WO2020218413A1 - トリオルガノシラン化合物の製造方法 - Google Patents

トリオルガノシラン化合物の製造方法 Download PDF

Info

Publication number
WO2020218413A1
WO2020218413A1 PCT/JP2020/017478 JP2020017478W WO2020218413A1 WO 2020218413 A1 WO2020218413 A1 WO 2020218413A1 JP 2020017478 W JP2020017478 W JP 2020017478W WO 2020218413 A1 WO2020218413 A1 WO 2020218413A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
producing
substituent
triorganosilane
compound according
Prior art date
Application number
PCT/JP2020/017478
Other languages
English (en)
French (fr)
Inventor
円香 吉野
和也 涌井
昭裕 長屋
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021516200A priority Critical patent/JP7517331B2/ja
Priority to CN202080030699.XA priority patent/CN113727959B/zh
Priority to US17/606,198 priority patent/US20220220133A1/en
Priority to EP20795713.5A priority patent/EP3960725B1/en
Publication of WO2020218413A1 publication Critical patent/WO2020218413A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/0827Syntheses with formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage

Definitions

  • the present invention relates to a novel method for producing a triorganosilane compound.
  • the triorganosilane compound is used as a silyl protective agent applicable to various functional groups of synthetic intermediates of organic compounds (Non-Patent Document 1).
  • a method for producing a triorganosilane compound a method of introducing a secondary aliphatic hydrocarbon group or an aryl group into a dialkylsilane compound is known (Non-Patent Documents 2 and 3).
  • a method of converting the aryl group into a cycloalkyl group by a hydrogenation reaction is known (Non-Patent Document 4).
  • the reaction for introducing sec-butyllithium had a low yield in the method described in Non-Patent Document 3. Therefore, as a result of diligent studies, the present inventors have found that the above problems can be solved by using a specific intermediate, and have completed the present invention. That is, the present invention is characterized by the following.
  • R 1 and R 2 may independently have a substituent, respectively.
  • the diorganosilane compound is reacted with a trifuration reagent.
  • Equation (III) A step of obtaining a monotriflate compound represented by [in the formula, R 1 and R 2 have the same meanings as described above]; (2) The monotrifurate compound obtained in step (1) has R 3 Li or R 3 MgX (in the formula, R 3 has an alkyl group having 3 or more carbon atoms and a substituent which may have a substituent). A cycloalkyl group having 3 or more carbon atoms, an aryl group having 6 or more carbon atoms which may have a substituent, or an aralkyl group having 7 or more carbon atoms which may have a substituent.
  • [4] The method for producing a triorganosilane compound according to [3], wherein R 1 and R 2 are tert-butyl groups, respectively.
  • [5] The method for producing a triorganosilane compound according to any one of [1] to [4], wherein the metal reagent is R 3 Li.
  • R 3 is a C 6-12 aryl group which may have a C 3-6 alkyl group or a substituent.
  • [7] The method for producing a triorganosilane compound according to [6], wherein R 3 is a C 3-6 alkyl group.
  • R 3 Li are good and good halogenated C 6-12 aryl optionally having substituent were prepared using n- butyllithium or sec- butyl lithium, which may have a substituent C 6-
  • R 3 is a C 7-13 aralkyl group.
  • the triflate reagent is trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, trifluoromethanesulfonyl chloride, N- (2-pyridyl) bis (trifluoromethanesulfonimide) or trimethylsilyl trifluoromethanesulfonate, [1] to [ 16]
  • [18] The method for producing a triorganosilane compound according to [17], wherein the triflate reagent is trifluoromethanesulfonic acid.
  • n- is normal, "s-" and “sec-” are secondary, “t-” and “tert-” are tertiary, “Bu” is butyl, “Hex” is hexyl, and “Ph”.
  • "" Means phenyl, "c” means cyclo, "Bn” means benzyl, “Mes” means mesityl, and “cC 6 H 10 " means cyclohexanediyl.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • C 1-40 alkyl group means a linear or branched alkyl group having 1 to 40 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • C 1-20 alkyl group has 1 to 20 carbon atoms
  • C 1-6 alkyl group has 1 to 6 carbon atoms
  • C 3-6 alkyl group Means a linear or branched alkyl group having 3 to 6 carbon atoms.
  • the "secondary or tertiary alkyl group having 4 or more carbon atoms” means a secondary or tertiary alkyl group having 4 or more carbon atoms, preferably having 4 to 40 carbon atoms, and more preferably. Means a secondary or tertiary alkyl group having 4 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, and particularly preferably 4 to 6 carbon atoms.
  • the secondary or tertiary alkyl group means an alkyl group whose bond position as a group is on the secondary or tertiary carbon. Specific examples include 2-butyl group, t-butyl group, 3-pentyl group, texyl group and the like.
  • the "secondary or tertiary C 4-6 alkyl group” means a secondary or tertiary alkyl group having 4 to 6 carbon atoms, and is a “tertiary C 4-6 alkyl group”. Means a tertiary alkyl group having 4 to 6 carbon atoms.
  • alkyl group having 3 or more carbon atoms means a linear or branched alkyl group having 3 or more carbon atoms, preferably having 3 to 40 carbon atoms, and more preferably having 3 carbon atoms. It means a linear or branched alkyl group having 20 to 20, more preferably 3 to 10, particularly preferably 3 to 6, as a specific example of an alkyl group having 3 or more carbon atoms. Examples include n-propyl group, isopropyl group, n-butyl group, 2-butyl group, t-butyl group, n-pentyl group, 3-pentyl group, n-hexyl group and texyl group.
  • cycloalkyl group having 3 or more carbon atoms means a cyclic alkyl group having 3 or more carbon atoms, preferably having 3 to 40 carbon atoms, more preferably 3 to 20 carbon atoms, and further. It means a cyclic alkyl group preferably having 3 to 10 carbon atoms, particularly preferably 3 to 6 carbon atoms. Specific examples of the cycloalkyl group having 3 or more carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • the "aryl group having 6 or more carbon atoms” means an aromatic hydrocarbon group having 6 or more carbon atoms, preferably having 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms, and further. It preferably means an aromatic hydrocarbon group having 6 to 12 carbon atoms. Specific examples of the aryl group having 6 or more carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a biphenyl group and the like. Further, the "C 6-12 aryl group” means an aryl group having 6 to 12 carbon atoms.
  • the "aralkyl group having 7 or more carbon atoms” means an arylalkyl group having 7 or more carbon atoms, preferably having 7 to 40 carbon atoms, more preferably 7 to 20 carbon atoms, and even more preferably. It means an arylalkyl group having 7 to 13 carbon atoms. Specific examples of the aralkyl group having 7 or more carbon atoms include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a 2-phenylpropyl group, a 3-phenylpropyl group, and a diphenylmethyl group.
  • C 7-13 aralkyl group means an aralkyl group having 7 to 13 carbon atoms.
  • Halogenated C 6-12 aryl means an aryl having 6 to 12 carbon atoms in which one or more hydrogens on the aromatic ring are substituted with halogen atoms, and specific examples thereof include chlorobenzene and bromo. Examples include benzene and iodobenzene.
  • C 6-12 aryllithium means a compound having 6 to 12 carbon atoms and having a carbon-lithium bond, and specific examples thereof include phenyllithium, 1-naphthyllithium, and 2-naphthyllithium. Can be mentioned.
  • arbitrary substituent is not particularly limited as long as it is a substituent that does not adversely affect the reaction targeted by the present invention.
  • the "substituent” in “may have a substituent” is not particularly limited, but is, for example, a C 1-40 alkyl group, a hydroxy group, a C 1-40 alkoxy group, an acetoxy group, and a di C 1-.
  • substituents include a 40 alkylamino group, a halogen atom and the like, preferably a C 1-40 alkyl group, a C 1-40 alkoxy group or a di C 1-6 alkyl amino group, and more preferably a C 1-40 alkyl group or. C 1-40 alkoxy group.
  • the "C 1-40 alkoxy group” means a linear or branched alkoxy group having 1 to 40 carbon atoms, and specific examples thereof include a methoxy group, an ethoxy group, and an n-propyloxy group. Examples thereof include an isopropyloxy group, an n-butyloxy group, a t-butyloxy group, an n-pentyloxy group, an n-hexyloxy group, an octyloxy group, a dodecyloxy group, a hexadecyloxy group and an octadecyloxy group.
  • the "di C 1-40 alkylamino group” means a group in which two identical or different "C 1-40 alkyl groups” are bonded to an amino group, and specific examples thereof include a dimethylamino group and a diethylamino group.
  • Di-n-propylamino group diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-t-butylamino group, di-n-pentylamino group, di-n-hexylamino group, N -Ethyl-N-methylamino group, N-methyl-Nn-propylamino group, N-isopropyl-N-methylamino group, Nn-butyl-N-methylamino group, N-isobutyl-N-methyl Amino group, Nt-butyl-N-methylamino group, N-methyl-Nn-pentylamino group, Nn-hexyl-N-methylamino group, N-ethyl-Nn-propylamino group , N-ethyl-N-isopropylamino group, Nn-butyl-N-ethylamino group,
  • the steps (i) to (iii) of the method for producing the triorganosilane compound of the present invention will be described below.
  • the production of the triorganosilane compound of the present invention is composed of the respective unit steps described as the following steps (i) to (iii).
  • the production of the triorganosilane compound of the present invention can be carried out by all or appropriately combining the unit steps described as the following steps (i) to (iii). This specific description will be described based on the following.
  • (A) R 1 , R 2 and R 3 in the description of steps (i) to (iii) have the same meanings as described above.
  • R 1 and R 2 may independently have a substituent and may have an alkyl group having 4 or more secondary or tertiary carbon atoms, and may have a substituent.
  • R 1 and R 2 are independently, preferably secondary or tertiary alkyl groups having 4 or more carbon atoms, more preferably secondary or tertiary C 4-6 alkyl groups, and further. It is preferably a t-butyl group.
  • the trifratating reagent used in this step is not particularly limited, and examples thereof include trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, trifluoromethanesulfonyl chloride, and N- (2-pyridyl) bis (trifluoromethanesulfon). Imid), trimethylsilyl trifluoromethanesulfonate, and the like. Preferred are trifluoromethanesulfonic acid, trimethylsilyl trifluoromethanesulfonic acid, and more preferably trifluoromethanesulfonic acid.
  • the solvent used in this step is not particularly limited as long as it does not interfere with the reaction, and examples thereof include aliphatic hydrocarbons (eg, pentane, hexane, heptane), halogen-containing hydrocarbon solvents (eg, dichloromethane, chloroform), and the like.
  • Aromatic hydrocarbon solvents eg, toluene, xylene
  • ether solvents eg, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, methyl-t-butyl ether
  • amide solvents eg, N, N-dimethylformamide
  • Examples include a nitrile solvent (for example, acetonitrile). It is preferably an aliphatic hydrocarbon or a halogen-containing hydrocarbon solvent, and more preferably hexane, heptane or dichloromethane.
  • the amount of the solvent used in this step is preferably 100 times by mass or less, more preferably 1 to 50 times by mass, and further preferably 5 to 20 times by mass with respect to compound (I). It is double.
  • the reaction temperature is not particularly limited, but is preferably from ⁇ 20 ° C. to the reflux temperature of the reaction mixture, more preferably ⁇ 20 ° C. to 50 ° C., and even more preferably ⁇ 10 ° C. to 30 ° C.
  • R 1 and R 2 are synonymous with the description in step (i), and R 3 is a substituent in the metal reagent.
