WO2022052193A1 - 显示基板、显示装置及高精度金属掩模板 - Google Patents

显示基板、显示装置及高精度金属掩模板 Download PDF

Info

Publication number
WO2022052193A1
WO2022052193A1 PCT/CN2020/119229 CN2020119229W WO2022052193A1 WO 2022052193 A1 WO2022052193 A1 WO 2022052193A1 CN 2020119229 W CN2020119229 W CN 2020119229W WO 2022052193 A1 WO2022052193 A1 WO 2022052193A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
virtual
layer
Prior art date
Application number
PCT/CN2020/119229
Other languages
English (en)
French (fr)
Inventor
牛彤
胡明
罗昶
吴建鹏
王本莲
嵇凤丽
徐鹏
徐倩
张国梦
黄琰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002209.5A priority Critical patent/CN112534583A/zh
Priority to US17/417,709 priority patent/US11864447B2/en
Publication of WO2022052193A1 publication Critical patent/WO2022052193A1/zh
Priority to US18/468,774 priority patent/US20240008335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a display device and a high-precision metal mask.
  • An organic light-emitting diode display (Organic light-emitting diode, OLED) display device includes a base substrate, a light-emitting layer and an encapsulation protection layer, and the light-emitting layer includes sub-pixels arranged in a matrix on the base substrate.
  • Each sub-pixel generally uses a fine metal mask (FMM) to vapor-deposit an organic light-emitting material on the corresponding sub-pixel position of the array substrate.
  • FMM fine metal mask
  • SPR Sub-Pixel Rendering
  • the present disclosure provides a display substrate, a display device, and a high-precision metal mask, which are used to solve the uneven distribution of the brightness center of the virtual pixel in the existing pixel arrangement structure, which brings the graininess and distortion of the display.
  • the problem is a display substrate, a display device, and a high-precision metal mask, which are used to solve the uneven distribution of the brightness center of the virtual pixel in the existing pixel arrangement structure, which brings the graininess and distortion of the display.
  • an embodiment of the present disclosure provides a display substrate, including: a first sub-pixel, a second sub-pixel and a third sub-pixel;
  • the first subpixels and the third subpixels are alternately arranged to form a first subpixel row, and the second subpixels form a second subpixel row;
  • first sub-pixel rows and the second sub-pixel rows are alternately arranged, and the first direction and the second direction are substantially perpendicular;
  • Two first sub-pixels and two third sub-pixels distributed in two adjacent rows and two columns form a 2*2 matrix, and in the 2*2 matrix, the two first sub-pixels are located in different rows and different columns, The two third sub-pixels are located in different rows and different columns, the center line connecting the two first sub-pixels and the two third sub-pixels forms a virtual quadrilateral, and the second sub-pixels are located in the virtual quadrilateral. inside the quadrilateral;
  • the third sub-pixel includes an axis of symmetry along a first oblique direction and a symmetry axis along a second oblique direction, and the width of the third sub-pixel in the first oblique direction is the same as that in the second oblique direction.
  • the widths in the diagonal direction are different; and/or, the first sub-pixel includes an axis of symmetry along a first diagonal direction and a symmetry axis along a second diagonal direction, and the first sub-pixel is in the first diagonal direction.
  • the width in the diagonal direction is different from the width in the second diagonal direction;
  • the second oblique line direction is substantially perpendicular to the first oblique line direction, and the second oblique line direction and the first oblique line direction intersect both the first direction and the second direction.
  • the interior angle of the virtual quadrilateral ranges from 70° to 120°.
  • two first subpixels and two third subpixels corresponding to the same virtual quadrilateral surround a second subpixel, and other first subpixels and third subpixels other than the virtual quadrilateral
  • the closest distances of the second sub-pixels are all greater than the closest distances of the two first sub-pixels and the two third sub-pixels to the second sub-pixel.
  • the center of the two first sub-pixels and the center of the two third sub-pixels corresponding to the same virtual quadrilateral are respectively in the distance to the center of the second sub-pixel, any two The ratio ranges from 0.7 to 1.3.
  • the difference between the distances between the centers of the two first subpixels corresponding to the same virtual quadrilateral and the centers of the second subpixels is smaller than the distance between the two third subpixels corresponding to the virtual quadrilateral.
  • the difference between the distances between the centers of the two first sub-pixels corresponding to the same virtual quadrangle and the centers of the second sub-pixels is approximately equal.
  • the center of the two first sub-pixels and the center of the two third sub-pixels corresponding to the same virtual quadrilateral are respectively in the range of 20-60 ⁇ m to the center of the second sub-pixel. .
  • the first sub-pixel and the third sub-pixel have different shapes.
  • the first sub-pixel and the third sub-pixel are both axisymmetric figures, and one axis of symmetry of at least one of the first sub-pixels and one axis of symmetry of at least one of the third sub-pixels are parallel. and do not coincide; and/or,
  • the first sub-pixel has an axis of symmetry in the first oblique direction, and the axes of symmetry in the first oblique direction of two adjacent first sub-pixels in the first oblique direction do not overlap; and/or ,
  • the third sub-pixel has an axis of symmetry in the first oblique direction, and the axes of symmetry in the first oblique direction of two adjacent third sub-pixels in the first oblique direction do not overlap.
  • the distance between the center of the second sub-pixel and the centers of the two third sub-pixels is unequal, and the center of the second sub-pixel and the two The centers of the first sub-pixels are approximately equally spaced;
  • the distance between the center of the second sub-pixel and the centers of the two third sub-pixels is approximately equal, and the center of the second sub-pixel is approximately equal to the distance between the centers of the two first sub-pixels are approximately equally spaced between the centers;
  • the distance between the center of the second sub-pixel and the centers of the two third sub-pixels is approximately equal, and the center of the second sub-pixel is approximately equal to the distance between the centers of the two first sub-pixels
  • the center spacing is unequal.
  • the distance between the second subpixel and the first third subpixel is L1
  • the second subpixel and the second third subpixel are The distance between the centers of , is L2, and the distance between the second sub-pixel and the two first sub-pixels is L1;
  • the distance between the second sub-pixel and the two third sub-pixels and the distance between the two first sub-pixels are both L1;
  • the distance between the second sub-pixel and the two third sub-pixels and the distance between the two first sub-pixels are both L2;
  • the distance between the second sub-pixel and the two third sub-pixels is L1
  • the distance between the second sub-pixel and the first first sub-pixel is L1
  • the distance from the second first sub-pixel is L2;
  • the distance between the second sub-pixel and the two third sub-pixels is L2, and the distance between the second sub-pixel and the two first sub-pixels is L1 ;
  • L2 is greater than L1.
  • the difference between L2 and L1 is greater than or equal to 1 ⁇ m, and the range of L1 is 12-30 ⁇ m.
  • the virtual quadrilateral is a right-angled trapezoid, two interior angles are 90°, and one of the other two interior angles is an obtuse angle and the other is an acute angle.
  • all interior angles of the virtual quadrilateral range from 70° to 120°.
  • some of the virtual quadrilaterals are first parallelograms, and some of the virtual quadrilaterals are second parallelograms, and in the row direction and the column direction, the first parallelograms and the second parallelograms are alternately arranged. , the angle of at least one interior angle of the first parallelogram and the second parallelogram is different.
  • the range of the acute angle of the first parallelogram and the second parallelogram is greater than or equal to 70° and greater than 90°.
  • the difference between the widths of the third sub-pixel and/or the first sub-pixel in the first oblique line direction and the second oblique line direction is greater than or equal to 1 ⁇ m.
  • the widths of the second sub-pixels in the first oblique line direction and the second oblique line direction are different.
  • the second sub-pixel is connected to the center line of the two third sub-pixels that are adjacently arranged in the first diagonal direction or the second diagonal direction. It is roughly symmetrical, and is roughly symmetrical with respect to the center connecting line of the two first sub-pixels that are adjacently arranged in the second oblique direction or the first oblique direction.
  • four virtual quadrilaterals arranged in an array form a virtual polygon, and the first sub-pixel and the third sub-pixel are located on the corners or sides of the second virtual polygon, and alternate in a clockwise direction. distributed on the edges or corners of the virtual polygon.
  • the center of the third sub-pixel located in the same row is roughly on a line parallel to the row direction, and/or the center of the third sub-pixel located in the same column is roughly on a line parallel to the column direction. in a straight line.
  • the centers of the second sub-pixels located in the same row are approximately on a line parallel to the row direction, and/or the centers of the second sub-pixels located in the same column are approximately on a straight line parallel to the column direction.
  • the respective total opening areas of the third sub-pixel, the second sub-pixel and the first sub-pixel are sequentially reduced, the total opening area of the first sub-pixel is x, and the second sub-pixel has an area of x.
  • the total opening area is a*x, and the total opening area of the third sub-pixel is b*x, where 0.5 ⁇ a ⁇ 0.8, 1 ⁇ b ⁇ 2.2.
  • the shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel are selected from any one of a polygon, a circle, and an ellipse.
  • the shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel are selected from quadrilateral, hexagonal, octagonal, quadrilateral with rounded corners, and rounded corners. Any of hexagon or octagon with rounded corners, circle, and ellipse.
  • the first subpixel is a red subpixel
  • the second subpixel is a green subpixel
  • the third subpixel is a blue subpixel
  • an embodiment of the present disclosure provides a display device including the display substrate of the first aspect.
  • the display device further includes a pixel definition layer
  • the pixel definition layer includes a plurality of pixel definition layer openings, each of the first sub-pixels, each of the second sub-pixels, and each of the third sub-pixels Each corresponds to an opening of the pixel defining layer, and the shapes of the first sub-pixel, the second sub-pixel, and the third sub-pixel are substantially the same as the shape of the opening of the corresponding pixel defining layer.
  • the first sub-pixel includes a multi-layer film layer, and the multi-layer film layer of the first sub-pixel at least partially covers the area outside the pixel-defining layer opening; and/or, the second sub-pixel comprising a multilayer film layer, and the multilayer film layer of the second sub-pixel at least partially covers an area outside the opening of the pixel-defining layer; and/or the third sub-pixel comprises a multilayer film layer, and the first sub-pixel comprises a multilayer film layer The multi-layer film layer of the three sub-pixels at least partially covers the area outside the opening of the pixel-defining layer.
  • At least part of the openings in the pixel defining layer are different in shape or area.
  • the pixel-defining layer openings corresponding to the first sub-pixel or the third sub-pixel are at least partially different in shape or area.
  • the closest distances from at least part of the openings of the pixel defining layer corresponding to the first sub-pixels or the third sub-pixels to adjacent openings are unequal.
  • embodiments of the present disclosure provide a high-precision metal mask for fabricating the display substrate of the first aspect
  • the first sub-pixel includes a multi-layer film
  • the second sub-pixel includes a multi-layer film layer
  • the third sub-pixel includes a multi-layer film layer
  • the mask plate includes: a plurality of opening areas, the plurality of opening areas include shapes and distributions corresponding to at least one film layer in the first sub-pixel , or the second opening area corresponding to the shape and distribution of at least one film layer in the second sub-pixel, or corresponding to the shape and distribution of at least one film layer in the third sub-pixel the third opening area.
  • the present disclosure on the one hand, by sharing sub-pixels, a higher resolution can be achieved; There are at least two differences in the distances between the centers of the two first sub-pixels and the centers of the two third sub-pixels in the quadrilateral to the centers of the second sub-pixels, so that the brightness centers of the virtual pixels are arranged more uniformly. Improves the display effect by avoiding the graininess and distortion of the display. On the other hand, the brightness center of the virtual pixel can be displaced without moving the position of the sub-pixel, and the implementation cost is low.
  • FIG. 1 is a schematic diagram of a pixel arrangement structure in the related art
  • FIG. 2 is a schematic diagram of a display substrate according to an embodiment of the disclosure.
  • FIG. 3 and 5 are schematic diagrams of the display substrate according to the first embodiment of the disclosure.
  • FIGS. 4 and 6 are schematic diagrams of the display substrate according to the second embodiment of the disclosure.
  • FIGS. 7-13 are schematic diagrams showing the positional relationship between the display substrate and the opening area of the light-emitting layer according to the embodiment of the disclosure.
  • 16-18 are schematic diagrams of high-precision metal masks used to manufacture the first sub-pixel, the second sub-pixel and the third sub-pixel in the display substrate of the above-mentioned embodiment, respectively;
  • FIG. 19 is a schematic diagram of a cross-sectional structure of a display substrate according to an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of a pixel arrangement structure in the related art.
  • the blue sub-pixel (B) and the red sub-pixel (R) are both square.
  • the distance l1 between the virtual pixel in the jth column and the brightness center (black dot in the figure) of the virtual pixel in the j+1th column is greater than the distance l2 between the virtual pixel in the jth column and the brightness center of the virtual pixel in the j-1th column
  • the distance between the virtual pixel in the jth column and the brightness center (black dot in the figure) of the virtual pixel in the j+1th column is smaller than the distance between the brightness center of the virtual pixel in the jth column and the virtual pixel in the j-1th column. spacing, resulting in perceptible distortion and graininess to the human eye when displaying images with vertical or vertical lines.
  • an embodiment of the present disclosure provides a display substrate, including: a first sub-pixel R, a second sub-pixel G and a third sub-pixel B;
  • the first sub-pixels R and the third sub-pixels B are alternately arranged to form a first sub-pixel row, and the second sub-pixels G form a second sub-pixel row;
  • first sub-pixel rows and the second sub-pixel rows are alternately arranged, and the first direction and the second direction are perpendicular or substantially perpendicular;
  • the two first subpixels R and the two third subpixels B distributed in two adjacent rows and two columns form a 2*2 matrix, and in the 2*2 matrix, the two first subpixels R are located in different rows In different columns, the two third sub-pixels B are located in different rows and different columns, and the center line connecting the two first sub-pixels R and the two third sub-pixels B forms a virtual quadrilateral, the second sub-pixel G is located within the virtual quadrilateral;
  • the third sub-pixel B includes an axis of symmetry along the first oblique direction and a symmetry axis along the second oblique direction, and the width of the third sub-pixel B in the first oblique direction is the same as the width in the second oblique direction.
  • the widths in the directions are different (one of which is W1 and one is H1), wherein the second oblique line direction is perpendicular or substantially perpendicular to the first oblique line direction, and the second oblique line direction is perpendicular to the first oblique line direction.
  • a diagonal direction intersecting both the first direction and the second direction.
