WO2022009588A1 - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
WO2022009588A1
WO2022009588A1 PCT/JP2021/021709 JP2021021709W WO2022009588A1 WO 2022009588 A1 WO2022009588 A1 WO 2022009588A1 JP 2021021709 W JP2021021709 W JP 2021021709W WO 2022009588 A1 WO2022009588 A1 WO 2022009588A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
lens
focusing
conditional expression
Prior art date
Application number
PCT/JP2021/021709
Other languages
English (en)
French (fr)
Inventor
真美 村谷
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US18/008,967 priority Critical patent/US20230236383A1/en
Priority to JP2022534962A priority patent/JPWO2022009588A1/ja
Priority to CN202180046084.0A priority patent/CN115997151A/zh
Publication of WO2022009588A1 publication Critical patent/WO2022009588A1/ja
Priority to JP2024026372A priority patent/JP2024045767A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.
  • the optical system according to the present invention is composed of a front group, an aperture, and a rear group arranged in order from the object side along the optical axis, and the rear group is the negative arranged on the most object side of the rear group. It has a focusing lens group having an optical power of, and at the time of focusing, the focusing lens group moves along the optical axis, and the distance between adjacent lens groups changes, satisfying the following conditional expression. .. 0.50 ⁇ ST / TL ⁇ 0.95
  • ST the distance on the optical axis from the diaphragm to the image plane TL: the total length of the optical system.
  • the optical device according to the present invention is configured to include the above optical system.
  • the method for manufacturing an optical system according to the present invention is a method for manufacturing an optical system including a front group, an aperture, and a rear group arranged in order from the object side along the optical axis, and the rear group is the above-mentioned. It has a focusing lens group having a negative refractive power arranged on the most object side of the rear group, and at the time of focusing, the focusing lens group moves along the optical axis, and the distance between adjacent lens groups. Is changed, and each lens is arranged in the lens barrel so as to satisfy the following conditional expression. 0.50 ⁇ ST / TL ⁇ 0.95 However, ST: the distance on the optical axis from the diaphragm to the image plane TL: the total length of the optical system.
  • the camera 1 includes a main body 2 and a photographing lens 3 mounted on the main body 2.
  • the main body 2 includes an image sensor 4, a main body control unit (not shown) that controls the operation of a digital camera, and a liquid crystal screen 5.
  • the photographing lens 3 includes an optical system OL composed of a plurality of lens groups and a lens position control mechanism (not shown) for controlling the position of each lens group.
  • the lens position control mechanism includes a sensor that detects the position of the lens group, a motor that moves the lens group back and forth along the optical axis, a control circuit that drives the motor, and the like.
  • the light from the subject is collected by the optical system OL of the photographing lens 3 and reaches the image plane I of the image pickup element 4.
  • the light from the subject that has reached the image plane I is photoelectrically converted by the image pickup device 4 and recorded as digital image data in a memory (not shown).
  • the digital image data recorded in the memory can be displayed on the liquid crystal screen 5 according to the operation of the user.
  • This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.
  • the optical system OL shown in FIG. 17 schematically shows the optical system provided in the photographing lens 3, and the lens configuration of the optical system OL is not limited to this configuration.
  • the optical system OL (1) as an example of the optical system (photographing lens) OL according to the present embodiment includes a front group GA and an aperture (1) arranged in order from the object side along the optical axis. It is composed of an aperture stop) S and a rear group GB.
  • the rear group GB is configured to have a focusing lens group (GF1) having a negative refractive power arranged on the most object side of the rear group GB. During focusing, the focusing lens group moves along the optical axis, and the distance between adjacent lens groups changes.
  • the optical system OL satisfies the following conditional expression (1). 0.50 ⁇ ST / TL ⁇ 0.95 ... (1)
  • ST the distance on the optical axis from the aperture S to the image plane I TL: the total length of the optical system OL.
  • the optical system OL according to the present embodiment may be the optical system OL (2) shown in FIG. 3, the optical system OL (3) shown in FIG. 5, or the optical system OL (4) shown in FIG. 7.
  • FIG. The optical system OL (5) shown in 9 may be used.
  • the optical system OL according to the present embodiment may be the optical system OL (6) shown in FIG. 11, the optical system OL (7) shown in FIG. 13, or the optical system OL (8) shown in FIG. ..
  • conditional expression (1) defines an appropriate relationship between the distance on the optical axis from the aperture S to the image plane I and the total length of the optical system OL. By satisfying the conditional expression (1), it is possible to reduce the fluctuation of the angle of view at the time of focusing.
  • conditional expression (1) If the corresponding value of the conditional expression (1) is out of the above range, it becomes difficult to suppress the fluctuation of the angle of view at the time of focusing.
  • the lower limit of the conditional expression (1) By setting the lower limit of the conditional expression (1) to 0.53, 0.55, 0.58, 0.60, 0.63, and further 0.65, the effect of this embodiment is more reliable. Can be.
  • the upper limit value of the conditional expression (1) By setting the upper limit value of the conditional expression (1) to 0.93, 0.90, 0.88, 0.85, 0.83, 0.80, and further 0.78, the present embodiment The effect can be made more certain.
  • the optical system OL satisfies the following conditional expression (2). 0.65 ⁇ (-fF) /fA ⁇ 1.20 ... (2)
  • fF focal length of the focusing lens group
  • fA focal length of the front group GA
  • Conditional expression (2) defines an appropriate relationship between the focal length of the in-focus lens group and the focal length of the front group GA. By satisfying the conditional expression (2), it is possible to reduce the fluctuation of the angle of view at the time of focusing.
  • conditional expression (2) If the corresponding value of the conditional expression (2) is out of the above range, it becomes difficult to suppress the fluctuation of the angle of view at the time of focusing.
  • the lower limit of the conditional expression (2) By setting the lower limit of the conditional expression (2) to 0.68, 0.70, 0.73, 0.75, and further 0.77, the effect of the present embodiment can be further ensured. can.
  • the upper limit value of the conditional expression (2) to 1.18, 1.15, 1.13, 1.00, and further 1.09, the effect of this embodiment is further ensured. be able to.
  • the rear group GB has at least one lens group arranged on the image plane side of the in-focus lens group, and it is desirable that the following conditional expression (3) is satisfied. 0.70 ⁇ (-fF) /fR ⁇ 1.80 ... (3) However, fF: focal length of the in-focus lens group fR: synthetic focal length of the at least one lens group.
  • Conditional expression (3) defines an appropriate relationship between the focal length of the in-focus lens group and the combined focal length of at least one lens group arranged on the image plane side of the in-focus lens group.
  • the combined focal length of the at least one lens group is the combined focal length at the time of focusing on an infinite object. Further, the combined focal length of the at least one lens group is the focal length of the one lens group when the number of the lens groups is one, and the combined focal length of the plurality of lens groups when the number of the lens groups is a plurality. The focal length.
  • conditional expression (3) If the corresponding value of the conditional expression (3) is out of the above range, it becomes difficult to suppress the fluctuation of the angle of view at the time of focusing.
  • the lower limit of the conditional expression (3) By setting the lower limit of the conditional expression (3) to 0.73, 0.75, 0.78, 0.80, and further 0.83, the effect of the present embodiment can be further ensured. can.
  • the upper limit value of the conditional expression (3) to 1.78, 1.75, 1.73, 1.70, 1.68, 1.65, and further 1.63, the present embodiment The effect can be made more certain.
  • the rear group GB has a subsequent lens group GR1 arranged adjacent to the image plane side of the in-focus lens group, and can satisfy the following conditional expression (4). desirable. 0.00 ⁇ R1 / ⁇ F ⁇ 0.25 ... (4) However, ⁇ R1: lateral magnification of the subsequent lens group GR1 when the infinity object is in focus ⁇ F: lateral magnification of the focusing lens group when the infinity object is in focus.
  • Conditional expression (4) defines an appropriate relationship between the lateral magnification of the succeeding lens group GR1 when focusing on an infinity object and the lateral magnification of the focusing lens group when focusing on an infinity object.
  • conditional expression (4) If the corresponding value of the conditional expression (4) is out of the above range, it becomes difficult to suppress the fluctuation of the image magnification at the time of focusing.
  • the lower limit of the conditional expression (4) By setting the lower limit of the conditional expression (4) to 0.01, the effect of the present embodiment can be further ensured. Further, by setting the upper limit value of the conditional expression (4) to 0.23, 0.20, 0.18, 0.16, and further 0.15, the effect of the present embodiment is further ensured. be able to.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (5). 0.03 ⁇ x / f ⁇ 0.35 ... (5)
  • ⁇ x the amount of movement of the focusing lens group when focusing from an infinite object to a short-distance object
  • f the focal length of the optical system OL.
  • Conditional expression (5) defines an appropriate relationship between the amount of movement of the focusing lens group during focusing and the focal length of the optical system OL.
  • curvature of field, spherical aberration, coma, and the like can be satisfactorily corrected.
  • the sign of the amount of movement of the focusing lens group toward the image plane side is +, and the sign of the amount of movement toward the object side is ⁇ .
  • conditional expression (5) If the corresponding value of the conditional expression (5) is out of the above range, it becomes difficult to correct curvature of field, spherical aberration, coma, and the like.
  • the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (5) By setting the upper limit value of the conditional expression (5) to 0.33, 0.30, 0.28, 0.25, 0.25, 0.23, 0.20, and further 0.18, the present embodiment The effect can be made more certain.
  • the optical system OL satisfies the following conditional expression (6). 0.65 ⁇ f / (-fF) ⁇ 1.60 ... (6)
  • f focal length of the optical system OL
  • fF focal length of the focusing lens group
  • Conditional expression (6) defines an appropriate relationship between the focal length of the optical system OL and the focal length of the in-focus lens group.
  • conditional expression (6) If the corresponding value of the conditional expression (6) is out of the above range, it becomes difficult to correct chromatic aberration, curvature of field, and the like.
  • the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (6) By setting the upper limit value of the conditional expression (6) to 1.58, 1.55, 1.53, 1.50, 1.48, 1.45, 1.43, and further 1.40, The effect of this embodiment can be made more certain.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (7). 2.00 ⁇ TL / (FNO ⁇ Bf) ⁇ 10.00 ⁇ ⁇ ⁇ (7)
  • FNO F number of the optical system OL
  • Bf Back focus of the optical system OL
  • Conditional expression (7) defines an appropriate relationship between the total length of the optical system OL and the F number and back focus of the optical system OL. By satisfying the conditional expression (7), it is possible to secure an sufficient amount of peripheral light, and to obtain an optical system having a large aperture and a short back focus.
