WO2019049957A1 - 幼若ブタ由来幹細胞およびその調製方法 - Google Patents

幼若ブタ由来幹細胞およびその調製方法 Download PDF

Info

Publication number
WO2019049957A1
WO2019049957A1 PCT/JP2018/033110 JP2018033110W WO2019049957A1 WO 2019049957 A1 WO2019049957 A1 WO 2019049957A1 JP 2018033110 W JP2018033110 W JP 2018033110W WO 2019049957 A1 WO2019049957 A1 WO 2019049957A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
stem cells
cell
msc
juvenile
Prior art date
Application number
PCT/JP2018/033110
Other languages
English (en)
French (fr)
Inventor
西村 益浩
泰毅 藤田
奈月 渡邉
ルアン ヌエン
松本 慎一
Original Assignee
株式会社大塚製薬工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大塚製薬工場 filed Critical 株式会社大塚製薬工場
Priority to BR112020004517-9A priority Critical patent/BR112020004517A2/pt
Priority to SG11202002047QA priority patent/SG11202002047QA/en
Priority to JP2019541010A priority patent/JPWO2019049957A1/ja
Priority to KR1020207006812A priority patent/KR102503086B1/ko
Priority to AU2018329882A priority patent/AU2018329882A1/en
Priority to EP18852821.0A priority patent/EP3680324A4/en
Priority to US16/645,213 priority patent/US20200291358A1/en
Priority to CN201880058519.1A priority patent/CN111094550A/zh
Priority to CA3074582A priority patent/CA3074582A1/en
Publication of WO2019049957A1 publication Critical patent/WO2019049957A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to juvenile pig-derived stem cells and a method of preparing the same, and more particularly to juvenile pig-derived mesenchymal stem cells capable of differentiating into adipocytes, osteocytes and chondrocytes, and a method of preparing the same.
  • Somatic stem cells include mesenchymal stem cells
  • somatic stem cells have three major functions (multipotency, immunoregulatory ability, remodeling ability of extracellular environment), and are expected as cells for treating intractable diseases.
  • the first pluripotency is the ability of somatic stem cells to differentiate directly into bone, cartilage, etc., and somatic stem cells administered complement the lost cells or substitute cells with insufficient function. It exerts a therapeutic effect by
  • the second immunoregulatory ability acts on the patient's immunocompetent cells through secretion of anti-inflammatory cytokines, chemokines, exosomes, etc. from somatic stem cells, or through intercellular adhesion factors, etc., resulting in inflammation and transplantation. It exerts a therapeutic effect by suppressing the immune response such as one-to-host disease.
  • the third ability to remodel the extracellular environment is, for the infarct site in ischemic disease, the fibrotic site caused by inflammation, etc., angiogenic factor from somatic stem cells, growth factor, antifibrotic factor It exerts a therapeutic effect by secretion of
  • Mesenchymal stem cells are present in mammalian bone marrow, fat, pancreatic islets, umbilical cord blood, etc., are somatic stem cells derived from mesodermal tissue (mesenchyma), and have the ability to differentiate into cells belonging to the mesenchymal system .
  • diseases such as graft versus host disease, cardiovascular disease, autoimmune disease, osteoarthritis, osteogenesis, bone disorder, liver disease, respiratory disease, spinal cord injury, cerebral infarction and renal failure.
  • Mesenchymal stem cells are expected to have various clinical applications, but there are issues such as securing of donors, invasion to donors, security of safety such as virus negative test for each donor, and the like.
  • the efficacy of the obtained mesenchymal stem cells largely varies depending on the conditions such as the donor and the age thereof, and securing stable quality of the therapeutic cells is also a major issue.
  • a technique in which mesenchymal stem cells derived from a patient's bone marrow and the like are proliferated outside the body and treated with the cells in the same patient can be an alternative treatment for tissue / organ transplantation which is problematic due to donor shortage.
  • Non-patent Document 2 there are individual differences in the proliferation ability and differentiation ability of cells, and cells from all patients do not show the same behavior.
  • Non-patent Document 2 in order to prepare stem cells sufficient for treatment, securing of donors, confirmation of safety, and excellent proliferation and differentiation ability of stem cells are required.
  • an object of the present invention is to provide a stem cell having excellent proliferation ability and differentiation ability, using a juvenile medical pig which can stably supply and manage pathogens as a donor source.
  • mesenchymal stem cells prepared from the bone marrow of juvenile pigs have remarkable characteristics such as high proliferation rate and excellent proliferation ability and small cell size compared to conventional mesenchymal stem cells. And completed the present invention.
  • the present invention relates to the following.
  • Stem cells isolated from juvenile pigs. 2. The stem cell according to 1 above, which has an average diameter of 17 ⁇ m or less. 3. The stem cell according to 1 or 2, wherein the doubling time in the logarithmic growth phase is 36 hours or less. 4. The stem cell according to any one of the above 1 to 3, which is a mesenchymal stem cell. 5. The stem cell according to any one of the above 1 to 4, wherein the juvenile pig is a juvenile pig capable of cell transplantation into humans. 6. The stem cell according to any one of the above 1 to 5 isolated from bone marrow or islet of juvenile pig. 7. 7. The stem cell according to any one of the above 1 to 6, which is a stem cell for transplantation. 8. 7.
  • the stem cell according to 7 above which is a human transplantation stem cell.
  • a method of preparing stem cells comprising the step of isolating cells from juvenile pigs. 12.
  • the method for preparing stem cells according to 11 above which comprises passaging the stem cells 3 to 12 days after seeding.
  • the stem cells of the present invention have the advantage of being significantly faster in proliferation rate, superior in proliferation potential, and smaller in cell size, as compared to conventional stem cells. Since the stem cells of the present invention have a remarkably high proliferation rate, it is possible to obtain a large amount of stem cells used for applications such as transplantation and feeder cells in a short time and at low cost. Although administration of stem cells may block the lungs and cause pulmonary embolism, the stem cells of the present invention can prevent such pulmonary embolism formation due to the small cell size.
  • FIG. 1A is a diagram showing the total cell mass in a specific culture period (day) when the stem cells of the present invention are cultured.
  • FIG. 1B is a diagram showing the total cell proliferation rate in a specific culture period (day) when the stem cells of the present invention are cultured.
  • dotted lines and solid circles indicate juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC), and solid lines and white circles indicate human bone marrow-derived mesenchymal stem cells (hBM-MSC).
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • hBM-MSC human bone marrow-derived mesenchymal stem cells
  • FIGS. 2A and 2B show adipocyte differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSCs), respectively.
  • FIGS. 3A and 3B show osteocyte differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSCs), respectively.
  • FIGS. 4A and 4B show osteocyte differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSCs), respectively.
  • FIGS. 5A and 5B show chondrocyte differentiation of juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC).
  • FIG. 6 shows the results of cell surface antigen analysis of juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC) using CD44, a marker of mesenchymal stem cells.
  • FIG. 7 shows the results of cell surface antigen analysis of CD90 juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC), which are markers of mesenchymal stem cells.
  • FIGS. 5A and 5B show chondrocyte differentiation of juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC).
  • FIG. 6 shows the results of cell surface antigen analysis of juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC) using CD44, a marker of mesenchymal stem cells.
  • FIG. 7 shows the results of
  • FIGS. 9A to 9D show the results of cell surface antigen analysis of juvenile pig islet-derived mesenchymal stem cells (npISLET-MSC) using CD29, a marker of mesenchymal stem cells.
  • 8A sample 11 (no freezing immediately after preparation of islet)
  • FIG. 8B sample 12 (with freezing immediately after preparation of islet)
  • FIG. 8C sample 13 (freezing on day 3 of culture after preparation of islet)
  • FIG. The result of 14 (with freezing on the 3rd day of culture after islet preparation) is shown.
  • FIGS. 9A to 9D show the results of cell surface antigen analysis of juvenile pig islet-derived mesenchymal stem cells (npISLET-MSC) using CD44 which is a marker of mesenchymal stem cells.
  • FIG. 9A sample 11 (no freezing immediately after preparation of islet)
  • FIG. 9B sample 12 (with freezing immediately after preparation of islet)
  • FIG. 9C sample 13 (freezing on day 3 of culture after preparation of islet)
  • FIG. The result of 14 (with freezing on the 3rd day of culture after islet preparation) is shown.
  • 10A to 10D show the results of cell surface antigen analysis of juvenile pig islet-derived mesenchymal stem cells (npISLET-MSC) using CD90, a marker of mesenchymal stem cells.
  • 10A sample 11 (no freezing immediately after preparation of islet)
  • FIG. 10B sample 12 (with freezing immediately after preparation of islet)
  • FIG. 10C sample 13 (freezing on day 3 of culture after preparation of islet);
  • the result of 14 (with freezing on the 3rd day of culture after islet preparation) is shown.
  • the stem cells of the present invention are stem cells isolated from juvenile pigs.
  • the stem cell described in the Example mentioned later was isolate
  • "juvenile pig” refers to a pig less than one month after birth, preferably less than 25 days after birth.
  • the juvenile pig is preferably for medical use, and more preferably a juvenile pig capable of cell transplantation into humans.
  • the type of pig is not particularly limited.
  • landrace species eg, Denmark landrace species, American landrace species, British landrace species, Dutch landrace species, Swedish landrace species
  • stem cells mean immature cells having self-replication ability and differentiation / proliferation ability.
  • Stem cells include subpopulations such as pluripotent stem cells, multipotent stem cells, unipotent stem cells, etc., depending on differentiation ability.
  • a pluripotent stem cell means a cell which can not be an individual per se, but has the ability to differentiate into all tissues and cells constituting a living body.
  • Multipotent stem cells mean cells that have the ability to differentiate into multiple types of tissues and cells, but not all types.
  • Unipotent stem cells mean cells having the ability to differentiate into specific tissues or cells.
  • multipotent stem cells are preferable.
  • multipotent stem cells include mesenchymal stem cells, hematopoietic stem cells, neural stem cells, somatic stem cells such as bone marrow stem cells and germ stem cells, and the like, with preference given to mesenchymal stem cells.
  • the stem cell of the present invention is a stem cell isolated from juvenile pig, which is a primary culture cell, a cell obtained by subculturing the primary culture cell, and giving rise to various cells expressing various differentiation markers Possible stem cells are also included in the stem cells of the present invention.
  • the stem cell of the present invention is a mesenchymal stem cell, it is preferable that both cell markers, CD44 and CD90, are 60% or more positive, more preferably 70% or more, still more preferably 80% or more. It is.
  • the cell marker CD29 is preferably 60% or more positive, more preferably 70% or more, and still more preferably 80% or more.
  • the stem cell of the present invention preferably has a doubling time of 36 hours or less, more preferably 32 hours or less, still more preferably 28 hours or less, particularly preferably 24 hours or less, and most preferably 20 hours or less. is there.
  • the doubling time in the logarithmic growth phase is preferably 14 hours or more, and more preferably 16 hours or more.
