WO2020217936A1 - ガラス板の製造方法、及びガラス板、並びにガラス板集合体 - Google Patents

ガラス板の製造方法、及びガラス板、並びにガラス板集合体 Download PDF

Info

Publication number
WO2020217936A1
WO2020217936A1 PCT/JP2020/015416 JP2020015416W WO2020217936A1 WO 2020217936 A1 WO2020217936 A1 WO 2020217936A1 JP 2020015416 W JP2020015416 W JP 2020015416W WO 2020217936 A1 WO2020217936 A1 WO 2020217936A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
hole
plate thickness
plate
range
Prior art date
Application number
PCT/JP2020/015416
Other languages
English (en)
French (fr)
Inventor
隆行 野田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202080011074.9A priority Critical patent/CN113365958B/zh
Priority to KR1020217026868A priority patent/KR102670240B1/ko
Priority to US17/602,473 priority patent/US20220204393A1/en
Publication of WO2020217936A1 publication Critical patent/WO2020217936A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a method for forming a through hole in a glass plate that gradually expands toward at least one side in the plate thickness direction, and a glass plate for forming such a through hole.
  • Patent Documents 1 and 2 below disclose a glass plate having a tapered through hole whose diameter gradually increases on one side in the plate thickness direction.
  • Patent Document 1 discloses a glass plate having a curved surface formed between the main surface of the glass plate and the inner wall surface of the tapered through hole, and a method for manufacturing the same. Further, in Patent Document 2, after irradiating a laser from one main surface side of the glass plate to form a tapered through hole, an etching solution is applied from the other main surface side of the glass plate toward the through hole. It is disclosed to inject.
  • the minimum hole width (minimum hole diameter) of the through hole is an important factor in determining the quality of the glass plate with a hole.
  • the minimum hole width of the through hole is also different accordingly. Therefore, the variation in the plate thickness of the glass plate adversely affects the variation in the minimum hole width of the through hole, and becomes a factor that deteriorates the dimensional accuracy of the through hole over the entire length in the plate thickness direction.
  • Patent Documents 1 and 2 do not consider the relationship between the thickness of the glass plate and the minimum hole width of the through hole as described above. Therefore, it becomes difficult to form a through hole having excellent dimensional accuracy in the glass plate.
  • the first aspect of the present invention which was devised to solve the above problems, is a method for manufacturing a glass plate having through holes, the first step of preparing the glass plate and the thickness direction of the glass plate.
  • a second step of forming a through hole that gradually expands toward at least one side is provided.
  • the inclination angle of the inner wall surface of the through hole with respect to the plate thickness direction is set to ⁇ , and the minimum of the through hole is set.
  • the through hole gradually expands toward only one side in the plate thickness direction, provided that the hole width is D and the allowable range of variation for the minimum hole width D is A% of the minimum hole width D.
  • the range ⁇ T of the variation in the thickness of the glass plate is Prepare a glass plate that satisfies the relationship of ⁇ T ⁇ (D ⁇ A / tan ⁇ ) / 200, or When the through hole gradually expands from the intermediate portion in the plate thickness direction toward both one side and the other side in the plate thickness direction, the range ⁇ T of the variation in the plate thickness of the glass plate is determined. It is characterized by preparing a glass plate satisfying the relationship of ⁇ T ⁇ (D ⁇ A / tan ⁇ ) / 100.
  • the above-mentioned "range of allowable variation for the minimum hole width D" means the difference between the maximum value and the minimum value that can be tolerated for the minimum hole width D.
  • the above-mentioned "range of variation in the thickness of the glass plate” means the difference between the maximum value and the minimum value of the plate thickness of the glass plate.
  • the inclination angle ⁇ and the minimum hole width D are both design values (values predetermined for forming a through hole in the second step).
  • the range ⁇ T of the variation in the plate thickness of the glass plate is the inclination angle ⁇ with respect to the plate thickness direction of the inner wall surface of the through hole. It is within a predetermined range based on the minimum hole width D of the through hole and the allowable variation range A for the minimum hole width D. Therefore, it is possible to prevent the variation in the thickness of the glass plate from adversely affecting the dimensional accuracy of the tapered through hole (particularly, the dimensional accuracy of the minimum hole width D). As a result, it becomes possible to form a tapered through hole with improved dimensional accuracy in the glass plate.
  • a plurality of the through holes having the same size and the same shape may be formed on a glass plate in which the range ⁇ T of the variation in the plate thickness satisfies any of the above relationships.
  • a plurality of glass plates whose plate thickness variation range ⁇ T satisfies any of the above relationships may be prepared.
  • the through hole may be formed by a laser irradiation treatment on the main surface of the glass plate and an etching treatment on the glass plate after the laser irradiation treatment.
  • the irradiation treatment region may be formed on the glass plate by the laser irradiation treatment, and the irradiation treatment region may be removed to form the through hole by the etching treatment.
  • the irradiation treatment region formed on the glass plate by the laser irradiation treatment may have a through hole, or may be a modified region having no through hole.
  • the laser when the laser irradiation process is performed, the laser is irradiated to a plurality of points on the main surface of the glass plate that are separated from each other by virtual lines corresponding to the contour lines of the openings of the through holes. You may try to do it.
  • irradiation-treated regions or through-holes by laser irradiation are formed at a plurality of locations of the imaginary lines corresponding to the contour lines of the through-hole openings in the glass plate, which are separated from each other, and are tapered by the subsequent etching treatment.
  • the shape of the through hole is finished.
  • the laser irradiation time can be shortened as compared with the case where the laser is continuously irradiated along the virtual line corresponding to the contour line of the opening of the through hole, which simplifies the work and the manufacturing cost. The cost is reduced.
  • dissolution erosion by etching proceeds from the main surface side opposite to the main surface on which the glass plate mask is arranged. Therefore, a tapered through hole that gradually expands toward only one side in the plate thickness direction (toward the main surface opposite to the main surface on which the mask is arranged) is easily and accurately formed on the glass plate. can do.
  • the plate thickness T0 of the glass plate may be 30 to 1300 ⁇ m, and the inclination angle ⁇ of the inner wall surface of the through hole with respect to the plate thickness direction may be 2 to 45 °.
  • the minimum hole width D of the through hole may be 5 to 200 ⁇ m, and the allowable variation range A for the minimum hole width D may be 2 to 40% of the minimum hole width D.
  • the above-mentioned "glass plate thickness T0" is the design plate thickness of the glass plate.
  • the second side surface of the present invention which was devised to solve the above problems, gradually expands toward at least one side in the plate thickness direction, and the inclination angle ⁇ of the inner wall surface with respect to the plate thickness direction is 2 to 45 °.
  • the thickness of the glass plate varies when the through hole gradually expands toward only one side in the plate thickness direction on the condition that a is 2 to 40% as a% of.
  • Range ⁇ t is Satisfy the relationship of ⁇ t ⁇ (d ⁇ a / tan ⁇ ) / 200, or When the through hole gradually expands from the intermediate portion in the plate thickness direction toward both one side and the other side in the plate thickness direction, the range ⁇ t of the variation in the plate thickness of the glass plate is determined. It is characterized by satisfying the relationship of ⁇ t ⁇ (d ⁇ a / tan ⁇ ) / 100.
  • range of allowable variation for the minimum hole width d means the difference between the maximum value and the minimum value that can be tolerated for the minimum hole width d.
  • the above-mentioned “range of variation in plate thickness” means the difference between the maximum value and the minimum value of the plate thickness.
  • the plate thickness t0, the inclination angle ⁇ , and the minimum hole width d are all design values (values predetermined for forming the through hole).
  • the range ⁇ t of the variation in the plate thickness of the glass plate is the inclination angle ⁇ with respect to the plate thickness direction of the inner wall surface of the through hole. It is within a predetermined range based on the minimum hole width d of the through hole and the allowable variation range a for the minimum hole width d. Therefore, it is possible to prevent the variation in the thickness of the glass plate from adversely affecting the dimensional accuracy of the tapered through hole (particularly, the dimensional accuracy of the minimum hole width d). As a result, it becomes possible to form a tapered through hole with improved dimensional accuracy in the glass plate.
  • a third aspect of the present invention which was devised to solve the above problems, is to provide a glass plate assembly in which a plurality of glass plates in which the range ⁇ t of the variation in plate thickness satisfies any of the above relationships are collected. is there.
  • the variation in plate thickness between a plurality of glass plates is appropriately suppressed, and the dimensional accuracy of each of the plurality of glass plates is improved in a tapered shape. Holes can be formed.
  • FIG. 1 is a flowchart showing each step of the method for manufacturing a glass plate according to the first embodiment of the present invention.
  • this method for manufacturing a glass plate includes a first step F1 for preparing the glass plate 1 and a second step F2 for forming a tapered through hole in the glass plate 1.
  • a measurement process g1 for measuring the thickness of the glass plate 1 and a calculation process g2 for performing an operation for obtaining the conditions required for the glass plate 1 are performed.
  • the glass plate 1 prepared in the first step F1 is selected based on the results of the measurement process g1 and the arithmetic process g2.
