WO2020220497A1 - Oled显示面板和oled显示面板的制备方法 - Google Patents

Oled显示面板和oled显示面板的制备方法 Download PDF

Info

Publication number
WO2020220497A1
WO2020220497A1 PCT/CN2019/099280 CN2019099280W WO2020220497A1 WO 2020220497 A1 WO2020220497 A1 WO 2020220497A1 CN 2019099280 W CN2019099280 W CN 2019099280W WO 2020220497 A1 WO2020220497 A1 WO 2020220497A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel definition
layer
sub
definition layer
display panel
Prior art date
Application number
PCT/CN2019/099280
Other languages
English (en)
French (fr)
Inventor
刘扬
范英春
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/496,962 priority Critical patent/US11322562B2/en
Publication of WO2020220497A1 publication Critical patent/WO2020220497A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • This application relates to the field of display technology, and in particular to an OLED display panel and a method for manufacturing the OLED display panel.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the design of the sub-pixel pitch in the display panel becomes smaller and smaller, which will cause the OLED display panel to appear driven to emit light.
  • the phenomenon that the sub-pixels that are not driven next to the sub-pixels also emit light weakly, that is, the phenomenon of light leakage, which affects the display quality.
  • the existing OLED display panel has a technical problem of light leakage and needs to be improved.
  • the present application provides an OLED display panel and a manufacturing method of the OLED display panel to alleviate the technical problem of light leakage in the existing OLED display panel.
  • This application provides an OLED display panel, including:
  • the driving circuit layer is formed on the substrate
  • the pixel definition layer is formed on the driving circuit layer and is used to define a plurality of sub-pixel regions.
  • the pixel definition layer includes a plurality of pixel definition regions. In at least one pixel definition region, the pixel definition layer is far from the driving circuit layer
  • the surface is formed with bumps;
  • the light-emitting function layer is formed on the pixel definition layer and covers the sub-pixel area.
  • the pixel definition layer is integrally formed.
  • all the protrusions have the same cross-sectional shape.
  • the cross-sectional shape of the protrusion is a trapezoid.
  • the cross-sectional shape of the protrusion is rectangular.
  • At least one protrusion has a different cross-sectional shape from other protrusions.
  • the pixel definition layer in the at least one pixel definition area, includes at least a first pixel definition layer and a second pixel definition layer, and the first pixel definition layer and the second pixel definition layer
  • the two-division pixel definition layer is all arranged on the driving circuit layer.
  • the surfaces of the first sub-pixel definition layer and the second sub-pixel definition layer away from the driving circuit layer are both flat, and the height of the first sub-pixel definition layer is greater than that of the driving circuit layer.
  • the second sub-pixel defines the height of the layer.
  • the surfaces of the first sub-pixel definition layer and the second sub-pixel definition layer away from the driving circuit layer are both flat and have the same height, and the first sub-pixel definition layer and The projection of the surface of the second sub-pixel definition layer away from the driving circuit layer on the driving circuit layer is not connected.
  • At least one of the first sub-pixel definition layer and the second sub-pixel definition layer is formed on a surface away from the driving circuit layer. Raised.
  • the cross-sectional shapes of all protrusions in each sub-pixel definition layer are the same.
  • the cross-sectional shape of the protrusion is a trapezoid.
  • the cross-sectional shape of the protrusion is rectangular.
  • At least one protrusion in each sub-pixel definition layer has a different cross-sectional shape from other protrusions.
  • the first sub-pixel definition layer has a convex cross-sectional shape on the surface away from the driving circuit layer
  • the second sub-pixel definition layer has a surface away from the driving circuit layer.
  • the cross-sectional shapes of the protrusions on the top are the same.
  • the first sub-pixel definition layer has a convex cross-sectional shape on the surface away from the driving circuit layer
  • the second sub-pixel definition layer has a surface away from the driving circuit layer.
  • the cross-sectional shape of the bumps on the top is different.
  • one part of the pixel definition layer may be an integrally formed structure, and the other part includes at least a first sub-pixel definition layer and a second sub-pixel definition layer. Both a sub-pixel definition layer and the second sub-pixel definition layer are disposed on the driving circuit layer.
  • the application also provides a method for manufacturing an OLED display panel, including:
  • a pixel definition layer for defining a plurality of sub-pixel regions is formed on the driving circuit layer, the pixel definition layer includes a plurality of pixel definition regions, and the pixel definition layer in at least one pixel definition region is far from the driving circuit layer.
  • a light-emitting function layer is formed on the pixel definition layer and the sub-pixel area.
  • the pixel definition layer for defining a plurality of sub-pixel regions is formed on the driving circuit layer, and the pixel definition layer includes a plurality of pixel definition regions, and at least one pixel
  • the step of forming protrusions on the surface of the pixel definition layer in the definition area away from the driving circuit layer includes: integrally forming the pixel definition layer in the at least one pixel definition area.
  • the pixel definition layer for defining a plurality of sub-pixel regions is formed on the driving circuit layer, and the pixel definition layer includes a plurality of pixel definition regions, and at least one pixel
  • the step of forming protrusions on the surface of the pixel definition layer in the definition area away from the driving circuit layer includes: forming at least a first sub-pixel definition layer and a second sub-pixel definition layer in the at least one pixel definition area, and The first sub-pixel definition layer and the second sub-pixel definition layer are both disposed on the driving circuit layer.
  • the present application provides an OLED display panel and a manufacturing method of the OLED display panel.
  • the OLED display panel includes a substrate, a driving circuit layer, a pixel definition layer, and a light-emitting function layer.
  • the driving circuit layer is formed on the substrate.
  • the pixel definition layer is formed on the drive circuit layer and is used to define a plurality of sub-pixel areas.
