WO2020217795A1 - モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法 - Google Patents

モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法 Download PDF

Info

Publication number
WO2020217795A1
WO2020217795A1 PCT/JP2020/012137 JP2020012137W WO2020217795A1 WO 2020217795 A1 WO2020217795 A1 WO 2020217795A1 JP 2020012137 W JP2020012137 W JP 2020012137W WO 2020217795 A1 WO2020217795 A1 WO 2020217795A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle sensor
sensor
angle
motor
failure
Prior art date
Application number
PCT/JP2020/012137
Other languages
English (en)
French (fr)
Inventor
敏明 中村
山口 東馬
旭 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN202080022908.6A priority Critical patent/CN113678367A/zh
Priority to KR1020217029616A priority patent/KR102555204B1/ko
Priority to US17/439,939 priority patent/US20220185250A1/en
Priority to DE112020000915.7T priority patent/DE112020000915T5/de
Publication of WO2020217795A1 publication Critical patent/WO2020217795A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details of stopping control
    • H02P3/04Means for stopping or slowing by a separate brake, e.g. friction brake or eddy-current brake
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the present invention relates to a motor control device, an electric brake device using the motor control device, a motor control method, and an electric brake control method using the control method.
  • Patent Document 1 provides a motor position sensor that detects the rotation position (angle) of the motor rotor and two output shaft sensors that detect the rotation angle of the output shaft of the motor, and the difference between the two output shaft sensors is equal to or greater than a predetermined value.
  • either or both of the output shaft sensors are determined to be abnormal, then the presence or absence of an abnormality in the motor position sensor is determined. If the motor position sensor is abnormal, motor control is stopped and the motor position sensor is normal. If there is, a technique for calculating the output shaft rotation angle from the motor position sensor is disclosed.
  • Patent Document 2 discloses a technique in which two temperature sensors are connected to different MPUs and the sub MPU diagnoses the main MPU and the temperature sensor connected to the main MPU.
  • Patent Document 1 another type of motor position sensor is prepared for diagnosis of two output shaft sensors and connected to the MPU, so that the number of parts and the connection signal line connecting the sensor and the MPU increase. There is a possibility that the number of parts has increased and the signal line is broken, and there is a problem that the reliability is lowered.
  • Patent Document 2 when the sub MPU side fails, there is a problem that the processing is stopped because the diagnosis on the main MPU side cannot be performed.
  • An object of the present invention is a motor control device capable of solving the above problems, suppressing an increase in the number of parts and the number of connection signal lines to realize redundancy, an electric brake device using the same, a motor control method, and the like.
  • An object of the present invention is to provide an electric brake control method using a control method.
  • the features of the present invention are a first angle sensor and a second angle sensor that detect the rotation angle of the motor, and the first angle sensor that controls the motor based on a command value.
  • a first control circuit unit that receives the detected value of, a second control circuit unit that controls the motor based on the command value and receives the detected value of the second angle sensor, and the first control circuit unit.
  • the first control circuit unit includes a communication unit that transmits and receives signals to and from the second control circuit unit, and the first control circuit unit receives the detection value of the first angle sensor and the second communication unit received via the communication unit.
  • the angle sensor failure detection unit for detecting the failure of the first angle sensor and the second angle sensor from the detection value of the angle sensor and the control angle of the motor generated in response to the command value is provided. is there.
  • a motor control device capable of suppressing an increase in the number of parts and the number of connection signal lines to realize redundancy, an electric brake device using the motor control device, a motor control method, and an electric motor using the control method.
  • a brake control method can be provided.
  • the block block diagram of the electric brake control device which concerns on 1st Embodiment of this invention.
  • the flowchart of the failure detection method of the angle sensor which concerns on 1st Embodiment of this invention.
  • the flowchart which executes the failure diagnosis when the motor control is performed only by one MPU which concerns on 1st Embodiment of this invention.
  • the block block diagram of the motor control unit 109 which concerns on 1st Embodiment of this invention.
  • the block block diagram of the sensor output expected value generation part 111 which concerns on 1st Embodiment of this invention.
  • the block block diagram of the angle sensor failure detection part 113 which concerns on 1st Embodiment of this invention.
  • the figure which shows the determination example of the angle sensor failure detection part which concerns on 1st Embodiment of this invention.
  • the block block diagram of the electric brake control device which concerns on 2nd Embodiment of this invention.
  • the present invention relates to a motor control device, and as an example thereof, an example applied to an electric brake control device will be described below.
  • the various components of the present invention do not necessarily have to be independent of each other, and one component is composed of a plurality of members, a plurality of components are composed of one member, and a certain component is different. It is allowed that a part of one component overlaps with a part of another component.
  • FIG. 1 is a block configuration diagram of an electric brake control device according to a first embodiment of the present invention.
  • the electric caliper 101 is a component constituting a disc brake of a car tire, and has a function of controlling the opening and closing of a brake pad sandwiching the brake disc by a motor.
  • a two-winding brushless DC motor is used as the motor.
  • the angle sensor 102 (first angle sensor) and angle sensor 103 (second angle sensor) provided in the electric caliper 101 are means for detecting the rotation angle of the shaft of the two-winding brushless DC motor 104, and are generally a resolver or the like. It has been known.
  • the two-winding brushless DC motor 104 which is the drive unit of the electric caliper 101, has two windings of each of the three coils arranged around the rotor, and even if one winding is broken. By energizing with another winding, it is possible to prevent the motor from stopping rotating. Therefore, two systems of three-phase current are input to each coil. As a control example, normally, two coils each generate 50% rotational force to generate a total of 100% rotational force, but if one fails, the other generates 100% rotational force. To prevent a decrease in rotational force.
  • the motor drivers 105 and 106 are used for control signals from the motor control unit 109 provided in the MPU 107 (microcomputer unit) as the first control circuit unit and the motor control unit 110 provided in the MPU 108 as the second control circuit unit. It is a means to output the three-phase current required to drive the motor accordingly.
  • the MPUs 107 and 108 are means for receiving an input signal from the stroke sensor 117 and controlling the motor in the electric caliper to operate the electric brake in response to the signal.
