WO2020217652A1 - 医薬用組成物 - Google Patents

医薬用組成物 Download PDF

Info

Publication number
WO2020217652A1
WO2020217652A1 PCT/JP2020/005525 JP2020005525W WO2020217652A1 WO 2020217652 A1 WO2020217652 A1 WO 2020217652A1 JP 2020005525 W JP2020005525 W JP 2020005525W WO 2020217652 A1 WO2020217652 A1 WO 2020217652A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
stem cells
mesenchymal stem
derived
msc
Prior art date
Application number
PCT/JP2020/005525
Other languages
English (en)
French (fr)
Inventor
正太 小玉
西村 益浩
松本 慎一
修 澤本
Original Assignee
学校法人福岡大学
株式会社大塚製薬工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人福岡大学, 株式会社大塚製薬工場 filed Critical 学校法人福岡大学
Priority to JP2021515814A priority Critical patent/JPWO2020217652A1/ja
Priority to US17/605,412 priority patent/US20220233599A1/en
Publication of WO2020217652A1 publication Critical patent/WO2020217652A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)

Definitions

  • the present invention relates to a pharmaceutical composition for treating non-porcine animals, and more particularly to a pharmaceutical composition for treating non-porcine animals, which contains mesenchymal stem cells derived from juvenile pigs.
  • Somatic stem cells Due to recent advances in somatic stem cell research, including mesenchymal stem cells, the clinical application of somatic stem cells has already shifted from the basic research stage to the development stage. Somatic stem cells have three major functions (pluripotency, immunomodulatory ability, and ability to remodel the extracellular environment), and are expected as therapeutic cells for intractable diseases.
  • the first pluripotency is the ability of somatic stem cells to directly differentiate into bone or cartilage, and the administered somatic stem cells complement the lost cells or replace them with inadequately functioning cells. It exerts a therapeutic effect by doing so.
  • the second immunomodulatory ability acts on the immunocompetent cells of the patient through the secretion of anti-inflammatory cytokines, chemokines, exosomes, etc. from somatic stem cells, or through the adhesion factor between cells, and causes inflammation or transplantation. It exerts a therapeutic effect by suppressing the immune response such as one-sided host disease.
  • Mesenchymal stem cells are somatic stem cells that are present in the bone marrow, fat, pancreatic islets, umbilical cord blood, etc. of mammals and are derived from mesoderm tissue (mesoderm), and have the ability to differentiate into cells belonging to the mesenchymal system. ..
  • diseases such as implant-to-host disease, cardiovascular disorder, autoimmune disease, osteoarthritis, osteodysplasia, liver disorder, respiratory disease, spinal cord injury, cerebral infarction or renal failure. It has been reported (Non-Patent Document 1), and various clinical applications are expected (Non-Patent Document 2). However, the effects in these clinical applications are not sufficient.
  • Non-Patent Document 3 discloses a major issue in the clinical application of mesenchymal stem cells.
  • Angiogenesis is complexly controlled under the balance of a wide variety of angiogenesis-promoting factors, suppressors, metalloproteinases or other enzymes, and is deeply involved in wound healing or various diseases.
  • Angiogenesis includes a physiological phenomenon observed in granulation tissue formation at the time of wound and a pathological phenomenon in angiogenesis such as inflammatory disease or arteriosclerosis (Non-Patent Document 4).
  • Lymph vessels form an extensive network in the body together with blood vessels, absorb interstitial fluid, proteins, fats or immunocompetent cells leaked from the blood vessels in peripheral tissues, and enter the vascular system via the collecting lymph vessels.
  • the closed circulatory system of blood vessels is maintained by recirculation. Induction of lymphangiogenesis as well as angiogenesis has been observed in the healing of wounds and various pathological inflammations (Non-Patent Document 5).
  • an object of the present invention is to provide a mesenchymal composition containing mesenchymal stem cells, which has an excellent therapeutic effect on various diseases, injured parts, wounds and pressure ulcers.
  • the present inventors highly express specific humoral factors, the cell size of the mesenchymal stem cells prepared from young pigs is smaller than that of the conventional mesenchymal stem cells, and the proliferative ability is excellent. We found that and completed the present invention.
  • the present invention relates to the following.
  • a medicinal composition for treating non-porcine animals Derived from a young pig that produces at least one humoral factor selected from transforming growth factor- ⁇ (hereinafter TGF- ⁇ ) 1, TGF- ⁇ 2, vascular endothelial growth factor (hereinafter VEGF) -A and VEGF-C
  • TGF- ⁇ transforming growth factor- ⁇
  • VEGF vascular endothelial growth factor
  • VEGF-A vascular endothelial growth factor-C
  • a pharmaceutical composition containing mesenchymal stem cells 2.
  • the pharmaceutical composition according to 1 above which treats the non-porcine animal by promoting angiogenesis and / or lymphangiogenesis.
  • the pharmaceutical composition according to 1 or 2 above which treats at least one selected from peripheral arterial disease, cerebral infarction, myocardial infarction, acute lung injury, wound, skin injury and pressure ulcer. 4.
  • the pharmaceutical composition of the present invention contains mesenchymal stem cells derived from young pigs, and by the action of humoral factors produced by the mesenchymal stem cells derived from young pigs, various diseases, injured parts, wounds and It has an excellent therapeutic effect on pressure ulcers.
  • FIG. 1 (a) is a diagram showing the total cell mass in a specific culture period (day) when the stem cells of the present invention were cultured.
  • FIG. 1 (b) is a diagram showing the total cell proliferation rate in a specific culture period (day) when the stem cells of the present invention are cultured.
  • dotted lines and black circles are juvenile porcine bone marrow-derived mesenchymal stem cells (hereinafter, also abbreviated as npBM-MSC), and solid lines and white circles are human bone marrow-derived mesenchymal stem cells (hereinafter, also abbreviated). , HBM-MSC).
  • npBM-MSC juvenile porcine bone marrow-derived mesenchymal stem cells
  • HBM-MSC human bone marrow-derived mesenchymal stem cells
  • FIG. 2A shows the results of measuring the concentration of TGF- ⁇ 1 in the culture supernatants of npBM-MSC and mouse bone marrow-derived mesenchymal stem cells (hereinafter, also abbreviated as mBM-MSC).
  • FIG. 2B shows the results of measuring the concentration of TGF- ⁇ 2 in the culture supernatants of npBM-MSC and mBM-MSC.
  • FIG. 3A shows the results of measuring the concentration of VEGF-A in the culture supernatants of npBM-MSC and mBM-MSC.
  • FIG. 3B shows the results of measuring the concentration of VEGF-C in the culture supernatants of npBM-MSC and mBM-MSC.
  • FIG. 4 shows the results of intramuscular injection of npBM-MSC into the thigh muscle tissue of the ischemic limb and evaluation of blood flow.
  • FIG. 5 shows the results of intramuscular injection of npBM-MSC or mBM-MSC into the thigh muscle tissue of the ischemic limb and evaluation of blood flow.
  • Mesenchymal stem cells are somatic stem cells derived from mesenchymal tissue (mesenchymal), and have the ability to differentiate into cells belonging to the mesenchymal system such as bone cells, myocardial cells, cartilage cells, tendon cells, and adipocytes. A cell that has and can proliferate while maintaining the differentiation ability.
  • the mesenchymal stem cells derived from young pigs in the present invention may be any mesenchymal stem cells isolated from young pigs, for example, mesenchymal stem cells derived from bone marrow, pancreatic islets, skin or fat of young pigs. included.
  • the "young pig” refers to a pig less than 1 month old, preferably less than 25 days old from the fetus.
  • the immature pig is preferably for medical use, and more preferably the immature pig that can transplant cells into humans.
  • the type of pig is not particularly limited, but for example, Landrace pigs (for example, Danish Landrace pig, American Landrace pig, British Landrace pig, Dutch Landrace pig, Swedish Landrace pig), Large White pig. Species, Berkshire, Durlock, Hampshire, Medium Yorkshire, miniature pigs, with respect to Landrace.
  • the mesenchymal stem cells derived from immature pigs in the present invention may be any mesenchymal stem cells isolated from immature pigs, and are primary cultured cells, cells in which the primary cultured cells are subcultured, and various types. It may be a mesenchymal stem cell capable of producing various cells expressing a differentiation marker.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention produce at least one humoral factor selected from TGF- ⁇ 1, TGF- ⁇ 2, VEGF-A and VEGF-C, among which at least TGF- ⁇ 1 and TGF. It is preferable to produce - ⁇ 2 and VEGF-C.
  • TGF- ⁇ is a family of cytokines with late biological activity, and in mammals there are three isoforms TGF- ⁇ 1, 2 and 3 with high structural homology. TGF- ⁇ has an angiogenesis-promoting action and a lymphangiogenesis-promoting action.
  • VEGF is a family of cytokines that act specifically on vascular endothelial cells, VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlGF (placental growth factor, placental growth factor) -1 and PlGF. There are seven of -2. VEGF has an angiogenesis-promoting action and a lymphangiogenesis-promoting action.
  • the pharmaceutical composition of the present invention contains mesenchymal stem cells derived from immature pigs that produce at least one humoral factor selected from TGF- ⁇ 1, TGF- ⁇ 2, VEGF-A and VEGF-C.
  • the action of the humoral factor produced from the cells can promote at least one of angiogenesis and lymphangiogenesis and treat non-porcine animals.
  • Treatment by promoting at least one of angiogenesis and lymphangiogenesis includes at least one selected from disease treatment, wound treatment and wound healing, preferably peripheral arterial disease, cerebral infarction, myocardial infarction, acute lung injury, etc. Included is at least one treatment selected from wounds, skin injuries and pressure ulcers.
  • the non-porcine animal is not particularly limited as long as it is an animal other than pig, and is preferably a mammal other than pig, for example, human, mouse, rat, hamster, guinea pig, rabbit, dog, cat, horse, cow. , Sheep, goats, marmosets, monkeys, etc.
  • the production of the humoral factor in the mesenchymal stem cells derived from young pigs in the present invention is highly expressed.
  • high expression means that the expression level of humoral factors is equal to or higher than that of conventional mesenchymal stem cells.
  • examples of conventional mesenchymal stem cells include mouse bone marrow-derived mesenchymal stem cells, which will be described later in Examples.
  • the juvenile pig-derived mesenchymal stem cells in the present invention have a significantly higher expression level of the humoral factor than the mouse bone marrow-derived mesenchymal stem cells, and are proteins as compared with the mouse bone marrow-derived mesenchymal stem cells.
  • the expression intensity of is preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more.
  • the expression intensity of the protein can be confirmed by, for example, FACS analysis using a specific antibody, ELISA, or the like.
  • Examples of a preferable combination of humoral factors in which juvenile porcine-derived mesenchymal stem cells are highly expressed in the present invention include TGF- ⁇ 1, TGF- ⁇ 2 and VEGF-C.
  • TGF- ⁇ 1 and TGF- ⁇ 2 after culturing the mesenchymal stem cells derived from young pigs in the present invention in the MSC medium described later for 3 days are derived from the bone marrow of mice cultured under the same conditions. It is preferably 1.1 times or more, more preferably 1.5 times or more, still more preferably 2 times or more, as compared with mesenchymal stem cells.
  • the expression level of VEGF-C after culturing the immature pig-derived mesenchymal stem cells in the present invention in the MSC basal medium described later for 3 days is compared with the mouse bone marrow-derived mesenchymal stem cells cultured under the same conditions. Therefore, it is preferably 1.1 times or more, more preferably 1.2 times or more, and further preferably 1.3 times or more.
  • the cell markers CD44 and CD90 are both preferably 60% or more positive, more preferably 70% or more, and further preferably 80% or more positive.
  • the cell marker CD29 is preferably 60% or more positive, more preferably 70% or more, and further preferably 80% or more positive. The positive rate of the cell marker can be confirmed by a method using flow cytometry or the like, as will be described later in the examples.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention preferably have a doubling time of 36 hours or less, more preferably 32 hours or less, still more preferably 28 hours or less, and particularly preferably 24 hours or less in the logarithmic growth phase. Most preferably 20 hours or less.
  • the doubling time in the logarithmic growth phase is preferably 14 hours or more, more preferably 16 hours or more.
  • the stem cells of the present invention are seeded in a medium containing vitamin C (for example, MSC medium) described later, and 5% at 37 ° C. This can be done by culturing in a culture incubator in the presence of CO 2 .
  • a medium containing vitamin C for example, MSC medium
  • the mesenchymal stem cells derived from juvenile pigs in the present invention preferably have an average diameter of 17 ⁇ m or less, more preferably 16.5 ⁇ m or less, still more preferably 16 ⁇ m or less, and particularly preferably 15.5 ⁇ m or less. Yes, most preferably 15 ⁇ m or less.