  • the pixel definition layer includes a plurality of pixel definition areas. In at least one pixel definition area, the pixel definition layer is far from the drive circuit layer Protrusions are formed on the surface, and the light-emitting function layer is formed on the pixel definition layer and covers the sub-pixel area.
  • FIG. 1 is a schematic diagram of the first structure of an OLED display panel provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of an OLED display panel provided by an embodiment of the application with a convex pixel definition layer formed;
  • FIG. 3 is a schematic diagram of a second structure of an OLED display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a third structure of an OLED display panel provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a fourth structure of an OLED display panel provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a fifth structure of an OLED display panel provided by an embodiment of the application.
  • FIG. 7 is a schematic flow chart of a manufacturing method of an OLED display panel provided by an embodiment of the application.
  • the present application provides an OLED display panel to alleviate the technical problem of light leakage in the existing OLED display panel.
  • FIG. 1 it is a schematic diagram of the first structure of the OLED display panel provided by an embodiment of this application.
  • the OLED display panel includes a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a first electrode 40, a light-emitting function layer 50, and a second electrode 60.
  • the substrate 10 is usually a glass substrate, but is not limited thereto, and may be a flexible substrate, for example.
  • the driving circuit layer 20 is formed on the substrate 10 and includes a plurality of thin film transistors (not shown in the figure) for driving the OLED display panel.
  • a pixel definition layer 30 is formed on the driving circuit layer 20.
  • the pixel definition layer 30 includes a plurality of pixel definition regions 31.
  • the pixel definition layer 30 is used to define a plurality of sub-pixel regions 32.
  • the sub-pixel regions 32 are formed in two adjacent pixel definitions. Between area 31. In at least one pixel defining area 31, the surface 301 of the pixel defining layer 30 away from the driving circuit layer 20 is formed with protrusions.
  • the first electrode 40 is formed on the driving circuit layer 20 and is located in the sub-pixel area 32.
  • the drain electrode of the thin film transistor in the driving circuit layer 20 can be electrically connected to the first electrode 40.
  • the light-emitting function layer 50 is formed on the pixel defining layer 30 and covers the first electrode 40 in the sub-pixel area 32, and the second electrode 60 is formed on the light-emitting function layer 50.
  • the first electrode 40 is a transparent anode
  • the second electrode 60 is a metal cathode
  • the OLED display panel has a bottom emitting structure.
  • the first electrode 40 is a metal anode
  • the second electrode 60 is a transparent cathode
  • the OLED display panel has a top-emitting structure.
  • protrusions may be formed on the surface 301 of the pixel definition layer 30 in a part of the pixel definition area 31 away from the driving circuit layer 20, or the pixel definition layer 30 in all the pixel definition areas 31 may be away All bumps are formed on the surface 301 of the driving circuit layer 20.
  • the pixel definition layer 30 is integrally formed in the pixel definition area 31 where the protrusions are formed, and the structure of the pixel definition layer 30 is as shown in FIG. 2.
  • the surface 301 of the pixel definition layer 30 away from the driving circuit layer 20 includes a protrusion, and the cross section of the protrusion may be trapezoidal, rectangular or other shapes.
  • the surface 301 of the pixel definition layer 30 away from the driving circuit layer 20 includes two protrusions, and a concave surface is formed between the two protrusions.
  • the cross section of the protrusions can be trapezoidal, rectangular or other shapes. The shape and size of the two protrusions may be equal or not equal.
  • the surface 301 of the pixel definition layer 30 away from the driving circuit layer 20 includes three protrusions, and two concave surfaces are formed between the three protrusions.
  • the cross section of the protrusions can be trapezoidal, rectangular or other shapes. Shape, the shape and size of the three protrusions may be equal or unequal, and the three protrusions may be arranged at equal intervals or unequal intervals.
  • the shape of the surface 301 of the pixel definition layer 30 away from the driving circuit layer 20 is not limited to this, and more protrusions may be formed.
  • the protrusions may be straight or curved.
  • the cross-sectional shapes of all the protrusions may be equal, or there may be at least one protrusion having a different cross-sectional shape from other protrusions, and all protrusions may be arranged at equal intervals or at unequal intervals.
  • the sub-pixels (not shown) located in the sub-pixel area 32 are not driven at the same time.
  • the charges in the driven sub-pixels will travel along the light-emitting function layer 50 and cross the pixel definition layer 30.
  • the side and the top enter the adjacent undriven sub-pixels, causing the undriven sub-pixels to emit light weakly and cause light leakage.
  • the surface 301 of the pixel definition layer 30 away from the driving circuit layer 20 is formed with protrusions, compared with the structure with a flat top, the lateral transfer path of the electric charges in the light-emitting functional layer 50 is increased, thus alleviating The light leakage phenomenon is generated, and the display quality is improved.
  • FIG. 3 it is a schematic diagram of the second structure of the OLED display panel provided by the embodiment of this application.
  • the OLED display panel includes a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a first electrode 40, a light-emitting function layer 50, and a second electrode 60.
  • the pixel definition layer 30 includes at least a first sub-pixel definition layer 311 and a second sub-pixel definition layer 312, and the first sub-pixel definition layer 311 and The second sub-pixel definition layers 312 are all disposed on the driving circuit layer 20.
  • the surface 3111 of the first sub-pixel definition layer 311 away from the driver circuit layer 20 and the surface 3121 of the second sub-pixel definition layer 312 away from the driver circuit layer 20 are both flat surfaces.
  • the height is greater than the height of the second sub-pixel definition layer 312.
  • the height of the first sub-pixel defining layer 311 is greater than the height of the second sub-pixel defining layer 312, compared to the structure with a flat top, the lateral transfer path of the charge in the light-emitting function layer 50 is increased, thereby alleviating the light leakage phenomenon. Improved display quality.