  • a redundant configuration with two MPUs is used. In 1-fail operation, when one of the core components constituting the system fails and loses its function, another component replaces a part of the function and continues the operation for a certain period of time.
  • the motor control units 109 and 110 are means for rotating the motor by an angle corresponding to the input signal from the stroke sensor 117.
  • the configurations of the motor control units 109 and 110 will be described later with reference to FIG.
  • the sensor output expected value generation units 111 and 112 are means for generating expected output values for determining whether or not the outputs of the angle sensors 102 and 103 are normal.
  • the configuration of the sensor output expected value generation units 111 and 112 will be described later with reference to FIG.
  • the angle sensor failure detection units 113 and 114 are means for determining whether or not the angle sensor is normal. The configuration of the angle sensor failure detection units 113 and 114 will be described later with reference to FIG.
  • Communication units 115 and 116 are means for transmitting and receiving data between MPU 107 and 108.
  • it is realized by the CAN communication method, which is a communication standard for automobiles.
  • the stroke sensor 117 is a means for detecting the amount of depression when the driver depresses the brake pedal.
  • two stepping amount detection units are provided inside, and each output is connected to MPU 107 and MPU 108, respectively.
  • the stroke sensor 117 detects the depressing displacement amount
  • the motor control unit 109 in the MPU 107 and MPU 108 and The motor control unit 110 receives the detected value.
  • the motor control unit 109 and the motor control unit 110 control the rotation amount and rotation speed of the motor according to the stepping displacement amount per unit time, and rotate the double-winding brushless DC motor 104 in the electric caliper 101. ..
  • the rotation angle per control unit time of the motor is detected by the angle sensor 102 and the angle sensor 103, and the detected values are received by the MPU 107 and the MPU 108 and fed back to the motor control unit 109 and the motor control unit 110.
  • the braking operation is performed by controlling the frictional force between the brake pad and the brake disc in the electric caliper.
  • FIG. 2 is a flowchart of a failure detection method of the angle sensor according to the first embodiment of the present invention, and is a flowchart at the start of traveling and at the time of normal operation.
  • the angle of the 2-winding brushless DC motor 104 is detected by the angle sensor 102, and the output value (detection value) is input to the angle sensor failure detection unit 113 in the MPU 107 (step S10).
  • the MPU 107 receives the detected value of the angle sensor 102.
  • the angle of the 2-winding brushless DC motor 104 is detected by the angle sensor 103, the output value (detection value) is received by the MPU 108, and the angle sensor in the MPU 107 is passed through the communication unit 116 of the MPU 108 and the communication unit 115 of the MPU 107. Input to the failure detection unit 113 (step S11).
  • the sensor output expected value generation unit 111 generates a motor control angle according to the stroke sensor 117 and inputs it to the angle sensor failure detection unit 113 (step S12).
  • the angle sensor failure detection unit 113 compares the three outputs of the angle sensor 102, the angle sensor 103, and the sensor output expected value generation unit 111 with the determination threshold, and executes the failure diagnosis (step S13).
  • the judgment threshold is a standard for judging the presence or absence of failure diagnosis.
  • the failure diagnosis executes the following processing according to the output from the determination unit 408 of the angle sensor failure detection unit 113, which will be described later.
  • step S14 If the three output differences are within the threshold value, the motor control system composed of the two angle sensors and the motor 104, MPU 107 and 108 is determined to be normal (No in step S14). If the three output differences are outside the threshold value, the motor control system composed of the two angle sensors and the motor 104, MPU 107 and 108 is determined to be abnormal (Yes in step S14), and the motor control by the MPU 107 and MPU 108 is stopped (Yes). Step S15).
  • the output of the angle sensor 102 and the failure of the angle sensor 103 are determined. If the output difference between the output value of the angle sensor 103 obtained via the communication units 116 and 115 and the output value of the sensor output expected value generation unit 111 is outside a predetermined threshold value, the angle sensor 103 is determined to be defective. (Yes in step S16). When the angle sensor 103 is determined to be defective, the motor control by the MPU 108 is stopped, and the motor control is executed only by the MPU 107 (step S17). In this case, the angle sensor failure detection unit 113 outputs a stop command to the motor control unit 110 of the MPU 108 through the communication unit 115.
  • the angle sensor 103 is determined to be normal. (No in step S16).
  • step S18 if the output difference between the output value of the angle sensor 102 and the output value of the sensor output expected value generation unit 111 is outside the threshold value, the angle sensor 102 is determined to be defective (Yes in step S18).
  • the motor control is executed only by the MPU 108 (step S19).
  • the angle sensor 102 is determined to be normal (No in step S18).
  • step S20 determines that the failure occurs ( Yes) in step S20.
  • the motor control is executed only by the MPU 108 (step S19).
  • the motor control system is determined to be normal (step S20). No) and continue motor control.
  • FIG. 3 is a flowchart for executing a failure diagnosis when the motor is controlled by only one MPU according to the first embodiment of the present invention.
  • step S18 of FIG. 2 when the motor control is executed only by the MPU 108, the failure diagnosis is executed according to the following flow.
  • the angle of the two-winding brushless DC motor 104 is detected by the angle sensor 103, and the output value is input to the angle sensor failure detection unit 114 in the MPU 108 (step S30).
  • the MPU 108 receives the detection value of the angle sensor 103.
  • the sensor output expected value generation unit 112 generates a motor control angle according to the stroke sensor 117 and inputs it to the angle sensor failure detection unit 114 (step S31).
  • the angle sensor failure detection unit 114 compares the two outputs of the angle sensor 103 and the sensor output expected value generation unit 111 with the determination threshold, executes a failure diagnosis (step S32), and outputs the determination result from the angle sensor failure detection unit 114. Output (step S33). In the failure diagnosis, the following processing is executed according to the output from the determination unit of the angle sensor failure detection unit 114, which will be described later.
  • step S34 If the difference between the output value of the angle sensor 103 and the output of the sensor output expected value generation unit 112 is outside the determination threshold range, it is determined that the angle sensor 103 and the motor control system have failed (Yes in step S34), and the motor by the MPU 108 is determined. The control is stopped (step S35).
  • the angle sensor 103 and the motor control system are determined to be normal (No in step S34), and the MPU 108 Continue motor control by.
  • FIG. 4 is a block configuration diagram of the motor control unit 109 according to the first embodiment of the present invention.
  • the displacement amount detection unit 201 is a means for detecting the displacement amount of the brake pedal from the input signal from the stroke sensor 117.
  • the input signal from the stroke sensor 117 becomes a command value for controlling the motor.