  • the metal reagent is R 3 Li (in the formula, R 3 has an alkyl group having 3 or more carbon atoms which may have a substituent and a carbon number which may have a substituent. It is represented by 3 or more cycloalkyl groups, an aryl group having 6 or more carbon atoms which may have a substituent, or an aralkyl group having 7 or more carbon atoms which may have a substituent.
  • Organic lithium reagent or R 3 MgX (in the formula, R 3 is an alkyl group having 3 or more carbon atoms which may have a substituent and a cyclo having 3 or more carbon atoms which may have a substituent.
  • R 3 is preferably a C 6-12 aryl group, preferably having a C 3-6 alkyl group or a substituent, more preferably a sec-butyl group, n-. It is a phenyl group which may have a butyl group, an n-hexyl group or a substituent, and more preferably a phenyl group which may have a sec-butyl group, an n-butyl group or a substituent.
  • R 3 is preferably a C 3-6 alkyl group, a C 6-12 aryl group or a C 7-13 aralkyl group, more preferably a C 7-13 aralkyl group. More preferably, it is a benzyl group.
  • X is preferably a chlorine atom or a bromine atom.
  • organic lithium reagent examples include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, phenyllithium and the like
  • specific examples of the Grignard reagent include isopropylmagnesium bromide and tert-. Examples thereof include butylmagnesium chloride, cyclopropylmagnesium bromide, phenylmagnesium chloride, benzylmagnesium bromide, and benzylmagnesium chloride.
  • the metal reagent is R 3 Li and aryl lithium in which R 3 is an aryl group is used
  • a commercially available product may be used, or a lithium reagent (n-butyllithium, sec-butyllithium, etc.) may be used as the aryl halide. ) May be used, which is prepared by a halogen-lithium exchange reaction.
  • the amount of the metal reagent used is preferably 1 equivalent to 20 equivalents, more preferably 1 equivalent to 10 equivalents, still more preferably 1 equivalent to 5 equivalents, relative to the compound (I) used in step (i). Equivalent.
  • the solvent used in this step is not particularly limited as long as it does not interfere with the reaction, and examples thereof include aliphatic hydrocarbons (eg, pentane, hexane, heptane), halogen-containing hydrocarbon solvents (eg, dichloromethane, chloroform), and the like.
  • Aromatic hydrocarbon solvents eg, toluene, xylene
  • ether solvents eg, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, methyl-t-butyl ether
  • amide solvents eg, N, N-dimethylformamide
  • Examples include a nitrile solvent (for example, acetonitrile).
  • It is preferably an aliphatic hydrocarbon or a halogen-containing hydrocarbon solvent, and more preferably hexane, heptane, tetrahydrofuran, cyclopentyl methyl ether or methyl-t-butyl ether.
  • the amount of the solvent used is preferably 100 times by mass or less, more preferably 1 to 50 times by mass, still more preferably 5 times to 5 times by mass with respect to the compound (I) used in the step (i). It is 20 times by mass.
  • the reaction temperature is not particularly limited, but is preferably from ⁇ 40 ° C. to the reflux temperature of the reaction mixture, more preferably ⁇ 20 ° C. to 50 ° C., and even more preferably ⁇ 10 ° C. to 30 ° C.
  • the reaction time is not particularly limited, but is preferably 72 hours from the start of the reaction, more preferably 0.1 to 48 hours, still more preferably 0.5 to 24 hours.
  • the same method as a general liquid phase organic synthesis reaction can be applied to confirm the progress of the reaction. That is, the reaction can be tracked using thin layer chromatography, gas chromatography, gas chromatography / mass spectrometry (GC / MS) and the like.
  • GC / MS gas chromatography / mass spectrometry
  • a metal catalyst to convert the aryl group into a cycloalkyl group.
  • the aryl group is a phenyl group, it is converted to a cyclohexyl group.
  • the metal catalyst used in this step is not particularly limited, but is a palladium catalyst (for example, 5% palladium carbon powder STD type, 10% palladium carbon powder PE type, 5% palladium carbon powder NX type, 5% palladium carbon powder).
  • K type 5% palladium carbon powder PE type, ASCA-2
  • platinum catalyst for example, 3% platinum carbon powder STD type, 3% platinum carbon powder SN101 type
  • ruthenium catalyst for example, 5% ruthenium carbon powder A type
  • 5% ruthenium carbon powder B type 5% ruthenium alumina powder (HYAc-5EN-type, HYAc-5ES-type), preferably ruthenium-alumina powder or rhodium carbon powder, more preferably. Ruthenium-alumina powder.
  • the amount of the metal catalyst used is preferably 0.001 to 5 times by mass, more preferably 0.01 to 1 part by mass, and further preferably 0.05 to the compound (III). It is mass times to 0.5 mass times.
  • the hydrogen gas used in this reaction does not necessarily have to be of high purity, and may contain nitrogen, methane, etc., which do not significantly affect the reduction reaction.
  • the reaction pressure is 0.1 to 20 MPa, preferably 0.2 to 10 MPa, and particularly preferably 0.3 to 1 MPa in terms of hydrogen partial pressure.
  • the solvent used in this step is not particularly limited as long as it does not interfere with the reaction, and examples thereof include aliphatic hydrocarbons (eg, pentane, hexane, heptane), halogen-containing hydrocarbon solvents (eg, dichloromethane, chloroform), and the like.
  • examples include ether solvents (eg, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, methyl-t-butyl ether), alcohol solvents (eg, methanol, ethanol, 2-propanol, 2,2,2-trifluoroethanol) and the like. Be done. It is preferably an aliphatic hydrocarbon or an alcohol-containing solvent, and more preferably hexane or heptane.
  • the amount of the solvent used is preferably 100 times by mass or less, more preferably 1 to 50 times by mass, and further preferably 3 to 10 times by mass with respect to compound (III).
  • the reaction temperature is not particularly limited, but is preferably from ⁇ 40 ° C. to the reflux temperature of the reaction mixture, more preferably 0 ° C. to 50 ° C., still more preferably 10 ° C. to 40 ° C.
  • the same method as a general organic synthesis reaction can be applied to confirm the progress of the reaction. That is, the reaction can be tracked using thin layer chromatography, gas chromatography, gas chromatography / mass spectrometry (GC / MS) and the like.
  • GC / MS gas chromatography / mass spectrometry
  • the proton nuclear magnetic resonance ( 1 H-NMR) of the examples is a deuterated chloroform solvent using JNM-ECP300 manufactured by JEOL Ltd. or JNM-ECX300 manufactured by JEOL Ltd.
  • the chemical shift was indicated by the ⁇ value (ppm) when tetramethylsilane was used as the internal standard (0.0 ppm).
  • gas chromatography / mass spectrometry was measured using GCMS-QP2010 Ultra manufactured by Shimadzu Corporation.
  • CI means a chemical ionization method
  • MH means a proton deficient.
  • silica gel column chromatography used either a Hi-Flash column manufactured by Yamazen, silica gel 60 manufactured by Merck, or PSQ60B manufactured by Fuji Silysia Chemical Ltd.
  • Synthesis Example 1 Synthesis of Ph (tBu) 2 SiH Di-tert-butylsilane (0.20 g, 1.39 mmol) is mixed with hexane (0.4 g), cooled to 0 ° C., trifluoromethanesulfonic acid (0.27 g, 1.81 mmol) is added and brought to room temperature. Stirred for 24 hours. In a separate container, sec-butyllithium (1M hexane solution, 1.9 mL, 1.9 mmol) and phenylbromid (0.33 g, 2.1 mmol) were mixed at 0 ° C. and stirred at room temperature for 30 minutes.
  • Synthesis example 2 Synthesis of C 12 H 25- C 6 H 4 (tBu) 2 SiH Di-tert-butylsilane (0.20 g, 1.39 mmol) is mixed with hexane (1.0 g), cooled to 0 ° C., trifluoromethanesulfonic acid (0.27 g, 1.8 mmol) is added and brought to room temperature. Stirred for 1 hour. In a separate container, sec-butyllithium (1M hexane solution, 1.9 mL, 1.9 mmol), 1-bromo-4-dodecylbenzene (0.63 g, 1.9 mmol), tetrahydrofuran (1.0 g) were added at 0 ° C.
  • Synthesis example 3 Synthesis of Mes (tBu) 2 SiH Di-tert-butylsilane (0.20 g, 1.39 mmol) is mixed with hexane (1.0 g), cooled to 0 ° C., trifluoromethanesulfonic acid (0.27 g, 1.8 mmol) is added and brought to room temperature. Stirred for 1.5 hours. In a separate container, sec-butyllithium (1M hexane solution, 1.9 mL, 1.9 mmol), 2-bromomesitylene (0.39 g, 1.9 mmol) and tetrahydrofuran (1.0 g) were mixed at 0 ° C. The mixture was stirred for 1 hour.
  • Synthesis Example 4 Synthesis of sBu (tBu) 2 SiH Mix di-tert-butylsilane (0.10 g, 0.69 mmol) and hexane (0.5 g), cool to 0 ° C., add trifluoromethanesulfonic acid (0.14 g, 0.93 mmol) to room temperature. Stirred for 1 hour. The solution was cooled to 0 ° C., sec-butyllithium (1M hexane solution, 0.90 mL, 0.90 mmol) was added, and the mixture was stirred for 10 minutes.
  • the obtained reaction solution was diluted with hexane and then washed in the order of 10 mass% ammonium chloride aqueous solution (1.0 g) and 5 mass% sodium chloride aqueous solution (1.0 g).
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain sBu (tBu) 2 SiH (0.19 g, yield 85%) as a colorless oil.
  • Reference synthesis example 2 Synthesis of sBu (tBu) 2 SiH Di-tert-butylsilane (0.10 g, 0.69 mmol) is mixed with hexane (0.5 g) and sec-butyllithium (1 M hexane solution, 0.90 mL, 0.90 mmol) is added to this solution at room temperature. The mixture was stirred at 70 ° C. for 41 hours. The obtained reaction solution was diluted with hexane and then washed in the order of 10 mass% ammonium chloride aqueous solution (1.0 g) and 5 mass% sodium chloride aqueous solution (1.0 g). The quantitative yield of sBu (tBu) 2 SiH in the obtained organic layer was 4.7%.
  • Synthesis example 5 Synthesis of cHex (tBu) 2 SiH Ph (tBu) 2 SiH (0.40 g, 1.81 mmol) is mixed with hexane (2.8 g), and 5 mass% ruthenium-alumina powder (trade name: HYAc-5E N-type, 0.16 g) is added. The mixture was stirred at 30 ° C. and a hydrogen gas atmosphere at 0.8 MPa for 13 hours. The obtained reaction solution was filtered, and the quantitative yield of cHex (tBu) 2 SiH in the filtrate was 94%.
  • Synthesis example 6 Synthesis of C 12 H 25- cC 6 H 10 (tBu) 2 SiH C 12 H 25- C 6 H 4 (tBu) 2 SiH (0.70 g, 1.80 mmol) is mixed with hexane (7.0 g) and 5 mass% ruthenium-alumina powder (trade name: HYAc-5ES-). Type (0.21 g) was added, and the mixture was stirred at 60 ° C. under a hydrogen gas atmosphere at 0.8 MPa for 4 hours. 5 mass% ruthenium-alumina powder (0.14 g) was added, the mixture was further stirred for 19 hours, and the obtained reaction solution was filtered.
  • Synthesis Example 7 Synthesis of nBu (tBu) 2 SiH Di-tert-butylsilane (0.30 g, 2.08 mmol) is mixed with hexane (3.0 g), cooled to 0 ° C., trifluoromethanesulfonic acid (0.47 g, 3.1 mmol) is added and 30 ° C. Was stirred for 2 hours. The solution was cooled to 0 ° C., tetrahydrofuran (1.2 g) and n-butyllithium (1.6 M hexane solution, 3.3 mL, 5.2 mmol) were added, and the mixture was stirred for 2 hours.
  • reaction solution was diluted with hexane and then separated with a 10 mass% ammonium chloride aqueous solution (5 mL).
  • the aqueous layer was extracted with hexane (3 mL) and the resulting organic layer was mixed.
  • the quantitative yield of nBu (tBu) 2 SiH in the organic layer was 93%.
  • Synthesis Example 8 Synthesis of Bn (tBu) 2 SiH Di-tert-butylsilane (0.20 g, 1.39 mmo) is mixed with hexane (1.0 g), cooled to 0 ° C., trifluoromethanesulfonic acid (0.27 g, 1.3 mmol) is added and brought to room temperature. Stirred for 3 hours. A benzylmagnesium chloride-2M tetrahydrofuran solution (1.0 mL, 2.0 mmol) was added dropwise to this solution, and the mixture was stirred at room temperature for 4 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明は、トリオルガノシラン化合物の新規な製造方法を提供することを課題とする。 下記工程(1)及び(2)を含む、トリオルガノシラン化合物の製造方法: (1) 式(I): で表されるジオルガノシラン化合物にトリフラート化試薬を反応させて、 式(III) で表されるモノトリフラート化合物を得る工程。 (2) 工程(1)で得られたモノトリフラート化合物に、RLiまたはRMgXで表される金属試薬を反応させて、 式(II): で表されるトリオルガノシラン化合物を得る工程[式中、R、R及びRは、本明細書及び特許請求の範囲に記載のとおりである]。