  • the back focus of the optical system OL in the conditional equation (7) and the conditional equation (14) described later is from the lens surface on the image plane side to the image plane I of the lens arranged on the most image plane side of the optical system OL. Indicates the distance on the optical axis (air conversion distance).
  • conditional expression (7) If the corresponding value of the conditional expression (7) is out of the above range, it becomes difficult to secure a sufficient amount of light around the angle of view.
  • This implementation is carried out by setting the lower limit of the conditional expression (7) to 2.10, 2.15, 2.20, 2.25, 2.30, 2.35, 2.40, and 2.43. The effect of the morphology can be made more certain. Further, by setting the upper limit value of the conditional expression (7) to 9.85, 9.65, 9.60, 9.55, 9.50, 9.45, and further 9.40, the present embodiment The effect can be made more certain.
  • the in-focus lens group is composed of one negative lens component.
  • the focusing lens group becomes lightweight, and it becomes possible to focus from an infinity object to a short-distance object at high speed.
  • the lens component indicates a single lens or a junction lens.
  • the optical system OL satisfies the following conditional expression (8). -2.50 ⁇ (rFR2 + rFR1) / (rFR2-rFR1) ⁇ -0.25 ... (8)
  • rFR1 the radius of curvature of the lens surface on the most object side in the in-focus lens group
  • rFR2 the radius of curvature of the lens surface on the most image plane side in the in-focus lens group.
  • Conditional expression (8) defines an appropriate range for the shape factor of the lenses constituting the in-focus lens group.
  • conditional expression (8) If the corresponding value of the conditional expression (8) is out of the above range, it becomes difficult to correct spherical aberration, coma aberration, and the like.
  • the lower limit of the conditional expression (8) By setting the lower limit of the conditional expression (8) to -2.45, -2.40, -2.35, -2.30, -2.25, and further -2.23, the present embodiment The effect can be made more certain.
  • the upper limit of the conditional expression (8) is set to -0.30, -0.33, -0.35, -0.38, -0.40, -0.43, -0.45, -0. By setting it to 48 and further to ⁇ 0.50, the effect of this embodiment can be further ensured.
  • the optical system OL satisfies the following conditional expression (9). 0.90 ⁇ (rNR2 + rNR1) / (rNR2-rNR1) ⁇ 2.65 ... (9)
  • rNR1 radius of curvature of the lens surface on the object side of the lens arranged on the most image plane side of the optical system OL
  • rNR2 curvature of the lens surface on the image plane side of the lens arranged on the most image plane side of the optical system OL. radius
  • Conditional expression (9) defines an appropriate range for the shape factor of the lens arranged on the most image plane side of the optical system OL. By satisfying the conditional equation (9), spherical aberration and distortion can be satisfactorily corrected.
  • conditional expression (9) If the corresponding value of the conditional expression (9) is out of the above range, it becomes difficult to correct spherical aberration and distortion.
  • the lower limit of the conditional expression (9) By setting the lower limit of the conditional expression (9) to 0.93, 0.95, 0.98, 1.00, and further 1.02, the effect of the present embodiment can be further ensured. can.
  • the upper limit of the conditional expression (9) By setting the upper limit of the conditional expression (9) to 2.60, 2.58, 2.55, 2.53, 2.50, 2.48, and 2.45, the present embodiment can be set. The effect can be made more certain.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (10). 0.08 ⁇ 1 / ⁇ F ⁇ 0.55 ... (10) However, ⁇ F: lateral magnification of the focusing lens group when focusing on an infinity object
  • Conditional expression (10) defines an appropriate range for the lateral magnification of the focusing lens group when focusing on an infinity object.
  • various aberrations such as spherical aberration and curvature of field at the time of focusing on an infinity object can be satisfactorily corrected.
  • conditional expression (10) If the corresponding value of the conditional expression (10) is out of the above range, it becomes difficult to correct various aberrations such as spherical aberration and curvature of field when focusing on an infinite object.
  • the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (10) By setting the upper limit value of the conditional expression (10) to 0.53, 0.50, 0.48, 0.45, and further 0.43, the effect of the present embodiment is further ensured. be able to.
  • the optical system OL satisfies the following conditional expression (11). ⁇ F + (1 / ⁇ F) ⁇ -2 ⁇ 0.15 ... (11) However, ⁇ F: lateral magnification of the focusing lens group when focusing on an infinity object
  • Conditional expression (11) defines an appropriate range for the lateral magnification of the focusing lens group when focusing on an infinity object.
  • various aberrations such as spherical aberration and curvature of field at the time of focusing on an infinity object can be satisfactorily corrected.
  • conditional expression (11) If the corresponding value of the conditional expression (11) is out of the above range, it becomes difficult to correct various aberrations such as spherical aberration and curvature of field at the time of focusing on an infinity object.
  • the upper limit value of the conditional expression (11) By setting the upper limit value of the conditional expression (11) to 0.14 and further to 0.13, the effect of the present embodiment can be further ensured.
  • the optical system OL satisfies the following conditional expression (12). 0.003 ⁇ BLDF / TL ⁇ 0.060 ... (12)
  • BLDF the length of the focusing lens group on the optical axis
  • conditional expression (12) defines an appropriate relationship between the length of the focusing lens group on the optical axis and the total length of the optical system OL.
  • conditional expression (12) If the corresponding value of the conditional expression (12) is out of the above range, it becomes difficult to correct the fluctuation of various aberrations at the time of focusing.
  • the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (12) By setting the upper limit value of the conditional expression (12) to 0.058, 0.055, 0.053, 0.050, 0.048, 0.045, and further 0.043, the present embodiment The effect can be made more certain.
  • the optical system OL satisfies the following conditional expression (13).
  • ⁇ B lateral magnification of the rear group GB when the infinity object is in focus
  • ⁇ F lateral magnification of the focusing lens group when the infinity object is in focus.
  • Conditional expression (13) defines an appropriate relationship between the lateral magnification of the rear group GB when the infinity object is in focus and the lateral magnification of the focusing lens group when the infinity object is in focus. By satisfying the conditional expression (13), it is possible to suppress fluctuations in the angle of view when focusing on an infinity object.
  • conditional expression (13) If the corresponding value of the conditional expression (13) is out of the above range, it becomes difficult to suppress the fluctuation of the angle of view when focusing on an infinity object.
  • the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (13) By setting the upper limit value of the conditional expression (13) to 0.48, 0.45, 0.43, 0.40, and further 0.38, the effect of the present embodiment is further ensured. be able to.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (14). 0.05 ⁇ Bf / TL ⁇ 0.25 ... (14) However, Bf: back focus of the optical system OL
  • Conditional expression (14) defines an appropriate relationship between the back focus of the optical system OL and the total length of the optical system OL. By satisfying the conditional expression (14), the back focus can be shortened with respect to the total length of the optical system, and the optical system can be miniaturized, which is preferable.
  • conditional expression (14) If the corresponding value of the conditional expression (14) is out of the above range, the back focus becomes longer with respect to the total length of the optical system, and it becomes difficult to miniaturize the optical system.
  • the lower limit of the conditional expression (14) By setting the lower limit of the conditional expression (14) to 0.06 and further to 0.08, the effect of the present embodiment can be further ensured. Further, by setting the upper limit value of the conditional expression (14) to 0.24 and further to 0.22, the effect of the present embodiment can be further ensured.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (15). 1.00 ⁇ FNO ⁇ 3.00 ... (15) However, FNO: F number of the optical system OL
  • the conditional expression (15) defines an appropriate range for the F number of the optical system OL. Satisfying the conditional expression (15) is preferable because a bright optical system can be obtained.
  • the lower limit of the conditional expression (15) is 1.10, 1.15, and further 1.20, the effect of the present embodiment can be further ensured.
  • the upper limit value of the conditional expression (15) is 2.85, 2.70, 2.60, 2.50, 2.40, 2.30, 2.20, and further 2.10, The effect of this embodiment can be made more certain.
  • the optical system OL according to the present embodiment satisfies the following conditional expression (16). 12.00 ° ⁇ 2 ⁇ ⁇ 40.00 ° ⁇ ⁇ ⁇ (16) However, 2 ⁇ : the total angle of view of the optical system OL
  • Conditional expression (16) defines an appropriate range for the entire angle of view of the optical system OL. Satisfying the conditional expression (16) is preferable because an optical system having a wide angle of view can be obtained.
  • the lower limit of the conditional expression (16) By setting the lower limit of the conditional expression (16) to 12.50 °, 13.00 °, 13.50 °, 14.00 °, and further 14.50 °, the effect of this embodiment is more reliable. Can be.
  • the upper limit values of the conditional expression (16) to 38.50 °, 37.00 °, 36.00 °, and further 35.50 °, the effect of the present embodiment is further ensured. be able to.
  • the manufacturing method of the optical system OL will be outlined.
  • the front group GA, the aperture (opening aperture) S, and the rear group GB are arranged in order from the object side along the optical axis (step ST1).
  • a focusing lens group (GF1) having a negative refractive power is arranged on the most object side of the rear group GB (step ST2).
  • the focusing lens group moves along the optical axis, and the distance between the adjacent lens groups changes (step ST3).
  • each lens is arranged in the lens barrel so as to satisfy at least the above conditional expression (1) (step ST4). According to such a manufacturing method, it becomes possible to manufacture an optical system having little fluctuation in the angle of view at the time of focusing.
  • FIG. 1 show the configuration of the optical system OL ⁇ OL (1) to OL (8) ⁇ according to the first to eighth embodiments.
  • FIG. 15 shows the configuration of the optical system OL ⁇ OL (1) to OL (8) ⁇ according to the first to eighth embodiments.
  • FIG. 15 is a cross-sectional view showing the refractive power distribution.
  • the moving direction along the optical axis of each focusing lens group when focusing on a short-range object from infinity is shown. , Indicated by an arrow with the letters "focus".
  • each lens group is represented by a combination of reference numerals G and numbers, and each lens is designated by a combination of reference numerals L and numbers.
  • the lens group and the like are represented by independently using combinations of the reference numerals and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.
  • Tables 1 to 8 are shown below, of which Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the first embodiment. 5 Examples, Table 6 is a table showing 6th Example, Table 7 is a table showing 7th Example, and Table 8 is a table showing each specification data in the 8th Example.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degrees)
  • is the half angle of view
  • Y is the image height.
  • TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity
  • Bf is the image from the final surface of the lens on the optical axis at infinity.
  • the distance to the surface I (back focus) is shown.
  • Bf (a) indicates the distance (air equivalent distance) on the optical axis from the lens surface on the image plane side to the image plane I in the lens arranged on the image plane side of the optical system.
  • fA indicates the focal length of the front group.
  • fR indicates the combined focal length of at least one lens group arranged on the image plane side of the focusing lens group on the most object side in the rear group.
  • ⁇ x indicates the amount of movement of the focusing lens group when focusing from an infinity object to a short-distance object.
  • ⁇ F indicates the lateral magnification of the focusing lens group at the time of focusing on an infinity object.
  • ⁇ B indicates the lateral magnification of the rear group when the object at infinity is in focus.
  • ⁇ R1 indicates the lateral magnification of the subsequent lens group when the object at infinity is in focus.
  • the plane numbers indicate the order of the optical planes from the object side along the traveling direction of the light beam
  • R is the radius of curvature of each optical plane (the plane whose center of curvature is located on the image side).
  • D is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member with respect to the d line
  • ⁇ d is optical.
  • the Abbe numbers based on the d-line of the material of the member are shown. “ ⁇ ” of the radius of curvature indicates a plane or an opening, and (aperture S) indicates an opening aperture S.
  • the description of the refractive index nd of air 1.00000 is omitted.
  • the table of [Variable spacing data] shows the surface spacing at the surface number i in which the surface spacing is (Di) in the table of [Lens specifications]. Note that D0 indicates the distance from the object to the optical surface on the most object side in the optical system.
  • f indicates the focal length of the entire lens system, and ⁇ indicates the photographing magnification.
  • the table of [lens group data] shows the starting surface (the surface closest to the object) and the focal length of each lens group.
  • mm is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally.
  • the optical performance is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.
  • FIG. 1 is a diagram showing a lens configuration of an optical system according to the first embodiment.
  • the optical system OL (1) according to the first embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the symbol (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 has a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a convex surface toward the object side, which are arranged in order from the object side along the optical axis.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side.
  • the third lens group G3 includes a junction lens in which a biconcave negative lens L31 and a biconvex positive lens L32 are joined in order from the object side along the optical axis, and a biconvex positive lens L33. And a biconvex positive lens L34.
  • the fourth lens group G4 is composed of a biconcave negative lens L41.
  • the fifth lens group G5 includes a bonded lens in which a biconvex positive lens L51 arranged in order from the object side along the optical axis and a negative meniscus lens L52 having a concave surface facing the object side are joined, and a bonded lens on the object side. It is composed of a negative meniscus lens L53 with a concave surface facing.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 1 below lists the values of the specifications of the optical system according to the first embodiment.
  • FIG. 2A is a diagram of various aberrations of the optical system according to the first embodiment at the time of infinity focusing.
  • FIG. 2B is a diagram of various aberrations of the optical system according to the first embodiment at the time of short-distance focusing.
  • FNO indicates an F number
  • Y indicates an image height.
  • NA indicates the numerical aperture
  • Y indicates the image height.
  • the spherical aberration diagram shows the value of the F number or numerical aperture corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height. ..
  • the solid line shows the sagittal image plane and the broken line shows the meridional image plane.
  • the optical system according to the first embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 3 is a diagram showing a lens configuration of an optical system according to a second embodiment.
  • the optical system OL (2) according to the second embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 has a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens arranged in order from the object side along the optical axis. It is composed of a bonded lens in which a lens L13 and a biconcave negative lens L14 are bonded, and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side.
  • the third lens group G3 is a bonded lens in which a negative meniscus lens L31 having a convex surface facing the object side and a positive meniscus lens L32 having a convex surface facing the object side are joined in order from the object side along the optical axis.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side.
  • the fifth lens group G5 is composed of a positive meniscus lens L51 having a convex surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 2 below lists the values of the specifications of the optical system according to the second embodiment.
  • FIG. 4A is a diagram of various aberrations of the optical system according to the second embodiment at infinity focusing.
  • FIG. 4B is a diagram of various aberrations of the optical system according to the second embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the second embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 5 is a diagram showing a lens configuration of an optical system according to a third embodiment.
  • the optical system OL (3) according to the third embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 has a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens arranged in order from the object side along the optical axis. It is composed of a bonded lens in which a lens L13 and a biconcave negative lens L14 are bonded.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side.
  • the fifth lens group G5 is composed of a positive meniscus lens L51 having a convex surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 3 below lists the values of the specifications of the optical system according to the third embodiment.
  • FIG. 6A is a diagram of various aberrations of the optical system according to the third embodiment at the time of infinity focusing.
  • FIG. 6B is a diagram of various aberrations of the optical system according to the third embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the third embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 7 is a diagram showing a lens configuration of an optical system according to a fourth embodiment.
  • the optical system OL (4) according to the fourth embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a bonded lens to which a negative meniscus lens L13 is bonded and a bonded lens to which a biconvex positive lens L14 and a biconcave negative lens L15 are bonded.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side.
  • the third lens group G3 includes a negative meniscus lens L31 having a concave surface facing the object side, a positive meniscus lens L32 having a concave surface facing the object side, and a biconvex positive lens arranged in order from the object side along the optical axis. It is composed of a lens L33.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side.
  • the fifth lens group G5 has a negative meniscus lens L51 having a convex surface facing the object side, a positive meniscus lens L52 having a convex surface facing the object side, and a concave surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a negative meniscus lens L53 directed toward the object.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 4 lists the values of the specifications of the optical system according to the fourth embodiment.
  • FIG. 8A is a diagram of various aberrations of the optical system according to the fourth embodiment at the time of infinity focusing.
  • FIG. 8B is a diagram of various aberrations of the optical system according to the fourth embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the fourth embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 9 is a diagram showing a lens configuration of an optical system according to a fifth embodiment.
  • the optical system OL (5) according to the fifth embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • a positive meniscus lens L11 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconvex positive lens L12, and a biconcave negative lens L13 are joined. It is composed of a bonded lens, and a bonded lens in which a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side are bonded.
  • the second lens group G2 is composed of a bonded lens having a negative refractive power, in which a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22 are joined in order from the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31 arranged in order from the object side along the optical axis, and a negative meniscus lens L32 with a concave surface facing the object side.
  • the fourth lens group G4 is composed of a bonded lens having a negative refractive power in which a biconvex positive lens L41 and a biconcave negative lens L42 are joined in order from the object side.
  • the fifth lens group G5 includes a bonded lens in which a negative meniscus lens L51 having a convex surface facing the object side and a biconvex positive lens L52, which are arranged in order from the object side along the optical axis, and a bonded lens on the object side. It is composed of a negative meniscus lens L53 with a concave surface facing.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 5 lists the values of the specifications of the optical system according to the fifth embodiment.
  • FIG. 10A is a diagram of various aberrations of the optical system according to the fifth embodiment at the time of infinity focusing.
  • FIG. 10B is a diagram of various aberrations of the optical system according to the fifth embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the fifth embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 11 is a diagram showing a lens configuration of an optical system according to a sixth embodiment.
  • the first lens group G1 having a positive refractive power and the second lens group G2 having a negative refractive power arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 form the rear group GB.
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 has a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a convex surface toward the object side, which are arranged in order from the object side along the optical axis.
  • the second lens group G2 is composed of a bonded lens having a negative refractive power in which a negative meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a convex surface facing the object side are joined in order from the object side. Will be done.
  • the third lens group G3 consists of a bonded lens in which a biconcave negative lens L31 and a biconvex positive lens L32 are joined in order from the object side along the optical axis, and a convex surface is directed toward the object side. It is composed of a positive meniscus lens L33 and a biconvex positive lens L34.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side.
  • the fifth lens group G5 includes a bonded lens in which a biconvex positive lens L51 arranged in order from the object side along the optical axis and a negative meniscus lens L52 having a concave surface facing the object side are joined, and a bonded lens on the object side. It is composed of a negative meniscus lens L53 with a concave surface facing.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 6 lists the values of the specifications of the optical system according to the sixth embodiment.
  • FIG. 12A is a diagram of various aberrations of the optical system according to the sixth embodiment at infinity focusing.
  • FIG. 12B is a diagram of various aberrations of the optical system according to the sixth embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the sixth embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 13 is a diagram showing a lens configuration of an optical system according to a seventh embodiment.
  • the optical system OL (7) according to the seventh embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power arranged in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power.
  • the second lens group G2 moves toward the image side along the optical axis, and the distance between adjacent lens groups changes.
  • the first lens group G1 and the third lens group G3 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 and the third lens group G3 form the rear group GB.
  • the second lens group G2 corresponds to the in-focus lens group GF arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the in-focus lens group GF.
  • a positive meniscus lens L11 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconvex positive lens L12, and a biconcave negative lens L13 are joined. It is composed of a bonded lens, and a bonded lens in which a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side are bonded.
  • the second lens group G2 is composed of a bonded lens having a negative refractive power, in which a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22 are joined in order from the object side.
  • the third lens group G3 is a bonded lens in which a biconvex positive lens L31, a biconcave negative lens L32, and a biconvex positive lens L33 are joined in order from the object side along the optical axis.
  • a junction lens in which a biconvex positive lens L34 and a biconcave negative lens L35 are joined, a negative meniscus lens L36 with a convex surface facing the object side, a biconvex positive lens L37, and an object side. It is composed of a negative meniscus lens L38 with a concave surface facing the surface.
  • the image plane I is arranged on the image side of the third lens group G3.
  • a parallel flat plate PP is arranged between the third lens group G3 and the image plane I.
  • Table 7 lists the values of the specifications of the optical system according to the seventh embodiment.
  • FIG. 14A is a diagram of various aberrations of the optical system according to the seventh embodiment at the time of infinity focusing.
  • FIG. 14B is a diagram of various aberrations of the optical system according to the seventh embodiment during short-distance focusing. From each aberration diagram, the optical system according to the seventh embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • FIG. 15 is a diagram showing a lens configuration of an optical system according to an eighth embodiment.
  • the optical system OL (8) according to the eighth embodiment has a first lens group G1 having a positive refractive power and a second lens group G2 having a negative power, which are arranged in order from the object side along the optical axis. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 moves to the image side along the optical axis
  • the fourth lens group G4 moves to the object side along the optical axis and is adjacent to each other.
  • the distance between each lens group changes.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I.