  • the angle calculation unit 202 is a means for converting the displacement amount of the stroke sensor into a target angle (control angle) realized by the rotation of the motor.
  • the difference calculation unit 203 is a means for calculating the difference between the current angle information input from the angle sensor 102 and the target angle obtained by the angle calculation unit 202.
  • the PID control unit 204 is a means for controlling the force applied to the motor according to the difference amount of the difference calculation unit 203, and calculates the torque amount generated by the motor for each control cycle.
  • the three-phase control unit 205 controls the frequency and phase of the three-phase pulse output and the pulse duty according to the output of the PID control unit 204, further counts the number of pulses, and outputs the total count number for each control cycle. Is.
  • the motor control unit 110 has the same configuration as described above.
  • FIG. 5 is a block configuration diagram of the sensor output expected value generation unit 111 according to the first embodiment of the present invention.
  • the storage unit 301 is a means for storing the output of the angle sensor 102 one control cycle before.
  • the angle calculation unit 302 is a means for calculating the angle rotated by the motor control this time from the angle one control cycle before and the number of pulses output to the motor by this control. This value is used as the expected output value of the angle sensor. Further, although not shown, the sensor output expected value generation unit 112 has the same configuration as described above.
  • FIG. 6 is a block configuration diagram of the angle sensor failure detection unit 113 according to the first embodiment of the present invention.
  • the difference detection units 401, 404 and 406 are means for obtaining the difference between the two input values and further obtaining and outputting the absolute value.
  • the determination threshold storage unit 402 is a means for storing a threshold value for determining whether or not the angle sensor 102 is normal.
  • the binarization units 403, 405 and 407 compare the threshold value stored in the determination threshold value storage unit 402 with the inputs from the difference detection units 401, 404 and 406, respectively, and if the difference detection value is equal to or less than the determination threshold value. "1" which means normal is output, and "0" which means failure is output otherwise.
  • the determination unit 408 is a motor control system (MPU 107, motor driver 105, and motor) including angle sensors 102 and 103, MPU 107, a motor driver 105, and a motor 104 according to input values from the three binarization units 403, 405, and 407. 104) is a means for determining whether it is normal or defective.
  • the angle sensor failure detection unit 114 also has the same configuration as described above.
  • FIG. 7 is a diagram showing a determination example of the angle sensor failure detection unit according to the first embodiment of the present invention.
  • FIG. 7 shows the output result of the output Y for the inputs A, B, and C.
  • the breakdown of Y is the angle sensor 102, the angle sensor 103, and the motor control system.
  • the angle sensor 102 determines that the failure has occurred. If B of the inputs A, B, and C is “1” and the other inputs are “0”, the angle sensor 103 determines that the failure has occurred. If A of the inputs A, B, and C is "1” and the other inputs are "0”, the motor control system determines that the failure has occurred.
  • the motor control can be continued by using the other angle sensor and the motor control system.
  • a sensor other than the angle sensor is not newly used, it is possible to suppress an increase in the number of parts and the number of connection signal lines and realize redundancy.
  • FIG. 8 is a block configuration diagram of the electric brake control device according to the second embodiment of the present invention.
  • the difference between the second embodiment and the first embodiment is that the thrust sensors 604 and 605 are provided.
  • the electric caliper 101 includes a two-winding brushless DC motor 104, angle sensors 102 and 103 for detecting the rotation angle of the shaft of the two-winding brushless DC motor 104, a thrust sensor 604 (first thrust sensor), and a thrust sensor.
  • a 605 (second thrust sensor) is provided.
  • Thrust sensors 604 and 605 are means for detecting the pressing force of the brake pads on the brake disc. The braking force is determined from this output value.
  • the two-winding brushless DC motor 104 of the second embodiment has two windings of each of the three coils arranged around the rotor, and one winding is broken. However, by energizing with another winding system, the rotation of the motor is prevented from stopping.
  • the motor control units 610 and 615 control the rotation angle and rotation speed of the motor by inputting the stroke sensor 117, the angle sensors 102 and 103, and the thrust sensors 604 and 605.
  • the sensor output expected value generation units 611 and 616 are means for generating expected output values for determining whether or not the outputs of the angle sensors 102 and 103 and the thrust sensors 604 and 605 are normal.
  • the sensor output expected value generation units 611 and 616 generate expected output values corresponding to the respective sensors of the angle sensor and the thrust sensor. Further, in the sensor output expected value generation units 611 and 616, as in the sensor output expected value generation unit 111 in the angle sensor shown in FIG. 5, the thrust sensors 604 and 605 also input the pulse number of the motor control unit 109 and one control cycle. From the output values of the previous thrust sensors 604 and 605, the expected output values of the current thrust sensors 604 and 605 are calculated and output.
  • the sensor failure detection unit 612,617 is a means for detecting failures of the angle sensors 102, 103 and the thrust sensors 604,605.
  • the sensor failure detection unit 612,617 of the second embodiment has a function as an angle sensor failure detection unit and a function as a thrust sensor failure detection unit.
  • the failure detection units of the angle sensors 102 and 103 and the thrust sensors 604 and 605 are executed by the same process as the configuration shown in FIG. At this time, in detecting the failure of the thrust sensors 604 and 605, the angle sensor 102 of FIG. 6 is replaced with the thrust sensor 604, and the sensor output expected value generation unit 111 generates the expected output value of the thrust sensor.
  • the motor control can be continued by using the other angle sensor, the thrust sensor, and the motor control system. At that time, in this embodiment, it is possible to realize redundancy by suppressing an increase in the number of parts and the number of connection signal lines.
  • Storage unit 302 ... Angle calculation unit, 401 ... Difference detection Unit, 402 ... judgment threshold storage unit, 403 ... binarization unit, 404 ... difference detection unit, 405 ... binarization unit, 406 ... difference detection unit, 407 ... binarization unit, 408 ... judgment unit, 604 ... thrust Sensor, 605 ... Thrust sensor, 610 ... Motor control unit, 611 ... Sensor output expected value generation unit, 612 ... Sensor failure detection unit, 615 ... Motor control unit, 616 ... Sensor output expected value generation unit, 617 ... Sensor failure detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Electric Motors In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本発明の課題は、部品点数および接続信号線数の増加を抑えて冗長化を実現することができるモータ制御装置を提供することである。 本発明は、モータの回転角度を検出する角度センサ102、103と、ストロークセンサ117に基づいてモータを制御すると共に角度センサ102の検出値を受信するMPU107と、ストロークセンサ117に基づいてモータを制御すると共に角度センサ103の検出値を受信するMPU108と、MPU107,108間で信号の送受信を行う通信部115,116を備える。MPU107は、角度センサ102の検出値と、通信部115を介して受信した角度センサ103の検出値と、ストロークセンサ117に応じて生成されたモータの制御角とから、角度センサ102、103の故障を検出する角度センサ故障検出部114を備える。