  • the stem cells of the present invention can be cultured in the logarithmic growth phase, for example, by seeding the stem cells of the present invention in a medium (for example, MSC medium) containing vitamin C described later and culturing at 37 ° C. in the presence of 5% CO 2 It can be carried out by culturing in an incubator. As the doubling time in the logarithmic growth phase is shorter, it is possible to prepare a large amount of stem cells in a short time and inexpensively.
  • a medium for example, MSC medium
  • the stem cells of the present invention preferably have an average diameter of 17 ⁇ m or less, more preferably 16.5 ⁇ m or less, still more preferably 16 ⁇ m or less, particularly preferably 15.5 ⁇ m or less, most preferably 15 ⁇ m or less It is.
  • the average diameter is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the smaller mean diameter can prevent the formation of pulmonary embolism by administration of stem cells.
  • the mean diameter can be measured, for example, using Nucleo Counter NC-200TM.
  • the average means arithmetic mean.
  • the differentiation of mesenchymal stem cells of the present invention into adipocytes includes, for example, mesenchymal stem cells of the present invention in the presence of insulin, MCGS (serum component, Mesenchymal Cell Growth Supplement), dexamethasone, indomethacin, isobutylmethylxanthine, etc. By culturing, differentiation into fat cells can be induced.
  • a commercially available kit or medium may be used, for example, hMSC differentiation BulletKitTM-adipogeni (PT-3004) manufactured by Lonza Walkersville, hMSC adipogenic induction medium (Lonza Walkersville) PT-3102B), hMSC adipogenic maintenance medium (PT-3102B) manufactured by Lonza Walkersville, and the like.
  • hMSC differentiation BulletKitTM-adipogeni PT-3004
  • hMSC adipogenic induction medium Longza Walkersville
  • PT-3102B hMSC adipogenic maintenance medium manufactured by Lonza Walkersville, and the like.
  • the differentiation of mesenchymal stem cells into adipocytes can be confirmed using a commercially available kit, and examples include Lonza Adipo RedTM assay reagent.
  • Differentiation of bone cells from mesenchymal stem cells of the present invention can be performed by, for example, culturing mesenchymal stem cells of the present invention in the presence of dexamethasone, ascorbate, MCGS, ⁇ -glycerophosphate, etc. It can be induced.
  • a commercially available kit may be used, and examples thereof include hMSC differentiation BulletKit (trademark) -osteogenic, PT-3004 and the like manufactured by Lonza Walkersville.
  • the differentiation of mesenchymal stem cells into bone cells may be confirmed by using a commercially available alkaline phosphatase staining kit (for example, Cosmo Bio Co., Ltd., etc.), a commercially available calcification staining kit (eg, Cosmo Bio Co., etc., etc.) Can.
  • a commercially available alkaline phosphatase staining kit for example, Cosmo Bio Co., Ltd., etc.
  • a commercially available calcification staining kit eg, Cosmo Bio Co., etc., etc.
  • the differentiation of mesenchymal stem cells to chondrocytes is carried out, for example, in the presence of TGF-.beta.3, dexamethasone, insulin-transferrin-selenium acid (ITS), sodium pyruvate, proline, ascorbate.
  • ITS insulin-transferrin-selenium acid
  • a commercially available kit may be used, and examples thereof include hMSC differentiation BulletKit (trademark) -condrogenic manufactured by Lonza Walkersville, PT-3003 and the like.
  • the differentiation of mesenchymal stem cells into chondrocytes can be confirmed by Alcian blue staining or the like.
  • Transplantation of stem cells can be easily performed by injecting a suspension of stem cells into the host body.
  • the injection can be performed to an organ to be regeneratively treated or in the vicinity thereof, or in a vein or the like.
  • the number of stem cells to be injected is not particularly limited and may be appropriately selected depending on the condition, body weight of the host, administration method and the like, but it is usually about 10 2 to 10 10 .
  • feeder cells refers to other cell types that serve as an adjunct to adjust the culture conditions of the cells of interest for which proliferation and differentiation are to occur.
  • feeder cells When using as a feeder cell, it is preferable to process beforehand by gamma irradiation or an antibiotic so as not to normally grow.
  • feeder cells for stem cells fibroblasts derived from mouse embryo are mainly used, but various cell types such as fibroblasts such as 3T3 and SNL are used as feeder cells depending on the purpose of the experiment and cells.
  • the stem cells of the present invention can be used as feeder cells for stem cells for human transplantation, preferably by isolating them from juvenile pigs capable of cell transplantation into humans.
  • the method for preparing stem cells of the present invention is characterized by comprising the step of isolating cells from juvenile pigs.
  • One embodiment of the method for preparing a stem cell of the present invention includes, for example, a method comprising the following steps. (1) Step of Collecting Cells from Juvenile Pig (2) Step of Cultivating Cells Collected in Step (1) to Prepare Juvenile Pig-Derived Stem Cells Hereinafter, each step will be described.
  • step (1) cells are collected from bone marrow, fat, skin, pancreas and the like of juvenile pig.
  • bone marrow cells can be collected from the femur, iliac crest and sternum of the juvenile pig.
  • a femur is collected from a young pig, cut at both ends, a needle is inserted, and flushed with a heparin-added physiological buffer (for example, phosphate buffer, hereinafter also referred to as PBS), and flows out from the opposite site.
  • PBS heparin-added physiological buffer
  • the fluid is collected as bone marrow fluid.
  • the volume of the effluent is reduced, the bone is inverted, the needle is inserted on the opposite side, and rinsed again with PBS to prepare a cell-containing solution, bone marrow fluid.
  • the juvenile pig-derived mononuclear cell fraction may be isolated by usually centrifuging the cell-containing solution prepared above.
  • the cell-containing solution prepared above was diluted with PBS or the like and diluted onto the medium layer in a tube containing a medium for human lymphocyte separation (for example, Ficoll-Paque PLUS by GE Healthcare Life Sciences). Put in the cell-containing solution.
  • a medium for human lymphocyte separation for example, Ficoll-Paque PLUS by GE Healthcare Life Sciences.
  • the tube is centrifuged to separate layers, and a layer containing juvenile pig-derived mononuclear cells is collected.
  • the collected solution is further centrifuged, and after removing the supernatant, it is diluted with PBS or the like and centrifuged again to isolate a mononuclear cell fraction.
  • the cells of the mononuclear cell fraction thus isolated may be cryopreserved prior to culture.
  • the temperature is preferably ⁇ 80 ° C. or less, more preferably ⁇ 150 ° C. or less.
  • islet is collected from juvenile pig, and in some cases, it is used for adhesion culture for the purpose of preparing stem cells by suspending and culturing the islet. Prepare cell mass.
  • the fat is collected from juvenile pig, finely chopped with scissors, and then subjected to the enzyme treatment. Filter with a cell strainer and centrifuge at low speed. The cells precipitated at the bottom of the tube are used for culture.
  • the skin is collected from young pig and subjected to an enzyme treatment. After enzyme treatment, the hair is removed from the skin and the Bulge part is collected and used for culture.
  • 3T3 feeder cells use 3T3 feeder cells.
  • step (2) A step of culturing the cells collected in step (1) and preparing juvenile pig-derived stem cells
  • the cells, cell fraction, or cell mass collected in step (1) above are not intended except for stem cells. It contains many cells.
  • a culture method for removing these cells is used by using a vitamin C-free basal medium (for example, MSC basal medium described later), which is essential for the survival of these extraneous cells of interest.
  • the cells, cell fractions or cell masses collected in the above step (1) are preferably brought to 35 to 39 ° C., more preferably 36 to 38 ° C., most preferably 37 ° C.
  • a culture incubator in the presence of 4 to 6%, more preferably 4.5 to 5.5%, most preferably 5% of CO 2 in a culture incubator.
  • the stem cells of the present invention are expanded while removing the
  • a culture medium containing vitamin C (eg, as described later) is used instead of a vitamin C-free basal medium for culture to remove the above-mentioned non-target cells.
  • the stem cells of the present invention can be prepared using only MSC medium).
  • the medium is replaced with a medium containing vitamin C to proliferate the stem cells of the present invention.
  • Stem cells can also be prepared.
  • the stem cells of the present invention are cultured by the following method.
  • a culture vessel coated with gelatin eg, a plate coated with 0.1% gelatin
  • a culture vessel without gelatin coat eg, a plate
  • a vitamin C-free basal medium eg, MSC basal described below
  • 5.0 ⁇ 10 5 to 5.0 ⁇ 10 7 cells / 9.6 cm 2 are seeded using a culture medium) or a culture medium containing vitamin C (eg, MSC culture medium described later), for example
  • the primary culture cells are obtained by incubating at 37 ° C. under 5% CO 2 and 90% humidity.
  • the culture period for obtaining primary culture cells is preferably 3 to 12 days, more preferably 3 to 11 days, and most preferably 3 to 10 days after seeding.
  • Primary culture cells may be passaged.
  • the stem cells obtained by passage are also referred to as passage cells.
  • the primary culture cells or subcultured cells may be passaged preferably 2 to 6 days, more preferably 2 to 5 days, still more preferably 2 to 4 days, most preferably 3 days after seeding the stem cells.
  • Stem cells can be seeded using a culture vessel coated with gelatin (eg, a plate coated with 0.1% gelatin) or a culture vessel without gelatin coat (eg, a plate) using a culture medium containing vitamin C (eg, as described later) (MSc medium) is preferably used to inoculate 5.0 ⁇ 10 5 to 5.0 ⁇ 10 7 cells / 9.6 cm 2 .
  • a culture medium containing vitamin C eg, as described later
  • Stem cells are cultured, for example, at 37 ° C. under conditions of 5% CO 2 and 90% humidity.
  • the medium is exchanged as needed to grow the stem cells of the present invention.
  • MSC basal medium and MSC medium conventionally known ones can be used, and commercially available ones may be used.
  • MSC basal medium for example, a medium obtained by adding 55 mL of Gibco Fetal bovine serum (FBS) and 5.5 mL of Sigma-Aldorich Penicillin-Streptomycin to 500 mL of MEMb (Nucleosides, no Ascorbic acid) from Gibco Can be mentioned.
  • FBS Gibco Fetal bovine serum
  • MEMb Nucleosides, no Ascorbic acid
  • MSC medium for example, in 500 mL of Gibco MEM ⁇ (nucleosides), 55 mL of Gibco Fetal bovine serum (FBS), 5.5 mL of Sigma-Aldorich Penicillin-Streptomycin and 22.2 ⁇ L of Sigma- Aldorich FGF-Basic, recombinant, expressed in E.
  • FBS Gibco Fetal bovine serum
  • FBS Gibco Fetal bovine serum
  • FBS Gibco Fetal bovine serum
  • Sigma-Aldorich Penicillin-Streptomycin 5.5 mL of Sigma-Aldorich Penicillin-Streptomycin
  • 22.2 ⁇ L of Sigma- Aldorich FGF-Basic recombinant, expressed in E.
  • examples include media to which E. coli, suitable for cell culture (final concentration: 1 ng / mL) have been added.
  • Passage is preferably performed at least once or more.
  • the number of passages is not particularly limited as long as the stem cells of the present invention can be obtained, but it is preferably 1 to 3 times, more preferably 1 to 20 times.
  • the stem cells of the present invention can be cryopreserved.
  • the timing of the cryopreservation is not particularly limited, but preferably after passage 1 to 20, more preferably after 2 to 10 passages. Conventionally known methods can be used as the cryopreservation and thawing methods.
  • cryopreservation of stem cells specifically, for example, it can be dispersed in a cryopreservation solution and cryopreserved in -80 ° C. or less or liquid nitrogen in a freezer until necessary.
