WO2020215175A1 - 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备 - Google Patents

一种磁珠试剂的混匀装置、混匀方法以及样本分析设备 Download PDF

Info

Publication number
WO2020215175A1
WO2020215175A1 PCT/CN2019/083626 CN2019083626W WO2020215175A1 WO 2020215175 A1 WO2020215175 A1 WO 2020215175A1 CN 2019083626 W CN2019083626 W CN 2019083626W WO 2020215175 A1 WO2020215175 A1 WO 2020215175A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic bead
liquid container
reagent
bead liquid
Prior art date
Application number
PCT/CN2019/083626
Other languages
English (en)
French (fr)
Inventor
徐文博
翁彦雯
王俊
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/083626 priority Critical patent/WO2020215175A1/zh
Priority to CN201980074935.5A priority patent/CN113015910A/zh
Publication of WO2020215175A1 publication Critical patent/WO2020215175A1/zh
Priority to US17/506,487 priority patent/US20220040650A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/053Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being magnetic or electromagnetic energy, radiation working on the ingredients or compositions for or during mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/10Mixers with rotating receptacles with receptacles rotated about two different axes, e.g. receptacles having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/80Mixers with rotating receptacles rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • This application relates to the technical field of medical devices, and in particular to a mixing device and a mixing method of magnetic bead reagents.
  • Magnetic bead reagents are widely used in the field of sample analysis, such as chemiluminescence immunoassays for heterogeneous separation.
  • the magnetic bead reagent usually includes magnetic beads, their labels and buffers. When in use, the magnetic bead reagent is sucked by the corresponding reagent suction device and sent to the corresponding reaction container. Since the magnetic bead reagent itself is prone to deposition and compaction during storage and placement, it is necessary to mix the magnetic bead reagent thoroughly before drawing the magnetic bead reagent to ensure the accuracy of the test results. Especially, because high concentration of magnetic beads helps to improve the reproducibility of test results, the concentration of magnetic beads in the magnetic bead reagents used nowadays continues to increase, and the higher the concentration of magnetic beads, the more serious the deposition effect.
  • This application provides a novel magnetic bead reagent mixing device, mixing method and sample analysis equipment.
  • An embodiment of the present application provides a magnetic bead reagent mixing device, which includes:
  • the reagent container storage mechanism has at least one mounting part for mounting the magnetic bead liquid container storing the magnetic bead reagent to be mixed, and the mounting part is arranged corresponding to the magnetic member so that the mounting part is located on the mounting part.
  • the magnetic bead liquid container can be in the magnetic field;
  • the driving mechanism having a driving structure capable of driving at least one of the magnetic member, the mounting portion and the magnetic bead liquid container to move and causing the magnetic bead liquid container to move relative to the magnetic field.
  • the mounting portion has a structure capable of limiting the longitudinal extension of the magnetic bead liquid container along the first axis, and the south pole or the north pole of the magnetic member is arranged along a direction that forms a non-zero angle with the first axis. .
  • the south pole or the north pole of the magnetic member is perpendicular to the first axis.
  • the driving mechanism includes a first driving assembly capable of driving the magnetic bead liquid container to rotate forward and backward alternately.
  • the reagent container storage mechanism includes an annular base, the mounting parts are arranged on the annular base along an arc or a circle, and the magnetic member is located at a middle hole of the annular base.
  • the first drive assembly includes a first gear disk, a second gear disk coaxially arranged and fixedly connected to the annular base, and a motor that drives the second gear disk to rotate.
  • the first gear The disk is fixedly arranged and located at the middle hole of the annular base, and the gear teeth of the first gear disk extend into the mounting area of the magnetic bead liquid container of the corresponding mounting part, so as to make the wheels of the first gear disk The tooth can mesh with the gear on the magnetic bead liquid container.
  • the first drive assembly includes a first gear plate and a motor that drives the first gear plate to rotate, and the mounting portion is arranged along an arc or a circle around the first gear plate, and the first gear plate
  • the gear teeth extend into the mounting area of the magnetic bead liquid container of the corresponding mounting part, so that the gear teeth of the first gear plate can mesh with the gear on the magnetic bead liquid container.
  • the magnetic member is fixedly mounted on the first gear plate.
  • the number of the magnetic parts and the mounting parts are the same, and each magnetic part is arranged corresponding to one mounting part, so that the magnetic bead liquid container on the mounting part can be in the magnetic field of the corresponding magnetic part.
  • the drive mechanism includes a second drive assembly, the second drive assembly has an output end, and the output end is drivingly connected with the reagent container storage mechanism to drive the mounting portion to rotate around the magnetic member.
  • the mounting portion has a limit protrusion and/or a limit groove for installing the magnetic bead liquid container.
  • Another magnetic bead reagent mixing device provided in an embodiment of the present application includes a magnetic member for generating a magnetic field
  • a reagent container storage mechanism having at least one mounting part
  • a magnetic bead liquid container for storing magnetic bead reagents to be mixed, and the magnetic bead liquid container is installed on the mounting part and located in the magnetic field generated by the magnetic member;
  • a driving mechanism which is drivingly connected with at least one of the magnetic member, the mounting part and the magnetic bead liquid container to drive the magnetic bead liquid container to move relative to the magnetic field.
  • the south pole or the north pole of the magnetic member is arranged toward the side wall of the cavity of the magnetic bead liquid container.
  • the south pole or the north pole of the magnetic member is perpendicular to the side wall of the cavity of the magnetic bead liquid container.
  • the driving mechanism includes a first driving assembly, which is in transmission connection with the magnetic bead liquid container, and drives the magnetic bead liquid container to rotate forward and backward alternately.
  • the reagent container storage mechanism includes an annular base, the mounting parts are arranged on the annular base, and the magnetic member is located at a middle hole of the annular base.
  • the first drive assembly includes a first gear disk, a second gear disk coaxially arranged and fixedly connected to the annular base, and a motor that drives the second gear disk to rotate.
  • the first gear The disc is fixedly arranged and located at the middle hole of the annular base, the magnetic bead liquid container is equipped with gears arranged coaxially therewith, and the gear teeth of the first gear disc mesh with the gears on the magnetic bead liquid container , Drive the magnetic bead liquid container to rotate.
  • the first drive assembly includes a first gear plate and a motor that drives the first gear plate to rotate, the mounting portion is arranged along an arc or a circle around the first gear plate, and the magnetic bead liquid container A gear arranged coaxially therewith is installed, and the gear teeth of the first gear plate mesh with the gear on the magnetic bead liquid container to drive the magnetic bead liquid container to rotate.
  • the magnetic member is fixedly mounted on the first gear plate.
  • the number of the magnetic parts and the mounting parts are the same, and each magnetic part is arranged corresponding to one mounting part, so that the magnetic bead liquid container on the mounting part can be in the magnetic field of the corresponding magnetic part.