Description

トリオルガノシラン化合物の製造方法
 本発明は、トリオルガノシラン化合物の新規な製造方法に関する。
 トリオルガノシラン化合物は、有機化合物の合成中間体の様々な官能基に適用可能なシリル保護剤として利用されている(非特許文献1)。
 トリオルガノシラン化合物の製造方法としては、ジアルキルシラン化合物に、2級脂肪族炭化水素基またはアリール基を導入する方法が知られている(非特許文献2、3)。
 また、オルガノシラン化合物の置換基にアリール基が含まれる場合、そのアリール基を水素化反応によってシクロアルキル基へと変換する方法が知られている(非特許文献4)。
オーガニックレターズ、2011年、13巻、4120-4123頁 ジャーナル オブ アメリカン ケミカル ソサイエティー、2013年、135巻、15282-15285頁 インオーガニックケミストリー、2004年、43巻、3421-3432頁 アンゲヴァンテ ケミー インターナショナル エディション、2018年、57巻、8297-8300頁
 非特許文献2に記載の方法で、ジ-t-ブチルシランに2級脂肪族炭化水素基を導入する場合、収率が中程度であり、望まない異性体が生成することが課題となっている。
 また、非特許文献3に記載の方法で、ジ-t-ブチルシランにアリール基を導入する場合、加熱還流攪拌という高温条件が必要となることが課題となっている。なお発明者らが確認したところ、ハロゲン化アリール化合物とn-ブチルリチウム又はsec-ブチルリチウム試薬から調製したアリールリチウムを使用した場合、アリール基を効率的に導入できないことが見出された。さらに、非特許文献3に記載の方法では、sec-ブチルリチウムを導入する反応は低収率であることも見出された。
 そこで本発明者らは鋭意検討した結果、特定の中間体を使用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下を特徴とするものである。
[1]
 下記工程(1)及び(2)を含む、トリオルガノシラン化合物の製造方法:
(1)
式(I):
Figure JPOXMLDOC01-appb-C000004