  • the difference in the spacing between the luminance centers of adjacent virtual pixels in the same row is smaller than the luminance centers of adjacent virtual pixels in the same row in the related art
  • the difference in the spacing between them, that is, the brightness centers of the virtual pixels are arranged more uniformly in the embodiment of the present disclosure.
  • the embodiments of the present disclosure on the one hand, by sharing sub-pixels, a higher resolution can be achieved; There are at least two differences in the distance between the center of the sub-pixel and the center of the two third sub-pixels to the center of the second sub-pixel, so as to achieve a more uniform distribution of the brightness center of the virtual pixels and avoid the graininess and appearance of the display. Distortion, improve display effect.
  • the brightness center of the virtual pixel can be displaced without moving the position of the sub-pixel, and the implementation cost is low.
  • the centers of the two first sub-pixels and the centers of the two third sub-pixels corresponding to the same virtual quadrilateral are the distance between the centers of the second sub-pixels and the second sub-pixels, respectively. At least two of the spacings are the same.
  • the inner angle of the virtual quadrilateral ranges from 70° to 120°.
  • two first subpixels and two third subpixels corresponding to the same virtual quadrilateral surround a second subpixel, and other first subpixels other than the virtual quadrilateral and the shortest distances from the third subpixel to the second subpixel are greater than the shortest distances from the two first subpixels and the two third subpixels to the second subpixel.
  • the distance may be a sub-pixel boundary distance.
  • the distance of the rounded corners may be partially deviated, so the distance needs to consider the error caused by the rounded corners, or the measurement error, such as a deviation of about 3 microns, is considered equivalent.
  • the centers of the two first sub-pixels and the centers of the two third sub-pixels corresponding to the same virtual quadrilateral are the distance between the centers of the second sub-pixels and the second sub-pixels, respectively.
  • the ratio of any two ranges from 0.7 to 1.3.
  • the distance difference between the centers of the two first sub-pixels corresponding to the same virtual quadrilateral and the centers of the second sub-pixels is smaller than the two corresponding virtual quadrilaterals.
  • the distances from the centers of the two first sub-pixels corresponding to the same virtual quadrilateral to the centers of the second sub-pixels are equal or approximately equal.
  • the difference between the distances between the centers of the two first subpixels corresponding to the same virtual quadrilateral and the center of the second subpixel is smaller than the distance corresponding to the virtual quadrilateral
  • the center of the two first sub-pixels and the center of the two third sub-pixels corresponding to the same virtual quadrilateral are respectively in the range of 20-60 ⁇ m to the center of the second sub-pixel. . Further optionally, the center of the two first sub-pixels and the center of the two third sub-pixels corresponding to the same virtual quadrilateral are respectively in the range of 25-25 to the center of the second sub-pixel. 50 ⁇ m, or, 30-48 ⁇ m.
  • the first sub-pixel and the third sub-pixel have different shapes. , for example, one of them is a square and the other is a rectangle, or the first sub-pixel and the third sub-pixel are both rectangles, but have different aspect ratios.
  • the aspect ratio may be 1.2 ⁇ 1.8.
  • the aspect ratio of the second sub-pixel may be 1.2 ⁇ 1.3.
  • the first sub-pixel and the third sub-pixel are both axisymmetric figures, and at least one of the first sub-pixels has an axis of symmetry and at least one of the third sub-pixels One of the axes of symmetry of the pixels is parallel and not coincident; and/or,
  • the first sub-pixel has an axis of symmetry in the first oblique direction, and the axes of symmetry in the first oblique direction of two adjacent first sub-pixels in the first oblique direction do not overlap; and/or ,
  • the third sub-pixel has an axis of symmetry in the first oblique direction, and the axes of symmetry in the first oblique direction of two adjacent third sub-pixels in the first oblique direction do not overlap.
  • the center of the two first sub-pixels R and the center of the two third sub-pixels B are respectively the distances from the center of the second sub-pixel G Among them, there are at least two differences, which will be explained with examples below.
  • the second subsection The distance D1 between the center of the pixel G and the center of the first third sub-pixel B is not equal to the distance D2 between the center of the second sub-pixel G and the center of the second third sub-pixel B, The distance between the center of the second sub-pixel G and the center of the first first sub-pixel R, and the distance between the center of the second sub-pixel G and the center of the second first sub-pixel R Roughly equal, both are D3.
  • D2 is greater than D1.
  • D1 is greater than D3.
  • the first The distance between the center of the second sub-pixel and the center of the two third sub-pixels is approximately equal to D1 or D2, and the distance between the center of the second sub-pixel and the center of the two first sub-pixels is approximately equal , both are D3.
  • D2 is greater than D1.
  • D1 is greater than D3.
  • the widths of the third sub-pixels B in the same row in the direction of the first oblique line are the same (that is, the direction of the long side is the same), and the third sub-pixels B in the same column are in the first diagonal direction.
  • the widths in the diagonal direction are the same (that is, the directions of the long sides are the same), and the widths of the third sub-pixels B located in adjacent rows and columns in the first diagonal direction are different (that is, the long sides are perpendicular to each other or approximately perpendicular to each other).
  • the long-side direction is indicated by the dashed arrow in Figure 3).
  • all the third subpixels B have the same width in the direction of the first oblique line (ie, the direction of the long side is the same, and the direction of the long side is indicated by the dotted arrow in FIG. 4 ).
  • the first subpixel R and the third subpixel B located in the same row are not on the same straight line, and the first subpixel R and the third subpixel B located in the same column are not on the same line. on the same straight line.
  • four virtual quadrilaterals arranged in an array form a virtual polygon (which may be a virtual quadrilateral or a virtual octagon, etc.), and the first sub-pixel and the third sub-pixel are located in the virtual polygon.
  • a virtual polygon which may be a virtual quadrilateral or a virtual octagon, etc.
  • the first sub-pixel and the third sub-pixel are located in the virtual polygon.
  • On the vertex or edge of the polygon and alternately distributed in the clockwise direction on the edge or vertex of the virtual polygon.
  • the center of the third sub-pixel located in the same row is approximately on a line parallel to the row direction, and/or the center of the third sub-pixel located in the same column is approximately in the parallel column direction on a straight line.
  • the centers of the second sub-pixels located in the same row are approximately on a line parallel to the row direction, and/or the centers of the second sub-pixels located in the same column The center is roughly on a straight line in the direction of the parallel columns.
  • four virtual quadrilaterals arranged in an array form a virtual octagon, and the virtual octagon serves as a repeating unit.
  • the centers of the four first subpixels R and the four third subpixels B are located at the vertices of the virtual octagon, and the first subpixels R and the third subpixels B are alternately arranged clockwise.
  • One of the third subpixels B is located in the center of the virtual octagon.
  • the second sub-pixel G is opposite to the third sub-pixel B that is adjacently arranged in the first oblique line direction or the second oblique line direction
  • the line connecting the centers of is roughly symmetrical, that is, the second sub-pixel G is on the symmetry axis of the two third sub-pixels B.
  • the width of one third sub-pixel B in the direction of the symmetry axis is smaller than the width of the other third sub-pixel B in the direction of the symmetry axis, and the width of the other third sub-pixel B in the direction of the symmetry axis is greater than
  • the width in the direction along another axis of symmetry that is, the long sides of the two third sub-pixels B within the virtual quadrilateral are vertical or approximately vertical
  • the two third sub-pixels B are on this axis of symmetry
  • the widths in the directions are all smaller than the widths in the direction on the other axis of symmetry (that is, the long sides of the two third sub-pixels B in the virtual quadrilateral are parallel).
  • the spacing between the sub-pixels in the virtual quadrilateral also changes. At least part of the virtual quadrilateral exists, and the spacing between the two third sub-pixels B and the second sub-pixel G is different. Examples are given below.
  • spacing between sub-pixels refers to the vertical distance between two adjacent parallel sides of the sub-pixels.
  • the second sub-pixel G and the first The distance between the third sub-pixel B is L1
  • the distance between the second sub-pixel G and the center of the second third sub-pixel B is L2
  • the second sub-pixel G and the two The pitches of a sub-pixel R are all L1, wherein L2 is greater than L1.
  • the distance between the second sub-pixel G and the two third sub-pixels B, the distance between the two The pitches of the first sub-pixels R are both L1 (the two virtual quadrilaterals on the right side in FIG. 5 , and the other three virtual quadrilaterals except the upper left corner in FIG. 6 ) or L2 (not shown in the figure) , where L2 is greater than L1.
  • the second sub-pixel G and two of the third sub-pixels within at least one of the virtual quadrilaterals, the second sub-pixel G and two of the third sub-pixels
  • the distance between the pixels B is L2
  • the distance between the second sub-pixel G and the two first sub-pixels R is L1, where L2 is greater than L1.
  • the difference between L2 and L1 is greater than or equal to 1 ⁇ m, and further optionally, the difference between L2 and L1 is greater than or equal to 2 ⁇ m or 3 ⁇ m.
  • the range of L1 is 12-30 ⁇ m, further optionally, the range of L1 is 14-28 ⁇ m, and further optionally, the range of L1 is 16-26 ⁇ m.
  • all interior angles of the virtual quadrilateral range from 70° to 120°. Further optionally, the interior angle of the virtual quadrilateral includes at least one obtuse angle, or at least one acute angle.
  • the virtual quadrilateral is a right-angled trapezoid
  • two interior angles are 90°
  • one of the other two interior angles is an obtuse angle, which is X°
  • the other is an acute angle, which is Y°.
  • the range of the obtuse angle is greater than 90° and less than or equal to 100°, further optional, it is 91°-96°
  • the range of the acute angle is greater than or equal to 80° and greater than 90°, and further optionally, it is 84°-89° °.
  • a virtual quadrilateral is rotated by 90°+X° around the center of the third sub-pixel located at the center of the virtual octagon, or rotated by 90°+Y°, which can be combined with the diagonal Virtual quads coincide.
  • some of the virtual quadrilaterals are first parallelograms, and some of the virtual quadrilaterals are second parallelograms.
  • the first parallelogram and the second parallelogram are Two parallelograms are alternately arranged, and the interior angles of the first parallelogram and the second parallelogram are different.
  • the angles of at least one interior corner of the first parallelogram and the second parallelogram are different, and the four interior angles may be different, or may be interior angles with the same angle, but with different orientations.
  • Different orientation means that at least one of the two sides forming the first interior angle and the two sides forming the second interior angle is not parallel.
  • the second parallelogram may be a rectangle.
  • Rectangles include rectangles and squares.
  • FIG. 4 and FIG. 6 wherein some of the virtual quadrilaterals are parallelograms, and some of the virtual quadrilaterals are squares. In the row and column directions, the parallelograms and The squares are arranged alternately.
  • the range of the acute angle Z of the first parallelogram and the second parallelogram is greater than or equal to 70° and less than 90°, and further optionally, is 84°-89°.
  • the virtual quadrilaterals on the two opposite corners are parallelograms, and the virtual quadrilaterals on the other two opposite corners are squares, the two squares are the same, and the two parallelograms different.
  • the difference between the widths of the third sub-pixels in the first oblique line direction and the second oblique line direction is greater than or equal to 1 ⁇ m, and further optionally, greater than or equal to 3 ⁇ m .
  • the first sub-pixel R is a square.
  • the third sub-pixel B is removed by a certain width in the first oblique line direction or the second oblique line direction (the blank area on the side of the third sub-pixel B in the figure is the removal area) , change the shape of the third sub-pixel B to achieve the center of the two first sub-pixels R and the center of the two third sub-pixels B in the virtual quadrilateral to the second sub-pixel G, respectively At least two of the center-to-center spacings are different.
  • the frame body around the first sub-pixel R, the second sub-pixel G and the third sub-pixel B is the opening area of the light-emitting layer, and the third sub-pixel B is in the direction of the first oblique line or After a certain width is removed in the second diagonal direction, the distance between the removed side and the boundary of the opening area of the peripheral light-emitting layer is m1, which is greater than the distance m2 between the other side and the boundary of the opening area of the peripheral light-emitting layer.
  • each third sub-pixel B with its width removed is not limited to this, and can be combined arbitrarily, please refer to FIG. 9-FIG. 13 .
  • a third sub-pixel B can have a certain width removed at any one of the two sides perpendicular to the first diagonal direction and the two sides parallel to the first diagonal direction.
  • a third embodiment of the present disclosure provides a display substrate, including: a first sub-pixel R, a second sub-pixel G and a third sub-pixel B;
  • the first sub-pixels R and the third sub-pixels B are alternately arranged to form a first sub-pixel row, and the second sub-pixels G form a second sub-pixel row;
  • first sub-pixel rows and the second sub-pixel rows are alternately arranged, and the first direction and the second direction are perpendicular or substantially perpendicular;
  • the two first subpixels R and the two third subpixels B distributed in two adjacent rows and two columns form a 2*2 matrix, and in the 2*2 matrix, the two first subpixels R are located in different rows In different columns, the two third sub-pixels B are located in different rows and different columns, and the center line connecting the two first sub-pixels R and the two third sub-pixels B forms a virtual quadrilateral, the second sub-pixel G is located within the virtual quadrilateral;
  • the first sub-pixel R includes an axis of symmetry along the first oblique direction and a symmetry axis along the second oblique direction, and the width in the first oblique direction is different from the width in the second oblique direction (wherein One is W2 and the other is H2), wherein the second oblique direction is perpendicular or substantially perpendicular to the first oblique direction, and the second oblique direction is the same as the first oblique direction and the first oblique direction. Both the one direction and the second direction intersect.
  • the present disclosure on the one hand, by sharing sub-pixels, a higher resolution can be achieved; There are at least two differences in the distance between the center of the sub-pixel and the center of the two third sub-pixels to the center of the second sub-pixel, so as to achieve a more uniform distribution of the brightness center of the virtual pixels and avoid the graininess and appearance of the display. Distortion, improve display effect.
  • the brightness center of the virtual pixel can be displaced without moving the position of the sub-pixel, and the implementation cost is low.
  • the center of the two first sub-pixels R and the center of the two third sub-pixels B are respectively the distances from the center of the second sub-pixel G Among them, there are at least two differences, which will be explained with examples below.
  • the center of the second subpixel G is the same as the first
  • the distance between the centers of the third sub-pixel B is approximately equal to the distance between the center of the second sub-pixel G and the center of the second third sub-pixel B, and both are D1.
  • the distance D3 between the center of G and the center of the first first sub-pixel R is different from the distance D4 between the center of the second sub-pixel G and the center of the second first sub-pixel R.
