WO2020217791A1 - 光学系、光学機器及び光学系の製造方法 - Google Patents
光学系、光学機器及び光学系の製造方法 Download PDFInfo
- Publication number
- WO2020217791A1 WO2020217791A1 PCT/JP2020/011986 JP2020011986W WO2020217791A1 WO 2020217791 A1 WO2020217791 A1 WO 2020217791A1 JP 2020011986 W JP2020011986 W JP 2020011986W WO 2020217791 A1 WO2020217791 A1 WO 2020217791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- lens
- optical system
- focal length
- front group
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Definitions
- the present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.
- Patent Document 1 Conventionally, a compact and lightweight optical system has been desired (see, for example, Patent Document 1). However, the optical system described in Patent Document 1 is required to have further improved optical performance.
- the optical system according to the first aspect of the present invention includes a front group having a positive refractive power and a focusing group for focusing by moving in the optical axis direction in order from the object side.
- the front group has a first lens, a second lens, and a third lens in this order from the object side, and satisfies the condition of the following equation. 0.10 ⁇ D23 / f1 ⁇ 0.75
- f1 Focal length of the front group
- D23 Distance between the second lens and the third lens on the optical axis
- the method for manufacturing an optical system according to the first aspect of the present invention includes a front group having a positive refractive power and a focusing group for focusing by moving in the optical axis direction in order from the object side.
- a first lens, a second lens, and a third lens are arranged in order from the object side in the front group so as to satisfy the conditions of the following equation. 0.10 ⁇ D23 / f1 ⁇ 0.75
- f1 Focal length of the front group
- D23 Distance between the second lens and the third lens on the optical axis
- the optical system OL includes a front group G1 having a positive refractive power and a focusing group G2 that focuses by moving in the optical axis direction in order from the object side.
- the front group G1 has a first lens L11 having a positive refractive power, a second lens L12 having a positive refractive power, and a third lens L13 in order from the object side.
- optical system OL satisfies the conditional expression (1) shown below.
- Conditional expression (1) defines the ratio of the distance on the optical axis between the second lens L12 and the third lens L13 constituting the front group G1 with respect to the focal length of the front group G1.
- various aberrations particularly coma aberration, axial chromatic aberration, and magnifying chromatic aberration can be satisfactorily corrected.
- the lower limit values of the conditional expression (1) shall be 0.11, 0.13, 0.15, 0.16, and further 0.17. Is more desirable.
- the upper limit of the conditional expression (1) is set to 0.73, 0.70, 0.65, 0.60, 0.55, 0.50. , 0.48, 0.45, 0.43, and more preferably 0.41.
- optical system OL satisfies the conditional expression (2) shown below.
- f1 Focal length of front group G1
- fL1 Focal length of first lens L11
- Conditional expression (2) defines the ratio of the focal length of the first lens L11 constituting the front group G1 to the focal length of the front group G1.
- the first lens L11 can have a certain degree of refractive power (power), so that the refractive power (power) of the second lens L12 can be reduced to cause various aberrations.
- spherical aberration, coma aberration and the like can be satisfactorily corrected. If it is less than the lower limit of the conditional expression (2), the refractive power of the first lens L11 becomes too strong and it becomes difficult to correct the aberration.
- the lower limit values of the conditional expression (2) are set to 1.05, 1.10, 1.15, 1.20, 1.25, 1. It is more desirable to set it to 30, 1.33, and further 1.35. If the upper limit of the conditional expression (2) is exceeded, the refractive power of the first lens L11 becomes too weak and it becomes difficult to correct the aberration. In order to ensure the effect of the conditional expression (2), the upper limit of the conditional expression (2) is set to 5.80, 5.50, 5.00, 4.50, 4.00, 3.80. It is more desirable to set it to 3.50.
- optical system OL satisfies the conditional expression (3) shown below.
- Conditional expression (3) defines the Abbe number of the medium of the second lens L12 constituting the front group G1 with respect to the d-line.
- the upper limit value of the conditional expression (3) is exceeded, the dispersion of the second lens L12 becomes too small, and it becomes difficult to correct the chromatic aberration.
- optical system OL satisfies the conditional expression (4) shown below.
- Conditional expression (4) defines the Abbe number of the medium of the third lens L13 constituting the front group G1 with respect to the d-line.
- the upper limit value of the conditional expression (4) is exceeded, the dispersion of the third lens L13 becomes too small, and it becomes difficult to correct the chromatic aberration.
- optical system OL satisfies the conditional expression (5) shown below.
- fL1 Focal length of the first lens L11 TL1: Thickness of the first lens L11 on the optical axis
- Conditional expression (5) defines the ratio of the thickness on the optical axis to the focal length of the first lens L11 constituting the front group G1.
- the weight of the optical system OL can be reduced, and various aberrations, particularly spherical aberration and coma aberration can be satisfactorily corrected.
- the refractive power (power) of the first lens L11 becomes weak, and if the first lens L11 is thinned, it becomes difficult to correct the aberration.
- the lower limit values of the conditional expression (5) are set to 0.002, 0.003, 0.004, 0.005, and further 0.006. Is more desirable.
- the upper limit value of the conditional expression (5) when the upper limit value of the conditional expression (5) is exceeded, the refractive power (power) of the first lens L11 becomes stronger, and if the first lens L11 is thickened, it becomes difficult to correct the aberration.
- the upper limit of the conditional expression (5) is set to 0.023, 0.020, 0.019, 0.018, 0.017, 0. It is more desirable to set it to 016 and further to 0.015.
- optical system OL satisfies the conditional expression (6) shown below.
- fL2 Focal length of the second lens L12
- TL2 Thickness of the second lens L12 on the optical axis
- Conditional expression (6) defines the ratio of the thickness on the optical axis to the focal length of the second lens L12 constituting the front group G1.
- the weight of the optical system OL can be reduced, and various aberrations, particularly spherical aberration and coma aberration can be satisfactorily corrected.
- the refractive power (power) of the second lens L12 becomes weak, and if the second lens L12 is thinned, it becomes difficult to correct the aberration.
- the lower limit values of the conditional expression (6) are set to 0.012, 0.014, 0.015, 0.016, and further 0.017.
- the upper limit value of the conditional expression (6) when the upper limit value of the conditional expression (6) is exceeded, the refractive power (power) of the second lens L12 becomes stronger, and if the second lens L12 is thickened, it becomes difficult to correct the aberration.
- the upper limit values of the conditional expression (6) are set to 0.033, 0.030, 0.028, 0.026, and further 0.025. Is more desirable.
- the front group G1 has the front group A group G1A and the front group B in order from the object side with the widest air interval on the optical axis in the front group G1. It is desirable to consist of group G1B. With this configuration, the aberration in the front group G1 can be satisfactorily corrected by forming the front group G1 with the front group A group G1A and the front group B group G1B.
- optical system OL satisfies the conditional expression (7) shown below.
- f Focal length of the entire optical system OL in the infinity focused state
- f1B Focal length of the front group B group G1B
- Conditional expression (7) defines the ratio of the focal length of the entire optical system OL in the infinity-focused state to the focal length of the front group B group G1B.
- the weight of the optical system OL can be reduced.
- the lower limit of the conditional expression (7) is set to -0.90, -0.80, -0.70, -0.60, -0. It is more desirable to set it to .50, -0.45, -0.40, and further -0.35. Further, if the upper limit value of the conditional expression (7) is exceeded, the refractive power (power) of the front group B group G1B becomes weak, and if the front group B group G1B is thinned, it becomes difficult to correct the aberration. In order to ensure the effect of the conditional expression (7), the upper limit of the conditional expression (7) is set to 4.50, 4.00, 3.50, 3.30, 3.00, 2. More preferably, it is 80, 2.50, 2.30, and further 2.20.
- optical system OL satisfies the conditional expression (8) shown below.
- f1 Focal length of front group G1 f1B: Focal length of front group B group G1B
- Conditional expression (8) defines the ratio of the focal length of the front group G1 to the focal length of the front group B group G1B.
- the weight of the optical system OL can be reduced.
- the lower limit of the conditional expression (8) is set to -0.90, -0.80, -0.70, -0.60, -0. It is more desirable to set it to .50, -0.48, -0.45, and further -0.42. If the upper limit of the conditional expression (8) is exceeded, the refractive power (power) of the front group B group G1B becomes weak, and if the front group B group G1B is thinned, it becomes difficult to correct the aberration. In order to ensure the effect of the conditional expression (8), the upper limit values of the conditional expression (8) are set to 2.80, 2.50, 2.30, 2.00, 1.90, 1. It is more desirable to set it to 85, 1.80, and further 1.78.
- optical system OL satisfies the conditional expression (9) shown below.
- f Focal length of the entire optical system OL in the infinity focused state
- f1A Focal length of the front group A group G1A
- Conditional expression (9) defines the ratio of the focal length of the front group A group G1A to the focal length of the entire system of the optical system OL in the infinity focusing state.
- this conditional expression (9) the weight of the optical system OL can be reduced.
- the lower limit of the conditional expression (9) is set to 0.52, 0.54, 0.55, 0.56, 0.57, 0. It is more desirable to set it to 58, further 0.59. Further, when the upper limit value of the conditional expression (9) is exceeded, the refractive power (power) of the front group A group G1A becomes strong, and when the front group A group G1A is thickened, it becomes difficult to correct the aberration. In order to ensure the effect of the conditional expression (9), the upper limit values of the conditional expression (9) are set to 1.40, 1.30, 1.20, 1.10, 1.00, 0. It is more desirable to set it to 98, 0.97, and further 0.96.
- optical system OL satisfies the conditional expression (10) shown below.
- f1 Focal length of front group G1 f1A: Focal length of front group A group G1A
- Conditional expression (10) defines the ratio of the focal length of the front group A group G1A to the focal length of the front group G1.
- this conditional expression (10) the weight of the optical system OL can be reduced.
- the lower limit of the conditional expression (10) is set to 0.52, 0.54, 0.55, 0.58, 0.60, 0. It is more desirable to set it to 62, 0.65, and further 0.67. Further, when the upper limit value of the conditional expression (10) is exceeded, the refractive power (power) of the front group A group G1A becomes strong, and when the front group A group G1A is thickened, it becomes difficult to correct the aberration. In order to ensure the effect of the conditional expression (10), the upper limit of the conditional expression (10) is set to 2.45, 2.40, 2.35, 2.30, 2.25, 2. It is more desirable to set it to 20, 2.15, 2.10, 2.08, and further 2.06.
- optical system OL satisfies the conditional expression (11) shown below.
- f1A Focal length of front group A group G1A
- f1B Focal length of front group B group G1B
- Conditional expression (11) defines the ratio of the focal length of the front group A group G1A to the focal length of the front group B group G1B.
- this conditional expression (11) the weight of the optical system OL can be reduced.
- the lower limit values of the conditional expression (11) are set to -0.48, -0.45, -0.43, -0.40, -0. It is more desirable to set it to .38, -0.35, -0.33, -0.30, and further -0.28. Further, when the upper limit of the conditional expression (11) is exceeded, the refractive power (power) of the front group A group G1A becomes strong and the refractive power (power) of the front group B group G1B becomes weak, so that it is difficult to correct the aberration. It becomes. In order to ensure the effect of the conditional expression (11), the upper limit values of the conditional expression (11) are set to 2.80, 2.50, 2.30, 2.00, 1.80, 1. It is more desirable to set it to 50, 1.30, and further 1.20.
- the front group G1 has at least one negative lens (hereinafter, referred to as “specific negative lens”) satisfying the following conditional expressions (12) and (13). Is desirable.
- ⁇ gFn Partial dispersion ratio of the medium of the specific negative lens
- ⁇ dn Abbe number of the medium of the specific negative lens with respect to the d line
- Conditional expression (12) defines the specific negative lens possessed by the front group G1. By having a specific negative lens that satisfies this conditional expression (12), the primary achromatism and the secondary achromaticity can be satisfactorily performed. Further, the chromatic aberration of the entire optical system OL, particularly the axial chromatic aberration and the Magnification chromatic aberration can be satisfactorily corrected.
- the lower limit values of the conditional expression (12) are set to -0.012, -0.010, -0.008, and further -0.007. Is more desirable.
- the upper limit values of the conditional expression (12) are set to -0.001, -0.002, -0.003, and further -0.004. Is more desirable.
- Conditional expression (13) defines the specific negative lens possessed by the front group G1. By having a specific negative lens that satisfies this conditional expression (13), the primary achromatism and the secondary achromaticity can be satisfactorily performed. Further, the chromatic aberration of the entire optical system OL, particularly the axial chromatic aberration and the Magnification chromatic aberration can be satisfactorily corrected. In order to ensure the effect of the conditional expression (13), the upper limit of the conditional expression (13) is set to 48.00, 45.00, 43.00, 40.00, and further 38.00. Is more desirable.
- the front group G1 uses a positive lens (hereinafter, referred to as a “specific positive lens”) that satisfies the following conditional expressions (14), (15) and (16). It is desirable to have at least one.
- a positive lens hereinafter, referred to as a “specific positive lens” that satisfies the following conditional expressions (14), (15) and (16). It is desirable to have at least one.
- ⁇ dp Abbe number with respect to the d-line of the medium of the specific positive lens
- ndp Refractive index of the medium of the specific positive lens with respect to the d-line
- ⁇ gFp Partial dispersion ratio of the medium of the specific positive lens
- Conditional expression (14) defines the specific positive lens possessed by the front group G1. By having a specific positive lens that satisfies this conditional expression (14), primary achromatism and secondary achromaticity can be performed satisfactorily. Further, the chromatic aberration of the entire optical system OL, particularly the axial chromatic aberration and the chromatic aberration of magnification can be satisfactorily corrected. In order to ensure the effect of the conditional expression (14), it is more desirable to set the lower limit values of the conditional expression (14) to 22.00, 24.00, 25.00, and further 26.00. .. Further, in order to ensure the effect of the conditional expression (14), it is more desirable that the upper limit values of the conditional expression (14) are 29.00, 28.00, and further 27.50.
- Conditional expression (15) defines the specific positive lens possessed by the front group G1. By having a specific positive lens that satisfies this conditional expression (15), it is possible to perform primary achromatism and secondary achromaticity satisfactorily. Further, the chromatic aberration of the entire optical system OL, particularly the axial chromatic aberration and the Magnification chromatic aberration can be satisfactorily corrected.
- the lower limit of the conditional expression (15) is set to 1.850, 1.900, 1.950, 1.980, 2.000, 2. It is more desirable to set it to 020 and further 2.040. Further, in order to ensure the effect of the conditional expression (15), the upper limit values of the conditional expression (15) are set to 2.100, 2.090, 2.080, 2.070, and further 2.060. Is more desirable.
- Conditional expression (16) defines the specific positive lens possessed by the front group G1. By having a specific positive lens that satisfies this conditional expression (16), it is possible to perform primary achromatism and secondary achromaticity satisfactorily. Further, the chromatic aberration of the entire optical system OL, particularly the axial chromatic aberration and the Magnification chromatic aberration can be satisfactorily corrected. In order to ensure the effect of the conditional expression (16), the lower limit of the conditional expression (16) is set to 0.7050, 0.7080, 0.7100, 0.7120, 0.7150, and further 0. It is more desirable to set it to .7160.
- optical system OL satisfies the conditional expression (17) shown below.
- f Focal length of the entire optical system OL in the infinity focusing state
- f2 Focal length of the focusing group G2
- Conditional expression (17) defines the ratio of the focal length of the focusing group G2 to the focal length of the entire optical system OL in the infinity focusing state.
- the focal length of the focusing group G2 changes depending on the focusing state, the value of the infinity focusing state is used.
- the lower limit of the conditional expression (17) is set to -0.58, -0.56, -0.55, -0.54, and further-. It is more desirable to set it to 0.53.
- the upper limit values of the conditional expression (17) are set to 0.58, 0.55, 0.53, 0.50, 0.48, and further 0. It is more desirable to set it to .47.
- the optical system OL according to the present embodiment has a rear group G3 on the image side of the focusing group G2. With this configuration, various aberrations, particularly curvature of field, can be satisfactorily corrected.
- the optical system OL according to the present embodiment has an aperture stop S on the image side of the focusing group G2. With such a configuration, the luminous flux diameter becomes relatively small, which is effective in reducing the size of the optical system OL.
- the optical system OL according to the present embodiment moves at least a part of the rear group G3 so as to have a displacement component in a direction orthogonal to the optical axis.
- the luminous flux diameter becomes relatively small, which is effective in reducing the size of the optical system OL.
- the rear group G3 is divided into the rear group A group G3A and the rear group G3A in order from the object side with the widest air interval on the optical axis in the rear group G3. It is desirable that it consists of group B G3B. With this configuration, various aberrations, particularly coma aberration and curvature of field, can be satisfactorily corrected.
- optical system OL satisfies the conditional expression (18) shown below.
- f3 Focal length of rear group G3 f3A: Focal length of rear group A group G3A
- Conditional expression (18) defines the ratio of the focal length of the rear group G3 to the focal length of the rear group A group G3A.