  • FIG. 4 it is a schematic diagram of the third structure of the OLED display panel provided by the embodiment of this application.
  • the OLED display panel includes a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a first electrode 40, a light-emitting function layer 50, and a second electrode 60.
  • the pixel definition layer 30 includes at least a first sub-pixel definition layer 311 and a second sub-pixel definition layer 312.
  • the first sub-pixel definition layer 311 and the second sub-pixel definition layer 312 are both arranged in the driving On the circuit layer 20.
  • the surface 3111 of the first sub-pixel definition layer 311 away from the driving circuit layer 20 and the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 are both flat, and the first sub-pixel definition layer 311
  • the height of the first sub-pixel definition layer 312 is equal to the height of the second sub-pixel definition layer 312.
  • the surface 3111 of the first sub-pixel definition layer 311 away from the driver circuit layer 20 and the surface 3121 of the second sub-pixel definition layer 312 away from the driver circuit layer 20 are in the driver circuit layer 20.
  • the projection on does not connect.
  • the lateral transmission path of the charge in the light-emitting function layer 50 is increased, thereby alleviating the light leakage phenomenon and improving the display quality.
  • FIG. 5 it is a schematic diagram of the fourth structure of the OLED display panel provided by the embodiment of this application.
  • the OLED display panel includes a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a first electrode 40, a light-emitting function layer 50, and a second electrode 60.
  • the pixel definition layer 30 includes at least a first sub-pixel definition layer 311 and a second sub-pixel definition layer 312.
  • the first sub-pixel definition layer 311 and the second sub-pixel definition layer 312 are both arranged in the driving On the circuit layer 20.
  • the surface 3111 of the first sub-pixel definition layer 311 away from the driving circuit layer 20 is a plane, and the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 is formed with protrusions.
  • the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 includes one protrusion or multiple protrusions.
  • the cross-section of the protrusion may be trapezoidal, rectangular or other shapes, and the protrusion may be a straight surface or a curved surface.
  • the cross-sectional shapes of the protrusions may be equal, or there may be at least one protrusion having a different cross-sectional shape from other protrusions, and all protrusions may be arranged at equal intervals or at unequal intervals.
  • the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 is formed with protrusions, compared to the structure with a flat top, the lateral transfer path of the charge in the light-emitting function layer 50 is increased, thereby alleviating the light leakage phenomenon. Improved display quality.
  • FIG. 6 it is a schematic diagram of the fifth structure of the OLED display panel provided by the embodiment of this application.
  • the OLED display panel includes a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a first electrode 40, a light-emitting function layer 50, and a second electrode 60.
  • the pixel definition layer 30 includes at least a first sub-pixel definition layer 311 and a second sub-pixel definition layer 312.
  • the first sub-pixel definition layer 311 and the second sub-pixel definition layer 312 are both arranged in the driving On the circuit layer 20.
  • the surface 3111 of the first sub-pixel definition layer 311 away from the driving circuit layer 20 and the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 are both formed with protrusions.
  • the cross section of the protrusions can be trapezoidal, rectangular or other shapes.
  • the protrusions can be straight or curved. All protrusions can be arranged at equal intervals or unequal intervals.
  • the cross-sectional shape of all protrusions on the surface 3111 of the first sub-pixel defining layer 311 away from the driving circuit layer 20 may be the same, or there may be at least one protrusion having a different cross-sectional shape from other protrusions.
  • the second sub-pixel defining layer 312 is far away from the driving
  • the cross-sectional shape of all protrusions on the surface 3121 of the circuit layer 20 may be the same, or there may be at least one protrusion having a cross-sectional shape different from other protrusions.
  • cross-sectional shape of all the protrusions on the surface 3111 of the first sub-pixel definition layer 311 away from the driving circuit layer 20 is the same, and the cross-sectional shape of all the protrusions on the surface 3121 of the second sub-pixel definition layer 312 away from the driving circuit layer 20 is also the same .
  • the cross-sectional shapes of all protrusions in the two sub-pixel definition layers may be the same or different.
  • the surface 3111 of the first sub-pixel defining layer 311 away from the driving circuit layer 20 and the surface 3121 of the second sub-pixel defining layer 312 away from the driving circuit layer 20 are both formed with protrusions, compared to the structure with a flat top, the light emitting function is increased.
  • the lateral transfer path of the charge in the layer 50 therefore alleviates the occurrence of light leakage and improves the display quality.
  • the pixel definition layer 30 is not limited to the first sub-pixel definition layer 311 and the second sub-pixel definition layer 312, but also includes more sub-pixel definition layers, each sub-pixel definition layer It may be connected or not, but they are all arranged on the driving circuit layer 20.
  • the pixel defining layer 30 may all be integrally formed, or all of them may be at least two sub-pixel defining layers provided on the driving circuit layer 20, One part may also be an integrally formed structure, and the other part may be at least two sub-pixel definition layers disposed on the driving circuit layer 20.
  • the present application also provides a method for manufacturing an OLED display panel, the specific steps include:
  • Step S1 Provide a substrate
  • Step S2 forming a driving circuit layer on the substrate
  • Step S3 forming a pixel definition layer for defining a plurality of sub-pixel regions on the driving circuit layer, the pixel definition layer includes a plurality of pixel definition regions, and the pixel definition layer in at least one pixel definition region forms a convex surface away from the driving circuit layer.
  • Step S4 forming a light-emitting function layer on the pixel definition layer and the sub-pixel area.
  • a substrate is provided first.
  • the substrate is usually a glass substrate, but is not limited to this.
  • it may be a flexible substrate.