  • a cryopreservation solution for example, OPF-301 [lactate Ringer solution containing 3% trehalose and 5% dextran (WO 2014/208053)] and dimethyl sulfoxide (DMSO) in a ratio of 9: 1
  • DMSO dimethyl sulfoxide
  • a mixed solution, a serum-containing or serum-free preservation solution that can be used for cryopreservation of animal cells, or a commercially available cell cryopreservation reagent preferably, a cell banker such as Takara Bio Inc. CELLBANKER (registered trademark)] can be mentioned. .
  • Bone marrow was collected from the femurs of young pigs. Femurs are collected from juvenile pigs (23 days old medical landrace pig), both ends are cut, 12 G needle is inserted, and 50 mL heparinized PBS (3 mL heparin (1000 U / mL), 47 mL The solution was flushed with PBS, and 50 mL of bone marrow outflow (hereinafter also referred to as bone marrow fluid) was collected from the opposite site. When the volume of effluent decreased, the bone was inverted and a needle was inserted on the opposite side and rinsed again with PBS to collect bone marrow fluid. A 50 ⁇ L sample was taken in 1950 ⁇ L PBS (40-fold dilution) in a 15 mL conical tube for counting, and the cell number was measured with a cell counter.
  • the tube was centrifuged at 400 ⁇ g for 30 minutes at 20 ° C. and slowly accelerated without brake (1/3 of full speed) to form three different layers. Because the mononuclear cell fraction was placed in a floating white ring, the entire white ring was collected in a 50 mL tube (x 4) containing 25 mL PBS. The supernatant was removed by centrifugation at 400 ⁇ g for 7 minutes at room temperature. PBS was added to 40 mL and centrifuged again at 400 ⁇ g for 7 minutes at room temperature. When the number of cells was measured in the same manner as described above, 25 to 30% of the total bone marrow cells were isolated as (20 to 30) ⁇ 10 6 as a mononuclear cell fraction.
  • npMNC juvenile pig-derived mononuclear cell fraction cells
  • the cryovial was stored at ⁇ 20 ° C. for 1 hour, and subsequently stored at ⁇ 80 ° C. for 24 hours, and finally transferred to a liquid nitrogen tank for long-term storage.
  • npMNC juvenile pig-derived mononuclear cell
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • the 6-well plate was coated with 0.1% gelatin and left in an incubator (37 ° C., 5% CO 2 ) for 10 to 15 minutes to remove gelatin before use.
  • Add cell suspension to each of the prepared 0.1% gelatin coated 6-well plates and gently rock to disperse the cell suspension on the growth surface (gelatin coated) in 2 mL of MSC basal medium We seeded 2.09 ⁇ 10 6 cells / well.
  • the cells were cultured in a CO 2 incubator at 37 ° C.
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • immature pig bone marrow-derived mesenchymal stem cells npBM-MSC
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • the cells were washed with 2 mL PBS (containing no calcium and magnesium), added with 320 ⁇ L of 0.25% trypsin per well, placed in an incubator for several minutes, and when cells were detached, neutralized with 1680 ⁇ L of MSC medium.
  • the cell suspension was collected into a 50 mL tube using a 1 mL pipette, and 16 mL (8 mL ⁇ 2 wells) of MSC medium was added, followed by centrifugation at 500 ⁇ g for 5 minutes at room temperature. Using a pipette, the resulting pellet was gently resuspended in temperature-equilibrated MSC medium (2 mL).
  • the total number of cells was 2.05 ⁇ 10 6
  • the number of living cells was 2.02 ⁇ 10 6
  • the survival rate was 98.5%.
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • npBM-MSC Freeze preservation of juvenile pig bone marrow-derived mesenchymal stem cells
  • npBM-MSC early passage juvenile pig bone marrow-derived mesenchymal stem cells
  • DMSO a mixed solution of DMSO and a desired concentration of CELLBANKER® 1 or OPF-301 [Lactated Ringer's solution (WO 2014/208053) containing 3% trehalose and 5% dextran] and DMSO at a ratio of 9: 1
  • the trypsinized npBM-MSC pellet was resuspended to 1.5 ⁇ 10 6 cells / 1 mL / vial. After storing the vial in the bicell and storing at -80 ° C for 24 hours, the cells were transferred from -80 ° C to liquid nitrogen for long-term storage.
  • npBM-MSC Young pig bone marrow-derived mesenchymal stem cells (npBM-MSC) (P2) are seeded at a density of 30 cells / cm 2 with 630 cells in a 21 cm 2 culture dish (without gelatin coating or 0.1% gelatin coating), The cells were cultured in MSC medium. MSC medium was changed every 3 days. After 6 days of culture, adherent cells were washed twice with 4 mL PBS and fixed with 4 mL ice cold methanol for 15 minutes at 4 ° C. To visualize colonies, cells were stained for 30 minutes with 4 mL of Giemsa diluted 1:19 with phosphate buffer, then washed at room temperature (RT) and washed twice with H 2 O.
  • RT room temperature
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • Table 2 shows the results of measuring the average diameter of human bone marrow-derived mesenchymal stem cells (hBM-MSC, passage number P4) and the obtained juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC). .
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • the obtained juvenile pig bone marrow-derived mesenchymal stem cells are compared to human bone marrow-derived mesenchymal stem cells in It was found that the growth rate was remarkably fast.
  • hBM-MSC human bone marrow-derived mesenchymal stem cells
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • hMSC differentiation BulletKit trademark
  • PT-3004 manufactured by Lonza Walkersville
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • hBM-MSC human bone marrow-derived mesenchymal stem cells
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • BulletKitTM-osteogenic PT-3002 manufactured by Lonza Walkersville
  • the obtained juvenile pig bone marrow-derived mesenchymal stem cells are similar to human bone marrow-derived mesenchymal stem cells as bone cells. It turned out that it can differentiate.
  • chondrocytes With respect to juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC), differentiation into osteocytes was induced according to a protocol using hMSC differentiation BulletKit (trademark) -chondrogenic, PT-3003 (manufactured by Lonza Walkersville). The results of HE staining and Alcian blue staining on day 19 after initiation of induction are shown in FIGS. 5A and 5B, respectively.
  • npBM-MSC juvenile pig bone marrow-derived mesenchymal stem cells
  • Test example 2 [Culture of cells of juvenile pig-derived mononuclear cell (npMNC) fraction and preparation of juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC)] MSC basal medium or MSC medium was allowed to stand in an incubator (37 ° C., 5% CO 2 ) for 10 to 15 minutes before use. Similar to Test Example 1, a cell suspension containing cells of a juvenile pig-derived mononuclear cell (npMNC) fraction which had been cryopreserved in a cryovial in a 37 ° C. water bath was quickly thawed. Using a micropipette, the thawed cell suspension was gently added to 30 mL of temperature equilibrated (37 ° C.) MSC basal medium and aliquoted 15 mL into two 50 mL tubes.
  • npMNC juvenile pig-derived mononuclear cell
  • npBM-MSC juvenile pig bone m
  • the medium was changed with MSC medium three days and six days after seeding, cells were grown, and passaged eight days after seeding.
  • npBM-MSCs juvenile pig bone marrow-derived mesenchymal stem cells
  • the cells were washed with 2 mL PBS ( ⁇ ), added with 320 ⁇ L of 0.25% trypsin per well, allowed to stand in an incubator for several minutes, and neutralized with 1680 ⁇ L of MSC medium when the cells were detached.
  • the cell suspension was collected in a 50 mL tube, 8 mL of MSC medium was added, and centrifuged at 500 ⁇ g for 5 minutes at room temperature.
  • MSC medium Fifteen mL of MSC medium was added to a T75 flask (without gelatin coat), and cultured in an incubator in which juvenile pig bone marrow-derived mesenchymal stem cells (npBM-MSC) were replated so as to have the following cell number. These cells were taken as the first passage.
  • MSC medium at the time of P0 inoculation viable cell number 3.3 ⁇ 10 5 / flask
  • npBM-MSC young pig bone marrow-derived mesenchymal stem cells
  • the temperature-equilibrated MSC medium (5 mL) was added to the obtained pellet and gently resuspended by pipetting up and down to measure the total cell number and viable cell number. The results are shown below.
  • Test Example 3 Cell surface antigens of juvenile pig-derived mononuclear cells (npMNC) prepared in Test Example 1 and Test Example 2 were analyzed. The preparation method of each sample used for analysis is shown in Table 5.
  • “Switch” indicates that culture was performed using MSC basal medium (vitamin C free) at the time of initial culture, and changing to MSC medium (containing vitamin C) which is a growth medium at the time of growth culture.
  • the cells were resuspended with 2 mL of Stain Buffer (manufactured by BD), and the number of viable cells was counted. Re-centrifugation (500 ⁇ g, 5 minutes, 4 ° C.) and resuspend in Stain Buffer (BD) to a cell count of 1 ⁇ 10 7 cells / mL, 20 ⁇ L (cell number: 2 ⁇ 10 5 ) Each aliquot was dispensed into 1.5 mL tubes, and a total of 4 tubes of non-stained control, CD44, CD90 and Isotype Control were prepared.
  • Stain Buffer manufactured by BD
  • markers of mesenchymal stem cells were positive. It is also considered that the target mesenchymal stem cells could be established without coating with gelatin at the time of initial culture. In any case, no nonspecific reaction was observed in the measurement of Isotype Control.
  • Test Example 4 Preparation of young pig pancreatic islet-derived mesenchymal stem cells. After collecting islets from juvenile pigs and preparing a cell mass by suspension culture, it was frozen and stored in the same manner as in Test Example 1. Young pig islets were stored frozen in cryovials in a 37 ° C. water bath and thawed quickly.
  • thawed islet suspension was gently added to 30 mL of MSC basal medium adjusted to temperature equilibrium (37 ° C.). Centrifuge at 210 ⁇ g for 1 minute at 4 ° C. In addition, when the islet was not frozen, the supernatant was removed after the islet was precipitated by gravity at room temperature. The pellet was resuspended in equilibrated MSC basal medium at a temperature of 4 mL and gently pipetted up and down.
  • the cells are grown by culturing in a CO 2 incubator at 37 ° C. under 5% CO 2 and 90% humidity, and after 3 days, they are replaced with MSC medium to grow the cells, and then once every 3 days I made an exchange.
  • Table 6 shows the preparation conditions of the sample. It reached 100% confluence 6 days after seeding, with or without initial freezing.
  • the cells were washed with 2 mL PBS (containing no calcium and magnesium), added with 320 ⁇ L of 0.25% trypsin per well, allowed to stand in an incubator for several minutes, and neutralized with 1680 ⁇ L of MSC medium when the cells were detached.
  • the cell suspension was collected into a 50 mL tube using a 1 mL pipette, and 16 mL (8 mL ⁇ 2 wells) of MSC medium was added, followed by centrifugation at 500 ⁇ g for 5 minutes at room temperature. Using a pipette, the resulting pellet was gently resuspended in temperature-equilibrated MSC medium (2 mL).
  • juvenile pig islet-derived mesenchymal stem cells can be prepared regardless of freezing conditions in preparation of islets, and in the presence of freezing, the average diameter is the same regardless of the case of no freezing. I found it to be.
  • the cells were resuspended with 2 mL of Stain Buffer (manufactured by BD), and the number of viable cells was counted. Re-centrifugation (500 ⁇ g, 5 minutes, 4 ° C.) and resuspend in Stain Buffer (BD) to a cell count of 1 ⁇ 10 7 cells / mL, 20 ⁇ L (cell number: 2 ⁇ 10 5 ) Each aliquot was dispensed into 1.5 mL tubes, and a total of four non-stained controls, CD29, CD44 and CD90 were prepared.
  • Stain Buffer manufactured by BD
  • FIGS. 8A-8D The results of CD29 are shown in FIGS. 8A-8D, the results of CD44 in FIGS. 9A-9D, and the results of CD90 in FIGS. 10A-10D.
  • 8A, 9A and 10A Sample 11 (without freezing immediately after preparation of islet);
  • FIG. 8B, 9B and 10B Sample 12 (with freezing immediately after preparation of islet);
  • FIGS. 8C, 9C and 10C FIG. 8D, FIG. 9D, and FIG. 10D show the results of sample 14 (freezing on day 3 of culture after preparation of islet).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、優れた増殖能および分化能を有する幹細胞を提供することを目的とする。本発明は、幼若ブタより単離された、幹細胞およびその調製方法に関する。