[式中、R及びRは、独立して、それぞれ置換基を有していてもよい2級もしくは3級の炭素数が4以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表す]で表されるジオルガノシラン化合物にトリフラート化試薬を反応させて、
式(III)
Figure JPOXMLDOC01-appb-C000005

[式中、R及びRは、前記と同じ意味を表す]で表されるモノトリフラート化合物を得る工程;
(2)
 工程(1)で得られたモノトリフラート化合物に、RLiまたはRMgX(式中、Rは、置換基を有していてもよい炭素数が3以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表し、Xは塩素原子、臭素原子またはヨウ素原子を表す)で表される金属試薬を反応させて、
式(II):
Figure JPOXMLDOC01-appb-C000006

[式中、R、R及びRは、前記と同じ意味を表す]で表されるトリオルガノシラン化合物を得る工程。
[2]
 R及びRが、それぞれ独立して、2級又は3級のC4-6アルキル基である、[1]に記載のトリオルガノシラン化合物の製造方法。
[3]
 R及びRが、それぞれ独立して、3級のC4-6アルキル基である、[2]に記載のトリオルガノシラン化合物の製造方法。
[4]
 R及びRが、それぞれtert-ブチル基である、[3]に記載のトリオルガノシラン化合物の製造方法。
[5]
 金属試薬が、RLiである、[1]乃至[4]の何れか一つに記載のトリオルガノシラン化合物の製造方法。
[6]
 Rが、C3-6アルキル基又は置換基を有していてもよいC6-12アリール基である、[5]に記載のトリオルガノシラン化合物の製造方法。
[7]
 Rが、C3-6アルキル基である、[6]に記載のトリオルガノシラン化合物の製造方法。
[8]
 Rが、sec-ブチル基又はn-ブチル基である、[7]に記載のトリオルガノシラン化合物の製造方法。
[9]
 Rが、置換基を有していてもよいC6-12アリール基である、[6]に記載のトリオルガノシラン化合物の製造方法。
[10]
 Rが、置換基を有していてもよいフェニル基である、[9]に記載のトリオルガノシラン化合物の製造方法。
[11]
 RLiが、置換基を有していてもよいハロゲン化C6-12アリールから調製した、置換基を有していてもよいC6-12アリールリチウムである、[9]に記載のトリオルガノシラン化合物の製造方法。
[12]
 RLiが、置換基を有していてもよいハロゲン化C6-12アリールと、n-ブチルリチウム又はsec-ブチルリチウムを用いて調製した、置換基を有していてもよいC6-12アリールリチウムである、[9]に記載のトリオルガノシラン化合物の製造方法。
[13]
 金属試薬が、RMgXである、[1]乃至[4]の何れか一つに記載のトリオルガノシラン化合物の製造方法。
[14]
 Rが、C7-13アラルキル基である、[13]に記載のトリオルガノシラン化合物の製造方法。
[15]
 Rが、ベンジル基である、[14]に記載のトリオルガノシラン化合物の製造方法。
[16]
 Xが、塩素原子又は臭素原子である、[13]乃至[15]の何れか一つに記載のトリオルガノシラン化合物の製造方法。
[17]
 トリフラート化試薬が、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、トリフルオロメタンスルホニルクロリド、N-(2-ピリジル)ビス(トリフルオロメタンスルホンイミド)又はトリフルオロメタンスルホン酸トリメチルシリルである、[1]乃至[16]の何れか一つに記載のトリオルガノシラン化合物の製造方法。
[18]
 トリフラート化試薬が、トリフルオロメタンスルホン酸である、[17]に記載のトリオルガノシラン化合物の製造方法。
[19]
 さらに下記工程(3)を含む、[1]乃至[18]の何れか一つに記載のトリオルガノシラン化合物の製造方法:
(3)
 工程(2)で得られたトリオルガノシラン化合物のR、R及びRの内、少なくとも一つが置換基を有していてもよい炭素数が6以上のアリール基であり、該アリール基を、金属触媒存在下水素を反応させて、シクロアルキル基に変換する工程。
[20]
 工程(2)で得られたトリオルガノシラン化合物のR、R及びRの内、少なくとも一つが置換基を有していてもよいフェニル基である、[19]に記載のトリオルガノシラン化合物の製造方法。
[21]
 金属触媒が、ルテニウム-アルミナ粉末又はロジウムカーボン粉末である、[19]又は[20]に記載のトリオルガノシラン化合物の製造方法。
[22]
 金属触媒が、ルテニウム-アルミナ粉末である、[21]に記載のトリオルガノシラン化合物の製造方法。
 本発明により、トリオルガノシラン化合物の新規な製造方法を提供することができた。
 以下、さらに詳細に本発明を説明する。
 本明細書における「n-」はノルマル、「s-」及び「sec-」はセカンダリー、「t-」及び「tert-」はターシャリー、「Bu」はブチル、「Hex」はヘキシル、「Ph」はフェニル、「c」はシクロ、「Bn」はベンジル、「Mes」はメシチル、「cC10」はシクロヘキサンジイルを意味する。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 「C1-40アルキル基」とは、炭素数が1乃至40である、直鎖又は分岐鎖状のアルキル基を意味し、具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基、ドコシル基、トリアコンチル基、テトラコンチル基、3,7,11,15-テトラメチルヘキサデシル基などが挙げられる。また「C1-20アルキル基」とは、炭素数が1乃至20であり、「C1-6アルキル基」とは、炭素数が1乃至6であり、「C3-6アルキル基」とは、炭素数が3乃至6である、直鎖又は分岐鎖状のアルキル基を意味する。
 「2級又は3級の炭素数が4以上のアルキル基」とは、炭素数が4以上である、2級又は3級のアルキル基を意味し、好ましくは炭素数が4乃至40、より好ましくは炭素数が4乃至20、さらに好ましくは炭素数が4乃至10、特に好ましくは炭素数が4乃至6である、2級又は3級のアルキル基を意味する。なお、2級又は3級のアルキル基とは、基としての結合位置が、2級又は3級炭素上にあるアルキル基を意味する。具体例としては、2-ブチル基、t-ブチル基、3-ペンチル基、テキシル基などが挙げられる。また「2級又は3級のC4-6アルキル基」とは、炭素数が4乃至6である、2級または3級のアルキル基を意味し、「3級のC4-6アルキル基」とは、炭素数が4乃至6である、3級のアルキル基を意味する。
 「炭素数が3以上のアルキル基」とは、炭素数が3以上である、直鎖又は分岐鎖状のアルキル基を意味し、好ましくは炭素数が3乃至40、より好ましくは炭素数が3乃至20、さらに好ましくは炭素数が3乃至10、特に好ましくは炭素数が3乃至6である、直鎖又は分岐鎖状のアルキル基を意味し、炭素数が3以上のアルキル基の具体例としては、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、t-ブチル基、n-ペンチル基、3-ペンチル基、n-ヘキシル基、テキシル基などが挙げられる。
 「炭素数が3以上のシクロアルキル基」とは、炭素数が3以上である、環状のアルキル基を意味し、好ましくは炭素数が3乃至40、より好ましくは炭素数が3乃至20、さらに好ましくは炭素数が3乃至10、特に好ましくは炭素数が3乃至6である、環状のアルキル基を意味する。炭素数が3以上のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 「炭素数が6以上のアリール基」とは、炭素数が6以上である、芳香族炭化水素基を意味し、好ましくは炭素数が6乃至40、より好ましくは炭素数が6乃至20、さらに好ましくは炭素数が6乃至12である、芳香族炭化水素基を意味する。炭素数が6以上のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ビフェニル基などが挙げられる。また「C6-12アリール基」とは、炭素数が6乃至12である、アリール基を意味する。
 「炭素数が7以上のアラルキル基」とは、炭素数が7以上である、アリールアルキル基を意味し、好ましくは炭素数が7乃至40、より好ましくは炭素数が7乃至20、さらに好ましくは炭素数が7乃至13である、アリールアルキル基を意味する。炭素数が7以上のアラルキル基の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、ジフェニルメチル基、ナフチルメチル基、1-ナフチルエチル基、1-ナフチルプロピル基などが挙げられる。また「C7-13アラルキル基」とは、炭素数が7乃至13である、アラルキル基を意味する。
 「ハロゲン化C6-12アリール」とは、炭素数が6乃至12であり、芳香環上の1つ以上の水素がハロゲン原子に置換されたアリールを意味し、具体例としては、クロロベンゼン、ブロモベンゼン、ヨードベンゼンなどが挙げられる。
 「C6-12アリールリチウム」とは、炭素数が6乃至12であり、炭素-リチウム結合を有する化合物を意味し、具体例としては、フェニルリチウム、1-ナフチルリチウム、2-ナフチルリチウムなどが挙げられる。
 「置換基を有していてもよい」とは、無置換であるか、または任意の数の任意の置換基で置換されていることを意味する。
 上記の「任意の置換基」は、本発明が対象とする反応に悪影響を与えない置換基であれば特に種類は限定されない。
 「置換基を有していてもよい」における「置換基」としては、特に制限されないが、例えば、C1-40アルキル基、ヒドロキシ基、C1-40アルコキシ基、アセトキシ基、ジC1-40アルキルアミノ基、ハロゲン原子等が挙げられ、好ましくは、C1-40アルキル基、C1-40アルコキシ基又はジC1-6アルキルアミノ基であり、より好ましくはC1-40アルキル基又はC1-40アルコキシ基である。
 「C1-40アルコキシ基」とは、炭素数が1乃至40である、直鎖又は分岐鎖状のアルコキシ基を意味し、具体例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、t-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基などが挙げられる。
「ジC1-40アルキルアミノ基」とは、同一又は異なる2個の前記「C1-40アルキル基」がアミノ基に結合した基を意味し、具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-t-ブチルアミノ基、ジ-n-ペンチルアミノ基、ジ-n-ヘキシルアミノ基、N-エチル-N-メチルアミノ基、N-メチル-N-n-プロピルアミノ基、N-イソプロピル-N-メチルアミノ基、N-n-ブチル-N-メチルアミノ基、N-イソブチル-N-メチルアミノ基、N-t-ブチル-N-メチルアミノ基、N-メチル-N-n-ペンチルアミノ基、N-n-ヘキシル-N-メチルアミノ基、N-エチル-N-n-プロピルアミノ基、N-エチル-N-イソプロピルアミノ基、N-n-ブチル-N-エチルアミノ基、N-エチル-N-イソブチルアミノ基、N-t-ブチル-N-エチルアミノ基、N-エチル-N-n-ペンチルアミノ基、N-エチル-N-n-ヘキシルアミノ基、ジオクチルアミノ基、ジデシルアミノ基、ジドデシルアミノ基、ジヘキサデシルアミノ基、ジオクタデシルアミノ基、ジドコシルアミノ基などが挙げられる。
(本発明のトリオルガノシラン化合物の製造法の具体的な説明)
 以下に本発明のトリオルガノシラン化合物の製造法の各工程(i)乃至(iii)について説明する。  
 一つの側面として、本発明のトリオルガノシラン化合物の製造は、以下の工程(i)乃至(iii)として記載されるそれぞれの単位工程により構成される。
 一つの側面として、本発明のトリオルガノシラン化合物の製造は、以下の工程(i)乃至(iii)として記載される単位工程を、すべてまたは適宜組み合わせることで行うことができる。
 なお、本具体的な説明は以下に基づき説明される。
(a)工程(i)乃至(iii)の記載におけるR、RおよびRは、上記と同義である。
(b)反応の具体的な条件は、本発明のトリオルガノシラン化合物の製造が達成される限りにおいて特に制限されない。各反応における好ましい条件は適宜詳述される。
(c)各反応で記載される溶媒は、単独で用いても、2種類以上を混合して用いても良い。
工程(i):モノトリフラート化工程
 本工程は、ジオルガノシラン化合物(化合物(I))にトリフラート化試薬を反応させて、モノトリフラート化合物(化合物(III))を得る工程である。
Figure JPOXMLDOC01-appb-C000007