Description

モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法
 本発明は、モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法に関する。
 近年、自動車の電動化が進んでおり、ブレーキやステアリング等の電動化によるモータ制御の適用が拡大している。そのためモータのみならず、モータの動作状態を検出するセンサや制御を行うMPU等の電気電子系の信頼性向上が重要な課題となる。特に、制御系の動作状態を検出するセンサの故障診断機能は重要である。
 センサの故障診断技術としては、例えば特許文献1及び特許文献2に記載のような装置が提案されている。
 特許文献1には、モータロータの回転位置(角度)を検出するモータ位置センサと、モータの出力軸の回転角度を検出する二つの出力軸センサを設け、二つの出力軸センサの差が所定以上の場合は、出力軸センサの何れかもしくは双方が異常と判定し、次にモータ位置センサの異常の有無を判定し、モータ位置センサが異常であればモータ制御を停止し、モータ位置センサが正常であれば、モータ位置センサから出力軸回転角度を演算するようにした技術が開示されている。
 また、特許文献2には、2つの温度センサをそれぞれ別のMPUに接続してサブMPUがメインMPUとそれに接続する温度センサを診断する技術が開示されている。
特許第6340658号公報 特許第4997219号公報
 特許文献1では、二つの出力軸センサ診断のため、別の種類であるモータ位置センサを用意し、MPUに接続しているので、部品点数及びセンサとMPUを接続する接続信号線が増加し、増加した部品の故障や信号線の断線といった可能性があり、信頼性が低下するといった課題があった。
 また、特許文献2では、サブのMPU側が故障した場合に、メインのMPU側の診断ができないため、処理が停止してしまうといった課題があった。
 本発明の目的は、上記課題を解決し、部品点数および接続信号線数の増加を抑えて冗長化を実現することができるモータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法を提供することにある。
 上記目的を達成するために本発明の特徴とするところは、モータの回転角度を検出する第1角度センサ及び第2角度センサと、指令値に基づいて前記モータを制御すると共に前記第1角度センサの検出値を受信する第1制御回路部と、前記指令値に基づいて前記モータを制御すると共に前記第2角度センサの検出値を受信する第2制御回路部と、前記第1制御回路部と前記第2制御回路部との間で信号の送受信を行う通信部とを備え、前記第1制御回路部は、前記第1角度センサの検出値と、前記通信部を介して受信した前記第2角度センサの検出値と、前記指令値に応じて生成された前記モータの制御角とから、前記第1角度センサ及び前記第2角度センサの故障を検出する角度センサ故障検出部を備えたことにある。
 本発明によれば、部品点数および接続信号線数の増加を抑えて冗長化を実現することができるモータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法を提供することができる。
本発明の第1実施例に係る電動ブレーキ制御装置のブロック構成図。 本発明の第1実施例に係る角度センサの故障検出方法のフローチャート。 本発明の第1実施例に係る一方のMPUのみでモータ制御を行う場合の故障診断を実行するフローチャート。 本発明の第1実施例に係るモータ制御部109のブロック構成図。 本発明の第1実施例に係るセンサ出力期待値生成部111のブロック構成図。 本発明の第1実施例に係る角度センサ故障検出部113のブロック構成図。 本発明の第1実施例に係る角度センサ故障検出部の判定例を示す図。 本発明の第2実施例に係る電動ブレーキ制御装置のブロック構成図。
 以下、本発明の実施例について図面を用いて説明する。本発明はモータ制御装置に関するものであり、その一例として電動ブレーキ制御装置に適用した例で以下説明する。
 本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。
 図1は本発明の第1実施例に係る電動ブレーキ制御装置のブロック構成図である。図1において、電動キャリパ101は、車のタイヤのディスクブレーキを構成する部品であり、ブレーキディスクを挟むブレーキパッドの開閉をモータで制御する機能を備えている。
本実施例では、モータとして2巻線ブラシレスDCモータを用いる。
 電動キャリパ101に備えられた角度センサ102(第1角度センサ),角度センサ103(第2角度センサ)は、2巻線ブラシレスDCモータ104のシャフトの回転角度を検出する手段であり、一般にレゾルバ等が知られている。
 電動キャリパ101の駆動部である2巻線ブラシレスDCモータ104は、回転子の周辺に配置する3つのコイルの巻線をそれぞれ2系統化したものであり、一系統の巻き線が断線しても、もう一系統の巻き線で通電することにより、モータの回転停止を防ぐことができる。そのため、それぞれのコイルに対して2系統の三相電流を入力する。制御例として、通常時は2つのコイルがそれぞれ50%の回転力を発生し、合計100%の回転力を発生させるが、一方が故障した場合、もう一方で100%の回転力を発生させることで回転力の低下を防ぐようにしている。
 モータドライバ105,106は、第1制御回路部としてのMPU107(マイクロコンピュータユニット)に備えられたモータ制御部109、及び第2制御回路としてのMPU108に備えられたモータ制御部110からの制御信号に応じてモータを駆動するために必要な三相の電流を出力する手段である。
 MPU107,108は、ストロークセンサ117からの入力信号を受けて、その信号に応じて電動キャリパ内のモータを制御し電動ブレーキを動作させる手段である。本実施例では、1フェイルオペレーショナル(1 Fail Operational)を実現するため2つのMPUによる冗長構成としている。1フェイルオペレーショナルは、システムを構成する基幹部品の1つが故障し、機能を喪失した際に、他の部品がその機能の一部を代替し、一定時間、運転を継続するものである。
 モータ制御部109,110は、ストロークセンサ117からの入力信号に応じた角度分モータを回転させる手段である。モータ制御部109,110の構成については、図4を用いて後述する。
 センサ出力期待値生成部111,112は、角度センサ102,103の出力が正常か否かを判定するための出力期待値を生成する手段である。センサ出力期待値生成部111,112の構成については、図5を用いて後述する。
 角度センサ故障検出部113,114は、角度センサが正常か否かを判定する手段である。角度センサ故障検出部113,114の構成については、図6を用いて後述する。
 通信部115,116は、MPU107および108の間でデータの送受信を行う手段である。例えば自動車用の通信規格であるCAN通信方式等で実現する。