  • the average diameter is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more. The smaller the average diameter, the more the formation of pulmonary embolus due to the administration of juvenile porcine-derived mesenchymal stem cells can be prevented.
  • the average diameter can be measured using, for example, Nucleo Counter NC-200 TM.
  • the average means an arithmetic mean.
  • the differentiation of juvenile pig-derived mesenchymal stem cells into adipocytes in the present invention is carried out in the presence of, for example, insulin, MCGS (serum component, Mesenchymal Cell Growth Supplement), dexamethasone, indomethacin, isobutylmethylxanthin and the like.
  • MCGS single cell growth Supplement
  • dexamethasone dexamethasone
  • indomethacin isobutylmethylxanthin
  • kits or media may be used for differentiation and maintenance of adipocytes.
  • hMSC differentiation BulletKit TM -adipogeni PT-3004 manufactured by Lonza Walkersville, hMSCidipe manufactured by Lonza Walkersville (PT-3004), and hMSCidip PT-3102B), hMSC differentiation medium (PT-3102B) manufactured by Lonza Walkersville, and the like.
  • hMSC differentiation BulletKit TM -adipogeni PT-3004
  • hMSCidipe manufactured by Lonza Walkersville (PT-3004)
  • hMSCidip PT-3102B hMSC differentiation medium manufactured by Lonza Walkersville
  • Differentiation of immature pig-derived mesenchymal stem cells into adipocytes can be confirmed using a commercially available kit, and examples thereof include Adipo Red TM assay reagent manufactured by Lonza.
  • Differentiation of immature pig-derived mesenchymal stem cells into osteoocytes in the present invention can be performed by using the immature pig-derived mesenchymal stem cells of the present invention in the presence of, for example, dexamethasone, ascorbate, MCGS, ⁇ -glycerophosphate and the like. By culturing, differentiation into bone cells can be induced.
  • a commercially available kit may be used, and examples thereof include hMSC differentiation BulletKit (trademark) -osteogenic, PT-3004 manufactured by Lonza Walkersville.
  • Differentiation of juvenile pig-derived mesenchymal stem cells into bone cells includes a commercially available alkaline phosphatase staining kit (for example, manufactured by Cosmo Bio), a commercially available calcification staining kit (for example, manufactured by Cosmo Bio), etc. Can be confirmed by.
  • a commercially available alkaline phosphatase staining kit for example, manufactured by Cosmo Bio
  • a commercially available calcification staining kit for example, manufactured by Cosmo Bio
  • Differentiation of juvenile pig-derived mesenchymal stem cells into chondrocytes in the present invention includes, for example, the presence of TGF- ⁇ 3, dexamethasone, insulin-transferase-selenic acid (ITS), sodium pyruvate, proline, and ascorbate.
  • TGF- ⁇ 3, dexamethasone, insulin-transferase-selenic acid (ITS), sodium pyruvate, proline, and ascorbate By culturing the mesenchymal stem cells derived from the juvenile pigs of the present invention below, differentiation into chondrocytes can be induced.
  • a commercially available kit may be used, and examples thereof include hMSC differentiation BulletKit TM -chondrogenic, PT-3003 manufactured by Lonza Walkersville. Differentiation of mesenchymal stem cells derived from immature pigs into chondrocytes can be confirmed by alcian blue staining or the like.
  • the method for producing a pharmaceutical composition according to the present invention includes a step of preparing mesenchymal stem cells derived from young pigs.
  • a method including the following steps can be mentioned. (1) Step of collecting cells from young pigs (2) Step of culturing the cells collected in step (1) to prepare mesenchymal stem cells derived from young pigs Each step will be described below.
  • Step (1) cells are collected from bone marrow, fat, skin, pancreas, etc. of young pigs.
  • bone marrow cells can be collected from the femur, iliac crest, sternum, etc. of the young pig.
  • the femur is collected from a young pig, both ends are amputated, a needle is inserted, rinsed with a heparin-added physiological buffer (for example, phosphate buffer, hereafter referred to as PBS), and drained from the opposite location.
  • PBS heparin-added physiological buffer
  • Collect the fluid as bone marrow fluid.
  • the bone is reversed and the needle is inserted on the opposite side and rinsed again with PBS to prepare bone marrow fluid, which is a cell-containing solution.
  • the immature porcine-derived monocyte cell fraction may be isolated by usually centrifuging the cell-containing solution prepared above.
  • the cell-containing solution prepared above was diluted with PBS or the like, and diluted on the medium layer in a tube containing a medium for separating human lymphocytes (for example, Ficoll-Paque PLUS manufactured by GE Healthcare Life Science Co., Ltd.). Add the cell-containing solution.
  • the tube is centrifuged to separate layers, and the layer containing immature pig-derived mononuclear cells is collected.
  • the recovered solution is further centrifuged, the supernatant is removed, diluted with PBS or the like, and centrifuged again to isolate the monocyte cell fraction.
  • the cells of the mononuclear cell fraction thus isolated may be cryopreserved before culturing.
  • the temperature is preferably ⁇ 80 ° C. or lower, more preferably ⁇ 150 ° C. or lower.
  • pancreatic islets are collected from the young pig, and in some cases, the pancreatic islets are suspended and cultured to be used for adhesion culture for the purpose of preparing stem cells. Prepare cell clumps.
  • the fat is collected from the young pig, finely chopped with scissors, and then treated with an enzyme. Filter with a cell strainer and centrifuge at low speed. The cells settled on the bottom of the tube are used for culturing.
  • the skin is collected from the young pig and treated with an enzyme. After the enzyme treatment, the hair is removed from the skin and the bulge part is collected and used for culturing.
  • 3T3 feeder cells are used.
  • Step (2) Step of culturing the cells collected in step (1) to prepare mesenchymal stem cells derived from juvenile pigs
  • the cells, cell fractions, or cell clusters collected in step (1) above include non-stem cells. Contains many unintended cells.
  • a culture method for removing these cells is used by using a vitamin C-free basal medium (for example, MSC basal medium described later) which is essential for the survival of these non-target cells.
  • the cells, cell fractions, or cell clusters collected in the above step (1) are preferably brought to 35 to 39 ° C, more preferably 36 to 38 ° C, and most preferably 37 ° C.
  • the cells, cell fractions, or cell clusters collected in the above step (1) are preferably brought to 35 to 39 ° C, more preferably 36 to 38 ° C, and most preferably 37 ° C.
  • CO 2 preferably 4 to 6%, more preferably 4.5 to 5.5%, and most preferably 5%
  • the mesenchymal stem cells derived from the juvenile pig in the present invention are proliferated.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention have a remarkably high growth rate, vitamin C is used for culturing to remove cells other than the above-mentioned purposes without using a basal medium containing no vitamin C.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention can be prepared by using only the medium containing the medium (for example, the MSC medium described later).
  • the cells are replaced with a medium containing vitamin C to proliferate the mesenchymal stem cells derived from young pigs in the present invention.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention can also be prepared.
  • the mesenchymal stem cells derived from young pigs in the present invention are cultured by, for example, the following method.
  • Vitamin C-free basal medium eg, MSC basal described below
  • a gelatin-coated culture vessel eg, a plate coated with 0.1% gelatin
  • a gelatin-uncoated culture vessel eg, a plate
  • a medium) or a medium containing vitamin C is used to seed preferably 5.0 ⁇ 10 5 to 5.0 ⁇ 10 7 cells / 9.6 cm 2.
  • the culture period for obtaining the primary cultured cells is preferably 3 to 12 days, more preferably 3 to 11 days, and most preferably 3 to 10 days after seeding.
  • Primary cultured cells may be subcultured.
  • Stem cells obtained by subculture are also referred to as subcultured cells.
  • Subculture of primary or subcultured cells is preferably 2 to 6 days, more preferably 2 to 5 days, even more preferably 2 to 4 days, most preferably 3 days after seeding the stem cells. , 30% to 100% confluence, preferably 50% to 95% confluence, more preferably 60% to 90% confluence, and most preferably 70% to 85% confluence.
  • Stem cells are seeded using a gelatin-coated culture vessel (eg, a plate coated with 0.1% gelatin) or a gelatin-uncoated culture vessel (eg, a plate) using a medium containing vitamin C (eg, described below).
  • MSC medium is preferably used to inoculate 5.0 ⁇ 10 5 to 5.0 ⁇ 10 7 cells / 9.6 cm 2 .
  • Stem cells are cultured, for example, at 37 ° C. under the conditions of 5% CO 2 and 90% humidity. During the culture of the stem cells, the medium is changed as necessary to proliferate the mesenchymal stem cells derived from the juvenile pig in the present invention.
  • MSC basal medium and the MSC medium conventionally known ones can be used, and commercially available ones may be used.
  • MEM ⁇ Nucleosides, no Ascorbic acid
  • FBS Fetal bovine serum
  • Penicillin manufactured by Sigma-Aldorich
  • MSC medium for example, 500 mL of Gibco's MEM ⁇ (Nucleosides), 55 mL of Gibco's Fetal bovine serum (FBS), 5.5 mL of Sigma-Aldorich's Penicillin-Streptomycin and 22. ⁇ .
  • examples thereof include a medium to which Escherichia coli and suitable for cell culture (final concentration: 1 ng / mL) have been added.
  • the number of passages is not particularly limited as long as the mesenchymal stem cells derived from juvenile pigs in the present invention can be obtained, but is preferably 1 to 3 times, more preferably 1 to 20 times.
  • the mesenchymal stem cells derived from juvenile pigs in the present invention can be cryopreserved.
  • the timing of cryopreservation is not particularly limited, but is preferably after 1 to 20 passages, and more preferably after 2 to 10 passages. Conventionally known methods can be used for cryopreservation and thawing.
  • cryopreserving immature pig-derived mesenchymal stem cells in the present invention, specifically, for example, the cells are dispersed in a cryopreservation solution and cryopreserved in a freezer at -80 ° C or lower or in liquid nitrogen until necessary. be able to.
  • a cryopreservation solution for example, OPF-301 [Lactated Ringer's solution containing 3% trehalose and 5% dextran (International Publication No. 2014/208053)] and dimethylsulfoxide (DMSO) at a ratio of 9: 1.
  • Examples thereof include a mixed solution, a serum-containing or serum-free storage solution that can be used for cryopreservation of animal cells, or a commercially available cell cryopreservation reagent [preferably, a cell bunker such as CELLBANKER® manufactured by Takara Bio Co., Ltd.]. ..
  • the pharmaceutical composition of the present invention may contain components other than mesenchymal stem cells derived from juvenile pigs, provided that the expected therapeutic effect is maintained.
  • Ingredients that can be used in the pharmaceutical composition of the present invention include, for example, organic bioabsorbable materials such as hyaluronic acid, collagen or fibrinogen, hyaluronic acid, collagen (eg, acid-soluble collagen, alkali-soluble collagen, enzyme). Examples thereof include gelling materials such as soluble collagen) or fibrin glue, and aqueous solvents such as buffers such as sterile water, physiological saline or phosphate solutions.
  • antibiotics, stabilizers, preservatives, pH regulators, liquid factors and the like may be contained.
  • the administration method when the pharmaceutical composition of the present invention is used as a pharmaceutical product is not particularly limited, but intramuscular administration, subcutaneous administration, intravascular administration (preferably intravenous administration), intraperitoneal administration, intestinal administration and the like are used. Among them, intramuscular administration, subcutaneous administration and intravascular administration are more preferable.
  • the dose (dose) of the pharmaceutical composition of the present invention may vary depending on the patient's condition (for example, body weight, age, symptoms, physical condition, etc.), the dosage form of the pharmaceutical composition of the present invention, etc., but is sufficient. From the viewpoint of exerting a preventive or therapeutic effect, a large amount is preferable, and from the viewpoint of suppressing side effects, a small amount tends to be preferable.
  • the number of mesenchymal stem cells derived from young pigs is 5 ⁇ 10 2 to 1 ⁇ 10 12 cells / time, preferably 1 ⁇ 10 4 to 1 ⁇ 10 11 cells / time. Preferably, it is 1 ⁇ 10 5 to 1 ⁇ 10 10 pieces / time.
  • this dose may be administered as a single dose in a plurality of times, or this dose may be administered in a plurality of times.
  • the number of mesenchymal stem cells derived from young pigs per body weight is usually 1 ⁇ 10 to 5 ⁇ 1010 cells / kg, preferably 1 ⁇ 10 2 to 5 ⁇ 10 9 cells / kg. kg, more preferably 1 ⁇ 10 3 to 5 ⁇ 10 8 pieces / kg.
  • this dose may be administered as a single dose in a plurality of times, or this dose may be administered in a plurality of times.
  • Reference example 1 [Recovery of bone marrow cells derived from young pigs] Bone marrow was collected from the femur of a young pig. Femur was collected from a juvenile pig (23-day-old medical Landrace pig), both ends were cut and a 12G needle was inserted, and 50 mL of heparinized PBS [3 mL of heparin (1000 U / mL), 47 mL. Was washed away with PBS], and 50 mL of bone marrow effluent (hereinafter, also abbreviated as bone marrow fluid) was collected from the opposite location.