  • step S2 the thin film transistor array, that is, the driving circuit layer, is formed on the substrate through coating, exposure, development, curing, film forming, yellowing, etching, etc., for driving the display device, and then the driving circuit
  • the first electrode is formed on the layer through processes such as film formation, yellowing, and etching, and the drain electrode of the thin film transistor in the driving circuit layer can be electrically connected to the first electrode.
  • a pixel definition layer is formed on the driving circuit layer through processes such as coating, exposure, development, and curing.
  • the pixel definition layer is used to define a plurality of sub-pixel areas.
  • the first electrode is located in the sub-pixel area.
  • the pixel definition layer includes a plurality of pixel definition areas. In at least one pixel definition area, the pixel definition layer has a convex surface on the surface away from the driving circuit layer. Up.
  • the protrusions may be formed only on the surface of the pixel defining layer in a part of the pixel defining area away from the driving circuit layer, or on the surface of the pixel defining layer in all the pixel defining areas away from the driving circuit layer All form bumps.
  • the pixel definition layer is integrally formed, that is, formed by a single coating, exposure, development, and curing process.
  • the protrusions formed can be straight or curved.
  • the cross-sectional shape of all the protrusions can be equal, or there can be at least one protrusion and other protrusions. Different shapes, the cross-sectional shape of the protrusions can be rectangular, trapezoidal or other shapes, and all the protrusions can be arranged at equal intervals or unequal intervals.
  • the pixel definition layer in the pixel definition area where the protrusions are formed, includes at least a first sub-pixel definition layer and a second sub-pixel definition layer, and the first sub-pixel definition layer and the second sub-pixel definition layer They are all arranged on the drive circuit layer, that is, the pixel definition layer is formed on the drive circuit layer through two or more coating, exposure, development, and curing processes.
  • the surfaces of the first sub-pixel definition layer and the second sub-pixel definition layer away from the driving circuit layer are both flat, and the height of the first sub-pixel definition layer is greater than the height of the second sub-pixel definition layer.
  • the surfaces of the first sub-pixel definition layer and the second sub-pixel definition layer away from the driving circuit layer are both flat and have the same height, and the first sub-pixel definition layer and the second sub-pixel definition layer are far away from the driving circuit layer.
  • the projection of the surface on the drive circuit layer is not connected.
  • At least one of the first sub-pixel definition layer and the second sub-pixel definition layer is formed with protrusions on a surface away from the driving circuit layer.
  • the cross-sectional shape of all protrusions in each sub-pixel definition layer is the same, and the cross-sectional shape of the protrusions is trapezoidal, rectangular or other shapes.
  • At least one protrusion in each sub-pixel definition layer has a different cross-sectional shape from other protrusions.
  • the cross-sectional shape of the protrusion on the surface of the first sub-pixel definition layer away from the driving circuit layer is the same as the cross-sectional shape of the protrusion on the surface of the second sub-pixel definition layer away from the driving circuit layer.
  • the cross-sectional shape of the protrusion on the surface of the first sub-pixel definition layer away from the driving circuit layer is different from the cross-sectional shape of the protrusion on the surface of the second sub-pixel definition layer away from the driving circuit layer.
  • the pixel definition layer in the pixel definition area where the protrusions are formed, can be all formed into an integral structure through one coating, exposure, development, and curing process, or it can be all formed through multiple coating and exposure processes.
  • the development and curing processes form at least two sub-pixel definition layers that are both set on the drive circuit layer, and one part can be formed into an integral structure through one process, and the other part is formed through multiple processes. At least two are set on the drive circuit layer.
  • the sub-pixel definition layer in the pixel definition area where the protrusions are formed, the pixel definition layer can be all formed into an integral structure through one coating, exposure, development, and curing process, or it can be all formed through multiple coating and exposure processes.
  • the development and curing processes form at least two sub-pixel definition layers that are both set on the drive circuit layer, and one part can be formed into an integral structure through one process, and the other part is formed through multiple processes. At least two are set on the drive circuit layer.
  • the sub-pixel definition layer in the pixel definition area
  • step S4 finally, a light-emitting function layer and a second electrode are deposited on the first electrode and the pixel definition layer to realize electroluminescence.
  • the sub-pixels located in the sub-pixel area are not driven at the same time, and the charges in the driven sub-pixels will travel along the light-emitting function layer, across the side and top of the pixel definition layer, and enter the adjacent pixels.
  • the sub-pixels that are driven are caused to emit light weakly, causing light leakage. Since in at least one pixel definition area, the surface of the pixel definition layer away from the driving circuit layer is formed with bumps, compared to the structure with a flat top, the lateral transfer path of the charge in the light-emitting function layer is increased, thereby alleviating the light leakage phenomenon. , Improve the display quality.
  • the application also provides an OLED display device, including the OLED display panel in any of the above embodiments.
  • the present application provides an OLED display panel, including a substrate, a driving circuit layer, a pixel definition layer, and a light-emitting function layer.
  • the driving circuit layer is formed on the substrate, and the pixel definition layer is formed on the driving circuit layer to define a plurality of sub-pixel regions.
  • the pixel definition layer includes a plurality of pixel definition areas. In at least one pixel definition area, the surface of the pixel definition layer away from the driving circuit layer is formed with protrusions, and the light-emitting function layer is formed on the pixel definition layer and covers the sub-pixel areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种OLED显示面板和OLED显示面板的制备方法,OLED显示面板包括层叠设置的基板、驱动电路层、像素定义层、以及发光功能层,在至少一个像素定义区内,像素定义层远离驱动电路层的表面形成有凸起,发光功能层形成于像素定义层上,且覆盖子像素区。通过形成凸起,增大了相邻子像素间电荷的横向传输路径,减少了漏光现象。