 ストロークセンサ117は、運転者がブレーキペダルを踏んだ際の踏み込み量を検出する手段である。冗長構成とするため、内部に踏み込み量検出部を2つ有し、各出力はそれぞれMPU107及びMPU108に接続する。
 次に、図1に示すブロック図の動作について説明する。第1実施例のモータ制御装置を含む電動ブレーキを搭載した自動車が走行中、運転者がブレーキペダルを踏み込むと、ストロークセンサ117が踏み込み変位量を検出し、MPU107とMPU108内のモータ制御部109およびモータ制御部110が検出値を受信する。モータ制御部109およびモータ制御部110では、単位時間当たりの踏み込み変位量に応じたモータの回転量と回転速度を制御し、電動キャリパ101内の2重巻線式ブラシレスDCモータ104を回転動作させる。モータの制御単位時間当たりの回転角度を角度センサ102及び角度センサ103により検出し、その検出値をMPU107及びMPU108が受信しモータ制御部109およびモータ制御部110にフィードバックする。上記制御により、電動キャリパ内のブレーキパッドとブレーキディスク間の摩擦力を制御することでブレーキ動作を行う。
 次に角度センサの故障検出方法について、図2を用いて説明する。図2は、本発明の第1実施例に係る角度センサの故障検出方法のフローチャートであり、走行開始時及び正常動作時のフローチャートである。
 2巻線ブラシレスDCモータ104の角度を角度センサ102で検出し、その出力値(検出値)をMPU107内の角度センサ故障検出部113へ入力する(ステップS10)。換言するとMPU107は角度センサ102の検出値を受信する。
 2巻線ブラシレスDCモータ104の角度を角度センサ103で検出し、その出力値(検出値)をMPU108で受信し、MPU108の通信部116とMPU107の通信部115を介して、MPU107内の角度センサ故障検出部113へ入力する(ステップS11)。
 センサ出力期待値生成部111は、ストロークセンサ117に応じたモータの制御角を生成し、角度センサ故障検出部113へ入力する(ステップS12)。
 角度センサ故障検出部113では、角度センサ102,角度センサ103およびセンサ出力期待値生成部111の3つ出力と判定閾値を比較し、故障診断を実行する(ステップS13)。判定閾値は、故障診断の有無を判定する基準となる。故障診断は、後述する角度センサ故障検出部113の判定部408からの出力に応じて以下の処理を実行する。
 3つの出力差が閾値内であれば2つの角度センサおよびモータ104、MPU107および108から構成するモータ制御系は正常と判定する(ステップS14のNo)。3つの出力差が閾値外であれば、2つの角度センサおよびモータ104、MPU107および108から構成するモータ制御系は異常と判定(ステップS14のYes)し、MPU107とMPU108によるモータ制御を停止する(ステップS15)。
 次に、角度センサ102の出力と角度センサ103の故障を判定する。通信部116,115を介して得られた角度センサ103の出力値とセンサ出力期待値生成部111の出力値との出力差が所定の閾値外であれば、その角度センサ103は故障と判定する(ステップS16のYes)。角度センサ103が故障と判定されると、MPU108によるモータ制御を停止させ、MPU107のみでモータ制御を実行する(ステップS17)。この場合、角度センサ故障検出部113は、通信部115を通じてMPU108のモータ制御部110に停止指令を出力する。
 一方、通信部116,115を介して得られた角度センサ103の出力値とセンサ出力期待値生成部111の出力値との出力差が閾値内であれば、その角度センサ103は正常と判定する(ステップS16のNo)。
 次に、角度センサ102の出力値とセンサ出力期待値生成部111の出力値との出力差が閾値外であれば、その角度センサ102は故障と判定する(ステップS18のYes)。角度センサ102が故障と判定されると、MPU108のみでモータ制御を実行する(ステップS19)。
 一方、角度センサ102の出力値とセンサ出力期待値生成部111の出力値との出力差が閾値内であれば、その角度センサ102は正常と判定する(ステップS18のNo)。
 次に、2つのセンサ(角度センサ102,103)の出力差が閾値内であり、センサ出力期待値生成部111の出力と出力差が閾値外であれば、モータ制御系が故障と判定する
(ステップS20のYes)。モータ制御系が故障と判定されると、MPU108のみでモータ制御を実行する(ステップS19)。
 一方、2つのセンサ(角度センサ102,103)の出力差が閾値内であり、センサ出力期待値生成部111の出力と出力差が閾値内であれば、モータ制御系は正常と判定(ステップS20のNo)し、モータ制御を継続する。
 以上のステップは、モータが動作中、所定の時間間隔(例えば1ms)で実行される。
次に図3を用いて、MPU108のみでモータ制御を行う場合の故障診断について説明する。図3は、本発明の第1実施例に係る一方のMPUのみでモータ制御を行う場合の故障診断を実行するフローチャートである。
 図2のステップS18において、MPU108のみでモータ制御を実行する場合、以下のフローに従い、故障診断を実行する。
 図3において、2巻線ブラシレスDCモータ104の角度を角度センサ103で検出し、その出力値をMPU108内の角度センサ故障検出部114へ入力する(ステップS30)。換言するとMPU108は角度センサ103の検出値を受信する。
 センサ出力期待値生成部112は、ストロークセンサ117に応じたモータの制御角を生成し、角度センサ故障検出部114へ入力する(ステップS31)。
 角度センサ故障検出部114では、角度センサ103およびセンサ出力期待値生成部111の2つ出力と判定閾値を比較し、故障診断を実行(ステップS32)し、角度センサ故障検出部114から判定結果を出力する(ステップS33)。故障診断は、後述する角度センサ故障検出部114の判定部からの出力に応じて以下の処理を実行する。
 角度センサ103の出力値とセンサ出力期待値生成部112の出力の差分が判定閾値範囲外であれば、角度センサ103及びモータ制御系の故障と判定し(ステップS34のYes)し、MPU108によるモータ制御を停止する(ステップS35)。
 一方、角度センサ103の出力値とセンサ出力期待値生成部112の出力の差分が判定閾値範囲内であれば、角度センサ103及びモータ制御系は正常と判定し(ステップS34のNo)し、MPU108によるモータ制御を継続する。
 次に図4を用いて、モータ制御部109の構成について説明する。図4は本発明の第1実施例に係るモータ制御部109のブロック構成図である。
 変位量検出部201は、ストロークセンサ117からの入力信号からブレーキペダルの変位量を検出する手段である。ストロークセンサ117からの入力信号はモータを制御するための指令値となる。
 角度演算部202は、ストロークセンサの変位量をモータの回転で実現する目標角度(制御角)に変換する手段である。
 差分演算部203は、角度センサ102から入力された現在の角度情報と角度演算部202で求めた目標角度の差分を計算する手段である。