  • the aperture stop S is arranged between the first lens group G1 and the second lens group G2. At the time of focusing, the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes the front group GA
  • the second lens group G2 corresponds to the first focusing lens group GF1 arranged on the most object side of the rear group GB.
  • the third lens group G3 corresponds to the succeeding lens group GR1 arranged adjacent to the image plane side of the first focusing lens group GF1.
  • the fourth lens group G4 corresponds to the second focusing lens group GF2 arranged on the image plane side of the first focusing lens group GF1.
  • the first lens group G1 has a positive meniscus lens L11 having a convex surface facing the object side, a regular meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens arranged in order from the object side along the optical axis. It is composed of a bonded lens in which a lens L13 and a biconcave negative lens L14 are bonded.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface facing the object side.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 with a concave surface facing the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • a parallel flat plate PP is arranged between the fifth lens group G5 and the image plane I.
  • Table 8 lists the values of the specifications of the optical system according to the eighth embodiment.
  • FIG. 16A is a diagram of various aberrations of the optical system according to the eighth embodiment when focusing at infinity.
  • FIG. 16B is a diagram of various aberrations of the optical system according to the eighth embodiment at the time of short-distance focusing. From each aberration diagram, the optical system according to the eighth embodiment has excellent imaging performance in which various aberrations are satisfactorily corrected in the entire range from infinity focusing to short-distance focusing. You can see that. Therefore, it is possible to reduce the fluctuation of the angle of view at the time of focusing while maintaining good optical performance even when focusing on a short-distance object.
  • Conditional expression (1) 0.50 ⁇ ST / TL ⁇ 0.95
  • Conditional expression (2) 0.65 ⁇ (-fF) /fA ⁇ 1.20
  • Conditional expression (3) 0.70 ⁇ (-fF) /fR ⁇ 1.80
  • Conditional expression (4) 0.00 ⁇ R1 / ⁇ F ⁇ 0.25
  • Conditional expression (5) 0.03 ⁇ x / f ⁇ 0.35
  • Conditional expression (6) 0.65 ⁇ f / (-fF) ⁇ 1.60
  • Conditional expression (7) 2.00 ⁇ TL / (FNO ⁇ Bf) ⁇ 10.00
  • Conditional expression (8) -2.50 ⁇ (rFR2 + rFR1) / (rFR2-rFR1) ⁇ -0.25
  • Conditional expression (9) 0.90 ⁇ (rNR2 + rNR1) / (rNR2-rNR1) ⁇ 2.65
  • a three-group configuration and a five-group configuration are shown, but the present application is not limited to this, and other group configurations (for example, four groups, six groups, etc.) are configured. You can also do it.
  • a lens or a lens group may be added to the most object side or the most image plane side of the optical system of the present embodiment.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes at the time of focusing.
  • the lens group or partial lens group is moved so as to have a component in the direction perpendicular to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake. It may be used as an anti-vibration lens group.
  • the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface.
  • lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable.
  • the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical surface shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical surface shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
  • GRIN lens refractive index distribution type lens
  • the aperture diaphragm is preferably arranged between the first lens group and the second lens group, but the role may be substituted by the frame of the lens without providing the member as the aperture diaphragm.
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I image plane S aperture stop

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

光学系(OL)は、光軸に沿って物体側から順に並んだ、前群(GA)と、絞り(S)と、後群(GB)とからなり、後群(GB)は、後群(GB)の最も物体側に配置された負の屈折力を有する合焦レンズ群(GF1)を有し、合焦の際、合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化し、以下の条件式を満足する。 0.50<ST/TL<0.95 但し、ST:絞り(S)から像面(I)までの光軸上の距離 TL:光学系(OL)の全長

Description

光学系、光学機器、および光学系の製造方法
 本発明は、光学系、光学機器、および光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した光学系が提案されている(例えば、特許文献1を参照)。このような光学系においては、合焦の際の画角変動を抑えることが求められている。
特開2011-197471号公報
 本発明に係る光学系は、光軸に沿って物体側から順に並んだ、前群と、絞りと、後群とからなり、前記後群は、前記後群の最も物体側に配置された負の屈折力を有する合焦レンズ群を有し、合焦の際、前記合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化し、以下の条件式を満足する。
 0.50<ST/TL<0.95
 但し、ST:前記絞りから像面までの光軸上の距離
    TL:前記光学系の全長
 本発明に係る光学機器は、上記光学系を備えて構成される。
 本発明に係る光学系の製造方法は、光軸に沿って物体側から順に並んだ、前群と、絞りと、後群とからなる光学系の製造方法であって、前記後群は、前記後群の最も物体側に配置された負の屈折力を有する合焦レンズ群を有し、合焦の際、前記合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 0.50<ST/TL<0.95
 但し、ST:前記絞りから像面までの光軸上の距離
    TL:前記光学系の全長
第1実施例に係る光学系のレンズ構成を示す図である。 図2(A)、図2(B)はそれぞれ、第1実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第2実施例に係る光学系のレンズ構成を示す図である。 図4(A)、図4(B)はそれぞれ、第2実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第3実施例に係る光学系のレンズ構成を示す図である。 図6(A)、図6(B)はそれぞれ、第3実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第4実施例に係る光学系のレンズ構成を示す図である。 図8(A)、図8(B)はそれぞれ、第4実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第5実施例に係る光学系のレンズ構成を示す図である。 図10(A)、図10(B)はそれぞれ、第5実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第6実施例に係る光学系のレンズ構成を示す図である。 図12(A)、図12(B)はそれぞれ、第6実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第7実施例に係る光学系のレンズ構成を示す図である。 図14(A)、図14(B)はそれぞれ、第7実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第8実施例に係る光学系のレンズ構成を示す図である。 図16(A)、図16(B)はそれぞれ、第8実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 本実施形態に係る光学系を備えたカメラの構成を示す図である。 本実施形態に係る光学系の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図17に基づいて説明する。このカメラ1は、図17に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる光学系OLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
 被写体からの光は、撮影レンズ3の光学系OLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。また、図17に示す光学系OLは、撮影レンズ3に備えられる光学系を模式的に示したものであり、光学系OLのレンズ構成はこの構成に限定されるものではない。
 次に、本実施形態に係る光学系について説明する。本実施形態に係る光学系(撮影レンズ)OLの一例としての光学系OL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、前群GAと、絞り(開口絞り)Sと、後群GBとから構成される。後群GBは、後群GBの最も物体側に配置された負の屈折力を有する合焦レンズ群(GF1)を有して構成される。合焦の際、合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化する。
 上記構成の下、本実施形態に係る光学系OLは、以下の条件式(1)を満足する。
 0.50<ST/TL<0.95 ・・・(1)
 但し、ST:絞りSから像面Iまでの光軸上の距離
    TL:光学系OLの全長
 本実施形態によれば、合焦の際の画角変動が少ない光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系OLは、図3に示す光学系OL(2)でも良く、図5に示す光学系OL(3)でも良く、図7に示す光学系OL(4)でも良く、図9に示す光学系OL(5)でも良い。また、本実施形態に係る光学系OLは、図11に示す光学系OL(6)でも良く、図13に示す光学系OL(7)でも良く、図15に示す光学系OL(8)でも良い。
 条件式(1)は、絞りSから像面Iまでの光軸上の距離と、光学系OLの全長との適切な関係を規定するものである。条件式(1)を満足することで、合焦の際の画角変動を少なくすることができる。
 条件式(1)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(1)の下限値を、0.53、0.55、0.58、0.60、0.63、さらに0.65に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(1)の上限値を、0.93、0.90、0.88、0.85、0.83、0.80、さらに0.78に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(2)を満足することが望ましい。
 0.65<(-fF)/fA<1.20 ・・・(2)
 但し、fF:合焦レンズ群の焦点距離
    fA:前群GAの焦点距離
 条件式(2)は、合焦レンズ群の焦点距離と、前群GAの焦点距離との適切な関係を規定するものである。条件式(2)を満足することで、合焦の際の画角変動を少なくすることができる。
 条件式(2)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(2)の下限値を、0.68、0.70、0.73、0.75、さらに0.77に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(2)の上限値を、1.18、1.15、1.13、1.00、さらに1.09に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLにおいて、後群GBは、合焦レンズ群より像面側に配置された少なくとも一つのレンズ群を有し、以下の条件式(3)を満足することが望ましい。
 0.70<(-fF)/fR<1.80 ・・・(3)
 但し、fF:合焦レンズ群の焦点距離
    fR:前記少なくとも一つのレンズ群の合成焦点距離
 条件式(3)は、合焦レンズ群の焦点距離と、合焦レンズ群より像面側に配置された少なくとも一つのレンズ群の合成焦点距離との適切な関係を規定するものである。なお、前記少なくとも一つのレンズ群の合成焦点距離は、無限遠物体合焦時の合成焦点距離である。また、前記少なくとも一つのレンズ群の合成焦点距離は、レンズ群の数が一つの場合、当該一つのレンズ群の焦点距離であり、レンズ群の数が複数の場合、当該複数のレンズ群の合成焦点距離である。条件式(3)を満足することで、合焦の際の画角変動を少なくすることができる。