  • the driving mechanism includes a second driving assembly, the second driving assembly having an output end, which is drivingly connected with the reagent container storage mechanism, and drives the mounting portion to rotate around the magnetic member.
  • the magnetic bead liquid container is rotatably mounted on the mounting part.
  • the reagent component includes a test tube holder, at least one additional reagent tube for storing other reagents, and the magnetic bead liquid container, which is rotatably installed in the test tube On the base, the test tube base is detachably mounted on the mounting part.
  • a sample analysis device provided in an embodiment of the present application includes the mixing device described in any one of the above, which is used for mixing magnetic bead reagents.
  • Establish a magnetic field provide a magnetic field for attracting magnetic beads
  • Putting the reagent placing the magnetic bead reagent to be mixed in the magnetic field;
  • Mixing moving at least one of the magnetic field and the magnetic bead reagent to change the relative position of the magnetic bead reagent in the magnetic field.
  • the magnetic bead liquid container carrying the magnetic bead reagent alternately performs forward rotation and reverse rotation.
  • the magnetic bead reagent rotates around the magnetic member that generates the magnetic field.
  • a mixing device as described in any one of the above, and the mixing method is applied to the mixing device.
  • Figure 1 is a schematic diagram of the deposition state of the magnetic bead reagent (when the magnetic field has not attracted the magnetic beads) in an embodiment of the application;
  • FIG. 2 is a schematic diagram of a magnetic field attracting magnetic beads to move in an embodiment of the application
  • Figure 3 is a top view of the mixing device in an embodiment of the application.
  • FIG. 4 is a schematic diagram of the structure of the first driving assembly in an embodiment of the application.
  • Figure 5 is a schematic diagram of a mixing device with an outer cover in an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a mixing method in an embodiment of this application.
  • FIG. 7 is a schematic diagram of another process of the mixing method in an embodiment of the application.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • This embodiment provides a magnetic bead reagent mixing device.
  • the mixing device includes a magnetic member 100, a reagent container storage mechanism (not shown in the figure), and a driving mechanism (not shown in the figure).
  • the magnetic element 100 is used to generate a magnetic field.
  • the magnetic element 100 can be a magnet or an electromagnetic component, such as an energized coil, as long as it can produce a magnetic field effect, it belongs to the magnetic element 100 shown in this embodiment.
  • the reagent container storage mechanism has at least one mounting part for mounting the magnetic bead liquid container 410 storing the magnetic bead reagent to be mixed.
  • the mounting part is set corresponding to the magnetic member 100, so that the magnetic bead liquid container 410 on the mounting part can be in the magnetic field .
  • the relative position of the magnetic bead liquid container 410 and the magnetic field is used to define the relative position of the mounting portion and the magnetic member 100.
  • the mounting part can be at any position relative to the magnetic element 100, and it only needs to satisfy that the magnetic bead liquid container 410 on the mounting part falls within the magnetic field corresponding to the magnetic element 100.
  • the mounting part may be located above the magnetic part 100, arranged flush with the magnetic part 100, or located below the magnetic part 100, etc.
  • the structural arrangement of the mounting part and the magnetic bead container 410 can make the magnetic bead liquid container 410 finally fall Within the magnetic field of the corresponding magnetic member 100.
  • the driving mechanism has a driving structure capable of driving at least one of the magnetic member 100, the mounting portion, and the magnetic bead liquid container 410 to move and causing the magnetic bead liquid container 410 to move relative to the magnetic field. That is, the driving mechanism is in transmission connection with at least one of the magnetic member 100, the mounting portion, and the magnetic bead liquid container 410 to drive the magnetic bead liquid container 410 to move relative to the magnetic field.
  • the movement of the magnetic bead liquid container 410 relative to the magnetic field includes but is not limited to rotation, translation, flipping, etc. along its own axis.
  • the driving mechanism can use various power sources (such as motors, cylinders, hydraulic cylinders, electromagnets, etc.) as driving forces, and transmit motion to the magnetic part 100, the mounting part and the magnetic bead liquid container 410 through the corresponding transmission mechanism. At least one. Please refer to FIG. 1, before the magnetic bead reagent is mixed, a large amount of magnetic beads 411 will be deposited on the bottom of the magnetic bead liquid container 410. When the magnetic bead liquid container 410 is placed in a magnetic field, the magnetic field can detach the magnetic beads 411 from the bottom in a short time.
  • various power sources such as motors, cylinders, hydraulic cylinders, electromagnets, etc.
  • the magnetic part 100, the mounting part and the magnetic bead liquid container 410 moves, the relative movement between the magnetic bead reagent and the magnetic field can be realized.
  • the magnetic part 100, the mounting part and the magnetic bead liquid container 410 Any two motions or all three motions in may realize the relative motion between the magnetic bead reagent and the magnetic field. Based on this, those skilled in the art can make more variants, which will not be detailed here.
  • the magnetic bead liquid container 410 is introduced in the description of this embodiment, and the magnetic bead liquid container 410 is shown in the accompanying drawings.
  • the mixing device of this embodiment may or may not include the magnetic bead liquid container 410.
  • the magnetic bead liquid container 410 can be regarded as a component of the mixing device, and in another solution, The magnetic bead liquid container 410 can be regarded as not a component of the mixing device, but a target of the mixing device.
  • the mounting portion has a structure capable of defining the magnetic bead liquid container 410 to extend longitudinally along the first axis.
  • the longitudinal extension of the magnetic bead liquid container 410 along the first axis means that the central axis of the magnetic bead liquid container 410 coincides with the first axis, that is, after the magnetic bead liquid container 410 is installed on the mounting part, its central axis is Is the first axis of the corresponding mounting part.
  • the south pole or the north pole of the magnetic member 100 is arranged along a direction that forms a non-zero angle with the first axis. That is, the south pole or the north pole of the magnetic member 100 is arranged toward the side wall of the cavity of the magnetic bead liquid container 410. Therefore, the direction of the south pole and the north pole of the magnetic member 100 does not form a zero angle with the central axis of the magnetic bead liquid container 410.
  • the magnetic element 100 is a magnet
  • the south pole or the north pole of the magnetic element 100 is arranged along a direction that forms a non-zero angle with the first axis. It can also be considered that the magnetizing direction is arranged at a non-zero angle with the first axis.
  • This arrangement can make the magnetic lines of induction 110 of the magnetic element 100 more concentrated on the side of the magnetic bead liquid container 410, so that the magnetic beads 411 deposited on the bottom of the magnetic bead liquid container 410 can be sucked away and dispersed more quickly. Improve the mixing effect.
  • the magnetic bead liquid container 410 rotates around its central axis, the magnetic bead 411 can move more widely under the magnetic field and improve the mixing effect.
