的推杆密封式宏生物诱捕保压取样器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959526B (zh) * 2019-04-28 2024-06-11 英飞智信(苏州)科技有限公司 一种无皮带式汽车全自动机械化采样系统
CN110455568B (zh) * 2019-07-18 2022-10-21 湖南三德科技股份有限公司 一种采样机的弃料控制方法、装置、介质及设备
CN110617987B (zh) * 2019-09-06 2022-04-19 河南工程学院 一种原始煤体采集、制样装置
CN111257034B (zh) * 2020-04-10 2024-05-03 安阳市鑫达自控科技有限公司 门式汽车采样机
CN112485039B (zh) * 2020-06-12 2024-03-12 湖北省农业科学院农业质量标准与检测技术研究所 表层土多点连续自动采样设备和方法
CN112557161A (zh) * 2020-12-08 2021-03-26 山东泓盛智能科技有限公司 重力式物料多重混样装置及其混样方法
CN112857931B (zh) * 2021-01-08 2022-11-04 深圳信测标准技术服务有限公司 一种食品安全检测用制样装置
CN114563314A (zh) * 2022-02-11 2022-05-31 北京建筑材料科学研究总院有限公司 混凝土用砂进场快速自动检测系统及方法
CN115055396A (zh) * 2022-06-13 2022-09-16 易门铜业有限公司 一种运输皮带杂物分拣系统及其方法
CN117686278B (zh) * 2024-02-04 2024-04-19 山东华廷化工有限公司 一种生态复合肥生产在线取样装置
CN117686273B (zh) * 2024-02-04 2024-04-02 通渭县食品药品检验检测中心 一种固体食品检测用取样装置及其取样方法
CN118323861B (zh) * 2024-06-12 2024-10-01 英飞智信(苏州)科技有限公司 一种粮食自动缩分及进出料装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087251A (ko) * 2012-01-27 2013-08-06 한국동서발전(주) 석탄 시료 조제용 자동 축분 장치
CN103969079A (zh) * 2014-04-29 2014-08-06 湖南万通科技有限公司 一种采样机
CN108709763A (zh) * 2018-05-18 2018-10-26 长沙开元仪器股份有限公司 一种燃料采样检测装置
CN108970720A (zh) * 2018-09-03 2018-12-11 力鸿智信(北京)科技有限公司 一种固体矿物制样系统
CN109141994A (zh) * 2017-06-16 2019-01-04 江西光明智能科技有限公司 一种自动联合制样装置
CN109490042A (zh) * 2018-12-14 2019-03-19 长沙开元仪器有限公司 缩分装置
CN109959526A (zh) * 2019-04-28 2019-07-02 力源智信(苏州)科技有限公司 一种无皮带式汽车全自动机械化采样系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2505827Y (zh) * 2001-11-23 2002-08-14 谭厚章 入场煤机械化采制样装置
CN2603393Y (zh) * 2003-03-22 2004-02-11 徐州三原电力测控技术有限公司 火车、汽车车厢自动采制样装置
KR200453651Y1 (ko) * 2010-10-28 2011-05-19 (주)강원산업기계 석탄을 포함하는 광물 시료 채취 장치
CN103293046B (zh) * 2013-06-28 2016-02-17 长沙开元机电设备有限公司 一种缩分机
CN104535390B (zh) * 2014-12-27 2018-07-03 湖南三德科技股份有限公司 具有并行处理功能的自动制样系统
CN104634607A (zh) * 2015-01-27 2015-05-20 梁中进 塔式燃煤全自动在线采、制样一体化方法及其一体化系统
CN206223502U (zh) * 2016-09-30 2017-06-06 赛摩电气股份有限公司 机器人自动制样系统
CN109387396B (zh) * 2018-12-06 2024-05-24 长沙开元仪器有限公司 一种多通道采样系统
CN109406192B (zh) * 2018-12-14 2024-05-24 长沙开元仪器有限公司 螺旋采制样机
CN209894506U (zh) * 2019-04-28 2020-01-03 力源智信(苏州)科技有限公司 一种无皮带式汽车全自动机械化采样系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087251A (ko) * 2012-01-27 2013-08-06 한국동서발전(주) 석탄 시료 조제용 자동 축분 장치
CN103969079A (zh) * 2014-04-29 2014-08-06 湖南万通科技有限公司 一种采样机
CN109141994A (zh) * 2017-06-16 2019-01-04 江西光明智能科技有限公司 一种自动联合制样装置
CN108709763A (zh) * 2018-05-18 2018-10-26 长沙开元仪器股份有限公司 一种燃料采样检测装置
CN108970720A (zh) * 2018-09-03 2018-12-11 力鸿智信(北京)科技有限公司 一种固体矿物制样系统
CN109490042A (zh) * 2018-12-14 2019-03-19 长沙开元仪器有限公司 缩分装置
CN109959526A (zh) * 2019-04-28 2019-07-02 力源智信(苏州)科技有限公司 一种无皮带式汽车全自动机械化采样系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418735A (zh) * 2021-05-31 2021-09-21 邹屹洋 一种可自动进料与退料的连续采样装置
CN113418735B (zh) * 2021-05-31 2023-04-28 邹屹洋 一种可自动进料与退料的连续采样装置
CN114414327A (zh) * 2021-12-21 2022-04-29 镇江市丰泰化验制样设备有限公司 一种湿煤混样旋转缩分机
CN114451365A (zh) * 2022-01-23 2022-05-10 浙江大学 基于深海潜水器的推杆密封式宏生物诱捕保压取样器
CN114451365B (zh) * 2022-01-23 2022-11-18 浙江大学 基于深海潜水器的推杆密封式宏生物诱捕保压取样器