Description

幼若ブタ由来幹細胞およびその調製方法
 本発明は、幼若ブタ由来幹細胞およびその調製方法に関し、より詳細には、脂肪細胞、骨細胞、軟骨細胞に分化可能である幼若ブタ由来の間葉系幹細胞およびその調製方法に関する。
 近年の間葉系幹細胞をはじめとする体性幹細胞研究の進歩により、体性幹細胞の臨床応用は、既に基礎的な研究段階から開発段階へ移行している。体性幹細胞は、大きく3つの機能(多分化能、免疫調節能、細胞外環境のリモデリング能)をもち、難治性疾患の治療用細胞として期待されている。
 1つ目の多分化能については、体性幹細胞が直接骨、軟骨などに分化する能力であり、投与された体性幹細胞が失われた細胞を補完したり、機能が不十分な細胞に置換したりすることで治療効果を発揮する。
 2つ目の免疫調節能は、体性幹細胞からの抗炎症性サイトカイン、ケモカイン、エクソソームなどの分泌を介し、あるいは、細胞間の接着因子などを介し、患者の免疫担当細胞に働きかけ、炎症や移植片対宿主病などの免疫反応を抑制することで治療効果を発揮する。
 3つ目の細胞外環境のリモデリング能については、虚血性疾患における梗塞部位や、炎症によって引き起こされた線維化部位などに対し、体性幹細胞からの血管誘導因子、成長因子、抗線維化因子などの分泌により治療効果を発揮するものである。
 間葉系幹細胞は、哺乳類の骨髄、脂肪、膵島、臍帯血等に存在し、中胚葉性組織(間葉)に由来する体性幹細胞であり、間葉系に属する細胞への分化能を有する。近年、移植片対宿主病、心血管障害、自己免疫疾患、変形性関節症、骨形成不全、肝障害、呼吸器疾患、脊髄損傷、脳梗塞、腎不全等の疾患に対して臨床治験が行われている(非特許文献1)。
 間葉系幹細胞は、様々な臨床応用が期待されているが、ドナー確保、ドナーに対する侵襲、ドナーごとのウイルス否定検査等の安全性の担保などの課題がある。また、得られる間葉系幹細胞の効力は、ドナーやその年齢等の条件により大きく変動し、治療用細胞の安定した品質確保も大きな課題である。患者の骨髄等由来の間葉系幹細胞を体外で増殖させて、同一患者にその細胞を用いて治療する技術は、ドナー不足で問題となっている組織・臓器移植の代替の治療法となり得る。しかし、細胞の増殖能、分化能には個人差があり、全ての患者由来の細胞が同様の挙動を示さない(非特許文献2)。以上のように、治療に十分な幹細胞を準備するには、ドナー確保、安全性の確認、幹細胞の優れた増殖、分化能が求められる。
Lemos NE, de Almeida Brondani L, Dieter C, Rheinheimer J, Boucas AP, Bauermann Leitao C, Crispim D, Bauer AC. Islets. 2017 Jul 5:e1335842. doi: 10.1080/19382014.2017.1335842 大串 始、生化学、第81巻、第2号、99~104頁、2009年2月
 上記の通り、再生治療に幹細胞を用いる場合、ドナー確保、安全性の確認、幹細胞の優れた増殖、分化能が要求されるが、幹細胞は数継代を経るとその増殖能・分化能が低下するため、治療に十分な幹細胞を調製するにはコストおよび時間を要するという問題がある。したがって、本発明は、安定供給や病原体の管理が可能となる幼若医療用ブタをドナーソースとし、優れた増殖能及び分化能を有する幹細胞を提供することを目的とする。
 本発明者らは、幼若ブタの骨髄より調製した間葉系幹細胞は、従来の間葉系幹細胞と比較して、顕著に増殖速度が速く増殖能に優れ、細胞サイズが小さいという優れた特性を有していることを見出し、本発明を完成させた。
 すなわち、本発明は下記に関する。
1.幼若ブタより単離された、幹細胞。
2.平均直径が17μm以下である前記1に記載の幹細胞。
3.対数増殖期における倍加時間が36時間以下である前記1または2に記載の幹細胞。
4.間葉系幹細胞である前記1~3のいずれか1に記載の幹細胞。
5.幼若ブタがヒトへ細胞移植することができる幼若ブタである前記1~4のいずれか1に記載の幹細胞。
6.幼若ブタの骨髄または膵島より単離された前記1~5のいずれか1に記載の幹細胞。
7.移植用幹細胞である前記1~6のいずれか1に記載の幹細胞。
8.ヒト移植用幹細胞である前記7に記載の幹細胞。
9.フィーダー細胞用幹細胞である前記1~6のいずれか1に記載の幹細胞。
10.ヒト移植用幹細胞を増殖するためのフィーダー細胞用幹細胞である前記9に記載の幹細胞。
11.幼若ブタから細胞を単離する工程を含む、幹細胞の調製方法。
12.幹細胞を播種後3~12日後に継代する工程を含む、前記11に記載の幹細胞の調製方法。
13.幼若ブタから単離する細胞が単核球細胞画分の細胞である前記11または12に記載の幹細胞の調製方法。
14.幼若ブタからの細胞の単離が、幼若ブタの骨髄または膵島からの細胞の単離である前記11~13のいずれか1に記載の幹細胞の調製方法。
15.単離した単核球細胞画分の細胞を凍結する工程を含む、前記13または14に記載の幹細胞の調製方法。
 本発明の幹細胞は、従来の幹細胞と比較して、増殖速度が顕著に速く増殖能に優れ、且つ細胞サイズが小さい、という利点を有する。本発明の幹細胞は増殖速度が顕著に速いことにより、短時間且つ安価に移植用・フィーダー細胞用等の用途に用いる幹細胞を大量に取得することができる。また、幹細胞の投与により該幹細胞が肺に詰まり肺塞栓を起こす場合があるが、本発明の幹細胞は細胞サイズが小さいことにより、このような肺塞栓の形成を防止することができる。
図1Aは、本発明の幹細胞を培養したときの、特定の培養期間(日)における全細胞量を示す図である。図1Bは、本発明の幹細胞を培養したときの、特定の培養期間(日)における全細胞増殖率を示す図である。図1Aおよび図1Bにおいて、点線および黒丸は幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)を、実線および白丸はヒト骨髄由来間葉系幹細胞(hBM-MSC)を示す。 図2Aおよび図2Bは、それぞれヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)についての脂肪細胞への分化を示す図である。 図3Aおよび図3Bは、それぞれヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)についての骨細胞への分化を示す図である。 図4Aおよび図4Bは、それぞれヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)についての骨細胞への分化を示す図である。 図5Aおよび図5Bは、幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)についての軟骨細胞への分化を示す図である。 図6は、間葉系幹細胞のマーカーであるCD44を用いて幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の細胞表面抗原解析をした結果を示す図である。 図7は、間葉系幹細胞のマーカーであるCD90幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の細胞表面抗原解析をした結果を示す図である。 図8A~図8Dは、間葉系幹細胞のマーカーであるCD29を用いて幼若ブタ膵島由来間葉系幹細胞(npISLET-MSC)の細胞表面抗原解析をした結果を示す図である。図8Aはサンプル11(膵島調製直後の凍結無し)、図8Bはサンプル12(膵島調製直後の凍結有り)、図8Cはサンプル13(膵島調製後培養3日目の凍結無し)、図8Dはサンプル14(膵島調製後培養3日目の凍結有り)の結果を示す。 図9A~図9Dは、間葉系幹細胞のマーカーであるCD44を用いて幼若ブタ膵島由来間葉系幹細胞(npISLET-MSC)の細胞表面抗原解析をした結果を示す図である。図9Aはサンプル11(膵島調製直後の凍結無し)、図9Bはサンプル12(膵島調製直後の凍結有り)、図9Cはサンプル13(膵島調製後培養3日目の凍結無し)、図9Dはサンプル14(膵島調製後培養3日目の凍結有り)の結果を示す。 図10A~図10Dは、間葉系幹細胞のマーカーであるCD90を用いて幼若ブタ膵島由来間葉系幹細胞(npISLET-MSC)の細胞表面抗原解析をした結果を示す図である。図10Aはサンプル11(膵島調製直後の凍結無し)、図10Bはサンプル12(膵島調製直後の凍結有り)、図10Cはサンプル13(膵島調製後培養3日目の凍結無し)、図10Dはサンプル14(膵島調製後培養3日目の凍結有り)の結果を示す。
 本発明の幹細胞は、幼若ブタから単離された幹細胞である。なお、後述する実施例に記載の幹細胞は、幼若ブタの骨髄または膵島から分離されたが、例えば、幼若ブタの皮膚、脂肪など由来の幹細胞も本発明に含まれる。
 本発明において、「幼若ブタ」とは、胎児から生後1ヶ月未満、好ましくは生後25日未満のブタを示す。幼若ブタは医療用であることが好ましく、ヒトへ細胞移植することができる幼若ブタであることがより好ましい。ブタの種類は特に限定されないが、例えば、ランドレース種(例えば、デンマーク・ランドレース種、アメリカン・ランドレース種、ブリティッシュ・ランドレース種、オランダ・ランドレース種、スウェディッシュ・ランドレース種)、大ヨークシャー種、バークシャー種、デュロック種、ハンプシャー種、中ヨークシャー種、ミニブタが挙げられ、中でもランドレース種が好ましい。
 一般的に、「幹細胞」とは、自己複製能及び分化・増殖能を有する未熟な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等の亜集団が含まれる。
 多能性幹細胞とは、それ自体では個体になることが出来ないが、生体を構成する全ての組織や細胞へ分化し得る能力を有する細胞を意味する。複能性幹細胞とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する細胞を意味する。単能性幹細胞とは、特定の組織や細胞へ分化し得る能力を有する細胞を意味する。
 本発明の幹細胞としては、複能性幹細胞が好ましい。複能性幹細胞としては、例えば、間葉系幹細胞、造血系幹細胞、神経系幹細胞、骨髄幹細胞、生殖幹細胞等の体性幹細胞等が挙げられ、好ましくは間葉系幹細胞である。
 本発明の幹細胞は、幼若ブタから単離された幹細胞であれば、その初代培養細胞、該初代培養細胞を継代培養した細胞であって、各種分化マーカーを発現する各種細胞を生じることができる幹細胞も本発明の幹細胞に含まれる。また、本発明の幹細胞が間葉系幹細胞である場合は、細胞マーカーである、CD44及びCD90がともに60%以上陽性であることが好ましく、より好ましくは70%以上、さらに好ましくは80%以上陽性である。また、細胞マーカーであるCD29が60%以上陽性であることが好ましく、より好ましくは70%以上、さらに好ましくは80%以上陽性である。
 本発明の幹細胞は、対数増殖期における倍加時間が36時間以下であることが好ましく、より好ましくは32時間以下、さらに好ましくは28時間以下、特に好ましくは24時間以下、最も好ましくは20時間以下である。また、対数増殖期における倍加時間は14時間以上であることが好ましく、16時間以上であることがより好ましい。
 本発明の幹細胞の対数増殖期における培養は、例えば、後述のビタミンCを含有する培地(例えば、MSC培地)に本発明の幹細胞を播種し、37℃にて5%CO存在下で、培養用インキュベーターで培養することにより行うことができる。対数増殖期における倍加時間が短いほど、短時間且つ安価に大量の幹細胞を調製することが可能となる。
 本発明の幹細胞は、平均直径が17μm以下であることが好ましく、より好ましくは16.5μm以下であり、さらに好ましくは16μm以下であり、特に好ましくは15.5μm以下であり、最も好ましくは15μm以下である。平均直径は10μm以上であることが好ましく、12μm以上であることがより好ましい。平均直径が小さいほど、幹細胞の投与による肺塞栓の形成を防止することができる。平均直径は、例えば、Nucleo Counter NC-200(商標)を用いて計測することができる。ここで、平均とは相加平均を意味する。
 本発明の間葉系幹細胞から脂肪細胞への分化は、例えば、インスリン、MCGS(血清成分、Mesenchymal Cell Growth Supplement)、デキサメタゾン、インドメタシン、イソブチルメチルキサンチン等の存在下で本発明の間葉系幹細胞を培養することで、脂肪細胞へ分化誘導することができる。
 脂肪細胞への分化および維持には市販のキットまたは培地等を用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-adipogeni(PT-3004)、Lonza Walkersville社製hMSC adipogenic induction medium(PT-3102B)、Lonza Walkersville社製hMSC adipogenic maintenance medium(PT-3102B)等が挙げられる。間葉系幹細胞から脂肪細胞への分化は市販のキットを用いて確認することができ、例えば、Lonza社製Adipo Red(商標) assay reagentが挙げられる。
 本発明の間葉系幹細胞から骨細胞の分化は、例えば、デキサメタゾン、アスコルビン酸塩、MCGS、β-グリセロリン酸等の存在下で本発明の間葉系幹細胞を培養することで、骨細胞へ分化誘導することができる。また、市販のキットを用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-osteogenic、PT-3004等が挙げられる。間葉系幹細胞から骨細胞への分化は、市販のアルカリフォスファターゼ染色キット(例えば、コスモ・バイオ社製等)、市販の石灰化染色キット(例えば、コスモ・バイオ社製等)等により確認することができる。
 本発明の間葉系幹細胞から軟骨細胞への分化は、例えば、TGF-β3、デキサメタゾン、インスリン-トランスフェリン-亜セレン酸(ITS)、ピルビン酸ナトリウム、プロリン、アスコルビン酸塩、の存在下で本発明の間葉系幹細胞を培養することで、軟骨細胞へ分化誘導することができる。また、市販のキットを用いてもよく、例えば、Lonza Walkersville社製hMSC differentiation BulletKit(商標)-condrogenic、PT-3003等が挙げられる。間葉系幹細胞から軟骨細胞への分化は、アルシアンブルー染色等により確認することができる。
 幹細胞の移植は、幹細胞の浮遊液を宿主体に注入することにより容易に行うことができる。注入は、再生治療しようとする臓器若しくはその近傍、または静脈内等に対して行うことができる。また注入する幹細胞の数は特に限定されず、症状、宿主の体重または投与方法等に応じて適宜選択できるが、通常10~1010個程度とする。
 本明細書において、「フィーダー細胞」とは、増殖や分化を起こさせようとする目的の細胞の培養条件を整えるために用いる、補助役を果たす他の細胞種を示す。
 フィーダー細胞として用いる場合には、通常増殖しないようにあらかじめガンマ線照射や抗生物質によって処理しておくことが好ましい。幹細胞のフィーダー細胞としては、主にマウス胎仔由来の線維芽細胞が用いられるが、実験の目的や細胞によって3T3やSNLなどの線維芽細胞など様々な細胞種がフィーダー細胞として用いられている。本発明の幹細胞は、好ましくは、ヒトへ細胞移植することができる幼若ブタから単離することにより、ヒト移植用幹細胞のフィーダー細胞として用いることができる。
 本発明の幹細胞の調製方法は、幼若ブタから細胞を単離する工程を含むことを特徴とする。本発明の幹細胞の調製方法の一実施態様としては、例えば、以下の工程を含む方法が挙げられる。
(1)幼若ブタから細胞を採取する工程
(2)工程(1)において採取した細胞を培養し、幼若ブタ由来幹細胞を調製する工程
 以下、各工程について説明する。
(1)幼若ブタから細胞を採取する工程
 工程(1)では幼若ブタの骨髄、脂肪、皮膚、膵臓等から細胞を採取する。
 具体的には例えば、幼若ブタの骨髄から細胞を採取する場合、幼若ブタの大腿骨、腸骨稜及び胸骨などから骨髄細胞を採取することができる。例えば、幼若ブタから大腿骨を回収し、両端を切断して針を挿入し、ヘパリンを添加した生理的緩衝液(例えば燐酸緩衝液、以後PBSとも言う)で洗い流し、反対側の場所から流出液を骨髄液として回収する。流出液の量が減少したら、骨を逆にして針を反対側に挿入し、PBSで再び洗い流して、細胞含有溶液である骨髄液を調製する。