- various aberrations particularly spherical aberration and coma can be satisfactorily corrected. If it falls below the lower limit of the conditional expression (18), the refractive power of the rear group A group G3A becomes strong and it becomes difficult to correct the aberration.
- the lower limit values of the conditional expression (18) are set to -3.80, -3.50, -3.30, -3.00, -2. It is more desirable to set it to .80, -2.50, -2.30, -2.00, and further -1.80.
- the upper limit values of the conditional expression (18) are set to 6.50, 6.00, 5.50, 5.00, 4.80, 4. More preferably, it is 50, 4.30, 4.00, 3.80, 3.50, and further 3.30.
- optical system OL satisfies the conditional expression (19) shown below.
- Conditional expression (19) defines the ratio of the focal length of the rear group G3 to the focal length of the rear group B group G3B.
- various aberrations particularly coma aberration and curvature of field can be satisfactorily corrected. If it falls below the lower limit of the conditional expression (19), the refractive power of the rear group B group G3B becomes strong and it becomes difficult to correct the aberration.
- the lower limit values of the conditional expression (19) are set to -2.80, -2.50, -2.30, -2.00, -1. It is more desirable to set it to .80 and further to -1.60.
- the upper limit values of the conditional expression (19) are set to 4.80, 4.50, 4.30, 4.00, 3.80, 3. More preferably, it is 50, 3.30, 3.00, 2.80, and further 2.50.
- optical system OL satisfies the conditional expression (20) shown below.
- f Focal length of the entire system of the optical system OL in the infinity focusing state
- TL Overall length of the optical system OL in the infinity focusing state
- Conditional expression (20) defines the ratio of the total length to the focal length of the entire optical system OL in the infinity focusing state. By satisfying this conditional expression (20), it is possible to reduce the weight of the optical system OL and correct various aberrations in a well-balanced manner.
- the lower limit values of the conditional expression (20) are set to 0.72, 0.74, 0.75, 0.76, 0.78, and further 0. It is more desirable to set it to .79.
- optical system OL satisfies the conditional expression (21) shown below.
- f Focal length of the entire optical system OL in the infinity focused state
- fr Focal length of the lens having a negative refractive power arranged on the most image side
- Conditional expression (21) defines the ratio of the focal length of the lens having a negative refractive power arranged on the image side to the focal length of the entire system of the optical system OL in the infinity focusing state. By satisfying this conditional expression (21), it is possible to effectively control the position of the exit pupil and correct the curvature of field. In order to ensure the effect of the conditional expression (21), it is more desirable to set the lower limit values of the conditional expression (21) to 0.03, 0.04, 0.05, and further 0.06. .. Further, in order to ensure the effect of the conditional expression (21), the upper limit values of the conditional expression (21) are set to 0.34, 0.32, 0.30, 0.29, and further 0.28. Is more desirable.
- the camera 1 is a so-called mirrorless camera with an interchangeable lens provided with the optical system OL according to the present embodiment as the photographing lens 2.
- the light from an object (subject) (not shown) is collected by the photographing lens 2 and passed through an OLPF (Optical low pass filter) (not shown) on the imaging surface of the imaging unit 3.
- OLPF Optical low pass filter
- the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3, and the image of the subject is generated.
- This image is displayed on the EVF (Electronic viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.
- EVF Electronic viewfinder
- the optical system OL is mounted on a single-lens reflex type camera having a quick return mirror in the camera body and observing a subject by a finder optical system. Even in this case, the same effect as that of the camera 1 can be obtained.
- the optical system OL having a 2-group configuration or a 3-group configuration is shown, but the above configuration conditions and the like can be applied to other group configurations such as 4 groups and 5 groups.
- a configuration in which a lens or a lens group is added on the most object side or a configuration in which a lens or a lens group is added on the most image plane side may be used.
- the lens group also simply referred to as “group” refers to a portion having at least one lens separated by an air interval that changes at the time of magnification change or focusing.
- the lens component means a single lens or a bonded lens in which a plurality of lenses are bonded.
- a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to focus on a short-range object from an infinity object.
- the focusing group can also be applied to autofocus, and is also suitable for driving a motor (such as an ultrasonic motor) for autofocus.
- a motor such as an ultrasonic motor
- the position of the lens other than the focusing group G2 is fixed with respect to the image plane at the time of focusing.
- the focusing group is preferably composed of a single lens or one lens component.
- the lens group or partial lens group is moved so as to have a displacement component in the direction orthogonal to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake.
- It may be a vibration isolation group.
- the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface.
- the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is deviated, the depiction performance is less deteriorated, which is preferable.
- the lens surface is aspherical
- the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical shape. Any aspherical surface may be used.
- the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
- GRIN lens refractive index distribution type lens
- the aperture diaphragm S is preferably arranged on the image side of the focusing group G2, but the role may be substituted by the frame of the lens without providing the member as the aperture diaphragm.
- each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
- the front group G1 and the focusing group G2 are prepared (step S100), and the first lens L11 having a positive refractive power and the first lens L11 having a positive refractive power are arranged in the front group G1 in order from the object side.
- the two lenses L12 and the third lens L13 are arranged (step S200). Further, it is arranged so as to satisfy a predetermined condition (for example, the above-mentioned conditional expression (1)) (step S300).
- a telephoto lens In a telephoto lens, as the focal length becomes longer, more chromatic aberrations such as axial chromatic aberration and magnifying chromatic aberration occur among various aberrations. Generally, in order to correct them, it is necessary to increase the total length of the lens and increase the effective diameter of the front group. Therefore, a telephoto lens is expected to have both high optical performance and convenience and portability during shooting.
- a method of using a material having a low specific gravity and low dispersion and anomalous dispersibility in the first lens group and a method of optimizing the lens spacing in the first lens group are known as the means. Has been done.
- FIG. 1 FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11 and FIG. 13 are cross-sectional views showing the configuration and refractive index distribution of the optical systems OL (OL1 to OL7) according to each embodiment.
- FIG. 1 is a diagram showing a configuration of an optical system OL1 according to a first embodiment.
- the optical system OL1 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a positive refractive power, and a rear group G3 having a negative refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a positive meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side in order from the object side.
- the front group B group G1B of the front group G1 has a biconvex positive lens L13, a biconcave negative lens L14, a biconvex positive lens L15, and a biconvex negative lens L16 in order from the object side, and the positive surface is directed toward the object side. It is composed of a bonded lens in which a meniscus lens L17 is bonded.
- the focusing group G2 is composed of a positive meniscus lens L21 with a convex surface facing the object side.
- the rear group A group G3A of the rear group G3 is a joint in which a negative meniscus lens L31 having a convex surface facing the object side, a positive meniscus lens L32 having a concave surface facing the object side, and both concave negative lenses L33 are joined in order from the object side. It is composed of a lens, a biconvex positive lens L34, a junction lens in which a biconvex positive lens L35 and a negative meniscus lens L36 with a concave surface facing the object side are joined, and a biconvex negative lens L37.
- the rear group B group G3B of the rear group G3 is a bonded lens in which a biconvex positive lens L38 and a negative meniscus lens L39 with a concave surface facing the object side are joined in order from the object side, and a positive meniscus lens with a concave surface facing the object side. It is composed of L310 and both concave and negative lenses L311.
- the aperture diaphragm S is arranged between the negative meniscus lens L31 of the rear group G3, the positive meniscus lens L32, and the junction lens in which both concave negative lenses L33 are joined.
- a filter FL is arranged between the biconcave negative lens L37, the biconvex positive lens L38, and the junction lens in which the negative meniscus lens L39 is bonded.
- This optical system OL1 is configured to move the focusing group G2 toward the object when focusing from an infinite object to a nearby object.
- the biconvex positive lens L34 and the biconvex positive lens L35 in the rear group A group G3A of the rear group G3 and the junction lens in which the negative meniscus lens L36 is joined are used as the vibration isolation group.
- the group so as to have a displacement component in a direction orthogonal to the optical axis the change in the image position due to the vibration of the optical system OL1 or the like is corrected.
- f is the focal length of the entire system
- FNO is the F number
- 2 ⁇ is the total angle of view [°]
- TL is the total length of the in-focus state
- BF is the infinity focus.
- the back focus in the focused state is represented by Y
- the image height is represented by Y.
- the total length TL indicates the distance on the optical axis from the lens surface (first surface) on the most object side to the image surface I.
- the back focus BF indicates the distance (air equivalent length) on the optical axis from the optical plane (37th plane) closest to the image plane to the image plane I.
- the first column m is the order (plane number) of the lens surfaces from the object side along the traveling direction of the light beam
- the second column r is the radius of curvature of each lens surface in the third column
- d is the distance (plane spacing) on the optical axis from each optical surface to the next optical surface
- the sixth column ⁇ gF shows the secondary dispersion.
- the radius of curvature of 0.0000 indicates a plane
- the refractive index of air of 1.000000 is omitted.
- the secondary dispersion shows only the specific negative lens and the specific positive lens.
- the lens group focal length indicates the number and focal length of the start surfaces of each of the front group G1, the focusing group G2, and the rear group G3.
- mm is generally used as the unit of the focal length f, the radius of curvature r, the surface spacing d, and other lengths listed in all the following specification values, but the optical system is proportionally expanded or proportional. It is not limited to this because the same optical performance can be obtained even if the reduction is performed.
- the description of these symbols and the description of the specification table are the same in the following examples.
- the on-axis air distance D1 between the front group G1 and the focusing group G2 the on-axis air distance D2 between the focusing group G2 and the rear group G3, and the on-axis between the rear group G3 and the image plane.
- the air spacing D3 (back focus) changes upon focusing.
- Table 2 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance. Note that f indicates the focal length and ⁇ indicates the magnification (this explanation is the same in the following examples).
- Table 3 below shows the values corresponding to each conditional expression in this optical system OL1.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the biconcave negative lens L16, and the conditional equations (14), (15) and (16). ) Is a biconvex positive lens L15.
- the lens having a negative refractive power arranged on the image side most is the biconcave negative lens L311.
- this optical system OL1 satisfies the above conditional expressions (1) to (21).
- FIG. 2 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL1 is in focus at an infinity object and a close object.
- FNO indicates F number
- NA indicates numerical aperture
- Y indicates image height.
- the spherical aberration diagram shows the value of the F number or the numerical aperture corresponding to the maximum aperture
- the astigmatism diagram and the distortion diagram show the maximum image height value
- the coma aberration diagram shows the value of each image height.
- FIG. 3 is a diagram showing the configuration of the optical system OL2 according to the second embodiment.
- the optical system OL2 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a positive refractive power, and a rear group G3 having a negative refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a biconvex positive lens L11 and a positive meniscus lens L12 with a convex surface facing the object side in order from the object side.
- the biconvex positive lens L13, the biconcave negative lens L14, the biconvex positive lens L15, and the biconvex negative lens L16 and the positive surface facing the object side are positive. It is composed of a bonded lens in which a meniscus lens L17 is bonded.
- the focusing group G2 is composed of a biconvex positive lens L21.
- the rear group A group G3A of the rear group G3 has a positive meniscus lens L31 with a convex surface facing the object side, a negative meniscus lens L32 with a convex surface facing the object side, both concave negative lenses L33, and a concave surface on the object side in order from the object side. It is composed of a bonded lens in which a positive meniscus lens L34 facing the lens and a biconcave negative lens L35 are joined, and a positive meniscus lens L36 having a convex surface facing the object side.
- the rear group B group G3B of the rear group G3 includes a biconvex positive lens L37, a junction lens in which a negative meniscus lens L38 with a convex surface facing the object side and a biconvex positive lens L39 are joined in order from the object side, and both concaves. It is composed of a negative lens L310.
- the aperture stop S is arranged between the negative meniscus lens L32 of the rear group G3 and the biconcave negative lens L33. Further, a filter FL is arranged between the biconvex positive lens L37, the negative meniscus lens L38, and the junction lens in which the biconvex positive lens L39 is bonded.
- This optical system OL2 is configured to move the focusing group G2 toward the object when focusing from an infinite object to a nearby object.
- a junction lens in which a biconcave negative lens L33 and a positive meniscus lens L34 and a biconcave negative lens L35 in the rear group A group G3A of the rear group G3 are joined as a vibration isolation group is used as the vibration isolation group.
- Table 4 lists the specifications of the optical system OL2.
- the air spacing D3 (back focus) changes upon focusing.
- Table 5 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 6 below shows the values corresponding to each conditional expression in this optical system OL2.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the positive meniscus lens L17, and the conditional equations (14), (15) and (16).
- the specific positive lens that satisfies the above is the biconvex positive lens L15.
- the lens having a negative refractive power arranged on the image side most is the biconcave negative lens L310.
- this optical system OL2 satisfies the above conditional expressions (1) to (21).
- FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL2 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL2 has various aberrations corrected well and has excellent imaging performance.
- FIG. 5 is a diagram showing a configuration of an optical system OL3 according to a third embodiment.
- the optical system OL3 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a positive refractive power, and a rear group G3 having a negative refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a biconvex positive lens L11 and a positive meniscus lens L12 with a convex surface facing the object side in order from the object side.
- a positive meniscus lens L13 having a convex surface facing the object side
- a positive meniscus lens L14 having a convex surface facing the object side
- a negative meniscus lens L14 having a convex surface facing the object side. It is composed of a bonded lens in which a meniscus lens L15 and a regular meniscus lens L16 having a convex surface facing the object side are joined.
- the focusing group G2 is composed of a positive meniscus lens L21 with a convex surface facing the object side.
- the rear group A group G3A of the rear group G3 is a junction lens in which both concave negative lenses L31 and a negative meniscus lens L32 with a convex surface facing the object side are joined in order from the object side, a biconvex positive lens L33 and a biconcave negative lens. It is composed of a bonded lens bonded to L34, a negative meniscus lens L35 having a concave surface facing the object side, and a positive meniscus lens L36 having a convex surface facing the object side.
- the rear group B group G3B of the rear group G3 includes a biconvex positive lens L37, a junction lens in which a negative meniscus lens L38 with a convex surface facing the object side and a biconvex positive lens L39 are joined in order from the object side, and both concaves. It is composed of a negative lens L310.
- an aperture diaphragm S is arranged between the junction lens in which the biconcave negative lens L31 of the rear group G3 and the negative meniscus lens L32 are bonded, and the junction lens in which the biconvex positive lens L33 and the biconcave negative lens L34 are bonded.
- a filter FL is arranged between the biconvex positive lens L37, the negative meniscus lens L38, and the junction lens in which the biconvex positive lens L39 is bonded.
- This optical system OL3 is configured to move the focusing group G2 toward the object when focusing from an infinite object to a nearby object.
- a junction lens in which a biconvex positive lens L33 and a biconcave negative lens L34 in the rear group A group G3A of the rear group G3 are joined and a negative meniscus lens L35 are used as vibration isolation groups.
- Table 7 below lists the specifications of the optical system OL3.
- the air spacing D3 (back focus) changes upon focusing.
- Table 8 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 9 shows the values corresponding to each conditional expression in this optical system OL3.
- the specific negative lens satisfying the conditional equations (12) and (13) is the negative meniscus lens L15, and the specific positive lens satisfying the conditional equations (14), (15) and (16). Is a positive meniscus lens L14.
- the lens having a negative refractive power arranged on the image side most is the biconcave negative lens L310.
- this optical system OL3 satisfies the above conditional expressions (1) to (21).
- FIG. 6 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL3 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL3 has various aberrations corrected well and has excellent imaging performance.
- FIG. 7 is a diagram showing the configuration of the optical system OL4 according to the fourth embodiment.
- the optical system OL4 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a positive refractive power, and a rear group G3 having a negative refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a biconvex positive lens L11 and a positive meniscus lens L12 with a convex surface facing the object side in order from the object side.
- the front group B group G1B of the front group G1 has a biconvex positive lens L13, a biconcave negative lens L14, a biconvex positive lens L15, and a biconvex negative lens L16 in order from the object side, and the positive surface is directed toward the object side. It is composed of a bonded lens in which a meniscus lens L17 is bonded.
- the focusing group G2 is composed of a positive meniscus lens L21 with a convex surface facing the object side.
- the rear group A group G3A of the rear group G3 is a junction lens in which a positive meniscus lens L31 having a convex surface facing the object side and a negative meniscus lens L32 having a convex surface facing the object side are joined in order from the object side, and a biconcave negative lens. It is composed of L33, a junction lens in which a positive meniscus lens L34 having a concave surface facing the object side and a biconcave negative lens L35 are joined, and a positive meniscus lens L36 having a convex surface facing the object side.
- the rear group B group G3B of the rear group G3 joins the biconvex positive lens L37, the biconcave negative lens L38, the biconvex positive lens L39, and the negative meniscus lens L310 with the concave surface facing the object side in order from the object side. It is composed of a bonded lens.
- the aperture diaphragm S is arranged between the junction lens in which the positive meniscus lens L31 and the negative meniscus lens L32 of the rear group G3 are joined and the biconcave negative lens L33.
- a filter FL is arranged between the biconvex positive lens L37, the biconcave negative lens L38, the biconvex positive lens L39, and the junction lens in which the negative meniscus lens L310 is bonded.