  • the center of the second sub-pixel G is the same as the first sub-pixel G.
  • the distance between the centers of the third sub-pixel B is approximately equal to the distance between the center of the second sub-pixel G and the center of the second third sub-pixel B, and both are D1.
  • the distance between the center of G and the center of the first first sub-pixel R is approximately equal to the distance between the center of the second sub-pixel G and the center of the second first sub-pixel R, both of which are D3 .
  • the first sub-pixels R in the same row have the same width in the first diagonal direction (that is, the direction of the long side is the same), and the third sub-pixels B in the same column are in the same row.
  • the widths in the diagonal direction are the same (that is, the directions of the long sides are the same), and the widths of the first sub-pixels R located in adjacent rows and columns in the first diagonal direction are different (that is, the long sides are perpendicular to each other or substantially perpendicular to each other).
  • the long-side direction is indicated by the dotted arrow in Fig. 14).
  • all the first sub-pixels R have the same width in the direction of the first oblique line (that is, the directions of the long sides are the same).
  • the first sub-pixel R and the third sub-pixel B located in the same row are not on the same straight line, and the first sub-pixel R and the third sub-pixel B located in the same column are not on the same straight line. superior.
  • four virtual quadrilaterals arranged in an array form a virtual polygon (which may be a virtual quadrilateral or a virtual octagon, etc.), and the first sub-pixel and the third sub-pixel are located in the virtual polygon.
  • a virtual polygon which may be a virtual quadrilateral or a virtual octagon, etc.
  • the first sub-pixel and the third sub-pixel are located in the virtual polygon.
  • On the vertex or edge of the polygon and alternately distributed in the clockwise direction on the edge or vertex of the virtual polygon.
  • the center of the third sub-pixel located in the same row is approximately on a line parallel to the row direction, and/or the center of the third sub-pixel located in the same column is approximately in the parallel column direction on a straight line.
  • the centers of the second sub-pixels located in the same row are approximately on a line parallel to the row direction, and/or the centers of the second sub-pixels located in the same column The center is roughly on a straight line in the direction of the parallel columns.
  • four virtual quadrilaterals arranged in an array form a virtual octagon, and the virtual octagon serves as a repeating unit.
  • the centers of the four first subpixels R and the four third subpixels B are located at the vertices of the virtual octagon, and the first subpixels R and the third subpixels B are alternately arranged clockwise.
  • One of the third subpixels B is located in the center of the virtual octagon.
  • the second sub-pixel G is opposite to the two first sub-pixels that are adjacently arranged in the second oblique direction or the first oblique direction.
  • the line connecting the centers of the pixels R is substantially symmetrical, that is, the second sub-pixel G is on the symmetry axis of the two first sub-pixels B.
  • FIG. 1 Optionally, as shown in FIG.
  • the width of one of the first sub-pixels R in the direction of the symmetry axis is smaller than the width of the other first sub-pixel R in the direction of the symmetry axis, and the width of the other first sub-pixel R in the direction of the symmetry axis is greater than
  • the width in the direction of the other symmetry axis that is, the long sides of the two third sub-pixels B in the virtual quadrilateral are vertical or approximately vertical
  • the width of the two first sub-pixels R in the direction of the symmetry axis is smaller than that of the other one.
  • the width in the direction of a symmetry axis that is, the long sides of the two first sub-pixels R in the virtual quadrilateral are parallel).
  • the spacing between sub-pixels in the virtual quadrilateral also changes. At least part of the virtual quadrilateral exists, and the spacing between the two first sub-pixels R and the second sub-pixels G is different. Examples are given below.
  • the distance between the second sub-pixel G and the two third sub-pixels B are both L1 (two virtual quadrilaterals on the left side of FIG. 15 ) or L2 (not shown in the figure), where L2 is greater than L1 .
  • the second sub-pixel G and two of the first The distances between the three sub-pixels B are all L1
  • the distance between the second sub-pixel G and the first first sub-pixel R is L1
  • the distance between the second and the first sub-pixel R is L2, wherein , L2 is greater than L1.
  • the difference between L2 and L1 is greater than or equal to 1 ⁇ m, and further optionally, the difference between L2 and L1 is greater than or equal to 2 ⁇ m or 3 ⁇ m.
  • the range of L1 is 12-30 ⁇ m, further optionally, the range of L1 is 14-28 ⁇ m, and further optionally, the range of L1 is 16-26 ⁇ m.
  • the virtual quadrilateral is a right-angled trapezoid, two interior angles are 90°, one of the other two interior angles is an obtuse angle, which is X°, and the other is an acute angle, which is Y°.
  • the range of the obtuse angle is greater than 90° and less than or equal to 100°, further optional, it is 91°-96°, the range of the acute angle is greater than or equal to 80° and greater than 90°, and further optionally, it is 84°-89° °.
  • a virtual quadrilateral is rotated by 90°+X° around the center of the third sub-pixel located at the center of the virtual octagon, or rotated by 90°+Y°, which can coincide with the in-focus virtual quadrilateral.
  • the difference between the widths of the first sub-pixels in the first oblique line direction and the second oblique line direction is greater than or equal to 1 ⁇ m, and further optionally, greater than or equal to 3 ⁇ m .
  • the third sub-pixel B is a square.
  • the widths of the third sub-pixels are different in different diagonal directions.
  • the widths of the first sub-pixels in different diagonal directions are different.
  • the first sub-pixel and the third sub-pixel may have different widths in different diagonal directions at the same time.
  • the widths of the second sub-pixels G in the first oblique line direction and the second oblique line direction are different.
  • the second sub-pixel G is opposite to two adjacent ones arranged in the first oblique direction or the second oblique direction.
  • the connection lines between the centers of the third sub-pixels B are substantially symmetrical, and are opposite to the connection lines between the centers of the two first sub-pixels R that are adjacently arranged in the second oblique direction or the first oblique direction. roughly symmetrical.
  • the human eye has different resolution capabilities for the first sub-pixel R, the second sub-pixel G and the third sub-pixel B, and the brightness effects of the three sub-pixels are also different.
  • the second sub-pixel G has the largest brightness effect, followed by the first sub-pixel.
  • Pixel R, the third sub-pixel B has the smallest brightness effect; at the same time, the organic light-emitting materials of different colors have different device lifetimes. Therefore, optionally, the total opening area of the sub-pixels: the third sub-pixel B > the second sub-pixel G > The first sub-pixel R.
  • the total opening area of the third sub-pixel B, the second sub-pixel G and the first sub-pixel R decreases sequentially, the total opening area of the first sub-pixel R is x, and the The total opening area is a*x, and the total opening area of the third sub-pixel B is b*x, where 0.5 ⁇ a ⁇ 0.8, 1 ⁇ b ⁇ 2.2.
  • the total opening area of the sub-pixel refers to the total light-emitting area of the sub-pixel on the entire panel.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel are all shaped as quadrilaterals with rounded corners as examples for description.
  • the shapes of the first subpixel, the second subpixel, and the third subpixel may also be other polygons; or, the first subpixel, the second subpixel, and the second subpixel
  • the shapes of the sub-pixels and the third sub-pixels can also be selected from any of other types of polygons, circles, and ellipses with rounded corners.
  • the shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel may also be selected from quadrilateral, hexagonal, octagonal, Any of rounded hexagons or rounded octagons, circles, and ellipses.
  • the first sub-pixel is a red sub-pixel (R)
  • the second sub-pixel is a green sub-pixel (G)
  • the third sub-pixel is a blue sub-pixel (B) is described as an example, and the present disclosure does not exclude the use of sub-pixels of other colors.
  • the ratio of the numbers of the first sub-pixel, the second sub-pixel and the third sub-pixel is 1:2:1, thereby realizing sub-pixel sharing and improving resolution.
  • Embodiments of the present disclosure also provide a display device including the above-mentioned display substrate.
  • the display device further includes a pixel definition layer
  • the pixel definition layer includes a plurality of pixel definition layer openings, each of the first sub-pixels, each of the second sub-pixels, each of the Each of the third sub-pixels corresponds to an opening of the pixel defining layer, and the shapes of the first sub-pixel, the second sub-pixel, and the third sub-pixel are substantially the same as the openings of the corresponding pixel-defining layer.
  • the first sub-pixel includes a multi-layer film layer, and the multi-layer film layer of the first sub-pixel at least partially covers an area outside the pixel-defining layer opening; and/or,
  • the second sub-pixel includes a multi-layer film, and the multi-layer film of the second sub-pixel at least partially covers an area outside the pixel-defining layer opening; and/or, the third sub-pixel includes a multi-layer film layer, and the multi-layer film layer of the third sub-pixel at least partially covers the area outside the opening of the pixel-defining layer.
  • the openings in the pixel defining layer are at least partially different in shape or area.
  • the pixel-defining layer openings corresponding to the first sub-pixel or the third sub-pixel are at least partially different in shape or area.
  • the closest distances from at least a part of the opening of the pixel definition layer corresponding to the first sub-pixel or the third sub-pixel to the adjacent opening are not equal.
  • An embodiment of the present disclosure further provides a high-precision metal mask for fabricating the display substrate in any of the above embodiments, wherein the first sub-pixel includes a multi-layer film layer, and the second sub-pixel includes a multi-layer film layer , the third sub-pixel includes a multi-layer film layer, the mask plate includes: a plurality of opening areas, and the plurality of opening areas include a shape and distribution corresponding to at least one film layer in the first sub-pixel The first opening area, or the second opening area corresponding to the shape and distribution of the at least one film layer in the second sub-pixel, or the shape and distribution of the at least one film layer in the third sub-pixel the third opening area.
  • the shape refers to the type and/or size of graphics, etc.
  • the distribution refers to spacing, orientation, and/or density, etc.
  • FIG. 16 to FIG. 18 are schematic diagrams of high-precision metal masks used to respectively manufacture the first sub-pixel, the second sub-pixel and the third sub-pixel of the display substrate in the above-mentioned embodiment.
  • a first sub-pixel, a second sub-pixel or a third sub-pixel is shown in the opening area, and the first sub-pixel, the second sub-pixel or the third sub-pixel does not belong to a part of the mask.
  • a first sub-pixel includes a first effective light-emitting area
  • a second sub-pixel includes a second effective light-emitting area
  • a third sub-pixel includes a third effective light-emitting area
  • a second effective light-emitting area The area of the region ⁇ a first effective light-emitting region ⁇ a third effective light-emitting region.
  • each of the first effective light-emitting regions, each of the second effective light-emitting regions, and each of the third effective light-emitting regions are separated.
  • each of the first effective light emitting regions, each of the second effective light emitting regions, and each of the third effective light emitting regions are defined by a plurality of separated openings formed in the pixel defining layer.
  • each first effective light-emitting region is defined by a light-emitting layer in the corresponding first sub-pixel, which is located between opposite anodes and cathodes in a direction perpendicular to the substrate and is driven to emit light.
  • each second effective light-emitting region is defined by a light-emitting layer in a corresponding second sub-pixel, which is located between the opposite anode and cathode in a direction perpendicular to the substrate substrate, and is driven to emit light.
  • each third effective light-emitting region is defined by a light-emitting layer in a corresponding third sub-pixel, which is located between the opposite anode and cathode in a direction perpendicular to the substrate and is driven to emit light.
  • each of the first effective light-emitting regions, each of the second effective light-emitting regions, and each of the third effective light-emitting regions is composed of a corresponding light-emitting layer and an electrode having carrier (hole or electron) transport with the corresponding light-emitting layer (Anode or cathode) or partial definition of an electrode.
  • each first effective light emitting area, each second effective light emitting area, and each third effective light emitting area are defined by at least a portion of the cathode and at least a portion of the anode that overlap in orthographic projection on the base substrate, And at least part of the cathode and at least part of the anode do not overlap with the orthographic projection of the first insulating layer on the base substrate, and the first insulating layer is located between the cathode and the anode in a direction perpendicular to the base substrate.
  • the first insulating layer includes a pixel defining layer.
  • each of the first sub-pixels, each of the second sub-pixels and each of the third sub-pixels respectively includes a first electrode, a light-emitting layer located on a side of the first electrode away from the base substrate, and a light-emitting layer located away from the first
  • the second electrode on one side of the electrode is further provided with a second insulating layer between the first electrode and the light-emitting layer, and/or between the second electrode and the light-emitting layer, in the direction perpendicular to the substrate substrate, and the second insulating layer Projecting overlap with the first electrode or the second electrode on the base substrate, and the second insulating layer has an opening, and the opening of the second insulating layer on the side facing the light-emitting layer can expose at least part of the first electrode or the second electrode , so that it can be in contact with the light-emitting layer or the functional layer of auxiliary light-emitting, each first effective light-emitting area, each second effective light-emitting area and each
  • the second insulating layer includes a pixel defining layer.
  • the auxiliary light-emitting functional layer may be a hole injection layer, a hole transport layer, an electron transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, an auxiliary light-emitting layer, an interface improvement layer, Any one or more of antireflection layers, etc.
  • the first electrode may be an anode and the second electrode may be a cathode.
  • the first electrode may include at least two layers of indium tin oxide (ITO), silver (A) g, such as three layers of ITO, Ag, and ITO.
  • the second electrode may include any one or more of magnesium (Mg), Ag, ITO, and indium zinc oxide (IZO), such as a mixed layer or alloy layer of Mg and Ag.
  • Each sub-pixel includes a light-emitting layer
  • each first sub-pixel includes a first-color light-emitting layer located in the opening and on the pixel-defining layer
  • each second sub-pixel includes a second-color light-emitting layer located in the opening and on the pixel-defining layer
  • each The third sub-pixel includes a third-color light-emitting layer within the opening and on the pixel-defining layer.
  • the first effective light-emitting area of the first sub-pixel is the area indicated by the arrow corresponding to R
  • the second effective light-emitting area of the second sub-pixel is the area indicated by the arrow corresponding to G
  • the third sub-pixel is the area indicated by the arrow corresponding to G.
  • the third effective light-emitting area of the pixel is the area indicated by the arrow corresponding to B
  • the frame around the effective light-emitting area is the area of the corresponding light-emitting layer.
  • the base substrate 10 may be a flexible base substrate, for example, including a first flexible material layer, a first inorganic material layer, a semiconductor layer, and a second flexible material layer stacked on the glass carrier 1 and the second inorganic material layer.