 さらに、上記において調製した細胞含有溶液を通常遠心分離することにより幼若ブタ由来単核球細胞画分を単離してもよい。上記において調製した細胞含有溶液をPBS等で希釈し、ヒトリンパ球分離用の媒体(例えば、GEヘルスケアライフサイエンス社製Ficoll-Paque PLUS等)を入れたチューブ内の該媒体層の上に希釈した細胞含有溶液を入れる。
 前記チューブを遠心分離して分層させ、幼若ブタ由来単核球細胞を含む層を回収する。回収した溶液をさらに遠心分離し、上清を除去した後、PBS等で希釈して再度遠心分離し、単核球細胞画分を単離する。このようにして単離した単核球細胞画分の細胞は、培養前に凍結保存してもよい。単離した幼若ブタ由来単核球細胞画分の細胞を凍結することにより凍結融解の影響を受けにくい細胞を選択的に調製できる。培養前に凍結保存する場合、温度は-80℃以下であることが好ましく、より好ましくは-150℃以下である。
 また、例えば、幼若ブタの膵臓から細胞を採取する場合、幼若ブタから膵島を回収し、更に、場合によってはその膵島を浮遊培養することにより、幹細胞を調製する目的で接着培養に使用する細胞塊を調製する。
 また、例えば、幼若ブタの脂肪から細胞を採取する場合、幼若ブタから脂肪を採取してはさみで細かく刻んだ後、酵素処理を行う。セルストレーナーでフィルターをかけ、低速で遠心をする。チューブ底に沈降した細胞を培養に用いる。また、例えば、幼若ブタの皮膚(毛を含む)から細胞を採取する場合、幼若ブタから皮膚を採取し、酵素処理を行う。酵素処理後皮膚より毛を抜きBulge部分を採取して培養に用いる。培養を行う際は3T3フィーダー細胞を用いる。
(2)工程(1)において採取した細胞を培養し、幼若ブタ由来幹細胞を調製する工程
 上記工程(1)で採取した細胞、細胞画分、または細胞塊には、幹細胞以外の目的外の細胞が多く含まれる。通常、これらの目的外細胞の生存に必須である、ビタミンCを含まない基礎培地(例えば、後述のMSC基礎培地)を用いることで、これらの細胞を除去する培養方法が用いられている。
 本発明の工程(2)においては、上記工程(1)で採取した細胞、細胞分画、または細胞塊を、好ましくは35~39℃、より好ましくは36~38℃、最も好ましくは37℃にて、好ましくは4~6%の、より好ましくは4.5~5.5%の、最も好ましくは5%の、CO存在下で培養用インキュベーターにて培養することにより、幹細胞以外の目的外の細胞を除去するとともに、本発明の幹細胞を増殖させる。
 本発明の幹細胞は、増殖速度が顕著に速いことから、上記の目的外の細胞を除去する培養のために、ビタミンCを含まない基礎培地を用いず、ビタミンCを含む培地(例えば、後述のMSC培地)のみを用いても、本発明の幹細胞を調製することができる。なお、上記の目的外の細胞を除去するために、ビタミンCを含まない基礎培地を用いて培養した後、ビタミンCを含む培地に交換して本発明の幹細胞を増殖させることにより、本発明の幹細胞を調製することもできる。
 本発明の幹細胞は、具体的には例えば、次の方法で培養する。ゼラチンでコートした培養用容器(例えば、0.1%ゼラチンでコートしたプレート)またはゼラチンコート無しの培養用容器(例えば、プレート)を用いてビタミンCを含まない基礎培地(例えば、後述のMSC基礎培地)、またはビタミンCを含む培地(例えば、後述のMSC培地)を用いて、好ましくは5.0×10個~5.0×10個の細胞/9.6cmを播種し、例えば37℃にて5%CO、90%湿度の条件下でインキュベートして初代培養細胞を得る。初代培養細胞を得るための培養期間は、播種後、好ましくは3~12日、より好ましくは3~11日、最も好ましくは3~10日である。初代培養細胞は継代してもよい。継代して得られた幹細胞を継代培養細胞ともいう。初代培養細胞または継代培養細胞の継代は、幹細胞を播種後、好ましくは2~6日後、より好ましくは2~5日後、さらに好ましくは2~4日後、最も好ましくは3日後に、幹細胞が、30%~100%コンフルエントに、好ましくは50%~95%コンフルエントに、より好ましくは60%~90%コンフルエントに、最も好ましくは70%~85%コンフルエントに達した以降に行う。幹細胞の播種は、ゼラチンでコートした培養用容器(例えば、0.1%ゼラチンでコートしたプレート)またはゼラチンコート無しの培養用容器(例えば、プレート)を用いてビタミンCを含む培地(例えば、後述のMSC培地)を用いて、好ましくは5.0×10個~5.0×10個の細胞/9.6cmを播種する。幹細胞の培養は、例えば37℃にて5%CO、90%湿度の条件下で培養する。幹細胞の培養の間、必要に応じて培地交換して本発明の幹細胞を増殖させる。
 MSC基礎培地およびMSC培地としては、従来公知のものを用いることができ、市販のものを用いてもよい。MSC基礎培地としては、例えば、500mLのGibco社製MEMα(Nucleosides、no Ascorbic acid)に55mLのGibco社製Fetal bovine serum (FBS)及び5.5mLのSigma-Aldorich社製Penicillin-Streptomycinを添加した培地が挙げられる。また、MSC培地としては、例えば、500mLのGibco社製MEMα(nucleosides)に55mLのGibco社製Fetal bovine serum(FBS)、5.5mLのSigma-Aldorich社製Penicillin-Streptomycin及び22.2μL のSigma-Aldorich社製FGF-Basic,recombinant,expressed in E.coli,suitable for cell culture(final concentration:1ng/mL)を添加した培地が挙げられる。
 継代は少なくとも1回以上実施することが好ましい。継代回数は本発明の幹細胞が得られる限り特に限定されないが、好ましくは1~3回であり、より好ましくは1~20回である。
 本発明の幹細胞は凍結保存が可能である。凍結保存のタイミングは特に限定されないが、好ましくは継代1~20回の後であり、より好ましくは継代2~10回の後である。凍結保存および解凍の方法は従来公知の方法を用いることができる。
 幹細胞の凍結保存方法としては、具体的には例えば、凍結保存液に分散させ、必要になるまで冷凍庫にて-80℃以下または液体窒素中で凍結保存することができる。凍結保存液としては、例えば、OPF-301[3%トレハロース及び5%デキストランを含有する乳酸リンゲル液(国際公開第2014/208053号)]とジメチルスルフォキサイド(DMSO)を9:1の比率で混合した溶液、動物細胞の凍結保存に使用可能な血清含有若しくは無血清保存液、または市販の細胞凍結保存用試薬[好ましくは、タカラバイオ社製CELLBANKER(登録商標)等のセルバンカー]が挙げられる。
試験例1
〔幼若ブタ由来骨髄細胞の回収〕
 幼若ブタの大腿骨から骨髄を採取した。幼若ブタ(生後23日の医療用ランドレース種ブタ)から大腿骨を回収し、両端を切断して12G針を挿入し、50mLのヘパリン処理したPBS(3mLのヘパリン(1000U/mL)、47mLのPBS)で洗い流し、反対側の場所から50mLの骨髄の流出液(以下、骨髄液とも略す)を回収した。流出液の量が減少したら、骨を逆にして針を反対側に挿入し、PBSで再び洗い流して骨髄液を収集した。カウント用の15mLコニカルチューブで1950μLのPBS(40倍希釈)に50μLのサンプルを取り、セルカウンターで細胞数を測定した。
〔幼若ブタ由来単核球細胞(npMNC)画分の単離〕
 上記手順で得られた骨髄液を静かに再懸濁した。骨髄液全体を50mLチューブ4本に各10mLずつに分け、各々PBSで30mLに希釈し、細胞がチューブに付着していないことを確認してよく混合した。10mLのFicoll-Paque PLUS(GEヘルスケアライフサイエンス社製)を4本の新しい50mLチューブに加え、Ficoll-Paque PLUS層の上にPBSと混合した30mLの骨髄液を入れた。
 前記チューブを20℃にて30分間400×gで遠心分離し、ゆっくりとブレーキなしで加速させ(フルスピードの1/3)、3つの異なる層を形成させた。単核球細胞画分は浮遊白色リングに配置されているため、白色リング全体を25mLのPBSを含む50mLチューブ(×4)に回収した。室温にて400×gで7分間遠心分離し、上清を除去した。PBSを40mLまで加え、室温にて400×gで7分間再び遠心分離した。上記と同様に細胞数を測定したところ、骨髄細胞全体のうち25~30%の細胞が単核球細胞画分として、それぞれ(20~30)×10個単離された。
〔幼若ブタ由来単核球細胞(npMNC)画分の細胞の凍結保存〕
 単離された単核球細胞画分の細胞を、10細胞/mLのDMSOを混合したFBS(90%FBSと10%DMSO)を含むクライオバイアルに入れ、細胞懸濁液の全容量を1mlとした[細胞数/10×10=DMSOを混合したFBSの容量(mL)とした]。クライオバイアルを-20℃にて1時間保存し、続いて-80℃にて24時間保存後、最終的に長期保存用の液体窒素タンクに移した。
〔幼若ブタ由来単核球細胞(npMNC)画分の細胞の培養および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の調製〕
 37℃の水浴でクライオバイアルに冷凍保存していた幼若ブタ由来単核球細胞(npMNCs)画分の細胞を含む細胞懸濁液を素早く解凍し、マイクロピペットを用いて、解凍した細胞懸濁液を30mLの温度平衡(37℃)に調整したMSC基礎培地[500mLのGibco社製MEMα(Nucleosides、no Ascorbic acid)に55mLのGibco社製Fetal bovine serum (FBS)及び5.5mLのSigma-Aldorich社製Penicillin-Streptomycinを添加した培地、以下同様]に静かに加えた。室温にて5分間、500×gで遠心分離し、ペレットを4mLの温度で平衡化したMSC基礎培地に再懸濁し、上下に穏やかにピペッティングした。総細胞数および生細胞数を計測した結果、総細胞数4.18×10個、生細胞数6.6×10個、生存率:15.8%であった。
 0.1%ゼラチンで6ウェルプレートをコートし、インキュベーター(37℃、5%CO)中に10~15分間静置後、使用前にゼラチンを除去した。調製した各0.1%ゼラチン被覆6-ウェルプレートに細胞懸濁液を加え、穏やかに揺動させて増殖表面(ゼラチンコート)上に細胞懸濁液を分散させ、2mLのMSC基礎培地中に2.09×10個の細胞/1ウェルを播種した。COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養し、3日後にMSC培地[500mLのGibco社製MEMα(nucleosides)に55mLのGibco社製Fetal bovine serum(FBS)、5.5mLのSigma-Aldorich社製Penicillin-Streptomycin及び22.2μLのSigma-Aldorich社製FGF-Basic,recombinant,expressed in E.coli,suitable for cell culture(final concentration:1ng/mL)を添加した培地、以下同様]に交換して細胞を増殖させ、以後、3日間に1回、MSC培地の交換を行った。10日後に幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)がコンフルエントとなった。なお、ゼラチンコート無しのプレートを用いた場合についても、同様に10日後に幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)がコンフルエントとなった。
〔継代〕
 幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)がほぼ100%コンフルエンスに達した後、2ウェルから細胞を回収し、0.1%ゼラチンコート有りまたは無しでT75フラスコにそれらを再播種した。
 2mLのPBS(カルシウム及びマグネシウム不含)で細胞を洗浄し、1ウェル当たり0.25%トリプシン320μLを加えてインキュベーターに数分間静置し、細胞が剥がれたら、1680μLのMSC培地で中和した。1mLピペットを用いて細胞懸濁液を50mLチューブに採取し、16mL(8mL×2ウェル)のMSC培地を添加した後、室温にて5分間、500×gで遠心分離した。ピペットを用いて、得られたペレットを温度平衡化したMSC培地(2mL)に穏やかに再懸濁した。総細胞数および生細胞数を計測した結果、総細胞数2.05×10個、生細胞数2.02×10個、生存率:98.5%であった。
 MSC培地を0.1%ゼラチンコート有りおよび無しのT75フラスコに加え、4.5×10生細胞/フラスコT75フラスコとなるように再播種し、COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養した。これらの細胞を第1継代とした。第1継代を播種した3日後に、0.1%ゼラチンコートの有無にかかわらず、100%コンフルエントに達した。
〔幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の調製〕
 幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)がほぼ100%コンフルエンスに達した後、0.1%ゼラチンコートを含むまたは含まないT75フラスコの2つのフラスコから細胞を回収した。8mLのPBS(-)で細胞を洗浄し、1ウェルあたり0.25%のトリプシン2.4mLを加え、インキュベーターに数分間静置し、細胞が剥がれたら12.6mLのMSC培地で中和した。細胞懸濁液を50mLのチューブに集めて、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(10mL)を添加し、ピペットで上下に静かに再懸濁し、総細胞数および生細胞数を計測した結果を下記に示す。
 0.1%ゼラチンコートされたフラスコ(×2)からの細胞:総細胞数1.62×10個、生細胞数1.60×10個、生存率:98.8%
 ゼラチンコートなしのフラスコ(×2)からの細胞:総細胞数1.48×10個、生細胞数1.46×10個、生存率:98.6%
〔幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の凍結保存〕
 上記した培養とは別に、早期継代の幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)を凍結して細胞ストックを作製した。所望の濃度のCELLBANKER(登録商標)1またはOPF-301[3%トレハロース及び5%デキストランを含有する乳酸リンゲル液(国際公開第2014/208053号)]とDMSOを9:1の比率で混合した溶液中でトリプシン処理したnpBM-MSCペレットを再懸濁し、1.5×10細胞/1mL/バイアルとした。バイアルをバイセルに入れて-80℃にて24時間保存した後、細胞を-80℃から液体窒素に移して長期保存した。
〔CFUアッセイ〕
 幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)(P2)を、21cm培養ディッシュ(ゼラチンコート無しまたは0.1%ゼラチンコート)に630細胞を30細胞/cmの密度で播種し、MSC培地中で培養した。MSC培地は3日毎に交換した。6日間の培養後、接着細胞を4mLのPBSで2回洗浄し、4mLの氷冷メタノールで4℃にて15分間固定した。コロニーを可視化するために、リン酸緩衝液で1:19に希釈した4mLのギムザで30分間細胞を染色後、室温(RT)で洗浄し、HOで2回洗浄した。
 次いで、50個を超える細胞のコロニー数を計測し、細胞のコロニー形成効率を計算した。細胞のコロニー形成効率は、1ディッシュ当たりのコロニー数を、1ディッシュ当たり播種した細胞数(630個)で割ることによって計算した。結果を表1に示す。なお、表1の値は平均値±SD(n=3)を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、CFUアッセイの結果、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、ゼラチンコートの有無にかかわらず、コロニー形成し得ることがわかった。
〔細胞の平均直径〕