- This optical system OL4 is configured to move the focusing group G2 toward the object when focusing from an infinite object to a nearby object.
- a junction lens in which a biconcave negative lens L33 and a positive meniscus lens L34 and a biconcave negative lens L35 in the rear group A group G3A of the rear group G3 are joined as a vibration isolation group is used as the vibration isolation group.
- Table 10 lists the specifications of the optical system OL4.
- the on-axis air distance D1 between the front group G1 and the focusing group G2 the on-axis air distance D2 between the focusing group G2 and the rear group G3, and the on-axis between the rear group G3 and the image plane.
- the air spacing D3 (back focus) changes upon focusing. Table 11 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 12 below shows the values corresponding to each conditional expression in this optical system OL4.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the biconcave negative lens L16, and the conditional equations (14), (15) and (16). ) Is a biconvex positive lens L15.
- the lens having a negative refractive power arranged on the image side most is the negative meniscus lens L310.
- this optical system OL4 satisfies the above conditional expressions (1) to (21).
- FIG. 8 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL4 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL4 has various aberrations corrected well and has excellent imaging performance.
- FIG. 9 is a diagram showing the configuration of the optical system OL5 according to the fifth embodiment.
- the optical system OL5 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a positive refractive power, and a rear group G3 having a negative refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a positive meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side in order from the object side.
- the front group B group G1B of the front group G1 has a biconvex positive lens L13, a biconcave negative lens L14, a positive meniscus lens L15 with a convex surface facing the object side, and a negative lens with a convex surface facing the object side, in order from the object side. It is composed of a bonded lens in which a meniscus lens L16 and a regular meniscus lens L17 having a convex surface facing the object side are joined.
- the focusing group G2 is composed of a positive meniscus lens L21 with a convex surface facing the object side.
- the rear group A group G3A of the rear group G3 is a bonded lens in which a biconvex positive lens L31 and a biconcave negative lens L32 are joined in order from the object side, a positive meniscus lens L33 with a concave surface facing the object side, and a biconcave negative lens. It is composed of a bonded lens bonded to L34, a biconcave negative lens L35, and a positive meniscus lens L36 with a convex surface facing the object side.
- the rear group B group G3B of the rear group G3 is a bonded lens in which a biconvex positive lens L37 and a negative meniscus lens L38 with a concave surface facing the object side are joined in order from the object side, and a negative meniscus lens with a convex surface facing the object side. It is composed of a junction lens in which L39 and a biconvex positive lens L310 are bonded, and a biconcave negative lens L311.
- an aperture diaphragm S is arranged between the junction lens in which the biconvex positive lens L31 of the rear group G3 and the biconcave negative lens L32 are bonded, and the junction lens in which the positive meniscus lens L33 and the biconcave negative lens L34 are bonded.
- a filter FL is arranged between the junction lens in which the biconvex positive lens L37 and the negative meniscus lens L38 are bonded, and the junction lens in which the negative meniscus lens L39 with the convex surface facing the object side and the biconvex positive lens L310 are bonded. Has been done.
- This optical system OL5 is configured to move the focusing group G2 toward the object when focusing from an infinite object to a nearby object.
- a junction lens in which a positive meniscus lens L33 and a biconcave negative lens L34 in the rear group A group G3A of the rear group G3 are joined and a biconcave negative lens L35 are used as a vibration isolation group.
- Table 13 below lists the specifications of the optical system OL5.
- the on-axis air spacing D1 between the front group G1 and the focusing group G2 the on-axis air spacing D2 between the focusing group G2 and the rear group G3, and the on-axis between the rear group G3 and the image plane.
- the air spacing D3 (back focus) changes upon focusing.
- Table 14 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 15 below shows the values corresponding to each conditional expression in this optical system OL5.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the negative meniscus lens L16, and the conditional equations (14), (15) and (16).
- the specific positive lens that satisfies the above is the positive meniscus lens L15.
- the lens having a negative refractive power arranged on the image side most is the biconcave negative lens L311.
- this optical system OL5 satisfies the above conditional expressions (1) to (21).
- FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL5 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL5 has various aberrations corrected well and has excellent imaging performance.
- FIG. 11 is a diagram showing the configuration of the optical system OL6 according to the sixth embodiment.
- the optical system OL6 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a negative refractive power, and a rear group G3 having a positive refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a positive meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side in order from the object side.
- the front group B group G1B of the front group G1 is a junction in which a biconvex positive lens L13, a biconcave negative lens L14, a biconvex positive lens L15, a biconvex negative lens L16 and a biconvex positive lens L17 are joined in order from the object side. It is composed of a lens and a positive meniscus lens L18 with a convex surface facing the object side.
- the focusing group G2 is composed of a bonded lens in which a biconvex positive lens L21 and a biconcave negative lens L22 are joined in order from the object side.
- the biconcave negative lens L31 in order from the object side, the biconcave negative lens L31, the junction lens in which the positive meniscus lens L32 with the concave surface facing the object side and the biconcave negative lens L33 are joined, and the object side. It is composed of a positive meniscus lens L34 with a convex surface facing.
- the rear group B group G3B of the rear group G3 includes a biconvex positive lens L35, a junction lens in which a negative meniscus lens L36 with a convex surface facing the object side and a biconvex positive lens L37 are joined in order from the object side, and both concaves. It is composed of a negative lens L38.
- the aperture stop S is arranged between the focusing group G2 and the rear group G3. Further, a filter FL is arranged between the biconvex positive lens L35, the negative meniscus lens L36 with the convex surface facing the object side, and the junction lens in which the biconvex positive lens L37 is joined.
- This optical system OL6 is configured to move the focusing group G2 to the image side when focusing from an infinite object to a nearby object.
- this optical system OL6 prevents a junction lens in which a biconcave negative lens L31 in the rear group A group G3A of the rear group G3 and a positive meniscus lens L32 having a concave surface facing the object side and a biconcave negative lens L33 are joined. It is configured to be a vibration group, and by moving this vibration isolation group so as to have a displacement component in a direction orthogonal to the optical axis, a change in image position due to vibration of the optical system OL6 or the like is corrected. ..
- Table 16 lists the specifications of the optical system OL6.
- the on-axis air spacing D1 between the front group G1 and the focusing group G2 the on-axis air spacing D2 between the focusing group G2 and the rear group G3, and the on-axis between the rear group G3 and the image plane.
- the air spacing D3 (back focus) changes upon focusing. Table 17 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 18 below shows the values corresponding to each conditional expression in this optical system OL6.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the biconcave negative lens L16, and the conditional equations (14), (15) and (16). ) Is a biconvex positive lens L15. Further, the lens having a negative refractive power arranged on the image side most is a biconcave negative lens L38.
- this optical system OL6 satisfies the above conditional expressions (1) to (21).
- FIG. 12 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL6 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL6 has various aberrations corrected well and has excellent imaging performance.
- FIG. 13 is a diagram showing the configuration of the optical system OL7 according to the seventh embodiment.
- the optical system OL7 is composed of a front group G1 having a positive refractive power, a focusing group G2 having a negative refractive power, and a rear group G3 having a positive refractive power in order from the object side.
- the front group G1 is composed of the front group A group G1A and the front group B group G1B in order from the object side with an air interval on the widest optical axis in the front group G1.
- the focusing group G2 is composed of the focusing group A group G2A and the focusing group B group G2B in order from the object side.
- the rear group G3 is composed of the rear group A group G3A and the rear group B group G3B in order from the object side with the widest air interval on the optical axis in the rear group G3.
- the front group A group G1A of the front group G1 is composed of a biconcave positive lens L11 and a positive meniscus lens L12 having a convex surface facing the object side in order from the object side.
- the front group B group G1B of the front group G1 has a biconvex positive lens L13, a biconcave negative lens L14, a biconvex positive lens L15, and a biconvex negative lens L16 in order from the object side, and the positive surface is directed toward the object side. It is composed of a bonded lens in which a meniscus lens L17 is bonded.
- Focusing group A group G2A is composed of a positive meniscus lens L21 with a convex surface facing the object side.
- the focusing group B group G2B is composed of a negative meniscus lens L22 with a convex surface facing the object side.
- the biconcave negative lens L31 in order from the object side, the biconcave negative lens L31, the junction lens in which the positive meniscus lens L32 with the concave surface facing the object side and the biconcave negative lens L33 are joined, and the biconvex It is composed of a positive lens L34.
- the rear group B group G3B of the rear group G3 includes a biconvex positive lens L35, a junction lens in which a negative meniscus lens L36 with a convex surface facing the object side and a biconvex positive lens L37 are joined in order from the object side, and both concaves. It is composed of a negative lens L38.
- the aperture stop S is arranged between the focusing group G2 and the rear group G3. Further, a filter FL is arranged between the biconvex positive lens L35, the negative meniscus lens L36 with the convex surface facing the object side, and the junction lens in which the biconvex positive lens L37 is joined.
- This optical system OL7 moves the focusing group A group G2A constituting the focusing group G2 to the object side and the focusing group B group G2B to the image side when focusing from an infinity object to a close object. It is configured as follows.