Description

OLED显示面板和OLED显示面板的制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种OLED显示面板和OLED显示面板的制备方法。
背景技术
在现有技术中,OLED(Organic Light Emitting Diode,有机发光二极管)显示技术不断向着高解析度的方向发展,随着解析度的提高,显示面板中子像素的间距设计的越来越小,这将导致OLED显示面板出现被驱动的发光子像素旁边未被驱动的子像素也微弱发光的现象,即漏光现象,影响显示质量。
因此,现有OLED显示面板存在漏光的技术问题,需要改进。
技术问题
本申请提供一种OLED显示面板和OLED显示面板的制备方法,以缓解现有OLED显示面板中漏光的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种OLED显示面板,包括:
基板;
驱动电路层,形成于所述基板上;
像素定义层,形成于所述驱动电路层上,用于限定多个子像素区,所述像素定义层包括多个像素定义区,在至少一个像素定义区内,像素定义层远离所述驱动电路层的表面形成有凸起;
发光功能层,形成于所述像素定义层上,且覆盖所述子像素区。
在本申请的OLED显示面板中,在所述至少一个像素定义区内,像素定义层一体成型。
在本申请的OLED显示面板中,所有凸起的截面形状相同。
在本申请的OLED显示面板中,所述凸起的截面形状为梯形。
在本申请的OLED显示面板中,所述凸起的截面形状为矩形。
在本申请的OLED显示面板中,至少一个凸起与其他凸起的截面形状不同。
在本申请的OLED显示面板中,在所述至少一个像素定义区内,像素定义层至少包括第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
在本申请的OLED显示面板中,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面均为平面,所述第一分像素定义层的高度大于所述第二分像素定义层的高度。
在本申请的OLED显示面板中,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面均为平面且高度相等,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面在所述驱动电路层上的投影不连接。
在本申请的OLED显示面板中,在所述至少一个像素定义区内,所述第一分像素定义层和所述第二分像素定义层中的至少一个远离所述驱动电路层的表面形成有凸起。
在本申请的OLED显示面板中,每个分像素定义层中所有凸起的截面形状相同。
在本申请的OLED显示面板中,所述凸起的截面形状为梯形。
在本申请的OLED显示面板中,所述凸起的截面形状为矩形。
在本申请的OLED显示面板中,每个分像素定义层中的至少一个凸起与其他凸起的截面形状不同。
在本申请的OLED显示面板中,所述第一分像素定义层远离所述驱动电路层的表面上的凸起的截面形状,和所述第二分像素定义层远离所述驱动电路层的表面上的凸起的截面形状相同。
在本申请的OLED显示面板中,所述第一分像素定义层远离所述驱动电路层的表面上的凸起的截面形状,和所述第二分像素定义层远离所述驱动电路层的表面上的凸起的截面形状不同。
在本申请的OLED显示面板中,形成有凸起的像素定义区内,像素定义层可以一部分为一体成型结构,另一部分至少包括第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
本申请还提供一种OLED显示面板的制备方法,包括:
提供基板;
在所述基板上形成驱动电路层;
在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起;
在所述像素定义层上及所述子像素区内形成发光功能层。
在本申请的OLED显示面板的制备方法中,所述在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起的步骤包括:在所述至少一个像素定义区内,一体成型像素定义层。
在本申请的OLED显示面板的制备方法中,所述在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起的步骤包括:在所述至少一个像素定义区内,至少形成第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
有益效果
本申请提供一种OLED显示面板和OLED显示面板的制备方法,所述OLED显示面板包括基板、驱动电路层、像素定义层、以及发光功能层,所述驱动电路层形成于所述基板上,所述像素定义层形成于所述驱动电路层上,用于限定多个子像素区,所述像素定义层包括多个像素定义区,在至少一个像素定义区内,像素定义层远离所述驱动电路层的表面形成有凸起,所述发光功能层形成于所述像素定义层上,且覆盖所述子像素区。通过在像素定义层远离所述驱动电路层的表面形成凸起,增大了相邻子像素间电荷的横向传输路径,减少了漏光现象的产生。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的OLED显示面板的第一种结构示意图;
图2为本申请实施例提供的OLED显示面板形成有凸起的像素定义层的结构示意图;
图3为本申请实施例提供的OLED显示面板的第二种结构示意图;
图4为本申请实施例提供的OLED显示面板的第三种结构示意图;
图5为本申请实施例提供的OLED显示面板的第四种结构示意图;
图6为本申请实施例提供的OLED显示面板的第五种结构示意图;
图7为本申请实施例提供的OLED显示面板的制备方法流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请提供一种OLED显示面板,以缓解现有OLED显示面板中漏光的技术问题。
如图1所示,为本申请实施例提供的OLED显示面板的第一种结构示意图。OLED显示面板包括基板10、驱动电路层20、像素定义层30、第一电极40、发光功能层50、以及第二电极60。
基板10通常为玻璃基板,但不限于此,例如可以是柔性基板。驱动电路层20形成于基板10上,包括多个薄膜晶体管(图未示出),用于驱动OLED显示面板。
驱动电路层20上形成有像素定义层30,像素定义层30包括多个像素定义区31,像素定义层30用于限定多个子像素区32,有子像素区32形成于相邻两个像素定义区31之间。在至少一个像素定义区31内,像素定义层30远离驱动电路层20的表面301形成有凸起。
第一电极40形成于驱动电路层20上,且位于子像素区32内,驱动电路层20内的薄膜晶体管的漏电极可电气性连接至第一电极40上。
发光功能层50形成于像素定义层30上,且覆盖子像素区32中的第一电极40,第二电极60形成于发光功能层50上。
在一种实施例中,第一电极40为透明阳极,第二电极60为金属阴极,OLED显示面板为底发光结构。
在一种实施例中,第一电极40为金属阳极,第二电极60为透明阴极,OLED显示面板为顶发光结构。
在一种实施例中,可以只在一部分像素定义区31内的像素定义层30远离驱动电路层20的表面301上形成凸起,也可以在所有的像素定义区31内的像素定义层30远离驱动电路层20的表面301上全部形成凸起。
在一种实施例中,在形成有凸起的像素定义区31内,像素定义层30一体成型,像素定义层30的结构如图2所示。
如图2中的a和b所示,像素定义层30远离驱动电路层20的表面301包括一个凸起,凸起的截面可以为梯形、矩形或其他形状。
如图2中的c所示,像素定义层30远离驱动电路层20的表面301包括两个凸起,两个凸起之间形成有一凹面,凸起的截面可以为梯形、矩形或其他形状,两个凸起的形状、大小可以相等,也可以不相等。
如图2中的d所示,像素定义层30远离驱动电路层20的表面301包括三个凸起,三个凸起之间形成有两个凹面,凸起的截面可以为梯形、矩形或其他形状,三个凸起的形状、大小可以相等,也可以不相等,三个凸起可以等间距设置,也可不等间距设置。