  • the size of the glass plate 1 is, for example, 50 to 2200 mm in the vertical direction and 50 to 2500 mm in the horizontal direction.
  • soda glass, quartz glass, non-alkali glass, borosilicate glass, aluminosilicate glass, crystallized glass and the like can be used, but when the glass plate 1 is used as a substrate for electronic devices, , Quartz glass or non-alkali glass or borosilicate glass is preferable.
  • the measured plate thickness T at a plurality of measurement points of the glass plate 1 is measured by using ultrasonic waves, a laser, or the like. This measurement is performed, for example, at a plurality of points (for example, tens or hundreds of points) having a pitch of 1 mm for each of the vertical and horizontal directions of the main surface of the glass plate 1.
  • the range of variation of the plurality of actually measured plate thicknesses T is defined as ⁇ T.
  • the range ⁇ T of the variation here means the difference between the maximum value and the minimum value of the actually measured plate thickness T.
  • the calculation is performed based on each element of the glass plate 1 having the design plate thickness T0 shown in FIGS. 2 to 5.
  • 2 to 5 illustrate a design through hole 2 to be formed in the glass plate 1 in the second step F2.
  • a plurality of through holes 2 and through holes having the same size and the same shape are formed on one glass plate 1 (not shown).
  • the angle formed by 2a) is ⁇
  • the minimum hole width of the through hole 2 is D
  • the allowable variation range for the minimum hole width D is A% of the minimum hole width D.
  • the range of variation here means the difference between the maximum value and the minimum value that can be tolerated for the minimum hole width D.
  • the value of A% is set by a glass plate manufacturer, a worker, or the like who implements the manufacturing method according to the present embodiment.
  • the range ⁇ T of the plate thickness variation is ⁇ T ⁇ (D ⁇ A / tan ⁇ ) / 200
  • a glass plate 1 that satisfies the relationship (hereinafter referred to as Equation 1) is selected or
  • the range ⁇ T of the variation in plate thickness is determined.
  • ⁇ T ⁇ (D ⁇ A / tan ⁇ ) / 100 (Hereinafter referred to as mathematical formula 2), a glass plate 1 satisfying the above relationship is selected.
  • the range of variation along the width direction of the minimum hole width D is converted into the range of variation along the plate thickness direction, and the variation of the plate thickness (measured plate thickness T) of the glass plate 1 It shows the relationship with the range ⁇ T of.
  • a numerical value is set within a range of 2 to 100 ⁇ m, or more than 100 ⁇ m and 200 ⁇ m or less, and the numerical value is substituted into Equation 1. ..
  • the through hole 2 shown in FIG. 2 is gradually expanded toward only one side in the plate thickness direction, and the inclination angle ⁇ of the inner wall surface 2a is 2 to 45 °, particularly 3 to 35 °.
  • the through hole 2 of this type may have an inclination angle ⁇ of the inner wall surface 2a of more than 35 ° and less than 60 °.
  • a numerical value of the inclination angle ⁇ is set so as to be within the range as described above, and the numerical value is substituted into Equation 1.
  • the allowable variation range A for the minimum hole width D is set to 2 to 40% of the minimum hole width D, a percentage value is set, and the value is substituted into Equation 2. Also in the case of this type of through hole 2, the variation in the minimum hole width D increases as the inclination angle ⁇ increases. Therefore, when the inclination angle ⁇ is large and the minimum hole width D is small, the allowable variation range A is relatively small, and when the inclination angle ⁇ is small and the minimum hole width D is large, the allowable variation range A is relatively small. After making A relatively large, a numerical value of the percentage is set, and the numerical value is substituted into the formula 2.
  • the variation in the minimum hole width D is larger than in the case of the through hole 2 in the form shown in FIGS. 4 and 5. Therefore, in the case of the through hole 2 in the form shown in FIGS. 2 and 3, the allowable variation range A for the minimum hole width D is relatively small, and in the case of the through hole 2 in the form shown in FIGS. 4 and 5. It is preferable that the range A of the allowable variation with respect to the minimum hole width D is relatively large.
  • the through hole 2 illustrated in FIGS. 4 and 5 gradually expands from the central portion in the plate thickness direction toward both one side and the other side in the plate thickness direction, but is in the plate thickness direction. Even if it is not the central portion, it may be gradually expanded from the intermediate portion in the plate thickness direction toward both one side and the other side in the plate thickness direction.
  • the plate is 1/3 or more of the plate thickness from one end in the plate thickness direction (one main surface 1a) toward the center side and from the other end in the plate thickness direction (the other main surface 1b) toward the center side.
  • the formula 2 is used for the through hole 2 that gradually expands from the portion within the region to both one side and the other side in the plate thickness direction with a region of 1/3 or more of the thickness as an intermediate portion.
  • Formula 1 may be used for the through hole 2 which is used and gradually expands from the portion deviating from the region toward both one side and the other side in the plate thickness direction.
  • the design plate thickness T0 of the glass plate 1 shown in each of these figures is preferably 30 to 1300 ⁇ m, and more preferably 30 to 500 ⁇ m, or more than 500 ⁇ m and 1300 ⁇ m or less.
  • the through hole 2 is formed in the glass plate 1 having a large design plate thickness T0, there is a variation in the minimum hole width D as compared with the case where the through hole 2 is formed in the glass plate 1 having a small design plate thickness T0. Becomes larger. Therefore, when the through hole 2 is formed in the glass plate 1 having a large design plate thickness T0, the allowable variation range A for the minimum hole width D is relatively small, and the glass having a small design plate thickness T0. When the through hole 2 is formed in the plate 1, it is preferable to relatively increase the allowable variation range A for the minimum hole width D.
  • each numerical value in the design is substituted into the formula 1 or the formula 2 as described above, and the range ⁇ T of the variation of the measured plate thickness T of the glass plate 1 satisfies the relationship of the formula 1 or the formula 2.
  • the glass plate manufacturing method exerts the following effects by executing the first step F1 as described above. That is, in the glass plate 1 selected in the first step F1, the range ⁇ T of the plate thickness variation is the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 with respect to the plate thickness direction and the minimum hole width D of the through hole 2. And within a predetermined range based on the allowable variation range A for the minimum hole width D. Therefore, it is possible to prevent the variation in the thickness of the glass plate 1 from adversely affecting the dimensional accuracy of the plurality of through holes 2 (particularly, the dimensional accuracy of the minimum hole width D).
  • the variation range ⁇ T for all of the prepared plurality of glass plates 1 is within the above-mentioned predetermined range, the variation in plate thickness between the plurality of glass plates 1 can be appropriately suppressed. it can.
  • the through hole 2 having improved dimensional accuracy can be formed in any of the plurality of glass plates 1. If the variation range ⁇ T of the measured plate thickness T is less than 1 ⁇ m of the design plate thickness T0, ultra-precision polishing finish is required for the main surfaces 1a and 1b of the glass plate 1, and the cost is increased. Invite soaring prices. Therefore, the lower limit of ⁇ T is preferably T0 / 500.
  • the second step F2 of the glass plate manufacturing method according to the first embodiment will be described.
  • a laser irradiation treatment h1 for the glass plate 1 and an etching treatment h2 for the glass plate 1 subjected to the laser irradiation treatment h1 are performed.
  • the glass plate 1 prepared as described above is irradiated with a laser to form an irradiation treatment region.
  • a laser to form an irradiation treatment region.
  • FIG. 6 on one main surface 1a of the glass plate 1, with respect to a plurality of points 5 separated from each other of the virtual line 4 corresponding to the contour line of the opening of the through hole 2.
  • irradiation processing regions are formed at a plurality of locations.
  • the irradiation treatment regions formed at the plurality of locations may or may not be connected to each other.
  • the laser when forming a through hole 2 having a circular opening, the laser may be intermittently irradiated on the circular virtual line 4 as shown in the figure, and the opening is rectangular (specifically, the corner portion is formed).
  • the laser When forming the through hole 2 forming the curved rectangle), the laser may be intermittently irradiated on the virtual line of the rectangle.
  • the irradiation treatment region is preferably a modified region in which holes penetrating the glass plate 1 are not formed by laser irradiation, but holes penetrating along with laser irradiation may be formed.
  • the laser used here is, for example, a CO 2 laser, a CO laser, an excima laser, a YAG laser, a YVO laser, and a fiber laser, and the wavelength can be applied to the ultraviolet region, the visible light region, and the infrared region, but the irradiation is performed.
  • a wavelength that is transparent to the glass is preferable.
  • the irradiation method is preferably intermittent pulse irradiation.
  • the etching treatment h2 is applied to the glass plate 1 having the irradiation treatment region as described above. Specifically, the irradiation treatment region is removed from the glass plate 1 by immersing the glass plate 1 in an etching solution and performing a wet etching treatment. As a result, a plurality of through holes 2 are formed in the glass plate 1.
  • the through hole 2 that gradually expands toward only one side in the plate thickness direction is formed in the glass plate 1
  • one main surface 1a of the glass plate 1 is formed.
  • the irradiation treatment area is formed by irradiating the laser only from the side.
  • the irradiation treatment region may be formed by irradiating the laser from both sides of one main surface 1a side and the other main surface 1b side of the glass plate 1.
  • the glass plate 1 when the glass plate 1 is formed with the through holes 2 gradually expanding from the intermediate portion in the plate thickness direction toward both sides, one main surface 1a of the glass plate 1 is formed.
  • a wet etching treatment is performed without masking.