- this optical system OL7 prevents a junction lens in which a biconcave negative lens L31 in the rear group A group G3A of the rear group G3 and a positive meniscus lens L32 having a concave surface facing the object side and a biconcave negative lens L33 are joined. It is configured to be a vibration group, and by moving this vibration isolation group so as to have a displacement component in a direction orthogonal to the optical axis, a change in image position due to vibration of the optical system OL7 or the like is corrected. ..
- the axial air spacing D1 between the front group G1 and the focusing group A group G2A, the axial air spacing D2 between the focusing group A group G2A and the focusing group B group G2B, and the focusing group B group change upon focusing.
- Table 20 below shows the variable intervals at infinity shooting distance, intermediate shooting distance, and close-up shooting distance.
- Table 21 below shows the values corresponding to each conditional expression in this optical system OL7.
- the specific negative lenses satisfying the conditional equations (12) and (13) are the biconcave negative lens L14 and the biconcave negative lens L16, and the conditional equations (14), (15) and (16). ) Is a biconvex positive lens L15. Further, the lens having a negative refractive power arranged on the image side most is a biconcave negative lens L38.
- this optical system OL7 satisfies the above conditional expressions (1) to (21).
- FIG. 14 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, a chromatic aberration diagram of magnification, and a coma aberration diagram when the optical system OL7 is in focus at an infinity object and a close object. From each of these aberration diagrams, it can be seen that the optical system OL7 has various aberrations corrected well and has excellent imaging performance.
- Optical equipment OL (OL1 to OL7) Optical system G1 Front group G1A Front group A group G1B Front group B group G2 Focusing group G3 Rear group G3A Rear group A group G3B Rear group B group S Aperture aperture
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
良好な結像性能を有する光学系、光学機器及び光学系の製造方法を提供する。 光学系OLは、物体側から順に、正の屈折力を有する前群G1と、光軸方向に移動することにより合焦を行う合焦群G2と、を有し、前群G1は、物体側から順に、第1レンズL11と、第2レンズL12と、第3レンズL13と、を有し、次式の条件を満足する。 0.10 <D23/f1 < 0.75 但し、 f1:前群G1の焦点距離 D23:第2レンズL12と第3レンズL13との光軸上の間隔
Description
本発明は、光学系、光学機器及び光学系の製造方法に関する。
従来、小型軽量な光学系が望まれている(例えば、特許文献1参照)。しかしながら、特許文献1に記載の光学系は、さらなる光学性能の向上が要望されている。
本発明の第一の態様に係る光学系は、物体側から順に、正の屈折力を有する前群と、光軸方向に移動することにより合焦を行う合焦群と、を有し、前記前群は、物体側から順に、第1レンズと、第2レンズと、第3レンズと、を有し、次式の条件を満足する。
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔
本発明の第一の態様に係る光学系の製造方法は、物体側から順に、正の屈折力を有する前群と、光軸方向に移動することにより合焦を行う合焦群と、を有する光学系の製造方法であって、前記前群に、物体側から順に、第1レンズと、第2レンズと、第3レンズと、を配置し、次式の条件を満足するように配置する。
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔
以下、好ましい実施形態について図面を参照して説明する。
本実施形態に係る光学系OLは、図1に示すように、物体側から順に、正の屈折力を有する前群G1と、光軸方向に移動することにより合焦を行う合焦群G2と、を有する。また、前群G1は、最も物体側から順に、正の屈折力を有する第1レンズL11と、正の屈折力を有する第2レンズL12と、第3レンズL13と、を有する。このように構成すると、光学系OLの収差を良好に補正することができるとともに、小型軽量化を実現することができる。
また、本実施形態に係る光学系OLは、以下に示す条件式(1)を満足することが望ましい。
0.10 <D23/f1 < 0.75 (1)
但し、
f1:前群G1の焦点距離
D23:第2レンズL12と第3レンズL13との光軸上の間隔
但し、
f1:前群G1の焦点距離
D23:第2レンズL12と第3レンズL13との光軸上の間隔
条件式(1)は、前群G1の焦点距離に対するこの前群G1を構成する第2レンズL12と第3レンズL13との光軸上の間隔の比を規定している。この条件式(1)を満足することにより、諸収差、特にコマ収差、軸上色収差、倍率色収差を良好に補正することができる。条件式(1)の下限値を下回ると、第2レンズL12と第3レンズL13との光軸上の間隔が開きすぎてしまい収差補正が困難となる。なお、条件式(1)の効果を確実なものとするために、条件式(1)の下限値を0.11、0.13、0.15、0.16、更に0.17とすることがより望ましい。また、条件式(1)の上限値を上回ると、第2レンズL12と第3レンズL13との光軸上の間隔が狭くなりすぎてしまい軽量化が困難となる。なお、条件式(1)の効果を確実なものとするために、条件式(1)の上限値を0.73、0.70、0.65、0.60、0.55、0.50、0.48、0.45、0.43、更に0.41とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(2)を満足することが望ましい。
1.00 < fL1/f1 < 6.00 (2)
但し、
f1:前群G1の焦点距離
fL1:第1レンズL11の焦点距離
但し、
f1:前群G1の焦点距離
fL1:第1レンズL11の焦点距離
条件式(2)は、前群G1の焦点距離に対するこの前群G1を構成する第1レンズL11の焦点距離の比を規定している。この条件式(2)を満足することにより、第1レンズL11にある程度の屈折力(パワー)を持たせることができるので、第2レンズL12の屈折力(パワー)を減少させて、諸収差、特に球面収差、コマ収差等を良好に補正することができる。条件式(2)の下限値を下回ると、第1レンズL11の屈折力(パワー)が強くなりすぎてしまい収差補正が困難となる。なお、この条件式(2)の効果を確実なものとするために、条件式(2)の下限値を1.05、1.10、1.15、1.20、1.25、1.30、1.33、更に1.35とすることがより望ましい。また、条件式(2)の上限値を上回ると、第1レンズL11の屈折力(パワー)が弱くなりすぎてしまい収差補正が困難となる。なお、条件式(2)の効果を確実なものとするために、条件式(2)の上限値を5.80、5.50、5.00、4.50、4.00、3.80、更に3.50とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(3)を満足することが望ましい。
75.00 < νL2 < 100.00 (3)
但し、
νL2:第2レンズL12の媒質のd線に対するアッベ数
但し、
νL2:第2レンズL12の媒質のd線に対するアッベ数
条件式(3)は、前群G1を構成する第2レンズL12の媒質のd線に対するアッベ数を規定している。この条件式(3)を満足することにより、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。条件式(3)の下限値を下回ると、第2レンズL12の分散が大きくなりすぎてしまい色収差補正が困難となる。なお、この条件式(3)の効果を確実なものとするために、条件式(3)の下限値を78.00、80.00、85.00、88.00、90.00、92.00、更に95.00とすることがより望ましい。また、条件式(3)の上限値を上回ると、第2レンズL12の分散が小さくなりすぎてしまい色収差補正が困難となる。なお、この条件式(3)の効果を確実なものとするために、条件式(3)の上限値を98.00、更に97.00とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(4)を満足することが望ましい。
75.00 < νL3 < 100.00 (4)
但し、
νL3:第3レンズL13の媒質のd線に対するアッベ数
但し、
νL3:第3レンズL13の媒質のd線に対するアッベ数
条件式(4)は、前群G1を構成する第3レンズL13の媒質のd線に対するアッベ数を規定している。この条件式(4)を満足することにより、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。条件式(4)の下限値を下回ると、第3レンズL13の分散が大きくなりすぎてしまい色収差補正が困難となる。なお、この条件式(4)の効果を確実なものとするために、条件式(4)の下限値を78.00、80.00、85.00、88.00、90.00、92.00、更に95.00とすることがより望ましい。また、条件式(4)の上限値を上回ると、第3レンズL13の分散が小さくなりすぎてしまい色収差補正が困難となる。なお、この条件式(4)の効果を確実なものとするために、条件式(4)の上限値を98.00、更に97.00とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(5)を満足することが望ましい。
0.001 < TL1/fL1 < 0.025 (5)
但し、
fL1:第1レンズL11の焦点距離
TL1:第1レンズL11の光軸上の厚み
但し、
fL1:第1レンズL11の焦点距離
TL1:第1レンズL11の光軸上の厚み
条件式(5)は、前群G1を構成する第1レンズL11の焦点距離に対する光軸上の厚みの比を規定している。この条件式(5)を満足することにより、光学系OLを軽量化することができるとともに、諸収差、特に球面収差、コマ収差を良好に補正することができる。条件式(5)の下限値を下回ると、第1レンズL11の屈折力(パワー)が弱くなり、この第1レンズL11を薄肉化すると収差補正が困難となる。なお、この条件式(5)の効果を確実なものとするために、条件式(5)の下限値を0.002、0.003、0.004、0.005、更に0.006とすることがより望ましい。また、条件式(5)上限値を上回ると、第1レンズL11の屈折力(パワー)が強くなり、この第1レンズL11を厚肉化すると収差補正が困難となる。なお、この条件式(5)の効果を確実なものとするために、条件式(5)の上限値を0.023、0.020、0.019、0.018、0.017、0.016、更に0.015とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(6)を満足することが望ましい。
0.010 < TL2/fL2 < 0.035 (6)
但し、
fL2:第2レンズL12の焦点距離
TL2:第2レンズL12の光軸上の厚み
但し、
fL2:第2レンズL12の焦点距離
TL2:第2レンズL12の光軸上の厚み
条件式(6)は、前群G1を構成する第2レンズL12の焦点距離に対する光軸上の厚みの比を規定している。この条件式(6)を満足することにより、光学系OLを軽量化することができるとともに、諸収差、特に球面収差、コマ収差を良好に補正することができる。条件式(6)の下限値を下回ると、第2レンズL12の屈折力(パワー)が弱くなり、この第2レンズL12を薄肉化すると収差補正が困難となる。なお、この条件式(6)の効果を確実なものとするために、条件式(6)の下限値を0.012、0.014、0.015、0.016、更に0.017とすることがより望ましい。また、条件式(6)上限値を上回ると、第2レンズL12の屈折力(パワー)が強くなり、この第2レンズL12を厚肉化すると収差補正が困難となる。なお、この条件式(6)の効果を確実なものとするために、条件式(6)の上限値を0.033、0.030、0.028、0.026、更に0.025とすることがより望ましい。
また、本実施形態に係る光学系OLにおいて、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと前群B群G1Bとからなることが望ましい。このように構成すると、前群G1内を前群A群G1Aと前群B群G1Bとで構成することにより、この前群G1内の収差を良好に補正することができる。
また、本実施形態に係る光学系OLは、以下に示す条件式(7)を満足することが望ましい。
-1.00 < f/f1B < 5.00 (7)
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
f1B:前群B群G1Bの焦点距離
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
f1B:前群B群G1Bの焦点距離
条件式(7)は、前群B群G1Bの焦点距離に対する無限遠合焦状態の光学系OLの全系の焦点距離の比を規定している。この条件式(7)を満足することにより、光学系OLを軽量化することができる。また、軽量化と諸収差、特に球面収差、コマ収差等の補正をバランス良く行うことができる。条件式(7)の下限値を下回ると、前群B群G1Bの屈折力(パワー)が強くなり、前群B群G1Bを厚肉化すると収差補正が困難となる。なお、この条件式(7)の効果を確実なものとするために、条件式(7)の下限値を-0.90、-0.80、-0.70、-0.60、-0.50、-0.45、-0.40、更に-0.35とすることがより望ましい。また、条件式(7)の上限値を上回ると、前群B群G1Bの屈折力(パワー)が弱くなり、前群B群G1Bを薄肉化すると収差補正が困難となる。なお、この条件式(7)の効果を確実なものとするために、条件式(7)の上限値を4.50、4.00、3.50、3.30、3.00、2.80、2.50、2.30、更に2.20とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(8)を満足することが望ましい。
-1.00 < f1/f1B < 3.00 (8)
但し、
f1:前群G1の焦点距離
f1B:前群B群G1Bの焦点距離
但し、
f1:前群G1の焦点距離
f1B:前群B群G1Bの焦点距離
条件式(8)は、前群B群G1Bの焦点距離に対する前群G1の焦点距離の比を規定している。この条件式(8)を満足することにより、光学系OLを軽量化することができる。また、軽量化と諸収差、特に球面収差、コマ収差等の補正をバランス良く行うことができる。条件式(8)の下限値を下回ると、前群B群G1Bの屈折力(パワー)が強くなり、前群B群G1Bを厚肉化すると収差補正が困難となる。なお、この条件式(8)の効果を確実なものとするために、条件式(8)の下限値を-0.90、-0.80、-0.70、-0.60、-0.50、-0.48、-0.45、更に-0.42とすることがより望ましい。また、条件式(8)の上限値を上回ると、前群B群G1Bの屈折力(パワー)が弱くなり、前群B群G1Bを薄肉化すると収差補正が困難となる。なお、この条件式(8)の効果を確実なものとするために、条件式(8)の上限値を2.80、2.50、2.30、2.00、1.90、1.85、1.80、更に1.78とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(9)を満足することが望ましい。
0.50 < f1A/f < 1.50 (9)
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
f1A:前群A群G1Aの焦点距離
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
f1A:前群A群G1Aの焦点距離
条件式(9)は、無限遠合焦状態の光学系OLの全系の焦点距離に対する前群A群G1Aの焦点距離の比を規定している。この条件式(9)を満足することにより、光学系OLを軽量化することができる。また、軽量化と諸収差、特に球面収差、コマ収差等の補正をバランス良く行うことができる。条件式(9)の下限値を下回ると、前群A群G1Aの屈折力(パワー)が弱くなり、前群A群G1Aを薄肉化すると収差補正が困難となる。なお、この条件式(9)の効果を確実なものとするために、条件式(9)の下限値を0.52、0.54、0.55、0.56、0.57、0.58、更に0.59とすることがより望ましい。また、条件式(9)の上限値を上回ると、前群A群G1Aの屈折力(パワー)が強くなり、前群A群G1Aを厚肉化すると収差補正が困難となる。なお、この条件式(9)の効果を確実なものとするために、条件式(9)の上限値を1.40、1.30、1.20、1.10、1.00、0.98、0.97、更に0.96とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(10)を満足することが望ましい。
0.50 < f1A/f1 < 2.50 (10)
但し、
f1:前群G1の焦点距離
f1A:前群A群G1Aの焦点距離
但し、
f1:前群G1の焦点距離
f1A:前群A群G1Aの焦点距離
条件式(10)は、前群G1の焦点距離に対する前群A群G1Aの焦点距離の比を規定している。この条件式(10)を満足することにより、光学系OLを軽量化することができる。また、軽量化と諸収差、特に球面収差、コマ収差等の補正をバランス良く行うことができる。条件式(10)の下限値を下回ると、前群A群G1Aの屈折力(パワー)が弱くなり、前群A群G1Aを薄肉化すると収差補正が困難となる。なお、この条件式(10)の効果を確実なものとするために、条件式(10)の下限値を0.52、0.54、0.55、0.58、0.60、0.62、0.65、更に0.67とすることがより望ましい。また、条件式(10)の上限値を上回ると、前群A群G1Aの屈折力(パワー)が強くなり、前群A群G1Aを厚肉化すると収差補正が困難となる。なお、この条件式(10)の効果を確実なものとするために、条件式(10)の上限値を2.45、2.40、2.35、2.30、2.25、2.20、2.15、2.10、2.08、更に2.06とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(11)を満足することが望ましい。
-0.50 < f1A/f1B < 3.00 (11)
但し、
f1A:前群A群G1Aの焦点距離
f1B:前群B群G1Bの焦点距離
但し、
f1A:前群A群G1Aの焦点距離
f1B:前群B群G1Bの焦点距離
条件式(11)は、前群B群G1Bの焦点距離に対する前群A群G1Aの焦点距離の比を規定している。この条件式(11)を満足することにより、光学系OLを軽量化することができる。また、軽量化と諸収差、特に球面収差、コマ収差等の補正をバランス良く行うことができる。条件式(11)の下限値を下回ると、前群A群G1Aの屈折力(パワー)が弱くなるとともに、前群B群G1Bの屈折力(パワー)が強くなるため、収差補正が困難となる。なお、この条件式(11)の効果を確実なものとするために、条件式(11)の下限値を-0.48、-0.45、-0.43、-0.40、-0.38、-0.35、-0.33、-0.30、更に-0.28とすることがより望ましい。また、条件式(11)の上限値を上回ると、前群A群G1Aの屈折力(パワー)が強くなるとともに、前群B群G1Bの屈折力(パワー)が弱くなるため、収差補正が困難となる。なお、この条件式(11)の効果を確実なものとするために、条件式(11)の上限値を2.80、2.50、2.30、2.00、1.80、1.50、1.30、更に1.20とすることがより望ましい。
また、本実施形態に係る光学系OLにおいて、前群G1は、以下に示す条件式(12)及び(13)を満足する負レンズ(以下、「特定負レンズ」と呼ぶ)を少なくとも1枚有することが望ましい。
-0.015<θgFn―0.6558+0.001982×vdn<0.000
(12)
νdn < 50.00 (13)
但し、
θgFn:特定負レンズの媒質の部分分散比
νdn:特定負レンズの媒質のd線に対するアッベ数
(12)
νdn < 50.00 (13)
但し、
θgFn:特定負レンズの媒質の部分分散比
νdn:特定負レンズの媒質のd線に対するアッベ数
条件式(12)は、前群G1が有する特定負レンズを規定している。この条件式(12)を満足する特定負レンズを有することにより、1次色消し及び2次色消しを良好に行うことができる。また、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。なお、この条件式(12)の効果を確実なものとするために、条件式(12)の下限値を-0.012、-0.010、-0.008、更に-0.007とすることがより望ましい。また、この条件式(12)の効果を確実なものとするために、条件式(12)の上限値を-0.001、-0.002、-0.003、更に-0.004とすることがより望ましい。
条件式(13)は、前群G1が有する特定負レンズを規定している。この条件式(13)を満足する特定負レンズを有することにより、1次色消し及び2次色消しを良好に行うことができる。また、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。なお、この条件式(13)の効果を確実なものとするために、条件式(13)の上限値を48.00、45.00、43.00、40.00、更に38.00とすることがより望ましい。
また、本実施形態に係る光学系OLにおいて、前群G1は、以下に示す条件式(14)、(15)及び(16)を満足する正レンズ(以下、「特定正レンズ」と呼ぶ)を少なくとも1枚有することが望ましい。
20.00 < νdp < 30.00 (14)
1.830 < ndp+0.01425×νdp < 2.120
(15)
0.7020 < θgFp+0.00316×νdp (16)
但し、
νdp:特定正レンズの媒質のd線に対するアッベ数
ndp:特定正レンズの媒質のd線に対する屈折率
θgFp:特定正レンズの媒質の部分分散比
1.830 < ndp+0.01425×νdp < 2.120
(15)
0.7020 < θgFp+0.00316×νdp (16)
但し、
νdp:特定正レンズの媒質のd線に対するアッベ数
ndp:特定正レンズの媒質のd線に対する屈折率
θgFp:特定正レンズの媒質の部分分散比
条件式(14)は、前群G1が有する特定正レンズを規定している。この条件式(14)を満足する特定正レンズを有することにより、1次色消し及び2次色消しを良好に行うことができる。また、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。なお、この条件式(14)の効果を確実なものとするために、条件式(14)の下限値を22.00、24.00、25.00、更に26.00とすることがより望ましい。また、この条件式(14)の効果を確実なものとするために、条件式(14)の上限値を29.00、28.00、更に27.50とすることがより望ましい。
条件式(15)は、前群G1が有する特定正レンズを規定している。この条件式(15)を満足する特定正レンズを有することにより、1次色消し及び2次色消しを良好に行うことができる。また、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。なお、この条件式(15)の効果を確実なものとするために、条件式(15)の下限値を1.850、1.900、1.950、1.980、2.000、2.020、更に2.040とすることがより望ましい。また、この条件式(15)の効果を確実なものとするために、条件式(15)の上限値を2.100、2.090、2.080、2.070、更に2.060とすることがより望ましい。
条件式(16)は、前群G1が有する特定正レンズを規定している。この条件式(16)を満足する特定正レンズを有することにより、1次色消し及び2次色消しを良好に行うことができる。また、光学系OL全体の色収差、特に軸上色収差、倍率色収差を良好に補正することができる。なお、この条件式(16)の効果を確実なものとするために、条件式(16)の下限値を0.7050、0.7080、0.7100、0.7120、0.7150、更に0.7160とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(17)を満足することが望ましい。
-0.60 < f2/f < 0.60 (17)
但し、
f:無限遠合焦状態における光学系OLの全系の焦点距離
f2:合焦群G2の焦点距離
但し、
f:無限遠合焦状態における光学系OLの全系の焦点距離
f2:合焦群G2の焦点距離
条件式(17)は、無限遠合焦状態における光学系OLの全系の焦点距離に対する合焦群G2の焦点距離の比を規定している。ここで、合焦群G2の焦点距離が合焦状態により変化するときは、無限遠合焦状態の値を用いるものとする。この条件式(17)を満足することにより、合焦時の収差変動を抑制することができる。なお、この条件式(17)の効果を確実なものとするために、条件式(17)の下限値を-0.58、-0.56、-0.55、-0.54、更に-0.53とすることがより望ましい。また、この条件式(17)の効果を確実なものとするために、条件式(17)の上限値を0.58、0.55、0.53、0.50、0.48、更に0.47とすることがより望ましい。