  • heparinized PBS [3 mL of heparin (1000 U / mL), 47 mL. Was washed away with PBS]
  • 50 mL of bone marrow effluent hereinafter, also abbreviated as bone marrow fluid
  • the bone was inverted and a needle was inserted on the opposite side and rinsed again with PBS to collect bone marrow fluid.
  • a 50 ⁇ L sample was taken in 1950 ⁇ L PBS (40-fold dilution) in a 15 mL conical tube for counting and the cell count was measured on a cell counter.
  • the tube was centrifuged at 400 xg for 30 minutes at 20 ° C. and slowly accelerated without braking (1/3 full speed) to form three different layers. Since the mononuclear cell fraction was located in a floating white ring, the entire white ring was collected in a 50 mL tube (x4) containing 25 mL PBS. The supernatant was removed by centrifugation at 400 xg for 7 minutes at room temperature. PBS was added up to 40 mL and centrifuged again at 400 xg for 7 minutes at room temperature. The measured cell numbers in the same manner as described above, 25-30% of the cells of the total bone marrow cells as mononuclear cell fraction were respectively (20 ⁇ 30) ⁇ 10 6 cells isolated.
  • a 6-well plate was coated with 0.1% gelatin and allowed to stand in an incubator (37 ° C., 5% CO 2 ) for 10 to 15 minutes, after which gelatin was removed before use.
  • the cells were washed with 2 mL of PBS (without calcium and magnesium), 320 ⁇ L of 0.25% trypsin per well was added and allowed to stand in the incubator for several minutes, and when the cells were detached, they were neutralized with 1680 ⁇ L of MSC medium.
  • the cell suspension was collected in a 50 mL tube using a 1 mL pipette, 16 mL (8 mL ⁇ 2 wells) of MSC medium was added, and the cells were centrifuged at 500 ⁇ g for 5 minutes at room temperature. Using a pipette, the resulting pellets were gently resuspended in temperature-equilibrium MSC medium (2 mL).
  • the total number of cells was 2.05 ⁇ 10 6
  • the number of viable cells was 2.02 ⁇ 10 6
  • the survival rate was 98.5%.
  • MSC medium was added to the T75 flask without and there 0.1% gelatin-coated, 4.5 ⁇ 10 replated to be 5 viable cells / flask T75 flasks, in a CO 2 incubator, 5% at 37 ° C.
  • the cells were cultured under the conditions of CO 2 , 90% humidity. These cells were designated as the first passage. Three days after sowing the first passage, 100% confluence was reached with or without 0.1% gelatin coating.
  • npBM-MSC npBM-MSC
  • the temperature-equilibrium MSC medium (10 mL) was added to the obtained pellets, gently resuspended up and down with a pipette, and the total number of cells and the number of viable cells were measured and shown below.
  • Cells from flask (x2) without gelatin coating total number of cells 1.48 x 10 7 , viable cells 1.46 x 10 7 , viability: 98.6%
  • npBM-MSC [Cyropreservation of npBM-MSC] Apart from the cultures described above, early passage npBM-MSCs were frozen to prepare cell stocks. In a solution of DMSO mixed with CELLBANKER® 1 or OPF-301 [Lactated Ringer's solution containing 3% trehalose and 5% dextran (International Publication No. 2014/208053)] at a desired concentration in a ratio of 9: 1. in resuspend NPBM-MSC pellets were trypsinized and 1.5 ⁇ 10 6 cells / 1 mL / vial. The vial was placed in a bicell and stored at ⁇ 80 ° C. for 24 hours, after which the cells were transferred from ⁇ 80 ° C. to liquid nitrogen for long-term storage.
  • CELLBANKER® 1 or OPF-301 Lactated Ringer's solution containing 3% trehalose and 5% dextran (International Publication No. 2014/208053)
  • [CFU assay] 630 cells were seeded in a 21 cm 2 culture dish (without gelatin coat or 0.1% gelatin coat) at a density of 30 cells / cm 2 of npBM-MSC (P2) and cultured in MSC medium. The MSC medium was changed every 3 days. After culturing for 6 days, the adherent cells were washed twice with 4 mL of PBS and fixed with 4 mL of ice-cold methanol at 4 ° C. for 15 minutes. Colonies to visualize after staining the cells for 30 minutes with Giemsa of 4mL diluted 1:19 with phosphate buffer, and washed at room temperature (RT), and then washed twice with H 2 O.
  • Giemsa of 4mL diluted 1:19 with phosphate buffer
  • the cell colony forming efficiency was calculated by dividing the number of colonies per dish by the number of cells seeded per dish (630 cells). The results are shown in Table 1.
  • Table 2 shows the results of measuring the average cell diameters of hBM-MSC (P4) and the obtained npBM-MSC.
  • hMSC differentiation BulletKit TM -adipogeni, PT-3004 manufactured by Lonza Walkersville
  • staining was performed using Oil Red manufactured by Sigma-Aldorich.
  • npBM-MSC hMSC differentiation BulletKit TM -chondrogenic, PT-3003 (manufactured by Lonza Walkersville) was used to induce differentiation into bone cells according to a protocol. On the 19th day after the start of induction, HE staining was performed. As a result, it was found that the obtained npBM-MSC can differentiate into chondrocytes.
  • Reference example 2 [Culturing cells of npMNC fraction and preparing npBM-MSC]
  • the MSC basal medium or MSC medium was allowed to stand in an incubator (37 ° C., 5% CO 2 ) for 10 to 15 minutes before use.
  • the cell suspension containing the cells of the npMNC fraction stored frozen in the cryovial in a water bath at 37 ° C. was quickly thawed.
  • the thawed cell suspension was gently added to 30 mL of temperature equilibrium (37 ° C.) MSC basal medium and dispensed 15 mL each into two 50 mL tubes.
  • the cells were washed with 2 mL of PBS (-), 320 ⁇ L of 0.25% trypsin per well was added, and the cells were allowed to stand in an incubator for several minutes. When the cells were detached, they were neutralized with 1680 ⁇ L of MSC medium. The cell suspension was collected in a 50 mL tube, 8 mL of MSC medium was added, and the cells were centrifuged at 500 xg for 5 minutes at room temperature.
  • the temperature-equilibrium MSC medium (2 mL) was added to the obtained pellets and gently resuspended up and down with a pipette, and the results of measuring the total number of cells and the number of viable cells are shown below.
  • Group of MSC basal medium at the time of P0 seeding total number of cells 5.0 ⁇ 10 5 , viable cell number 5.0 ⁇ 10 5 , survival rate: 100%
  • the group of MSC medium total number of cells 3.3 ⁇ 10 5 , viable cell number 3.3 ⁇ 10 5 , survival rate: 100%
  • MSC basal medium group at P0 seeding 5.0 ⁇ 10 5 viable cells / flask
  • MSC medium group 3.3 ⁇ 10 5 viable cells / flask
  • the temperature-equilibrium MSC medium (5 mL) was added to the obtained pellets, and the pellets were gently resuspended up and down with a pipette to measure the total number of cells and the number of viable cells.
  • Cells from one flask (MSC basal medium for 3 days after seeding of P0): total cell number 5.12 ⁇ 10 6 , viable cell number 5.09 ⁇ 10 6 , viability: 99.5%
  • Reference example 3 The cell surface antigens of npMNC prepared in Reference Example 1 and Reference Example 2 were analyzed. Table 5 shows the preparation method of each sample used in the analysis. In Table 5, "Switch” indicates that MSC basal medium (vitamin C-free) was used at the time of initial culture, and changed to MSC medium (containing vitamin C) which was a growth medium at the time of growth culture.
  • the cells were resuspended in 2 mL of Stain Buffer (manufactured by BD), and the number of viable cells was counted. Re-centrifuge (500 ⁇ g, 5 minutes, 4 ° C.), resuspend with Stain Buffer (manufactured by BD) so that the number of cells becomes 1 ⁇ 10 7 cells / mL, and 20 ⁇ L (number of cells 2 ⁇ 10 5 cells). Each was dispensed into a 1.5 mL tube, and a total of 4 unstained controls, CD44, CD90, and Isotype Control were prepared.
  • CD44 and CD90 which are markers of mesenchymal stem cells, were positive in all the samples.
  • the target mesenchymal stem cells could be established without coating with gelatin during the initial culture. In any case, no non-specific reaction was observed in the measurement of Isotype Control.
  • Reference example 4 Preparation of mesenchymal stem cells derived from immature porcine islets.
  • Pancreatic islets were collected from immature pigs, and cell clumps were prepared by suspension culture, and then frozen and stored in the same manner as in Reference Example 1.
  • the immature porcine islets that had been frozen and stored in cryovials in a water bath at 37 ° C. were quickly thawed.
  • the thawed islet suspension was gently added to the MSC basal medium adjusted to 30 mL temperature equilibrium (37 ° C). Centrifugation was carried out at 210 ⁇ g for 1 minute at 4 ° C. When the islets were not frozen, the supernatant was removed after the islets were precipitated by free fall at room temperature. The pellet was resuspended in MSC basal medium equilibrated at a temperature of 4 mL and gently pipetted up and down.
  • porcine islet-derived mesenchymal stem cells After immature porcine islet-derived mesenchymal stem cells (npISLET-MSC) reached about 80% to approximately 95% confluence, cells were harvested from 2 wells and reseeded in T75 flasks without gelatin coating.
  • the cells were washed with 2 mL of PBS (without calcium and magnesium), 320 ⁇ L of 0.25% trypsin per well was added, and the cells were allowed to stand in an incubator for several minutes, and when the cells were detached, they were neutralized with 1680 ⁇ L of MSC medium.
  • the cell suspension was collected in a 50 mL tube using a 1 mL pipette, 16 mL (8 mL ⁇ 2 wells) of MSC medium was added, and the cells were centrifuged at 500 ⁇ g for 5 minutes at room temperature. Using a pipette, the resulting pellets were gently resuspended in temperature-equilibrium MSC medium (2 mL).
  • immature porcine islet-derived mesenchymal stem cells can be prepared regardless of the freezing conditions in the preparation of islets, and the average diameter is about the same regardless of whether there is freezing or not. It turned out that there was.
  • the cells were resuspended in 2 mL of Stain Buffer (manufactured by BD), and the number of viable cells was counted.
  • Re-centrifuge 500 ⁇ g, 5 minutes, 4 ° C.
  • Stain Buffer manufactured by BD
  • the number of cells becomes 1 ⁇ 10 7 cells / mL, and 20 ⁇ L (number of cells 2 ⁇ 10 5 cells).
  • Each was dispensed into a 1.5 mL tube, and a total of 4 unstained controls, CD29, CD44, and CD90 were prepared.
  • CD29, CD44 and CD90 which are markers of mesenchymal stem cells, in all the samples.
  • CD29, CD44 and CD90 which are markers of mesenchymal stem cells, in all the samples.
  • the target mesenchymal stem cells could be established regardless of the presence or absence of freezing during the initial culture.
  • Test Example 1 In a 6-well plate, npBM-MSC prepared in the same manner as in Reference Example 1 was placed in 5 ⁇ 10 4 cells / 2 mL / well or mBM-MSC (OriCellTM strain C57BL / 6 mouse, catalog number MUBMX-01001, lot number 170221I31). , Cyagen Biosciences Inc.) was seeded so as to have a cell number of 1 ⁇ 10 5 cells / 2 mL / well, and cultured using MSC medium. After culturing for 3 days, the supernatant was collected and the concentrations of TGF- ⁇ 1, TGF- ⁇ 2, VEGF-A and VEGF-C were measured.
  • the TGF- ⁇ 1 and TGF- ⁇ 2 concentrations were measured using an ELISA kit and corrected by the number of cells at the time of supernatant recovery. The results are shown in FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b).
  • the TGF- ⁇ 1 concentration in pigs and mice is determined by using R & D SYSTEMS® (registered trademark) Quantikine® ELISA Mouse / Rat / Porcine / Canine TGF- ⁇ 1 (MB100B, Bio-Techne Corporation, Minneapolis, MN, US). It was measured.
  • TGF- ⁇ 2 concentrations in pigs and mice were measured using R & D SYSTEMS® Quantikine® ELISA Mouse / Rat / Canine / Porcine TGF- ⁇ 2 (MB200, Bio-Techne Corporation).
  • Pig VEGF-A and mouse VEGF-A concentrations are Sine VEGF-A Do-It-Yourself ELISA (KFS-DIY0751S-003, Kingfisher Biotech, Inc., St. Paul, MN, USA) and Mouse VEGF, respectively. Measurements were performed using a Do-It-Yourself ELISA (KFS-DIY0746M-003, Kingfisher Biotech, Inc.).
  • Pig VEGF-C and mouse VEGF-C concentrations were determined by Porcine VEGF-C ELISA kit (MBS251205, MyBioSource, Inc. San Diego, CA, USA) and Mouse VEGF-C ELISA kit (MBS2503462, M), respectively. Measured using.
  • immature porcine bone marrow-derived mesenchymal stem cells are TGF- ⁇ 1, TGF- ⁇ 2, VEGF-A and VEGF-C.
  • TGF- ⁇ 1, TGF- ⁇ 2, VEGF-A and VEGF-C was found to be producing. It was also found that the immature porcine bone marrow-derived mesenchymal stem cells highly expressed TGF- ⁇ 1, TGF- ⁇ 2 and VEGF-C as compared with the mouse bone marrow-derived mesenchymal stem cells.
  • Test Example 2 The left femoral artery of a 12-week-old male C57BL / 6J mouse was ligated and then dissected to prepare an ischemic limb according to the method described in the literature (Motohiro Nishida, et al: J Vasc Surg: 2016: 64: 219-226). did.
  • the number of cells of immature pig bone marrow-derived mesenchymal stem cells prepared in the same manner as in Reference Example 1 was 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 6 or Suspended in PBS to 2.5 ⁇ 10 6 cells / 0.1 mL, 0.1 mL was injected intramuscularly.
  • Test Example 3 In the femoral muscle tissue of the ischemic limb prepared in the same manner as in Test Example 2, immature porcine bone marrow-derived mesenchymal stem cells or mouse bone marrow-derived mesenchymal stem cells prepared in the same manner as in Reference Example 1 were added to the number of cells 1 ⁇ . 10 5, or 1 ⁇ 10 were suspended in PBS to a 6 /0.1 ml, it was intramuscularly injected with 0.1 mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Virology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Rheumatology (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、各種疾患、損傷部、創傷及び褥瘡に対して優れた治療効果を奏する間葉系幹細胞を含む医薬組成物を提供することを目的とする。本発明は、非ブタ動物を治療するための医薬用組成物であって、TGF-β1、TGF-β2、VEGF-A及びVEGF-Cから選ばれる少なくとも1の液性因子を産生する幼若ブタ由来間葉系幹細胞を含有する、医薬用組成物に関する。