  • dissolution erosion proceeds from both sides of one main surface 1a side and the other main surface 1b side of the glass plate 1, and a tapered through hole 2 as shown in each figure is completed.
  • the irradiation treatment region can be formed by irradiating the laser only from one of the main surfaces 1a and 1b.
  • the through hole 2 may be formed in the glass plate 1 only by continuous irradiation along the virtual line 4 of the laser without performing the etching process h2.
  • the glass plate 1 used to form the through hole 2 in the second step F2 is selected as satisfying the relationship of the formula 1 or the formula 2 in the first step F1. Therefore, the dimensional accuracy (particularly, the dimensional accuracy of the minimum hole width D) is improved in each of the plurality of through holes 2 formed in the glass plate 1.
  • the second embodiment of the present invention relates to a glass plate.
  • This glass plate is used to form a through hole that gradually expands toward at least one side in the plate thickness direction.
  • the plate thickness t0 of this glass plate is 30 to 1300 ⁇ m.
  • the through hole formed in the glass plate has an inclination angle ⁇ of 2 to 45 ° and a minimum hole width d of 5 to 200 ⁇ m with respect to the plate thickness direction of the inner wall surface.
  • the allowable variation range a% for the minimum hole width d is 2 to 40% of the minimum hole width d.
  • the range ⁇ t of the variation in the plate thickness (measured plate thickness t) is ⁇ t ⁇ (d ⁇ a / tan ⁇ ) / 200 Satisfy the relationship or
  • the range ⁇ t of the variation in the plate thickness (measured plate thickness t) is , ⁇ t ⁇ (d ⁇ a / tan ⁇ ) / 100 Meet the relationship.
  • the plate thickness t0, the inclination angle ⁇ , and the minimum hole width d are all design values.
  • the plate thickness t0, the inclination angle ⁇ , the minimum hole width d, the allowable variation range a, the plate thickness variation range ⁇ t, and the actually measured plate thickness t are the inclination angles ⁇ described above, respectively.
  • the minimum hole width D, the allowable variation range A, the plate thickness variation range ⁇ T, and the actually measured plate thickness T the matters already explained in the [Glass plate manufacturing method] according to the first embodiment. However, this applies to the glass plate here.
  • the range ⁇ t of the variation in the plate thickness is the range of the allowable variation for the inclination angle ⁇ of the inner wall surface of the through hole with respect to the plate thickness direction, the minimum hole width d of the through hole, and the minimum hole width d. It falls within the predetermined range based on a. Therefore, it is possible to prevent the variation in the thickness of the glass plate from adversely affecting the dimensional accuracy of the plurality of through holes (particularly, the dimensional accuracy of the minimum hole width d). As a result, a plurality of through holes with improved dimensional accuracy can be formed in this glass plate.
  • a glass plate aggregate can be obtained. According to this glass plate assembly, not only the variation in plate thickness between the plurality of glass plates is suppressed, but also through holes with improved dimensional accuracy are formed in each of the plurality of glass plates. be able to.
  • the inclination angle ⁇ , the minimum hole width d, the range a of the variation, the range ⁇ t of the variation of the plate thickness, and the actually measured plate thickness t of the [glass plate] are set as [Manufacturing of the glass plate].
  • Method] will be described in terms of the inclination angle ⁇ , the minimum hole width D, the range A of the variation, the range ⁇ T of the variation of the plate thickness, and the actually measured plate thickness T.
  • Example 1 forms a through hole 2 having a mode as shown in FIG.
  • the plate thickness T0 (design plate thickness) of the glass plate is 100 ⁇ m
  • the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 9.9 °.
  • the minimum hole width D of the through hole 2 (opening is circular)
  • the allowable variation range A for the minimum hole width D is 20%
  • the calculated value of ⁇ T according to Equation 1 (upper limit value of ⁇ T). ) was 11.5 ⁇ m.
  • a glass plate having a specific numerical value ⁇ T1 in the range of variation in the plate thickness (measured plate thickness T) of 9 ⁇ m (minimum value is 97 ⁇ m and maximum value is 106 ⁇ m) was prepared.
  • the material of this glass plate is non-alkali glass.
  • a through hole 2 was formed in the glass plate only by irradiating the laser.
  • the minimum hole width D1 for the plurality of through holes 2 formed in the glass plate has a minimum value of 19.0 ⁇ m and a maximum value of 22.1 ⁇ m, and the range ⁇ D1 of the variation of the minimum hole width D1 is , 15.5% (3.1 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.
  • Example 2 also forms a through hole 2 having a mode as shown in FIG. Specifically, as shown in Table 2 below, the thickness T0 of the glass plate is 300 ⁇ m, the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 11.3 °, and the minimum hole of the through hole 2 is set.
  • the width D was 30 ⁇ m and the allowable variation range A for the minimum hole width D was 20%
  • the calculated value of ⁇ T (upper limit value of ⁇ T) according to Equation 1 was 15.0 ⁇ m.
  • a glass plate having a specific numerical value ⁇ T1 in the range of variation in the plate thickness (measured plate thickness T) of 13 ⁇ m (minimum value is 292 ⁇ m and maximum value is 305 ⁇ m) was prepared.
  • the material of this glass plate is soda glass.
  • An irradiation-treated region having holes penetrated by laser irradiation was formed on the glass plate, and then etching treatment was performed to form through-holes 2.
  • the minimum hole width D1 of the plurality of through holes 2 formed in the glass plate has a minimum value of 26.8 ⁇ m and a maximum value of 32.0 ⁇ m, and the range ⁇ D1 of the variation of the minimum hole width D1 is , 17.3% (5.2 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.
  • Example 3 forms a through hole 2 having a mode as shown in FIG.
  • the thickness T0 of the glass plate is 50 ⁇ m
  • the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 35 °
  • the minimum hole width D of the through hole 2 is set.
  • the allowable variation range A for the minimum hole width D was 40%
  • the calculated value of ⁇ T (upper limit value of ⁇ T) according to Equation 1 was 2.9 ⁇ m. Therefore, a glass plate having a specific numerical value ⁇ T1 in the range of variation in the plate thickness (measured plate thickness T) of 2.5 ⁇ m (minimum value is 48.5 ⁇ m and maximum value is 51 ⁇ m) was prepared.
  • the material of this glass plate is non-alkali glass.
  • a through hole 2 was formed in the glass plate by forming a modified region that does not penetrate by irradiating the glass plate and then performing an etching treatment.
  • the minimum hole width D1 of the plurality of through holes 2 formed in the glass plate has a minimum value of 7.9 ⁇ m and a maximum value of 11.4 ⁇ m, and the range ⁇ D1 of the variation of the minimum hole width D1 is It was 35.0% (3.5 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.
  • Example 4 forms a through hole 2 having a mode as shown in FIG.
  • the thickness T0 of the glass plate is 100 ⁇ m
  • the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 14 °
  • the minimum hole width D of the through hole 2 is set.
  • the allowable variation range A for the minimum hole width D was 20%
  • the calculated value of ⁇ T (upper limit value of ⁇ T) according to Equation 2 was 24.1 ⁇ m. Therefore, a glass plate having a specific numerical value ⁇ T1 in the range of variation in the plate thickness (measured plate thickness T) of 22 ⁇ m (minimum value is 89 ⁇ m and maximum value is 111 ⁇ m) was prepared.
  • the material of this glass plate is non-alkali glass.
  • a through hole 2 was formed in the glass plate by forming a modified region that does not penetrate by irradiating the glass plate and then performing an etching treatment.
  • the minimum hole width D1 of the plurality of through holes 2 formed in the glass plate has a minimum value of 27.3 ⁇ m and a maximum value of 32.7 ⁇ m, and the variation range ⁇ D1 of the minimum hole width D1 is It was 18.0% (5.4 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.
  • Example 5 forms a through hole 2 having a mode as shown in FIG.
  • the thickness T0 of the glass plate is 500 ⁇ m
  • the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 5.1 °
  • the minimum hole of the through hole 2 is set.
  • the width D was 55 ⁇ m
  • the allowable variation range A for the minimum hole width D was 15%
  • the calculated value of ⁇ T (upper limit value of ⁇ T) according to Equation 2 was 92.4 ⁇ m. Therefore, a glass plate having a specific numerical value ⁇ T1 in the range of variation in the plate thickness (measured plate thickness T) of 85 ⁇ m (minimum value is 457 ⁇ m and maximum value is 542 ⁇ m) was prepared.
  • the material of this glass plate is quartz glass.
  • An irradiation-treated region having holes penetrated by laser irradiation was formed on the glass plate, and then etching treatment was performed to form through-holes 2.
  • the minimum hole width D1 of the plurality of through holes 2 formed in the glass plate has a minimum value of 51.2 ⁇ m and a maximum value of 58.7 ⁇ m, and the range ⁇ D1 of the variation of the minimum hole width D1 is It was 13.6% (7.5 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.
  • Example 6 also forms a through hole 2 having a mode as shown in FIG.
  • the thickness T0 of the glass plate is 50 ⁇ m
  • the inclination angle ⁇ of the inner wall surface 2a of the through hole 2 is 2 °
  • the minimum hole width D of the through hole 2 is set.
  • the allowable variation range A for the minimum hole width d was 3%
  • the calculated value of ⁇ T (upper limit value of ⁇ T) according to Equation 2 was 17.2 ⁇ m. Therefore, a glass plate having a specific numerical value ⁇ T1 of 14 ⁇ m (minimum value 42 ⁇ m, maximum value 56 ⁇ m) in the range of variation in plate thickness (measured plate thickness T) was prepared.
  • the material of this glass plate is borosilicate glass.
  • a through hole 2 was formed in the glass plate by forming a modified region that does not penetrate by irradiating the glass plate and then performing an etching treatment.
  • the minimum hole width D1 of the plurality of through holes 2 formed in the glass plate has a minimum value of 19.8 ⁇ m and a maximum value of 20.3 ⁇ m, and the variation range ⁇ D1 of the minimum hole width D1 is It was 2.5% (0.5 ⁇ m). From this result, it was confirmed that a plurality of through holes having improved dimensional accuracy (particularly, dimensional accuracy of the minimum hole width D1) were formed in the glass plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Surface Treatment Of Glass (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