また、本実施形態に係る光学系OLは、合焦群G2の像側に後群G3を有することが望ましい。このように構成すると、諸収差、特に像面湾曲等を良好に補正することができる。
また、本実施形態に係る光学系OLは、合焦群G2より像側に開口絞りSを有することが望ましい。このように構成すると、光束径が比較的小さくなるため、光学系OLの小型化に有効である。
また、本実施形態に係る光学系OLは、後群G3の少なくとも一部を光軸に直交する方向の変位成分を持つように移動させることが望ましい。このように構成すると、光束径が比較的小さくなるため、光学系OLの小型化に有効である。また、後群G3の少なくとも一部を光軸に直交する方向の変位成分を持つように移動させて手振れを補正したとき(防振時)の収差変動を抑制することができる。
また、本実施形態に係る光学系OLにおいて、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとからなることが望ましい。このように構成すると、諸収差、特にコマ収差、像面湾曲を良好に補正することができる。
また、本実施形態に係る光学系OLは、以下に示す条件式(18)を満足することが望ましい。
-4.00 < f3/f3A < 7.00 (18)
但し、
f3:後群G3の焦点距離
f3A:後群A群G3Aの焦点距離
但し、
f3:後群G3の焦点距離
f3A:後群A群G3Aの焦点距離
条件式(18)は、後群A群G3Aの焦点距離に対する後群G3の焦点距離の比を規定している。この条件式(18)を満足することにより、諸収差、特に球面集散、コマ収差を良好に補正することができる。条件式(18)の下限値を下回ると、後群A群G3Aの屈折力(パワー)が強くなり収差補正が困難となる。なお、この条件式(18)の効果を確実なものとするために、条件式(18)の下限値を-3.80、-3.50、-3.30、-3.00、-2.80、-2.50、-2.30、-2.00、更に-1.80とすることがより望ましい。また、条件式(18)の上限値を上回ると、後群A群G3Aの屈折力(パワー)が弱くなり収差補正が困難となる。なお、この条件式(18)の効果を確実なものとするために、条件式(18)の上限値を6.50、6.00、5.50、5.00、4.80、4.50、4.30、4.00、3.80、3.50、更に3.30とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(19)を満足することが望ましい。
-3.00 < f3/f3B < 5.00 (19)
但し、
f3:後群G3の焦点距離
f3B:後群B群G3Bの焦点距離
但し、
f3:後群G3の焦点距離
f3B:後群B群G3Bの焦点距離
条件式(19)は、後群B群G3Bの焦点距離に対する後群G3の焦点距離の比を規定している。この条件式(19)を満足することにより、諸収差、特にコマ収差、像面湾曲を良好に補正することができる。条件式(19)の下限値を下回ると、後群B群G3Bの屈折力(パワー)が強くなり収差補正が困難となる。なお、この条件式(19)の効果を確実なものとするために、条件式(19)の下限値を-2.80、-2.50、-2.30、-2.00、-1.80、更に-1.60とすることがより望ましい。また、条件式(18)の上限値を上回ると、後群B群G3Bの屈折力(パワー)が弱くなり収差補正が困難となる。なお、この条件式(19)の効果を確実なものとするために、条件式(19)の上限値を4.80、4.50、4.30、4.00、3.80、3.50、3.30、3.00、2.80、更に2.50とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(20)を満足することが望ましい。
0.70 < TL/f < 1.10 (20)
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
TL:無限遠合焦状態の光学系OLの全長
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
TL:無限遠合焦状態の光学系OLの全長
条件式(20)は、無限遠合焦状態における、光学系OLの全系の焦点距離に対する全長の比を規定している。この条件式(20)を満足することにより、光学系OLの軽量化と諸収差の補正をバランス良く行うことができる。なお、この条件式(20)の効果を確実なものとするために、条件式(20)の下限値を0.72、0.74、0.75、0.76、0.78、更に0.79とすることがより望ましい。また、この条件式(20)の効果を確実なものとするために、条件式(20)の上限値を1.09、1.08、1.07、更に1.06とすることがより望ましい。
また、本実施形態に係る光学系OLは、以下に示す条件式(21)を満足することが望ましい。
0.02 < (-fr)/f < 0.35 (21)
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
fr:最も像側に配置された負の屈折力を有するレンズの焦点距離
但し、
f:無限遠合焦状態の光学系OLの全系の焦点距離
fr:最も像側に配置された負の屈折力を有するレンズの焦点距離
条件式(21)は、無限遠合焦状態の光学系OLの全系の焦点距離に対する最も像側に配置された負の屈折力を有するレンズの焦点距離の比を規定している。この条件式(21)を満足することにより、射出瞳位置の制御や像面湾曲の補正を効果的に行うことができる。なお、この条件式(21)の効果を確実なものとするために、条件式(21)の下限値を0.03、0.04、0.05、更に0.06とすることがより望ましい。また、この条件式(21)の効果を確実なものとするために、条件式(21)の上限値を0.34、0.32、0.30、0.29、更に0.28とすることがより望ましい。
なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述した効果を得ることが可能である。
次に、本実施形態に係る光学系OLを備えた光学機器であるカメラを図15に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る光学系OLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る光学系OLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
本実施形態では、2群構成又は3群構成の光学系OLを示したが、以上の構成条件等は、4群、5群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像面側にレンズまたはレンズ群を追加した構成でも構わない。具体的には、最も像面側に、変倍時又は合焦時に像面に対する位置を固定されたレンズ群を追加した構成が考えられる。また、レンズ群(単に「群」とも呼ぶ)とは、変倍時又は合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。また、レンズ成分とは、単レンズ又は複数のレンズが接合された接合レンズをいう。
また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦群としても良い。この場合、合焦群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等の)モータ駆動にも適している。特に、合焦群G2以外のレンズは合焦時に像面に対する位置を固定とするのが好ましい。モータにかかる負荷を考慮すると、合焦群は単レンズ又は1つのレンズ成分から構成するのが好ましい。
また、レンズ群または部分レンズ群を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振群としてもよい。特に、後群G3の少なくとも一部を防振群とするのが好ましい。
また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
開口絞りSは、合焦群G2より像側に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
以下、本実施形態に係る光学系OLの製造方法の概略を、図16を参照して説明する。まず、前群G1と、合焦群G2と、を準備し(ステップS100)、前群G1に、物体側から順に、正の屈折力を有する第1レンズL11と、正の屈折力を有する第2レンズL12と、第3レンズL13と、を配置する(ステップS200)。また、所定の条件(例えば、上述した条件式(1))を満たすように配置する(ステップS300)。
望遠レンズでは、焦点距離が長くなるに従って、諸収差のうち、特に軸上色収差及び倍率色収差等の色収差が多く発生する。一般にそれらを補正するにはレンズ全長を長くすると共に、前群の有効径を大きくする必要がある。そのため望遠レンズは、高い光学性能と撮影時の利便性や携帯性を両立させることがのぞまれている。特に、小型軽量化においては、その手段として、第1レンズ群内に比重の軽い低分散で異常分散性を有する材料を用いる方法や、第1レンズ群内のレンズ間隔を最適化する方法が知られている。近年の撮像素子の高画素化に伴い、諸収差、特に色収差が良好に補正され、かつ小型軽量な撮影レンズが望まれている。以上のような構成とすると、諸収差を良好に補正し、かつ小型軽量を実現する光学系、光学機器及び光学系の製造方法を提供することができる。
以下、各実施例を図面に基づいて説明する。なお、図1、図3、図5、図7、図9、図11及び図13は、各実施例に係る光学系OL(OL1~OL7)の構成及び屈折率配分を示す断面図である。
[第1実施例]
図1は、第1実施例に係る光学系OL1の構成を示す図である。この光学系OL1は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図1は、第1実施例に係る光学系OL1の構成を示す図である。この光学系OL1は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、両凸正レンズL15、及び、両凹負レンズL16と物体側に凸面を向けた正メニスカスレンズL17とを接合した接合レンズで構成されている。
合焦群G2は、物体側に凸面を向けた正メニスカスレンズL21で構成されている。
後群G3の後群A群G3Aは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31、物体側に凹面を向けた正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズ、両凸正レンズL34、両凸正レンズL35と物体側に凹面を向けた負メニスカスレンズL36とを接合した接合レンズ、及び、両凹負レンズL37で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL38と物体側に凹面を向けた負メニスカスレンズL39とを接合した接合レンズ、物体側に凹面を向けた正メニスカスレンズL310、及び、両凹負レンズL311で構成されている。
また、後群G3の負メニスカスレンズL31と正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズとの間に開口絞りSが配置されている。また、両凹負レンズL37と両凸正レンズL38と負メニスカスレンズL39とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL1は、無限遠物体から至近物体への合焦に際し、合焦群G2を物体側に移動させるように構成されている。
また、この光学系OL1は、後群G3の後群A群G3A内の両凸正レンズL34及び両凸正レンズL35と負メニスカスレンズL36とを接合した接合レンズを防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL1の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表1に、光学系OL1の諸元の値を掲げる。この表1において、全体諸元に示すfは全系の焦点距離、FNOはFナンバー、2ωは全画角[°]、及び、TLは無限遠合焦状態の全長を、BFは無限遠合焦状態のバックフォーカスを、Yは像高を、それぞれ表している。ここで、全長TLは、最も物体側のレンズ面(第1面)から像面Iまでの光軸上の距離を示している。また、バックフォーカスBFは、最も像面側の光学面(第37面)から像面Iまでの光軸上の距離(空気換算長)を示している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を、第6欄θgFは二次分散を示している。また、曲率半径0.0000は平面を示し、空気の屈折率1.000000は省略してある。また、二次分散は特定負レンズ及び特定正レンズのみ示す。なお、レンズ群焦点距離は前群G1、合焦群G2、後群G3の各々の始面の番号と焦点距離を示している。
ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。なお、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。
(表1)第1実施例
[全体諸元]
f = 392.0052
FNO= 2.9000
2ω = 6.2675
TL = 408.0016
BF = 54.5016
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 500.0000 7.0000 1.518600 69.89
2 50155.6390 0.3000
3 172.1985 12.0000 1.433852 95.25
4 559.2575 119.0770
5 141.8474 11.5000 1.433852 95.25
6 -457.9970 2.1814
7 -638.2538 3.0000 1.683760 37.64 0.5782
8 269.5417 21.6254
9 103.5879 8.0000 1.663820 27.35 0.6318
10 -5000.0000 1.5000
11 -571.5429 3.0000 1.738000 32.26 0.5899
12 65.7381 7.0000 1.497820 82.57
13 240.3930 D1
14 76.6984 7.2500 1.593490 66.99
15 479.2851 D2
16 357.8302 4.0000 1.953750 32.33
17 45.0894 7.5433
18 0.0000 4.3913 開口絞りS
19 -147.6061 5.2382 1.902000 25.26
20 -41.5553 1.7000 1.743200 49.26
21 336.5036 2.0000
22 152.7003 3.3880 1.755000 52.34
23 -1098.6570 0.3000
24 146.5231 5.5000 1.640000 60.20
25 -105.8853 1.5000 1.846660 23.80
26 -264.8737 2.0000
27 -269.8582 1.7000 1.640000 60.20
28 199.0203 43.8825
29 0.0000 1.5000 1.516800 64.14
30 0.0000 4.0000
31 140.9036 11.8663 1.784720 25.64
32 -46.3311 1.7000 1.945950 17.98
33 -101.6450 1.2000
34 -391.2744 4.1930 1.795040 28.69
35 -97.7638 15.2778
36 -71.8729 1.7000 2.001000 29.12
37 600.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 299.301
合焦群 14 152.828
後群 16 -156.644
[全体諸元]
f = 392.0052
FNO= 2.9000
2ω = 6.2675
TL = 408.0016
BF = 54.5016
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 500.0000 7.0000 1.518600 69.89
2 50155.6390 0.3000
3 172.1985 12.0000 1.433852 95.25
4 559.2575 119.0770
5 141.8474 11.5000 1.433852 95.25
6 -457.9970 2.1814
7 -638.2538 3.0000 1.683760 37.64 0.5782
8 269.5417 21.6254
9 103.5879 8.0000 1.663820 27.35 0.6318
10 -5000.0000 1.5000
11 -571.5429 3.0000 1.738000 32.26 0.5899
12 65.7381 7.0000 1.497820 82.57
13 240.3930 D1
14 76.6984 7.2500 1.593490 66.99
15 479.2851 D2
16 357.8302 4.0000 1.953750 32.33
17 45.0894 7.5433
18 0.0000 4.3913 開口絞りS
19 -147.6061 5.2382 1.902000 25.26
20 -41.5553 1.7000 1.743200 49.26
21 336.5036 2.0000
22 152.7003 3.3880 1.755000 52.34
23 -1098.6570 0.3000
24 146.5231 5.5000 1.640000 60.20
25 -105.8853 1.5000 1.846660 23.80
26 -264.8737 2.0000
27 -269.8582 1.7000 1.640000 60.20
28 199.0203 43.8825
29 0.0000 1.5000 1.516800 64.14
30 0.0000 4.0000
31 140.9036 11.8663 1.784720 25.64
32 -46.3311 1.7000 1.945950 17.98
33 -101.6450 1.2000
34 -391.2744 4.1930 1.795040 28.69
35 -97.7638 15.2778
36 -71.8729 1.7000 2.001000 29.12
37 600.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 299.301
合焦群 14 152.828
後群 16 -156.644
この光学系OL1において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表2に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。なお、fは焦点距離、βは倍率を示している(この説明は、以降の実施例においても同様である)。
(表2)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 392.0052 - -
β - -0.0333 -0.1682
D1 19.5899 15.8617 2.0899
D2 5.8959 9.6241 23.3959
D3 54.5016 54.5016 54.5016
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 392.0052 - -
β - -0.0333 -0.1682
D1 19.5899 15.8617 2.0899
D2 5.8959 9.6241 23.3959
D3 54.5016 54.5016 54.5016
次の表3に、この光学系OL1における各条件式対応値を示す。なお、この光学系OL1において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び両凹負レンズL16であり、条件式(14)、(15)及び(16)を満足する特定正レンズは両凸正レンズL15である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL311である。
(表3)
[条件式対応値]
fL1=973.796
fL2=568.156
f1A=359.105
f1B=1969.464
f3A=-70.761
f3B=132.158
fr =-64.039
(1)D23/f1=0.398
(2)fL1/f1=3.254
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.007
(6)TL2/fL2=0.021
(7)f/f1B=0.199
(8)f1/f1B=0.152
(9)f1A/f=0.916
(10)f1A/f1=1.200
(11)f1A/f1B=0.182
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.390
(18)f3/f3A=2.214
(19)f3/f3B=-1.185
(20)TL/f=1.041
(21)(-fr)/f=0.163
[条件式対応値]
fL1=973.796
fL2=568.156
f1A=359.105
f1B=1969.464
f3A=-70.761
f3B=132.158
fr =-64.039
(1)D23/f1=0.398
(2)fL1/f1=3.254
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.007
(6)TL2/fL2=0.021
(7)f/f1B=0.199
(8)f1/f1B=0.152
(9)f1A/f=0.916
(10)f1A/f1=1.200
(11)f1A/f1B=0.182
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.390
(18)f3/f3A=2.214
(19)f3/f3B=-1.185
(20)TL/f=1.041
(21)(-fr)/f=0.163
このように、この光学系OL1は、上記条件式(1)~(21)を満足している。
この光学系OL1の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図2に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバー又は開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値を示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)、FはF線(λ=486.1nm)、CはC線(λ=656.3nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。また、以降に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この光学系OL1は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第2実施例]
図3は、第2実施例に係る光学系OL2の構成を示す図である。この光学系OL2は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図3は、第2実施例に係る光学系OL2の構成を示す図である。この光学系OL2は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、両凸正レンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、両凸正レンズL15、及び、両凹負レンズL16と物体側に凸面を向けた正メニスカスレンズL17とを接合した接合レンズで構成されている。
合焦群G2は、両凸正レンズL21で構成されている。
後群G3の後群A群G3Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31、物体側に凸面を向けた負メニスカスレンズL32、両凹負レンズL33、物体側に凹面を向けた正メニスカスレンズL34と両凹負レンズL35とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL36で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL37、物体側に凸面を向けた負メニスカスレンズL38と両凸正レンズL39とを接合した接合レンズ、及び、両凹負レンズL310で構成されている。
また、後群G3の負メニスカスレンズL32と両凹負レンズL33との間に開口絞りSが配置されている。また、両凸正レンズL37と負メニスカスレンズL38と両凸正レンズL39とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL2は、無限遠物体から至近物体への合焦に際し、合焦群G2を物体側に移動させるように構成されている。
また、この光学系OL2は、後群G3の後群A群G3A内の両凹負レンズL33及び正メニスカスレンズL34と両凹負レンズL35とを接合した接合レンズを防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL2の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表4に、光学系OL2の諸元の値を掲げる。
(表4)第2実施例
[全体諸元]
f = 390.0000
FNO= 2.9005
2ω = 6.3129
TL = 405.3186
BF = 53.9996
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 488.1215 8.7000 1.518600 69.89
2 -1041.4766 0.1000
3 198.3557 11.0000 1.433852 95.25
4 748.0721 95.6214
5 139.4073 11.5000 1.433852 95.25
6 -398.2673 0.1000
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 193.0312 59.3389
9 151.2115 7.0000 1.663820 27.35 0.6319
10 -207.8119 0.1000
11 -213.0278 1.8000 1.749504 35.33
12 53.8659 8.5000 1.497820 82.57 0.5386
13 461.5207 D1
14 73.7387 6.2000 1.618000 63.34
15 -4051.4628 D2
16 59.7259 4.4000 1.717360 29.57
17 90.4676 0.9409
18 157.9242 1.8000 1.902650 35.77
19 42.9276 6.1064
20 0.0000 7.3677 開口絞りS
21 -167.1137 1.8000 1.910822 35.25
22 128.2270 3.2883
23 -87.1091 4.1000 1.846663 23.78