  • the upper and lower spaces of the magnetic bead liquid container 410 can also be reserved as much as possible to provide more space for the installation part to install the magnetic bead liquid container 410.
  • the angle between the south pole or the north pole of the magnetic member 100 and the first axis may be 15°, 30°, 45°, 60°, 75°, 90°, or other angles other than 0°. Any angle.
  • the south pole or the north pole of the magnetic member 100 is perpendicular to the first axis. That is, the south pole or the north pole of the magnetic member 100 is perpendicular to the side wall of the cavity of the magnetic bead liquid container 410.
  • This vertical arrangement allows most of the magnetic lines of induction 110 of the magnetic element 100 to pass through the side wall of the magnetic bead liquid container 410 to act on the magnetic beads 411, which further improves the mixing effect of the magnetic beads 411.
  • the inventor found through repeated experiments and analysis that when the magnetic bead liquid container 410 rotates around its center axis, on the one hand, the direction of the magnetic force acting on the magnetic beads 411 is changed, and on the other hand, the centrifugal force generated by the rotation is also beneficial.
  • the mixing of magnetic beads 411, the combination of the two effects can produce a better mixing effect.
  • the driving mechanism includes a first driving component, and the first driving component can drive the magnetic bead liquid container 410 to rotate forward and backward alternately. That is, the first driving assembly is drivingly connected with the magnetic bead liquid container 410 to drive the magnetic bead liquid container 410 to rotate forward and backward alternately.
  • the rotation here refers to the rotation of the magnetic bead liquid container 410 around its central axis.
  • the first driving component may be connected to the magnetic bead liquid container 410 by various transmission mechanisms, such as a gear transmission mechanism, a timing belt transmission mechanism, a chain transmission mechanism, and the like.
  • the first driving component drives the magnetic bead liquid container 410 to alternate forward and reverse rotations.
  • the direction of the magnetic force acting on the magnetic beads 411 is changed.
  • the centrifugal force generated by the rotation is also conducive to the mixing of the magnetic beads 411. The combination of these two effects can produce a better mixing effect, and the continuous change of the rotation direction makes the direction of the centrifugal force constantly change, thereby further improving the mixing effect.
  • the time for the magnetic bead liquid container 410 to rotate forward and reversely may be the same or different, or the time for the magnetic bead liquid container 410 to rotate forward and reversely may change periodically.
  • FIG. 3 shows the reagent container storage mechanism 200 and the mounting part 210 thereon.
  • there are at least two mounting parts 210 which are distributed on the periphery of the magnetic member 100 along an arc or circle, so that the magnetic bead liquid container 410 on the mounting part 210 can be arranged around the magnetic member 100.
  • the arrangement structure of the mounting portion 210 can improve the compactness of the entire device, reduce the volume of the device, and increase the number of the mounting portions 210 in the same area, so that more magnetic bead liquid containers 410 can be placed.
  • the reagent container storage mechanism 200 includes an annular base 220, the mounting portion 210 is arranged on the annular base 220, and the magnetic member 100 is located at the middle hole of the annular base 220 .
  • the annular base 220 enables the magnetic bead liquid container 410 to be installed on the mounting portion 210 to surround the magnetic member 100 in an arc or circle.
  • the position of the magnetic member 100 is freed by the hole in the middle of the ring base 220, avoiding the conflict between the positions of the ring base 220 and the magnetic member 100, making the whole device more compact and smaller.
  • the first drive assembly 300 includes a first gear plate 310, a second gear plate 320 coaxially arranged and fixedly connected to the annular base 220, and a driving second gear plate 320 Rotating motor 330.
  • the first gear plate 310 is fixedly arranged and located at the middle hole of the annular base 220.
  • the mounting portion 210 is arranged around the first gear plate 310 in an arc or a circle.
  • the magnetic bead liquid container 410 is equipped with a gear 430 arranged coaxially therewith, as shown in FIGS. 1 and 2. As shown in FIG.
  • the gear teeth of the first gear plate 310 extend into the magnetic bead liquid container installation area (where the magnetic bead liquid container 410 is located) of the corresponding mounting portion 210, so that the wheels of the first gear plate 310 The tooth can mesh with the gear 430 on the magnetic bead liquid container 410.
  • the motor 330 is used to drive the second gear plate 320 to rotate.
  • the second gear plate 320 is coaxially and fixedly connected to the annular base 220, so that the annular base 220 will be driven to rotate, thereby driving the magnetic bead liquid container 410 on it to surround the first
  • the gear plate 310 rotates to realize the revolution of the mounting seat 210 and the magnetic bead liquid container 410 relative to the first gear plate 310.
  • the first gear plate 310 also meshes with the gear 430 on the magnetic bead liquid container 410. Therefore, when the magnetic bead liquid container 410 rotates relative to the first gear plate 310, the first gear plate 310 will react against the magnetic bead liquid container 410. , Make it spin.
  • gear transmission structure on the one hand is beneficial to the miniaturization of the structure and the improvement of transmission accuracy, on the other hand, the shape and characteristics of the gear facilitate the realization of meshing with the gears 430 of at least two magnetic bead liquid containers 410 at the same time in an arc or circular area. At least two magnetic bead liquid containers 410 are driven to rotate.
  • a chain transmission structure, a belt transmission structure or other suitable transmission structure can also be adopted, as long as the magnetic bead liquid container 410 can be driven to rotate.
  • the magnetic member 100 is fixedly installed on the first gear plate 310. This can greatly reduce the space occupied by the installation of the magnetic element 100.
  • the position relative to the magnetic member 100 can be changed, so that the magnetic member 100 can generate a magnetic attraction effect on the magnetic beads 411 in the magnetic bead container 410 from different directions. Disorderly movement in more directions enhances the mixing effect.
  • the mounting part 210 when the mounting part 210 rotates around the magnetic part 100, it can drive the magnetic bead liquid container 410 to rotate around the magnetic part 100, which is equivalent to the magnetic bead liquid container 410 revolving around the magnetic part 100, and the magnetic bead liquid container 410 revolving around the magnetic part 100.
  • the technical solution and the technical solution for the rotation of the magnetic bead liquid container 410 can be used separately to achieve the mixing effect.
  • the technical solutions of revolution and rotation can also be used in combination, that is, the magnetic bead liquid container 410 is used together While the magnetic member 100 revolves, the magnetic bead liquid container 410 is also rotating, thereby achieving a better mixing effect.
  • the first drive assembly may also include a first gear.
  • the mounting portion 220 is arranged along an arc or a circle around the first gear plate 310, and the gear teeth of the first gear plate 310 extend into the mounting area of the magnetic bead liquid container corresponding to the mounting portion 220, so as to make the first gear plate 310
  • the gear teeth of can mesh with the gear 430 on the magnetic bead liquid container 410 to drive the magnetic bead liquid container 410 to rotate.