ガラス板1を準備する第一工程と、ガラス板1に貫通孔2を形成する第二工程とを備え、第一工程では、貫通孔2の内壁面2aの板厚方向に対する傾斜角度をθ、貫通孔2の最小孔幅をDとし、最小孔幅Dについて許容できるバラツキの範囲を最小孔幅DのA%とすることを条件に、貫通通孔2が板厚方向の一方側のみに向かって漸次拡開するものである場合に、板厚のバラツキの範囲ΔTが、ΔT≦(D×A/tanθ)/200の関係を満たすガラス板1を準備し、または、貫通孔2が板厚方向の中央領域内の部位から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、板厚のバラツキの範囲ΔTが、ΔT≦(D×A/tanθ)/100の関係を満たすガラス板1を準備する。

Description

ガラス板の製造方法、及びガラス板、並びにガラス板集合体
 本発明は、ガラス板に板厚方向の少なくとも一方側に向かって漸次拡開する貫通孔を形成するための方法、及びそのような貫通孔を形成するためのガラス板に関する。
 近年においては、貫通孔を有するガラス板が、電子機器などの基板として用いられている。この種のガラス板として、下記の特許文献1、2には、板厚方向の一方側に漸次拡径するテーパ状の貫通孔を形成したガラス板が開示されている。
 詳しくは、特許文献1には、ガラス板の主面と、テーパ状の貫通孔の内壁面との間に、曲面を形成したガラス板、及びその製造方法が開示されている。また、特許文献2には、ガラス板の一方の主面側からレーザーを照射してテーパ状の貫通孔を形成した後、ガラス板の他方の主面側から前記貫通孔に向かってエッチング液を噴射することが開示されている。
特開2003‐226551号公報 特開2016‐222529号公報
 ところで、ガラス板にテーパ状の貫通孔を形成する場合、貫通孔の最小孔幅(最小孔径)が、孔付きのガラス板の品質の良否を決める上で重要な因子となる。この場合、ガラス板の板厚が相違すれば、これに伴って貫通孔の最小孔幅も相違する。そのため、ガラス板の板厚のバラツキは、貫通孔の最小孔幅のバラツキに悪影響を与え、板厚方向全長に亘る貫通孔の寸法精度を悪化させる要因になる。
 しかしながら、特許文献1、2に開示されたガラス板やその製造方法は、上記のようなガラス板の板厚と貫通孔の最小孔幅との関係性などについて、何も考慮されていない。そのため、ガラス板に優れた寸法精度の貫通孔を形成することが困難になる。
 以上の観点から、本発明は、ガラス板に寸法精度が改善されたテーパ状の貫通孔を形成することを課題とする。
 上記課題を解決するために創案された本発明の第一の側面は、貫通孔を有するガラス板の製造方法であって、ガラス板を準備する第一工程と、前記ガラス板に板厚方向の少なくとも一方側に向かって漸次拡開する貫通孔を形成する第二工程とを備え、前記第一工程では、前記貫通孔の内壁面の板厚方向に対する傾斜角度をθとし、前記貫通孔の最小孔幅をDとし、前記最小孔幅Dについて許容できるバラツキの範囲を前記最小孔幅DのA%とすることを条件に、前記貫通通孔が板厚方向の一方側のみに向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲ΔTが、
 ΔT≦(D×A/tanθ)/200の関係を満たすガラス板を準備し、または、
 前記貫通孔が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲ΔTが、
 ΔT≦(D×A/tanθ)/100の関係を満たすガラス板を準備することに特徴づけられる。ここで、上記の「最小孔幅Dについて許容できるバラツキの範囲」とは、最小孔幅Dについて許容できる最大値と最小値との差を意味する。また、上記の「ガラス板の板厚のバラツキの範囲」とは、ガラス板の板厚の最大値と最小値との差を意味する。さらに、上記の傾斜角度θ及び最小孔幅Dは、何れも、設計上の値(第二工程で貫通孔を形成するために予め決められている値)である。
 このような方法によれば、貫通孔の形態が上記二種の何れであっても、ガラス板の板厚のバラツキの範囲ΔTが、貫通孔の内壁面の板厚方向に対する傾斜角度θと、貫通孔の最小孔幅Dと、最小孔幅Dについて許容できるバラツキの範囲Aとに基づく所定範囲内に収まることになる。そのため、ガラス板の板厚のバラツキが、テーパ状の貫通孔の寸法精度(特に最小孔幅Dの寸法精度)に悪影響を及ぼすことが抑制される。その結果、寸法精度が改善されたテーパ状の貫通孔をガラス板に形成することが可能となる。
 この方法において、同一の大きさで同一の形状をなす複数の前記貫通孔を、前記板厚のバラツキの範囲ΔTが前記何れかの関係を満たすガラス板に形成するようにしてもよい。
 このようにすれば、ガラス板の板厚のバラツキが、同一の大きさで同一の形状をなす複数のテーパ状の貫通孔の寸法精度に悪影響を及ぼすことが抑制される。その結果、寸法精度が改善された複数のテーパ状の貫通孔をガラス板に形成することが可能となる。
 以上の方法において、前記第一工程では、前記板厚のバラツキの範囲ΔTが前記何れかの関係を満たす複数枚のガラス板を準備するようにしてもよい。
 このようにすれば、複数枚のガラス板の全てについての板厚のバラツキの範囲ΔTが、貫通孔の内壁面の板厚方向に対する傾斜角度θと、貫通孔の最小孔幅Dと、最小孔幅Dについて許容できるバラツキの範囲Aとに基づく所定範囲内に収まることになる。そのため、複数枚のガラス板の相互間での板厚のバラツキを適正に抑え、複数枚のガラス板の何れについても寸法精度が改善されたテーパ状の貫通孔を形成することができる。
 以上の方法において、前記第二工程では、前記ガラス板の主面に対するレーザー照射処理と、該レーザー照射処理後のガラス板に対するエッチング処理とによって、前記貫通孔を形成するようにしてもよい。
 このようにすれば、ガラス板に、レーザー照射処理とエッチング処理とによって良質に仕上げられたテーパ状の貫通孔を形成することができる。
 この方法において、前記レーザー照射処理によって、前記ガラス板に照射処理領域を形成し、前記エッチング処理によって、前記照射処理領域を除去して前記貫通孔を形成するようにしてもよい。なお、レーザー照射処理によってガラス板に形成される照射処理領域は、貫通孔を有するものであってもよく、或いは、貫通孔を有しない改質領域であってもよい。
 このようにすれば、滑らかな内壁面を有するテーパ状の貫通孔をガラス板に形成することができる。
 この方法において、前記レーザー照射処理を行う際に、前記ガラス板の主面上で、前記貫通孔の開口部の輪郭線に対応する仮想線の互いに離隔した複数の点に対して、レーザーを照射するようにしてもよい。
 このようにすれば、ガラス板における貫通孔の開口部の輪郭線に対応する仮想線の互いに離隔した複数箇所に、レーザーの照射による照射処理領域または貫通孔が形成され、その後のエッチング処理によってテーパ状の貫通孔が仕上げられる。これにより、貫通孔の開口部の輪郭線に対応する仮想線に沿ってレーザーを連続的に照射する場合と比較して、レーザーの照射時間を短くすることができ、作業の簡易化や製造コストの低廉化が図られる。
 以上の方法において、板厚方向の一方側のみに向かって漸次拡開する前記貫通孔を形成するためのガラス板に対して前記エッチング処理を行う際に、前記ガラス板の片側の主面のみにマスクを配設するようにしてもよい。
 このようにすれば、ガラス板のマスクが配設された主面と反対側の主面側からエッチングによる溶解浸食が進行する。そのため、ガラス板に板厚方向の一方側のみに向かって(マスクが配設された主面と反対側の主面に向かって)漸次拡開するテーパ状の貫通孔を簡易に且つ精度良く形成することができる。
 以上の方法において、前記ガラス板の板厚T0は、30~1300μmであってもよく、前記貫通孔の内壁面の板厚方向に対する傾斜角度θは、2~45°であってもよく、前記貫通孔の最小孔幅Dは、5~200μmであってもよく、前記最小孔幅Dについて許容できるバラツキの範囲Aは、前記最小孔幅Dの2~40%であってもよい。ここで、上記の「ガラス板の板厚T0」は、ガラス板の設計上の板厚である。
 このようにすれば、より確実に寸法精度が改善されたテーパ状の貫通孔をガラス板に形成することが可能となる。
 上記課題を解決するために創案された本発明の第二の側面は、板厚方向の少なくとも一方側に向かって漸次拡開し、内壁面の板厚方向に対する傾斜角度αが2~45°で、最小孔幅dが5~200μmの貫通孔を形成するためのガラス板であって、板厚t0が30~1300μmであり、前記最小孔幅dについて許容できるバラツキの範囲を前記最小孔幅dのa%としてaが2~40%であることを条件に、前記貫通通孔が板厚方向の一方側のみに向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲Δtが、
 Δt≦(d×a/tanα)/200の関係を満たし、または、
 前記貫通孔が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲Δtが、
 Δt≦(d×a/tanα)/100の関係を満たすことに特徴づけられる。ここで、上記の「最小孔幅dについて許容できるバラツキの範囲」とは、最小孔幅dについて許容できる最大値と最小値との差を意味する。また、上記の「板厚のバラツキの範囲」とは、板厚の最大値と最小値との差を意味する。さらに、上記の板厚t0、傾斜角度α、及び最小孔幅dは、何れも、設計上の値(貫通孔を形成するために予め決められている値)である。
 このような構成によれば、貫通孔の形態が上記二種の何れであっても、ガラス板の板厚のバラツキの範囲Δtが、貫通孔の内壁面の板厚方向に対する傾斜角度αと、貫通孔の最小孔幅dと、最小孔幅dについて許容できるバラツキの範囲aとに基づく所定範囲内に収まっていることになる。そのため、ガラス板の板厚のバラツキが、テーパ状の貫通孔の寸法精度(特に最小孔幅dの寸法精度)に悪影響を及ぼすことが抑制される。その結果、当該ガラス板に、寸法精度が改善されたテーパ状の貫通孔を形成することが可能となる。
 上記課題を解決するために創案された本発明の第三の側面は、前記板厚のバラツキの範囲Δtが前記何れかの関係を満たすガラス板を複数集めたガラス板集合体を提供するものである。
 このようなガラス板集合体によれば、複数枚のガラス板の相互間での板厚のバラツキが適正に抑えられ、複数枚のガラス板の何れについても寸法精度が改善されたテーパ状の貫通孔を形成することができる。
 本発明によれば、ガラス板に寸法精度が改善されたテーパ状の貫通孔を形成することができる。
本発明の実施形態に係るガラス板の製造方法の各工程を示すフローチャートである。 本発明の実施形態に係るガラス板の製造方法によって製造されるべき貫通孔付きのガラス板の第一例を示す縦断正面図である。 本発明の実施形態に係るガラス板の製造方法によって製造されるべき貫通孔付きのガラス板の第二例を示す縦断正面図である。 本発明の実施形態に係るガラス板の製造方法によって製造されるべき貫通孔付きのガラス板の第三例を示す縦断正面図である。 本発明の実施形態に係るガラス板の製造方法によって製造されるべき貫通孔付きのガラス板の第四例を示す縦断正面図である。 本発明の実施形態に係るガラス板の製造方法の第二工程の実施状況を示すガラス板の平面図である。
 以下、本発明の実施形態について添付図面を参照しつつ説明する。
[ガラス板の製造方法]