  • the materials of the first flexible material layer and the second flexible material layer are polyimide (PI), polyethylene terephthalate (PET), or a surface-treated soft polymer film.
  • the materials of the first inorganic material layer and the second inorganic material layer are silicon nitride (SiNx) or silicon oxide (SiOx), etc., which are used to improve the water and oxygen resistance of the substrate.
  • the layer is also referred to as a barrier layer.
  • the material of the semiconductor layer is amorphous silicon (a-si).
  • the preparation process includes: firstly coating a layer of polyimide on the glass carrier 1, and curing to form a film Then, a first flexible (PI1) layer is formed; then a barrier film is deposited on the first flexible layer to form a first barrier (Barrier1) layer covering the first flexible layer; then an amorphous layer is deposited on the first barrier layer A silicon film to form an amorphous silicon (a-si) layer covering the first barrier layer; then a layer of polyimide is coated on the amorphous silicon layer, and a second flexible (PI2) layer is formed after curing into a film; Then, a barrier film is deposited on the second flexible layer to form a second barrier (Barrier 2 ) layer covering the second flexible layer, and the preparation of the base substrate 10 is completed.
  • the driving structure layer includes a plurality of driving circuits, each of which includes a plurality of transistors and at least one storage capacitor, such as a 2T1C, 3T1C or 7T1C design.
  • the preparation process of the driving structure layer may refer to the following description.
  • the manufacturing process of the driving circuit of the first sub-pixel 21 is taken as an example for description.
  • a first insulating film and an active layer film are sequentially deposited on the base substrate 10, and the active layer film is patterned through a patterning process to form a first insulating layer 11 covering the entire base substrate 10, and a first insulating layer 11 disposed on the first insulating layer
  • the active layer pattern on 11, the active layer pattern includes at least the first active layer.
  • a second insulating film and a first metal film are sequentially deposited, and the first metal film is patterned through a patterning process to form a second insulating layer 12 covering the pattern of the active layer, and a first insulating layer 12 disposed on the second insulating layer 12
  • a gate metal layer pattern, the first gate metal layer pattern at least includes a first gate electrode and a first capacitor electrode.
  • a third insulating film and a second metal film are sequentially deposited, and the second metal film is patterned through a patterning process to form a third insulating layer 13 covering the first gate metal layer, and a third insulating layer 13 disposed on the third insulating layer 13
  • the second gate metal layer pattern at least includes a second capacitor electrode, and the position of the second capacitor electrode corresponds to the position of the first capacitor electrode.
  • a fourth insulating film is deposited, and the fourth insulating film is patterned by a patterning process to form a fourth insulating layer 14 pattern covering the second gate metal layer, and at least two first via holes are opened on the fourth insulating layer 14,
  • the fourth insulating layer 14, the third insulating layer 13 and the second insulating layer 12 in the two first via holes are etched away, exposing the surface of the first active layer.
  • a third metal film is deposited, the third metal film is patterned through a patterning process, and a source-drain metal layer pattern is formed on the fourth insulating layer 14, and the source-drain metal layer at least includes the first source electrode and the first source electrode located in the display area. drain electrode.
  • the first source electrode and the first drain electrode may be connected to the first active layer through first via holes, respectively.
  • the first active layer, the first gate electrode, the first source electrode and the first drain electrode may form the first transistor 210, and the first capacitor electrode and the second capacitor electrode may The first storage capacitor 212 is formed.
  • the driving circuit of the second sub-pixel 22 and the driving circuit of the third-color sub-pixel 23 can be formed at the same time.
  • the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 and the fourth insulating layer 14 are silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride ( Any one or more of SiON), which may be a single layer, a multi-layer or a composite layer.
  • the first insulating layer 11 is called a buffer layer, which is used to improve the water and oxygen resistance of the base substrate;
  • the second insulating layer 12 and the third insulating layer 13 are called gate insulating (GI, Gate Insulator) layers;
  • the fourth insulating layer 14 is called an interlayer insulating (ILD, Interlayer Dielectric) layer.
  • the first metal film, the second metal film and the third metal film are made of metal materials, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • the active layer film is made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si), One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a planar thin film of organic material is coated on the base substrate 10 on which the aforementioned patterns are formed, to form a planarization (PLN, Planarization) layer 15 covering the entire base substrate 10, and through masking, exposure,
  • PPN Planarization
  • a plurality of second via holes K2 are formed on the flat layer 15 in the display area.
  • the flat layer 15 in the plurality of second via holes K2 is developed away, exposing the surface of the first drain electrode of the first transistor 210 of the driving circuit of the first sub-pixel 21 and the surface of the first drain electrode of the driving circuit of the second sub-pixel 22 respectively.
  • the surface of the first drain electrode of a transistor and the surface of the first drain electrode of the first transistor of the driving circuit of the third color sub-pixel 23 are examples of the third color sub-pixel 23 .
  • the first electrode is a reflective anode.
  • a conductive thin film is deposited on the base substrate 10 on which the aforementioned patterns are formed, and the conductive thin film is patterned through a patterning process to form the first electrode pattern.
  • the first anode 213 of the first sub-pixel 21 is connected to the first drain electrode of the first transistor 210 through the second via K2
  • the second anode 223 of the second sub-pixel 22 is connected to the second sub-pixel 22 through the second via K2
  • the first drain electrode of the first transistor of the third color sub-pixel 23 is connected to the first drain electrode of the first transistor of the third color sub-pixel 23 through the second via K2.
  • the first electrode may employ a metallic material, such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • a metallic material such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • Various, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb) can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti, etc., or, a metal and Stacked structures formed of transparent conductive materials, such as reflective materials such as ITO/Ag/ITO, Mo/AlNd/ITO, etc.
  • a pixel definition layer (PDL, Pixel Definition Layer) pattern is formed.
  • a pixel definition film is coated on the base substrate 10 on which the aforementioned pattern is formed, and a pixel definition layer pattern is formed by masking, exposing, and developing processes.
  • the pixel definition layer 30 in the display area includes a plurality of sub-pixel definition parts 302, a plurality of pixel definition layer openings 301 are formed between adjacent sub-pixel definition parts 302, and the pixel definition layer 30 in the plurality of pixel definition layer openings 301 is developed and removed , at least part of the surface of the first anode 213 of the first subpixel 21 , at least part of the surface of the second anode 223 of the second subpixel 22 and at least part of the surface of the third anode 233 of the third color subpixel 23 are exposed, respectively.