当然,像素定义层30远离驱动电路层20的表面301的形状不限于此,还可以形成更多的凸起,凸起可以是直面,也可以是曲面。所有凸起的截面形状可以相等,也可以存在至少一个凸起与其他凸起的截面形状不同,所有凸起可以等间距设置,也可不等间距设置。
在OLED显示面板显示时,位于子像素区32内的子像素(图未示出)不是同时被驱动,被驱动的子像素中的电荷会沿着发光功能层50,跨过像素定义层30的侧面与顶部进入到相邻的未被驱动的子像素中,导致未被驱动的子像素微弱发光,产生漏光。由于在至少一个像素定义区31内,像素定义层30远离驱动电路层20的表面301形成有凸起,相比顶部为平面的结构,增加了发光功能层50中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
如图3所示,为本申请实施例提供的OLED显示面板的第二种结构示意图。OLED显示面板包括基板10、驱动电路层20、像素定义层30、第一电极40、发光功能层50、以及第二电极60。
与图1中的结构不同之处在于,在至少一个像素定义区31内,像素定义层30至少包括第一分像素定义层311和第二分像素定义层312,第一分像素定义层311和第二分像素定义层312均设置于驱动电路层20上。
在一种实施例中,第一分像素定义层311远离驱动电路层20的表面3111和第二分像素定义层312远离驱动电路层20的表面3121均为平面,第一分像素定义层311的高度大于第二分像素定义层312的高度。
由于第一分像素定义层311的高度大于第二分像素定义层312的高度,相比顶部为平面的结构,增加了发光功能层50中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
如图4所示,为本申请实施例提供的OLED显示面板的第三种结构示意图。OLED显示面板包括基板10、驱动电路层20、像素定义层30、第一电极40、发光功能层50、以及第二电极60。
在至少一个像素定义区31内,像素定义层30至少包括第一分像素定义层311和第二分像素定义层312,第一分像素定义层311和第二分像素定义层312均设置于驱动电路层20上。
在一种实施例中,第一分像素定义层311远离驱动电路层20的表面3111和第二分像素定义层312远离驱动电路层20的表面3121均为平面,并且第一分像素定义层311的高度和第二分像素定义层312的高度相等,第一分像素定义层311远离驱动电路层20的表面3111和第二分像素定义层312远离驱动电路层20的表面3121在驱动电路层20上的投影不连接。
因此,相比顶部为平面的结构,增加了发光功能层50中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
如图5所示,为本申请实施例提供的OLED显示面板的第四种结构示意图。OLED显示面板包括基板10、驱动电路层20、像素定义层30、第一电极40、发光功能层50、以及第二电极60。
在至少一个像素定义区31内,像素定义层30至少包括第一分像素定义层311和第二分像素定义层312,第一分像素定义层311和第二分像素定义层312均设置于驱动电路层20上。
第一分像素定义层311远离驱动电路层20的表面3111为平面,第二分像素定义层312远离驱动电路层20的表面3121形成有凸起。
第二分像素定义层312远离驱动电路层20的表面3121包括一个凸起或多个凸起,凸起的截面可以为梯形、矩形或其他形状,凸起可以是直面,也可以是曲面,所有凸起的截面形状可以相等,也可以存在至少一个凸起与其他凸起的截面形状不同,所有凸起可以等间距设置,也可不等间距设置。
由于第二分像素定义层312远离驱动电路层20的表面3121形成有凸起,相比顶部为平面的结构,增加了发光功能层50中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
如图6所示,为本申请实施例提供的OLED显示面板的第五种结构示意图。OLED显示面板包括基板10、驱动电路层20、像素定义层30、第一电极40、发光功能层50、以及第二电极60。
在至少一个像素定义区31内,像素定义层30至少包括第一分像素定义层311和第二分像素定义层312,第一分像素定义层311和第二分像素定义层312均设置于驱动电路层20上。
第一分像素定义层311远离驱动电路层20的表面3111和第二分像素定义层312远离驱动电路层20的表面3121均形成有凸起。凸起的截面可以为梯形、矩形或其他形状,凸起可以是直面,也可以是曲面,所有凸起可以等间距设置,也可不等间距设置。
第一分像素定义层311远离驱动电路层20的表面3111上所有凸起的截面形状可以相同,也可以存在至少一个凸起与其他凸起的截面形状不同,第二分像素定义层312远离驱动电路层20的表面3121上所有凸起的截面形状可以相同,也可以存在至少一个凸起与其他凸起的截面形状不同。
当第一分像素定义层311远离驱动电路层20的表面3111上所有凸起的截面形状相同,第二分像素定义层312远离驱动电路层20的表面3121上所有凸起的截面形状也相同时,两个分像素定义层中的所有凸起的截面形状可以相同,也可以不相同。
由于第一分像素定义层311远离驱动电路层20的表面3111和第二分像素定义层312远离驱动电路层20的表面3121均形成有凸起,相比顶部为平面的结构,增加了发光功能层50中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
需要说明的是,在至少一个像素定义区31内,像素定义层30不限于第一分像素定义层311和第二分像素定义层312,还包括更多分像素定义层,各分像素定义层可以连接、也可以不连接,但都设置于驱动电路层20上。
在本申请的OLED显示面板中,形成有凸起的像素定义区31内,像素定义层30可以全部为一体成型,也可以全部为设置在驱动电路层20上的至少两个分像素定义层,还可以一部分为一体成型结构,另一部分为设置在驱动电路层20上的至少两个分像素定义层。
如图7所示,本申请还提供一种OLED显示面板的制备方法,具体步骤包括:
步骤S1:提供基板;
步骤S2:在基板上形成驱动电路层;
步骤S3:在驱动电路层上形成用于限定多个子像素区的像素定义层,像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离驱动电路层的表面形成凸起;
步骤S4:在像素定义层上及子像素区内形成发光功能层。
下面对各个步骤进行具体说明。
在步骤S1中,先提供基板,基板通常为玻璃基板,但不限于此,例如可以是柔性基板。
在步骤S2中,先在基板上通过涂布、曝光、显影、固化以及成膜、黄光、刻蚀等制程形成薄膜晶体管阵列,也即驱动电路层,用于驱动显示装置,然后在驱动电路层上通过成膜、黄光、刻蚀等制程形成第一电极,驱动电路层内的薄膜晶体管的漏电极可电气性连接至第一电极上。
在步骤S3中,在驱动电路层上通过涂布,曝光,显影,固化等制程形成像素定义层。像素定义层用于限定多个子像素区,第一电极位于子像素区内,像素定义层包括多个像素定义区,在至少一个像素定义区内,像素定义层远离驱动电路层的表面形成有凸起。
在一种实施例中,可以只在一部分像素定义区内的像素定义层远离驱动电路层的表面上形成凸起,也可以在所有的像素定义区内的像素定义层远离驱动电路层的表面上全部形成凸起。
在一种实施例中,在形成有凸起的像素定义区内,像素定义层一体成型,即通过一次涂布、曝光、显影、固化制程形成。通过调节掩膜板的位置和大小,以及曝光量等,形成的凸起可以是直面,也可以是曲面,所有凸起的截面形状可以相等,也可以存在至少一个凸起与其他凸起的截面形状不同,凸起的截面形状可以是矩形、梯形或其他形状,所有凸起可以等间距设置,也可不等间距设置。