 図1は、本発明の第一実施形態に係るガラス板の製造方法の各工程を示すフローチャートである。同図に示すように、このガラス板の製造方法は、ガラス板1を準備する第一工程F1と、ガラス板1にテーパ状の貫通孔を形成する第二工程F2とを備える。第一工程F1では、ガラス板1の板厚を計測する計測処理g1と、ガラス板1に要求される条件を求めるための演算を行う演算処理g2とが行われる。そして、計測処理g1と演算処理g2との結果に基づいて第一工程F1で準備するガラス板1が選び出される。
 ここで、ガラス板1のサイズは、例えば、縦方向寸法が50~2200mmで、横方向寸法が50~2500mmである。また、ガラス板1の材質は、ソーダガラス、石英ガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノシリケートガラス、結晶化ガラスなどを使用できるが、ガラス板1が電子機器用の基板として用いられる場合は、石英ガラスまたは無アルカリガラスもしくはホウケイ酸ガラスであることが好ましい。
 計測処理g1では、ガラス板1の複数の測定点での実測板厚Tを超音波やレーザー等を利用して計測する。この計測は、例えば、ガラス板1の主面の縦横それぞれについて1mmピッチの複数箇所(例えば、数十か所または数百か所)を測定点として行われる。そして、複数の実測板厚Tのバラツキの範囲をΔTとする。ここでのバラツキの範囲ΔTとは、実測板厚Tの最大値と最小値との差を意味する。演算処理g2では、図2~図5に示す設計上の板厚T0を有するガラス板1の各要素に基づいて演算を行う。図2~図5は、第二工程F2でガラス板1に形成されるべき設計上の貫通孔2を例示している。この貫通孔2及びこれと同一の大きさで同一の形状をなす貫通孔は、一枚のガラス板1に複数個が形成される(図示略)。
 演算処理g2で演算を行う際には、図2~図5に示す貫通孔2の内壁面2aの板厚方向に対する傾斜角度(厳密には、主面1a、1bに直角な面3と内壁面2aとのなす角度)をθ、貫通孔2の最小孔幅をDとすると共に、最小孔幅Dについて許容できるバラツキの範囲を、最小孔幅DのA%とする。ここでのバラツキの範囲とは、最小孔幅Dについて許容できる最大値と最小値との差を意味する。なお、このA%の数値は、本実施形態に係る製造方法の実施者であるガラス板製造業者あるいは作業者等が設定する。
 このような設定の下で、
 貫通孔2が板厚方向の一方側のみに向かって漸次拡開するものである場合に、板厚のバラツキの範囲ΔTが、
 ΔT≦(D×A/tanθ)/200
の関係(以下、数式1という。)を満たすガラス板1を選び出すか、または、
 貫通孔2が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、板厚のバラツキの範囲ΔTが、
 ΔT≦(D×A/tanθ)/100
の関係(以下、数式2という。)を満たすガラス板1を選び出す。
 上記の数式1及び数式2は、最小孔幅Dの幅方向に沿うバラツキの範囲を板厚方向に沿うバラツキの範囲に換算したものと、ガラス板1の板厚(実測板厚T)のバラツキの範囲ΔTとの関係を示すものである。
 ここで、図2~図5に示す態様の貫通孔2の最小孔幅Dについては、2~100μm、または100μm超で200μm以下の範囲内で数値を設定し、その数値を数式1に代入する。
 図2に示す貫通孔2は、板厚方向の一方側のみに向かって漸次拡開しており、内壁面2aの傾斜角度θが2~45°、特に3~35°である。これ以外に、この種の貫通孔2は、図3に示すように、内壁面2aの傾斜角度θが35°超で60°未満であってもよい。ここのような範囲内になるように傾斜角度θの数値を設定し、その数値を数式1に代入する。
 この種の貫通孔2の場合、最小孔幅Dについて許容できるバラツキの範囲Aは、最小孔幅Dの2~40%とした上で、そのパーセンテージの数値を設定し、その数値を数式1に代入する。この場合、傾斜角度θが大きくなるに連れて、最小孔幅Dについてのバラツキが大きくなる。従って、傾斜角度θが大きく、最小孔幅Dが小さい場合は、許容できるバラツキの範囲Aを相対的に小さく、例えば最小孔幅Dの2~30%とし、傾斜角度θが小さく、最小孔幅Dが大きい場合は、許容できるバラツキの範囲Aを相対的に大きく、例えば最小孔幅Dの30%超で40%以下とした上で、パーセンテージの数値を設定し、その数値を数式1に代入する。
 図4に示す貫通孔2は、板厚方向の中間部(板厚方向の中央部)から、板厚方向の一方側と他方側との双方に向かって漸次拡開しており、内壁面2aの傾斜角度θが2~45°、特に3~35°である。これ以外に、この種の貫通孔2は、図5に示すように、内壁面2aの傾斜角度θが2°以上で10°未満であってもよい。このような範囲内になるように傾斜角度θの数値を設定し、その数値を数式2に代入する。この場合も、最小孔幅Dについて許容できるバラツキの範囲Aは、最小孔幅Dの2~40%とした上で、パーセンテージの数値を設定し、その数値を数式2に代入する。この種の貫通孔2の場合も、傾斜角度θが大きくなるに連れて、最小孔幅Dについてのバラツキが大きくなる。従って、傾斜角度θが大きく、最小孔幅Dが小さい場合は、許容できるバラツキの範囲Aを相対的に小さくし、傾斜角度θが小さく、最小孔幅Dが大きい場合は、許容できるバラツキの範囲Aを相対的に大きくした上で、パーセンテージの数値を設定し、その数値を数式2に代入する。
 図2及び図3に示す形態の貫通孔2の場合は、図4及び図5に示す形態の貫通孔2の場合よりも、最小孔幅Dについてのバラツキが大きくなる。従って、図2及び図3に示す形態の貫通孔2の場合は、最小孔幅Dについて許容できるバラツキの範囲Aを相対的に小さくし、図4及び図5に示す形態の貫通孔2の場合は、最小孔幅Dについて許容できるバラツキの範囲Aを相対的に大きくすることが好ましい。
 なお、図4及び図5に例示した貫通孔2は、板厚方向の中央部から、板厚方向の一方側と他方側との双方に向かって漸次拡開しているが、板厚方向の中央部以外であっても、板厚方向の中間部から、板厚方向の一方側と他方側との双方に向かって漸次拡開していてもよい。この場合、板厚方向の一端(一方の主面1a)から中央側に向かって板厚の1/3以上で且つ板厚方向の他端(他方の主面1b)から中央側に向かって板厚の1/3以上の領域を中間部として、その領域内の部位から、板厚方向の一方側と他方側との双方に向かって漸次拡開している貫通孔2については、数式2を用い、その領域を逸脱した部位から、板厚方向の一方側と他方側との双方に向かって漸次拡開している貫通孔2については、数式1を用いるようにしてもよい。
 これら各図に示すガラス板1の設計上の板厚T0は、30~1300μmであることが好ましく、30~500μm、または500μm超で1300μm以下であることがより好ましい。設計上の板厚T0が大きいガラス板1に貫通孔2を形成する場合は、設計上の板厚T0が小さいガラス板1に貫通孔2を形成する場合よりも、最小孔幅Dについてのバラツキが大きくなる。従って、設計上の板厚T0が大きいガラス板1に貫通孔2を形成する場合は、最小孔幅Dについて許容できるバラツキの範囲Aを相対的に小さくし、設計上の板厚T0が小さいガラス板1に貫通孔2を形成する場合は、最小孔幅Dについて許容できるバラツキの範囲Aを相対的に大きくすることが好ましい。
 第一工程F1では、以上のようにして数式1または数式2に設計上の各数値を代入し、ガラス板1の実測板厚Tのバラツキの範囲ΔTが、数式1または数式2の関係を満たす複数枚のガラス板1を選び出す。なお、計測処理g1と演算処理g2とは、何れを先行して行ってもよく、両者を並行して行ってもよい。以上より、第一工程F1でのガラス板1の準備作業が完了する。
 この第一実施形態に係るガラス板の製造方法は、以上のような第一工程F1を実行することによって、次に示すような作用効果を奏する。すなわち、第一工程F1で選び出されたガラス板1は、板厚のバラツキの範囲ΔTが、貫通孔2の内壁面2aの板厚方向に対する傾斜角度θと、貫通孔2の最小孔幅Dと、最小孔幅Dについて許容できるバラツキの範囲Aとに基づく所定範囲内に収まる。そのため、ガラス板1の板厚のバラツキが、複数の貫通孔2の寸法精度(特に最小孔幅Dの寸法精度)に悪影響を及ぼすことが抑制される。しかも、準備された複数枚のガラス板1の全てについてのバラツキの範囲ΔTが上記の所定範囲内に収まるため、複数枚のガラス板1の相互間での板厚のバラツキを適正に抑えることができる。その結果、第二工程F2(詳細は後述する)では、複数枚のガラス板1の何れについても寸法精度が改善された貫通孔2を形成することができる。なお、実測板厚Tのバラツキの範囲ΔTが、設計上の板厚T0の1μm未満であれば、ガラス板1の主面1a、1bに対して超精密な研磨仕上げが必要になり、コストの高騰を招く。そのため、ΔTの下限値は、T0/500であることが好ましい。
 次に、この第一実施形態に係るガラス板の製造方法の第二工程F2について説明する。この第二工程F2では、図1に示すように、ガラス板1に対するレーザー照射処理h1と、レーザー照射処理h1が施されたガラス板1に対するエッチング処理h2とが行われる。
 レーザー照射処理h1では、上記のようにして準備されたガラス板1に対して、レーザーを照射することで照射処理領域を形成する。具体的には、図6に示すように、ガラス板1の一方の主面1a上で、貫通孔2の開口部の輪郭線に対応する仮想線4の互いに離隔した複数の点5に対して、レーザーを照射することで、複数箇所にそれぞれ照射処理領域を形成する。この複数箇所に形成される照射処理領域は、相互に繋がっていてもよく、或いは繋がっていなくてもよい。この場合、開口部が円形をなす貫通孔2を形成する場合には、図示のように円形の仮想線4上に間欠的にレーザーを照射すればよく、開口部が矩形(詳しくはコーナー部が湾曲した矩形)をなす貫通孔2を形成する場合には、矩形の仮想線上に間欠的にレーザーを照射すればよい。
 照射処理領域は、レーザーの照射によってガラス板1を貫通する孔が形成されない改質領域とすることが好ましいが、レーザーの照射に伴って貫通する孔が形成されていてもよい。ここで使用するレーザーは、例えば、CO2レーザー、COレーザー、エキシマレーザー、YAGレーザー、YVOレーザー、ファイバーレーザーであり、波長は、紫外域、可視光域、赤外域が適用可能であるが、照射処理領域を改質領域とする場合は、ガラスへの透過性のある波長のものが好ましい。また、照射方法は、間欠のパルス照射が好ましい。
 次に、上記のような照射処理領域を有するガラス板1に対してエッチング処理h2を施す。具体的には、このガラス板1をエッチング液に浸漬させて、ウェットエッチング処理を施すことで、ガラス板1から照射処理領域を除去する。これにより、ガラス板1には、複数の貫通孔2が形成される。ここで、図2及び図3に示すように、ガラス板1に板厚方向の一方側のみに向かって漸次拡開する貫通孔2を形成する場合には、ガラス板1の一方の主面1a側のみからレーザーを照射して照射処理領域を形成する。その後、他方の主面1bに樹脂フィルム等のフィルムを貼り付けて他方の主面1bをマスキングし、このような状態でガラス板1にウェットエッチング処理を施す。これにより、ガラス板1の一方の主面1a側のみから溶解浸食が進行していくことで、同各図に示すようなテーパ状の貫通孔2が出来上がる。この場合の照射処理領域の形成は、ガラス板1の一方の主面1a側と他方の主面1b側との両側からレーザーを照射して行ってもよい。