 ヒト骨髄由来間葉系幹細胞(hBM-MSC、継代回数P4)および得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)について、細胞の平均直径を計測した結果を表2に示す。細胞の平均直径はNucleo Counter NC-200(商標)を用いて計測し、平均値(n=3)を算出した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、ヒト骨髄由来間葉系幹細胞と比較して、平均直径が小さいことがわかった。
〔増殖速度の評価〕
 ヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)について、細胞をT25フラスコ中で5000細胞/cm(1.25×10細胞/フラスコ)の密度で播種し、MSC培地を用いて培養した。MSC培地は3日毎に交換した。培養開始から1、2、4および8日後に生存可能な細胞および死んだ細胞の総数を数えた。結果を表3および表4、並びに図1Aおよび図1Bに示す。なお、表3および表4の値は平均値±SD(n=4)である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4、並びに図1Aおよび図1Bに示すように、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、ヒト骨髄由来間葉系幹細胞と比較して、細胞の増殖速度が顕著に速いことがわかった。
〔脂肪細胞への分化〕
 ヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)について、hMSC differentiation BulletKit(商標)-adipogeni、PT-3004(Lonza Walkersville社製)を用いて、プロトコールに従って脂肪細胞への分化を誘導した。誘導開始後17日目にSigma-Aldorich社製Oil Redを用いて染色した結果をそれぞれ図2Aおよび図2Bに示す。
 図2Aおよび図2Bに示すように、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、ヒト骨髄由来間葉系幹細胞と同様に、脂肪細胞に分化し得ることがわかった。
〔骨細胞への分化〕
 ヒト骨髄由来間葉系幹細胞(hBM-MSC)および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)について、hMSC differentiation BulletKit(商標)-osteogenic、PT-3002(Lonza Walkersville社製)を用いて、プロトコールに従って骨細胞への分化を誘導した。誘導開始後14日目に、コスモ・バイオ社製アルカリフォスファターゼ染色キットを用いて染色した結果をそれぞれ図3Aおよび図3Bに、コスモ・バイオ社製石灰化染色キットを用いて染色した結果をそれぞれ図4Aおよび図4Bに示す。
 図3Aおよび図3B、並びに図4Aおよび図4Bに示すように、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、ヒト骨髄由来間葉系幹細胞と同様に、骨細胞に分化し得ることがわかった。
〔軟骨細胞への分化〕
 幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)について、hMSC differentiation BulletKit(商標)-chondrogenic、PT-3003(Lonza Walkersville社製)を用いて、プロトコールに従って骨細胞への分化を誘導した。誘導開始後19日目に、HE染色した結果およびアルシアンブルー染色した結果をそれぞれ図5Aおよび図5Bに示す。
 図5Aおよび図5Bに示すように、得られた幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)は、軟骨細胞に分化し得ることがわかった。
試験例2
〔幼若ブタ由来単核球細胞(npMNC)画分の細胞の培養および幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)調製〕
 MSC基礎培地またはMSC培地は、使用前にインキュベーター(37℃、5%CO)中に10~15分間静置した。試験例1と同様に、37℃の水浴でクライオバイアルに冷凍保存していた幼若ブタ由来単核球細胞(npMNC)画分の細胞を含む細胞懸濁液を素早く解凍した。マイクロピペットを用いて、解凍した細胞懸濁液を30mLの温度平衡(37℃)MSC基礎培地に静かに加え、50mLのチューブ2本に15mLずつ分注した。
 室温にて5分間、500×gで遠心分離し、ペレットを2mLの温度平衡MSC基礎培地またはMSC培地に再懸濁し、上下に穏やかにピペッティングした。総細胞数および生細胞数を計測した結果を下記に示す。
 2mLのMSC基礎培地:総細胞数2.60×10個、生細胞数4.8×10個、生存率18.5%
 2mLのMSC培地:総細胞数2.55×10個、生細胞数4.5×10個、生存率17.6%
 播種細胞数が下記となるように計算された量の細胞懸濁液を各ウェルにつき下記培地を入れた6ウェルプレート(ゼラチンコート無し)に加え、穏やかに揺り動かして増殖表面上に細胞懸濁液を分散させた。
 2mLのMSC基礎培地:2.60×10個/1ウェルの細胞を播種
 2mLのMSC培地:2.55×10個/1ウェルの細胞を播種
 COインキュベーターに入れ、37℃にて、5%CO、90%湿度の条件下でインキュベートした。播種して3日後及び6日後にMSC培地にて培地交換して細胞を増殖させて、播種後8日目に継代した。
〔継代〕
 幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)がほぼ50~60%コンフルエントに達した後、1ウェルから細胞を回収し、ゼラチンコートなしでT75フラスコにそれらを再播種した。
 2mLのPBS(-)で細胞を洗浄し、1ウェル当たり0.25%トリプシンを320μL加えてインキュベーターに数分間静置し、細胞が剥がれたら1680μLのMSC培地で中和した。細胞懸濁液を50mLチューブに集めて8mLのMSC培地を加え、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(2mL)を添加して、ピペットで上下に穏やかに再懸濁し、総細胞数および生細胞数の計測した結果を下記に示す。
 P0播種時にMSC基本培地の群:総細胞数5.0×10個、生細胞数5.0×10個、生存率:100%
 P0播種時にMSC培地の群:総細胞数3.3×10個、生細胞数3.3×10個、生存率:100%
 15mLのMSC培地をT75フラスコ(ゼラチンコート無し)に加え、下記細胞数となるように、幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)を再播種した、インキュベーターにて培養した。これらの細胞を第1継代とした。
 P0播種時にMSC基礎培地の群:生細胞数5.0×10個/フラスコ
 P0播種時にMSC培地の群:生細胞数3.3×10個/フラスコ
〔幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の調製〕
 前記手順により再播種した細胞がほぼ80~90%のコンフルエンスに達した後、T75フラスコ(ゼラチンコート無し)の1フラスコから細胞を集めた。8mLのPBS(-)で細胞を洗浄し、0.25mL/1ウェルのトリプシン2.4mLを加え、インキュベーターに数分間静置し、細胞が剥がれたら12.6mLのMSC培地で中和した。細胞懸濁液を50mLのチューブに集めて、室温にて5分間、500×gで遠心分離した。
 得られたペレットに温度平衡化したMSC培地(5mL)を添加し、ピペットで上下に静かに再懸濁して総細胞数および生細胞数を計測した結果を下記に示す。
 1つのフラスコからの細胞(P0の播種後の3日間のMSC基礎培地):総細胞数5.12×10個、生細胞数5.09×10個、生存率:99.5%
 1つのフラスコからの細胞(P0の播種時からMSC培地):総細胞数4.76×10個、生細胞数4.73×10個、生存率:99.4%
〔幼若ブタ骨髄由来間葉系幹細胞(npBM-MSC)の凍結保存〕
 上記した培養とは別に、試験例1と同様にして、早期継代の細胞を凍結して細胞ストックを作製した。
試験例3
 試験例1および試験例2で調製した幼若ブタ由来単核球細胞(npMNC)の細胞表面抗原を解析した。解析に用いた各サンプルの調製方法について、表5に示す。表5において、「Switch」とは、初期培養時はMSC基礎培地(ビタミンCフリー)を用い、増殖培養時には増殖培地であるMSC培地(ビタミンC含有)に変更して培養したことを示す。
Figure JPOXMLDOC01-appb-T000005
〔細胞表面抗原の解析〕
 各細胞サンプルを液体窒素タンクより取出して蓋を緩めて圧を抜き、再びふたを閉め、37℃に予め加温しておいた恒温槽で1~2分間軽く撹拌しながら融解した。Stain Buffer(BD社製)5mLを入れた15mL遠沈管に融解させた各細胞を移し、4℃にて500×g、5分間遠心し、上清を取り除いた。5mLのStain Bufferを入れ、4℃にて500×g、5分間遠心し、2回洗浄した。
 2mLのStain Buffer(BD社製)で再懸濁し、生細胞数をカウントした。再遠心(500×g、5分間、4℃)を行い、細胞数1×10個/mLとなるようStain Buffer(BD社製)で再懸濁し、20μL(細胞数2×10個)ずつ1.5mLチューブに分注し、非染色コントロール、CD44、CD90、Isotype Controlの計4本ずつ調製した。 
 4μLのAnti-CD44,Mouse(MEM-263),PE(GeneTex社製)、1μLのPE Mouse Anti-Human CD90(BD社製)(ブタとの交差性あり)、4μLのPE Mouse IgG1,κ Isotype Control(BD社製)をそれぞれのチューブに添加し、遮光氷上で45分間インキュベートした。非染色コントロールも氷上で保管した。
 各チューブにStain Buffer(BD社製)を1mLずつ入れて、4℃にて500×gで5分間遠心し、2回洗浄した。細胞ペレットをタッピングしてほぐし、500μLのStain Buffer(BD社製)で再懸濁し、解析直前にフィルターを通してフローサイト用のテストチューブに移した。解析までの間は遮光氷上で保管し、フローサイトメトリーを用いて解析した。CD44の結果を図6に、CD90の結果を図7に示す。
 図6および図7に示すように、いずれのサンプルにおいても間葉系幹細胞のマーカーであるCD44およびCD90が陽性であった。また、初期培養時にゼラチンによるコーティングを行わなくても、目的とする間葉系幹細胞が樹立することができたと考えられる。なお、いずれの場合もIsotype Controlの測定では非特異な反応は見られなかった。
 試験例4 
〔幼若ブタ膵島由来間葉系幹細胞の調製〕 
 幼若ブタから膵島を回収し、浮遊培養することにより細胞塊を調製した後、試験例1と同様にして、冷凍保存した。37℃の水浴でクライオバイアルに冷凍保存していた幼若ブタ膵島を素早く解凍した。
 マイクロピペットを用いて、解凍した膵島懸濁液を30mLの温度平衡(37℃)に調整したMSC基礎培地に静かに加えた。4℃にて1分間、210×gで遠心分離した。なお、膵島を凍結しない場合は、室温にて、自然落下で膵島が沈殿後、上清を除去した。ペレットを4mLの温度で平衡化したMSC基礎培地に再懸濁し、上下に穏やかにピペッティングした。
 6-ウェルプレートに膵島懸濁液を加え、穏やかに揺動させて増殖表面(ゼラチンコートなし)上に細胞懸濁液を分散させ、2mLのMSC基礎培地中に1650IEQ~2125IEQの範囲の膵島/1ウェルを播種した。
 COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養し、3日後にMSC培地に交換して細胞を増殖させ、以後、3日間に1回、MSC培地の交換を行った。表6にサンプルの調製条件を示す。初期凍結の有無にかかわらず、播種してから6日後に100%コンフルエントに達した。
Figure JPOXMLDOC01-appb-T000006
〔継代〕
 幼若ブタ膵島由来間葉系幹細胞(npISLET-MSC)が約80%~ほぼ95%コンフルエンスに達した後、2ウェルから細胞を回収し、ゼラチンコートなしでT75フラスコにそれらを再播種した。
 2mLのPBS(カルシウム及びマグネシウム不含)で細胞を洗浄し、1ウェル当たり0.25%トリプシン320μLを加えてインキュベーター内に数分間静置し、細胞が剥がれたら1680μLのMSC培地で中和した。1mLピペットを用いて細胞懸濁液を50mLチューブに採取し、16mL(8mL×2ウェル)のMSC培地を添加した後、室温にて5分間、500×gで遠心分離した。ピペットを用いて、得られたペレットを温度平衡化したMSC培地(2mL)に穏やかに再懸濁した。
〔細胞の平均直径〕
 20mLの前記MSC培地をゼラチンコート無しのT75フラスコに加えて再播種し、COインキュベーター中で、37℃にて5%CO、90%湿度の条件下で培養した。これらの細胞を第1継代とした。第1継代を播種した3日後に、初期凍結の有無にかかわらず、100%コンフルエントに達した。このことから、幼若ブタの膵島から調製した間葉系幹細胞の増殖速度は、幼若ブタの骨髄から調製した間葉系幹細胞の増殖速度と同程度であることがわかった。得られた幼若ブタ膵島由来間葉系幹細胞の平均直径を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、膵島の調製における凍結条件に関わらず、幼若ブタ膵島由来間葉系幹細胞を調製可能であり、凍結有りの場合、凍結無しの場合に関係なく平均直径は同程度であることがわかった。
〔細胞表面抗原の解析〕
 各細胞サンプルを液体窒素タンクより取出して蓋を緩めて圧を抜き、再びふたを閉め、37℃に予め加温しておいた恒温槽で1~2分間軽く撹拌しながら融解した。Stain Buffer(BD社製)5mLを入れた15mL遠沈管に融解させた各細胞を移し、4℃にて500×g、5分間遠心し、上清を取り除いた。5mLのStain Bufferを入れ、4℃にて500×g、5分間遠心し、2回洗浄した。
 2mLのStain Buffer(BD社製)で再懸濁し、生細胞数をカウントした。再遠心(500×g、5分間、4℃)を行い、細胞数1×10個/mLとなるようStain Buffer(BD社製)で再懸濁し、20μL(細胞数2×10個)ずつ1.5mLチューブに分注し、非染色コントロール、CD29、CD44、CD90の計4本ずつ調製した。 
 1μLのMouse Alexa Fluor 647 Mouse Anti-Pig CD29(BD社製)、4μLのAnti-CD44,Mouse(MEM-263),PE(GeneTex社製)、1μLのPE Mouse Anti-Human CD90(BD社製)(ブタとの交差性あり)をそれぞれのチューブに添加し、遮光氷上で45分間インキュベートした。非染色コントロールも氷上で保管した。
 各チューブにStain Buffer(BD社製)を1mLずつ入れて、4℃にて500×gで5分間遠心し、2回洗浄した。細胞ペレットをタッピングしてほぐし、500μLのStain Buffer(BD社製)で再懸濁し、解析直前にフィルターを通してフローサイト用のテストチューブに移した。解析までの間は遮光氷上で保管し、フローサイトメトリーを用いて解析した。
 CD29の結果を図8A~図8Dに、CD44の結果を図9A~図9Dに、CD90の結果を図10A~図10Dに示す。図8A、図9A、図10Aは、サンプル11(膵島調製直後の凍結無し);図8B、図9B、図10Bはサンプル12(膵島調製直後の凍結有り);図8C、図9C、図10Cはサンプル13(膵島調製後培養3日目の凍結無し);図8D、図9D、図10Dはサンプル14(膵島調製後培養3日目の凍結有り)の結果を示す。
 図8A~図10Dに示すように、いずれのサンプルにおいても間葉系幹細胞のマーカーであるCD29、CD44およびCD90について高い陽性率が観察された。また、初期培養時における凍結の有無によらずに、目的とする間葉系幹細胞が樹立することができたと考えられる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2017年9月8日付けで出願された米国仮出願(US62/555,913)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (15)