24 -40.4123 1.8000 1.497820 82.57
25 196.5860 4.6000
26 79.1062 3.8000 1.654115 39.68
27 892.4512 37.2721
28 62.0976 5.5000 1.696800 55.52
29 -569.2364 10.0000
30 0.0000 1.5000 1.516800 63.88
31 0.0000 0.1000
32 71.5905 1.5000 1.804000 46.60
33 30.4774 8.8000 1.612660 44.46
34 -122.5264 5.1181
35 -66.8928 1.5000 2.000694 25.46
36 201.5820 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 467.387
合焦群 14 117.253
後群 16 -169.127
[全体諸元]
f = 390.0000
FNO= 2.9005
2ω = 6.3129
TL = 405.3186
BF = 53.9996
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 488.1215 8.7000 1.518600 69.89
2 -1041.4766 0.1000
3 198.3557 11.0000 1.433852 95.25
4 748.0721 95.6214
5 139.4073 11.5000 1.433852 95.25
6 -398.2673 0.1000
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 193.0312 59.3389
9 151.2115 7.0000 1.663820 27.35 0.6319
10 -207.8119 0.1000
11 -213.0278 1.8000 1.749504 35.33
12 53.8659 8.5000 1.497820 82.57 0.5386
13 461.5207 D1
14 73.7387 6.2000 1.618000 63.34
15 -4051.4628 D2
16 59.7259 4.4000 1.717360 29.57
17 90.4676 0.9409
18 157.9242 1.8000 1.902650 35.77
19 42.9276 6.1064
20 0.0000 7.3677 開口絞りS
21 -167.1137 1.8000 1.910822 35.25
22 128.2270 3.2883
23 -87.1091 4.1000 1.846663 23.78
24 -40.4123 1.8000 1.497820 82.57
25 196.5860 4.6000
26 79.1062 3.8000 1.654115 39.68
27 892.4512 37.2721
28 62.0976 5.5000 1.696800 55.52
29 -569.2364 10.0000
30 0.0000 1.5000 1.516800 63.88
31 0.0000 0.1000
32 71.5905 1.5000 1.804000 46.60
33 30.4774 8.8000 1.612660 44.46
34 -122.5264 5.1181
35 -66.8928 1.5000 2.000694 25.46
36 201.5820 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 467.387
合焦群 14 117.253
後群 16 -169.127
この光学系OL2において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表5に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表5)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 390.0000 - -
β - -0.0333 -0.1716
D1 22.9652 19.2370 4.8345
D2 4.1000 7.8282 22.2307
D3 53.9996 53.9996 53.9996
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 390.0000 - -
β - -0.0333 -0.1716
D1 22.9652 19.2370 4.8345
D2 4.1000 7.8282 22.2307
D3 53.9996 53.9996 53.9996
次の表6に、この光学系OL2における各条件式対応値を示す。なお、この光学系OL2において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び正メニスカスレンズL17であり、条件式(14)、(15)及び(16)を満足する特定正レンズは両凸正レンズL15である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL310である。
(表6)
[条件式対応値]
fL1=642.114
fL2=618.424
f1A=315.337
f1B=-1161.827
f3A=-57.891
f3B=125.036
fr =-50.051
(1)D23/f1=0.205
(2)fL1/f1=1.374
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.014
(6)TL2/fL2=0.018
(7)f/f1B=-0.336
(8)f1/f1B=-0.402
(9)f1A/f=0.809
(10)f1A/f1=0.675
(11)f1A/f1B=-0.271
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=0.301
(18)f3/f3A=2.921
(19)f3/f3B=-1.353
(20)TL/f=1.039
(21)(-fr)/f=0.128
[条件式対応値]
fL1=642.114
fL2=618.424
f1A=315.337
f1B=-1161.827
f3A=-57.891
f3B=125.036
fr =-50.051
(1)D23/f1=0.205
(2)fL1/f1=1.374
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.014
(6)TL2/fL2=0.018
(7)f/f1B=-0.336
(8)f1/f1B=-0.402
(9)f1A/f=0.809
(10)f1A/f1=0.675
(11)f1A/f1B=-0.271
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=0.301
(18)f3/f3A=2.921
(19)f3/f3B=-1.353
(20)TL/f=1.039
(21)(-fr)/f=0.128
このように、この光学系OL2は、上記条件式(1)~(21)を満足している。
この光学系OL2の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図4に示す。これらの各収差図より、この光学系OL2は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第3実施例]
図5は、第3実施例に係る光学系OL3の構成を示す図である。この光学系OL3は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図5は、第3実施例に係る光学系OL3の構成を示す図である。この光学系OL3は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、両凸正レンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL13、物体側に凸面を向けた正メニスカスレンズL14、及び、物体側に凸面を向けた負メニスカスレンズL15と物体側に凸面を向けた正メニスカスレンズL16とを接合した接合レンズで構成されている。
合焦群G2は、物体側に凸面を向けた正メニスカスレンズL21で構成されている。
後群G3の後群A群G3Aは、物体側から順に、両凹負レンズL31と物体側に凸面を向けた負メニスカスレンズL32とを接合した接合レンズ、両凸正レンズL33と両凹負レンズL34とを接合した接合レンズ、物体側に凹面を向けた負メニスカスレンズL35、及び、物体側に凸面を向けた正メニスカスレンズL36で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL37、物体側に凸面を向けた負メニスカスレンズL38と両凸正レンズL39とを接合した接合レンズ、及び、両凹負レンズL310で構成されている。
また、後群G3の両凹負レンズL31と負メニスカスレンズL32とを接合した接合レンズと両凸正レンズL33と両凹負レンズL34とを接合した接合レンズとの間に開口絞りSが配置されている。また、両凸正レンズL37と負メニスカスレンズL38と両凸正レンズL39とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL3は、無限遠物体から至近物体への合焦に際し、合焦群G2を物体側に移動させるように構成されている。
また、この光学系OL3は、後群G3の後群A群G3A内の両凸正レンズL33と両凹負レンズL34とを接合した接合レンズ及び負メニスカスレンズL35を防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL3の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表7に、光学系OL3の諸元の値を掲げる。
(表7)第3実施例
[全体諸元]
f = 298.3953
FNO= 2.9000
2ω = 8.2440
TL = 313.0012
BF = 54.5012
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 444.6622 5.8000 1.518600 69.89
2 -1805.3921 0.3000
3 118.6028 10.8000 1.433852 95.25
4 266.7981 56.0000
5 103.1499 10.0000 1.433852 95.25
6 5183.3946 1.5214
7 106.1505 6.5000 1.663820 27.35 0.6318
8 190.2018 6.5352
9 1830.9853 2.4000 1.749505 35.33 0.5818
10 49.1468 7.2000 1.497820 82.57
11 102.2136 D1
12 76.9272 5.7000 1.593490 66.99
13 1556.3561 D2
14 -18858.3390 2.0000 1.487490 70.31
15 108.9124 4.0000 1.903660 31.27
16 67.1620 7.0780
17 0.0000 2.9427 開口絞りS
18 3164.6712 4.4048 1.846660 23.80
19 -80.2517 1.7000 1.673000 38.15
20 80.2854 4.8902
21 -82.7984 1.7000 1.744000 44.81
22 -141.1755 3.0000
23 98.5101 2.4324 1.664460 35.87
24 182.7877 42.0611
25 97.7414 6.5000 1.729160 54.61
26 -177.4418 4.7096
27 0.0000 1.5000 1.516800 64.14
28 0.0000 8.9266
29 118.9502 2.4000 1.720000 43.61
30 32.2853 9.9123 1.673000 38.15
31 -907.3884 3.5000
32 -99.6180 1.7000 2.001000 29.12
33 400.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 306.697
合焦群 12 136.163
後群 14 -197.284
[全体諸元]
f = 298.3953
FNO= 2.9000
2ω = 8.2440
TL = 313.0012
BF = 54.5012
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 444.6622 5.8000 1.518600 69.89
2 -1805.3921 0.3000
3 118.6028 10.8000 1.433852 95.25
4 266.7981 56.0000
5 103.1499 10.0000 1.433852 95.25
6 5183.3946 1.5214
7 106.1505 6.5000 1.663820 27.35 0.6318
8 190.2018 6.5352
9 1830.9853 2.4000 1.749505 35.33 0.5818
10 49.1468 7.2000 1.497820 82.57
11 102.2136 D1
12 76.9272 5.7000 1.593490 66.99
13 1556.3561 D2
14 -18858.3390 2.0000 1.487490 70.31
15 108.9124 4.0000 1.903660 31.27
16 67.1620 7.0780
17 0.0000 2.9427 開口絞りS
18 3164.6712 4.4048 1.846660 23.80
19 -80.2517 1.7000 1.673000 38.15
20 80.2854 4.8902
21 -82.7984 1.7000 1.744000 44.81
22 -141.1755 3.0000
23 98.5101 2.4324 1.664460 35.87
24 182.7877 42.0611
25 97.7414 6.5000 1.729160 54.61
26 -177.4418 4.7096
27 0.0000 1.5000 1.516800 64.14
28 0.0000 8.9266
29 118.9502 2.4000 1.720000 43.61
30 32.2853 9.9123 1.673000 38.15
31 -907.3884 3.5000
32 -99.6180 1.7000 2.001000 29.12
33 400.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 306.697
合焦群 12 136.163
後群 14 -197.284
この光学系OL3において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表8に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表8)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 298.3953 - -
β - -0.0333 -0.1761
D1 26.5599 23.4033 10.7689
D2 3.8258 6.9825 19.6169
D3 54.5012 54.5013 54.5017
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 298.3953 - -
β - -0.0333 -0.1761
D1 26.5599 23.4033 10.7689
D2 3.8258 6.9825 19.6169
D3 54.5012 54.5013 54.5017
次の表9に、この光学系OL3における各条件式対応値を示す。なお、この光学系OL3において、条件式(12)及び(13)を満足する特定負レンズは負メニスカスレンズL15であり、条件式(14)、(15)及び(16)を満足する特定正レンズは正メニスカスレンズL14である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL310である。
(表9)
[条件式対応値]
fL1=688.587
fL2=481.536
f1A=282.760
f1B=242.437
f3A=-60.249
f3B=129.424
fr =-79.540
(1)D23/f1=0.183
(2)fL1/f1=2.245
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.008
(6)TL2/fL2=0.022
(7)f/f1B=1.231
(8)f1/f1B=1.265
(9)f1A/f=0.948
(10)f1A/f1=0.922
(11)f1A/f1B=1.166
(12)θgFn-0.6558+0.01982×νdn=-0.0064
(13)νdn=35.33
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.456
(18)f3/f3A=3.274
(19)f3/f3B=-1.524
(20)TL/f=1.049
(21)(-fr)/f=0.267
[条件式対応値]
fL1=688.587
fL2=481.536
f1A=282.760
f1B=242.437
f3A=-60.249
f3B=129.424
fr =-79.540
(1)D23/f1=0.183
(2)fL1/f1=2.245
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.008
(6)TL2/fL2=0.022
(7)f/f1B=1.231
(8)f1/f1B=1.265
(9)f1A/f=0.948
(10)f1A/f1=0.922
(11)f1A/f1B=1.166
(12)θgFn-0.6558+0.01982×νdn=-0.0064
(13)νdn=35.33
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.456
(18)f3/f3A=3.274
(19)f3/f3B=-1.524
(20)TL/f=1.049
(21)(-fr)/f=0.267
このように、この光学系OL3は、上記条件式(1)~(21)を満足している。
この光学系OL3の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図6に示す。これらの各収差図より、この光学系OL3は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第4実施例]
図7は、第4実施例に係る光学系OL4の構成を示す図である。この光学系OL4は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図7は、第4実施例に係る光学系OL4の構成を示す図である。この光学系OL4は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、両凸正レンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、両凸正レンズL15、及び、両凹負レンズL16と物体側に凸面を向けた正メニスカスレンズL17とを接合した接合レンズで構成されている。
合焦群G2は、物体側に凸面を向けた正メニスカスレンズL21で構成されている。
後群G3の後群A群G3Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31と物体側に凸面を向けた負メニスカスレンズL32とを接合した接合レンズ、両凹負レンズL33、物体側に凹面を向けた正メニスカスレンズL34と両凹負レンズL35とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL36で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL37、及び、両凹負レンズL38と両凸正レンズL39と物体側に凹面を向けた負メニスカスレンズL310とを接合した接合レンズで構成されている。
また、後群G3の正メニスカスレンズL31と負メニスカスレンズL32とを接合した接合レンズと両凹負レンズL33との間に開口絞りSが配置されている。また、両凸正レンズL37と両凹負レンズL38と両凸正レンズL39と負メニスカスレンズL310とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL4は、無限遠物体から至近物体への合焦に際し、合焦群G2を物体側に移動させるように構成されている。
また、この光学系OL4は、後群G3の後群A群G3A内の両凹負レンズL33及び正メニスカスレンズL34と両凹負レンズL35とを接合した接合レンズを防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL4の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表10に、光学系OL4の諸元の値を掲げる。
(表10)第4実施例
[全体諸元]
f = 489.9988
FNO= 4.1206
2ω = 4.9946
TL = 405.3183
BF = 49.8394
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 605.7714 7.7000 1.518600 69.89
2 -1237.2872 0.1000
3 174.2647 11.0000 1.433852 95.25
4 1248.1242 90.0000
5 139.4073 9.5000 1.433852 95.25
6 -394.6806 0.1000
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 311.9273 38.0387
9 264.0151 5.5000 1.663820 27.35 0.6319
10 -220.4922 0.1000
11 -227.6958 1.8000 1.749504 35.33 0.5819
12 61.1365 7.0000 1.497820 82.57
13 347.8815 D1
14 88.5914 4.7000 1.618000 63.34
15 2512.1476 D2
16 55.3644 3.4000 1.717360 29.57
17 486.2738 1.8000 1.902650 35.77
18 40.1605 4.5377
19 0.0000 7.1393 開口絞りS
20 -128.7433 1.8000 1.910822 35.25
21 138.3499 1.7366
22 -99.4862 3.6000 1.846663 23.78
23 -40.3762 1.8000 1.497820 82.57
24 210.1593 4.6000
25 95.7887 2.8000 1.654115 39.68
26 940.3466 47.9268
27 60.3348 6.5000 1.772500 49.62
28 -164.6556 12.4211
29 0.0000 1.5000 1.516800 63.88
30 0.0000 1.5214
31 -554.1343 1.5000 1.729160 54.61
32 26.9921 9.8000 1.612660 44.46
33 -33.4928 1.5000 2.000694 25.46
34 -1558.9711 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 420.065
合焦群 14 148.482
後群 16 -118.353
[全体諸元]
f = 489.9988
FNO= 4.1206
2ω = 4.9946
TL = 405.3183
BF = 49.8394
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 605.7714 7.7000 1.518600 69.89
2 -1237.2872 0.1000
3 174.2647 11.0000 1.433852 95.25
4 1248.1242 90.0000
5 139.4073 9.5000 1.433852 95.25
6 -394.6806 0.1000
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 311.9273 38.0387
9 264.0151 5.5000 1.663820 27.35 0.6319
10 -220.4922 0.1000
11 -227.6958 1.8000 1.749504 35.33 0.5819
12 61.1365 7.0000 1.497820 82.57
13 347.8815 D1
14 88.5914 4.7000 1.618000 63.34
15 2512.1476 D2
16 55.3644 3.4000 1.717360 29.57
17 486.2738 1.8000 1.902650 35.77
18 40.1605 4.5377
19 0.0000 7.1393 開口絞りS
20 -128.7433 1.8000 1.910822 35.25
21 138.3499 1.7366
22 -99.4862 3.6000 1.846663 23.78
23 -40.3762 1.8000 1.497820 82.57
24 210.1593 4.6000
25 95.7887 2.8000 1.654115 39.68
26 940.3466 47.9268
27 60.3348 6.5000 1.772500 49.62
28 -164.6556 12.4211
29 0.0000 1.5000 1.516800 63.88
30 0.0000 1.5214
31 -554.1343 1.5000 1.729160 54.61
32 26.9921 9.8000 1.612660 44.46
33 -33.4928 1.5000 2.000694 25.46
34 -1558.9711 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 420.065
合焦群 14 148.482
後群 16 -118.353
この光学系OL4において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表11に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表11)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 489.9988 - -
β - -0.0333 -0.1485
D1 55.7987 50.9724 35.7987
D2 5.2588 10.0851 25.2588
D3 49.8394 49.8394 49.8394
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 489.9988 - -
β - -0.0333 -0.1485