 一方、図4及び図5に示すように、ガラス板1に板厚方向の中間部から両側に向かって漸次拡開する貫通孔2を形成する場合には、ガラス板1の一方の主面1a側と他方の主面1b側との両側からレーザーを照射して照射処理領域を形成した後、マスキングをせずにウェットエッチング処理を施す。これにより、ガラス板1の一方の主面1a側と他方の主面1b側との両側から溶解浸食が進行していくことで、同各図に示すようなテーパ状の貫通孔2が出来上がる。この場合の照射処理領域の形成は、何れか一方の主面1a、1b側からのみレーザーを照射して行うこともできる。なお、この第二工程F2では、エッチング処理h2を施さずに、レーザーの仮想線4に沿う連続的な照射のみでガラス板1に貫通孔2を形成するようにしてもよい。
 この第二工程F2で貫通孔2を形成するために用いられるガラス板1は、第一工程F1で数式1または数式2の関係を満たすものとして選び出されたものである。そのため、ガラス板1に形成された複数の貫通孔2は、何れも、寸法精度(特に最小孔幅Dの寸法精度)が改善されたものとなる。
[ガラス板]
 本発明の第二実施形態は、ガラス板に係るものである。このガラス板は、板厚方向の少なくとも一方側に向かって漸次拡開する貫通孔を形成するために用いられるものである。このガラス板の板厚t0は、30~1300μmである。また、このガラス板に形成される貫通孔は、内壁面の板厚方向に対する傾斜角度αが2~45°、最小孔幅dが5~200μmである。そして、最小孔幅dについて許容できるバラツキの範囲a%が最小孔幅dの2~40%である。
 このような条件の下で、
 貫通孔2が板厚方向の一方側のみに向かって漸次拡開するものである場合に、板厚(実測板厚t)のバラツキの範囲Δtが、
 Δt≦(d×a/tanα)/200
の関係を満たすか、または、
 貫通孔2が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、板厚(実測板厚t)のバラツキの範囲Δtが、
 Δt≦(d×a/tanα)/100
の関係を満たしている。なお、上記の板厚t0、傾斜角度α、最小孔幅dは、何れも、設計上の値である。
 このガラス板にも複数の貫通孔が形成されるが、これらの貫通孔は、図2~図5に示すような態様をなしている。従って、ここでの板厚t0、傾斜角度α、最小孔幅d、その許容できるバラツキの範囲a、及び板厚のバラツキの範囲Δt、並びに実測板厚tを、それぞれ、既述の傾斜角度θ、最小孔幅D、その許容できるバラツキの範囲A、及び板厚のバラツキの範囲ΔT、並びに実測板厚Tに置き換えれば、第一実施形態に係る[ガラス板の製造方法]で既に説明した事項が、ここでのガラス板に当てはまる。
 このガラス板の場合も、板厚のバラツキの範囲Δtが、貫通孔の内壁面の板厚方向に対する傾斜角度αと、貫通孔の最小孔幅dと、最小孔幅dについて許容できるバラツキの範囲aとに基づく所定範囲内に収まる。そのため、ガラス板の板厚のバラツキが、複数の貫通孔の寸法精度(特に最小孔幅dの寸法精度)に悪影響を及ぼすことが抑制される。その結果、このガラス板には、寸法精度が改善された複数の貫通孔を形成することができる。なお、このガラス板も、実測板厚tのバラツキの範囲Δtが、設計上の板厚t0の1μm未満であれば、主面に対して超精密な研磨仕上げが必要になり、コストの高騰を招くおそれがある。そのため、Δtの下限値は、t0/500であることが好ましい。
 また、このガラス板を複数集めることで、ガラス板集合体を得ることができる。このガラス板集合体によれば、複数のガラス板の相互間での板厚のバラツキが抑制されるだけでなく、複数のガラス板の何れについても、寸法精度が改善された貫通孔を形成することができる。
 以下、上記の[ガラス板の製造方法]についての実施例を説明する。なお、上記の[ガラス板]についての実施例も、ここでの[ガラス板の製造方法]についての実施例と共通するものである。従って、以下においては、[ガラス板]についての傾斜角度α、最小孔幅d、そのバラツキの範囲a、及び板厚のバラツキの範囲Δt、並びに実測板厚tを、それぞれ、[ガラス板の製造方法]についての傾斜角度θ、最小孔幅D、そのバラツキの範囲A、及び板厚のバラツキの範囲ΔT、並びに実測板厚Tに置き換えて説明する。
 実施例1は、図2に示すような態様の貫通孔2を形成するものである。具体的には、下記の表1に示すように、ガラス板の板厚T0(設計上の板厚)が100μmであって、貫通孔2の内壁面2aの傾斜角度θを9.9°とし、貫通孔2(開口部が円形)の最小孔幅Dを20μmとし、最小孔幅Dについて許容できるバラツキの範囲Aを20%とした場合に、数式1によるΔTの演算値(ΔTの上限値)が11.5μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が9μm(最小値が97μm、最大値が106μm)のガラス板を準備した。このガラス板の材質は、無アルカリガラスである。このガラス板に対して、レーザーの照射のみによって貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2についての最小孔幅D1は、最小値が19.0μm、最大値が22.1μmであって、最小孔幅D1のバラツキの範囲ΔD1は、15.5%(3.1μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000001
 実施例2も、図2に示すような態様の貫通孔2を形成するものである。具体的には、下記の表2に示すように、ガラス板の板厚T0が300μmであって、貫通孔2の内壁面2aの傾斜角度θを11.3°とし、貫通孔2の最小孔幅Dを30μmとし、最小孔幅Dについて許容できるバラツキの範囲Aを20%とした場合に、数式1によるΔTの演算値(ΔTの上限値)が15.0μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が13μm(最小値が292μm、最大値が305μm)のガラス板を準備した。このガラス板の材質は、ソーダガラスである。このガラス板に対して、レーザーの照射により貫通した孔を有する照射処理領域を形成した後、エッチング処理を施すことで貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2の最小孔幅D1は、最小値が26.8μm、最大値が32.0μmであっって、最小孔幅D1のバラツキの範囲ΔD1は、17.3%(5.2μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000002
 実施例3は、図3に示すような態様の貫通孔2を形成するものである。具体的には、下記の表3に示すように、ガラス板の板厚T0が50μmであって、貫通孔2の内壁面2aの傾斜角度θを35°とし、貫通孔2の最小孔幅Dを10μmとし、最小孔幅Dについて許容できるバラツキの範囲Aを40%とした場合に、数式1によるΔTの演算値(ΔTの上限値)が2.9μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が2.5μm(最小値が48.5μm、最大値が51μm)のガラス板を準備した。このガラス板の材質は、無アルカリガラスである。このガラス板に対して、レーザーの照射により貫通しない改質領域を形成した後、エッチング処理を施すことで貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2の最小孔幅D1は、最小値が7.9μm、最大値が11.4μmであって、最小孔幅D1のバラツキの範囲ΔD1は、35.0%(3.5μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000003
 実施例4は、図4に示すような態様の貫通孔2を形成するものである。具体的には、下記の表4に示すように、ガラス板の板厚T0が100μmであって、貫通孔2の内壁面2aの傾斜角度θを14°とし、貫通孔2の最小孔幅Dを30μmとし、最小孔幅Dについて許容できるバラツキの範囲Aを20%とした場合に、数式2によるΔTの演算値(ΔTの上限値)が24.1μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が22μm(最小値が89μm、最大値が111μm)のガラス板を準備した。このガラス板の材質は、無アルカリガラスである。このガラス板に対して、レーザーの照射により貫通しない改質領域を形成した後、エッチング処理を施すことで貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2の最小孔幅D1は、最小値が27.3μm、最大値が32.7μmであって、最小孔幅D1のバラツキの範囲ΔD1は、18.0%(5.4μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000004
 実施例5は、図5に示すような態様の貫通孔2を形成するものである。具体的には、下記の表5に示すように、ガラス板の板厚T0が500μmであって、貫通孔2の内壁面2aの傾斜角度θを5.1°とし、貫通孔2の最小孔幅Dを55μmとし、最小孔幅Dについて許容できるバラツキの範囲Aを15%とした場合に、数式2によるΔTの演算値(ΔTの上限値)が92.4μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が85μm(最小値が457μm、最大値が542μm)のガラス板を準備した。このガラス板の材質は、石英ガラスである。このガラス板に対して、レーザーの照射により貫通した孔を有する照射処理領域を形成した後、エッチング処理を施すことで貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2の最小孔幅D1は、最小値が51.2μm、最大値が58.7μmであって、最小孔幅D1のバラツキの範囲ΔD1は、13.6%(7.5μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000005
 実施例6も、図5に示すような態様の貫通孔2を形成するものである。具体的には、下記の表6に示すように、ガラス板の板厚T0が50μmであって、貫通孔2の内壁面2aの傾斜角度θを2°とし、貫通孔2の最小孔幅Dを20μmとし、最小孔幅dについて許容できるバラツキの範囲Aを3%とした場合に、数式2によるΔTの演算値(ΔTの上限値)が17.2μmであった。そこで、板厚(実測板厚T)のバラツキの範囲の具体的数値ΔT1が14μm(最小値が42μm、最大値が56μm)のガラス板を準備した。このガラス板の材質は、ホウケイ酸ガラスである。このガラス板に対して、レーザーの照射により貫通しない改質領域を形成した後、エッチング処理を施すことで貫通孔2を形成した。その結果、このガラス板に形成された複数の貫通孔2の最小孔幅D1は、最小値が19.8μm、最大値が20.3μmであって、最小孔幅D1のバラツキの範囲ΔD1は、2.5%(0.5μm)であった。この結果から、当該ガラス板には、寸法精度(特に最小孔幅D1の寸法精度)が改善された複数の貫通孔が形成されていることを確認した。
Figure JPOXMLDOC01-appb-T000006
1     ガラス板
1a   一方の主面
1b   他方の主面
2     貫通孔
2a   内壁面
4     仮想線
5     複数の点
F1   第一工程
F2   第二工程
A     誤差
a     誤差
D     最小孔幅
d     最小孔幅
g1   計測処理
g2   演算処理
h1   レーザー照射処理
h2   エッチング処理
T     実測板厚
t     実測板厚
T0   板厚
t0   板厚
T1   平均板厚
t1   平均板厚
θ     傾斜角度
α     傾斜角度
ΔT   板厚のバラツキの範囲
Δt   板厚のバラツキの範囲