Description

医薬用組成物
 本発明は、非ブタ動物を治療するための医薬用組成物に関し、より詳細には、幼若ブタ由来の間葉系幹細胞を含有する、非ブタ動物を治療するための医薬用組成物に関する。
 近年の間葉系幹細胞をはじめとする体性幹細胞研究の進歩により、体性幹細胞の臨床応用は、既に基礎的な研究段階から開発段階へ移行している。体性幹細胞は、大きく3つの機能(多分化能、免疫調節能、細胞外環境のリモデリング能)をもち、難治性疾患の治療用細胞として期待されている。
 1つ目の多分化能については、体性幹細胞が直接骨又は軟骨などに分化する能力であり、投与された体性幹細胞が失われた細胞を補完したり、機能が不十分な細胞に置換したりすることで治療効果を発揮する。
 2つ目の免疫調節能は、体性幹細胞からの抗炎症性サイトカイン、ケモカイン又はエクソソームなどの分泌を介し、あるいは、細胞間の接着因子などを介し、患者の免疫担当細胞に働きかけ、炎症又は移植片対宿主病などの免疫反応を抑制することで治療効果を発揮する。
 3つ目の細胞外環境のリモデリング能については、虚血性疾患における梗塞部位や、炎症によって引き起こされた線維化部位などに対し、体性幹細胞からの血管新生促進因子、血管誘導因子、成長因子又は抗線維化因子などの分泌により治療効果を発揮するものである。
 間葉系幹細胞は、哺乳類の骨髄、脂肪、膵島又は臍帯血等に存在し、中胚葉性組織(間葉)に由来する体性幹細胞であり、間葉系に属する細胞への分化能を有する。近年、移植片対宿主病、心血管障害、自己免疫疾患、変形性関節症、骨形成不全、肝障害、呼吸器疾患、脊髄損傷、脳梗塞又は腎不全等の疾患に対して臨床治験が行われており(非特許文献1)、様々な臨床応用が期待されている(非特許文献2)。しかし、これら臨床応用における効果は十分とは言えない。
 また、間葉系幹細胞の臨床応用においては、ドナー確保、ドナーに対する侵襲、ドナーごとのウイルス否定検査等の安全性の担保などの課題がある。間葉系幹細胞の効力は、ドナーやその年齢等の条件により大きく変動するため、安定した品質確保も大きな課題である(非特許文献3)。
 血管新生は多岐にわたる血管新生促進因子、抑制因子、メタロプロテアーゼ又はその他の酵素などのバランスのもとに複雑に制御されており、創傷治癒又は様々な疾患に深く関わっている。血管新生には、創傷時の肉芽形成などで観察される生理的現象と、炎症性疾患又は動脈硬化症などの血管新生病などにおける病理的現象とがある(非特許文献4)。
 リンパ管は血管とともに生体内において広範囲なネットワークを形成しており、末梢組織で血管から漏出した間質液、タンパク質、脂肪又は免疫担当細胞などを吸収し、集合リンパ管を介して血管系へと環流することにより血管の閉鎖循環系を維持している。創傷及び様々な病的炎症の治癒において血管新生とともにリンパ管新生の誘導が観察されている(非特許文献5)。
Lemos NE, de Almeida Brondani L, Dieter C, Rheinheimer J, Boucas AP, Bauermann Leitao C, Crispim D, Bauer AC. Islets. 2017 Jul 5:e1335842. doi: 10.1080/19382014.2017.1335842 風間 智彦、日大医誌、第75巻、第2号、61-66頁、2016年 大串 始、生化学、第81巻、第2号、99-104頁、2009年2月 小野 眞弓ら、化学と生物、第37巻、第1号、14-19頁、1999年 細野 加奈子ら、日薬理誌、第141号、290-291頁、2013年
 本発明は、上記状況に鑑み、各種疾患、損傷部、創傷及び褥瘡に対して優れた治療効果を奏する間葉系幹細胞を含む医薬用組成物を提供することを目的とする。
 本発明者らは、幼若ブタより調製した間葉系幹細胞は、特定の液性因子を高発現し、且つ従来の間葉系幹細胞と比較して細胞サイズが小さく、増殖能に優れていることを見出し、本発明を完成させた。
 すなわち、本発明は下記に関する。
1.非ブタ動物を治療するための医薬用組成物であって、
 形質転換成長因子-β(以下、TGF-β)1、TGF-β2、血管内皮増殖因子(以下、VEGF)-A及びVEGF-Cから選ばれる少なくとも1の液性因子を産生する幼若ブタ由来間葉系幹細胞を含有する、医薬用組成物。
2.血管新生及び/又はリンパ管新生の促進により前記非ブタ動物を治療する、前記1に記載の医薬用組成物。
3.末梢動脈疾患、脳梗塞、心筋梗塞、急性肺損傷、創傷、皮膚損傷及び褥瘡から選ばれる少なくとも1を治療する、前記1または2に記載の医薬用組成物。
4.前記幼若ブタ由来間葉系幹細胞が胎児から生後1ヶ月未満のブタ由来である前記1~3のいずれか1に記載の医薬用組成物。
5.前記幼若ブタ由来間葉系幹細胞が胎児から生後25日未満のブタ由来である前記1~4のいずれか1に記載の医薬用組成物。
6.前記非ブタ動物が、ヒトである、前記1~5のいずれか1に記載の医薬用組成物。
 本発明の医薬用組成物は、幼若ブタ由来間葉系幹細胞を含有することにより、該幼若ブタ由来間葉系幹細胞が産生する液性因子の作用により、各種疾患、損傷部、創傷及び褥瘡に対し優れた治療効果を奏する。
図1(a)は、本発明の幹細胞を培養したときの、特定の培養期間(日)における全細胞量を示す図である。図1(b)は、本発明の幹細胞を培養したときの、特定の培養期間(日)における全細胞増殖率を示す図である。図1(a)および図1(b)において、点線および黒丸は幼若ブタ骨髄由来間葉系幹細胞(以下、npBM-MSCとも略す)を、実線および白丸はヒト骨髄由来間葉系幹細胞(以下、hBM-MSCとも略す)を示す。 図2(a)は、npBM-MSCおよびマウス骨髄由来間葉系幹細胞(以下、mBM-MSCとも略す)の培養上清における、TGF-β1の濃度を測定した結果を示す。図2(b)は、npBM-MSCおよびmBM-MSCの培養上清における、TGF-β2の濃度を測定した結果を示す。 図3(a)は、npBM-MSCおよびmBM-MSCの培養上清における、VEGF-Aの濃度を測定した結果を示す。図3(b)は、npBM-MSCおよびmBM-MSCの培養上清における、VEGF-Cの濃度を測定した結果を示す。 図4は、虚血肢の大腿筋組織に、npBM-MSCを筋肉注射し、血流を評価した結果を示す。 図5は、虚血肢の大腿筋組織に、npBM-MSC又はmBM-MSCを筋肉注射し、血流を評価した結果を示す。
 間葉系幹細胞は、中胚葉性組織(間葉)に由来する体性幹細胞であり、骨細胞、心筋細胞、軟骨細胞、腱細胞、脂肪細胞等の間葉系に属する細胞への分化能を有し、該分化能を維持したまま増殖できる細胞をいう。本発明における幼若ブタ由来間葉系幹細胞は幼若ブタから単離された間葉系幹細胞であればよく、例えば、幼若ブタの骨髄、膵島、皮膚又は脂肪など由来の間葉系幹細胞が含まれる。
 本発明において、「幼若ブタ」とは、胎児から生後1ヶ月未満、好ましくは生後25日未満のブタを示す。幼若ブタは医療用であることが好ましく、ヒトへ細胞移植することができる幼若ブタであることがより好ましい。ブタの種類は特に限定されないが、例えば、ランドレース種(例えば、デンマーク・ランドレース種、アメリカン・ランドレース種、ブリティッシュ・ランドレース種、オランダ・ランドレース種、スウェディッシュ・ランドレース種)、大ヨークシャー種、バークシャー種、デュロック種、ハンプシャー種、中ヨークシャー種、ミニブタが挙げられ、中でもランドレース種が好ましい。
 本発明における幼若ブタ由来間葉系幹細胞は、幼若ブタから単離された間葉系幹細胞であればよく、その初代培養細胞、該初代培養細胞を継代培養した細胞であって、各種分化マーカーを発現する各種細胞を生じることができる間葉系幹細胞であってもよい。
 本発明における幼若ブタ由来間葉系幹細胞は、TGF-β1、TGF-β2、VEGF-A及びVEGF-Cから選ばれる少なくとも1の液性因子を産生し、これらの中でも少なくともTGF-β1、TGF-β2及びVEGF-Cを産生することが好ましい。
 TGF-βは後半な生物学的活性を有するサイトカインファミリーであり、哺乳類では構造的相同性の高い3つのアイソフォームTGF-β1、2及び3が存在する。TGF-βは、血管新生の促進作用、リンパ管新生の促進作用を有する。
 VEGFは血管内皮細胞に特異的に作用するサイトカインファミリーであり、VEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E、PlGF(胎盤増殖因子、placental growth factor)-1及びPlGF-2の7つが存在する。VEGFは血管新生の促進作用、リンパ管新生の促進作用を有する。
 本発明の医薬用組成物は、TGF-β1、TGF-β2、VEGF-A及びVEGF-Cから選ばれる少なくとも1の液性因子を産生する幼若ブタ由来間葉系幹細胞を含有することにより、該細胞から産生される該液性因子の作用により血管新生及びリンパ管新生の少なくとも一方を促進し、非ブタ動物を治療することができる。
 血管新生及びリンパ管新生の少なくとも一方の促進による治療としては、疾患治療、損傷部治療及び創傷治癒から選ばれる少なくとも1が挙げられ、好ましくは末梢動脈疾患、脳梗塞、心筋梗塞、急性肺損傷、創傷、皮膚損傷及び褥瘡から選ばれる少なくとも1の治療が挙げられる。
 非ブタ動物としては、ブタ以外の動物であれば特に限定されず、ブタ以外の哺乳動物であることが好ましく、例えば、ヒト、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ウマ、ウシ、ヒツジ、ヤギ、マーモセット、サル等が挙げられる。
 本発明における幼若ブタ由来間葉系幹細胞の前記液性因子の産生は高発現であることが好ましい。ここで、「高発現」とは、従来の間葉系幹細胞と比較して液性因子の発現量が同等以上であることをいう。ここで、従来の間葉系幹細胞としては、実施例において後述するマウス骨髄由来間葉系幹細胞が例として挙げられる。
 本発明における幼若ブタ由来間葉系幹細胞は、マウス骨髄由来間葉系幹細胞と比較して、前記液性因子の発現量が有意に高く、マウス骨髄由来間葉系幹細胞と比較して、タンパク質の発現強度が1.1以上であることが好ましく、より好ましくは1.2以上、さらに好ましくは1.3以上である。前記タンパク質の発現強度は、例えば、特異的抗体を用いたFACS解析、ELISA等により確認することができる。
 本発明における幼若ブタ由来間葉系幹細胞が高発現する好ましい液性因子の組合せとして、TGF-β1、TGF-β2及びVEGF-Cが挙げられる。具体的には、例えば、本発明における幼若ブタ由来間葉系幹細胞を後述のMSC培地で3日間の培養後のTGF-β1及びTGF-β2の発現量は、同条件で培養したマウス骨髄由来間葉系幹細胞と比較して、1.1倍以上であることが好ましく、より好ましくは1.5倍以上、さらに好ましくは2倍以上である。また、例えば、本発明における幼若ブタ由来間葉系幹細胞を後述のMSC基礎培地で3日間の培養後のVEGF-Cの発現量は、同条件で培養したマウス骨髄由来間葉系幹細胞と比較して、1.1倍以上であることが好ましく、より好ましくは1.2倍以上、さらに好ましくは1.3倍以上である。
 本発明における幼若ブタ由来間葉系幹細胞は、細胞マーカーである、CD44及びCD90がともに60%以上陽性であることが好ましく、より好ましくは70%以上、さらに好ましくは80%以上陽性である。また、細胞マーカーであるCD29が60%以上陽性であることが好ましく、より好ましくは70%以上、さらに好ましくは80%以上陽性である。細胞マーカーの陽性率は実施例において後述するように、フローサイトメトリーを用いる方法等により確認できる。
 本発明における幼若ブタ由来間葉系幹細胞は、対数増殖期における倍加時間が36時間以下であることが好ましく、より好ましくは32時間以下、さらに好ましくは28時間以下、特に好ましくは24時間以下、最も好ましくは20時間以下である。また、対数増殖期における倍加時間は14時間以上であることが好ましく、16時間以上であることがより好ましい。
 本発明における幼若ブタ由来間葉系幹細胞の対数増殖期における培養は、例えば、後述のビタミンCを含有する培地(例えば、MSC培地)に本発明の幹細胞を播種し、37℃にて5%CO存在下で、培養用インキュベーターで培養することにより行うことができる。対数増殖期における倍加時間が短いほど、短時間且つ安価に大量の幼若ブタ由来間葉系幹細胞を調製することが可能となる。
 本発明における幼若ブタ由来間葉系幹細胞は、平均直径が17μm以下であることが好ましく、より好ましくは16.5μm以下であり、さらに好ましくは16μm以下であり、特に好ましくは15.5μm以下であり、最も好ましくは15μm以下である。平均直径は10μm以上であることが好ましく、12μm以上であることがより好ましい。平均直径が小さいほど、幼若ブタ由来間葉系幹細胞の投与による肺塞栓の形成を防止することができる。平均直径は、例えば、Nucleo Counter NC-200(商標)を用いて計測することができる。ここで、平均とは相加平均を意味する。