  • the annular base 220 (or the reagent container storage mechanism 200) can be kept stationary, and the motor drives the first gear plate 310 to rotate.
  • the first gear plate 310 rotates, it also forms a relative rotation with the magnetic bead liquid container 410 (the effect is equivalent to the magnetic bead liquid container 410 revolving relative to the first gear plate 310), and at the same time, the first gear plate 310 can still make the magnetic The bead liquid container 410 generates rotation.
  • the revolution direction (forward and reverse) of the magnetic bead liquid container 410 relative to the first gear plate 310 and its rotation direction (forward and reverse) will be realized. 1 and 2, the direction indicated by arrow a and arrow b is the direction in which the magnetic bead liquid container 410 can rotate.
  • the driving mechanism includes a second driving assembly (not shown in the figure), the second driving assembly has an output end, and the output end is drivingly connected with the reagent container storage mechanism 200 to drive the mounting portion 210 around the magnetic member 100 Rotate.
  • the mounting part 210 is driven to rotate around the magnetic member 100 by the second drive assembly, and the relative movement between the magnetic bead reagent and the magnetic field is realized by the movement of the mounting part 210. Combined with the mixing effect produced by the rotation of the magnetic bead liquid container 410, it can be further improved The mixing effect of the mixing device.
  • the second drive assembly may also use a motor 330 or other suitable power source, and the second drive assembly may use a gear transmission structure, a chain transmission structure, a belt transmission structure or other suitable structures as the transmission structure.
  • the first drive assembly 300 and the second drive assembly can also be driven by the same power source, for example, the same motor drives different transmission mechanisms to realize the functions of the first drive assembly 300 and the second drive assembly.
  • the magnetic member 100 itself can also be set to rotate or be fixed in position.
  • the magnetic member 100 is set to be rotatable, for example, mounted on the aforementioned gear plate 210, the magnetic member 100 and the magnetic bead liquid container 410 can have synchronous or asynchronous rotation speeds, so that the superimposition of the two motions produces different Effect, improve mixing efficiency.
  • the revolution of the magnetic bead liquid container 410 will enable it to switch between the magnetic fields of different magnetic elements 100, thereby forming movement in different directions and improving the mixing efficiency.
  • the number of magnetic parts 100 can be selected according to actual requirements. Please refer to FIG. 1, in an embodiment, there are at least two magnetic members 100, which are arranged on the first gear plate 310 along an arc or a circle.
  • the magnetic members 100 arranged in an arc or a circle can easily correspond to the magnetic bead liquid container 410 surrounding the outer ring.
  • the magnetic member 100 can act on different magnetic bead liquid containers 410 in sequence.
  • the number of the magnetic parts 100 and the mounting parts 210 are the same, the mounting parts 210 are circularly surrounding the magnetic parts 100, and each magnetic part 100 is provided corresponding to one mounting part 210, so that The magnetic bead liquid container 410 on the mounting part 210 can be in the magnetic field corresponding to the magnetic element 100.
  • each magnetic bead liquid container 410 can be located in the corresponding magnetic field, especially when the magnetic bead liquid container 410 and the corresponding magnetic member 100 both move synchronously, plus the rotation of the magnetic bead liquid container 410 itself,
  • the magnetic beads 411 in the magnetic bead liquid container 410 will have a very good mixing effect.
  • the position and structure of the mounting part 210 determine whether the installed magnetic bead liquid container 410 can be in a magnetic field and the installation stability of the magnetic bead liquid container 410 when the mixing device is working.
  • the inventor has designed various embodiments with different positions and structures of the mounting portion 210 according to actual needs.
  • the magnetic bead liquid container 410 may be a single individual.
  • the magnetic bead liquid container 410 is rotatably mounted on the mounting part 220.
  • the reagent assembly includes a test tube holder 420, at least one additional reagent tube 440 for storing other reagents, and Magnetic bead liquid container 410.
  • the magnetic bead liquid container 410 is rotatably installed on the test tube holder 420, and the test tube holder 420 is detachably installed on the mounting part 210.
  • the mounting portion 210 has a limiting protrusion and/or a limiting groove for installing the test tube holder 420 to install the magnetic bead liquid container 410.
  • the test tube holder 420 When the magnetic bead liquid container 410 is installed, the test tube holder 420 is fixed by the limit protrusion and/or the limit groove, and the installation of the magnetic bead liquid container 410 is completed.
  • the mounting part 210 forms a mounting seat structure, and the mounting part 210 can be arranged below the side of the magnetic element 100 so that the magnetic bead liquid container 410 after installation can be in the magnetic field of the magnetic element 100.
  • the mounting part has a clamping structure for clamping and releasing the magnetic bead liquid container.
  • the magnetic bead liquid container is rotatably clamped by the clamping structure.
  • the magnetic bead liquid container is clamped by the clamping structure to realize the installation of the magnetic bead liquid container.
  • the clamping structure first releases the magnetic bead liquid container. Remove the magnetic bead liquid container.
  • the clamping structure can clamp the upper, middle or lower part of the magnetic bead liquid container.
  • the mounting part can be arranged above the side of the magnetic member.
  • the mounting part can be set at the middle position on one side of the magnetic part.
  • the mounting part can be installed. The part is arranged below the side of the magnetic part, so that the installed magnetic bead liquid container can be in the magnetic field of the magnetic part.
  • the mounting part has a suspension structure for hanging the magnetic bead liquid container.
  • the magnetic bead liquid container When installing the magnetic bead liquid container, the magnetic bead liquid container is hung on the suspension structure to realize the installation of the magnetic bead liquid container.
  • the magnetic bead liquid container is usually hung on the bottom of the mounting part, so the mounting part can be arranged above the side of the magnetic part, so that the magnetic bead liquid container after installation can be in the magnetic field of the magnetic part.
  • the mounting part may also have other suitable mounting structures, as long as the magnetic bead liquid container can be mounted on the mounting part.
  • the mixing device further includes an outer cover 500, which is used to cover the top of the mixing device.
  • the outer cover 500 can reduce the dust accumulated on the surface of the mixing device, prolong the service life of the mixing device, and improve the working effect of the mixing device. On the other hand, it can also reduce the possibility of operator injury due to operating errors and improve the mixing device. The safety of the uniform device.
  • the outer cover 500 After the outer cover 500 is added to the mixing device, if the outer cover 500 has to be opened every time the magnetic bead liquid container 410 is taken and placed, the operation is very inconvenient.
  • the inventor has opened a take-out opening 510 on the outer cover 500 in some embodiments. .
  • the outer cover 500 has an access opening 510, and the access opening 510 is opened corresponding to the mounting portion 210 and the magnetic bead liquid container 410.