Claims (13)

  1.  貫通孔を有するガラス板の製造方法であって、
     ガラス板を準備する第一工程と、前記ガラス板に板厚方向の少なくとも一方側に向かって漸次拡開する貫通孔を形成する第二工程とを備え、
     前記第一工程では、前記貫通孔の内壁面の板厚方向に対する傾斜角度をθとし、前記貫通孔の最小孔幅をDとし、前記最小孔幅Dについて許容できるバラツキの範囲を前記最小孔幅DのA%とすることを条件に、
     前記貫通通孔が板厚方向の一方側のみに向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲ΔTが、
     ΔT≦(D×A/tanθ)/200の関係を満たすガラス板を準備し、または、
     前記貫通孔が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、前記ガラス板の板厚のバラツキの範囲ΔTが、
     ΔT≦(D×A/tanθ)/100の関係を満たすガラス板を準備することを特徴とするガラス板の製造方法。
  2.  同一の大きさで同一の形状をなす複数の前記貫通孔を、前記板厚のバラツキの範囲ΔTが前記何れかの関係を満たすガラス板に形成する請求項1に記載のガラス板の製造方法。
  3.  前記第一工程では、前記板厚のバラツキの範囲ΔTが前記何れかの関係を満たす複数枚のガラス板を準備する請求項1または2に記載のガラス板の製造方法。
  4.  前記第二工程では、前記ガラス板の主面に対するレーザー照射処理と、該レーザー照射処理後のガラス板に対するエッチング処理とによって、前記貫通孔を形成する請求項1~3の何れかに記載のガラス板の製造方法。
  5.  前記レーザー照射処理によって、前記ガラス板に照射処理領域を形成し、前記エッチング処理によって、前記照射処理領域を除去して前記貫通孔を形成する請求項4に記載のガラス板の製造方法。
  6.  前記レーザー照射処理を行う際に、前記ガラス板の主面上で、前記貫通孔の開口部の輪郭線に対応する仮想線の互いに離隔した複数の点に対して、レーザーを照射する請求項4または5に記載のガラス板の製造方法。
  7.  板厚方向の一方側のみに向かって漸次拡開する前記貫通孔を形成するためのガラス板に対して前記エッチング処理を行う際に、前記ガラス板の片側の主面のみにマスクを配設する請求項4~6の何れかに記載のガラス板の製造方法。
  8.  前記ガラス板の板厚T0が、30~1300μmである請求項1~7の何れかに記載のガラス板の製造方法。
  9.  前記貫通孔の内壁面の板厚方向に対する傾斜角度θが、2~45°である請求項1~8の何れかに記載のガラス板の製造方法。
  10.  前記貫通孔の最小孔幅Dが、5~200μmである請求項1~9の何れかに記載のガラス板の製造方法。
  11.  前記最小孔幅Dについて許容できるバラツキの範囲Aが、前記最小孔幅Dの2~40%である請求項1~10の何れかに記載のガラス板の製造方法。
  12.  板厚方向の少なくとも一方側に向かって漸次拡開し、内壁面の板厚方向に対する傾斜角度αが2~45°で、最小孔幅dが5~200μmの貫通孔を形成するためのガラス板であって、
     板厚t0が30~1300μmであり、前記最小孔幅dについて許容できるバラツキの範囲を前記最小孔幅dのa%としてaが2~40%であることを条件に、
     前記貫通通孔が板厚方向の一方側のみに向かって漸次拡開するものである場合に、板厚のバラツキの範囲Δtが、
     Δt≦(d×a/tanα)/200の関係を満たし、または、
     前記貫通孔が板厚方向の中間部から板厚方向の一方側と他方側との双方に向かって漸次拡開するものである場合に、板厚のバラツキの範囲Δtが、
     Δt≦(d×a/tanα)/100の関係を満たすことを特徴とするガラス板。
  13.  請求項12に記載の板厚のバラツキの範囲Δtが前記何れかの関係を満たすガラス板を複数集めたガラス板集合体。
PCT/JP2020/015416 2019-04-23 2020-04-03 ガラス板の製造方法、及びガラス板、並びにガラス板集合体 WO2020217936A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080011074.9A CN113365958B (zh) 2019-04-23 2020-04-03 玻璃板的制造方法、玻璃板以及玻璃板集合体
KR1020217026868A KR102670240B1 (ko) 2019-04-23 2020-04-03 유리판의 제조 방법 및 유리판, 및 유리판 집합체
US17/602,473 US20220204393A1 (en) 2019-04-23 2020-04-03 Method for manufacturing glass sheet, and glass sheet and glass sheet assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081851A JP7116926B2 (ja) 2019-04-23 2019-04-23 ガラス板の製造方法、及びガラス板、並びにガラス板集合体
JP2019-081851 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217936A1 true WO2020217936A1 (ja) 2020-10-29