 本発明における幼若ブタ由来間葉系幹細胞から脂肪細胞への分化は、例えば、インスリン、MCGS(血清成分、Mesenchymal Cell Growth Supplement)、デキサメタゾン、インドメタシン、イソブチルメチルキサンチン等の存在下で本発明における幼若ブタ由来間葉系幹細胞を培養することで、脂肪細胞へ分化誘導することができる。
 脂肪細胞への分化および維持には市販のキットまたは培地等を用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-adipogeni(PT-3004)、Lonza Walkersville社製hMSC adipogenic induction medium(PT-3102B)、Lonza Walkersville社製hMSC adipogenic maintenance medium(PT-3102B)等が挙げられる。幼若ブタ由来間葉系幹細胞から脂肪細胞への分化は市販のキットを用いて確認することができ、例えば、Lonza社製Adipo Red(商標) assay reagentが挙げられる。
 本発明における幼若ブタ由来間葉系幹細胞から骨細胞への分化は、例えば、デキサメタゾン、アスコルビン酸塩、MCGS、β-グリセロリン酸等の存在下で本発明の幼若ブタ由来間葉系幹細胞を培養することで、骨細胞へ分化誘導することができる。また、市販のキットを用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-osteogenic、PT-3004等が挙げられる。幼若ブタ由来間葉系幹細胞から骨細胞への分化は、市販のアルカリフォスファターゼ染色キット(例えば、コスモ・バイオ社製等)、市販の石灰化染色キット(例えば、コスモ・バイオ社製等)等により確認することができる。
 本発明における幼若ブタ由来間葉系幹細胞から軟骨細胞への分化は、例えば、TGF-β3、デキサメタゾン、インスリン-トランスフェリン-亜セレン酸(ITS)、ピルビン酸ナトリウム、プロリン、アスコルビン酸塩、の存在下で本発明の幼若ブタ由来間葉系幹細胞を培養することで、軟骨細胞へ分化誘導することができる。また、市販のキットを用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-chondrogenic、PT-3003等が挙げられる。幼若ブタ由来間葉系幹細胞から軟骨細胞への分化は、アルシアンブルー染色等により確認することができる。
 本発明に係る医薬用組成物の製造方法は、幼若ブタ由来間葉系幹細胞を調製する工程を含む。幼若ブタ由来間葉系幹細胞を調製する方法の一態様としては、例えば、以下の工程を含む方法が挙げられる。
(1)幼若ブタから細胞を採取する工程
(2)工程(1)において採取した細胞を培養し、幼若ブタ由来間葉系幹細胞を調製する工程
 以下、各工程について説明する。
(1)幼若ブタから細胞を採取する工程
 工程(1)では幼若ブタの骨髄、脂肪、皮膚、膵臓等から細胞を採取する。具体的には例えば、幼若ブタの骨髄から細胞を採取する場合、幼若ブタの大腿骨、腸骨稜及び胸骨などから骨髄細胞を採取することができる。例えば、幼若ブタから大腿骨を回収し、両端を切断して針を挿入し、ヘパリンを添加した生理的緩衝液(例えば燐酸緩衝液、以後PBSとも言う)で洗い流し、反対側の場所から流出液を骨髄液として回収する。流出液の量が減少したら、骨を逆にして針を反対側に挿入し、PBSで再び洗い流して、細胞含有溶液である骨髄液を調製する。
 さらに、上記において調製した細胞含有溶液を通常遠心分離することにより幼若ブタ由来単核球細胞画分を単離してもよい。上記において調製した細胞含有溶液をPBS等で希釈し、ヒトリンパ球分離用の媒体(例えば、GEヘルスケアライフサイエンス社製Ficoll-Paque PLUS等)を入れたチューブ内の該媒体層の上に希釈した細胞含有溶液を入れる。
 前記チューブを遠心分離して分層させ、幼若ブタ由来単核球細胞を含む層を回収する。回収した溶液をさらに遠心分離し、上清を除去した後、PBS等で希釈して再度遠心分離し、単核球細胞画分を単離する。このようにして単離した単核球細胞画分の細胞は、培養前に凍結保存してもよい。単離した幼若ブタ由来単核球細胞画分の細胞を凍結することにより凍結融解の影響を受けにくい細胞を選択的に調製できる。培養前に凍結保存する場合、温度は-80℃以下であることが好ましく、より好ましくは-150℃以下である。
 また、例えば、幼若ブタの膵臓から細胞を採取する場合、幼若ブタから膵島を回収し、更に、場合によってはその膵島を浮遊培養することにより、幹細胞を調製する目的で接着培養に使用する細胞塊を調製する。
 また、例えば、幼若ブタの脂肪から細胞を採取する場合、幼若ブタから脂肪を採取してはさみで細かく刻んだ後、酵素処理を行う。セルストレーナーでフィルターをかけ、低速で遠心をする。チューブ底に沈降した細胞を培養に用いる。また、例えば、幼若ブタの皮膚(毛を含む)から細胞を採取する場合、幼若ブタから皮膚を採取し、酵素処理を行う。酵素処理後皮膚より毛を抜きBulge部分を採取して培養に用いる。培養を行う際は3T3フィーダー細胞を用いる。
(2)工程(1)において採取した細胞を培養し、幼若ブタ由来間葉系幹細胞を調製する工程
 上記工程(1)で採取した細胞、細胞画分、または細胞塊には、幹細胞以外の目的外の細胞が多く含まれる。通常、これらの目的外細胞の生存に必須である、ビタミンCを含まない基礎培地(例えば、後述のMSC基礎培地)を用いることで、これらの細胞を除去する培養方法が用いられている。
 本発明の工程(2)においては、上記工程(1)で採取した細胞、細胞分画、または細胞塊を、好ましくは35~39℃、より好ましくは36~38℃、最も好ましくは37℃にて、好ましくは4~6%の、より好ましくは4.5~5.5%の、最も好ましくは5%の、CO存在下で培養用インキュベーターにて培養することにより、間葉系幹細胞以外の目的外の細胞を除去するとともに、本発明における幼若ブタ由来間葉系幹細胞を増殖させる。
 本発明における幼若ブタ由来間葉系幹細胞は、増殖速度が顕著に速いことから、上記の目的外の細胞を除去する培養のために、ビタミンCを含まない基礎培地を用いず、ビタミンCを含む培地(例えば、後述のMSC培地)のみを用いても、本発明における幼若ブタ由来間葉系幹細胞を調製することができる。なお、上記の目的外の細胞を除去するために、ビタミンCを含まない基礎培地を用いて培養した後、ビタミンCを含む培地に交換して本発明における幼若ブタ由来間葉系幹細胞を増殖させることにより、本発明における幼若ブタ由来間葉系幹細胞を調製することもできる。
 本発明における幼若ブタ由来間葉系幹細胞は、具体的には例えば、次の方法で培養する。ゼラチンでコートした培養用容器(例えば、0.1%ゼラチンでコートしたプレート)またはゼラチンコート無しの培養用容器(例えば、プレート)を用いてビタミンCを含まない基礎培地(例えば、後述のMSC基礎培地)、またはビタミンCを含む培地(例えば、後述のMSC培地)を用いて、好ましくは5.0×10個~5.0×10個の細胞/9.6cmを播種し、例えば37℃にて5%CO、90%湿度の条件下でインキュベートして初代培養細胞を得る。
 初代培養細胞を得るための培養期間は、播種後、好ましくは3~12日、より好ましくは3~11日、最も好ましくは3~10日である。初代培養細胞は継代してもよい。継代して得られた幹細胞を継代培養細胞ともいう。
 初代培養細胞または継代培養細胞の継代は、幹細胞を播種後、好ましくは2~6日後、より好ましくは2~5日後、さらに好ましくは2~4日後、最も好ましくは3日後に、幹細胞が、30%~100%コンフルエントに、好ましくは50%~95%コンフルエントに、より好ましくは60%~90%コンフルエントに、最も好ましくは70%~85%コンフルエントに達した以降に行う。
 幹細胞の播種は、ゼラチンでコートした培養用容器(例えば、0.1%ゼラチンでコートしたプレート)またはゼラチンコート無しの培養用容器(例えば、プレート)を用いてビタミンCを含む培地(例えば、後述のMSC培地)を用いて、好ましくは5.0×10個~5.0×10個の細胞/9.6cmを播種する。幹細胞の培養は、例えば37℃にて5%CO、90%湿度の条件下で培養する。幹細胞の培養の間、必要に応じて培地交換して本発明における幼若ブタ由来間葉系幹細胞を増殖させる。
 MSC基礎培地およびMSC培地としては、従来公知のものを用いることができ、市販のものを用いてもよい。MSC基礎培地としては、例えば、500mLのGibco社製MEMα(Nucleosides、no Ascorbic acid)に55mLのGibco社製Fetal bovine serum (FBS)及び5.5mLのSigma-Aldorich社製Penicillin-Streptomycinを添加した培地が挙げられる。また、MSC培地としては、例えば、500mLのGibco社製MEMα(Nucleosides)に55mLのGibco社製Fetal bovine serum(FBS)、5.5mLのSigma-Aldorich社製Penicillin-Streptomycin及び22.2μL のSigma-Aldorich社製FGF-Basic,recombinant,expressed in E.coli,suitable for cell culture(final concentration:1ng/mL)を添加した培地が挙げられる。
 継代は少なくとも1回以上実施することが好ましい。継代回数は本発明における幼若ブタ由来間葉系幹細胞が得られる限り特に限定されないが、好ましくは1~3回であり、より好ましくは1~20回である。
 本発明における幼若ブタ由来間葉系幹細胞は凍結保存が可能である。凍結保存のタイミングは特に限定されないが、好ましくは継代1~20回の後であり、より好ましくは継代2~10回の後である。凍結保存および解凍の方法は従来公知の方法を用いることができる。
 本発明における幼若ブタ由来間葉系幹細胞の凍結保存方法としては、具体的には例えば、凍結保存液に分散させ、必要になるまで冷凍庫にて-80℃以下または液体窒素中で凍結保存することができる。凍結保存液としては、例えば、OPF-301[3%トレハロース及び5%デキストランを含有する乳酸リンゲル液(国際公開第2014/208053号)]とジメチルスルフォキサイド(DMSO)を9:1の比率で混合した溶液、動物細胞の凍結保存に使用可能な血清含有若しくは無血清保存液、または市販の細胞凍結保存用試薬[好ましくは、タカラバイオ社製CELLBANKER(登録商標)等のセルバンカー]が挙げられる。
 本発明の医薬用組成物は、期待される治療効果が維持されることを条件として、幼若ブタ由来間葉系幹細胞以外の他の成分を含有してもよい。本発明の医薬用組成物に使用することのできる成分としては、例えば、ヒアルロン酸、コラーゲン又はフィブリノーゲン等の有機系生体吸収性材料、ヒアルロン酸、コラーゲン(例えば、酸可溶性コラーゲン、アルカリ可溶性コラーゲン、酵素可溶性コラーゲン等の可溶性コラーゲン)又はフィブリン糊等のゲル化材料、滅菌水、生理食塩水又はリン酸塩溶液等の緩衝液等の水系溶媒が挙げられる。また、これらの成分の他、抗生物質、安定化剤、保存剤、pH調整剤、液性因子等を含んでいてもよい。
 本発明の医薬用組成物を医薬品として用いる場合の投与方法としては、特に制限されないが、筋肉内投与、皮下投与、血管内投与(好ましくは静脈内投与)、腹腔内投与、腸管内投与等が好ましく、中でも、筋肉内投与、皮下投与及び血管内投与がより好ましい。
 本発明の医薬用組成物の用量(投与量)は、患者の状態(例えば、体重、年齢、症状、体調等)、及び本発明の医薬用組成物の剤形等によって異なり得るが、十分な予防又は治療効果を奏する観点から、その量は多い方が好ましく、一方、副作用を抑制する観点からはその量は少ない方が好ましい傾向にある。
 通常、成人に投与する場合には、幼若ブタ由来間葉系幹細胞数として、5×10~1×1012個/回、好ましくは1×10~1×1011個/回、より好ましくは1×10~1×1010個/回である。なお、本用量を1回量として、複数回投与してもよく、本用量を複数回に分けて投与してもよい。
 また、通常、成人に投与する場合には、体重当たりの幼若ブタ由来間葉系幹細胞数として、1×10~5×1010個/kg、好ましくは1×10~5×10個/kg、より好ましくは1×10~5×10個/kgである。なお、本用量を1回量として、複数回投与してもよく、本用量を複数回に分けて投与してもよい。
参考例1
〔幼若ブタ由来骨髄細胞の回収〕
 幼若ブタの大腿骨から骨髄を採取した。幼若ブタ(生後23日の医療用ランドレース種ブタ)から大腿骨を回収し、両端を切断して12G針を挿入し、50mLのヘパリン処理したPBS[3mLのヘパリン(1000U/mL)、47mLのPBS]で洗い流し、反対側の場所から50mLの骨髄の流出液(以下、骨髄液とも略す)を回収した。流出液の量が減少したら、骨を逆にして針を反対側に挿入し、PBSで再び洗い流して骨髄液を収集した。カウント用の15mLコニカルチューブで1950μLのPBS(40倍希釈)に50μLのサンプルを取り、セルカウンターで細胞数を測定した。
〔幼若ブタ由来単核球細胞(npMNC)画分の単離〕