 PID制御部204は、差分演算部203の差分量に応じて、モータに加える力を制御する手段であり、モータで発生するトルク量を制御周期ごとに演算で求める。
 3相制御部205は、PID制御部204の出力に応じて3相のパルス出力の周波数と位相およびパルスのデューティーを制御し、さらにパルス数をカウントし制御周期ごとに合計カウント数を出力する手段である。また、図示はしないが、モータ制御部110も上記と同じ構成である。
 次に、図5を用いて、センサ出力期待値生成部111の構成について説明する。図5は、本発明の第1実施例に係るセンサ出力期待値生成部111のブロック構成図である。
 記憶部301は、1制御周期前の角度センサ102の出力を記憶する手段である。
 角度演算部302は、1制御周期前の角度と今回の制御でモータへ出力したパルス数とから今回のモータ制御で回転した角度を演算で求める手段である。この値を角度センサの出力期待値とする。また、図示はしないが、センサ出力期待値生成部112も上記と同じ構成である。
 次に、図6を用いて、角度センサ故障検出部113の構成について説明する。図6は本発明の第1実施例に係る角度センサ故障検出部113のブロック構成図である。
 差分検出部401,404および406は、2つの入力値の差を求め、更にその絶対値を求め出力する手段である。
 判定閾値記憶部402は、角度センサ102が正常か否かの判定のための閾値を記憶する手段である。
 2値化部403,405および407は、判定閾値記憶部402に記憶された閾値と差分検出部401,404および406からの入力をそれぞれ比較し、差分検出値が判定閾値以下の値であれば正常を意味する“1”を出力し、それ以外であれば故障を意味する“0”を出力する。
 判定部408は、3つの2値化部403,405および407からの入力値に応じて角度センサ102および103およびMPU107とモータドライバ105とモータ104から成るモータ制御系(MPU107とモータドライバ105とモータ104)が正常か故障かの判定を行う手段である。また、図示はしないが、角度センサ故障検出部114も上記と同じ構成である。
 次に図7を用いて、角度センサ故障検出部113,114の判定部408における判定例を説明する。図7は、本発明の第1実施例に係る角度センサ故障検出部の判定例を示す図である。図7では、入力A,B,Cに対する出力Yの出力結果を示している。
 図7において、Yの内訳は、角度センサ102、角度センサ103およびモータ制御系の3つである。判定部408に入力される値化部403,405,407からの入力A,B,Cが全て“1”の場合は、全て正常と判定する。また、入力A,B,Cが全て“0”の場合は、2つの角度センサとモータ制御系が全て故障と判定する。
 入力A,B,CのうちCが“1”でそれ以外“0”の場合は、角度センサ102が故障と判定する。入力A,B,CのうちBが“1”でそれ以外“0”の場合は、角度センサ103が故障と判定する。入力A,B,CのうちAが“1”でそれ以外“0”の場合は、モータ制御系が故障と判定する。
 本実施例によれば、一方の角度センサ、モータ制御系が故障した場合であっても、他の角度センサ、モータ制御系を用いてモータ制御を継続することができる。その際、本実施例では、角度センサ以外のセンサを新たに用いることないので、部品点数および接続信号線数の増加を抑えて冗長化を実現することができる。
 次に本発明の第2実施例について、図8を用いて説明する。図8は、本発明の第2実施例に係る電動ブレーキ制御装置のブロック構成図である。第2実施例において、第1実施例と異なるところは推力センサ604、605を備えたところにある。
 電動キャリパ101には、2巻線ブラシレスDCモータ104と、この2巻線ブラシレスDCモータ104のシャフトの回転角度を検出する角度センサ102,103と、推力センサ604(第1推力センサ),推力センサ605(第2推力センサ)が備えられている。推力センサ604,605はブレーキディスクに対するブレーキパッドの加圧力を検出する手段である。この出力値によりブレーキ力を判断する。
 第2実施例の2巻線ブラシレスDCモータ104は、第1実施例と同様、回転子の周辺に配置する3つのコイルの巻線をそれぞれ2系統化しており、一系統の巻き線が断線しても、もう一系統の巻き線で通電することにより、モータの回転停止を防ぐものである。
 モータ制御部610,615は、ストロークセンサ117、角度センサ102,103、推力センサ604,605の入力によりモータの回転角度と回転速度を制御する。
 センサ出力期待値生成部611、616は、角度センサ102,103及び推力センサ604,605の出力が正常か否かを判定するための出力期待値を生成する手段である。
センサ出力期待値生成部611、616では、角度センサ及び推力センサのそれぞれのセンサに対応する出力期待値を生成する。また、センサ出力期待値生成部611、616では、図5に示す角度センサにおけるセンサ出力期待値生成部111と同様に、推力センサ604,605についてもモータ制御部109のパルス数入力と1制御周期前の推力センサ604,605の出力値から現時点の推力センサ604,605の出力期待値を演算で求め出力する。
 センサ故障検出部612,617は、角度センサ102,103及び推力センサ604,605の故障を検出する手段である。第2実施例のセンサ故障検出部612,617は、角度センサ故障検出部としての機能、及び推力センサ故障検出部としての機能を備えている。角度センサ102,103及び推力センサ604,605の故障検出部にあたっては、図6に示す構成と同様の処理で実行する。この際、推力センサ604,605の故障検出にあたっては、図6の角度センサ102を推力センサ604に置き換え、センサ出力期待値生成部111では、推力センサの出力期待値を生成するようにする。
 本実施例によれば、一方の角度センサ、推力センサ、モータ制御系が故障した場合であっても、他の角度センサ、推力センサ、モータ制御系を用いてモータ制御を継続することができる。その際、本実施例では、部品点数および接続信号線数の増加を抑えて冗長化を実現することができる。
 101…電動キャリパ、102…角度センサ、103…角度センサ、104…2巻線ブラシレスDCモータ、105…モータドライバ、106…モータドライバ、107…MPU、108…MPU、109…モータ制御部、110…モータ制御部、111…センサ出力期待値生成部、112…センサ出力期待値生成部、113…角度センサ故障検出部、114…角度センサ故障検出部、115…通信部、116…通信部、117…ストロークセンサ、201…変位量検出部、202…角度演算部、203…差分演算部、204…PID制御部、205…3相制御部、301…記憶部、302…角度演算部、401…差分検出部、402…判定閾値記憶部、403…2値化部、404…差分検出部、405…2値化部、406…差分検出部、407…2値化部、408…判定部、604…推力センサ、605…推力センサ、610…モータ制御部、611…センサ出力期待値生成部、612…センサ故障検出部、615…モータ制御部、616…センサ出力期待値生成部、617…センサ故障検出部 