Family

ID=72942351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015416 WO2020217936A1 (ja) 2019-04-23 2020-04-03 ガラス板の製造方法、及びガラス板、並びにガラス板集合体

Country Status (6)

Country Link
US (1) US20220204393A1 (ja)
JP (1) JP7116926B2 (ja)
KR (1) KR102670240B1 (ja)
CN (1) CN113365958B (ja)
TW (1) TWI842874B (ja)
WO (1) WO2020217936A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524366B2 (en) * 2018-07-26 2022-12-13 Coherent Munich GmbH & Co. KG Separation and release of laser-processed brittle material
CN116529217A (zh) * 2020-11-20 2023-08-01 日本电气硝子株式会社 电子设备的制造方法及玻璃板组
WO2023219213A1 (ko) * 2022-05-10 2023-11-16 주식회사 필옵틱스 적외선 레이저를 이용한 고속 정밀 관통홀 형성 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226551A (ja) * 2002-02-05 2003-08-12 Nippon Sheet Glass Co Ltd 微細孔を有するガラス板およびその製造方法
JP2006290630A (ja) * 2005-02-23 2006-10-26 Nippon Sheet Glass Co Ltd レーザを用いたガラスの加工方法
JP2017061401A (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 貫通孔を有するガラス基板の製造方法、貫通電極を備えるガラス基板の製造方法、およびインターポーザの製造方法
JP2017190285A (ja) * 2016-04-06 2017-10-19 旭硝子株式会社 貫通孔を有するガラス基板の製造方法およびガラス基板に貫通孔を形成する方法
JP2018024571A (ja) * 2016-08-05 2018-02-15 旭硝子株式会社 孔を有するガラス基板の製造方法
WO2018162385A1 (de) * 2017-03-06 2018-09-13 Lpkf Laser & Electronics Ag Verfahren zum einbringen zumindest einer ausnehmung in ein material mittels elektromagnetischer strahlung und anschliessendem ätzprozess
JP2018531205A (ja) * 2015-10-09 2018-10-25 コーニング インコーポレイテッド ビアを有するガラス系基板およびそれを形成するプロセス
JP2018188351A (ja) * 2017-04-28 2018-11-29 Agc株式会社 ガラス基板
JP2019021916A (ja) * 2017-07-11 2019-02-07 Agc株式会社 ガラス基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164225A (ja) * 1993-12-15 1995-06-27 Dijet Ind Co Ltd 段付きドリル
JP2000343000A (ja) * 1999-06-07 2000-12-12 Matsushita Electric Ind Co Ltd ノズルおよびノズル穴の加工方法ならびに加工装置
JP2004188834A (ja) * 2002-12-12 2004-07-08 Konica Minolta Holdings Inc ノズルプレートの製造方法、ノズルプレート及びインクジェット記録ヘッド
JP4778257B2 (ja) * 2005-04-11 2011-09-21 日本特殊陶業株式会社 配線基板の製造方法およびセラミックグリーンシートの打ち抜き装置
US20160347643A1 (en) 2015-05-29 2016-12-01 Asahi Glass Company, Limited Glass substrate manufacturing method
WO2017170556A1 (ja) * 2016-03-30 2017-10-05 Hoya株式会社 ガラスブランク、ガラスブランクの製造方法、及び磁気ディスク用ガラス基板の製造方法
JP2018199605A (ja) 2017-05-29 2018-12-20 Agc株式会社 ガラス基板の製造方法およびガラス基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226551A (ja) * 2002-02-05 2003-08-12 Nippon Sheet Glass Co Ltd 微細孔を有するガラス板およびその製造方法
JP2006290630A (ja) * 2005-02-23 2006-10-26 Nippon Sheet Glass Co Ltd レーザを用いたガラスの加工方法
JP2017061401A (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 貫通孔を有するガラス基板の製造方法、貫通電極を備えるガラス基板の製造方法、およびインターポーザの製造方法
JP2018531205A (ja) * 2015-10-09 2018-10-25 コーニング インコーポレイテッド ビアを有するガラス系基板およびそれを形成するプロセス
JP2017190285A (ja) * 2016-04-06 2017-10-19 旭硝子株式会社 貫通孔を有するガラス基板の製造方法およびガラス基板に貫通孔を形成する方法
JP2018024571A (ja) * 2016-08-05 2018-02-15 旭硝子株式会社 孔を有するガラス基板の製造方法
WO2018162385A1 (de) * 2017-03-06 2018-09-13 Lpkf Laser & Electronics Ag Verfahren zum einbringen zumindest einer ausnehmung in ein material mittels elektromagnetischer strahlung und anschliessendem ätzprozess
JP2018188351A (ja) * 2017-04-28 2018-11-29 Agc株式会社 ガラス基板
JP2019021916A (ja) * 2017-07-11 2019-02-07 Agc株式会社 ガラス基板

Also Published As

Publication number Publication date
CN113365958A (zh) 2021-09-07
KR20210153596A (ko) 2021-12-17
TW202039396A (zh) 2020-11-01
JP7116926B2 (ja) 2022-08-12
US20220204393A1 (en) 2022-06-30
JP2020180009A (ja) 2020-11-05
KR102670240B1 (ko) 2024-05-29
CN113365958B (zh) 2023-05-23
TWI842874B (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020217936A1 (ja) ガラス板の製造方法、及びガラス板、並びにガラス板集合体
CN110023261B (zh) 基于强化玻璃的制品和降低基于强化玻璃的制品中的翘曲的方法
KR102071840B1 (ko) 메탈 마스크 기재, 메탈 마스크, 및 메탈 마스크의 제조 방법
EP1602749A1 (en) Metal photo-etching product and production method therefor
KR102617825B1 (ko) 금속기판 및 이를 이용한 증착용마스크
CN104812178B (zh) 具有分段式金手指的电路板的制作方法
CN106116166A (zh) 移动终端的玻璃面板的制作方法
TW201711550A (zh) 用於電子裝置的絕緣基板的盲孔的製造方法
JP6963023B2 (ja) 技術的マスクの製造方法
TWI772066B (zh) 金屬遮罩基材的製備方法
US20070042287A1 (en) Multi-layer photoresist and method for making the same and method for etching a substrate
CN114086114B (zh) 金属遮罩及其制造方法
TWI592382B (zh) 硬質基板、觸控面板及硬質基板的處理方法
KR101279472B1 (ko) 깊이가 향상된 패턴을 갖는 유리 장식재의 제조 방법
CN110064692B (zh) 一种应用于屏蔽罩凸包的制造方法
KR101415805B1 (ko) 유리의 기계적 강도를 향상시키는 방법
TWI847145B (zh) 金屬遮罩及其製造方法
CN107105576B (zh) 阶梯凸台印制板的制作方法
TW201546005A (zh) 覆蓋板與其製造方法
JP7580188B2 (ja) 窒化珪素セラミックス焼結基板の製造方法及び回路基板の製造方法
CN114100959B (zh) 进行硬化处理的方法和治具、电子设备壳体和电子设备
US20240292587A1 (en) Improving Processing of a Flexible Circuit Board (CB) Using a Vacuum Plate Adapted to the CB Design
JP2024542910A (ja) 回路基板設計に適合された真空プレートを用いた可撓性回路基板(cb)の処理の改善
KR20240116936A (ko) 표면 품질이 개선된 유리 물품
WO2020004605A1 (ja) 配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795866

Country of ref document: EP

Kind code of ref document: A1