 上記手順で得られた骨髄液を静かに再懸濁した。骨髄液全体を50mLチューブ4本に各10mLずつに分け、各々PBSで30mLに希釈し、細胞がチューブに付着していないことを確認してよく混合した。10mLのFicoll-Paque PLUS(GEヘルスケアライフサイエンス社製)を4本の新しい50mLチューブに加え、Ficoll-Paque PLUS層の上にPBSと混合した30mLの骨髄液を入れた。
 前記チューブを20℃にて30分間400×gで遠心分離し、ゆっくりとブレーキなしで加速させ(フルスピードの1/3)、3つの異なる層を形成させた。単核球細胞画分は浮遊白色リングに配置されているため、白色リング全体を25mLのPBSを含む50mLチューブ(×4)に回収した。室温にて400×gで7分間遠心分離し、上清を除去した。PBSを40mLまで加え、室温にて400×gで7分間再び遠心分離した。上記と同様に細胞数を測定したところ、骨髄細胞全体のうち25~30%の細胞が単核球細胞画分として、それぞれ(20~30)×10個単離された。
〔npMNC画分の細胞の凍結保存〕
 単離された単核球細胞画分の細胞を、10細胞/mLのDMSOを混合したFBS(90%FBSと10%DMSO)を含むクライオバイアルに入れ、細胞懸濁液の全容量を1mlとした[細胞数/10×10=DMSOを混合したFBSの容量(mL)とした]。クライオバイアルを-20℃にて1時間保存し、続いて-80℃にて24時間保存後、最終的に長期保存用の液体窒素タンクに移した。
〔npMNC画分の細胞の培養およびnpBM-MSCの調製〕
 37℃の水浴でクライオバイアルに冷凍保存していたnpMNC画分の細胞を含む細胞懸濁液を素早く解凍し、マイクロピペットを用いて、解凍した細胞懸濁液を30mLの温度平衡(37℃)に調整したMSC基礎培地[500mLのGibco社製MEMα(Nucleosides、no Ascorbic acid)に55mLのGibco社製Fetal bovine serum (FBS)及び5.5mLのSigma-Aldorich社製Penicillin-Streptomycinを添加した培地、以下同様]に静かに加えた。室温にて5分間、500×gで遠心分離し、ペレットを4mLの温度で平衡化したMSC基礎培地に再懸濁し、上下に穏やかにピペッティングした。総細胞数および生細胞数を計測した結果、総細胞数4.18×10個、生細胞数6.6×10個、生存率:15.8%であった。
 0.1%ゼラチンで6ウェルプレートをコートし、インキュベーター(37℃、5%CO)中に10~15分間静置後、使用前にゼラチンを除去した。調製した各0.1%ゼラチン被覆6-ウェルプレートに細胞懸濁液を加え、穏やかに揺動させて増殖表面(ゼラチンコート)上に細胞懸濁液を分散させ、2mLのMSC基礎培地中に2.09×10個の細胞/1ウェルを播種した。COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養し、3日後にMSC培地[500mLのGibco社製MEMα(nucleosides)に55mLのGibco社製Fetal bovine serum(FBS)、5.5mLのSigma-Aldorich社製Penicillin-Streptomycin及び22.2μLのSigma-Aldorich社製FGF-Basic,recombinant,expressed in E.coli,suitable for cell culture(final concentration:1ng/mL)を添加した培地、以下同様]に交換して細胞を増殖させ、以後、3日間に1回、MSC培地の交換を行った。10日後にnpBM-MSCがコンフルエントとなった。なお、ゼラチンコート無しのプレートを用いた場合についても、同様に10日後にnpBM-MSCがコンフルエントとなった。
〔継代〕
 npBM-MSCがほぼ100%コンフルエントに達した後、2ウェルから細胞を回収し、0.1%ゼラチンコート有りまたは無しでT75フラスコにそれらを再播種した。
 2mLのPBS(カルシウム及びマグネシウム不含)で細胞を洗浄し、1ウェル当たり0.25%トリプシン320μLを加えてインキュベーターに数分間静置し、細胞が剥がれたら、1680μLのMSC培地で中和した。1mLピペットを用いて細胞懸濁液を50mLチューブに採取し、16mL(8mL×2ウェル)のMSC培地を添加した後、室温にて5分間、500×gで遠心分離した。ピペットを用いて、得られたペレットを温度平衡化したMSC培地(2mL)に穏やかに再懸濁した。総細胞数および生細胞数を計測した結果、総細胞数2.05×10個、生細胞数2.02×10個、生存率:98.5%であった。
 MSC培地を0.1%ゼラチンコート有りおよび無しのT75フラスコに加え、4.5×10生細胞/フラスコT75フラスコとなるように再播種し、COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養した。これらの細胞を第1継代とした。第1継代を播種した3日後に、0.1%ゼラチンコートの有無にかかわらず、100%コンフルエントに達した。
〔npBM-MSCの調製〕
 npBM-MSCがほぼ100%コンフルエンスに達した後、0.1%ゼラチンコートを含むまたは含まないT75フラスコの2つのフラスコから細胞を回収した。8mLのPBS(-)で細胞を洗浄し、1ウェルあたり0.25%のトリプシン2.4mLを加え、インキュベーターに数分間静置し、細胞が剥がれたら12.6mLのMSC培地で中和した。細胞懸濁液を50mLのチューブに集めて、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(10mL)を添加し、ピペットで上下に静かに再懸濁し、総細胞数および生細胞数を計測した結果を下記に示す。
 0.1%ゼラチンコートされたフラスコ(×2)からの細胞:総細胞数1.62×10個、生細胞数1.60×10個、生存率:98.8%
 ゼラチンコートなしのフラスコ(×2)からの細胞:総細胞数1.48×10個、生細胞数1.46×10個、生存率:98.6%
〔npBM-MSCの凍結保存〕
 上記した培養とは別に、早期継代のnpBM-MSCを凍結して細胞ストックを作製した。所望の濃度のCELLBANKER(登録商標)1またはOPF-301[3%トレハロース及び5%デキストランを含有する乳酸リンゲル液(国際公開第2014/208053号)]とDMSOを9:1の比率で混合した溶液中でトリプシン処理したnpBM-MSCペレットを再懸濁し、1.5×10細胞/1mL/バイアルとした。バイアルをバイセルに入れて-80℃にて24時間保存した後、細胞を-80℃から液体窒素に移して長期保存した。
〔CFUアッセイ〕
 npBM-MSC(P2)を、21cm培養ディッシュ(ゼラチンコート無しまたは0.1%ゼラチンコート)に630細胞を30細胞/cmの密度で播種し、MSC培地中で培養した。MSC培地は3日毎に交換した。6日間の培養後、接着細胞を4mLのPBSで2回洗浄し、4mLの氷冷メタノールで4℃にて15分間固定した。コロニーを可視化するために、リン酸緩衝液で1:19に希釈した4mLのギムザで30分間細胞を染色後、室温(RT)で洗浄し、HOで2回洗浄した。
 次いで、50個を超える細胞のコロニー数を計測し、細胞のコロニー形成効率を計算した。細胞のコロニー形成効率は、1ディッシュ当たりのコロニー数を、1ディッシュ当たり播種した細胞数(630個)で割ることによって計算した。結果を表1に示す。なお、表1の値は平均値±SD(n=3)を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、CFUアッセイの結果、得られたnpBM-MSCは、ゼラチンコートの有無にかかわらず、コロニー形成し得ることがわかった。
〔細胞の平均直径〕
 hBM-MSC(P4)および得られたnpBM-MSCについて、細胞の平均直径を計測した結果を表2に示す。細胞の平均直径はNucleo Counter NC-200(商標)を用いて計測し、平均値(n=3)を算出した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、得られた幼若ブタ骨髄由来間葉系幹細胞は、ヒト骨髄由来間葉系幹細胞と比較して、平均直径が小さいことがわかった。
〔増殖速度の評価〕
 hBM-MSCおよびnpBM-MSCについて、細胞をT25フラスコ中で5000細胞/cm(1.25×10細胞/フラスコ)の密度で播種し、MSC培地を用いて培養した。MSC培地は3日毎に交換した。培養開始から1、2、4および8日後に生存可能な細胞および死んだ細胞の総数を数えた。結果を表3および表4、並びに図1(a)および図1(b)に示す。なお、表3および表4の値は平均値±SD(n=4)である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4、並びに図1(a)および図1(b)に示すように、得られた幼若ブタ骨髄由来間葉系幹細胞は、ヒト骨髄由来間葉系幹細胞と比較して、細胞の増殖速度が顕著に速いことがわかった。
〔脂肪細胞への分化〕
 hBM-MSCおよびnpBM-MSCについて、hMSC differentiation BulletKit(商標)-adipogeni、PT-3004(Lonza Walkersville社製)を用いて、プロトコールに従って脂肪細胞への分化を誘導した。誘導開始後17日目にSigma-Aldorich社製Oil Redを用いて染色した。その結果、得られた幼若ブタ骨髄由来間葉系幹細胞は、ヒト骨髄由来間葉系幹細胞と同様に、脂肪細胞に分化し得ることがわかった。
〔骨細胞への分化〕
 hBM-MSCおよびnpBM-MSCについて、hMSC differentiation BulletKit(商標)-osteogenic、PT-3002(Lonza Walkersville社製)を用いて、プロトコールに従って骨細胞への分化を誘導した。誘導開始後14日目に、コスモ・バイオ社製アルカリフォスファターゼ染色キットを用いて染色して骨細胞への分化を確認した。その結果、得られた幼若ブタ骨髄由来間葉系幹細胞は、ヒト骨髄由来間葉系幹細胞と同様に、骨細胞に分化し得ることがわかった。
〔軟骨細胞への分化〕
 npBM-MSCについて、hMSC differentiation BulletKit(商標)-chondrogenic、PT-3003(Lonza Walkersville社製)を用いて、プロトコールに従って骨細胞への分化を誘導した。誘導開始後19日目に、HE染色した。その結果、得られたnpBM-MSCは、軟骨細胞に分化し得ることがわかった。
参考例2
〔npMNC画分の細胞の培養およびnpBM-MSC調製〕
 MSC基礎培地またはMSC培地は、使用前にインキュベーター(37℃、5%CO)中に10~15分間静置した。試験例1と同様に、37℃の水浴でクライオバイアルに冷凍保存していたnpMNC画分の細胞を含む細胞懸濁液を素早く解凍した。マイクロピペットを用いて、解凍した細胞懸濁液を30mLの温度平衡(37℃)MSC基礎培地に静かに加え、50mLのチューブ2本に15mLずつ分注した。
 室温にて5分間、500×gで遠心分離し、ペレットを2mLの温度平衡MSC基礎培地またはMSC培地に再懸濁し、上下に穏やかにピペッティングした。総細胞数および生細胞数を計測した結果を下記に示す。
 2mLのMSC基礎培地:総細胞数2.60×10個、生細胞数4.8×10個、生存率18.5%
 2mLのMSC培地:総細胞数2.55×10個、生細胞数4.5×10個、生存率17.6%
 播種細胞数が下記となるように計算された量の細胞懸濁液を各ウェルにつき下記培地を入れた6ウェルプレート(ゼラチンコート無し)に加え、穏やかに揺り動かして増殖表面上に細胞懸濁液を分散させた。
 2mLのMSC基礎培地:2.60×10個/1ウェルの細胞を播種
 2mLのMSC培地:2.55×10個/1ウェルの細胞を播種
 COインキュベーターに入れ、37℃にて、5%CO、90%湿度の条件下でインキュベートした。播種して3日後及び6日後にMSC培地にて培地交換して細胞を増殖させて、播種後8日目に継代した。
〔継代〕
 npBM-MSCがほぼ50~60%コンフルエントに達した後、1ウェルから細胞を回収し、ゼラチンコートなしでT75フラスコにそれらを再播種した。
 2mLのPBS(-)で細胞を洗浄し、1ウェル当たり0.25%トリプシンを320μL加えてインキュベーターに数分間静置し、細胞が剥がれたら1680μLのMSC培地で中和した。細胞懸濁液を50mLチューブに集めて8mLのMSC培地を加え、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(2mL)を添加して、ピペットで上下に穏やかに再懸濁し、総細胞数および生細胞数の計測した結果を下記に示す。
 P0播種時にMSC基礎培地の群:総細胞数5.0×10個、生細胞数5.0×10個、生存率:100%
 P0播種時にMSC培地の群:総細胞数3.3×10個、生細胞数3.3×10個、生存率:100%