 条件式(3)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(3)の下限値を、0.73、0.75、0.78、0.80、さらに0.83に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(3)の上限値を、1.78、1.75、1.73、1.70、1.68、1.65、さらに1.63に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLにおいて、後群GBは、合焦レンズ群の像面側に隣り合って配置された後続レンズ群GR1を有し、以下の条件式(4)を満足することが望ましい。
 0.00<βR1/βF<0.25 ・・・(4)
 但し、βR1:無限遠物体合焦時の後続レンズ群GR1の横倍率
    βF:無限遠物体合焦時の合焦レンズ群の横倍率
 条件式(4)は、無限遠物体合焦時の後続レンズ群GR1の横倍率と、無限遠物体合焦時の合焦レンズ群の横倍率との適切な関係を規定するものである。条件式(4)を満足することで、合焦の際の像倍率の変動を少なくすることができる。
 条件式(4)の対応値が上記範囲を外れてしまうと、合焦の際の像倍率の変動を抑えることが困難になる。条件式(4)の下限値を0.01に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(4)の上限値を、0.23、0.20、0.18、0.16、さらに0.15に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(5)を満足することが望ましい。
 0.03<Δx/f<0.35 ・・・(5)
 但し、Δx:無限遠物体から近距離物体への合焦の際の合焦レンズ群の移動量
    f:光学系OLの焦点距離
 条件式(5)は、合焦の際の合焦レンズ群の移動量と、光学系OLの焦点距離との適切な関係を規定するものである。条件式(5)を満足することで、像面湾曲、球面収差、コマ収差等を良好に補正することができる。なお、本実施形態において、合焦レンズ群の像面側への移動量の符号を+とし、物体側への移動量の符号を-とする。
 条件式(5)の対応値が上記範囲を外れてしまうと、像面湾曲、球面収差、コマ収差等を補正することが困難になる。条件式(5)の下限値を、0.04、0.06、さらに0.08に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(5)の上限値を、0.33、0.30、0.28、0.25、0.23、0.20、さらに0.18に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(6)を満足することが望ましい。
 0.65<f/(-fF)<1.60 ・・・(6)
 但し、f:光学系OLの焦点距離
    fF:合焦レンズ群の焦点距離
 条件式(6)は、光学系OLの焦点距離と、合焦レンズ群の焦点距離との適切な関係を規定するものである。条件式(6)を満足することで、色収差、像面湾曲等を良好に補正することができる。
 条件式(6)の対応値が上記範囲を外れてしまうと、色収差、像面湾曲等を補正することが困難になる。条件式(6)の下限値を、0.68、0.70、さらに0.73に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(6)の上限値を、1.58、1.55、1.53、1.50、1.48、1.45、1.43、さらに1.40に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(7)を満足することが望ましい。
 2.00<TL/(FNO×Bf)<10.00 ・・・(7)
 但し、FNO:光学系OLのFナンバー
    Bf:光学系OLのバックフォーカス
 条件式(7)は、光学系OLの全長と、光学系OLのFナンバーおよびバックフォーカスとの適切な関係を規定するものである。条件式(7)を満足することで、周辺光量まで十分に確保し、大口径で且つバックフォーカスが短い光学系とすることが可能である。なお、条件式(7)および後述の条件式(14)における光学系OLのバックフォーカスは、光学系OLの最も像面側に配置されたレンズにおける像面側のレンズ面から像面Iまでの光軸上の距離(空気換算距離)を示す。
 条件式(7)の対応値が上記範囲を外れてしまうと、画角の周辺における光量を十分に確保することが困難となる。条件式(7)の下限値を、2.10、2.15、2.20、2.25、2.30、2.35、2.40、さらに2.43に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(7)の上限値を、9.85、9.65、9.60、9.55、9.50、9.45、さらに9.40に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLにおいて、合焦レンズ群は、1つの負レンズ成分から構成されることが望ましい。これにより、合焦レンズ群が軽量になるため、無限遠物体から近距離物体への合焦を高速で行うことが可能になる。なお、本実施形態において、レンズ成分は、単レンズ又は接合レンズを示すものである。
 本実施形態に係る光学系OLは、以下の条件式(8)を満足することが望ましい。
 -2.50<(rFR2+rFR1)/(rFR2-rFR1)<-0.25
                                 ・・・(8)
 但し、rFR1:合焦レンズ群における最も物体側のレンズ面の曲率半径
    rFR2:合焦レンズ群における最も像面側のレンズ面の曲率半径
 条件式(8)は、合焦レンズ群を構成するレンズのシェイプファクターについて適切な範囲を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等を良好に補正することができる。
 条件式(8)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差等を補正することが困難になる。条件式(8)の下限値を、-2.45、-2.40、-2.35、-2.30、-2.25、さらに-2.23に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(8)の上限値を、-0.30、-0.33、-0.35、-0.38、-0.40、-0.43、-0.45、-0.48、さらに-0.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(9)を満足することが望ましい。
 0.90<(rNR2+rNR1)/(rNR2-rNR1)<2.65
                                 ・・・(9)
 但し、rNR1:光学系OLの最も像面側に配置されたレンズにおける物体側のレンズ面の曲率半径
    rNR2:光学系OLの最も像面側に配置されたレンズにおける像面側のレンズ面の曲率半径
 条件式(9)は、光学系OLの最も像面側に配置されたレンズのシェイプファクターについて適切な範囲を規定するものである。条件式(9)を満足することで、球面収差や歪曲収差を良好に補正することができる。
 条件式(9)の対応値が上記範囲を外れてしまうと、球面収差や歪曲収差を補正することが困難になる。条件式(9)の下限値を、0.93、0.95、0.98、1.00、さらに1.02に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(9)の上限値を、2.60、2.58、2.55、2.53、2.50、2.48、さらに2.45に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(10)を満足することが望ましい。
 0.08<1/βF<0.55 ・・・(10)
 但し、βF:無限遠物体合焦時の合焦レンズ群の横倍率
 条件式(10)は、無限遠物体合焦時の合焦レンズ群の横倍率について適切な範囲を規定するものである。条件式(10)を満足することで、無限遠物体合焦時の球面収差や像面湾曲などの諸収差を良好に補正することができる。
 条件式(10)の対応値が上記範囲を外れてしまうと、無限遠物体合焦時の球面収差や像面湾曲などの諸収差を補正することが困難になる。条件式(10)の下限値を、0.10、0.12、さらに0.14に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(10)の上限値を、0.53、0.50、0.48、0.45、さらに0.43に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(11)を満足することが望ましい。
 {βF+(1/βF)}-2<0.15 ・・・(11)
 但し、βF:無限遠物体合焦時の合焦レンズ群の横倍率
 条件式(11)は、無限遠物体合焦時の合焦レンズ群の横倍率について適切な範囲を規定するものである。条件式(11)を満足することで、無限遠物体合焦時の球面収差や像面湾曲などの諸収差を良好に補正することができる。
 条件式(11)の対応値が上記範囲を外れてしまうと、無限遠物体合焦時の球面収差や像面湾曲などの諸収差を補正することが困難になる。条件式(11)の上限値を0.14、さらに0.13に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(12)を満足することが望ましい。
 0.003<BLDF/TL<0.060 ・・・(12)
 但し、BLDF:合焦レンズ群の光軸上の長さ
 条件式(12)は、合焦レンズ群の光軸上の長さと、光学系OLの全長との適切な関係を規定するものである。条件式(12)を満足することで、合焦レンズ群を軽量化することができ、合焦の際の諸収差の変動を抑えることができる。
 条件式(12)の対応値が上記範囲を外れてしまうと、合焦の際の諸収差の変動を補正することが困難になる。条件式(12)の下限値を、0.004、0.006、さらに0.008に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(12)の上限値を、0.058、0.055、0.053、0.050、0.048、0.045、さらに0.043に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(13)を満足することが望ましい。
 0.05<βB/βF<0.50 ・・・(13)
 但し、βB:無限遠物体合焦時の後群GBの横倍率
    βF:無限遠物体合焦時の合焦レンズ群の横倍率
 条件式(13)は、無限遠物体合焦時の後群GBの横倍率と、無限遠物体合焦時の合焦レンズ群の横倍率との適切な関係を規定するものである。条件式(13)を満足することで、無限遠物体合焦時の画角変動を抑えることができる。
 条件式(13)の対応値が上記範囲を外れてしまうと、無限遠物体合焦時の画角変動を抑えることが困難になる。条件式(13)の下限値を、0.06、0.08、0.10、さらに0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(13)の上限値を、0.48、0.45、0.43、0.40、さらに0.38に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(14)を満足することが望ましい。
 0.05<Bf/TL<0.25 ・・・(14)
 但し、Bf:光学系OLのバックフォーカス
 条件式(14)は、光学系OLのバックフォーカスと、光学系OLの全長との適切な関係を規定するものである。条件式(14)を満足することで、光学系の全長に対してバックフォーカスを短くすることができ、光学系の小型化が可能となり好ましい。
 条件式(14)の対応値が上記範囲を外れてしまうと、光学系の全長に対してバックフォーカスが長くなり、光学系の小型化が困難となる。条件式(14)の下限値を0.06、さらに0.08に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(14)の上限値を0.24、さらに0.22に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(15)を満足することが望ましい。
 1.00<FNO<3.00 ・・・(15)
 但し、FNO:光学系OLのFナンバー
 条件式(15)は、光学系OLのFナンバーについて適切な範囲を規定するものである。条件式(15)を満足することで、明るい光学系が得られるので好ましい。条件式(15)の下限値を、1.10、1.15、さらに1.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(15)の上限値を、2.85、2.70、2.60、2.50、2.40、2.30、2.20、さらに2.10に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る光学系OLは、以下の条件式(16)を満足することが望ましい。
 12.00°<2ω<40.00° ・・・(16)
 但し、2ω:光学系OLの全画角
 条件式(16)は、光学系OLの全画角について適切な範囲を規定するものである。条件式(16)を満足することで、画角の広い光学系が得られるので好ましい。条件式(16)の下限値を、12.50°、13.00°、13.50°、14.00°、さらに14.50°に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(16)の上限値を、38.50°、37.00°、36.00°、さらに35.50°に設定することで、本実施形態の効果をより確実なものとすることができる。
 続いて、図18を参照しながら、本実施形態に係る光学系OLの製造方法について概説する。まず、光軸に沿って物体側から順に、前群GAと、絞り(開口絞り)Sと、後群GBとを配置する(ステップST1)。次に、後群GBの最も物体側に負の屈折力を有する合焦レンズ群(GF1)を配置する(ステップST2)。次に、合焦の際、合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化するように構成する(ステップST3)。そして、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、合焦の際の画角変動が少ない光学系を製造することが可能になる。
 以下、本実施形態の実施例に係る光学系OLを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13、図15は、第1~第8実施例に係る光学系OL{OL(1)~OL(8)}の構成及び屈折力配分を示す断面図である。第1~第8実施例に係る光学系OL(1)~OL(8)の断面図では、無限遠から近距離物体へ合焦する際の各合焦レンズ群の光軸に沿った移動方向を、「合焦」という文字とともに矢印で示している。
 これら図1、図3、図5、図7、図9、図11、図13、図15において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表8を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBfを加えた距離を示し、Bfは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。Bf(a)は光学系の最も像面側に配置されたレンズにおける像面側のレンズ面から像面Iまでの光軸上の距離(空気換算距離)を示す。また、[全体諸元]の表において、fAは前群の焦点距離を示す。fRは後群における最も物体側の合焦レンズ群より像面側に配置された少なくとも一つのレンズ群の合成焦点距離を示す。Δxは無限遠物体から近距離物体への合焦の際の合焦レンズ群の移動量を示す。βFは無限遠物体合焦時の合焦レンズ群の横倍率を示す。βBは無限遠物体合焦時の後群の横倍率を示す。βR1は無限遠物体合焦時の後続レンズ群の横倍率を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。
 [可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。なお、D0は物体から光学系における最も物体側の光学面までの距離を示す。[可変間隔データ]の表において、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る光学系のレンズ構成を示す図である。第1実施例に係る光学系OL(1)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14とが接合された接合レンズと、物体側に凸面を向けた負メニスカスレンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、から構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL31と両凸形状の正レンズL32とが接合された接合レンズと、両凸形状の正レンズL33と、両凸形状の正レンズL34と、から構成される。第4レンズ群G4は、両凹形状の負レンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とが接合された接合レンズと、物体側に凹面を向けた負メニスカスレンズL53と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f=87.000              fA=89.351
FNO=1.424               fR=64.417
 2ω=28.285              Δx=12.719
  Y=21.600              βF=2.601
 TL=129.013              βB=0.974
 Bf=1.000              βR1=0.359
 Bf(a)=11.168
[レンズ諸元]
 面番号    R      D    nd    νd
  1     69.6342   5.430   1.9591   17.47
  2    132.1539   0.116
  3     55.3642   5.244   2.0010   29.13
  4     89.6665   0.100
  5     40.4445   8.778   1.5503   75.49