  • the user can access the magnetic bead liquid container 410 through the access port 510, so that the user does not need to frequently open and close the outer cover 500, which is convenient for the user's operation.
  • the access port 510 is fan-shaped. In other embodiments, the access port can also be set in a fan ring or other suitable shape. When the access port is fan-shaped, the outer cover 500 can be more effective Block the first gear plate 310.
  • this embodiment provides a sample analysis device, including any one of the above-mentioned mixing devices, for mixing magnetic bead reagents.
  • the mixing device may be configured as a non-detachable part of the sample analysis equipment, or may be configured as a detachable structure.
  • the embodiment of the present invention also provides a method for mixing magnetic beads reagents, as shown in Figures 6 and 7, the method includes:
  • Establish a magnetic field S10 provide a magnetic field for attracting magnetic beads; for example, provide a magnet to generate a magnetic field, or energize the coil of an electromagnet to generate a magnetic field; put in the reagent S30: place the magnetic bead reagent to be mixed in the magnetic field; For example, put a reagent container containing a magnetic bead reagent into the reagent installation part, and the magnetic bead reagent is placed in a magnetic field, and the magnetic field exerts force on the magnetic beads in the magnetic bead reagent.
  • Mixing S30 Move at least one of the magnetic field and the magnetic bead reagent to change the relative position of the magnetic bead reagent in the magnetic field; for example, the container of the magnetic bead reagent rotates forward or backward (revolution or rotation, or both at the same time) , The rotation of the reagent container can promote the mixing of the magnetic beads reagent, and the force of the magnetic field further improves the mixing effect.
  • the magnetic field establishment step S10 can be completed before the reagent placing step S30; or as shown in Figure 7, the magnetic field establishment step S10 can be completed after the reagent placing step S30; or both Can be done simultaneously.
  • the inventor realizes the relative movement between the magnetic bead reagent and the magnetic field by moving the magnetic bead reagent in some mixing methods.
  • the magnetic bead liquid container carrying the magnetic bead reagent performs forward and reverse rotation alternately, and the rotation is coupled with the magnetic attraction of the magnetic field to improve the mixing effect of the magnetic beads.
  • the magnetic bead reagent rotates around the magnetic member that generates the magnetic field.
  • the above two embodiments respectively disclose the mixing method for the magnetic bead reagent to rotate and revolve around the magnetic member. These two methods can be used separately or in combination, that is, the magnetic bead reagent is rotated around the magnetic member at the same time. Revolution, when the two are superimposed, the magnetic beads can move in more directions, further improving the mixing effect.