  • the pixel definition layer 30 may employ polyimide, acrylic, polyethylene terephthalate, or the like.
  • a thin film of organic material is coated on the base substrate 10 on which the aforementioned pattern is formed, and a pattern of spacer pillars 34 is formed by masking, exposing, and developing processes.
  • the spacer posts 34 may act as a support layer configured to support the FMM during the evaporation process.
  • a repeating unit is spaced between two adjacent spacer columns 34.
  • the spacer columns 34 may be located in adjacent first sub-pixels 21 and third adjacent ones. between color sub-pixels 23 .
  • an organic functional layer and a second electrode are sequentially formed on the base substrate on which the pattern is formed.
  • the second electrode is a transparent cathode.
  • the light-emitting element can emit light from the side away from the base substrate 10 through the transparent cathode to realize top emission.
  • the organic functional layers of the light emitting element include: a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the hole injection layer 241 and the hole transport layer 242 are sequentially formed by vapor deposition on the base substrate 10 on which the aforementioned patterns are formed by using an open mask, and then the hole injection layer 241 and the hole transport layer 242 are sequentially vapor deposited by using FMM
  • the blue light-emitting layer 236 , the green light-emitting layer 216 and the red light-emitting layer 226 are formed, and then the electron transport layer 243 , the cathode 244 and the light coupling layer 245 are formed by successive evaporation using an open mask.
  • the hole injection layer 241 , the hole transport layer 242 , the electron transport layer 243 and the cathode 244 are all common layers of a plurality of sub-pixels.
  • the organic functional layer may further include: a microcavity adjustment layer between the hole transport layer and the light emitting layer.
  • FMM can be used to sequentially evaporate a blue microcavity adjusting layer, a blue light-emitting layer, a green microcavity adjusting layer, a green light-emitting layer, a red microcavity adjusting layer, and a red light-emitting layer.
  • the organic functional layer is formed in the sub-pixel region to realize the connection between the organic functional layer and the anode.
  • the cathode is formed on the pixel definition layer and connected to the organic functional layer.
  • the cathode may employ any one or more of magnesium (Mg), silver (Ag), aluminum (Al), or an alloy made of any one or more of the foregoing metals , or a transparent conductive material, such as indium tin oxide (ITO), or a multi-layer composite structure of metal and transparent conductive material.
  • Mg magnesium
  • Ag silver
  • Al aluminum
  • ITO indium tin oxide
  • a light coupling layer may be formed on the side of the cathode 244 away from the base substrate 10 , and the light coupling layer may be a common layer of a plurality of sub-pixels.
  • the light coupling layer can cooperate with the transparent cathode to increase the light output.
  • the material of the light coupling layer can be a semiconductor material. However, this embodiment does not limit this.
  • an encapsulation layer is formed on the base substrate 10 on which the aforementioned patterns are formed, and the encapsulation layer may include a stacked first encapsulation layer 41 , a second encapsulation layer 42 and a third encapsulation layer 43 .
  • the first encapsulation layer 41 is made of inorganic material and covers the cathode 244 in the display area.
  • the second encapsulation layer 42 adopts an organic material.
  • the third encapsulation layer 43 is made of inorganic material and covers the first encapsulation layer 41 and the second encapsulation layer 42 .
  • the encapsulation layer may adopt a five-layer structure of inorganic/organic/inorganic/organic/inorganic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、显示装置及高精度金属掩模板,显示基板包括:第一子像素(R),第二子像素(G)和第三子像素(B);在第一方向上第一子像素(R)和第三子像素(B)交替排列形成第一子像素排,第二子像素(G)形成第二子像素排;在第二方向上第一子像素排和第二子像素排交替排列;分布在相邻两行两列的两个第一子像素(R)和两个第三子像素(B)形成2*2矩阵,矩阵中两个第一子像素(R)、两个第三子像素(B)位于不同行列,两个第一子像素(R)和两个第三子像素(B)的中心连线形成一个虚拟四边形,第二子像素(G)位于虚拟四边形内;虚拟四边形内两个第一子像素(R)的中心、两个第三子像素(B)的中心分别到第二子像素(G)的中心的间距中至少有两个不同。使得虚拟像素亮度中心排布更均匀。

Description

显示基板、显示装置及高精度金属掩模板 技术领域
本公开涉及显示技术领域,具体涉及一种显示基板、显示装置及高精度金属掩模板。
背景技术
有机发光二极管显示器(Organic light-emitting diode,OLED)显示器件包括衬底基板、发光层及封装保护层,发光层包括在衬底基板上呈矩阵排列的子像素。各子像素一般通过精细金属掩模板(FMM)将有机发光材料蒸镀在阵列基板相应的子像素位置上。随着技术发展,人们对于显示装置的分辨率的要求也越来越高。
目前限于FMM的制作水平与蒸镀工艺精度,难以通过减小子像素尺寸和减小像素间距的方式增加高分辨率。常用的办法是子像素渲染(Sub-Pixel Rendering,SPR)技术,即利用不同的像素间共享某些位置的子像素,用相对较少的子像素模拟实现更高的分辨率。SPR增加了发光层的开口率,提高了显示器件的开口率和寿命。但是现有的像素排布结构,其虚拟像素亮度中心通常排布不均匀,因而显示一些文字和特定图形时,不可避免带来显示的颗粒感和扭曲感。
发明内容
有鉴于此,本公开提供一种显示基板、显示装置及高精度金属掩模板,用于解决现有的像素排布结构的虚拟像素亮度中心排布不均匀,带来显示的颗粒感和扭曲感的问题。
为解决上述技术问题,本公开采用以下技术方案:
第一方面,本公开实施例提供一种显示基板,包括:第一子像素,第二子像素和第三子像素;
在第一方向上,所述第一子像素和所述第三子像素交替排列形成第一子像素排,所述第二子像素形成第二子像素排;
在第二方向上,所述第一子像素排和所述第二子像素排交替排列,所述第一方向和所述第二方向大致垂直;
分布在相邻两行两列的两个第一子像素和两个第三子像素形成2*2矩阵,所述2*2矩阵中,所述两个第一子像素位于不同行不同列,所述两个第三子像素位于不同行不同列,所述两个第一子像素和所述两个第三子像素的中心连线形成一个虚拟四边形,所述第二子像素位于所述虚拟四边形内;
同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距中,至少有两个不同;
所述第三子像素包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,所述第三子像素在所述第一斜线方向上的宽度与在所述第二斜线方向上的宽度不同;和/或,所述第一子像素包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,所述第一子像素在所述第一斜线方向上的宽度与在所述第二斜线方向上的宽度不同;
其中,所述第二斜线方向与所述第一斜线方向大致垂直,且所述第二斜线方向与所述第一斜线方向,与第一方向和第二方向均相交。
可选的,所述虚拟四边形的内角范围为70°-120°。
可选的,同一所述虚拟四边形对应的两个第一子像素和两个第三子像素包围一个第二子像素,且该所述虚拟四边形以外的其他第一子像素和第三子像素到该第二子像素的最近距离均大于该两个第一子像素和两个第三子像素到该第二子像素的最近距离。
可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距中,任意两个的比值范围为0.7-1.3。
可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距差值,小于该虚拟四边形对应的所述两个第三子像 素的中心到所述第二子像素的中心的间距的差值。
可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距的差大致相等。
可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距范围为20-60μm。
可选的,所述第一子像素和所述第三子像素形状不同。
可选的,所述第一子像素和所述第三子像素均为轴对称图形,且至少一个所述第一子像素的一个对称轴和至少一个所述第三子像素的一个对称轴平行且不重合;和/或,
所述第一子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第一子像素在第一斜向方向的对称轴不重合;和/或,
所述第三子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第三子像素在第一斜向方向的对称轴不重合。
可选的,在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三子像素的中心的间距不等,所述第二子像素的中心与两个所述第一子像素的中心的间距大致相等;
或者
在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三子像素的中心的间距大致相等,所述第二子像素的中心与两个所述第一子像素的中心的间距大致相等;
或者
在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三子像素的中心的间距大致相等,所述第二子像素的中心与两个所述第一子像素的中心的间距不等。
可选的,在至少一个所述虚拟四边形内,所述第二子像素与第一个所述第三子像素的间距为L1,所述第二子像素与第二个所述第三子像素的中心的 间距为L2,所述第二子像素与两个所述第一子像素的间距均为L1;
或者
在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距、两个所述第一子像素的间距均为L1;
或者
在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距、两个所述第一子像素的间距均为L2;
或者
在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距均为L1,所述第二子像素与第一个所述第一子像素的间距为L1,与第二个所述第一子像素的间距为L2;
或者
在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距均为L2,所述第二子像素与两个所述第一子像素的间距均为L1;
其中,L2大于L1。
可选的,L2与L1之差大于或等于1μm,L1的范围为12~30μm。
可选的,所述虚拟四边形为直角梯形,两个内角为90°,另外两个内角一个为钝角,一个为锐角。
可选的,所述虚拟四边形的所有内角的范围为70°至120°。
可选的,部分所述虚拟四边形为第一平行四边形,部分所述虚拟四边形为第二平行四边形,在行方向和列方向上,所述第一平行四边形和所述第二平行四边形交替排布,所述第一平行四边形和所述第二平行四边形的至少一个内角角度不同。
可选的,所述第一平行四边形和所述第二平行四边形的锐角的范围为大于或等于70°大于90°。
可选的,所述第三子像素和/或所述第一子像素在所述第一斜线方向和所述第二斜线方向上的宽度之差大于或等于1μm。
可选的,所述第二子像素在所述第一斜线方向和所述第二斜线方向上的宽度不同。
可选的,在所述虚拟四边形内,所述第二子像素相对在所述第一斜线方向或第二斜线方向上相邻排布的两个所述第三子像素的中心连线大致对称,且相对在所述第二斜线方向或第一斜线方向上相邻排布的两个所述第一子像素的中心连线大致对称。
可选的,呈阵列排布的四个虚拟四边形构成一虚拟多边形,且所述第一子像素和所述第三子像素位于第二虚拟多边形的顶角或边上,且沿顺时针方向交替分布于该虚拟多边形的边或顶角位置上。
可选的,在虚拟多边形内,位于同一行的所述第三子像素的中心大致在平行行方向的一条直线上,和/或,位于同列第三子像素的中心大致在平行列方向的一条直线上。
可选的,在所述虚拟多边形内,位于同一行的所述第二子像素的中心大致在平行行方向的一条直线上,和/或,位于同一列的所述第二子像素的中心大致在平行列方向的一条直线上。
可选的,所述第三子像素、第二子像素和第一子像素的各自的总开口面积依次减小,所述第一子像素的总开口面积为x,所述第二子像素的总开口面积为a*x,所述第三子像素的总开口面积为b*x,其中,0.5≤a≤0.8,1≤b≤2.2。
可选的,所述第一子像素、所述第二子像素和所述第三子像素的形状选自多边形、圆形、椭圆形中的任一种。
可选的,所述第一子像素、所述第二子像素和所述第三子像素的形状选自四边形、六边形、八边形、具有倒圆角的四边形、具有倒圆角的六边形或具有倒圆角的八边形、圆形,椭圆形中的任意一种。
可选的,所述第一子像素为红色子像素,所述第二子像素为绿色子像素,所述第三子像素为蓝色子像素。
第二方面,本公开实施例提供一种显示装置,包括上述第一方面的显示基板。
可选的,所述显示装置还包括像素界定层,所述像素界定层包括多个像素界定层开口,各所述第一子像素、各所述第二子像素、各所述第三子像素各自分别对应一个像素界定层开口,所述第一子像素、所述第二子像素、所述第三子像素的形状与其对应的像素界定层的开口形状大致相同。
可选的,所述第一子像素包括多层膜层,且所述第一子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第二子像素包括多层膜层,且所述第二子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第三子像素包括多层膜层,且所述第三子像素的多层膜层至少部分覆盖像素界定层开口之外的区域。
可选的,所述像素界定层开口至少部分形状或面积不同。
可选的,对应于所述第一子像素或第三子像素的像素界定层开口,至少部分形状或面积不同。