  6    140.0000   1.200   1.8548   24.80
  7     29.5861   5.360
  8     63.3783   1.200   1.9229   20.88
  9     31.8132   0.100
  10    31.2943   8.078   1.7292   54.67
  11    237.3897   2.787
  12     ∞     (D12)            (絞りS)
  13    438.3400   1.200   1.5163   64.14
  14    38.4472   (D14)
  15    -65.9934   1.200   1.7783   23.91
  16    39.9168   8.673   1.8040   46.53
  17   -723.3882   0.100
  18    70.0000   9.587   1.8160   46.62
  19   -124.9732   0.100
  20    135.5192   4.257   1.9591   17.47
  21   -631.3761   (D21)
  22   -255.5306   1.200   1.6989   30.13
  23   1196.1373   (D23)
  24    148.6618   10.553   1.9591   17.47
  25    -40.7482   1.000   1.8929   20.36
  26   -348.6817   5.247
  27    -43.6865   1.200   1.7783   23.91
  28   -175.9036   9.113
  29     ∞     1.600   1.5168   63.88
  30     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=87.000    β=-0.034    β=-0.126
  D0     ∞      2570.805      728.956
  D12    1.500       4.805      14.219
  D14   19.979      16.674       7.260
  D21    2.293       4.042      10.530
  D23   10.820       9.071       2.583
[レンズ群データ]
 群   始面   焦点距離
 G1    1    89.351
 G2    13   -81.705
 G3    15    54.836
 G4    22   -301.138
 G5    24   -611.471
 図2(A)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る光学系の近距離合焦時の諸収差図である。無限遠合焦時の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。近距離合焦時の各収差図において、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る光学系のレンズ構成を示す図である。第2実施例に係る光学系OL(2)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、から構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL31と物体側に凸面を向けた正メニスカスレンズL32とが接合された接合レンズと、両凸形状の正レンズL33と、から構成される。第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凹面を向けた負メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
  f=84.853              fA=83.808
FNO=1.855               fR=70.031
 2ω=28.002              Δx=8.031
  Y=21.600              βF=4.398
 TL=114.050              βB=1.012
 Bf=1.000              βR1=0.165
 Bf(a)=11.205
[レンズ諸元]
 面番号    R      D    nd    νd
  1     57.5903   6.716   1.8081   22.76
  2    250.0000   4.134
  3     54.4191   3.242   1.7725   49.60
  4     87.8376   0.100
  5     42.6165   6.392   1.4560   91.37
  6   -1029.0613   1.200   2.0007   25.46
  7     30.7264   7.020
  8     33.1538   7.106   1.4978   82.57
  9    2847.8763   2.046
  10     ∞     (D10)            (絞りS)
  11   1361.3846   1.200   1.5530   55.07
  12    35.8243   (D12)
  13    105.7816   1.200   1.8052   25.46
  14    30.0129   5.549   1.7292   54.67
  15    177.6261   7.465
  16    70.0000   6.745   2.0007   25.46
  17    -91.9564   (D17)
  18    135.9285   1.200   1.6730   38.26
  19    50.2105   (D19)
  20    85.3901   2.439   2.0010   29.13
  21    157.8735   6.189
  22    -36.1082   4.843   1.8081   22.76
  23   -200.0000   9.150
  24     ∞     1.600   1.5168   63.88
  25     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=84.853    β=-0.034    β=-0.120
  D0     ∞      2544.448      725.082
  D10    1.500       3.593      9.531
  D12   11.802       9.709      3.771
  D17    6.374       7.694      11.374
  D19    7.839       6.518      2.839
[レンズ群データ]
 群   始面   焦点距離
 G1    1    83.808
 G2    11   -66.556
 G3    13    40.059
 G4    18   -118.979
 G5    20   -84.660
 図4(A)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る光学系のレンズ構成を示す図である。第3実施例に係る光学系OL(3)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合レンズと、から構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凹面を向けた負メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
  f=82.010              fA=102.479
FNO=2.060               fR=82.146
 2ω=28.969              Δx=10.381
  Y=21.600              βF=2.495
 TL=90.023              βB=0.800
 Bf=1.000              βR1=0.202
 Bf(a)=17.858
[レンズ諸元]
 面番号    R      D    nd    νd
  1     46.5771   5.350   1.7725   49.60
  2    179.4303   0.100
  3     40.3285   4.836   1.4970   81.61
  4    129.0466   0.100
  5     33.5684   6.218   1.4560   91.37
  6    -229.0734   1.000   1.9004   37.37
  7     29.9047   5.182
  8      ∞     (D8)            (絞りS)
  9     88.7347   1.000   1.4875   70.23
  10    33.2383   (D10)
  11    40.9864   8.072   1.7130   53.87
  12    -66.9077   (D12)
  13    159.0319   1.157   1.5814   40.75
  14    37.2505   (D14)
  15    46.6687   2.874   1.8590   22.73
  16    78.4005   7.093
  17    -26.5540   3.000   1.9037   31.31
  18    -63.6154   15.803
  19     ∞     1.600   1.5168   63.88
  20     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=82.010    β=-0.032    β=-0.113
  D0     ∞      2519.887      756.709
  D8    1.066       3.911      11.447 
  D10   17.056      14.211       6.675 
  D12    1.148       2.146       4.829 
  D14    6.369       5.372       2.688
[レンズ群データ]
 群   始面   焦点距離
 G1    1   102.479
 G2    9   -109.666
 G3    11    36.793
 G4    13   -83.956
 G5    15   -101.166
 図6(A)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、第4実施例に係る光学系のレンズ構成を示す図である。第4実施例に係る光学系OL(4)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と物体側に凸面を向けた負メニスカスレンズL13とが接合された接合レンズと、両凸形状の正レンズL14と両凹形状の負レンズL15とが接合された接合レンズと、から構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL31と、物体側に凹面を向けた正メニスカスレンズL32と、両凸形状の正レンズL33と、から構成される。第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と、物体側に凸面を向けた正メニスカスレンズL52と、物体側に凹面を向けた負メニスカスレンズL53と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
  f=84.453              fA=118.522
FNO=1.242               fR=61.307
 2ω=28.622              Δx=10.784
  Y=21.600              βF=3.780
 TL=130.011              βB=0.713
 Bf=1.000              βR1=0.153
 Bf(a)=11.185
[レンズ諸元]
 面番号    R      D    nd    νd
  1     73.2143   10.224   1.8929   20.36
  2    453.0360   0.100
  3     54.5976   9.054   1.5503   75.49
  4    258.6524   1.000   1.7283   28.46
  5     39.1638   1.660
  6     45.1558   12.609   1.5928   68.62
  7    -100.3906   1.000   1.9229   20.88
  8    119.0758   4.000
  9      ∞     (D9)            (絞りS)
  10    361.2899   1.000   1.5530   55.07
  11    47.0735   (D11)
  12    -36.4250   1.300   1.6398   34.47
  13    -49.6895   0.100
  14   -131.6092   5.891   1.7292   54.67
  15    -54.7849   0.100
  16    50.6772   14.609   1.7725   49.60
  17   -230.5704   (D17)
  18    113.4024   1.000   1.8081   22.74
  19    52.3424   (D19)
  20    89.2568   1.000   1.9229   20.88
  21    36.4463   0.100
  22    36.3836   9.726   1.9591   17.47
  23    183.6004   8.074
  24    -38.1283   1.000   1.7408   27.79
  25    -98.0949   9.130
  26     ∞     1.600   1.5168   63.88 
  27     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=84.453    β=-0.043    β=-0.087
  D0     ∞     2018.279     1007.763
  D9    2.000       6.974      12.784
  D11   21.625      16.651      10.841
  D17    2.000       4.186       6.592
  D19    9.109       6.923       4.518
[レンズ群データ]
 群   始面   焦点距離
 G1    1   118.522
 G2    10   -97.991
 G3    12    43.900
 G4    18   -121.185
 G5    20   -251.050
 図8(A)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、第5実施例に係る光学系のレンズ構成を示す図である。第5実施例に係る光学系OL(5)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13とが接合された接合レンズと、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15とが接合された接合レンズと、から構成される。第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹形状の負レンズL22とが接合された負の屈折力を有する接合レンズから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、から構成される。第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42とが接合された負の屈折力を有する接合レンズから構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と両凸形状の正レンズL52とが接合された接合レンズと、物体側に凹面を向けた負メニスカスレンズL53と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
  f=68.369              fA=75.680
FNO=1.850               fR=52.672
 2ω=35.083              Δx=11.502
  Y=21.600              βF=6.768
 TL=116.082              βB=0.903
 Bf=1.000              βR1=0.110
 Bf(a)=11.055
[レンズ諸元]
 面番号    R      D    nd    νd
  1    113.3605   3.581   1.9229   18.90
  2    259.4789   2.000
  3     64.8154   7.756   1.7495   35.28
  4    -305.8877   1.000   1.9229   18.90
  5     89.4171   9.650
  6     42.6939   1.000   1.9037   31.34
  7     24.8498   8.072   1.6584   50.88