Claims (16)

  1.  モータの回転角度を検出する第1角度センサ及び第2角度センサと、指令値に基づいて前記モータを制御すると共に前記第1角度センサの検出値を受信する第1制御回路部と、前記指令値に基づいて前記モータを制御すると共に前記第2角度センサの検出値を受信する第2制御回路部と、前記第1制御回路部と前記第2制御回路部との間で信号の送受信を行う通信部とを備え、
     前記第1制御回路部は、
     前記第1角度センサの検出値と、前記通信部を介して受信した前記第2角度センサの検出値と、前記指令値に応じて生成された前記モータの制御角とから、前記第1角度センサ及び前記第2角度センサの故障を検出する角度センサ故障検出部を備えたことを特徴とするモータ制御装置。
  2.  請求項1において、
     前記角度センサ故障検出部は、故障診断の有無を判定する判定閾値を備えたことを特徴とするモータ制御装置。
  3.  請求項2において、
     前記角度センサ故障検出部は、前記第2角度センサの検出値と前記指令値に応じて生成された前記モータの制御角との出力差が前記判定閾値外であれば、前記第2角度センサを故障と判定することを特徴するモータ制御装置。
  4.  請求項3において、
     前記第2角度センサが故障と判定された場合、前記角度センサ故障検出部は前記第2制御回路部を停止させ、前記第1制御回路部のみで前記モータを制御することを特徴とするモータ制御装置。
  5.  請求項2において、
     前記角度センサ故障検出部は、前記第2角度センサが正常と判定された後、前記第1角度センサの検出値と前記指令値に応じて生成された前記モータの制御角との出力差と、前記判定閾値とを比較し前記第1角度センサの故障を判定することを特徴するモータ制御装置。
  6.  請求項5において、
     前記第1角度センサが故障と判定された場合、前記角度センサ故障検出部は前記第1制御回路部を停止させ、前記第2制御回路部のみで前記モータを制御することを特徴とするモータ制御装置。
  7.  モータの回転角度を検出する第1角度センサ及び第2角度センサと、指令値に基づいて前記モータを制御すると共に前記第1角度センサの検出値を受信する第1制御回路部と、前記指令値に基づいて前記モータを制御すると共に前記第2角度センサの検出値を受信する第2制御回路部と、前記第1制御回路部と前記第2制御回路部との間で信号の送受信を行う通信部とを備え、
     前記第1制御回路部は、
     前記第1角度センサ及び前記第2角度センサの故障を検出する角度センサ故障検出部を備え、
     前記第1角度センサの検出値を前記角度センサ故障検出部に入力するステップと、前記通信部を介して受信した前記第2角度センサの検出値を前記角度センサ故障検出部に入力するステップと、前記指令値に応じて生成された前記モータの制御角を前記角度センサ故障検出部に入力するステップと、前記第1角度センサの検出値、前記第2角度センサの検出値、前記指令値に応じて生成された前記モータの制御角及び判定閾値から故障診断を行うステップとを備えたことを特徴とするモータ制御方法。
  8.  請求項7において、
     前記角度センサ故障検出部は、故障診断の有無を判定する判定閾値を備え、 前記角度センサ故障検出部は、前記第2角度センサの検出値と前記指令値に応じて生成された前記モータの制御角との出力差と、前記判定閾値とを比較し前記第2角度センサの故障判定を実行するステップを備えたことを特徴するモータ制御方法。
  9.  請求項8において、
     前記角度センサ故障検出部は、前記第2角度センサが正常と判定された後、前記第1角度センサの検出値と前記指令値に応じて生成された前記モータの制御角との出力差と、前記判定閾値とを比較し前記第1角度センサの故障判定を実行するステップを備えたことを特徴するモータ制御方法。
  10.  請求項9において、
     前記角度センサ故障検出部は、前記第1角度センサ及び前記第2角度センサが正常と判定された後、前記第1角度センサの検出値と、前記第2角度センサの検出値と、前記指令値に応じて生成された前記モータの制御角と、前記判定閾値とから前記第1制御回路部の故障判定を実行するステップを備えたことを特徴するモータ制御方法。
  11.  ブレーキディスクを挟むブレーキパッドの開閉を行うモータと、前記モータの回転角度を検出する第1角度センサ及び第2角度センサと、ブレーキペダルの踏み込み量を検出するストロークセンサと、前記ストロークセンサの踏み込み量に基づいて前記モータを制御すると共に前記第1角度センサの検出値を受信する第1制御回路部と、前記ストロークセンサの踏み込み量に基づいて前記モータを制御すると共に前記第2角度センサの検出値を受信する第2制御回路部と、前記第1制御回路部と前記第2制御回路部との間で信号の送受信を行う通信部とを備え、
     前記第1制御回路部は、
     前記第1角度センサの検出値と、前記通信部を介して受信した前記第2角度センサの検出値と、前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角とから、前記第1角度センサ及び前記第2角度センサの故障を検出するセンサ故障検出部を備えたことを特徴とする電動ブレーキ制御装置。
  12.  請求項11において、
     前記ブレーキディスクに対する前記ブレーキパッドの加圧力を検出する第1推力センサ及び第2推力センサを備え、
     前記センサ故障検出部は、
     前記第1推力センサの検出値と、前記通信部を介して受信した前記第2推力センサの検出値と、前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角とから、前記第1推力センサ及び前記第2推力センサの故障を検出することを特徴とする電動ブレーキ制御装置。
  13.  ブレーキディスクを挟むブレーキパッドの開閉を行うモータと、前記モータの回転角度を検出する第1角度センサ及び第2角度センサと、ブレーキペダルの踏み込み量を検出するストロークセンサと、前記ストロークセンサの踏み込み量に基づいて前記モータを制御すると共に前記第1角度センサの検出値を受信する第1制御回路部と、前記ストロークセンサの踏み込み量に基づいて前記モータを制御すると共に前記第2角度センサの検出値を受信する第2制御回路部と、前記第1制御回路部と前記第2制御回路部との間で信号の送受信を行う通信部とを備え、
     前記第1制御回路部は、
     前記第1角度センサ及び前記第2角度センサの故障を検出するセンサ故障検出部を備え、
     前記第1角度センサの検出値を前記センサ故障検出部に入力するステップと、前記通信部を介して受信した前記第2角度センサの検出値を前記センサ故障検出部に入力するステップと、前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角を前記センサ故障検出部に入力するステップと、前記第1角度センサの検出値、前記第2角度センサの検出値、前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角及び判定閾値から故障診断を行うステップとを備えたことを特徴とする電動ブレーキ制御方法。
  14.  請求項13において、
     前記センサ故障検出部は、故障診断の有無を判定する判定閾値を備え、
     前記センサ故障検出部は、前記第2角度センサの検出値と前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角との出力差と、前記判定閾値とを比較し前記第2角度センサの故障判定を実行するステップを備えたことを特徴する電動ブレーキ制御方法。
  15.  請求項14において、
     前記センサ故障検出部は、前記第2角度センサが正常と判定された後、前記第1角度センサの検出値と前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角との出力差と、前記判定閾値とを比較し前記第1角度センサの故障判定を実行するステップを備えたことを特徴する電動ブレーキ制御方法。
  16.  請求項15において、
     前記センサ故障検出部は、前記第1角度センサ及び前記第2角度センサが正常と判定された後、前記第1角度センサの検出値と、前記第2角度センサの検出値と、前記ストロークセンサの踏み込み量に応じて生成された前記モータの制御角と、前記判定閾値とから前記第1制御回路部の故障判定を実行するステップを備えたことを特徴する電動ブレーキ制御方法。
PCT/JP2020/012137 2019-04-24 2020-03-18 モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法 WO2020217795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080022908.6A CN113678367A (zh) 2019-04-24 2020-03-18 马达控制装置及使用该装置的电动制动装置、以及马达控制方法及使用该方法的电动制动控制方法
KR1020217029616A KR102555204B1 (ko) 2019-04-24 2020-03-18 모터 제어 장치 및 이것을 사용한 전동 브레이크 장치, 그리고 모터 제어 방법 및 이 제어 방법을 이용한 전동 브레이크 제어 방법
US17/439,939 US20220185250A1 (en) 2019-04-24 2020-03-18 Motor control device and electric brake device using the same, and motor controlling method and electric brake controlling method using the same method
DE112020000915.7T DE112020000915T5 (de) 2019-04-24 2020-03-18 Motorsteuervorrichtung und Elektrobremsvorrichtung die sie verwendet, und Motorsteuerverfahren und Elektrobremssteuerverfahren, das es verwendet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082606 2019-04-24
JP2019082606A JP7242399B2 (ja) 2019-04-24 2019-04-24 モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法