可选的,对应于所述第一子像素或第三子像素的像素界定层开口至少部分到相邻开口的最近距离不相等。
第三方面,本公开实施例提供一种高精度金属掩模板,用于制作上述第一方面的显示基板,所述第一子像素包括多层膜层,所述第二子像素包括多层膜层,所述第三子像素包括多层膜层,所述掩模板包括:多个开口区域,所述多个开口区域包括与所述第一子像素中的至少一个膜层的形状和分布对应的第一开口区域、或与所述第二子像素中的至少一个膜层的形状和分布对应的第二开口区域、或与所述第三子像素中的至少一个膜层的形状和分布对应的第三开口区域。
本公开上述技术方案的有益效果如下:
本公开实施例中,一方面,通过共享子像素,可以实现更高的分辨率,另一方面,通过设置第一像素和/或第三子像素在不同斜线方向上的宽度不同,使得虚拟四边形中两个第一子像素的中心、两个第三子像素的中心,分别到第二子像素的中心的间距中,至少有两个不同,从而实现虚拟像素的亮度中心排布更均匀,避免显示的颗粒感和扭曲感,提高显示效果。再一方面,也 无需移动子像素的位置,就可以使得虚拟像素的亮度中心产生位移,实现成本较低。
附图说明
图1为相关技术中的像素排布结构的示意图;
图2为本公开实施例的显示基板的示意图;
图3和5为本公开实施例一的显示基板的示意图;
图4和6为本公开实施例二的显示基板的示意图;
图7-图13为本公开实施例的显示基板与发光层的开口区域的位置关系示意图;
图14-图15为本公开实施例三的显示基板的示意图;
图16-图18分别为用于制作上述实施例的显示基板中第一子像素、第二子像素和第三子像素的高精度金属掩模板的示意图;
图19为本公开实施例的显示基板的剖面结构的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
请参考图1,图1为相关技术中的像素排布结构示意图,图1中蓝色子像素(B)和红色子像素(R)均为正方形,该种结构下,在第i-1行,第j列虚拟像素与第j+1列的虚拟像素的亮度中心(图中黑点)的间距l1,大于第j列虚拟像素与第j-1列的虚拟像素的亮度中心的间距l2,在第i行,第j列虚拟像素与第j+1列的虚拟像素的亮度中心(图中黑点)的间距,小于第j列虚拟像素与第j-1列的虚拟像素的亮度中心的间距,从而导致在显示竖线或者竖线为主的图像 时,人眼会有可察觉到的扭曲感和颗粒感。
为解决上述问题,请参考图2,本公开实施例提供一种显示基板,包括:第一子像素R,第二子像素G和第三子像素B;
在第一方向上,所述第一子像素R和所述第三子像素B交替排列形成第一子像素排,所述第二子像素G形成第二子像素排;
在第二方向上,所述第一子像素排和所述第二子像素排交替排列,所述第一方向和所述第二方向垂直或大致垂直;
分布在相邻两行两列的两个第一子像素R和两个第三子像素B形成2*2矩阵,所述2*2矩阵中,所述两个第一子像素R位于不同行不同列,所述两个第三子像素B位于不同行不同列,所述两个第一子像素R和所述两个第三子像素B的中心连线形成一个虚拟四边形,所述第二子像素G位于所述虚拟四边形内;
同一所述虚拟四边形对应的所述两个第一子像素R的中心、所述两个第三子像素B的中心,分别到所述第二子像素G的中心的间距中,至少有两个不同;
所述第三子像素B包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,所述第三子像素B在第一斜线方向上的宽度与在第二斜线方向上的宽度不同(其中一个为W1,一个为H1),其中,所述第二斜线方向与所述第一斜线方向垂直或大致垂直,且所述第二斜线方向与所述第一斜线方向,与第一方向和第二方向均相交。
从图2中可以看出,位于同一排的相邻的第一子像素R和第三子像素B,与下一排的一个第二子像素G,组成一个虚拟像素(图中的三角形),且,同一行相邻的虚拟像素共享一个第一子像素R或一个第三子像素B。
另外,从图2中也可以看出,本公开实施例中,位于同一行的相邻虚拟像素的亮度中心之间的间距的差异,要小于相关技术中同一行的相邻虚拟像素的亮度中心之间的间距的差异,即本公开实施例中虚拟像素的亮度中心排布更均匀。
本公开实施例中,一方面,通过共享子像素,可以实现更高的分辨率,另一方面,通过设置第三子像素在不同斜线方向上的宽度不同,使得虚拟四边形中两个第一子像素的中心、两个第三子像素的中心,分别到第二子像素的中心的间距中,至少有两个不同,从而实现虚拟像素的亮度中心排布更均匀,避免显示的颗粒感和扭曲感,提高显示效果。再一方面,也无需移动子像素的位置,就可以使得虚拟像素的亮度中心产生位移,实现成本较低。
本公开实施例中,可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距中,至少有两个相同。
本公开实施例中,可选的,所述虚拟四边形的内角范围为70°-120°。
本公开实施例中,可选的,同一所述虚拟四边形对应的两个第一子像素和两个第三子像素包围一个第二子像素,且该所述虚拟四边形以外的其他第一子像素和第三子像素到该第二子像素的最近距离均大于该两个第一子像素和两个第三子像素到该第二子像素的最近距离。所述距离可以是子像素的边界距离。另外,若子像素的图形有圆角,圆角部分的距离可能会有部分偏差,所以距离大小需要考虑圆角带来的误差,或者测量误差,例如3微米左右的偏差,视为是等同的。
本公开实施例中,可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距中,任意两个的比值范围为0.7-1.3。
本公开实施例中,可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距差值,小于该虚拟四边形对应的所述两个第三子像素的中心到所述第二子像素的中心的间距的差值。
进一步可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距相等或大致相等。
本公开实施例中,可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距的差值,小于该虚拟四边形对应 的所述两个第三子像素的中心到所述第二子像素的中心的间距的差值。
可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距范围为20-60μm。进一步可选的,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距范围为25-50μm,或者,30-48μm。
本公开实施例中,可选的,所述第一子像素和所述第三子像素形状不同。,例如其中一个是正方形,另一个是长方形,或者,所述第一子像素和所述第三子像素均为长方形,但长宽比不同。
本公开实施例中,可选的,所述第一子像素和/或所述第三子像素为长方形时,长宽比可以为1.2~1.8。
本公开实施例中,可选的,所述第二子像素的长宽比可以为1.2~1.3。
本公开实施例中,可选的,所述第一子像素和所述第三子像素均为轴对称图形,且至少一个所述第一子像素的一个对称轴和至少一个所述第三子像素的一个对称轴平行且不重合;和/或,
所述第一子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第一子像素在第一斜向方向的对称轴不重合;和/或,
所述第三子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第三子像素在第一斜向方向的对称轴不重合。
上述实施例中提到,所述虚拟四边形中,所述两个第一子像素R的中心、所述两个第三子像素B的中心,分别到所述第二子像素G的中心的间距中,至少有两个不同,下面举例进行说明。
本公开的一些实施例中,可选的,请参考图3,本公开实施例一中,在至少一个所述虚拟四边形内(参见图3左侧的两个虚拟四边形),所述第二子像素G的中心与第一个所述第三子像素B的中心的间距D1,与所述第二子像素G的中心与第二个所述第三子像素B的中心的间距D2不等,所述第二子像素G的中心与第一个所述第一子像素R的中心的间距,与所述第二子像 素G的中心与第二个所述第一子像素R的中心的间距大致相等,均为D3。可选的,D2大于D1。可选的,D1大于D3。
本公开的一些实施例中,可选的,请参考图3和图4,在至少一个所述虚拟四边形内(参见图3右侧的两个虚拟四边形、图4中的虚拟四边形)所述第二子像素的中心与两个所述第三子像素的中心的间距大致相等,均为D1或D2,所述第二子像素的中心与两个所述第一子像素的中心的间距大致相等,均为D3。可选的,D2大于D1。可选的,D1大于D3。
上述图3所示的实施例一中,位于相同行的第三子像素B在第一斜线方向上的宽度相同(即长边的方向相同),位于相同列的第三子像素B在第一斜线方向上的宽度相同(即长边的方向相同),位于相邻行相邻列的第三子像素B在第一斜线方向上的宽度不同(即长边方向相互垂直或大致垂直,图3中长边方向用虚线箭头表示)。
上述图4所示的实施例二中,所有第三子像素B在第一斜线方向上的宽度均相同(即长边的方向均相同,图4中长边方向用虚线箭头表示)。
上述图3和图4所示的实施例中,位于同一行的第一子像素R和第三子像素B不在同一条直线上,位于同一列的第一子像素R和第三子像素B不在同一条直线上。
本公开实施例中,呈阵列排布的四个虚拟四边形构成一虚拟多边形(可以是虚拟四边形也可以是虚拟八边形等),且所述第一子像素和所述第三子像素位于虚拟多边形的顶角或边上,且沿顺时针方向交替分布于该虚拟多边形的边或顶角位置上。
本公开实施例中,在虚拟多边形内,位于同一行的所述第三子像素的中心大致在平行行方向的一条直线上,和/或,位于同列第三子像素的中心大致在平行列方向的一条直线上。
本公开实施例中,在所述虚拟多边形内,位于同一行的所述第二子像素的中心大致在平行行方向的一条直线上,和/或,位于同一列的所述第二子像素的中心大致在平行列方向的一条直线上。
上述图3和图4所示的实施例中,呈阵列排布的四个虚拟四边形构成一个虚拟八边形,该虚拟八边形作为一个重复单元。四个第一子像素R和四个第三子像素B的中心位于所述虚拟八边形的顶点,且第一子像素R和第三子像素B顺时针交替设置。其中一个第三子像素B位于虚拟八边形的中心。
本公开实施例中,可选的,在虚拟四边形内,所述第二子像素G相对在所述第一斜线方向或第二斜线方向上相邻排布的所述第三子像素B的中心连线大致对称,即,第二子像素G在两个第三子像素B的对称轴上。可选的,如图5所示,其中一个第三子像素B在该对称轴方向的宽度小于另一对称轴上方向上的宽度,另一个第三子像素B在该对称轴方向的宽度大于另一对称轴上方向上的宽度(即虚拟四边形内的两个第三子像素B的长边垂直或大致垂直),或者,如图6所示,两个第三子像素B在该对称轴方向的宽度均小于另一对称轴上方向上的宽度(即虚拟四边形内的两个第三子像素B的长边平行)。
在上面实施例中的不同情况下,虚拟四边形内的各子像素之间的间距也发生变化,至少存在部分虚拟四边形,两个第三子像素B与第二子像素G之间的间距不同。下面举例进行说明。
所谓子像素之间的间距,是指子像素的两靠近的平行边之间的垂直距离。
本公开的一些实施例中,可选的,请参考图5,在至少一个所述虚拟四边形内(图5中的左侧的两个虚拟四边形),所述第二子像素G与第一个所述第三子像素B的间距为L1,所述第二子像素G与第二个所述第三子像素B的中心的间距为L2,所述第二子像素G与两个所述第一子像素R的间距均为L1,其中,L2大于L1。
本公开的一些实施例中,可选的,请参考图5和图6,在至少一个所述虚拟四边形内,所述第二子像素G与两个所述第三子像素B的间距、两个所述第一子像素R的间距均为L1(图5中的右侧的两个虚拟四边形、图6除左上角之外的其他三个虚拟四边形)或均为L2(图未示出),其中,L2大于L1。
本公开的一些实施例中,可选的,请参考图6(图6左上角的虚拟四边 形),在至少一个所述虚拟四边形内,所述第二子像素G与两个所述第三子像素B的间距均为L2,所述第二子像素G与两个所述第一子像素R的间距均为L1,其中,L2大于L1。
上述实施例中,可选的,L2与L1之差大于或等于1μm,进一步可选的,L2与L1之差大于或等于2μm或3μm。
上述实施例中,可选的,L1的范围为12~30μm,进一步可选的,L1的范围为14~28μm,进一步可选的,L1的范围为16~26μm。
本公开实施例中,可选的,所述虚拟四边形的所有内角的范围为70°至120°。进一步可选的,所述虚拟四边形的内角包括至少一个钝角,或至少一个锐角。
本公开实施例中,可选的,请参考图3和图5,所述虚拟四边形为直角梯形,两个内角为90°,另外两个内角一个为钝角,为X°,一个为锐角,为Y°。其中,钝角的范围为大于90°小于或等于100°,进一步可选的,为91°-96°,锐角的范围为大于或等于80°大于90°,进一步可选的,为84°-89°。
从图3和图5中可以看出,一个虚拟四边形绕位于虚拟八边形中心的第三子像素的中心旋转90°+X°,或者,旋转90°+Y°,则可以与对角的虚拟四边形重合。
本公开实施例中,可选的,部分所述虚拟四边形为第一平行四边形,部分所述虚拟四边形为第二平行四边形,在行方向和列方向上,所述第一平行四边形和所述第二平行四边形交替排布,所述第一平行四边形和所述第二平行四边形的内角不同。所述第一平行四边形和所述第二平行四边形的至少一个内角的角度不同,可以是四个内角都不同,也可以是有相同角度的内角,但其朝向不同。朝向不同是指,构成第一内角的两个边和构成第二内角的两个边,至少有一个边是不平行的。
可选的,第二平行四边形可以为矩形。矩形包括长方形和正方形。
本公开实施例中,可选的,请参考图4和图6,其中,部分所述虚拟四 边形为平行四边形,部分所述虚拟四边形为正方形,在行方向和列方向上,所述平行四边形和所述正方形交替排布。
本公开实施例中,可选的,所述第一平行四边形和所述第二平行四边形的锐角Z的范围为大于或等于70°小于90°,进一步可选的,为84°-89°。
从图4和图6中可以看出,一个虚拟八边形中的,两个对角的虚拟四边形为平行四边形,另外两个对角的虚拟四边形为正方形,两个正方形相同,两个平行四边形不同。
上述实施例中,可选的,所述第三子像素在所述第一斜线方向和所述第二斜线方向上的宽度之差大于或等于1μm,进一步可选的,大于或等于3μm。
上述实施例中,可选的,所述第一子像素R为正方形。
本公开实施例中,可选的,通过将第三子像素B在第一斜线方向或第二斜线方向去除一定的宽度(图中第三子像素B一侧的空白区域为去除区域),改变第三子像素B的形状,以实现所述虚拟四边形内所述两个第一子像素R的中心、所述两个第三子像素B的中心,分别到所述第二子像素G的中心的间距中,至少有两个不同。
请参考图7和图8,图中第一子像素R、第二子像素G和第三子像素B外围的框体为发光层的开口区域,第三子像素B在第一斜线方向或第二斜线方向去除一定的宽度后,去除的一边与外围发光层的开口区域的边界的距离为m1,大于其他边与外围发光层的开口区域的边界的距离m2。
上述实施例仅为示例,在一个虚拟八边形中,各个第三子像素B去除宽度的边不限于此,且可以任意组合,请参考图9-图13。参考图7-图13,一个第三子像素B,可以在垂直第一斜线方向的两个边,平行第一斜线方向的两个边中的任意一处去除一定的宽度。
请参考图14,本公开实施例三提供一种显示基板,包括:第一子像素R,第二子像素G和第三子像素B;
在第一方向上,所述第一子像素R和所述第三子像素B交替排列形成第一子像素排,所述第二子像素G形成第二子像素排;
在第二方向上,所述第一子像素排和所述第二子像素排交替排列,所述第一方向和所述第二方向垂直或大致垂直;
分布在相邻两行两列的两个第一子像素R和两个第三子像素B形成2*2矩阵,所述2*2矩阵中,所述两个第一子像素R位于不同行不同列,所述两个第三子像素B位于不同行不同列,所述两个第一子像素R和所述两个第三子像素B的中心连线形成一个虚拟四边形,所述第二子像素G位于所述虚拟四边形内;
同一所述虚拟四边形对应的所述两个第一子像素R的中心、所述两个第三子像素B的中心,分别到所述第二子像素G的中心的间距中,至少有两个不同;
所述第一子像素R包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,在第一斜线方向上的宽度与在第二斜线方向上的宽度不同(其中一个为W2,一个为H2),其中,所述第二斜线方向与所述第一斜线方向垂直或大致垂直,且所述第二斜线方向与所述第一斜线方向,与第一方向和第二方向均相交。
从图14中可以看出,位于同一排的相邻的第一子像素R和第三子像素B,与下一排的一个第二子像素G,组成一个虚拟像素(图中的三角形),且,同一行相邻的虚拟像素共享一个第一子像素R或一个第三子像素B。
本公开实施例中,一方面,通过共享子像素,可以实现更高的分辨率,另一方面,通过设置第一子像素在不同斜线方向上的宽度不同,使得虚拟四边形中两个第一子像素的中心、两个第三子像素的中心,分别到第二子像素的中心的间距中,至少有两个不同,从而实现虚拟像素的亮度中心排布更均匀,避免显示的颗粒感和扭曲感,提高显示效果。再一方面,也无需移动子像素的位置,就可以使得虚拟像素的亮度中心产生位移,实现成本较低。
上述实施例中提到,所述虚拟四边形中,所述两个第一子像素R的中心、所述两个第三子像素B的中心,分别到所述第二子像素G的中心的间距中,至少有两个不同,下面举例进行说明。
在本公开的一些实施例中,可选的,请参考图7(图7右侧两个虚拟四边形),在至少一个所述虚拟四边形内,所述第二子像素G的中心与第一个所述第三子像素B的中心的间距,与所述第二子像素G的中心与第二个所述第三子像素B的中心的间距大致相等,均为D1,所述第二子像素G的中心与第一个所述第一子像素R的中心的间距D3,与所述第二子像素G的中心与第二个所述第一子像素R的中心的间距D4不等。
在本公开的一些实施例中,可选的,请参考图14,在至少一个所述虚拟四边形内(图14左侧两个虚拟四边形),所述第二子像素G的中心与第一个所述第三子像素B的中心的间距,与所述第二子像素G的中心与第二个所述第三子像素B的中心的间距大致相等,均为D1,所述第二子像素G的中心与第一个所述第一子像素R的中心的间距,与所述第二子像素G的中心与第二个所述第一子像素R的中心的间距大致相等,均为D3。
上述图14所示的实施例三中,位于相同行的第一子像素R在第一斜线方向上的宽度相同(即长边的方向相同),位于相同列的第三子像素B在第一斜线方向上的宽度相同(即长边的方向相同),位于相邻行相邻列的第一子像素R在第一斜线方向上的宽度不同(即长边方向相互垂直或大致垂直,图14中长边方向用虚线箭头表示)。
当然,在本公开的其他一些实施例中,可选的,所有第一子像素R在第一斜线方向上的宽度均相同(即长边的方向均相同)。
上述图14所示的实施例中,位于同一行的第一子像素R和第三子像素B不在同一条直线上,位于同一列的第一子像素R和第三子像素B不在同一条直线上。
本公开实施例中,呈阵列排布的四个虚拟四边形构成一虚拟多边形(可以是虚拟四边形也可以是虚拟八边形等),且所述第一子像素和所述第三子像素位于虚拟多边形的顶角或边上,且沿顺时针方向交替分布于该虚拟多边形的边或顶角位置上。
本公开实施例中,在虚拟多边形内,位于同一行的所述第三子像素的中 心大致在平行行方向的一条直线上,和/或,位于同列第三子像素的中心大致在平行列方向的一条直线上。
本公开实施例中,在所述虚拟多边形内,位于同一行的所述第二子像素的中心大致在平行行方向的一条直线上,和/或,位于同一列的所述第二子像素的中心大致在平行列方向的一条直线上。
上述图14所示的实施例中,呈阵列排布的四个虚拟四边形构成一虚拟八边形,该虚拟八边形作为一个重复单元。四个第一子像素R和四个第三子像素B的中心位于所述虚拟八边形的顶点,且第一子像素R和第三子像素B顺时针交替设置。其中一个第三子像素B位于虚拟八边形的中心。