 式中、R及びRは、それぞれ独立して、置換基を有していてもよい2級もしくは3級の炭素数が4以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表す。
 R及びRは、それぞれ独立して、好ましくは2級又は3級の炭素数が4以上のアルキル基であり、より好ましくは2級又は3級のC4-6アルキル基であり、さらに好ましくはt-ブチル基である。
 本工程で使用するトリフラート化試薬は、特に制限は無いが、その例としては、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、トリフルオロメタンスルホニルクロリド、N-(2-ピリジル)ビス(トリフルオロメタンスルホンイミド)、トリフルオロメタンスルホン酸トリメチルシリル等が挙げられる。好ましくは、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸トリメチルシリルであり、より好ましくはトリフルオロメタンスルホン酸である。
 本工程で使用する溶媒は、反応を妨げない限り特に限定されないが、その例としては、脂肪族炭化水素(例えば、ペンタン、ヘキサン、ヘプタン)、含ハロゲン炭化水素溶媒(例えば、ジクロロメタン、クロロホルム)、芳香族炭化水素溶媒(例えば、トルエン、キシレン)、エーテル溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル)、アミド溶媒(例えば、N,N-ジメチルホルムアミド)、ニトリル溶媒(例えば、アセトニトリル)等が挙げられる。好ましくは脂肪族炭化水素又は含ハロゲン炭化水素溶媒であり、より好ましくはヘキサン、ヘプタン又はジクロロメタンである。
 本工程で使用する溶媒の使用量は、化合物(I)に対して、好ましくは100質量倍以下であり、より好ましくは1質量倍乃至50質量倍であり、さらに好ましくは5質量倍乃至20質量倍である。
 反応温度は、特に制限は無いが、-20℃から反応混合物の還流温度までが好ましく、より好ましくは-20℃乃至50℃であり、さらに好ましくは-10℃乃至30℃である。
工程(ii):置換基導入工程
 本工程は、上記工程(i)で得られた化合物(III)に金属試薬を反応させて、トリオルガノシラン化合物(化合物(II))を得る工程である。
Figure JPOXMLDOC01-appb-C000008