在一种实施例中,在形成有凸起的像素定义区内,像素定义层至少包括第一分像素定义层和第二分像素定义层,第一分像素定义层和第二分像素定义层均设置在驱动电路层上,即在驱动电路层上通过两次或多次涂布、曝光、显影、固化制程形成像素定义层。
在一种实施例中,第一分像素定义层和第二分像素定义层远离驱动电路层的表面均为平面,第一分像素定义层的高度大于第二分像素定义层的高度。
在一种实施例中,第一分像素定义层和第二分像素定义层远离驱动电路层的表面均为平面且高度相等,第一分像素定义层和第二分像素定义层远离驱动电路层的表面在驱动电路层上的投影不连接。
在一种实施例中,在至少一个像素定义区内,第一分像素定义层和第二分像素定义层中的至少一个远离驱动电路层的表面形成有凸起。
在一种实施例中,每个分像素定义层中所有凸起的截面形状相同,凸起的截面形状为梯形、矩形或其他形状。
在一种实施例中,每个分像素定义层中的至少一个凸起与其他凸起的截面形状不同。
在一种实施例中,第一分像素定义层远离驱动电路层的表面上的凸起的截面形状,和第二分像素定义层远离驱动电路层的表面上的凸起的截面形状相同。
在一种实施例中,第一分像素定义层远离驱动电路层的表面上的凸起的截面形状,和第二分像素定义层远离驱动电路层的表面上的凸起的截面形状不同。
在本申请的OLED显示面板中,形成有凸起的像素定义区内,像素定义层可以全部通过一次涂布、曝光、显影、固化制程形成一体成型结构,也可以全部通过多次涂布、曝光、显影、固化制程形成至少两个均设置在驱动电路层上的分像素定义层,还可以一部分通过一次制程形成一体成型结构,另一部分通过多次制程形成至少两个均设置在驱动电路层上的分像素定义层。
在步骤S4中,最后在第一电极和像素定义层上沉积发光功能层和第二电极,用于实现电致发光。
在OLED显示面板显示时,位于子像素区内的子像素不是同时被驱动,被驱动的子像素中的电荷会沿着发光功能层,跨过像素定义层的侧面与顶部进入到相邻的未被驱动的子像素中,导致未被驱动的子像素微弱发光,产生漏光。由于在至少一个像素定义区内,像素定义层远离驱动电路层的表面形成有凸起,相比顶部为平面的结构,增加了发光功能层中电荷的横向传输路径,因此缓解了漏光现象的产生,提高了显示质量。
本申请还提供一种OLED显示装置,包括上述任一实施例中的OLED显示面板。
根据上述实施例可知:
本申请提供一种OLED显示面板,包括基板、驱动电路层、像素定义层、以及发光功能层,驱动电路层形成于基板上,像素定义层形成于驱动电路层上,用于限定多个子像素区,像素定义层包括多个像素定义区,在至少一个像素定义区内,像素定义层远离驱动电路层的表面形成有凸起,发光功能层形成于像素定义层上,且覆盖子像素区。通过在像素定义层远离驱动电路层的表面形成凸起,增大了相邻子像素间电荷的横向传输路径,减少了漏光现象的产生。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种OLED显示面板,其包括:
    基板;
    驱动电路层,形成于所述基板上;
    像素定义层,形成于所述驱动电路层上,用于限定多个子像素区,所述像素定义层包括多个像素定义区,在至少一个像素定义区内,像素定义层远离所述驱动电路层的表面形成有凸起;
    发光功能层,形成于所述像素定义层上,且覆盖所述子像素区。
  2. 如权利要求1所述的OLED显示面板,其中,在所述至少一个像素定义区内,像素定义层一体成型。
  3. 如权利要求2所述的OLED显示面板,其中,所有凸起的截面形状相同。
  4. 如权利要求3所述的OLED显示面板,其中,所述凸起的截面形状为梯形。
  5. 如权利要求3所述的OLED显示面板,其中,所述凸起的截面形状为矩形。
  6. 如权利要求2所述的OLED显示面板,其中,至少一个凸起与其他凸起的截面形状不同。
  7. 如权利要求1所述的OLED显示面板,其中,在所述至少一个像素定义区内,像素定义层至少包括第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
  8. 如权利要求7所述的OLED显示面板,其中,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面均为平面,所述第一分像素定义层的高度大于所述第二分像素定义层的高度。
  9. 如权利要求7所述的OLED显示面板,其中,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面均为平面且高度相等,所述第一分像素定义层和所述第二分像素定义层远离所述驱动电路层的表面在所述驱动电路层上的投影不连接。
  10. 如权利要求7所述的OLED显示面板,其中,在所述至少一个像素定义区内,所述第一分像素定义层和所述第二分像素定义层中的至少一个远离所述驱动电路层的表面形成有凸起。
  11. 如权利要求10所述的OLED显示面板,其中,每个分像素定义层中所有凸起的截面形状相同。
  12. 如权利要求11所述的OLED显示面板,其中,所述凸起的截面形状为梯形。
  13. 如权利要求11所述的OLED显示面板,其中,所述凸起的截面形状为矩形。
  14. 如权利要求10所述的OLED显示面板,其中,每个分像素定义层中的至少一个凸起与其他凸起的截面形状不同。
  15. 如权利要求11所述的OLED显示面板,其中,所述第一分像素定义层远离所述驱动电路层的表面上的凸起的截面形状,和所述第二分像素定义层远离所述驱动电路层的表面上的凸起的截面形状相同。
  16. 如权利要求11所述的OLED显示面板,其中,所述第一分像素定义层远离所述驱动电路层的表面上的凸起的截面形状,和所述第二分像素定义层远离所述驱动电路层的表面上的凸起的截面形状不同。
  17. 如权利要求1所述的OLED显示面板,其中,形成有凸起的像素定义区内,像素定义层可以一部分为一体成型结构,另一部分至少包括第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
  18. 一种OLED显示面板的制备方法,其中,包括:
    提供基板;
    在所述基板上形成驱动电路层;
    在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起;
    在所述像素定义层上及所述子像素区内形成发光功能层。
  19. 如权利要求18所述的OLED显示面板的制备方法,其中,所述在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起的步骤包括:在所述至少一个像素定义区内,一体成型像素定义层。
  20. 如权利要求18所述的OLED显示面板的制备方法,其中,所述在所述驱动电路层上形成用于限定多个子像素区的像素定义层,所述像素定义层包括多个像素定义区,在至少一个像素定义区内的像素定义层远离所述驱动电路层的表面形成凸起的步骤包括:在所述至少一个像素定义区内,至少形成第一分像素定义层和第二分像素定义层,所述第一分像素定义层和所述第二分像素定义层均设置于所述驱动电路层上。
PCT/CN2019/099280 2019-04-30 2019-08-05 Oled显示面板和oled显示面板的制备方法 WO2020220497A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/496,962 US11322562B2 (en) 2019-04-30 2019-08-05 Organic light-emitting diode display panel and method of fabricating organic light-emitting diode display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364595.1 2019-04-30
CN201910364595.1A CN110098232A (zh) 2019-04-30 2019-04-30 Oled显示面板