Publications (1)

Publication Number Publication Date
WO2020217795A1 true WO2020217795A1 (ja) 2020-10-29

Family

ID=72942093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012137 WO2020217795A1 (ja) 2019-04-24 2020-03-18 モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法

Country Status (6)

Country Link
US (1) US20220185250A1 (ja)
JP (1) JP7242399B2 (ja)
KR (1) KR102555204B1 (ja)
CN (1) CN113678367A (ja)
DE (1) DE112020000915T5 (ja)
WO (1) WO2020217795A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080280B2 (ja) * 2020-07-27 2022-06-03 三菱電機株式会社 電動制動装置
US20230001908A1 (en) * 2021-07-02 2023-01-05 Zf Active Safety Us Inc Apparatus and method for redundant control of a hydraulic brake system
EP4307559A1 (en) * 2022-07-15 2024-01-17 Sociéte Anonyme Belge de Constructions Aéronautiques, S.A.B.C.A. Electromechanical actuator fail operational sensing system based on two angular sensors
DE102022123082A1 (de) * 2022-09-12 2024-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Drehwinkelerfassungssystem für eine Drehwinkelerfassung eines rotatorischen Bremsantriebs für ein Schienenfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016887A (ja) * 1999-06-22 2001-01-19 Sulzer Markets & Technology Ag 電気式回転駆動装置
JP2002276704A (ja) * 2001-03-15 2002-09-25 Asmo Co Ltd 車両用電動ブレーキ装置
JP2003153401A (ja) * 2001-11-07 2003-05-23 Hitachi Ltd 電気車の制御装置及び制御方法
JP2009067264A (ja) * 2007-09-14 2009-04-02 Hitachi Ltd 電動駐車ブレーキ装置
JP2017017910A (ja) * 2015-07-03 2017-01-19 日立オートモティブシステムズ株式会社 三相同期電動機の駆動装置
WO2019031218A1 (ja) * 2017-08-08 2019-02-14 パナソニックIpマネジメント株式会社 エンコーダの異常検出方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100439A (ja) 1984-10-23 1986-05-19 Sanyo Kokusaku Pulp Co Ltd 製紙用エキスパンダ−ロ−ルへの熱収縮性弗素樹脂被覆方法
JPS6340658U (ja) 1986-09-02 1988-03-16
JP2007045271A (ja) * 2005-08-09 2007-02-22 Hitachi Ltd 電動ブレーキおよびその制御装置
JP4997219B2 (ja) 2008-12-17 2012-08-08 日立オートモティブシステムズ株式会社 制御装置
CN103438920A (zh) * 2013-08-23 2013-12-11 同济大学 Bldc位置传感器的故障诊断方法、容错控制方法及其系统
JP6570877B2 (ja) * 2015-05-22 2019-09-04 Ntn株式会社 電動ブレーキ装置
EP3451526B1 (en) * 2016-04-28 2020-05-06 Mitsubishi Electric Corporation Failure determination device for rotating machine control device and failure determination method
WO2018051550A1 (ja) * 2016-09-15 2018-03-22 日立オートモティブシステムズ株式会社 車両搭載機器のアクチュエータ及びパワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016887A (ja) * 1999-06-22 2001-01-19 Sulzer Markets & Technology Ag 電気式回転駆動装置
JP2002276704A (ja) * 2001-03-15 2002-09-25 Asmo Co Ltd 車両用電動ブレーキ装置
JP2003153401A (ja) * 2001-11-07 2003-05-23 Hitachi Ltd 電気車の制御装置及び制御方法
JP2009067264A (ja) * 2007-09-14 2009-04-02 Hitachi Ltd 電動駐車ブレーキ装置
JP2017017910A (ja) * 2015-07-03 2017-01-19 日立オートモティブシステムズ株式会社 三相同期電動機の駆動装置
WO2019031218A1 (ja) * 2017-08-08 2019-02-14 パナソニックIpマネジメント株式会社 エンコーダの異常検出方法

Also Published As

Publication number Publication date
DE112020000915T5 (de) 2021-11-04
JP2020182275A (ja) 2020-11-05
CN113678367A (zh) 2021-11-19
KR20210126714A (ko) 2021-10-20
JP7242399B2 (ja) 2023-03-20
KR102555204B1 (ko) 2023-07-13
US20220185250A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020217795A1 (ja) モータ制御装置及びこれを用いた電動ブレーキ装置、並びにモータ制御方法及びこの制御方法を用いた電動ブレーキ制御方法
US6969127B2 (en) Electric parking brake system
US7376498B2 (en) Vehicle controller
EP2444293B1 (en) Vehicle creep control device
US11643095B2 (en) Electronic control device, control system, and reset determination method
KR20100040741A (ko) 차량용 제동 시스템 및 차량용 제동 시스템의 작동 방법
US9333844B2 (en) Method and device for operating a drive device of a vehicle
US10081342B2 (en) Systems and methods for brake actuator operation under load cell failure
JP6921183B2 (ja) 車両用ブレーキシステム
WO2012121007A1 (ja) 電流制御装置
JP7005792B2 (ja) 車両搭載機器の制御装置
CN110963025B (zh) 飞行器制动系统架构
US8421385B2 (en) Method for braking an electromotor and electrical drive
JPWO2019003537A1 (ja) 車両用ブレーキシステム
US20240039451A1 (en) Motor control apparatus and motor control system
JP4969662B2 (ja) 車両制御装置
US20230136605A1 (en) Fail operational electric brake system
JP2004314687A (ja) 電動駐車ブレーキシステム
KR101708234B1 (ko) 차량용 전기기계 브레이크 시스템 및 이의 동작방법
US20200298906A1 (en) Electromechanical steering drive system for making available steering assistance for a steering system
WO2024018874A1 (ja) モータ制御装置およびモータ制御システム
KR101163253B1 (ko) 차속 센서와 엔진속 센서를 이용하여 단락을 감지하는 방법및 전동식 조향장치
JP7451890B2 (ja) 車両の駆動システム
JP4928977B2 (ja) 電気負荷の制御装置及び電動ブレーキ装置
JP2024520216A (ja) 自動車用の電気機械式のブレーキシステムおよびこのブレーキシステム用の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029616

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20795947

Country of ref document: EP

Kind code of ref document: A1