  8    195.3643   2.647
  9      ∞     (D9)            (絞りS)
  10   -123.7398   2.263   1.8590   22.73
  11    -60.4222   1.000   1.5225   59.84
  12    34.0422   (D12)
  13    35.0724   8.638   1.6584   50.88
  14    -72.0999   0.816
  15    -53.1994   6.085   2.0033   28.27
  16    -57.0661   (D16)
  17    200.0000   4.047   1.5503   75.50
  18    -70.0000   1.000   1.7888   28.43
  19    88.7178   (D19)
  20    146.9186   1.000   1.7847   26.29
  21    35.2338   8.408   2.0010   29.14
  22   -294.1634   5.492
  23    -25.4180   1.000   1.6889   31.07
  24   -199.9991   9.000
  25     ∞     1.600   1.5168   63.88
  26     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=68.369    β=-0.028    β=-0.148
  D0     ∞      2500.000      500.000
  D9    2.021       4.185      13.522
  D12   20.093      17.929       8.591
  D16    1.418       1.749       4.177
  D19    5.496       5.164       2.737
[レンズ群データ]
 群   始面   焦点距離
 G1    1    75.680
 G2    10   -59.462
 G3    13    39.475
 G4    17   -105.696
 G5    20   -171.475
 図10(A)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、第6実施例に係る光学系のレンズ構成を示す図である。第6実施例に係る光学系OL(6)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2および第4レンズ群G4が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14とが接合された接合レンズと、物体側に凸面を向けた負メニスカスレンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と物体側に凸面を向けた負メニスカスレンズL22とが接合された負の屈折力を有する接合レンズから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL31と両凸形状の正レンズL32とが接合された接合レンズと、物体側に凸面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とが接合された接合レンズと、物体側に凹面を向けた負メニスカスレンズL53と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
  f=79.983              fA=80.002
FNO=1.650               fR=58.141
 2ω=14.994              Δx=8.575
  Y=21.600              βF=3.011
 TL=127.000              βB=1.000
 Bf=1.000              βR1=0.280
 Bf(a)=12.166
[レンズ諸元]
 面番号    R      D    nd    νd
  1    110.5878   4.985   1.9630   24.11
  2    283.6905   0.100
  3     63.6059   4.396   2.0033   28.27
  4     89.9017   3.000
  5     80.0000   5.550   1.6935   53.20
  6    383.6873   1.200   1.8929   20.36
  7     84.9195   5.586
  8     48.6443   1.000   1.8467   23.78
  9     28.2642   0.248
  10    28.4061   10.976   1.4970   81.61
  11    231.2679   2.922
  12     ∞     (D12)            (絞りS)
  13    267.2771   1.500   1.6230   58.16
  14    36.6616   3.000   1.8590   22.73
  15    35.7069   (D15)
  16    -36.0649   1.000   1.7380   32.33
  17    92.6451   8.190   1.7725   49.62
  18    -48.8133   0.100
  19    64.0592   4.832   1.7725   49.60
  20    306.9860   1.122
  21    88.0545   5.785   1.9229   20.88
  22   -184.9624   (D22)
  23    140.5931   1.505   1.6910   54.82
  24    48.6168   (D24)
  25    83.3736   11.265   1.8515   40.78
  26    -30.3564   1.000   1.8081   22.74
  27   -217.6682   3.835
  28    -42.0504   1.000   1.7783   23.91
  29   -2185.7734   10.111
  30     ∞     1.600   1.5168   63.88
  31     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=79.983    β=-0.032    β=-0.113
  D0     ∞      2544.448     725.082
  D12    1.300       3.613      9.875
  D15   18.706      16.393      10.131
  D22    1.300       2.156      4.812
  D24    8.887       8.031      5.375
[レンズ群データ]
 群   始面   焦点距離
 G1    1    80.002
 G2    13   -67.065
 G3    16    41.282
 G4    23   -108.270
 G5    25  -1174.941
 図12(A)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(B)は、第6実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、第7実施例に係る光学系のレンズ構成を示す図である。第7実施例に係る光学系OL(7)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2が光軸に沿って像側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第3レンズ群G3は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2および第3レンズ群G3が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された合焦レンズ群GFに該当する。第3レンズ群G3が、合焦レンズ群GFの像面側に隣り合って配置された後続レンズ群GR1に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13とが接合された接合レンズと、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15とが接合された接合レンズと、から構成される。第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹形状の負レンズL22とが接合された負の屈折力を有する接合レンズから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と両凸形状の正レンズL33とが接合された接合レンズと、両凸形状の正レンズL34と両凹形状の負レンズL35とが接合された接合レンズと、物体側に凸面を向けた負メニスカスレンズL36と、両凸形状の正レンズL37と、物体側に凹面を向けた負メニスカスレンズL38と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間に、平行平板PPが配置される。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
  f=73.180              fA=65.047
FNO=1.857               fR=61.979
 2ω=32.805              Δx=7.838
  Y=21.600              βF=5.900
 TL=119.318              βB=1.125
 Bf=1.006              βR1=0.191
 Bf(a)=11.061
[レンズ諸元]
 面番号    R      D    nd    νd
  1     86.3436   3.855   1.9229   18.90
  2    240.9219   0.100
  3    109.1989   5.811   1.7495   35.28
  4    -148.8703   1.000   1.9229   20.88
  5    100.0000   11.212
  6     40.0083   1.000   1.9037   31.31
  7     23.8536   8.324   1.6968   55.53
  8    541.8771   3.546
  9      ∞     (D9)            (絞りS)
  10   -102.6387   2.695   1.8590   22.73
  11    -47.9027   1.940   1.5530   55.07
  12    32.6973   (D12)
  13    34.2780   7.412   1.7015   41.24
  14   -122.6095   0.204
  15  -30343.0670   1.113   1.9537   32.32
  16    31.2978   6.189   1.7639   48.49
  17   -1254.1635   1.400
  18    141.8350   5.000   1.5378   74.70
  19    -48.4566   1.000   1.6398   34.47
  20    90.6288   2.112
  21    240.5167   1.001   1.8548   24.80
  22    37.9682   0.100
  23    37.4387   12.070   2.0007   25.46
  24   -277.6337   5.753
  25    -23.7721   1.076   1.6730   38.26
  26    -96.5381   9.000
  27     ∞     1.600   1.5168   63.88
  28     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=73.180    β=-0.029    β=-0.128
  D0     ∞      2558.661     610.735
  D9    2.242       3.982      10.080 
  D12   21.558      19.818      13.719
[レンズ群データ]
 群   始面   焦点距離
 G1    1    65.047
 G2    10   -52.462
 G3    13    61.979
 図14(A)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(B)は、第7実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第8実施例)
 第8実施例について、図15~図16および表8を用いて説明する。図15は、第8実施例に係る光学系のレンズ構成を示す図である。第8実施例に係る光学系OL(8)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2が光軸に沿って像側へ移動し、第4レンズ群G4が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して固定される。本実施例では、第1レンズ群G1が前群GAを構成し、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5が後群GBを構成する。また、第2レンズ群G2が、後群GBの最も物体側に配置された第1合焦レンズ群GF1に該当する。第3レンズ群G3が、第1合焦レンズ群GF1の像面側に隣り合って配置された後続レンズ群GR1に該当する。第4レンズ群G4が、第1合焦レンズ群GF1より像面側に配置された第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合レンズと、から構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL41から構成される。
 第5レンズ群G5は、物体側に凹面を向けた負メニスカスレンズL51から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5と像面Iとの間に、平行平板PPが配置される。
 以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
(表8)
[全体諸元]
  f=82.010              fA=84.922
FNO=2.050               fR=72.581
 2ω=32.753              Δx=8.605
  Y=21.600              βF=3.508
 TL=90.018              βB=0.966
 Bf=1.322              βR1=0.219
 Bf(a)=16.376
[レンズ諸元]
 面番号    R      D    nd    νd
  1     49.7600   5.102   1.7550   52.32
  2    207.7589   0.100
  3     43.3970   4.415   1.6180   63.33
  4    120.3692   0.100
  5     35.5101   6.189   1.5928   68.62
  6    -216.6911   2.098   1.9053   35.04
  7     28.2895   5.240
  8      ∞     (D8)            (絞りS)
  9    5405.8128   1.000   1.4875   70.23
  10    35.3627   (D10)
  11    41.2560   9.000   1.5174   52.43
  12    -51.9830   (D12)
  13    98.4043   2.467   1.8590   22.73
  14    222.8980   (D14)
  15    -31.6093   3.000   1.8502   30.05
  16   -173.6461   14.000
  17     ∞     1.600   1.5168   63.88
  18     ∞     Bf
[可変間隔データ]
     無限遠合焦状態 中間距離合焦状態 至近距離合焦状態
     f=82.010    β=-0.033    β=-0.115
  D0     ∞      2526.094     756.181
  D8    1.985       4.234      10.591 
  D10   16.324      14.075       7.719 
  D12   10.523       8.452       4.434 
  D14    5.552       7.623      11.641
[レンズ群データ]
 群   始面   焦点距離
 G1    1    84.922
 G2    9   -73.023
 G3    11    45.967
 G4    13   203.256
 G5    15   -45.895