D1 55.7987 50.9724 35.7987
D2 5.2588 10.0851 25.2588
D3 49.8394 49.8394 49.8394
次の表12に、この光学系OL4における各条件式対応値を示す。なお、この光学系OL4において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び両凹負レンズL16であり、条件式(14)、(15)及び(16)を満足する特定正レンズは両凸正レンズL15である。また、最も像側に配置された負の屈折力を有するレンズは負メニスカスレンズL310である。
(表12)
[条件式対応値]
fL1=785.286
fL2=465.409
f1A=292.751
f1B=238.738
f3A=-59.029
f3B=145.793
fr =-34.221
(1)D23/f1=0.214
(2)fL1/f1=1.869
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.010
(6)TL2/fL2=0.024
(7)f/f1B=2.052
(8)f1/f1B=1.760
(9)f1A/f=0.597
(10)f1A/f1=0.697
(11)f1A/f1B=1.166
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=0.303
(18)f3/f3A=2.005
(19)f3/f3B=-0.812
(20)TL/f=0.827
(21)(-fr)/f=0.070
[条件式対応値]
fL1=785.286
fL2=465.409
f1A=292.751
f1B=238.738
f3A=-59.029
f3B=145.793
fr =-34.221
(1)D23/f1=0.214
(2)fL1/f1=1.869
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.010
(6)TL2/fL2=0.024
(7)f/f1B=2.052
(8)f1/f1B=1.760
(9)f1A/f=0.597
(10)f1A/f1=0.697
(11)f1A/f1B=1.166
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=0.303
(18)f3/f3A=2.005
(19)f3/f3B=-0.812
(20)TL/f=0.827
(21)(-fr)/f=0.070
このように、この光学系OL4は、上記条件式(1)~(21)を満足している。
この光学系OL4の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図8に示す。これらの各収差図より、この光学系OL4は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第5実施例]
図9は、第5実施例に係る光学系OL5の構成を示す図である。この光学系OL5は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図9は、第5実施例に係る光学系OL5の構成を示す図である。この光学系OL5は、物体側から順に、正の屈折力を有する前群G1と、正の屈折力を有する合焦群G2と、負の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、物体側に凸面を向けた正メニスカスレンズL15、及び、物体側に凸面を向けた負メニスカスレンズL16と物体側に凸面を向けた正メニスカスレンズL17とを接合した接合レンズで構成されている。
合焦群G2は、物体側に凸面を向けた正メニスカスレンズL21で構成されている。
後群G3の後群A群G3Aは、物体側から順に、両凸正レンズL31と両凹負レンズL32とを接合した接合レンズ、物体側に凹面を向けた正メニスカスレンズL33と両凹負レンズL34とを接合した接合レンズ、両凹負レンズL35、及び、物体側に凸面を向けた正メニスカスレンズL36で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL37と物体側に凹面を向けた負メニスカスレンズL38とを接合した接合レンズ、物体側に凸面を向けた負メニスカスレンズL39と両凸正レンズL310とを接合した接合レンズ、及び、両凹負レンズL311で構成されている。
また、後群G3の両凸正レンズL31と両凹負レンズL32とを接合した接合レンズと正メニスカスレンズL33と両凹負レンズL34とを接合した接合レンズとの間に開口絞りSが配置されている。また、両凸正レンズL37と負メニスカスレンズL38とを接合した接合レンズと物体側に凸面を向けた負メニスカスレンズL39と両凸正レンズL310とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL5は、無限遠物体から至近物体への合焦に際し、合焦群G2を物体側に移動させるように構成されている。
また、この光学系OL5は、後群G3の後群A群G3A内の正メニスカスレンズL33と両凹負レンズL34とを接合した接合レンズ及び両凹負レンズL35を防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL5の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表13に、光学系OL5の諸元の値を掲げる。
(表13)第5実施例
[全体諸元]
f = 588.0074
FNO= 4.1166
2ω = 4.1855
TL = 469.6613
BF = 69.9789
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 421.5344 9.5000 1.518600 69.89
2 2273.4202 10.0000
3 219.9159 12.5000 1.433852 95.25
4 1465.6544 112.6586
5 163.3272 11.5000 1.433852 95.25
6 -838.0975 1.2000
7 -821.7653 2.8000 1.738000 32.26 0.5899
8 356.0157 20.0000
9 106.9038 8.5000 1.663820 27.35 0.6318
10 394.1116 0.3000
11 359.0766 2.0667 1.738000 32.26 0.5899
12 66.1994 7.2000 1.497820 82.57
13 116.1691 D1
14 101.0494 7.0439 1.593490 66.99
15 529.3900 D2
16 213.4123 5.7514 1.698950 30.13
17 -792.7220 3.3197 1.883000 40.66
18 81.1324 24.7327
19 0.0000 2.8640 開口絞りS
20 -610.2519 3.0896 1.795040 28.69
21 -102.5924 1.7000 1.640000 60.20
22 103.0186 2.7072
23 -377.8312 1.8000 1.755000 52.34
24 625.3973 3.4765
25 117.2113 2.1894 1.672700 32.19
26 205.1647 43.6025
27 92.0719 4.6883 1.677900 50.67
28 -266.4131 1.7000 1.834810 42.73
29 -358.3293 16.4849
30 0.0000 1.5000 1.516800 64.14
31 0.0000 9.9184
32 395.0122 1.7000 1.720000 43.61
33 36.0213 10.1507 1.720467 34.71
34 -53.5346 1.0000
35 -51.1252 1.7000 2.001000 29.12
36 400.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 386.723
合焦群 14 209.149
後群 16 -106.186
[全体諸元]
f = 588.0074
FNO= 4.1166
2ω = 4.1855
TL = 469.6613
BF = 69.9789
Y = 21.63
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 421.5344 9.5000 1.518600 69.89
2 2273.4202 10.0000
3 219.9159 12.5000 1.433852 95.25
4 1465.6544 112.6586
5 163.3272 11.5000 1.433852 95.25
6 -838.0975 1.2000
7 -821.7653 2.8000 1.738000 32.26 0.5899
8 356.0157 20.0000
9 106.9038 8.5000 1.663820 27.35 0.6318
10 394.1116 0.3000
11 359.0766 2.0667 1.738000 32.26 0.5899
12 66.1994 7.2000 1.497820 82.57
13 116.1691 D1
14 101.0494 7.0439 1.593490 66.99
15 529.3900 D2
16 213.4123 5.7514 1.698950 30.13
17 -792.7220 3.3197 1.883000 40.66
18 81.1324 24.7327
19 0.0000 2.8640 開口絞りS
20 -610.2519 3.0896 1.795040 28.69
21 -102.5924 1.7000 1.640000 60.20
22 103.0186 2.7072
23 -377.8312 1.8000 1.755000 52.34
24 625.3973 3.4765
25 117.2113 2.1894 1.672700 32.19
26 205.1647 43.6025
27 92.0719 4.6883 1.677900 50.67
28 -266.4131 1.7000 1.834810 42.73
29 -358.3293 16.4849
30 0.0000 1.5000 1.516800 64.14
31 0.0000 9.9184
32 395.0122 1.7000 1.720000 43.61
33 36.0213 10.1507 1.720467 34.71
34 -53.5346 1.0000
35 -51.1252 1.7000 2.001000 29.12
36 400.0000 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 386.723
合焦群 14 209.149
後群 16 -106.186
この光学系OL5において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表14に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表14)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 588.0074 - -
β - -0.0333 -0.1478
D1 46.9380 42.3876 27.9380
D2 3.4000 7.9505 22.4000
D3 69.9789 69.9790 69.9795
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 588.0074 - -
β - -0.0333 -0.1478
D1 46.9380 42.3876 27.9380
D2 3.4000 7.9505 22.4000
D3 69.9789 69.9790 69.9795
次の表15に、この光学系OL5における各条件式対応値を示す。なお、この光学系OL5において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び負メニスカスレンズL16であり、条件式(14)、(15)及び(16)を満足する特定正レンズは正メニスカスレンズL15である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL311である。
(表15)
[条件式対応値]
fL1=996.107
fL2=594.570
f1A=376.144
f1B=3647.321
f3A=-63.465
f3B=192.862
fr =-45.201
(1)D23/f1=0.291
(2)fL1/f1=2.576
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.010
(6)TL2/fL2=0.021
(7)f/f1B=0.161
(8)f1/f1B=0.106
(9)f1A/f=0.640
(10)f1A/f1=0.973
(11)f1A/f1B=0.103
(12)θgFn-0.6558+0.01982×νdn=-0.0053
(13)νdn=32.26
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.356
(18)f3/f3A=1.673
(19)f3/f3B=-0.551
(20)TL/f=0.799
(21)(-fr)/f=0.077
[条件式対応値]
fL1=996.107
fL2=594.570
f1A=376.144
f1B=3647.321
f3A=-63.465
f3B=192.862
fr =-45.201
(1)D23/f1=0.291
(2)fL1/f1=2.576
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.010
(6)TL2/fL2=0.021
(7)f/f1B=0.161
(8)f1/f1B=0.106
(9)f1A/f=0.640
(10)f1A/f1=0.973
(11)f1A/f1B=0.103
(12)θgFn-0.6558+0.01982×νdn=-0.0053
(13)νdn=32.26
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71827
(17)f2/f=0.356
(18)f3/f3A=1.673
(19)f3/f3B=-0.551
(20)TL/f=0.799
(21)(-fr)/f=0.077
このように、この光学系OL5は、上記条件式(1)~(21)を満足している。
この光学系OL5の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図10に示す。これらの各収差図より、この光学系OL5は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第6実施例]
図11は、第6実施例に係る光学系OL6の構成を示す図である。この光学系OL6は、物体側から順に、正の屈折力を有する前群G1と、負の屈折力を有する合焦群G2と、正の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図11は、第6実施例に係る光学系OL6の構成を示す図である。この光学系OL6は、物体側から順に、正の屈折力を有する前群G1と、負の屈折力を有する合焦群G2と、正の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、両凸正レンズL15、両凹負レンズL16と両凸正レンズL17とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL18で構成されている。
合焦群G2は、物体側から順に、両凸正レンズL21と両凹負レンズL22とを接合した接合レンズで構成されている。
後群G3の後群A群G3Aは、物体側から順に、両凹負レンズL31、物体側に凹面を向けた正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL34で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL35、物体側に凸面を向けた負メニスカスレンズL36と両凸正レンズL37とを接合した接合レンズ、及び、両凹負レンズL38で構成されている。
また、合焦群G2と後群G3との間に開口絞りSが配置されている。また、両凸正レンズL35と物体側に凸面を向けた負メニスカスレンズL36と両凸正レンズL37とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL6は、無限遠物体から至近物体への合焦に際し、合焦群G2を像側に移動させるように構成されている。
また、この光学系OL6は、後群G3の後群A群G3A内の両凹負レンズL31及び物体側に凹面を向けた正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズを防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL6の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表16に、光学系OL6の諸元の値を掲げる。
(表16)第6実施例
[全体諸元]
f = 389.9999
FNO= 2.9005
2ω = 6.3010
TL = 405.3185
BF = 53.9997
Y = 21.60
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 414.8764 8.7000 1.518600 69.89
2 102533.8900 0.1000
3 217.0950 12.0000 1.433852 95.25
4 1386.6916 104.7213
5 139.4073 11.5000 1.433852 95.25
6 -424.7939 1.8871
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 218.3903 60.0262
9 95.8113 6.6000 1.663820 27.35 0.6319
10 -2146.8008 0.1000
11 -1472.0872 1.8000 1.737999 32.26 0.5899
12 53.2664 8.8000 1.497820 82.57
13 -1111.1147 0.2000
14 66.4966 6.5000 1.497820 82.57
15 592.8450 D1
16 659.6101 3.5000 1.755750 24.71
17 -8880.2436 1.8000 1.804000 46.60
18 50.2599 D2
19 0.0000 7.5210 開口絞りS
20 -203.9986 1.8000 1.910822 35.25
21 133.9496 3.3656
22 -83.0862 4.1000 1.846663 23.78
23 -41.3019 1.8000 1.497820 82.57
24 219.2608 4.6000
25 72.9679 3.8000 1.654115 39.68
26 730.7596 37.1979
27 58.5088 5.5000 1.696800 55.52
28 -497.4874 10.0000
29 0.0000 1.5000 1.516800 63.88
30 0.0000 0.1000
31 66.4007 1.5000 1.804000 46.60
32 27.7295 8.8000 1.612660 44.46
33 -249.5278 4.0868
34 -68.1638 1.5000 2.000694 25.46
35 245.2521 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 151.758
合焦群 16 -67.559
後群 20 306.385
[全体諸元]
f = 389.9999
FNO= 2.9005
2ω = 6.3010
TL = 405.3185
BF = 53.9997
Y = 21.60
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 414.8764 8.7000 1.518600 69.89
2 102533.8900 0.1000
3 217.0950 12.0000 1.433852 95.25
4 1386.6916 104.7213
5 139.4073 11.5000 1.433852 95.25
6 -424.7939 1.8871
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 218.3903 60.0262
9 95.8113 6.6000 1.663820 27.35 0.6319
10 -2146.8008 0.1000
11 -1472.0872 1.8000 1.737999 32.26 0.5899
12 53.2664 8.8000 1.497820 82.57
13 -1111.1147 0.2000
14 66.4966 6.5000 1.497820 82.57
15 592.8450 D1
16 659.6101 3.5000 1.755750 24.71
17 -8880.2436 1.8000 1.804000 46.60
18 50.2599 D2
19 0.0000 7.5210 開口絞りS
20 -203.9986 1.8000 1.910822 35.25
21 133.9496 3.3656
22 -83.0862 4.1000 1.846663 23.78
23 -41.3019 1.8000 1.497820 82.57
24 219.2608 4.6000
25 72.9679 3.8000 1.654115 39.68
26 730.7596 37.1979
27 58.5088 5.5000 1.696800 55.52
28 -497.4874 10.0000
29 0.0000 1.5000 1.516800 63.88
30 0.0000 0.1000
31 66.4007 1.5000 1.804000 46.60
32 27.7295 8.8000 1.612660 44.46
33 -249.5278 4.0868
34 -68.1638 1.5000 2.000694 25.46
35 245.2521 D3
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 151.758
合焦群 16 -67.559
後群 20 306.385
この光学系OL6において、前群G1と合焦群G2との軸上空気間隔D1、合焦群G2と後群G3との軸上空気間隔D2、及び、後群G3と像面との軸上空気間隔D3(バックフォーカス)は合焦に際して変化する。次の表17に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表17)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 389.9999 - -
β - -0.0333 -0.1673
D1 4.5084 6.7244 16.2327
D2 18.7153 16.4993 6.9910
D3 53.9997 53.9997 53.9997
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 389.9999 - -
β - -0.0333 -0.1673
D1 4.5084 6.7244 16.2327
D2 18.7153 16.4993 6.9910
D3 53.9997 53.9997 53.9997
次の表18に、この光学系OL6における各条件式対応値を示す。なお、この光学系OL6において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び両凹負レンズL16であり、条件式(14)、(15)及び(16)を満足する特定正レンズは両凸正レンズL15である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL38である。
(表18)
[条件式対応値]
fL1=803.220
fL2=591.433
f1A=341.677
f1B=-2026.937
f3A=-174.503
f3B=129.077
fr =-53.175
(1)D23/f1=0.690
(2)fL1/f1=5.293
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.011
(6)TL2/fL2=0.020
(7)f/f1B=-0.192
(8)f1/f1B=-0.075
(9)f1A/f=0.876
(10)f1A/f1=2.251
(11)f1A/f1B=-0.169
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=-0.173
(18)f3/f3A=-1.756
(19)f3/f3B=2.374
(20)TL/f=1.039
(21)(-fr)/f=0.136
[条件式対応値]
fL1=803.220
fL2=591.433
f1A=341.677
f1B=-2026.937
f3A=-174.503
f3B=129.077
fr =-53.175
(1)D23/f1=0.690
(2)fL1/f1=5.293
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.011
(6)TL2/fL2=0.020
(7)f/f1B=-0.192
(8)f1/f1B=-0.075
(9)f1A/f=0.876
(10)f1A/f1=2.251
(11)f1A/f1B=-0.169
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=-0.173
(18)f3/f3A=-1.756
(19)f3/f3B=2.374
(20)TL/f=1.039
(21)(-fr)/f=0.136
このように、この光学系OL6は、上記条件式(1)~(21)を満足している。
この光学系OL6の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図12に示す。これらの各収差図より、この光学系OL6は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
[第7実施例]
図13は、第7実施例に係る光学系OL7の構成を示す図である。この光学系OL7は、物体側から順に、正の屈折力を有する前群G1と、負の屈折力を有する合焦群G2と、正の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、合焦群G2は、物体側から順に、合焦群A群G2Aと、合焦群B群G2Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