 式中、R及びRは工程(i)の記載と同義であり、Rは金属試薬における置換基である。
 本明細書中、金属試薬は、RLi(式中、Rは、置換基を有していてもよい炭素数が3以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表す。)で表される有機リチウム試薬、又はRMgX(式中、Rは、置換基を有していてもよい炭素数が3以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表し、Xは塩素原子、臭素原子またはヨウ素原子を表す。)で表されるグリニャール試薬を意味する。
 金属試薬がRLiの場合、Rは、好ましくはC3-6アルキル基又は置換基を有していいても良いC6-12アリール基であり、より好ましくはsec-ブチル基、n-ブチル基、n-ヘキシル基又は置換基を有していてもよいフェニル基であり、さらに好ましくはsec-ブチル基、n-ブチル基又は置換基を有していてもよいフェニル基である。
 金属試薬がRMgXの場合、Rは、好ましくはC3-6アルキル基、C6-12アリール基又はC7-13アラルキル基であり、より好ましくはC7-13アラルキル基であり、さらに好ましくはベンジル基である。Xは、好ましくは塩素原子又は臭素原子である。
 有機リチウム試薬の具体例としては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、フェニルリチウム等が挙げられ、グリニャール試薬の具体例としては、イソプロピルマグネシウムブロミド、tert-ブチルマグネシウムクロリド、シクロプロピルマグネシウムブロミド、フェニルマグネシウムクロリド、ベンジルマグネシウムブロミド、ベンジルマグネシウムクロリド等が挙げられる。
 金属試薬がRLiで、Rがアリール基であるアリールリチウムを使用する場合は、市販品を使用しても良いし、ハロゲン化アリールにリチウム試薬(n-ブチルリチウム、sec-ブチルリチウム等)を用いた、ハロゲン-リチウム交換反応により調製したものを使用してもよい。
 金属試薬の使用量は、工程(i)で使用した化合物(I)に対して、好ましくは1当量乃至20当量であり、より好ましくは1当量乃至10当量であり、さらに好ましくは1当量乃至5当量である。
 本工程で使用する溶媒は、反応を妨げない限り特に限定されないが、その例としては、脂肪族炭化水素(例えば、ペンタン、ヘキサン、ヘプタン)、含ハロゲン炭化水素溶媒(例えば、ジクロロメタン、クロロホルム)、芳香族炭化水素溶媒(例えば、トルエン、キシレン)、エーテル溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル)、アミド溶媒(例えば、N,N-ジメチルホルムアミド)、ニトリル溶媒(例えば、アセトニトリル)等が挙げられる。好ましくは脂肪族炭化水素又は含ハロゲン炭化水素溶媒であり、より好ましくはヘキサン、ヘプタン、テトラヒドロフラン、シクロペンチルメチルエーテル又はメチル-t-ブチルエーテルである。
 溶媒の使用量は、工程(i)で使用した化合物(I)に対して、好ましくは100質量倍以下であり、より好ましくは1質量倍乃至50質量倍であり、さらに好ましくは5質量倍乃至20質量倍である。
 反応温度は、特に制限は無いが、-40℃から反応混合物の還流温度までが好ましく、より好ましくは-20℃乃至50℃であり、さらに好ましくは-10℃乃至30℃である。
 反応時間は、特に制限は無いが、反応開始乃至72時間が好ましく、より好ましくは0.1乃至48時間であり、さらに好ましくは0.5乃至24時間である。
 反応の進行の確認は、一般的な液相有機合成反応と同様の方法を適用できる。即ち、薄層クロマトグラフィー、ガスクロマトグラフィー、ガスクロマトグラフィー/質量分析(GC/MS)等を用いて反応を追跡することができる。
工程(iii):水素化工程
 本工程は、化合物(II)の置換基R、R及びRの少なくとも1つが、置換基を有していてもよい炭素数が6以上のアリール基である場合において、金属触媒存在下水素を反応させて、該アリール基をシクロアルキル基に変換する工程である。具体例として、該アリール基がフェニル基の場合には、シクロヘキシル基に変換される。
 本工程で使用する金属触媒としては、特に制限は無いが、パラジウム触媒(例えば、5%パラジウムカーボン粉末STDタイプ、10%パラジウムカーボン粉末PEタイプ、5%パラジウムカーボン粉末NXタイプ、5%パラジウムカーボン粉末Kタイプ、5%パラジウムカーボン粉末PEタイプ、ASCA-2)、白金触媒(例えば、3%白金カーボン粉末STDタイプ、3%白金カーボン粉末SN101タイプ)、ルテニウム触媒(例えば、5%ルテニウムカーボン粉末Aタイプ、5%ルテニウムカーボン粉末Bタイプ、5%ルテニウムアルミナ粉末(HYAc-5E N-type、HYAc-5E S-type)が挙げられる。好ましくはルテニウム-アルミナ粉末又はロジウムカーボン粉末であり、より好ましくは、ルテニウム-アルミナ粉末である。
 金属触媒の使用量は、化合物(III)に対して、好ましくは0.001質量倍乃至5質量倍であり、より好ましくは0.01質量倍乃至1質量倍であり、さらに好ましくは0.05質量倍乃至0.5質量倍である。
 本反応に用いる水素ガスは、必ずしも高純度である必要はなく、還元反応に顕著な影響を与えない窒素やメタン等が含まれていてもよい。
 反応圧力は、水素分圧で0.1~20MPaであり、好ましくは0.2~10MPaであり、特に好ましくは0.3~1MPaである。
 本工程で使用する溶媒は、反応を妨げない限り特に限定されないが、その例としては、脂肪族炭化水素(例えば、ペンタン、ヘキサン、ヘプタン)、含ハロゲン炭化水素溶媒(例えば、ジクロロメタン、クロロホルム)、エーテル溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル)、アルコール溶媒(例えば、メタノール、エタノール、2-プロパノール、2,2,2-トリフルオロエタノール)等が挙げられる。好ましくは脂肪族炭化水素、又は含アルコール溶媒であり、より好ましくはヘキサン、ヘプタンである。
 溶媒の使用量は、化合物(III)に対して、好ましくは100質量倍以下であり、より好ましくは1質量倍乃至50質量倍であり、さらに好ましくは3質量倍乃至10質量倍である。
 反応温度は、特に制限は無いが、-40℃から反応混合物の還流温度までが好ましく、より好ましくは0℃乃至50℃であり、さらに好ましくは10℃乃至40℃である。
 反応の進行の確認は、一般的な有機合成反応と同様の方法を適用できる。即ち、薄層クロマトグラフィー、ガスクロマトグラフィー、ガスクロマトグラフィー/質量分析(GC/MS)等を用いて反応を追跡することができる。
 以下に参考合成例、合成例を示し、本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例中、「M」はmol/Lを意味する。
 実施例のプロトン核磁気共鳴(H-NMR)は、特に記述が無い場合は、日本電子(JEOL)社製JNM-ECP300、又は日本電子(JEOL)社製JNM-ECX300を用いて重クロロホルム溶媒中で測定し、化学シフトは、テトラメチルシランを内部標準(0.0ppm)としたときのδ値(ppm)で示した。
 NMRスペクトルの記載において、「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「dd」はダブレット オブ ダブレット、「dt」はダブレット オブ トリプレット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「Hz」はヘルツ、「CDCl」は重クロロホルムを意味する。
 ガスクロマトグラフィー/質量分析は、特に記載が無い場合は、Shimadzu社製GCMS-QP2010 Ultraを用いて測定した。
 ガスクロマトグラフィー/質量分析の記載において、CIは化学イオン化法であり、M-Hはプロトン欠損体を意味する。
 以下、特に記載がない場合、Ph(tBu)SiHの定量収率は、以下の分析条件Aによる定量分析法で算出した。
<分析条件A>
ガスクロマトグラフィー:SHIMADZU製 GC-2030
カラム:ジーエルサイエンス製 TC-1(30m×0.53mmID、1.5μm)
注入法:スプリット 10:1
カラム温度:50℃(5分保持)→昇温速度20℃/分で昇温→300℃(10分保持)
キャリアガス:窒素、線速度 30cm/秒
検出器:FID、230℃
標準物質:合成例1に記載の方法にて合成したPh(tBu)SiHをシリカゲルクロマトグラフィーにて精製し、標準物質とした。
標準物質のNMR及びMASSを示す。
H-NMR(CDCl
δppm:1.05(18H,s),3.85(1H,s),7.32-7.36(3H,m),7.55-7.59(2H,m)
MASS(CI)m/z;219.10(M-H)+
定量方法:絶対検量線法
 以下、特に記載がない場合、cHex(tBu)SiHの定量収率は、分析条件Aによる定量分析法で算出した。
標準物質:合成例5に記載の方法にて合成したcHex(tBu)SiHをシリカゲルクロマトグラフィーにて精製し、標準物質とした。
標準物質のNMR及びMASSを示す。
H-NMR(CDCl
δppm:1.06(18H,s),1.22-1.31(11H,m),3.18(1H,s) 
MASS(CI)m/z;225.10(M-H)+
定量方法:絶対検量線法
 以下、特に記載がない場合、sBu(tBu)SiHの定量収率は、分析条件Aによる定量分析法で算出した。
標準物質:合成例4に記載の方法にて合成したsBu(tBu)SiHをシリカゲルクロマトグラフィーにて精製し、標準物質とした。
標準物質のNMR及びMASSを示す。
H-NMR(CDCl
δppm:0.86-0.91(3H,m),1.05(18H,d,J=1.8Hz),1.19-1.33(5H,m),1.70-1.77(1H,m),3.30(1H,s) 
MASS(CI)m/z;199.05(M-H)+
定量方法:絶対検量線法
 以下、特に記載がない場合、nBu(tBu)SiHの定量収率は、分析条件Aによる定量分析法で算出した。
標準物質:合成例7に記載の方法にて合成したnBu(tBu)SiHをシリカゲルクロマトグラフィーにて精製し、標準物質とした。
標準物質のNMR及びMASSを示す。
H-NMR(CDCl
δppm:0.86-0.91(3H,m),1.00(18H,s),1.27-1.38(6H,m),3.28-3.30(1H,m)
MASS(CI)m/z;199.05(M-H)+
定量方法:絶対検量線法
 シリカゲルカラムクロマトグラフィーでの精製は、特に記述がない場合は、山善製Hi-Flashカラム、メルク製シリカゲル60又は富士シリシア化学製PSQ60Bのいずれかを用いた。
合成例1:Ph(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000009

 ジ-tert-ブチルシラン(0.20g、1.39mmol)をヘキサン(0.4g)と混合させ、0℃に冷却して、トリフルオロメタンスルホン酸(0.27g、1.81mmol)を加えて室温にて24時間攪拌した。別容器にて、sec-ブチルリチウム(1Mヘキサン溶液、1.9mL、1.9mmol)とフェニルブロミド(0.33g、2.1mmol)を0℃で混合し、室温で30分攪拌した。得られた反応液に、テトラヒドロフラン(0.40g)、ジ-tert-ブチルシランとトリフルオロメタンスルホン酸の混合溶液を滴下して3時間攪拌した。得られた反応液を3.6質量%塩酸(1.4g)、5質量%塩化ナトリウム水溶液(1.4g)の順で洗浄した。有機層中のPh(tBu)SiHの定量収率は、89%であった。
合成例2:C 12 25 -C (tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000010

 ジ-tert-ブチルシラン(0.20g、1.39mmol)をヘキサン(1.0g)と混合させ、0℃に冷却して、トリフルオロメタンスルホン酸(0.27g、1.8mmol)を加えて室温にて1時間攪拌した。別容器にて、sec-ブチルリチウム(1Mヘキサン溶液、1.9mL、1.9mmol)と1-ブロモ-4-ドデシルベンゼン(0.63g、1.9mmol)、テトラヒドロフラン(1.0g)を0℃で混合し、室温で1時間攪拌した。得られた反応液に、ジ-tert-ブチルシランとトリフルオロメタンスルホン酸の混合溶液を滴下して15時間攪拌した。得られた反応液をヘキサンで希釈した後、10質量%塩化アンモニウム水溶液(2mL)、5質量%塩化ナトリウム水溶液(1.0g)の順で洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、C1225-C(tBu)SiH(0.32g、収率59%)を無色油状物として得た。
H-NMR(CDCl
δppm:0.88(3H,t,J=7.2Hz),1.04(18H,s),1.20-1.30(18H,m),1.59-1.61(2H,m),2.52-2.61(2H,m),3.83(1H,s),7.12(2H,d,J=8.4Hz),7.46(2H,d,J=8.1Hz)
合成例3:Mes(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000011