  • a mixing device of any one of the above is provided, and the mixing method is applied to the mixing device, and the mixing device shown in each of the above embodiments is used to realize the mixing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

一种磁珠试剂的混匀装置、混匀方法以及样本分析设备,该混匀装置包括磁性件(100)、试剂容器存放机构(200)以及驱动机构,试剂容器存放机构具有至少一个安装部(210),用于安装存放有待混匀磁珠试剂的磁珠液容器(410),安装部(210)对应磁性件(100)设置,使位于安装部(210)上的磁珠液容器(410)能够处于磁场内。驱动机构具有能够驱动磁性件(100)、安装部(210)和磁珠液容器(410)中的至少其一运动并使磁珠液容器(410)相对磁场产生运动的驱动结构。通过磁珠试剂与磁场间的相对运动,改变磁力作用于磁珠的方向,使得磁珠在磁力作用下沿各个不同的方向流动,达到混匀的目的,无需用户手动混匀,提升了混匀磁珠试剂的效率。

Description

一种磁珠试剂的混匀装置、混匀方法以及样本分析设备 技术领域
本申请涉及医疗器械技术领域,特别涉及一种磁珠试剂的混匀装置及混匀方法。
背景技术
磁珠试剂被广泛应用于样本分析领域,例如异相分离的化学发光免疫测试。该磁珠试剂通常包括磁珠、其标记物及缓冲液,使用时由对应的试剂吸取装置吸取磁珠试剂,并送至对应的反应容器内。由于磁珠试剂本身在存储放置时容易发生沉积板结,因此,在吸取磁珠试剂前需要将磁珠试剂进行充分混匀,以此保证测试结果的准确性。尤其是,由于高浓度磁珠有助于提高测试结果的重复性,因此现在使用的磁珠试剂中磁珠浓度不断提高,而磁珠浓度越高,其沉积效果越严重。
为了消除磁珠沉积问题,一些测试设备厂家要求用户在装载试剂前手动混匀磁珠试剂,但手动混匀的效率低下,费时费力,特别是对于标记了链霉亲和素的高浓度磁珠,手动混匀几乎难以实现,严重影响用户工作效率。而另一些厂家或直接对磁珠腔内的磁珠试剂进行搅拌混匀,或采用机械转动或超声系统对磁珠进行混匀,但其各自都存在对应的弊端。可见,针对该磁珠试剂的混匀方案还需要进一步研究。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请提供一种新型的磁珠试剂的混匀装置、混匀方法以及样本分析设备。
本申请一种实施例中提供了一种磁珠试剂的混匀装置,包括:
磁性件,用以产生磁场;
试剂容器存放机构,所述试剂容器存放机构具有至少一个安装部,用于安装存 放有待混匀磁珠试剂的磁珠液容器,所述安装部对应磁性件设置,使位于所述安装部上的磁珠液容器能够处于所述磁场内;
以及驱动机构,所述驱动机构具有能够驱动磁性件、安装部和磁珠液容器中的至少其一运动并使所述磁珠液容器相对磁场产生运动的驱动结构。
一种实施例中,所述安装部具有能够限定磁珠液容器沿第一轴线纵向延伸设置的结构,所述磁性件中南极或北极沿与所述第一轴线成非零夹角的方向设置。
一种实施例中,所述磁性件的南极或北极垂直朝向所述第一轴线。
一种实施例中,所述驱动机构包括第一驱动组件,所述第一驱动组件能够驱动所述磁珠液容器交替正向自转和反向自转。
一种实施例中,所述安装部为至少两个,其沿弧形或圆形分布在磁性件的周边,使位于安装部上的磁珠液容器能够围绕磁性件设置。
一种实施例中,所述试剂容器存放机构包括环形底座,所述安装部沿弧形或圆形排布在所述环形底座上,所述磁性件位于所述环形底座的中间孔位处。
一种实施例中,所述第一驱动组件包括第一齿轮盘、与所述环形底座同轴心设置并固定连接的第二齿轮盘和驱动第二齿轮盘转动的电机,所述第一齿轮盘固定设置并位于所述环形底座的中间孔位处,所述第一齿轮盘的轮齿伸入到对应安装部的磁珠液容器安装区域内,以便于使所述第一齿轮盘的轮齿能够与磁珠液容器上的齿轮相啮合。
一种实施例中,所述第一驱动组件包括第一齿轮盘和驱动第一齿轮盘转动的电机,所述安装部沿弧形或圆形围绕第一齿轮盘设置,所述第一齿轮盘的轮齿伸入到对应安装部的磁珠液容器安装区域内,以便于使所述第一齿轮盘的轮齿能够与磁珠液容器上的齿轮相啮合。
一种实施例中,所述磁性件固定安装在第一齿轮盘上。
一种实施例中,所述磁性件为至少两个,其沿弧形或圆形排布在第一齿轮盘上。
一种实施例中,所述磁性件与安装部数量一致,每个磁性件对应一个安装部设置,使位于所述安装部上的磁珠液容器能够处于对应磁性件的磁场内。
一种实施例中,所述驱动机构包括第二驱动组件,所述第二驱动组件具有输出 端,所述输出端与试剂容器存放机构传动连接,以驱动所述安装部绕磁性件转动。
一种实施例中,所述安装部具有限位凸起和/或限位凹槽,用于安装磁珠液容器。
本申请一种实施例中提供的另一种磁珠试剂的混匀装置,包括磁性件,用以产生磁场;
试剂容器存放机构,所述试剂容器存放机构具有至少一个安装部;
磁珠液容器,用于存放待混匀磁珠试剂,所述磁珠液容器安装在安装部上,并位于所述磁性件产生的磁场内;
以及驱动机构,所述驱动机构与磁性件、安装部和磁珠液容器中的至少其一传动连接,以驱动所述磁珠液容器相对磁场产生运动。
一种实施例中,所述磁性件中南极或北极朝向所述磁珠液容器的腔体侧壁设置。
一种实施例中,所述磁性件中南极或北极垂直朝向所述磁珠液容器的腔体侧壁。
一种实施例中,所述驱动机构包括第一驱动组件,所述第一驱动组件与磁珠液容器传动连接,驱动所述磁珠液容器交替正向自转和反向自转。
一种实施例中,所述安装部为至少两个,其呈弧形或圆形分布在磁性件的周边,位于安装部上的磁珠液容器围绕磁性件设置。
一种实施例中,所述试剂容器存放机构包括环形底座,所述安装部排布在所述环形底座上,所述磁性件位于所述环形底座的中间孔位处。
一种实施例中,所述第一驱动组件包括第一齿轮盘、与所述环形底座同轴心设置并固定连接的第二齿轮盘和驱动第二齿轮盘转动的电机,所述第一齿轮盘固定设置并位于所述环形底座的中间孔位处,所述磁珠液容器安装有与其同轴心设置的齿轮,所述第一齿轮盘的轮齿与磁珠液容器上的齿轮相啮合,驱动磁珠液容器自转。
一种实施例中,所述第一驱动组件包括第一齿轮盘和驱动第一齿轮盘转动的电机,所述安装部沿弧形或圆形围绕第一齿轮盘设置,所述磁珠液容器安装有与 其同轴心设置的齿轮,所述第一齿轮盘的轮齿与磁珠液容器上的齿轮相啮合,驱动磁珠液容器自转。
一种实施例中,所述磁性件固定安装在第一齿轮盘上。
一种实施例中,所述磁性件为至少两个,其沿弧形或圆形排布在第一齿轮盘上。
输出端一种实施例中,所述磁性件与安装部数量一致,每个磁性件对应一个安装部设置,使位于所述安装部上的磁珠液容器能够处于对应磁性件的磁场内。
一种实施例中,所述驱动机构包括第二驱动组件,所述第二驱动组件具有输出端,其与试剂容器存放机构传动连接,驱动所述安装部绕磁性件转动。
一种实施例中,所述磁珠液容器可转动地安装在安装部上。
一种实施例中,还包括试剂组件,所述试剂组件包括试管座、至少一个用于存放其他试剂的附加试剂管以及所述磁珠液容器,所述磁珠液容器可转动地安装在试管座上,所述试管座可拆卸地安装在所述安装部上。
本申请一种实施例中提供的一种样本分析设备,包括上述任一项所述的混匀装置,用以对磁珠试剂进行混匀。