Also Published As

Publication number Publication date
CN109959526B (zh) 2024-06-11
CN109959526A (zh) 2019-07-02
US20220260463A1 (en) 2022-08-18
US11959839B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2020220521A1 (zh) 无皮带式汽车全自动机械化采样系统
WO2020220520A1 (zh) 无皮带式火车全自动机械化采样系统
CN108970720B (zh) 一种固体矿物制样系统
CN209894506U (zh) 一种无皮带式汽车全自动机械化采样系统
CN210545013U (zh) 一种树脂生产用的自动投料装置
CN209979260U (zh) 一种无皮带式火车全自动机械化采样系统
CN117206158B (zh) 一种再生混凝土的加工设备及方法
CN112623642B (zh) 一种酿酒车间
CN212711726U (zh) 用于火车、汽车采制样系统的智能弃料返排装置
CN220179727U (zh) 一种再生混凝土试样配料装置
CN209076789U (zh) 一种固体矿物制样系统
CN216583097U (zh) 一种无水炮泥生产用无尘上料装置
CN111855256B (zh) 用于火车、汽车采制样系统的智能弃料返排方法和装置
CN214933157U (zh) 一种磨矿用多点卸料链斗式输送机
CN110712787B (zh) 一种用于大米加工的装料设备及其工作方法
CN214269427U (zh) 一种清洁型多料仓进料机构
CN214298335U (zh) 一种用于渣残物转运及装车的上料结构
CN214216942U (zh) 一种具有落料导引结构的料仓加料装置
CN219964999U (zh) 一种混凝土速凝剂研磨装置
CN220827045U (zh) 一种皮带输送排空系统
KR100517342B1 (ko) 소결용 분코크스의 입도시료 채취장치
CN220658263U (zh) 一种矿用快速输送装置
CN221907370U (zh) 一种新型药材破碎粉碎混合一体的设备
CN219407976U (zh) 一种废料运输防漏结构
CN221905952U (zh) 一种油基岩屑的油液回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927445

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19927445

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 105A DATED 27/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927445

Country of ref document: EP

Kind code of ref document: A1