本公开实施例中,可选的,在虚拟四边形内,所述第二子像素G相对在所述第二斜线方向或第一斜线方向上相邻排布的两个所述第一子像素R的中心连线大致对称,即,第二子像素G在两个第一子像素B的对称轴上。可选的,如图14所示,其中一个第一子像素R在该对称轴方向的宽度小于另一对称轴上方向上的宽度,另一个第一子像素R在该对称轴方向的宽度大于另一对称轴上方向上的宽度(即虚拟四边形内的两个第三子像素B的长边垂直或大致垂直),或者,两个第一子像素R在该对称轴方向的宽度均小于另一对称轴上方向上的宽度(即虚拟四边形内的两个第一子像素R的长边平行)。
在上面实施例中的不同情况下,虚拟四边形内的各子像素之间的间距也发生变化,至少存在部分虚拟四边形,两个第一子像素R与第二子像素G之间的间距不同。下面举例进行说明。
在本公开的一些实施例中,可选的,请参考图15,在至少一个所述虚拟四边形内,所述第二子像素G与两个所述第三子像素B的间距、两个所述第一子像素R的间距均为L1(图15左侧两个虚拟四边形)或均为L2(图未示出),其中,L2大于L1。
在本公开的一些实施例中,可选的,请参考图15,在至少一个所述虚拟四边形内(图8右侧两个虚拟四边形),所述第二子像素G与两个所述第三子像素B的间距均为L1,所述第二子像素G与第一个所述第一子像素R的 间距为L1,与第二个所述第一子像素R的间距为L2,其中,L2大于L1。
上述实施例中,可选的,L2与L1之差大于或等于1μm,进一步可选的,L2与L1之差大于或等于2μm或3μm。
上述实施例中,可选的,L1的范围为12~30μm,进一步可选的,L1的范围为14~28μm,进一步可选的,L1的范围为16~26μm。
本公开实施例中,可选的,请参考图14,所述虚拟四边形为直角梯形,两个内角为90°,另外两个内角一个为钝角,为X°,一个为锐角,为Y°。其中,钝角的范围为大于90°小于或等于100°,进一步可选的,为91°-96°,锐角的范围为大于或等于80°大于90°,进一步可选的,为84°-89°。
从图14中可以看出,一个虚拟四边形绕位于虚拟八边形中心的第三子像素的中心旋转90°+X°,或者,旋转90°+Y°,则可以与对焦的虚拟四边形重合。
上述实施例中,可选的,所述第一子像素在所述第一斜线方向和所述第二斜线方向上的宽度之差大于或等于1μm,进一步可选的,大于或等于3μm。
上述图14和图15所示的实施例中,可选的,所述第三子像素B为正方形。
上述图3-图6所示的实施例中,第三子像素在不同斜线方向上宽度不同,图14和与15所示的实施例中,第一子像素在不同斜线方向上的宽度不同,在本公开的其他一些实施例中,也可以,第一子像素和第三子像素同时在不同斜线方向上的宽度不同。
本公开的上述各实施例中,可选的,所述第二子像素G在所述第一斜线方向和所述第二斜线方向上的宽度不同。
本公开的上述各实施例中,可选的,在一个所述虚拟四边形内,所述第二子像素G相对在所述第一斜线方向或第二斜线方向上相邻排布的两个所述第三子像素B的中心连线大致对称,且相对在所述第二斜线方向或第一斜线方向上相邻排布的两个所述第一子像素R的中心连线大致对称。
人眼对第一子像素R,第二子像素G和第三子像素B的分辨能力不同, 三种子像素的亮度效应也不相同,其中第二子像素G亮度效应最大,其次是第一子像素R,第三子像素B亮度效应最小;同时不同颜色的有机发光材料,其器件寿命不相同,因此,可选的,子像素的总开口面积:第三子像素B>第二子像素G>第一子像素R。即所述第三子像素B、第二子像素G和第一子像素R的总开口面积依次减小,所述第一子像素R的总开口面积为x,所述第二子像素G的总开口面积为a*x,所述第三子像素B的总开口面积为b*x,其中,0.5≤a≤0.8,1≤b≤2.2。本公开实施例中,子像素的总开口面积是指子像素在整个面板上的总发光面积。本公开的上述各实施例中,均以所述第一子像素、所述第二子像素和所述第三子像素的形状为具有倒圆角的四边形为例进行说明,在本公开的其他一些实施例中,可选的,所述第一子像素、所述第二子像素和所述第三子像素的形状也可以为其他多边形;或,所述第一子像素、所述第二子像素和所述第三子像素的形状也可以选自具有倒圆角的其他类型的多边形、圆形、椭圆形中的任一种。
在本公开的其他一些实施例中,可选的,所述第一子像素、所述第二子像素和所述第三子像素的形状还可以选自四边形、六边形、八边形、具有倒圆角的六边形或具有倒圆角的八边形、圆形、椭圆形中的任一种。
本公开的上述各实施例中,均以所述第一子像素为红色子像素(R),所述第二子像素为绿色子像素(G),所述第三子像素为蓝色子像素(B)为例进行说明,本公开也不排除采用其他颜色的子像素。
本公开的上述各实施例中,第一子像素、第二子像素和第三子像素的个数比例为1:2:1,从而实现子像素共用,提高分辨率。
本公开实施例还提供一种显示装置,包括上述显示基板。
本公开实施例中,可选的,所述显示装置还包括像素界定层,所述像素界定层包括多个像素界定层开口,各所述第一子像素、各所述第二子像素、各所述第三子像素各自分别对应一个像素界定层开口,所述第一子像素、所述第二子像素、所述第三子像素的形状与其对应的像素界定层的开口形状大致相同。
本公开实施例中,可选的,所述第一子像素包括多层膜层,且所述第一子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第二子像素包括多层膜层,且所述第二子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第三子像素包括多层膜层,且所述第三子像素的多层膜层至少部分覆盖像素界定层开口之外的区域。
本公开实施例中,可选的,所述像素界定层开口至少部分形状或面积不同。
本公开实施例中,可选的,对应于所述第一子像素或第三子像素的像素界定层开口,至少部分形状或面积不同。
本公开实施例中,可选的,对应于所述第一子像素或第三子像素的像素界定层开口至少部分到相邻开口的最近距离不相等。
本公开实施例还提供一种高精度金属掩模板,用于制作上述任一实施例中的显示基板,所述第一子像素包括多层膜层,所述第二子像素包括多层膜层,所述第三子像素包括多层膜层,所述掩模板包括:多个开口区域,所述多个开口区域包括与所述第一子像素中的至少一个膜层的形状和分布对应的第一开口区域、或与所述第二子像素中的至少一个膜层的形状和分布对应的第二开口区域、或与所述第三子像素中的至少一个膜层的形状和分布对应的第三开口区域。
其中,形状是指图形类型和/或大小等,分布是指间距、朝向和/或密度等。
请参考图16-图18,为用于分别制作上述实施例中的显示基板的第一子像素、第二子像素和第三子像素的高精度金属掩模板的示意图,图中在淹没板的开口区域内示出了第一子像素、第二子像素或第三子像素,该第一子像素、第二子像素或第三子像素不属于掩模板的一部分。
在一些实施例中,一个第一子像素包括一个第一有效发光区,一个第二子像素包括一个第二有效发光区,一个第三子像素包括一个第三有效发光区,一个第二有效发光区的面积<一个第一有效发光区<一个第三有效发光区。在一个显示基板上,第三子像素包括的所有第三有效发光区的总面积>第二子像 素包括的所有第三有效发光区的总面积>第一子像素包括的所有第三有效发光区的总面积。在一些实施例中,各第一有效发光区、各所述第二有效发光区、各所述第三有效发光区是分隔开的。在一些实施例中,各第一有效发光区、各所述第二有效发光区、各所述第三有效发光区由像素限定层中形成的多个分隔的开口限定。在一些实施例中,各第一有效发光区由对应的第一子像素中,由在垂直衬底基板方向上,位于相对的阳极和阴极之间,并且被驱动发光的发光层限定。在一些实施例中,各第二有效发光区由对应的第二子像素中,由在垂直衬底基板方向上,位于相对的阳极和阴极之间,并且被驱动发光的发光层限定。在一些实施例中,各第三有效发光区由对应的第三子像素中,由在垂直衬底基板方向上,位于相对的阳极和阴极之间,并且被驱动发光的发光层限定。在一些实施例中,各第一有效发光区、各第二有效发光区和各第三有效发光区由对应的发光层以及与对应的发光层有载流子(空穴或电子)传输的电极(阳极或阴极)或电极的部分限定。在一些实施例中,各第一有效发光区、各第二有效发光区和各第三有效发光区,由在衬底基板上的正投影交叠的阴极的至少部分和阳极的至少部分限定,且该阴极的至少部分和阳极的至少部分与第一绝缘层在衬底基板上的正投影不交叠,该第一绝缘层在垂直衬底基板方向上,位于阴极和阳极之间。例如该第一绝缘层包括像素限定层。在一些实施例中,各第一子像素、各第二子像素和各第三子像素分别包括第一电极,位于第一电极远离衬底基板一侧的发光层,和位于发光层远离第一电极一侧的第二电极,在垂直衬底基板方向上,在第一电极和发光层之间,和/或第二电极和发光层之间还设置有第二绝缘层,该第二绝缘层与第一电极或第二电极在衬底基板上投影交叠,并且第二绝缘层具有开口,在面向发光层的一侧第二绝缘层的开口可以暴露至少部分的第一电极或第二电极,使其与发光层或辅助发光的功能层能够接触,各第一有效发光区、各第二有效发光区和各第三有效发光区由所述第一电极或第二电极中与发光层或辅助发光的功能层接触的部分限定。在一些实施例中,所述第二绝缘层包括像素限定层。在一些实施例中,所述辅助发光的功能层可以为空穴注入 层,空穴传输层,电子传输层,空穴阻挡层,电子阻挡层,电子注入层,辅助发光层,界面改善层,增透层等中的任意一层或多层。在一些实施例中,第一电极可以为阳极,第二电极可以为阴极。在一些实施例中,第一电极可以包括氧化铟锡(ITO),银(A)g的至少两层叠层,例如为ITO,Ag,ITO三层叠层。在一些实施例中,第二电极可以包括镁(Mg)、Ag、ITO、氧化铟锌(IZO)中任意一种或多种,例如为Mg和Ag的混合层或合金层。
各子像素包括发光层,各第一子像素包括位于开口内以及像素限定层上的第一颜色发光层,各第二子像素包括位于开口内以及像素限定层上的第二颜色发光层,各第三子像素包括位于开口内以及像素限定层上的第三颜色发光层。
请参考图8,图8中,第一子像素的第一有效发光区即R对应的箭头所指区域,第二子像素的第二有效发光区即G对应的箭头所指区域,第三子像素的第三有效发光区即B对应的箭头所指区域,而有效发光区外围的框体则是对应的发光层的区域。
在一些示例性实施方式中,本实施例的显示基板的制备过程可以包括以下步骤(1)至步骤(9)。在本示例性实施例中,请参考图19,以顶发射结构的柔性显示基板为例进行说明。
(1)、在玻璃载板上制备衬底基板。
在一些示例性实施方式中,衬底基板10可以为柔性衬底基板,例如包括在玻璃载板1上叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层。第一柔性材料层、第二柔性材料层的材料采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料。第一无机材料层、第二无机材料层的材料采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高衬底基板的抗水氧能力,第一无机材料层、第二无机材料层也称之为阻挡(Barrier)层。半导体层的材料采用非晶硅(a-si)。在一些示例性实施方式中,以叠层结构PI1/Barrier1/a-si/PI2/Barrier2为例,其制备过程包括:先在玻璃载板1上涂布一层聚酰亚胺,固化成膜后形成第一柔性(PI1)层;随后在第一柔性层上沉积一层阻挡薄膜,形成覆盖第一柔性 层的第一阻挡(Barrier1)层;然后在第一阻挡层上沉积一层非晶硅薄膜,形成覆盖第一阻挡层的非晶硅(a-si)层;然后在非晶硅层上再涂布一层聚酰亚胺,固化成膜后形成第二柔性(PI2)层;然后在第二柔性层上沉积一层阻挡薄膜,形成覆盖第二柔性层的第二阻挡(Barrier2)层,完成衬底基板10的制备。
(2)、在衬底基板上制备驱动结构层。驱动结构层包括多个驱动电路,每个驱动电路包括多个晶体管和至少一个存储电容,例如2T1C、3T1C或7T1C设计。
在一些示例性实施方式中,驱动结构层的制备过程可以参照以下说明。以第一子像素21的驱动电路的制备过程为例进行说明。
在衬底基板10上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个衬底基板10的第一绝缘层11,以及设置在第一绝缘层11上的有源层图案,有源层图案至少包括第一有源层。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第二绝缘层12,以及设置在第二绝缘层12上的第一栅金属层图案,第一栅金属层图案至少包括第一栅电极和第一电容电极。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,形成覆盖第一栅金属层的第三绝缘层13,以及设置在第三绝缘层13上的第二栅金属层图案,第二栅金属层图案至少包括第二电容电极,第二电容电极的位置与第一电容电极的位置相对应。
随后,沉积第四绝缘薄膜,通过构图工艺对第四绝缘薄膜进行构图,形成覆盖第二栅金属层的第四绝缘层14图案,第四绝缘层14上开设有至少两个第一过孔,两个第一过孔内的第四绝缘层14、第三绝缘层13和第二绝缘层12被刻蚀掉,暴露出第一有源层的表面。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在第四绝缘层14上形成源漏金属层图案,源漏金属层至少包括位于显示区域的 第一源电极和第一漏电极。第一源电极和第一漏电极可以分别通过第一过孔与第一有源层连接。
显示区域的第一子像素21的驱动电路中,第一有源层、第一栅电极、第一源电极和第一漏电极可以组成第一晶体管210,第一电容电极和第二电容电极可以组成第一存储电容212。在上述制备过程中,可以同时形成第二子像素22的驱动电路以及第三颜色子像素23的驱动电路。
在一些示例性实施方式中,第一绝缘层11、第二绝缘层12、第三绝缘层13和第四绝缘层14采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一绝缘层11称之为缓冲(Buffer)层,用于提高衬底基板的抗水氧能力;第二绝缘层12和第三绝缘层13称之为栅绝缘(GI,Gate Insulator)层;第四绝缘层14称之为层间绝缘(ILD,Interlayer Dielectric)层。第一金属薄膜、第二金属薄膜和第三金属薄膜采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等一种或多种材料,即本公开适用于基于氧化物(Oxide)技术、硅技术以及有机物技术制造的晶体管。
(3)、在形成前述图案的衬底基板上形成平坦层。
在一些示例性实施方式中,在形成前述图案的衬底基板10上涂覆有机材料的平坦薄膜,形成覆盖整个衬底基板10的平坦(PLN,Planarization)层15,并通过掩膜、曝光、显影工艺,在显示区域的平坦层15上形成多个第二过孔K2。多个第二过孔K2内的平坦层15被显影掉,分别暴露出第一子像素21的驱动电路的第一晶体管210的第一漏电极的表面、第二子像素22的驱动电路的第一晶体管的第一漏电极的表面以及第三颜色子像素23的驱动电路的第一晶体管的第一漏电极的表面。
(4)、在形成前述图案的衬底基板上,形成第一电极图案。在一些示例中,第一电极为反射阳极。
在一些示例性实施方式中,在形成前述图案的衬底基板10上沉积导电薄膜,通过构图工艺对导电薄膜进行构图,形成第一电极图案。第一子像素21的第一阳极213通过第二过孔K2与第一晶体管210的第一漏电极连接,第二子像素22的第二阳极223通过第二过孔K2与第二子像素22的第一晶体管的第一漏电极连接,第三颜色子像素23的第三阳极233通过第二过孔K2与第三颜色子像素23的第一晶体管的第一漏电极连接。
在一些示例中,第一电极可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等,或者,是金属和透明导电材料形成的堆栈结构,如ITO/Ag/ITO、Mo/AlNd/ITO等反射型材料。
(5)、在形成前述图案的衬底基板上,形成像素定义(PDL,Pixel Definition Layer)层图案。
在一些示例性实施例方式中,在形成前述图案的衬底基板10上涂覆像素定义薄膜,通过掩膜、曝光、显影工艺,形成像素定义层图案。显示区域的像素定义层30包括多个子像素定义部302,相邻子像素定义部302之间形成有多个像素定义层开口301,多个像素定义层开口301内的像素定义层30被显影掉,分别暴露出第一子像素21的第一阳极213的至少部分表面、第二子像素22的第二阳极223的至少部分表面以及第三颜色子像素23的第三阳极233的至少部分表面。
在一些示例中,像素定义层30可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
(6)、在形成前述图案的衬底基板上,形成隔垫柱(PS,Post Spacer)图案。
在一些示例性实施方式中,在形成前述图案的衬底基板10上涂覆有机材 料薄膜,通过掩膜、曝光、显影工艺,形成隔垫柱34图案。隔垫柱34可以作为支撑层,配置为在蒸镀过程中支撑FMM。在一些示例中,沿着子像素的行排布方向上,相邻两个隔垫柱34之间间隔一个重复单元,例如,隔垫柱34可以位于相邻的第一子像素21和第三颜色子像素23之间。
(7)、在形成前述图案的衬底基板上,依次形成有机功能层以及第二电极。在一些示例中,第二电极为透明阴极。发光元件可以通过透明阴极从远离衬底基板10一侧出光,实现顶发射。在一些示例中,发光元件的有机功能层包括:空穴注入层、空穴传输层、发光层以及电子传输层。
在一些示例性实施方式中,在形成前述图案的衬底基板10上采用开放式掩膜版(Open Mask)依次蒸镀形成空穴注入层241和空穴传输层242,然后采用FMM依次蒸镀形成蓝色发光层236、绿色发光层216和红色发光层226,然后采用开放式掩膜版依次蒸镀形成电子传输层243、阴极244以及光耦合层245。空穴注入层241、空穴传输层242、电子传输层243以及阴极244均为多个子像素的共通层。在一些示例中,有机功能层还可以包括:位于空穴传输层和发光层之间的微腔调节层。例如,可以在形成空穴传输层之后,采用FMM依次蒸镀形成蓝色微腔调节层、蓝色发光层、绿色微腔调节层、绿色发光层、红色微腔调节层、红色发光层。
在一些示例性实施方式中,有机功能层形成在子像素区域内,实现有机功能层与阳极连接。阴极形成在像素定义层上,并与有机功能层连接。
在一些示例性实施方式中,阴极可以采用镁(Mg)、银(Ag)、铝(Al)中的任意一种或更多种,或采用上述金属中任意一种或多种制成的合金,或者采用透明导电材料,例如,氧化铟锡(ITO),或者,金属与透明导电材料的多层复合结构。
在一些示例性实施方式中,可以在阴极244远离衬底基板10的一侧形成光耦合层,光耦合层可以为多个子像素的共通层。光耦合层可以与透明阴极配合,起到增加光输出的作用。例如,光耦合层的材料可以采用半导体材料。然而,本实施例对此并不限定。
(8)、在形成前述图案的衬底基板上,形成封装层。
在一些示例性实施方式中,在形成前述图案的衬底基板10上形成封装层,封装层可以包括叠设的第一封装层41、第二封装层42和第三封装层43。第一封装层41采用无机材料,在显示区域覆盖阴极244。第二封装层42采用有机材料。第三封装层43采用无机材料,覆盖第一封装层41和第二封装层42。然而,本实施例对此并不限定。在一些示例中,封装层可以采用无机/有机/无机/有机/无机的五层结构。
以上所述是本公开的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (33)