  1.  幼若ブタより単離された、幹細胞。
  2.  平均直径が17μm以下である請求項1に記載の幹細胞。
  3.  対数増殖期における倍加時間が36時間以下である請求項1または2に記載の幹細胞。
  4.  間葉系幹細胞である請求項1~3のいずれか1項に記載の幹細胞。
  5.  幼若ブタがヒトへ細胞移植することができる幼若ブタである請求項1~4のいずれか1項に記載の幹細胞。
  6.  幼若ブタの骨髄または膵島より単離された請求項1~5のいずれか1項に記載の幹細胞。
  7.  移植用幹細胞である請求項1~6のいずれか1項に記載の幹細胞。
  8.  ヒト移植用幹細胞である請求項7に記載の幹細胞。
  9.  フィーダー細胞用幹細胞である請求項1~6のいずれか1項に記載の幹細胞。
  10.  ヒト移植用幹細胞を増殖するためのフィーダー細胞用幹細胞である請求項9に記載の幹細胞。
  11.  幼若ブタから細胞を単離する工程を含む、幹細胞の調製方法。
  12.  幹細胞を播種後3~12日後に継代する工程を含む、請求項11に記載の幹細胞の調製方法。
  13.  幼若ブタから単離する細胞が単核球細胞画分の細胞である請求項11または12に記載の幹細胞の調製方法。
  14.  幼若ブタからの細胞の単離が、幼若ブタの骨髄または膵島からの細胞の単離である請求項11~13のいずれか1項に記載の幹細胞の調製方法。
  15.  単離した単核球細胞画分の細胞を凍結する工程を含む、請求項13または14に記載の幹細胞の調製方法。
PCT/JP2018/033110 2017-09-08 2018-09-06 幼若ブタ由来幹細胞およびその調製方法 WO2019049957A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112020004517-9A BR112020004517A2 (pt) 2017-09-08 2018-09-06 células tronco derivadas de porco neonato e processo para sua preparação
SG11202002047QA SG11202002047QA (en) 2017-09-08 2018-09-06 Stem cell derived from neonatal pig and method for producing same
JP2019541010A JPWO2019049957A1 (ja) 2017-09-08 2018-09-06 幼若ブタ由来幹細胞およびその調製方法
KR1020207006812A KR102503086B1 (ko) 2017-09-08 2018-09-06 어린 돼지 유래 줄기 세포 및 그 제조 방법
AU2018329882A AU2018329882A1 (en) 2017-09-08 2018-09-06 Stem cells derived from young pig and preparation method therefor
EP18852821.0A EP3680324A4 (en) 2017-09-08 2018-09-06 STEM CELLS FROM A YOUNG PIG AND METHOD OF MANUFACTURING THEREFORE
US16/645,213 US20200291358A1 (en) 2017-09-08 2018-09-06 Stem cell derived from young pig and method for producing same
CN201880058519.1A CN111094550A (zh) 2017-09-08 2018-09-06 来源于幼猪的干细胞及其制备方法
CA3074582A CA3074582A1 (en) 2017-09-08 2018-09-06 Stem cell derived from neonatal pig and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762555913P 2017-09-08 2017-09-08
US62/555,913 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049957A1 true WO2019049957A1 (ja) 2019-03-14