 図16(A)は、第8実施例に係る光学系の無限遠合焦時の諸収差図である。図16(B)は、第8実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第8実施例に係る光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(16)に対応する値を、全実施例(第1~第8実施例)について纏めて示す。
 条件式(1)  0.50<ST/TL<0.95
 条件式(2)  0.65<(-fF)/fA<1.20
 条件式(3)  0.70<(-fF)/fR<1.80
 条件式(4)  0.00<βR1/βF<0.25
 条件式(5)  0.03<Δx/f<0.35
 条件式(6)  0.65<f/(-fF)<1.60
 条件式(7)  2.00<TL/(FNO×Bf)<10.00
 条件式(8)
  -2.50<(rFR2+rFR1)/(rFR2-rFR1)<-0.25
 条件式(9)
  0.90<(rNR2+rNR1)/(rNR2-rNR1)<2.65
 条件式(10) 0.08<1/βF<0.55
 条件式(11) {βF+(1/βF)}-2<0.15
 条件式(12) 0.003<BLDF/TL<0.060
 条件式(13) 0.05<βB/βF<0.50
 条件式(14) 0.05<Bf/TL<0.25
 条件式(15) 1.00<FNO<3.00
 条件式(16) 12.00°<2ω<40.00°
 [条件式対応値](第1~第4実施例)
  条件式  第1実施例  第2実施例  第3実施例  第4実施例
  (1)   0.702     0.667     0.747    0.695
  (2)   0.914     0.794     1.070    0.827
  (3)   1.268     0.950     1.335    1.598
  (4)   0.138     0.038     0.081    0.040
  (5)   0.146     0.095     0.127    0.128
  (6)   1.065     1.275     0.748    0.862
  (7)   8.113     5.488     2.447    9.359
  (8)   -1.192    -1.054    -2.198    -1.300
  (9)   1.661     1.441     2.433    2.272
 (10)   0.384     0.227     0.401    0.265
 (11)   0.112     0.047     0.119    0.061
 (12)   0.009     0.011     0.011    0.008
 (13)   0.374     0.230     0.321    0.188
 (14)   0.087     0.098     0.198    0.086
 (15)   1.424     1.855     2.060    1.242
 (16)   28.285    28.002    28.969    28.622
 [条件式対応値](第5~第8実施例)
  条件式  第5実施例  第6実施例  第7実施例  第8実施例
  (1)   0.692     0.685     0.708    0.742
  (2)   0.786     0.838     0.807    0.860
  (3)   1.129     1.154     0.846    1.006
  (4)   0.016     0.093     0.032    0.062
  (5)   0.168     0.107     0.107    0.105
  (6)   1.150     1.193     1.395    1.123
  (7)   5.676     6.327     5.808    2.681
  (8)   -0.568    -1.308    -0.517    -1.013
  (9)   1.291     1.039     1.653    1.445
 (10)   0.148     0.332     0.169    0.285
 (11)   0.021     0.089     0.027    0.070
 (12)   0.028     0.035     0.039    0.011
 (13)   0.133     0.332     0.191    0.275
 (14)   0.095     0.096     0.093    0.182
 (15)   1.850     1.650     1.857    2.050
 (16)   35.083    14.994    32.805    32.753
 上記各実施例によれば、合焦の際の画角変動が少ない光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態の光学系の実施例として3群構成および5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群、6群等)の光学系を構成することもできる。具体的には、本実施形態の光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、第1レンズ群と第2レンズ群との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群
  I 像面               S 開口絞り

Claims (19)

  1.  光軸に沿って物体側から順に並んだ、前群と、絞りと、後群とからなり、
     前記後群は、前記後群の最も物体側に配置された負の屈折力を有する合焦レンズ群を有し、
     合焦の際、前記合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化し、
     以下の条件式を満足する光学系。
     0.50<ST/TL<0.95
     但し、ST:前記絞りから像面までの光軸上の距離
        TL:前記光学系の全長
  2.  以下の条件式を満足する請求項1に記載の光学系。
     0.65<(-fF)/fA<1.20
     但し、fF:前記合焦レンズ群の焦点距離
        fA:前記前群の焦点距離
  3.  前記後群は、前記合焦レンズ群より像面側に配置された少なくとも一つのレンズ群を有し、
     以下の条件式を満足する請求項1または2に記載の光学系。
     0.70<(-fF)/fR<1.80
     但し、fF:前記合焦レンズ群の焦点距離
        fR:前記少なくとも一つのレンズ群の合成焦点距離
  4.  前記後群は、前記合焦レンズ群の像面側に隣り合って配置された後続レンズ群を有し、
     以下の条件式を満足する請求項1~3のいずれか一項に記載の光学系。
     0.00<βR1/βF<0.25
     但し、βR1:無限遠物体合焦時の前記後続レンズ群の横倍率
        βF:無限遠物体合焦時の前記合焦レンズ群の横倍率
  5.  以下の条件式を満足する請求項1~4のいずれか一項に記載の光学系。
     0.03<Δx/f<0.35
     但し、Δx:無限遠物体から近距離物体への合焦の際の前記合焦レンズ群の移動量
        f:前記光学系の焦点距離
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の光学系。
     0.65<f/(-fF)<1.60
     但し、f:前記光学系の焦点距離
        fF:前記合焦レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     2.00<TL/(FNO×Bf)<10.00
     但し、FNO:前記光学系のFナンバー
        Bf:前記光学系のバックフォーカス
  8.  前記合焦レンズ群は、1つの負レンズ成分から構成される請求項1~7のいずれか一項に記載の光学系。
  9.  以下の条件式を満足する請求項1~8のいずれか一項に記載の光学系。
     -2.50<(rFR2+rFR1)/(rFR2-rFR1)<-0.25
     但し、rFR1:前記合焦レンズ群における最も物体側のレンズ面の曲率半径
        rFR2:前記合焦レンズ群における最も像面側のレンズ面の曲率半径
  10.  以下の条件式を満足する請求項1~9のいずれか一項に記載の光学系。
     0.90<(rNR2+rNR1)/(rNR2-rNR1)<2.65
     但し、rNR1:前記光学系の最も像面側に配置されたレンズにおける物体側のレンズ面の曲率半径
        rNR2:前記光学系の最も像面側に配置されたレンズにおける像面側のレンズ面の曲率半径
  11.  以下の条件式を満足する請求項1~10のいずれか一項に記載の光学系。
     0.08<1/βF<0.55
     但し、βF:無限遠物体合焦時の前記合焦レンズ群の横倍率
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の光学系。
     {βF+(1/βF)}-2<0.15
     但し、βF:無限遠物体合焦時の前記合焦レンズ群の横倍率
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の光学系。
     0.003<BLDF/TL<0.060
     但し、BLDF:前記合焦レンズ群の光軸上の長さ
  14.  以下の条件式を満足する請求項1~13のいずれか一項に記載の光学系。
     0.05<βB/βF<0.50
     但し、βB:無限遠物体合焦時の前記後群の横倍率
        βF:無限遠物体合焦時の前記合焦レンズ群の横倍率
  15.  以下の条件式を満足する請求項1~14のいずれか一項に記載の光学系。
     0.05<Bf/TL<0.25
     但し、Bf:前記光学系のバックフォーカス
  16.  以下の条件式を満足する請求項1~15のいずれか一項に記載の光学系。
     1.00<FNO<3.00
     但し、FNO:前記光学系のFナンバー
  17.  以下の条件式を満足する請求項1~16のいずれか一項に記載の光学系。
     12.00°<2ω<40.00°
     但し、2ω:前記光学系の全画角
  18.  請求項1~17のいずれか一項に記載の光学系を備えて構成される光学機器。
  19.  光軸に沿って物体側から順に並んだ、前群と、絞りと、後群とからなる光学系の製造方法であって、
     前記後群は、前記後群の最も物体側に配置された負の屈折力を有する合焦レンズ群を有し、
     合焦の際、前記合焦レンズ群が光軸に沿って移動し、隣り合う各レンズ群の間隔が変化し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     0.50<ST/TL<0.95
     但し、ST:前記絞りから像面までの光軸上の距離
        TL:前記光学系の全長
PCT/JP2021/021709 2020-07-09 2021-06-08 光学系、光学機器、および光学系の製造方法 WO2022009588A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/008,967 US20230236383A1 (en) 2020-07-09 2021-06-08 Optical system, optical apparatus and method for manufacturing the optical system
JP2022534962A JPWO2022009588A1 (ja) 2020-07-09 2021-06-08
CN202180046084.0A CN115997151A (zh) 2020-07-09 2021-06-08 光学系统、光学设备以及光学系统的制造方法
JP2024026372A JP2024045767A (ja) 2020-07-09 2024-02-26 光学系および光学機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020118389 2020-07-09
JP2020-118389 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022009588A1 true WO2022009588A1 (ja) 2022-01-13

Family

ID=79552424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021709 WO2022009588A1 (ja) 2020-07-09 2021-06-08 光学系、光学機器、および光学系の製造方法

Country Status (4)

Country Link
US (1) US20230236383A1 (ja)
JP (2) JPWO2022009588A1 (ja)
CN (1) CN115997151A (ja)
WO (1) WO2022009588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147268A1 (ja) * 2023-01-06 2024-07-11 株式会社ニコン 光学系、光学機器、交換レンズおよび光学系の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218266A (ja) * 2012-03-15 2013-10-24 Panasonic Corp インナーフォーカスレンズ、交換レンズ装置及びカメラシステム
JP2013238740A (ja) * 2012-05-15 2013-11-28 Sony Corp 撮像レンズおよび撮像装置
JP2016009006A (ja) * 2014-06-23 2016-01-18 コニカミノルタ株式会社 撮像光学系,撮像光学装置及びデジタル機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218266A (ja) * 2012-03-15 2013-10-24 Panasonic Corp インナーフォーカスレンズ、交換レンズ装置及びカメラシステム
JP2013238740A (ja) * 2012-05-15 2013-11-28 Sony Corp 撮像レンズおよび撮像装置
JP2016009006A (ja) * 2014-06-23 2016-01-18 コニカミノルタ株式会社 撮像光学系,撮像光学装置及びデジタル機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147268A1 (ja) * 2023-01-06 2024-07-11 株式会社ニコン 光学系、光学機器、交換レンズおよび光学系の製造方法

Also Published As

Publication number Publication date
US20230236383A1 (en) 2023-07-27
JP2024045767A (ja) 2024-04-02
CN115997151A (zh) 2023-04-21
JPWO2022009588A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
US11366297B2 (en) Variable magnification optical system, optical apparatus and method for manufacturing variable magnification optical system
US11598940B2 (en) Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
US12124018B2 (en) Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP4356040B2 (ja) 防振機能を備えたバックフォーカスの長いズームレンズ
JP6582535B2 (ja) 光学系、この光学系を有する撮像装置
JP7396473B2 (ja) 光学系及び光学機器
JP2008203471A (ja) ズームレンズ、光学機器、および結像方法
WO2021117429A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP3849129B2 (ja) ズームレンズ
JP2023083601A (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP2024045767A (ja) 光学系および光学機器
JP7217858B2 (ja) 光学系、光学機器
JP2024024097A (ja) 光学系および光学機器
JP6784952B2 (ja) 光学系及び光学機器
JP2016156941A (ja) レンズ系、光学機器及びレンズ系の製造方法
JP6828252B2 (ja) 光学系および光学機器
WO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JPH05150160A (ja) ズームレンズ
JP6627915B2 (ja) 変倍光学系及び光学機器
WO2024034428A1 (ja) 光学系、光学機器及び光学系の製造方法
JP7526394B2 (ja) 変倍光学系及び光学機器
JP6424414B2 (ja) 変倍光学系、光学装置
JP6897733B2 (ja) 変倍光学系、光学装置
US20230375802A1 (en) Optical system, optical apparatus and method for manufacturing the optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837588

Country of ref document: EP

Kind code of ref document: A1