Publications (1)

Publication Number Publication Date
WO2020220497A1 true WO2020220497A1 (zh) 2020-11-05

Family

ID=67446770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099280 WO2020220497A1 (zh) 2019-04-30 2019-08-05 Oled显示面板和oled显示面板的制备方法

Country Status (3)

Country Link
US (1) US11322562B2 (zh)
CN (1) CN110098232A (zh)
WO (1) WO2020220497A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201675B (zh) * 2020-09-15 2022-09-27 云谷(固安)科技有限公司 显示基板及其制备方法
CN112310178B (zh) * 2020-10-27 2022-05-03 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法与显示装置
CN113629213B (zh) * 2021-08-06 2024-02-02 武汉天马微电子有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659070A (zh) * 2015-03-13 2015-05-27 上海天马有机发光显示技术有限公司 一种显示面板、显示装置及显示面板的制造方法
CN107104130A (zh) * 2017-05-26 2017-08-29 京东方科技集团股份有限公司 一种oled显示基板及制备方法、显示面板及显示装置
CN109148511A (zh) * 2017-06-19 2019-01-04 三星显示有限公司 显示装置
CN109216413A (zh) * 2017-06-30 2019-01-15 天马日本株式会社 Oled显示设备及其制造方法
CN109671751A (zh) * 2018-12-13 2019-04-23 云谷(固安)科技有限公司 显示装置、显示面板及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190067389A1 (en) * 2017-08-30 2019-02-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Oled substrate and fabrication method thereof
CN108172605B (zh) * 2018-01-03 2020-11-03 京东方科技集团股份有限公司 有机发光二极管基板及其制备方法、显示面板
CN108615822A (zh) * 2018-04-28 2018-10-02 武汉华星光电半导体显示技术有限公司 柔性oled显示面板及其制备方法、显示装置
CN108630734B (zh) * 2018-05-11 2021-01-15 京东方科技集团股份有限公司 像素界定结构及其制备方法以及显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659070A (zh) * 2015-03-13 2015-05-27 上海天马有机发光显示技术有限公司 一种显示面板、显示装置及显示面板的制造方法
CN107104130A (zh) * 2017-05-26 2017-08-29 京东方科技集团股份有限公司 一种oled显示基板及制备方法、显示面板及显示装置
CN109148511A (zh) * 2017-06-19 2019-01-04 三星显示有限公司 显示装置
CN109216413A (zh) * 2017-06-30 2019-01-15 天马日本株式会社 Oled显示设备及其制造方法
CN109671751A (zh) * 2018-12-13 2019-04-23 云谷(固安)科技有限公司 显示装置、显示面板及其制造方法

Also Published As

Publication number Publication date
US20220005892A1 (en) 2022-01-06
US11322562B2 (en) 2022-05-03
CN110098232A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
US10886492B2 (en) Array substrate and display panel comprising fracture opening for blocking carrier transportation between adjacent sub-pixels
US9716131B2 (en) AMOLED backplane structure and manufacturing method thereof
US8786182B2 (en) Organic electroluminescent display device
US8330352B2 (en) Organic light emitting diode display and method for manufacturing the same
JP2023166481A (ja) 画素アレイ及び表示装置
US10446614B2 (en) Organic light-emitting display device
WO2018205652A1 (zh) 像素结构及其制作方法、显示基板和显示装置
WO2020220497A1 (zh) Oled显示面板和oled显示面板的制备方法
CN110690259B (zh) 一种阵列基板、oled显示面板、掩膜板
CN110277508B (zh) 有机发光二极管显示面板及其制造方法
WO2020224070A1 (zh) Oled显示面板
CN112534583A (zh) 显示基板、显示装置及高精度金属掩模板
WO2020155464A1 (zh) 显示面板及其制备方法、电子装置
KR101202547B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2021012374A1 (zh) 一种显示面板及其制作方法
KR101663743B1 (ko) 유기전계발광 표시장치
TW201712417A (zh) 顯示面板
KR100681133B1 (ko) 유기전계발광소자 및 그 제조방법
WO2022052192A1 (zh) 像素阵列及显示装置
WO2022052193A1 (zh) 显示基板、显示装置及高精度金属掩模板
WO2021031370A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2022170479A1 (zh) 显示基板及其制作方法、显示装置
CN219087721U (zh) 一种显示面板和显示装置
RU2779136C1 (ru) Пиксельный массив и устройство отображения
JP5179104B2 (ja) 有機el表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926951

Country of ref document: EP

Kind code of ref document: A1