図13は、第7実施例に係る光学系OL7の構成を示す図である。この光学系OL7は、物体側から順に、正の屈折力を有する前群G1と、負の屈折力を有する合焦群G2と、正の屈折力を有する後群G3と、から構成されている。また、前群G1は、この前群G1の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群G1Aと、前群B群G1Bと、から構成されている。また、合焦群G2は、物体側から順に、合焦群A群G2Aと、合焦群B群G2Bと、から構成されている。また、後群G3は、この後群G3の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、後群A群G3Aと、後群B群G3Bとから構成されている。
前群G1の前群A群G1Aは、物体側から順に、両凹正レンズL11、及び、物体側に凸面を向けた正メニスカスレンズL12で構成されている。
前群G1の前群B群G1Bは、物体側から順に、両凸正レンズL13、両凹負レンズL14、両凸正レンズL15、及び、両凹負レンズL16と物体側に凸面を向けた正メニスカスレンズL17とを接合した接合レンズで構成されている。
合焦群A群G2Aは、物体側に凸面を向けた正メニスカスレンズL21で構成されている。
合焦群B群G2Bは、物体側に凸面を向けた負メニスカスレンズL22で構成されている。
後群G3の後群A群G3Aは、物体側から順に、両凹負レンズL31、物体側に凹面を向けた正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズ、及び、両凸正レンズL34で構成されている。
後群G3の後群B群G3Bは、物体側から順に、両凸正レンズL35、物体側に凸面を向けた負メニスカスレンズL36と両凸正レンズL37とを接合した接合レンズ、及び、両凹負レンズL38で構成されている。
また、合焦群G2と後群G3との間に開口絞りSが配置されている。また、両凸正レンズL35と物体側に凸面を向けた負メニスカスレンズL36と両凸正レンズL37とを接合した接合レンズとの間にフィルターFLが配置されている。
この光学系OL7は、無限遠物体から至近物体への合焦に際し、合焦群G2を構成する合焦群A群G2Aを物体側に移動させ、合焦群B群G2Bを像側に移動させるように構成されている。
また、この光学系OL7は、後群G3の後群A群G3A内の両凹負レンズL31及び物体側に凹面を向けた正メニスカスレンズL32と両凹負レンズL33とを接合した接合レンズを防振群とし、この防振群を光軸と直交する方向の変位成分を持つように移動させることにより、光学系OL7の振動等に起因する像位置の変更が補正されるように構成されている。
以下の表19に、光学系OL7の諸元の値を掲げる。
(表19)第7実施例
[全体諸元]
f = 390.0000
FNO= 2.9030
2ω = 6.2959
TL = 405.3186
BF = 54.0003
Y = 21.60
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 439.8093 8.2000 1.518600 69.89
2 -1741.2521 0.1000
3 222.5379 12.0000 1.433852 95.25
4 1393.9654 97.1809
5 139.4073 11.0000 1.433852 95.25
6 -380.4635 0.1050
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 192.2903 59.0562
9 102.4273 6.6000 1.663820 27.35 0.6319
10 -401.4769 0.1362
11 -360.0793 1.8000 1.737999 32.26 0.5899
12 58.7393 8.8000 1.497820 82.57
13 1167.4655 D1
14 83.8395 6.2000 1.497820 82.57
15 10090.0640 D2
16 690.6259 1.8000 1.755000 52.33
17 60.0805 D3
18 0.0000 7.0861 開口絞りS
19 -246.8276 1.8000 1.910822 35.25
20 116.7166 3.8112
21 -73.3878 4.1000 1.846663 23.78
22 -39.7299 1.8000 1.497820 82.57
23 433.0885 4.6000
24 89.2307 3.8000 1.612660 44.46
25 -1734.6597 40.2586
26 55.6338 5.5000 1.696800 55.52
27 -779.8112 10.0000
28 0.0000 1.5000 1.516800 63.88
29 0.0000 0.1000
30 63.5589 1.5000 1.804000 46.60
31 26.0339 8.8000 1.612660 44.46
32 -212.3772 4.7866
33 -69.8293 1.5000 2.000694 25.46
34 198.2621 D4
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 282.014
合焦群A群 14 169.789
合焦群B群 16 -87.266
後群 19 310.889
[全体諸元]
f = 390.0000
FNO= 2.9030
2ω = 6.2959
TL = 405.3186
BF = 54.0003
Y = 21.60
[レンズデータ]
m r d nd νd θgF
物面 ∞
1 439.8093 8.2000 1.518600 69.89
2 -1741.2521 0.1000
3 222.5379 12.0000 1.433852 95.25
4 1393.9654 97.1809
5 139.4073 11.0000 1.433852 95.25
6 -380.4635 0.1050
7 -416.7878 3.0000 1.683760 37.64 0.5782
8 192.2903 59.0562
9 102.4273 6.6000 1.663820 27.35 0.6319
10 -401.4769 0.1362
11 -360.0793 1.8000 1.737999 32.26 0.5899
12 58.7393 8.8000 1.497820 82.57
13 1167.4655 D1
14 83.8395 6.2000 1.497820 82.57
15 10090.0640 D2
16 690.6259 1.8000 1.755000 52.33
17 60.0805 D3
18 0.0000 7.0861 開口絞りS
19 -246.8276 1.8000 1.910822 35.25
20 116.7166 3.8112
21 -73.3878 4.1000 1.846663 23.78
22 -39.7299 1.8000 1.497820 82.57
23 433.0885 4.6000
24 89.2307 3.8000 1.612660 44.46
25 -1734.6597 40.2586
26 55.6338 5.5000 1.696800 55.52
27 -779.8112 10.0000
28 0.0000 1.5000 1.516800 63.88
29 0.0000 0.1000
30 63.5589 1.5000 1.804000 46.60
31 26.0339 8.8000 1.612660 44.46
32 -212.3772 4.7866
33 -69.8293 1.5000 2.000694 25.46
34 198.2621 D4
像面 ∞
[レンズ群焦点距離]
レンズ群 始面 焦点距離
前群 1 282.014
合焦群A群 14 169.789
合焦群B群 16 -87.266
後群 19 310.889
この光学系OL7において、前群G1と合焦群A群G2Aとの軸上空気間隔D1、合焦群A群G2Aと合焦群B群G2Bとの軸上空気間隔D2、合焦群B群G2Bと後群G3との軸上空気間隔D3、及び、後群G3と像面との軸上空気間隔D4(バックフォーカス)は合焦に際して変化する。次の表20に、無限遠撮影距離、中間撮影距離及び至近撮影距離における可変間隔を示す。
(表20)
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 390.0000 - -
β - -0.0333 -0.1682
D1 16.0689 13.7323 23.5588
D2 4.1000 8.0022 23.4588
D3 14.2286 12.6630 6.5193
D4 54.0003 54.0003 54.0003
[可変間隔データ]
合焦状態 無限遠 中間 至近
f 390.0000 - -
β - -0.0333 -0.1682
D1 16.0689 13.7323 23.5588
D2 4.1000 8.0022 23.4588
D3 14.2286 12.6630 6.5193
D4 54.0003 54.0003 54.0003
次の表21に、この光学系OL7における各条件式対応値を示す。なお、この光学系OL7において、条件式(12)及び(13)を満足する特定負レンズは両凹負レンズL14及び両凹負レンズL16であり、条件式(14)、(15)及び(16)を満足する特定正レンズは両凸正レンズL15である。また、最も像側に配置された負の屈折力を有するレンズは両凹負レンズL38である。
(表21)
[条件式対応値]
fL1=677.928
fL2=608.492
f1A=321.375
f1B=1086.517
f3A=-150.173
f3B=121.083
fr =-51.461
(1)D23/f1=0.690
(2)fL1/f1=2.404
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.012
(6)TL2/fL2=0.020
(7)f/f1B=0.359
(8)f1/f1B=0.260
(9)f1A/f=0.824
(10)f1A/f1=1.140
(11)f1A/f1B=0.296
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=-0.520
(18)f3/f3A=0.581
(19)f3/f3B=-0.721
(20)TL/f=1.039
(21)(-fr)/f=0.132
[条件式対応値]
fL1=677.928
fL2=608.492
f1A=321.375
f1B=1086.517
f3A=-150.173
f3B=121.083
fr =-51.461
(1)D23/f1=0.690
(2)fL1/f1=2.404
(3)νL2=95.25
(4)νL3=95.25
(5)TL1/fL1=0.012
(6)TL2/fL2=0.020
(7)f/f1B=0.359
(8)f1/f1B=0.260
(9)f1A/f=0.824
(10)f1A/f1=1.140
(11)f1A/f1B=0.296
(12)θgFn-0.6558+0.01982×νdn=-0.0047
(13)νdn=37.64
(14)νdp=27.35
(15)ndp+0.01452×νdp=2.0536
(16)θgFp+0.00316×νdp=0.71830
(17)f2/f=-0.520
(18)f3/f3A=0.581
(19)f3/f3B=-0.721
(20)TL/f=1.039
(21)(-fr)/f=0.132
このように、この光学系OL7は、上記条件式(1)~(21)を満足している。
この光学系OL7の無限遠物体合焦時及び至近物体合焦時における球面収差図、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図を図14に示す。これらの各収差図より、この光学系OL7は諸収差が良好に補正され、優れた結像性能を有していることがわかる。
1 カメラ(光学機器) OL(OL1~OL7) 光学系
G1 前群 G1A 前群A群 G1B 前群B群
G2 合焦群
G3 後群 G3A 後群A群 G3B 後群B群
S 開口絞り
G1 前群 G1A 前群A群 G1B 前群B群
G2 合焦群
G3 後群 G3A 後群A群 G3B 後群B群
S 開口絞り
Claims (25)
- 物体側から順に、
正の屈折力を有する前群と、
光軸方向に移動することにより合焦を行う合焦群と、を有し、
前記前群は、物体側から順に、
第1レンズと、
第2レンズと、
第3レンズと、を有し、
次式の条件を満足する光学系。
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔 - 次式の条件を満足する請求項1に記載の光学系。
1.00 < fL1/f1 < 6.00
但し、
f1:前記前群の焦点距離
fL1:前記第1レンズの焦点距離 - 次式の条件を満足する請求項1または2に記載の光学系。
75.00 < νL2 < 100.00
但し、
νL2:前記第2レンズの媒質のd線に対するアッベ数 - 次式の条件を満足する請求項1~3のいずれか一項に記載の光学系。
75.00 < νL3 < 100.00
但し、
νL3:前記第3レンズの媒質のd線に対するアッベ数 - 次式の条件を満足する請求項1~4のいずれか一項に記載の光学系。
0.001 < TL1/fL1 < 0.025
但し、
fL1:前記第1レンズの焦点距離
TL1:前記第1レンズの光軸上の厚み - 次式の条件を満足する請求項1~5のいずれか一項に記載の光学系。
0.010 < TL2/fL2 < 0.035
但し、
fL2:前記第2レンズの焦点距離
TL2:前記第2レンズの光軸上の厚み - 前記前群は、前記前群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群と前群B群とからなり、
次式の条件を満足する請求項1~6のいずれか一項に記載の光学系。
-1.00 < f/f1B < 5.00
但し、
f:無限遠合焦状態の前記光学系の全系の焦点距離
f1B:前記前群B群の焦点距離 - 前記前群は、前記前群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群と前群B群とからなり、
次式の条件を満足する請求項1~7のいずれか一項に記載の光学系。
-1.00 < f1/f1B < 3.00
但し、
f1:前記前群の焦点距離
f1B:前記前群B群の焦点距離 - 前記前群は、前記前群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群と前群B群とからなり、
次式の条件を満足する請求項1~8のいずれか一項に記載の光学系。
0.50 < f1A/f < 1.50
但し、
f:無限遠合焦状態の前記光学系の全系の焦点距離
f1A:前記前群A群の焦点距離 - 前記前群は、前記前群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群と前群B群とからなり、
次式の条件を満足する請求項1~9のいずれか一項に記載の光学系。
0.50 < f1A/f1 < 2.50
但し、
f1:前記前群の焦点距離
f1A:前記前群A群の焦点距離 - 前記前群は、前記前群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、前群A群と前群B群とからなり、
次式の条件を満足する請求項1~10のいずれか一項に記載の光学系。
-0.50 < f1A/f1B < 3.00
但し、
f1A:前記前群A群の焦点距離
f1B:前記前群B群の焦点距離 - 前記前群は、次式の条件を満足する負レンズを少なくとも1枚有する
請求項1~11のいずれか一項に記載の光学系。
-0.015<θgFn―0.6558+0.001982×vdn<0.000
νdn < 50.00
但し、
θgFn:前記負レンズの媒質の部分分散比
νdn:前記負レンズの媒質のd線に対するアッベ数 - 前記前群は、次式の条件を満足する正レンズを少なくとも1枚有する
請求項1~12のいずれか一項に記載の光学系。
20.00 < νdp < 30.00
1.830 < ndp+0.01425×νdp < 2.120
0.7020 < θgFp+0.00316×νdp
但し、
νdp:前記正レンズの媒質のd線に対するアッベ数
ndp:前記正レンズの媒質のd線に対する屈折率
θgFp:前記正レンズの媒質の部分分散比 - 次式の条件を満足する請求項1~13のいずれか一項に記載の光学系。
-0.60 < f2/f < 0.60
但し、
f:無限遠合焦状態における前記光学系の全系の焦点距離
f2:前記合焦群の焦点距離 - 前記合焦群の像側に後群を有する
請求項1~14のいずれか一項に記載の光学系。 - 前記合焦群より像側に開口絞りを有する
請求項1~15のいずれか一項に記載の光学系。 - 前記合焦群より像側に後群を有し、
前記後群の少なくとも一部を光軸に直交する方向の変位成分を持つように移動させる
請求項1~16のいずれか一項に記載の光学系。 - 前記合焦群より像側に後群を有し、
前記後群は、前記後群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、
後群A群と、
後群B群とからなる
請求項1~17のいずれか一項に記載の光学系。 - 前記合焦群より像側に後群を有し、
前記後群は、前記後群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、
後群A群と、
後群B群とからなり、
次式の条件を満足する請求項1~18のいずれか一項に記載の光学系。
-4.00 < f3/f3A < 7.00
但し、
f3:前記後群の焦点距離
f3A:前記後群A群の焦点距離 - 前記合焦群より像側に後群を有し、
前記後群は、前記後群の中で最も広い光軸上の空気間隔を隔てて、物体側から順に、
後群A群と、
後群B群とからなり、
次式の条件を満足する請求項1~19のいずれか一項に記載の光学系。
-3.00 < f3/f3B < 5.00
但し、
f3:前記後群の焦点距離
f3B:前記後群B群の焦点距離 - 次式の条件を満足する請求項1~20のいずれか一項に記載の光学系。
0.70 < TL/f < 1.10
但し、
f:無限遠合焦状態の前記光学系の全系の焦点距離
TL:無限遠合焦状態の前記光学系の全長 - 次式の条件を満足する請求項1~21のいずれか一項に記載の光学系。
0.02 < (-fr)/f < 0.35
但し、
f:無限遠合焦状態の前記光学系の全系の焦点距離
fr:最も像側に配置された負の屈折力を有するレンズの焦点距離 - 前記第1レンズ群は、正の屈折力を有し、
前記第2レンズ群は、正の屈折力を有する請求項1~22のいずれか一項に記載の光学系。 - 請求項1~23のいずれか一項に記載の光学系を有する光学機器。
- 物体側から順に、正の屈折力を有する前群と、光軸方向に移動することにより合焦を行う合焦群と、を有する光学系の製造方法であって、
前記前群に、物体側から順に、
第1レンズと、
第2レンズと、
第3レンズと、を配置し、
次式の条件を満足するように配置する光学系の製造方法。
0.10 <D23/f1 < 0.75
但し、
f1:前記前群の焦点距離
D23:前記第2レンズと前記第3レンズとの光軸上の間隔
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/594,390 US20220244502A1 (en) | 2019-04-26 | 2020-03-18 | Optical system, optical apparatus, and method for manufacturing optical system |
CN202080030849.7A CN113728262B (zh) | 2019-04-26 | 2020-03-18 | 光学系统以及光学设备 |
JP2021515874A JP7216931B2 (ja) | 2019-04-26 | 2020-03-18 | 光学系及び光学機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-085098 | 2019-04-26 | ||
JP2019085098 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020217791A1 true WO2020217791A1 (ja) | 2020-10-29 |
Family
ID=72942089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/011986 WO2020217791A1 (ja) | 2019-04-26 | 2020-03-18 | 光学系、光学機器及び光学系の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220244502A1 (ja) |
JP (1) | JP7216931B2 (ja) |
CN (1) | CN113728262B (ja) |
WO (1) | WO2020217791A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021086134A (ja) * | 2019-11-29 | 2021-06-03 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140300804A1 (en) * | 2013-04-08 | 2014-10-09 | Samsung Electronics Co., Ltd. | Telephoto lens system and electronic apparatus having the same |
JP2017026712A (ja) * | 2015-07-17 | 2017-02-02 | キヤノン株式会社 | 光学系および撮像装置 |
JP2017223754A (ja) * | 2016-06-14 | 2017-12-21 | キヤノン株式会社 | 撮影レンズ |
WO2018088038A1 (ja) * | 2016-11-08 | 2018-05-17 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3646295B2 (ja) * | 1995-11-24 | 2005-05-11 | 株式会社ニコン | 内焦式望遠レンズ |
JP5282399B2 (ja) * | 2007-12-13 | 2013-09-04 | 株式会社ニコン | マクロレンズ、光学装置、マクロレンズのフォーカシング方法 |
-
2020
- 2020-03-18 JP JP2021515874A patent/JP7216931B2/ja active Active
- 2020-03-18 CN CN202080030849.7A patent/CN113728262B/zh active Active
- 2020-03-18 US US17/594,390 patent/US20220244502A1/en active Pending
- 2020-03-18 WO PCT/JP2020/011986 patent/WO2020217791A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140300804A1 (en) * | 2013-04-08 | 2014-10-09 | Samsung Electronics Co., Ltd. | Telephoto lens system and electronic apparatus having the same |
JP2017026712A (ja) * | 2015-07-17 | 2017-02-02 | キヤノン株式会社 | 光学系および撮像装置 |
JP2017223754A (ja) * | 2016-06-14 | 2017-12-21 | キヤノン株式会社 | 撮影レンズ |
WO2018088038A1 (ja) * | 2016-11-08 | 2018-05-17 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7216931B2 (ja) | 2023-02-02 |
CN113728262B (zh) | 2023-05-02 |
CN113728262A (zh) | 2021-11-30 |
US20220244502A1 (en) | 2022-08-04 |
JPWO2020217791A1 (ja) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101834094B1 (ko) | 변배 광학계, 광학 기기 및 변배 광학계의 제조 방법 | |
JP6797774B2 (ja) | 撮像レンズ及び撮像装置 | |
JP6806238B2 (ja) | 変倍光学系、光学装置、および変倍光学系の製造方法 | |
JP6870230B2 (ja) | 光学系及び光学機器 | |
JP6721859B2 (ja) | 光学系及び光学機器 | |
JP6857305B2 (ja) | 変倍光学系及び光学機器 | |
WO2021220579A1 (ja) | 光学系、光学機器及び光学系の製造方法 | |
JP6781964B2 (ja) | 光学系及び光学機器 | |
JP6725000B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6806239B2 (ja) | 変倍光学系、光学装置、および変倍光学系の製造方法 | |
JP6784952B2 (ja) | 光学系及び光学機器 | |
WO2020217791A1 (ja) | 光学系、光学機器及び光学系の製造方法 | |
JP5958018B2 (ja) | ズームレンズ、撮像装置 | |
JP6969452B2 (ja) | 光学系及び光学機器 | |
WO2019229817A1 (ja) | 光学系、光学機器、および光学系の製造方法 | |
WO2022009588A1 (ja) | 光学系、光学機器、および光学系の製造方法 | |
JP6919813B2 (ja) | 変倍光学系及び光学機器 | |
JP6919812B2 (ja) | 変倍光学系及び光学機器 | |
JP2014211496A (ja) | 撮影レンズ、光学機器、および撮影レンズの製造方法 | |
JP6969376B2 (ja) | 光学系及び光学機器 | |
JP6784950B2 (ja) | 光学系及び光学機器 | |
JP6911869B2 (ja) | 変倍光学系、これを用いた光学機器および撮像機器 | |
JP2020134803A (ja) | 変倍光学系、光学機器、及び変倍光学系の製造方法 | |
JP2020134805A (ja) | 変倍光学系、光学機器、及び変倍光学系の製造方法 | |
WO2022124184A1 (ja) | 変倍光学系、光学機器及び変倍光学系の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20795313 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021515874 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20795313 Country of ref document: EP Kind code of ref document: A1 |