本申请一种实施例中提供的一种磁珠试剂的混匀方法,包括:
建立磁场:提供用于吸引磁珠的磁场;
放入试剂:将待混匀的磁珠试剂置于所述磁场内;
混匀:使磁场和磁珠试剂中至少一个运动,改变所述磁珠试剂在磁场中的相对位置。
一种实施例中,在混匀步骤中,承载所述磁珠试剂的磁珠液容器交替进行正向自转和反向自转。
一种实施例中,在混匀步骤中,所述磁珠试剂围绕产生所述磁场的磁性件转动。
一种实施例中,提供一种如上述任一项所述的混匀装置,所述混匀方法应用于所述混匀装置。
发明的有益效果
有益效果
通过磁珠试剂与磁场间的相对运动,改变磁力作用于磁珠的方向,使得磁珠在磁力作用下沿各个不同的方向流动,达到混匀的目的,无需用户手动混匀,大大提升了混匀磁珠试剂的效率。
对附图的简要说明
附图说明
图1为本申请一种实施例中磁珠试剂沉积状态(磁场尚未吸引磁珠时)示意图;
图2为本申请一种实施例中磁场吸引磁珠运动时的示意图;
图3为本申请一种实施例中混匀装置的俯视图;
图4为本申请一种实施例中第一驱动组件结构示意图;
图5为本申请一种实施例中带有外盖的混匀装置示意图;
图6为本申请一种实施例中混匀方法的一种流程示意图;
图7为本申请一种实施例中混匀方法的另一种流程示意图。
发明实施例
本发明的实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本实施例提供一种磁珠试剂的混匀装置。
请参考图1和2,该混匀装置包括磁性件100、试剂容器存放机构(图中未示出)以及驱动机构(图中未示出)。
该磁性件100用以产生磁场。该磁性件100可以为磁铁,也可以为电磁组件,例如通电的线圈,只要能够产生磁场效果,即属于本实施例所示的磁性件100。
试剂容器存放机构具有至少一个安装部,用于安装存放有待混匀磁珠试剂的磁珠液容器410,安装部对应磁性件100设置,使位于安装部上的磁珠液容器410能够处于磁场内。这里借助了磁珠液容器410与磁场的相对位置来限定了安装部与磁性件100的相对位置。实际上,该安装部可以相对磁性件100处于任何位置,其只需要满足位于安装部上的磁珠液容器410落在对应磁性件100的磁场内即可。例如,该安装部可以位于磁性件100的上方、与磁性件100齐平设置以及位于磁性件100的下方等,通过安装部和磁珠液容器410结构设置均可使磁珠液容器410最终落在对应磁性件100的磁场内。
驱动机构具有能够驱动磁性件100、安装部和磁珠液容器410中的至少其一运动并使磁珠液容器410相对磁场产生运动的驱动结构。即驱动机构与磁性件100、安装部和磁珠液容器410中的至少其一传动连接,以驱动磁珠液容器410相对磁场产生运动。磁珠液容器410相对磁场的运动包括但不限于沿自身轴线转动、平移、翻转等。
驱动机构则可采用各种动力源(例如电机、气缸、液压缸、电磁铁等)作为驱动力,并通过对应的传动机构将运动传递至磁性件100、安装部和磁珠液容器410中的至少其一。请参考图1,磁珠试剂在混匀前,磁珠411将会大量沉积在磁珠液容器410的底部。当磁珠液容器410置于磁场内时,该磁场可以在短时间内将磁珠411从底部脱离。然后,如图2所示,通过磁珠试剂与磁场间的相对运动,改变磁力作用于磁珠411的方向,使得磁珠411在磁力作用下沿各个不同的方向流动,达到快速混匀的目的,无需用户手动混匀,大大提升了混匀磁珠试剂的 效率。
根据上述原理,当磁性件100、安装部和磁珠液容器410中的一个运动时,就可以实现磁珠试剂与磁场间的相对运动,当然,磁性件100、安装部和磁珠液容器410中的任意两个运动或三个全部运动都可能实现磁珠试剂与磁场间的相对运动,基于此,本领域技术人员能够做出更多变形方案,在此不再一一详述。
需要说明的是,这里为了更好地阐述发明构思,本实施例描述时引入了磁珠液容器410,并在附图中展示了磁珠液容器410。但,实际上,本实施例的混匀装置可以包括或不包括磁珠液容器410,即一种方案中该磁珠液容器410可视为混匀装置的组成部分,另一种方案中该磁珠液容器410可视为不属于混匀装置的组成部分,而是该混匀装置的使用对象。这里提到的磁珠液容器410仅指磁珠411腔管体本身,其可以是单独存在,也可以与其他管体一起组合形成试剂组件400使用,如图1和2所示,该试剂组件400不仅包括磁珠液容器410,还包括其他相关试剂容器440。
进一步地,在一种实施例中,安装部具有能够限定磁珠液容器410沿第一轴线纵向延伸设置的结构。该磁珠液容器410沿第一轴线纵向延伸设置是指该磁珠液容器410的中心轴线与第一轴线重合,即,可认为该磁珠液容器410安装到安装部后,其中心轴线即为对应安装部的第一轴线。
请参考图1和2,一种实施例中,该磁性件100中南极或北极沿与第一轴线成非零夹角的方向设置。即,磁性件100中南极或北极朝向磁珠液容器410的腔体侧壁设置。使得磁性件100南极和北极的朝向不会与磁珠液容器410的中心轴线成零度角。当磁性件100为磁铁时,该磁性件100中南极或北极沿与第一轴线成非零夹角的方向设置,也可认为是其充磁方向与第一轴线成非零夹角设置。
这样设置可以使磁性件100的磁感线110更多地集中在磁珠液容器410的侧边,从而使沉积在磁珠液容器410底部的磁珠411被更快速地吸走、散开,提高混匀效果。尤其是,在磁珠液容器410绕其中心轴线做自转运动时,可以使磁珠411在磁场下的运动幅度更大,提高混匀效果。而且,还可以尽量将磁珠液容器410上下空间留出来,以便给安装部提供更多空间安装磁珠液容器410。
在一些更为具体的实施例中,磁性件100的南极或北极与第一轴线的夹角可以 是15°、30°、45°、60°、75°、90°或不为0°的其他任意角度。
进一步地,请参考图1,在一种实施例中,磁性件100的南极或北极垂直朝向第一轴线。即,磁性件100中南极或北极垂直朝向磁珠液容器410的腔体侧壁。这种垂直设置可以使磁性件100的磁感线110大部分都穿过磁珠液容器410的侧壁作用到磁珠411上,进一步提高磁珠411的混匀效果。
进一步地,发明人经过反复实验和分析发现,当磁珠液容器410绕其中线轴线自转时,一方面使得磁力作用于磁珠411的方向发生了变化,另一方面自转产生的离心力也有利于磁珠411的混匀,两种效果结合可以产生更好的混匀效果。
因此,在一种实施例中,驱动机构包括第一驱动组件,第一驱动组件能够驱动磁珠液容器410交替正向自转和反向自转。即,该第一驱动组件与磁珠液容器410传动连接,驱动磁珠液容器410交替正向自转和反向自转。这里的自转指的是磁珠液容器410绕其中心轴线转动。
该第一驱动组件可以采用各类传动机构与磁珠液容器410传动连接,例如齿轮传动机构、同步带传动机构、链条传动机构等。
通过第一驱动组件驱动磁珠液容器410交替正向自转和反向自转,一方面使得磁力作用于磁珠411的方向发生了变化,另一方面自转产生的离心力也有利于磁珠411的混匀,这两方面效果结合可以产生更好的混匀效果,而自转方向不断变化使得离心力的方向不断变化,从而进一步提升了混匀效果。
当然,作为本实施例的变形,磁珠液容器410正向自转和反向自转的时间可以相同或不同,或者,磁珠液容器410正向自转和反向自转的时间可以呈周期性变化。
进一步地,请参考图3,图3示出了试剂容器存放机构200以及其上的安装部210。在一种实施例中,安装部210为至少两个,其沿弧形或圆形分布在磁性件100的周边,使位于安装部210上的磁珠液容器410能够围绕磁性件100设置。该安装部210排布结构可提高整个装置的紧凑性,减小装置体积,在相同面积内提高安装部210的数量,以便放置更多的磁珠液容器410。