  1. 一种显示基板,其特征在于,包括:第一子像素,第二子像素和第三子像素;
    在第一方向上,所述第一子像素和所述第三子像素交替排列形成第一子像素排,所述第二子像素形成第二子像素排;
    在第二方向上,所述第一子像素排和所述第二子像素排交替排列,所述第一方向和所述第二方向大致垂直;
    分布在相邻两行两列的两个第一子像素和两个第三子像素形成2*2矩阵,所述2*2矩阵中,所述两个第一子像素位于不同行不同列,所述两个第三子像素位于不同行不同列,所述两个第一子像素和所述两个第三子像素的中心连线形成一个虚拟四边形,所述第二子像素位于所述虚拟四边形内;
    同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距中,至少有两个不同;
    所述第三子像素包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,所述第三子像素在所述第一斜线方向上的宽度与在所述第二斜线方向上的宽度不同;和/或,所述第一子像素包括沿第一斜线方向的对称轴以及沿第二斜线方向的对称轴,所述第一子像素在所述第一斜线方向上的宽度与在所述第二斜线方向上的宽度不同;
    其中,所述第二斜线方向与所述第一斜线方向大致垂直,且所述第二斜线方向与所述第一斜线方向,与第一方向和第二方向均相交。
  2. 根据权利要求1所述的显示基板,其特征在于,所述虚拟四边形的内角范围为70°-120°。
  3. 根据权利要求1所述的显示基板,其特征在于,同一所述虚拟四边形对应的两个第一子像素和两个第三子像素包围一个第二子像素,且该所述虚拟四边形以外的其他第一子像素和第三子像素到该第二子像素的最近距离均大于该两个第一子像素和两个第三子像素到该第二子像素的最近距离。
  4. 根据权利要求1所述的显示基板,其特征在于,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所 述第二子像素的中心的间距中,任意两个的比值范围为0.7-1.3。
  5. 根据权利要求1所述的显示基板,其特征在于,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距差值,小于该虚拟四边形对应的所述两个第三子像素的中心到所述第二子像素的中心的间距的差值。
  6. 根据权利要求5所述的显示基板,其特征在于,同一所述虚拟四边形对应的所述两个第一子像素的中心到所述第二子像素的中心的间距大致相等。
  7. 根据权利要求1所述的显示基板,其特征在于,同一所述虚拟四边形对应的所述两个第一子像素的中心、所述两个第三子像素的中心,分别到所述第二子像素的中心的间距范围为20-60μm。
  8. 根据权利要求1所述的显示基板,其特征在于,所述第一子像素和所述第三子像素形状不同。
  9. 根据权利要求1所述的显示基板,其特征在于,所述第一子像素和所述第三子像素均为轴对称图形,且至少一个所述第一子像素的一个对称轴和至少一个所述第三子像素的一个对称轴平行且不重合;和/或,
    所述第一子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第一子像素在第一斜向方向的对称轴不重合;和/或,
    所述第三子像素具有在第一斜向方向的对称轴,且在第一斜向方向相邻的两个所述第三子像素在第一斜向方向的对称轴不重合。
  10. 根据权利要求1所述的显示基板,其特征在于,
    在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三子像素的中心的间距不等,所述第二子像素的中心与两个所述第一子像素的中心的间距大致相等;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三子像素的中心的间距大致相等,所述第二子像素的中心与两个所述第一子像素的中心的间距大致相等;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素的中心与两个所述第三 子像素的中心的间距大致相等,所述第二子像素的中心与两个所述第一子像素的中心的间距不等。
  11. 根据权利要求10所述的显示基板,其特征在于,
    在至少一个所述虚拟四边形内,所述第二子像素与第一个所述第三子像素的间距为L1,所述第二子像素与第二个所述第三子像素的中心的间距为L2,所述第二子像素与两个所述第一子像素的间距均为L1;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距、两个所述第一子像素的间距均为L1;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距、两个所述第一子像素的间距均为L2;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距均为L1,所述第二子像素与第一个所述第一子像素的间距为L1,与第二个所述第一子像素的间距为L2;
    或者
    在至少一个所述虚拟四边形内,所述第二子像素与两个所述第三子像素的间距均为L2,所述第二子像素与两个所述第一子像素的间距均为L1;
    其中,L2大于L1。
  12. 根据权利要求11所述的显示基板,其特征在于,L2与L1之差大于或等于1μm,L1的范围为12~30μm。
  13. 根据权利要求1所述的显示基板,其特征在于,所述虚拟四边形为直角梯形,两个内角为90°,另外两个内角一个为钝角,一个为锐角。
  14. 根据权利要求1所述的显示基板,其特征在于,所述虚拟四边形的所有内角的范围为70°至120°。
  15. 根据权利要求1所述的显示基板,其特征在于,部分所述虚拟四边形为第一平行四边形,部分所述虚拟四边形为第二平行四边形,在行方向和列方向上,所述第一平行四边形和所述第二平行四边形交替排布,所述第一 平行四边形和所述第二平行四边形的至少一个内角角度不同。
  16. 根据权利要求15所述的显示基板,其特征在于,所述第一平行四边形和所述第二平行四边形的锐角的范围为大于或等于70°小于90°。
  17. 根据权利要求1所述的显示基板,其特征在于,所述第三子像素和/或所述第一子像素在所述第一斜线方向和所述第二斜线方向上的宽度之差大于或等于1μm。
  18. 根据权利要求1所述的显示基板,其特征在于,所述第二子像素在所述第一斜线方向和所述第二斜线方向上的宽度不同。
  19. 根据权利要求18所述的显示基板,其特征在于,在所述虚拟四边形内,所述第二子像素相对在所述第一斜线方向或第二斜线方向上相邻排布的两个所述第三子像素的中心连线大致对称,且相对在所述第二斜线方向或第一斜线方向上相邻排布的两个所述第一子像素的中心连线大致对称。
  20. 根据权利要求1-19中任一项所述显示基板,其中,呈阵列排布的四个虚拟四边形构成一虚拟多边形,且所述第一子像素和所述第三子像素位于虚拟多边形的顶角或边上,且沿顺时针方向交替分布于该虚拟多边形的边或顶角位置上。
  21. 根据权利要求20所述的显示基板,其中,在第虚拟多边形内,位于同一行的所述第三子像素的中心大致在平行行方向的一条直线上,和/或,位于同列第三子像素的中心大致在平行列方向的一条直线上。
  22. 根据权利要求20所述的显示基板,其中,在所述虚拟多边形内,位于同一行的所述第二子像素的中心大致在平行行方向的一条直线上,和/或,位于同一列的所述第二子像素的中心大致在平行列方向的一条直线上。
  23. 根据权利要求1所述的显示基板,其特征在于,所述第三子像素、第二子像素和第一子像素的各自的总开口面积依次减小,所述第一子像素的总开口面积为x,所述第二子像素的总开口面积为a*x,所述第三子像素的总开口面积为b*x,其中,0.5≤a≤0.8,1≤b≤2.2。
  24. 根据权利要求1所述的显示基板,其特征在于,所述第一子像素、所述第二子像素和所述第三子像素的形状选自多边形、圆形、椭圆形中的任一种。
  25. 根据权利要求24所述的显示基板,其特征在于,所述第一子像素、所述第二子像素和所述第三子像素的形状选自四边形、六边形、八边形、具有倒圆角的四边形、具有倒圆角的六边形或具有倒圆角的八边形、圆形,椭圆形中的任意一种。
  26. 根据权利要求1所述的显示基板,其特征在于,所述第一子像素为红色子像素,所述第二子像素为绿色子像素,所述第三子像素为蓝色子像素。
  27. 一种显示装置,其特征在于,包括如权利要求1-26任一项所述的显示基板。
  28. 根据权利要求27所述的显示装置,其特征在于,还包括像素界定层,所述像素界定层包括多个像素界定层开口,各所述第一子像素、各所述第二子像素、各所述第三子像素各自分别对应一个像素界定层开口,所述第一子像素、所述第二子像素、所述第三子像素的形状与其对应的像素界定层的开口形状大致相同。
  29. 根据权利要求27所述的显示装置,其特征在于,所述第一子像素包括多层膜层,且所述第一子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第二子像素包括多层膜层,且所述第二子像素的多层膜层至少部分覆盖像素界定层开口之外的区域;和/或,所述第三子像素包括多层膜层,且所述第三子像素的多层膜层至少部分覆盖像素界定层开口之外的区域。
  30. 根据权利要求27所述的显示装置,其特征在于,所述像素界定层开口至少部分形状或面积不同。
  31. 根据权利要求27所述的显示装置,其特征在于,对应于所述第一子像素或第三子像素的像素界定层开口,至少部分形状或面积不同。
  32. 根据权利要求27所述的显示装置,其特征在于,对应于所述第一子像素或第三子像素的像素界定层开口至少部分到相邻开口的最近距离不相等。
  33. 一种高精度金属掩模板,用于制作如权利要求1-26任一项所述的显示基板,所述第一子像素包括多层膜层,所述第二子像素包括多层膜层,所述第三子像素包括多层膜层,所述掩模板包括:多个开口区域,所述多个开 口区域包括与所述第一子像素中的至少一个膜层的形状和分布对应的第一开口区域、或与所述第二子像素中的至少一个膜层的形状和分布对应的第二开口区域、或与所述第三子像素中的至少一个膜层的形状和分布对应的第三开口区域。
PCT/CN2020/119229 2020-09-10 2020-09-30 显示基板、显示装置及高精度金属掩模板 WO2022052193A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002209.5A CN112534583A (zh) 2020-09-10 2020-09-30 显示基板、显示装置及高精度金属掩模板
US17/417,709 US11864447B2 (en) 2020-09-10 2020-09-30 Display substrate, display device and high-precision metal mask
US18/468,774 US20240008335A1 (en) 2020-09-10 2023-09-18 Display substrate, display device and high-precision metal mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/114622 2020-09-10
PCT/CN2020/114622 WO2022052011A1 (zh) 2020-09-10 2020-09-10 显示基板、显示装置及高精度金属掩模板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/417,709 A-371-Of-International US11864447B2 (en) 2020-09-10 2020-09-30 Display substrate, display device and high-precision metal mask
US18/468,774 Continuation US20240008335A1 (en) 2020-09-10 2023-09-18 Display substrate, display device and high-precision metal mask

Publications (1)

Publication Number Publication Date
WO2022052193A1 true WO2022052193A1 (zh) 2022-03-17

Family

ID=80630132

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/114622 WO2022052011A1 (zh) 2020-09-10 2020-09-10 显示基板、显示装置及高精度金属掩模板
PCT/CN2020/119229 WO2022052193A1 (zh) 2020-09-10 2020-09-30 显示基板、显示装置及高精度金属掩模板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114622 WO2022052011A1 (zh) 2020-09-10 2020-09-10 显示基板、显示装置及高精度金属掩模板

Country Status (1)

Country Link
WO (2) WO2022052011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715128A (zh) * 2022-11-09 2023-02-24 惠科股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506434A (en) * 1993-03-11 1996-04-09 Sony Corporation Solid-state imaging device having contact buffer layer interconnecting gate and vertical scan line
CN207966994U (zh) * 2018-02-09 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN208077981U (zh) * 2018-02-09 2018-11-09 京东方科技集团股份有限公司 像素排布结构、显示面板、高精度金属掩模板及显示装置
CN110767733A (zh) * 2019-10-31 2020-02-07 武汉天马微电子有限公司 一种显示面板和显示装置
CN110828534A (zh) * 2019-12-13 2020-02-21 云谷(固安)科技有限公司 一种像素排列结构,显示面板及掩膜板组
CN111341817A (zh) * 2020-03-11 2020-06-26 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI429326B (zh) * 2010-11-10 2014-03-01 Au Optronics Corp 發光裝置及其製造方法
CN110137210A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN207966995U (zh) * 2018-02-09 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN112802884B (zh) * 2018-12-13 2023-10-31 昆山国显光电有限公司 像素排列结构、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506434A (en) * 1993-03-11 1996-04-09 Sony Corporation Solid-state imaging device having contact buffer layer interconnecting gate and vertical scan line
CN207966994U (zh) * 2018-02-09 2018-10-12 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN208077981U (zh) * 2018-02-09 2018-11-09 京东方科技集团股份有限公司 像素排布结构、显示面板、高精度金属掩模板及显示装置
CN110767733A (zh) * 2019-10-31 2020-02-07 武汉天马微电子有限公司 一种显示面板和显示装置
CN110828534A (zh) * 2019-12-13 2020-02-21 云谷(固安)科技有限公司 一种像素排列结构,显示面板及掩膜板组
CN111341817A (zh) * 2020-03-11 2020-06-26 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715128A (zh) * 2022-11-09 2023-02-24 惠科股份有限公司 显示面板及显示装置
CN115715128B (zh) * 2022-11-09 2024-04-12 惠科股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
WO2022052011A1 (zh) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7342157B2 (ja) 画素アレイ及び表示装置
CN112470287B (zh) 一种显示基板及相关装置
US20240008335A1 (en) Display substrate, display device and high-precision metal mask
WO2022110173A1 (zh) 显示基板、显示装置及高精度金属掩模板
WO2018205652A1 (zh) 像素结构及其制作方法、显示基板和显示装置
WO2022052194A1 (zh) 一种显示基板及相关装置
CN114450802B (zh) 一种显示面板、掩膜组件和显示装置
WO2022052390A1 (zh) 像素阵列及显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2022110169A1 (zh) 一种显示基板及相关装置
WO2022052193A1 (zh) 显示基板、显示装置及高精度金属掩模板
CN219087721U (zh) 一种显示面板和显示装置
WO2022141628A1 (zh) 一种显示基板及相关装置
WO2022052192A1 (zh) 像素阵列及显示装置
WO2022193152A1 (zh) 显示面板及其制作方法以及显示装置
RU2779136C1 (ru) Пиксельный массив и устройство отображения
US20240032376A1 (en) Pixel array and display device
CN118215352A (zh) 一种显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952979

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.11.2023)