 15mLのMSC培地をT75フラスコ(ゼラチンコート無し)に加え、下記細胞数となるように、npBM-MSCを再播種した、インキュベーターにて培養した。これらの細胞を第1継代とした。
 P0播種時にMSC基礎培地の群:生細胞数5.0×10個/フラスコ
 P0播種時にMSC培地の群:生細胞数3.3×10個/フラスコ
〔npBM-MSCの調製〕
 前記手順により再播種した細胞がほぼ80~90%のコンフルエンスに達した後、T75フラスコ(ゼラチンコート無し)の1フラスコから細胞を集めた。8mLのPBS(-)で細胞を洗浄し、0.25mL/1ウェルのトリプシン2.4mLを加え、インキュベーターに数分間静置し、細胞が剥がれたら12.6mLのMSC培地で中和した。細胞懸濁液を50mLのチューブに集めて、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(5mL)を添加し、ピペットで上下に静かに再懸濁して総細胞数および生細胞数を計測した結果を下記に示す。
 1つのフラスコからの細胞(P0の播種後の3日間のMSC基礎培地):総細胞数5.12×10個、生細胞数5.09×10個、生存率:99.5%
 1つのフラスコからの細胞(P0の播種時からMSC培地):総細胞数4.76×10個、生細胞数4.73×10個、生存率:99.4%
〔npBM-MSCの凍結保存〕
 上記した培養とは別に、試験例1と同様にして、早期継代の細胞を凍結して細胞ストックを作製した。
参考例3
 参考例1および参考例2で調製したnpMNCの細胞表面抗原を解析した。解析に用いた各サンプルの調製方法について、表5に示す。表5において、「Switch」とは、初期培養時はMSC基礎培地(ビタミンCフリー)を用い、増殖培養時には増殖培地であるMSC培地(ビタミンC含有)に変更して培養したことを示す。
Figure JPOXMLDOC01-appb-T000005
〔細胞表面抗原の解析〕
 各細胞サンプルを液体窒素タンクより取出して蓋を緩めて圧を抜き、再びふたを閉め、37℃に予め加温しておいた恒温槽で1~2分間軽く撹拌しながら融解した。Stain Buffer(BD社製)5mLを入れた15mL遠沈管に融解させた各細胞を移し、4℃にて500×g、5分間遠心し、上清を取り除いた。5mLのStain Bufferを入れ、4℃にて500×g、5分間遠心し、2回洗浄した。
 2mLのStain Buffer(BD社製)で再懸濁し、生細胞数をカウントした。再遠心(500×g、5分間、4℃)を行い、細胞数1×10個/mLとなるようStain Buffer(BD社製)で再懸濁し、20μL(細胞数2×10個)ずつ1.5mLチューブに分注し、非染色コントロール、CD44、CD90、Isotype Controlの計4本ずつ調製した。 
 4μLのAnti-CD44,Mouse(MEM-263),PE(GeneTex社製)、1μLのPE Mouse Anti-Human CD90(BD社製)(ブタとの交差性あり)、4μLのPE Mouse IgG1,κ Isotype Control(BD社製)をそれぞれのチューブに添加し、遮光氷上で45分間インキュベートした。非染色コントロールも氷上で保管した。
 各チューブにStain Buffer(BD社製)を1mLずつ入れて、4℃にて500×gで5分間遠心し、2回洗浄した。細胞ペレットをタッピングしてほぐし、500μLのStain Buffer(BD社製)で再懸濁し、解析直前にフィルターを通してフローサイト用のテストチューブに移した。解析までの間は遮光氷上で保管し、フローサイトメトリーを用いて解析した。
 その結果、いずれのサンプルにおいても間葉系幹細胞のマーカーであるCD44およびCD90が陽性であった。また、初期培養時にゼラチンによるコーティングを行わなくても、目的とする間葉系幹細胞が樹立することができた。なお、いずれの場合もIsotype Controlの測定では非特異な反応は見られなかった。
 参考例4 
〔幼若ブタ膵島由来間葉系幹細胞の調製〕 
 幼若ブタから膵島を回収し、浮遊培養することにより細胞塊を調製した後、参考例1と同様にして、冷凍保存した。37℃の水浴でクライオバイアルに冷凍保存していた幼若ブタ膵島を素早く解凍した。
 マイクロピペットを用いて、解凍した膵島懸濁液を30mLの温度平衡(37℃)に調整したMSC基礎培地に静かに加えた。4℃にて1分間、210×gで遠心分離した。なお、膵島を凍結しない場合は、室温にて、自然落下で膵島が沈殿後、上清を除去した。ペレットを4mLの温度で平衡化したMSC基礎培地に再懸濁し、上下に穏やかにピペッティングした。
 6-ウェルプレートに膵島懸濁液を加え、穏やかに揺動させて増殖表面(ゼラチンコートなし)上に細胞懸濁液を分散させ、2mLのMSC基礎培地中に1650IEQ~2125IEQの範囲の膵島/1ウェルを播種した。
 COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養し、3日後にMSC培地に交換して細胞を増殖させ、以後、3日間に1回、MSC培地の交換を行った。表6にサンプルの調製条件を示す。初期凍結の有無にかかわらず、播種してから6日後に100%コンフルエントに達した。
Figure JPOXMLDOC01-appb-T000006
〔継代〕
 幼若ブタ膵島由来間葉系幹細胞(npISLET-MSC)が約80%~ほぼ95%コンフルエンスに達した後、2ウェルから細胞を回収し、ゼラチンコートなしでT75フラスコにそれらを再播種した。
 2mLのPBS(カルシウム及びマグネシウム不含)で細胞を洗浄し、1ウェル当たり0.25%トリプシン320μLを加えてインキュベーター内に数分間静置し、細胞が剥がれたら1680μLのMSC培地で中和した。1mLピペットを用いて細胞懸濁液を50mLチューブに採取し、16mL(8mL×2ウェル)のMSC培地を添加した後、室温にて5分間、500×gで遠心分離した。ピペットを用いて、得られたペレットを温度平衡化したMSC培地(2mL)に穏やかに再懸濁した。
〔細胞の平均直径〕
 20mLの前記MSC培地をゼラチンコート無しのT75フラスコに加えて再播種し、COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養した。これらの細胞を第1継代とした。第1継代を播種した3日後に、初期凍結の有無にかかわらず、100%コンフルエントに達した。このことから、幼若ブタの膵島から調製した間葉系幹細胞の増殖速度は、幼若ブタの骨髄から調製した間葉系幹細胞の増殖速度と同程度であることがわかった。得られた幼若ブタ膵島由来間葉系幹細胞の平均直径を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、膵島の調製における凍結条件に関わらず、幼若ブタ膵島由来間葉系幹細胞を調製可能であり、凍結有りの場合、凍結無しの場合に関係なく平均直径は同程度であることがわかった。
〔細胞表面抗原の解析〕
 各細胞サンプルを液体窒素タンクより取出して蓋を緩めて圧を抜き、再びふたを閉め、37℃に予め加温しておいた恒温槽で1~2分間軽く撹拌しながら融解した。Stain Buffer(BD社製)5mLを入れた15mL遠沈管に融解させた各細胞を移し、4℃にて500×g、5分間遠心し、上清を取り除いた。5mLのStain Bufferを入れ、4℃にて500×g、5分間遠心し、2回洗浄した。
 2mLのStain Buffer(BD社製)で再懸濁し、生細胞数をカウントした。再遠心(500×g、5分間、4℃)を行い、細胞数1×10個/mLとなるようStain Buffer(BD社製)で再懸濁し、20μL(細胞数2×10個)ずつ1.5mLチューブに分注し、非染色コントロール、CD29、CD44、CD90の計4本ずつ調製した。 
 1μLのMouse Alexa Fluor 647 Mouse Anti-Pig CD29(BD社製)、4μLのAnti-CD44,Mouse(MEM-263),PE(GeneTex社製)、1μLのPE Mouse Anti-Human CD90(BD社製)(ブタとの交差性あり)をそれぞれのチューブに添加し、遮光氷上で45分間インキュベートした。非染色コントロールも氷上で保管した。
 各チューブにStain Buffer(BD社製)を1mLずつ入れて、4℃にて500×gで5分間遠心し、2回洗浄した。細胞ペレットをタッピングしてほぐし、500μLのStain Buffer(BD社製)で再懸濁し、解析直前にフィルターを通してフローサイト用のテストチューブに移した。解析までの間は遮光氷上で保管し、フローサイトメトリーを用いて解析した。
 その結果、いずれのサンプルにおいても間葉系幹細胞のマーカーであるCD29、CD44およびCD90について高い陽性率が観察された。また、初期培養時における凍結の有無によらずに、目的とする間葉系幹細胞が樹立することができた。
試験例1 
 6ウェルプレートに、参考例1と同様にして調製したnpBM-MSCを細胞数5×10個/2mL/ウェル又はmBM-MSC(OriCellTM系統C57BL/6マウス、カタログ番号MUBMX-01001、ロット番号170221I31、Cyagen Biosciences Inc.)を細胞数1×10個/2mL/ウェルとなるように播種し、MSC培地を用いて培養した。3日間の培養後、上清を回収してTGF-β1、TGF-β2、VEGF-A及びVEGF-Cの濃度を測定した。TGF-β1及びTGF-β2濃度は、ELISAキットを用いて測定し、上清回収時の細胞数で補正した。結果を図2(a)及び(b)、図3(a)及び(b)に示す。なお、ブタ及びマウスのTGF-β1濃度はR&D SYSTEMS(登録商標) Quantikine(登録商標) ELISA Mouse/Rat/Porcine/Canine TGF-β1(MB100B,Bio-Techne Corporation, Minneapolis,MN,USA)を用いて測定した。ブタ及びマウスのTGF-β2濃度はR&D SYSTEMS(登録商標) Quantikine(登録商標) ELISA Mouse/Rat/Canine/Porcine TGF-β2(MB200,Bio-Techne Corporation)を用いて測定した。ブタのVEGF-A及びマウスのVEGF-A濃度はそれぞれSwine VEGF-A Do-It-Yourself ELISA(KFS-DIY0751S-003,Kingfisher Biotech,Inc.,St.Paul,MN,USA)及びMouse VEGF-A Do-It-Yourself ELISA(KFS-DIY0746M-003,Kingfisher Biotech,Inc.)を用いて測定した。ブタのVEGF-C及びマウスのVEGF-C濃度はそれぞれPorcine VEGF-C ELISA kit(MBS2512025,MyBioSource,Inc.San Diego,CA,USA)及びMouse VEGF-C ELISA kit(MBS2503462,MyBioSource,Inc.)を用いて測定した。
 図2(a)及び(b)、図3(a)及び(b)に示すように、幼若ブタ骨髄由来間葉系幹細胞は、TGF-β1、TGF-β2、VEGF-A及びVEGF-Cを産生していることがわかった。また、幼若ブタ骨髄由来間葉系幹細胞は、マウス骨髄由来間葉系幹細胞と比較して、TGF-β1、TGF-β2及びVEGF-Cを高発現していることがわかった。
試験例2 
 文献(Motohiro Nishida,et al:J Vasc Surg:2016:64:219-226)に記載の方法に従い、12週齢相当雄性C57BL/6Jマウスの左大腿動脈を結紮後、切離して虚血肢を作製した。作製した虚血肢の大腿筋組織に、参考例1と同様にして調製した幼若ブタ骨髄由来間葉系幹細胞を細胞数1×10個、5×10個、1×10個又は2.5×10個/0.1mLとなるようにPBSに懸濁し、0.1mLを筋肉注射した。
 レーザドップラー流速計(Moor Instruments Ltd,UK社製DS2)を用いて、術後4週まで経時的に下肢の血流を測定し、患側と健常(コントロール)側とを比較した。結果を図4に示す。
 図4に示すように、幼若ブタ由来間葉系幹細胞の投与により、著しい血流改善効果が得られた。
試験例3
 試験例2と同様にして作製した虚血肢の大腿筋組織に、参考例1と同様にして調製した幼若ブタ骨髄由来間葉系幹細胞、又はマウス骨髄由来間葉系幹細胞を細胞数1×10個、又は1×10個/0.1mLとなるようにPBSに懸濁し、0.1mLを筋肉注射した。
 レーザドップラー流速計(Moor Instruments Ltd,UK社製DS2)を用いて、術後4週まで経時的に下肢の血流を測定し、患側と健常(コントロール)側とを比較した。結果を図5に示す。
 図5に示すように、幼若ブタ由来間葉系幹細胞による血流改善効果は、マウス骨髄由来間葉系幹細胞と比較して、顕著に高いことが分かった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2019年4月24日付けで出願された日本特許出願(特願2019-82768)に基づいており、その全体が引用により援用される。