 ジ-tert-ブチルシラン(0.20g、1.39mmol)をヘキサン(1.0g)と混合させ、0℃に冷却して、トリフルオロメタンスルホン酸(0.27g、1.8mmol)を加えて室温にて1.5時間攪拌した。別容器にて、sec-ブチルリチウム(1Mヘキサン溶液、1.9mL、1.9mmol)と2-ブロモメシチレン(0.39g、1.9mmol)、テトラヒドロフラン(1.0g)を0℃で混合し、1時間攪拌した。得られた反応液に、ジ-tert-ブチルシランとトリフルオロメタンスルホン酸の混合溶液を滴下して15時間攪拌した。得られた反応液をヘキサンで希釈した後、10質量%塩化アンモニウム水溶液(2mL)、5質量%塩化ナトリウム水溶液(1.0g)の順で洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Mes(tBu)SiH(0.22g、収率62%)を無色油状物として得た。
H-NMR(CDCl
δppm:0.99(18H,s),2.28(9H,s),3.97(1H,s),6.81(2H,s)
合成例4:sBu(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000012

 ジ-tert-ブチルシラン(0.10g、0.69mmol)とヘキサン(0.5g)を混合し、0℃に冷却して、トリフルオロメタンスルホン酸(0.14g、0.93mmol)を加えて室温にて1時間攪拌した。この溶液を0℃に冷却し、sec-ブチルリチウム(1Mヘキサン溶液、0.90mL、0.90mmol)を加えて10分攪拌した。得られた反応液をヘキサンで希釈した後、10質量%塩化アンモニウム水溶液(1.0g)、5質量%塩化ナトリウム水溶液(1.0g)の順で洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、sBu(tBu)SiH(0.19g、収率85%)を無色油状物として得た。
参考合成例1:Ph(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000013

 sec-ブチルリチウム(1Mヘキサン溶液、1.8mL、1.8mmol)とフェニルブロミド(0.13g、0.83mmol)を0℃で混合し、室温にて30分攪拌した。得られた反応液に、ジ-tert-ブチルシラン(0.10g、0.69mmol)とテトラヒドロフラン(0.40g)を混合した溶液を滴下し、室温にて16時間攪拌した。得られた反応液を3.6質量%塩酸(1.4g)、5質量%塩化ナトリウム水溶液(0.7g)の順で洗浄した。有機層中のPh(tBu)SiHの定量収率は、56%であった。
参考合成例2:sBu(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000014

 ジ-tert-ブチルシラン(0.10g、0.69mmol)をヘキサン(0.5g)と混合し、この溶液に室温にてsec-ブチルリチウム(1Mヘキサン溶液、0.90mL、0.90mmol)を加えて、70℃で41時間攪拌した。得られた反応液をヘキサンで希釈した後、10質量%塩化アンモニウム水溶液(1.0g)、5質量%塩化ナトリウム水溶液(1.0g)の順で洗浄した。得られた有機層中のsBu(tBu)SiHの定量収率は4.7%であった。
合成例5:cHex(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000015

 Ph(tBu)SiH(0.40g、1.81mmol)をヘキサン(2.8g)と混合させ、5質量%ルテニウム-アルミナ粉末(商品名:HYAc-5E N-type、0.16g)を加えて30℃、水素ガス雰囲気下、0.8MPaにて13時間攪拌した。得られた反応液をろ過し、ろ液中のcHex(tBu)SiHの定量収率は94%であった。
合成例6:C 12 25 -cC 10 (tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000016

 C1225-C(tBu)SiH(0.70g、1.80mmol)をヘキサン(7.0g)と混合させ、5質量%ルテニウム-アルミナ粉末(商品名:HYAc-5E S-type、0.21g)を加えて60℃、水素ガス雰囲気下、0.8MPaにて4時間攪拌した。5質量%ルテニウム-アルミナ粉末(0.14g)を加えて、更に19時間攪拌し、得られた反応液をろ過した。ろ液を濃縮後、シリカゲルクロマトグラフィーで精製し、C1225-cC10(tBu)SiH(0.56g)を無色油状物として得た。
H-NMR(CDCl
δppm:0.83-0.90(3H,m),1.05(18H,s),1.43-1.70(32H,m),3.18(1H,s)
合成例7:nBu(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000017

 ジ-tert-ブチルシラン(0.30g、2.08mmol)をヘキサン(3.0g)と混合させ、0℃に冷却して、トリフルオロメタンスルホン酸(0.47g、3.1mmol)を加えて30℃にて2時間攪拌した。この溶液を0℃に冷却し、テトラヒドロフラン(1.2g)とn-ブチルリチウム(1.6Mヘキサン溶液、3.3mL、5.2mmol)を加えて2時間攪拌した。得られた反応液をヘキサンで希釈した後、10質量%塩化アンモニウム水溶液(5mL)で分液した。水層をヘキサン(3mL)で抽出し、得られた有機層を混合した。有機層中のnBu(tBu)SiHの定量収率は93%であった。
合成例8:Bn(tBu) SiHの合成
Figure JPOXMLDOC01-appb-C000018

 ジ-tert-ブチルシラン(0.20g、1.39mmo)をヘキサン(1.0g)と混合させ、0℃に冷却して、トリフルオロメタンスルホン酸(0.27g、1.3mmol)を加えて室温にて3時間攪拌した。この溶液にベンジルマグネシウムクロリド-2Mテトラヒドロフラン溶液(1.0mL、2.0mmol)を滴下し、室温にて4時間攪拌した。得られた反応液をtert-ブチルメチルエーテルで希釈した後、10質量%塩化アンモニウム水溶液(2mL)で分液した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Bn(tBu)SiH(0.28g、収率85%)を無色油状物として得た。
H-NMR(CDCl
δppm:0.99(18H,s),2.22(2H,d,J=3.5Hz),3.56(1H,t,J=3.5Hz),7.03-7.28(5H,m)
MASS(CI)m/z;233.05(M-H)+
 本発明により、トリオルガノシラン化合物の効率的な製造方法を提供することができる。

Claims (22)

  1.  下記工程(1)及び(2)を含む、トリオルガノシラン化合物の製造方法:
    (1)
    式(I):
    Figure JPOXMLDOC01-appb-C000001

    [式中、R及びRは、独立して、それぞれ置換基を有していてもよい2級もしくは3級の炭素数が4以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表す]で表されるジオルガノシラン化合物にトリフラート化試薬を反応させて、
    式(III)
    Figure JPOXMLDOC01-appb-C000002

    [式中、R及びRは、前記と同じ意味を表す]で表されるモノトリフラート化合物を得る工程;
    (2)
     工程(1)で得られたモノトリフラート化合物に、RLiまたはRMgX(式中、Rは、置換基を有していてもよい炭素数が3以上のアルキル基、置換基を有していてもよい炭素数が3以上のシクロアルキル基、置換基を有していてもよい炭素数が6以上のアリール基または置換基を有していてもよい炭素数が7以上のアラルキル基を表し、Xは塩素原子、臭素原子またはヨウ素原子を表す)で表される金属試薬を反応させて、
    式(II):
    Figure JPOXMLDOC01-appb-C000003