Family

ID=65634872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033110 WO2019049957A1 (ja) 2017-09-08 2018-09-06 幼若ブタ由来幹細胞およびその調製方法

Country Status (11)

Country Link
US (1) US20200291358A1 (ja)
EP (1) EP3680324A4 (ja)
JP (2) JPWO2019049957A1 (ja)
KR (1) KR102503086B1 (ja)
CN (1) CN111094550A (ja)
AU (1) AU2018329882A1 (ja)
BR (1) BR112020004517A2 (ja)
CA (1) CA3074582A1 (ja)
SG (1) SG11202002047QA (ja)
TW (1) TW201920658A (ja)
WO (1) WO2019049957A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556849A4 (en) * 2016-12-14 2020-08-19 Otsuka Pharmaceutical Factory, Inc. Mammalian Cryopreservation Fluid
WO2020217652A1 (ja) * 2019-04-24 2020-10-29 学校法人福岡大学 医薬用組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230316A (ja) * 2005-02-25 2006-09-07 Japan Health Science Foundation 瘢痕のない創傷治癒能を有する細胞およびその調製方法
JP2006522597A (ja) * 2003-04-14 2006-10-05 アヴェンティス ファーマ エス.エー. ブタ組織から肥満細胞系統を得る方法およびヘパリンタイプの分子を製造する方法
WO2007091409A1 (ja) * 2006-02-08 2007-08-16 Keio University 組織幹細胞由来フィーダー細胞
WO2014208053A1 (ja) 2013-06-28 2014-12-31 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
JP2016537414A (ja) * 2013-10-29 2016-12-01 ベスティオン、インク. 心臓神経堤細胞、及びその使用方法
WO2017040548A1 (en) * 2015-08-31 2017-03-09 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
WO2017061392A1 (ja) * 2015-10-05 2017-04-13 メビオール株式会社 細胞の保存方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303588B1 (en) * 2000-07-26 2012-10-24 Boston Scientific Limited Therapeutic angiogenesis by bone marrow-derived cell transplantation in myocardial ischemic tissue and skeletal muscle ischemic tissue
US20090004661A1 (en) * 2003-05-26 2009-01-01 Reliance Life Sciences Pvt Ltd. Method of growing mesenchymal stem cells from bone marrow
WO2008071074A1 (fr) * 2006-12-13 2008-06-19 Songling Wang Utilisation de cellules souches mésenchymateuses, et procédé pour isoler des cellules couches dans des tissus humains et les conserver
CN105018430B (zh) * 2015-02-06 2018-08-31 华南农业大学 一种长白仔猪骨髓间充质干细胞永生系的建立方法
CN105441386A (zh) * 2015-12-25 2016-03-30 江苏省苏北人民医院 一种猪极小胚胎样干细胞培养与鉴定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522597A (ja) * 2003-04-14 2006-10-05 アヴェンティス ファーマ エス.エー. ブタ組織から肥満細胞系統を得る方法およびヘパリンタイプの分子を製造する方法
JP2006230316A (ja) * 2005-02-25 2006-09-07 Japan Health Science Foundation 瘢痕のない創傷治癒能を有する細胞およびその調製方法
WO2007091409A1 (ja) * 2006-02-08 2007-08-16 Keio University 組織幹細胞由来フィーダー細胞
WO2014208053A1 (ja) 2013-06-28 2014-12-31 株式会社大塚製薬工場 トレハロース及びデキストラン含有哺乳動物細胞移植用溶液
JP2016537414A (ja) * 2013-10-29 2016-12-01 ベスティオン、インク. 心臓神経堤細胞、及びその使用方法
WO2017040548A1 (en) * 2015-08-31 2017-03-09 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
WO2017061392A1 (ja) * 2015-10-05 2017-04-13 メビオール株式会社 細胞の保存方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOSCH P. ET AL.: "Isolation, Characterization, Gene Modification, and Nuclear Reprogramming of Porcine Mesenchymal Stem Cells", BIOLOGY OF REPRODUCTION, vol. 74, 2006, pages 46 - 57, XP055582274 *
CAO H. ET AL.: "Characterizaton of immortalized mesenchymal stem cells derived from foetal porcine pancreas", CELL PROLIF, vol. 44, 2011, pages 19 - 32, XP055582268 *
CHU Y. ET AL.: "Construction of porcine insulin promoter reporter system and its application in detecting the induced differentiation of islet-derived mesenchymal stem cells", HEILONGJIANG ANIMAL SCIENCE AND VETERINARY MEDICINE, 2015, CHINA , pages 1 - 5, XP009519320, ISSN: 1004-7034, DOI: 10.13881/j.cnki.hljxmsy.2015.0001 *
HAJIME OHGUSHI, BIOCHEMISTRY, vol. 81, no. 2, February 2009 (2009-02-01), pages 99 - 104
LEMOS NEDE ALMEIDA BRONDANI LDIETER CRHEINHEIMER JBOUCAS APBAUERMANN LEITAO CCRISPIM DBAUER AC, ISLETS, 5 July 2017 (2017-07-05), pages e1335842
LIU L. ET AL.: "Porcine fetal bone marrow mesenchymal stem cells in cartilage tissue engineering", ZUZHI GONGCHENG YU CHONGJIAN WAIKE ZAZHI, vol. 9, no. 4, 2013, CHINA , pages 181 - 185, XP009519321, ISSN: 1673-0364, DOI: 10.3969/j.issn.1673-0364.2013.04.001 *
See also references of EP3680324A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556849A4 (en) * 2016-12-14 2020-08-19 Otsuka Pharmaceutical Factory, Inc. Mammalian Cryopreservation Fluid
US11889829B2 (en) 2016-12-14 2024-02-06 Otsuka Pharmaceutical Factory, Inc. Mammalian cell cryopreservation liquid
WO2020217652A1 (ja) * 2019-04-24 2020-10-29 学校法人福岡大学 医薬用組成物

Also Published As

Publication number Publication date
JP2023096192A (ja) 2023-07-06
BR112020004517A2 (pt) 2020-09-08
JPWO2019049957A1 (ja) 2020-10-15
AU2018329882A1 (en) 2020-03-19
CN111094550A (zh) 2020-05-01
CA3074582A1 (en) 2019-03-14
KR20200047565A (ko) 2020-05-07
EP3680324A1 (en) 2020-07-15
EP3680324A4 (en) 2021-06-16
TW201920658A (zh) 2019-06-01
KR102503086B1 (ko) 2023-02-23
SG11202002047QA (en) 2020-04-29
US20200291358A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
Araña et al. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization
Chong et al. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells
JP5732011B2 (ja) 非骨軟骨性の間葉組織由来の多能性細胞の同定および単離
Tsagias et al. Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes
Debnath et al. Standardization and quality assessment for clinical grade mesenchymal stem cells from human adipose tissue
US20190367883A1 (en) Regulating stem cells
Minonzio et al. Frozen adipose-derived mesenchymal stem cells maintain high capability to grow and differentiate
MX2011010367A (es) Aislamiento de celulas germinales mesenquimales derivadas de la sangre de cordon umbilical humano.
Mohammadi et al. Human platelet lysate as a xeno free alternative of fetal bovine serum for the in vitro expansion of human mesenchymal stromal cells
JP2023096192A (ja) 幼若ブタ由来幹細胞およびその調製方法
Wittig et al. Viability and functionality of mesenchymal stromal cells loaded on collagen microspheres and incorporated into plasma clots for orthopaedic application: effect of storage conditions
WO2020066991A1 (ja) アカルボース又はスタキオースを含む哺乳動物細胞保存用液
Helmy et al. A protocol for primary isolation and culture of adipose-derived stem cells and their phenotypic profile
WO2020217652A1 (ja) 医薬用組成物
US20080317719A1 (en) Regulating stem cells
KR20060125597A (ko) 다분화능 줄기 세포들의 제조 및 그들의 용도
Dias et al. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics
Baptista et al. Processing of lipoaspirate samples for optimal mesenchymal stem cells isolation
Alm et al. Clinical grade production of mesenchymal stromal cells
EP1833962B1 (en) Regulating stem cells
Nagalikar et al. Comparative analysis of isolation, characterization and differentiation of human mesenchymal stem cells derived from adipose tissue and umbilical cord blood: An in-vitro study.
Blitterswijk et al. A rapid and efficient method for expansion of human mesenchymal stem cells.
Ingólfsdóttir The effect of expanding mesenchymal stem cells in media supplemented with lysate manufactured from fresh or expired platelet concentrates on chondrogenic differentiation
IL193947A (en) Cells cultured as cd31brigi: it, a method for stimuli to differentiate into a congenital / precursor cell population (pcp), use of the same drug preparation population, and implantation device that includes it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541010

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3074582

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020004517

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018329882

Country of ref document: AU

Date of ref document: 20180906

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018852821

Country of ref document: EP

Effective date: 20200408

ENP Entry into the national phase

Ref document number: 112020004517

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200306