Claims (6)

  1.  非ブタ動物を治療するための医薬用組成物であって、
     形質転換成長因子-β(以下、TGF-β)1、TGF-β2、血管内皮増殖因子(以下、VEGF)-A及びVEGF-Cから選ばれる少なくとも1の液性因子を産生する幼若ブタ由来間葉系幹細胞を含有する、医薬用組成物。
  2.  血管新生及び/又はリンパ管新生の促進により前記非ブタ動物を治療する、請求項1に記載の医薬用組成物。
  3.  末梢動脈疾患、脳梗塞、心筋梗塞、急性肺損傷、創傷及び皮膚損傷から選ばれる少なくとも1を治療する、請求項1または2に記載の医薬用組成物。
  4.  前記幼若ブタ由来間葉系幹細胞が胎児から生後1ヶ月未満のブタ由来である請求項1~3のいずれか1項に記載の医薬用組成物。
  5.  前記幼若ブタ由来間葉系幹細胞が胎児から生後25日未満のブタ由来である請求項1~4のいずれか1項に記載の医薬用組成物。
  6.  前記非ブタ動物が、ヒトである、請求項1~5のいずれか1項に記載の医薬用組成物。
PCT/JP2020/005525 2019-04-24 2020-02-13 医薬用組成物 WO2020217652A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021515814A JPWO2020217652A1 (ja) 2019-04-24 2020-02-13
US17/605,412 US20220233599A1 (en) 2019-04-24 2020-02-13 Pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082768 2019-04-24
JP2019082768 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020217652A1 true WO2020217652A1 (ja) 2020-10-29

Family

ID=72942357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005525 WO2020217652A1 (ja) 2019-04-24 2020-02-13 医薬用組成物

Country Status (3)

Country Link
US (1) US20220233599A1 (ja)
JP (1) JPWO2020217652A1 (ja)
WO (1) WO2020217652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019080A1 (ja) * 2022-07-19 2024-01-25 国立大学法人 長崎大学 血管内皮増殖因子を高発現する臍帯由来間葉系細胞の製造方法、および肺疾患治療用医薬組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117695378A (zh) * 2023-12-11 2024-03-15 湛江中心人民医院 载药系统及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049957A1 (ja) * 2017-09-08 2019-03-14 株式会社大塚製薬工場 幼若ブタ由来幹細胞およびその調製方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049957A1 (ja) * 2017-09-08 2019-03-14 株式会社大塚製薬工場 幼若ブタ由来幹細胞およびその調製方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MASUHIRO NISHIMURA , LUAN NGUYEN , NATSUKI WATANABE , YASUTAKA FUJITA , OSAMU SAWAMOTO ,SHINICHI MATSUMOTO: "Development and characterization of novel clinical grade neonatal porcine bone marrow-derived mesenchymal stem cells.", XENOTRANSPLANTATION, vol. 26, no. 3, February 2019 (2019-02-01), pages 1 - 9, XP055758425, ISSN: 0908-665X, DOI: 10.1111/xen.12501 *
SAYAKA USUI, YOSHITAKA ISO, MASAHIRO SASAI, TAKUYA MIZUKAMI, CHISATO SATO, MASAAKI KURATA, AKIHIRO UMEZAWA, SEIJI SHIODA, HIROSHI : "Mesenchymal stem cells from bone marrow enhance neovascularization and stromal cell proliferation in rat ischemic limb in early phase after implantation.", THE SHOWA UNIVERSITY JOURNAL OF MEDICAL SCIENCES, vol. 26, no. 2, 1 January 2014 (2014-01-01), pages 121 - 129, XP055758431, ISSN: 0915-6380, DOI: 10.15369/sujms.26.121 *
SUN-A OCK, YEON-MI LEE, JI-SUNG PARK, SHARATH BELAME SHIVAKUMAR, SEON-WOUNG MOON, NAK-JU SUNG, WON-JAE LEE, SI-JUNG JANG, JU-MI PA: "Evaluation of phenotypic, functional and molecular characteristics of porcine mesenchymal stromal/stem cells depending on donor age, gender and tissue source.", JOURNAL OF VETERINARY MEDICAL SCIENCE, vol. 78, no. 6, 1 January 2016 (2016-01-01), pages 987 - 995, XP055758416, ISSN: 0916-7250, DOI: 10.1292/jvms.15-0596 *
TAKATOSHI SATO, ISO YOSHITAKA, UYAMA TARO, KAWACHI KEISUKE, WAKABAYASHI KOHEI, OMORI YASUTOSHI, SODA TERUKO, SHOJI MAKOTO, KOBA SH: "Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization.", LABORATORY INVESTIGATION, vol. 91, no. 4, 31 January 2011 (2011-01-31), pages 553 - 564, XP055758435, ISSN: 0023-6837, DOI: :10.1038/labinvest.2010.202 *
THOMAS A RANDO: "Stem cells, aging and the quest for immortality.", NATURE, vol. 441, 28 June 2006 (2006-06-28), pages 1080 - 1086, XP055758417, ISSN: 0028-0836, DOI: 10.1038/nature04958 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019080A1 (ja) * 2022-07-19 2024-01-25 国立大学法人 長崎大学 血管内皮増殖因子を高発現する臍帯由来間葉系細胞の製造方法、および肺疾患治療用医薬組成物

Also Published As

Publication number Publication date
US20220233599A1 (en) 2022-07-28
JPWO2020217652A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
AU2012279995B2 (en) Progenitor cells of mesodermal lineage
JP2022024047A (ja) 線維芽細胞治療活性を増強する方法
CN104582711B (zh) 诱导心肌梗塞的修复再生的多能性干细胞
JP7041515B2 (ja) 骨、骨髄、及び軟骨の誘導を提供する因子及び細胞
EP3551748B1 (en) Perinatal tissue derived mesenchymal stem cells: method of preparation and uses thereof
JP2013510582A (ja) 間葉幹細胞の球状集合体
KR102405663B1 (ko) 개선된 줄기 세포 조성물
KR20140143363A (ko) 기질 줄기 세포
WO2020217652A1 (ja) 医薬用組成物
KR20140038236A (ko) 간엽줄기세포 응집체의 제조 방법
CA2727053A1 (en) Mesoangioblast-like cell as well as methods and uses relating thereto
JP2023096192A (ja) 幼若ブタ由来幹細胞およびその調製方法
KR102091442B1 (ko) 건 또는 인대 손상 치유를 위한 자가 및 동종의 지방유래 중간엽줄기세포 조성물 및 이의 제조방법
KR20170007854A (ko) 면역 장애의 치료
US20200102541A1 (en) Method for increasing the proportion of desired cells from induced pluripotent stem cells
KR20180063817A (ko) 기능성이 향상된 신규 간엽성 전구세포를 포함하는 혈관 재생용 또는 혈관 손상 방지용 세포치료제 조성물, 및 이의 제조방법
Cheshire et al. Xeno-free expansion of adult keratinocytes for clinical application: the use of human-derived feeder cells and serum
KR20180085698A (ko) BMP2 및 TGFβ3 발현 미니서클벡터를 이용하여 분화 유도된 연골세포
Park et al. Therapeutic effect of human adipose‐derived stromal cells cluster in rat hind‐limb ischemia
Pieper et al. Isolation of mesenchymal stromal cells from peripheral blood of ST elevation myocardial infarction patients
KR101101140B1 (ko) 레티노산과 fgf­2를 이용한 간엽줄기세포의 확장법
JP7473207B2 (ja) 末梢血流障害の治療剤
RU2780179C2 (ru) Происходящие из перинатальной ткани мезенхимальные стволовые клетки: способ их получения и применения
KR101452877B1 (ko) 조기-내피전구세포 및 췌도세포를 포함하는 세포이식물의 제조방법
Zhang et al. A novel population of human bone marrow multipotent mesenchymal stem cells regenerates infarcted myocardium in rats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795608

Country of ref document: EP

Kind code of ref document: A1