    [式中、R、R及びRは、前記と同じ意味を表す]で表されるトリオルガノシラン化合物を得る工程。
  2.  R及びRが、それぞれ独立して、2級又は3級のC4-6アルキル基である、請求項1に記載のトリオルガノシラン化合物の製造方法。
  3.  R及びRが、それぞれ独立して、3級のC4-6アルキル基である、請求項2に記載のトリオルガノシラン化合物の製造方法。
  4.  R及びRが、それぞれtert-ブチル基である、請求項3に記載のトリオルガノシラン化合物の製造方法。
  5.  金属試薬が、RLiである、請求項1乃至4の何れか一項に記載のトリオルガノシラン化合物の製造方法。
  6.  Rが、C3-6アルキル基又は置換基を有していてもよいC6-12アリール基である、請求項5に記載のトリオルガノシラン化合物の製造方法。
  7.  Rが、C3-6アルキル基である、請求項6に記載のトリオルガノシラン化合物の製造方法。
  8.  Rが、sec-ブチル基又はn-ブチル基である、請求項7に記載のトリオルガノシラン化合物の製造方法。
  9.  Rが、置換基を有していてもよいC6-12アリール基である、請求項6に記載のトリオルガノシラン化合物の製造方法。
  10.  Rが、置換基を有していてもよいフェニル基である、請求項9に記載のトリオルガノシラン化合物の製造方法。
  11.  RLiが、置換基を有していてもよいハロゲン化C6-12アリールから調製した、置換基を有していてもよいC6-12アリールリチウムである、請求項9に記載のトリオルガノシラン化合物の製造方法。
  12.  RLiが、置換基を有していてもよいハロゲン化C6-12アリールと、n-ブチルリチウム又はsec-ブチルリチウムを用いて調製した、置換基を有していてもよいC6-12アリールリチウムである、請求項9に記載のトリオルガノシラン化合物の製造方法。
  13.  金属試薬が、RMgXである、請求項1乃至4の何れか一項に記載のトリオルガノシラン化合物の製造方法。
  14.  Rが、C7-13アラルキル基である、請求項13に記載のトリオルガノシラン化合物の製造方法。
  15.  Rが、ベンジル基である、請求項14に記載のトリオルガノシラン化合物の製造方法。
  16.  Xが、塩素原子又は臭素原子である、請求項13乃至15の何れか一項に記載のトリオルガノシラン化合物の製造方法。
  17.  トリフラート化試薬が、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、トリフルオロメタンスルホニルクロリド、N-(2-ピリジル)ビス(トリフルオロメタンスルホンイミド)又はトリフルオロメタンスルホン酸トリメチルシリルである、請求項1乃至16の何れか一項に記載のトリオルガノシラン化合物の製造方法。
  18.  トリフラート化試薬が、トリフルオロメタンスルホン酸である、請求項17に記載のトリオルガノシラン化合物の製造方法。
  19.  さらに下記工程(3)を含む、請求項1乃至18の何れか一項に記載のトリオルガノシラン化合物の製造方法:
    (3)
     工程(2)で得られたトリオルガノシラン化合物のR、R及びRの内、少なくとも一つが置換基を有していてもよい炭素数が6以上のアリール基であり、該アリール基を、金属触媒存在下水素を反応させて、シクロアルキル基に変換する工程。
  20.  工程(2)で得られたトリオルガノシラン化合物のR、R及びRの内、少なくとも一つが置換基を有していてもよいフェニル基である、請求項19に記載のトリオルガノシラン化合物の製造方法。
  21.  金属触媒が、ルテニウム-アルミナ粉末又はロジウムカーボン粉末である、請求項19又は20に記載のトリオルガノシラン化合物の製造方法。
  22.  金属触媒が、ルテニウム-アルミナ粉末である、請求項21に記載のトリオルガノシラン化合物の製造方法。
PCT/JP2020/017478 2019-04-26 2020-04-23 トリオルガノシラン化合物の製造方法 WO2020218413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021516200A JP7517331B2 (ja) 2019-04-26 2020-04-23 トリオルガノシラン化合物の製造方法
CN202080030699.XA CN113727959B (zh) 2019-04-26 2020-04-23 三有机硅烷化合物的制造方法
US17/606,198 US20220220133A1 (en) 2019-04-26 2020-04-23 Method for producing triorganosilane compound
EP20795713.5A EP3960725B1 (en) 2019-04-26 2020-04-23 Method for producing triorganosilane compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086647 2019-04-26
JP2019086647 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218413A1 true WO2020218413A1 (ja) 2020-10-29

Family

ID=72942123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017478 WO2020218413A1 (ja) 2019-04-26 2020-04-23 トリオルガノシラン化合物の製造方法

Country Status (5)

Country Link
US (1) US20220220133A1 (ja)
EP (1) EP3960725B1 (ja)
JP (1) JP7517331B2 (ja)
CN (1) CN113727959B (ja)
WO (1) WO2020218413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560857B2 (ja) 2020-10-02 2024-10-03 国立研究開発法人産業技術総合研究所 スルホン酸シリルエステルの製造方法および新規なケイ素化合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069978A1 (ja) * 2017-10-03 2019-04-11 日産化学株式会社 ペプチド化合物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775478B1 (fr) * 1998-02-27 2000-05-19 Rhodia Chimie Sa Procede utile pour la silylation de l'acide triflique
JP4058605B2 (ja) 2001-12-28 2008-03-12 信越化学工業株式会社 嵩高い置換基を有するシリルトリフラート化合物及びその製造方法
JP4292848B2 (ja) * 2003-04-07 2009-07-08 新日本理化株式会社 脂環族基置換シラン化合物の製造方法
JP5821844B2 (ja) 2010-06-07 2015-11-24 セントラル硝子株式会社 保護膜形成用薬液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069978A1 (ja) * 2017-10-03 2019-04-11 日産化学株式会社 ペプチド化合物の製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 57, 2018, pages 8297 - 8300
CHEN, Q. A. ET AL.: "Bronsted acid-promoted formation of stabilized silylium ions for catalytic friedel-crafts C-H silylation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, no. 25, 2016, pages 7868 - 7871, XP055759155 *
INORGANIC CHEMISTRY, vol. 43, 2004, pages 3421 - 3432
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 135, 2013, pages 15282 - 15285
KIM, CHUNGKYUN , PARK, EUNMI , JUNG, INKYUNG: "The Formation of Dendrimeric Silane on Poly(carbosilane): Silane Arborols ( V )1", JOURNAL OF THE KOREAN CHEMICAL SOCIETY, vol. 40, no. 5, 1 May 1996 (1996-05-01), pages 347 - 356, XP055864376, ISSN: 2234-8530 *
LIANG, H. ET AL.: "Di-ter-butylisobytylsilyl, another useful protecting group", ORGANIC LETTERS, vol. 13, no. 15, 2011, pages 4120 - 4123, XP055730927 *
ORGANIC LETTERS, vol. 13, 2011, pages 4120 - 4123
See also references of EP3960725A4
WOLFRAM UHLIG , ALFRED TZSCHACH: "Neuartige Silyltriflat-Derivate ", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 378, no. 1, 28 November 1989 (1989-11-28), pages C1 - C5, XP001061498, ISSN: 0022-328X, DOI: 10.1016/0022-328X(89)85014-4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560857B2 (ja) 2020-10-02 2024-10-03 国立研究開発法人産業技術総合研究所 スルホン酸シリルエステルの製造方法および新規なケイ素化合物

Also Published As

Publication number Publication date
EP3960725A1 (en) 2022-03-02
CN113727959A (zh) 2021-11-30
JP7517331B2 (ja) 2024-07-17
JPWO2020218413A1 (ja) 2020-10-29
EP3960725B1 (en) 2024-07-10
EP3960725C0 (en) 2024-07-10
US20220220133A1 (en) 2022-07-14
CN113727959B (zh) 2024-10-25
EP3960725A4 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
Rolla Sodium borohydride reactions under phase-transfer conditions: Reduction of azides to amines
Hartung et al. A Base-Catalyzed Domino-Isomerization–Hydroamination Reaction—A New Synthetic Route to Amphetamines
JP2005510550A (ja) 3,3’,5,5’,6,6’−ヘキサアルキル−2,2’−ビフェノール、3,3’,4,4’,5,5’−ヘキサアルキル−2,2’−ビフェノール、および3,3’,4,4’,5,5’,6,6’−オクタアルキル−2,2’−ビフェノールの調製法
US20040106818A1 (en) Process for the preparation of cyclohexanol derivatives
JP7517331B2 (ja) トリオルガノシラン化合物の製造方法
EP0315886B1 (en) Isoquinoline derivatives, their manufacture and use
ES2283850T3 (es) Nuevos complejos de carbeno-niquel, -paladio y -platino, su produccin y utilizacion en reacciones cataliticas.
KR960000758B1 (ko) 광학적 활성 히드록시벤질아민 유도체 및 그의 제조방법
Cui et al. The synthesis of N-arylcyclopropylamines via palladium-catalyzed C–N bond formation
KR101422388B1 (ko) 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용
EP1002788B1 (en) Process for preparing halogenated phenylmalonates
WO2012005200A1 (ja) 光学活性な1,2-ビス(ジアルキルホスフィノ)ベンゼン誘導体の製造方法
US20040143139A1 (en) Process for the production of aminodiphenylamines
JP5448572B2 (ja) アセチル化合物、該アセチル化合物の製造方法、および該アセチル化合物を使用したナフトール化合物の製造方法
JPH07330786A (ja) 光学活性3級ホスフィン化合物、これを配位子とする遷移金属錯体およびこれを用いる製造法
US7829745B1 (en) Methods for selectively synthesizing 1-aryl-2-tetralones
ES2302026T3 (es) Imidazolinas que contienen fosforo y complejos metalicos de las mismas.
Wenzel et al. A novel synthesis of tetraaminoethenes by reduction of oxalic amidines and subsequent electrophilic substitution
CN114380863B (zh) 金鸡纳碱衍生的nnp配体及其制备方法与用途
JP4667589B2 (ja) 2,4−ジヒドロキシピリジンの製造方法
US6291716B1 (en) Ortho-alkylation method of aromatic ketones
Lee et al. A new pathway in the reaction of disilene with carbonyl compounds: an ‘ene’reaction instead of cycloaddition
Vasil’ev et al. 2-(N-Alkylamino)-1-(trifluoroacetimidoyl) vinyl ketone derivatives as potential reagents in heterocyclic synthesis
Bavetsias et al. Synthesis of N-substituted derivatives of tert-butyl 4-aminobenzoate via a palladium-catalysed reaction
JP4663105B2 (ja) 2−スルホニル−4−オキシピリジン誘導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795713

Country of ref document: EP

Effective date: 20211126