进一步地,请参考图3和4,在一种实施例中,试剂容器存放机构200包括环形底座220,安装部210排布在环形底座220上,磁性件100位于环形底座220的中间 孔位处。
环形底座220使得磁珠液容器410安装在安装部210上后,能够沿弧形或圆形围绕磁性件100。通过环形底座220中间的孔位让出了磁性件100的放置位置,避免环形底座220和磁性件100的位置产生冲突,使整个装置的结构更加紧凑,体积更小。
能够驱动磁珠液容器410自转的驱动结构有很多,从传动结构小型化和传动精确性的角度考虑,发明人选择采用齿轮传动结构,进而在一种实施例中做出了如下改进。
请参考图1-4,在一种实施例中,第一驱动组件300包括第一齿轮盘310、与环形底座220同轴心设置并固定连接的第二齿轮盘320和驱动第二齿轮盘320转动的电机330。第一齿轮盘310固定设置并位于环形底座220的中间孔位处。安装部210沿弧形或圆形围绕第一齿轮盘310设置。磁珠液容器410安装有与其同轴心设置的齿轮430,如图1和2所示。结合图3所示,第一齿轮盘310的轮齿伸入到对应安装部210的磁珠液容器安装区域(磁珠液容器410所处位置)内,以便于使第一齿轮盘310的轮齿能够与磁珠液容器410上的齿轮430相啮合。
采用电机330驱动第二齿轮盘320转动,该第二齿轮盘320与环形底座220同轴心且固定连接,因此将带动该环形底座220转动,进而带动其上的磁珠液容器410围绕第一齿轮盘310转动,实现安装座210和磁珠液容器410相对第一齿轮盘310的公转。而第一齿轮盘310同时又与磁珠液容器410上的齿轮430啮合,因此在磁珠液容器410在相对第一齿轮盘310转动时,该第一齿轮盘310将反作用磁珠液容器410,使其发生自转。采用齿轮传动结构一方面有利于结构小型化和传动精度的提升,另一方面齿轮的形状特点便于实现在弧形或圆形区域内同时与至少两个磁珠液容器410的齿轮430相啮合,驱动至少两个磁珠液容器410自转。
在其他实施例中,如果不从上述发明思路考虑,也可以采用链传动结构、带传动结构或其他合适的传动结构,只要能驱动磁珠液容器410自转即可。
进一步地,请参考图3,在一种实施例中,磁性件100固定安装在第一齿轮盘310上。这可以大大减小磁性件100安装所占用的空间。在磁珠液容器410围绕磁性件100转动过程中,可变换相对磁性件100的位置,从而使磁性件100从不同方向 对磁珠液容器410内磁珠411的产生磁吸效果,使其产生更多方向无序的运动,增强混匀效果。
具体来说,安装部210绕磁性件100转动时可以带动磁珠液容器410绕磁性件100转动,相当于磁珠液容器410绕磁性件100公转,磁珠液容器410绕磁性件100公转的技术方案与磁珠液容器410自转的技术方案可以分开单独使用,都可以达到混匀效果,在一些实施例中,公转和自转的技术方案也可以结合起来使用,即,磁珠液容器410绕磁性件100公转的同时,磁珠液容器410也在进行自转,从而起到更好的混匀效果。
当然,上述这种设计思路虽然在一些实施例中能得到较多的有益效果,但不应当成为发明构思的限制,发明人认为在其他实施例中,该第一驱动组件也可包括第一齿轮盘310和驱动第一齿轮盘310转动的电机。安装部220沿弧形或圆形围绕第一齿轮盘310设置,而第一齿轮盘310的轮齿伸入到对应安装部220的磁珠液容器安装区域内,以便于使第一齿轮盘310的轮齿能够与磁珠液容器410上的齿轮430相啮合,驱动磁珠液容器410自转。在该实施例中,环形底座220(或试剂容器存放机构200)可保持不动,而由电机驱动第一齿轮盘310转动。第一齿轮盘310转动时同样形成了与磁珠液容器410的相对转动(效果等同为磁珠液容器410相对第一齿轮盘310公转),且同时,该第一齿轮盘310依然可使得磁珠液容器410产生自转。
以上各实施例中,通过改变电机330输出的转动方向,将实现磁珠液容器410相对第一齿轮盘310的公转方向(正向和反向)以及其自转方向(正向和反向)。请参考图1和2,箭头a和箭头b所示的方向为磁珠液容器410能够自转的方向。
除了上述各实施例之外,在使磁珠液容器410本身自转基础上,还可以采用其他方式使磁珠液容器410相对磁性件100公转。在一种实施例中,驱动机构包括第二驱动组件(图中未示出),第二驱动组件具有输出端,输出端与试剂容器存放机构200传动连接,以驱动安装部210绕磁性件100转动。
通过第二驱动组件驱动安装部210绕磁性件100转动,通过安装部210的运动实现磁珠试剂与磁场间的相对运动,与磁珠液容器410自转产生的混匀效果相结合,可以进一步提升混匀装置的混匀效果。具体地,第二驱动组件同样可以采用 电机330或其他合适的动力源,第二驱动组件可以采用齿轮传动结构、链传动结构、带传动结构或其他合适的结构作为传动结构。其中,该第一驱动组件300和第二驱动组件也可以由同一个动力源驱动,例如通过同一电机驱动不同传动机构来实现该第一驱动组件300和第二驱动组件的功能。
当然,在磁珠液容器410进行公转时,磁性件100本身也可被设置为转动或位置固定不变。当磁性件100被设置为可转动时,例如安装在上述的齿轮盘210上,该磁性件100可与磁珠液容器410具有同步或不同步的转动速度,从而两者运动相叠加产生不同的效果,提高混匀效率。而当磁性件100被设置为固定不变时,磁珠液容器410的公转将会使其能够在不同磁性件100的磁场之间切换,从而形成不同方向的运动,提高混匀效率。
进一步地,磁性件100的数量可根据实际需求而选定。请参考图1,在一种实施例中,磁性件100为至少两个,其沿弧形或圆形排布在上述第一齿轮盘310上。
呈弧形或圆形排布的磁性件100可便于与围绕在其外圈的磁珠液容器410形成对应。尤其是,在磁珠液容器410能够进行公转时,磁性件100位置固定不动时,该磁性件100可依次对不同的磁珠液容器410产生作用。
进一步地,如图3所示,在一种实施例中,磁性件100与安装部210数量一致,安装部210呈圆形包围磁性件100,每个磁性件100对应一个安装部210设置,使位于安装部210上的磁珠液容器410能够处于对应磁性件100的磁场内。
在以上结构中,每个磁珠液容器410都能位于与其对应的磁场中,尤其是当磁珠液容器410和对应磁性件100均同步运动,再加上磁珠液容器410本身的自转,将使得磁珠液容器410内的磁珠411具有非常好的混匀效果。
安装部210的位置及结构决定了安装后的磁珠液容器410能否处于磁场内以及混匀装置工作时磁珠液容器410的安装稳定性。发明人根据实际需求设计了多种安装部210位置及结构不同的实施例。
在一种实施例中,该磁珠液容器410可以是一个单独的个体。该磁珠液容器410可转动地安装在安装部220上。
在另一种实施例中,请参考图3,以采用如图1和2所示的试剂组件400为例,该试剂组件包括试管座420、至少一个用于存放其他试剂的附加试剂管440以及磁 珠液容器410。磁珠液容器410可转动地安装在试管座420上,试管座420可拆卸地安装在安装部210上。对此,该安装部210具有限位凸起和/或限位凹槽,用于安装试管座420,从而安装磁珠液容器410。
在安装磁珠液容器410时,通过限位凸起和/或限位凹槽实现试管座420的固定,完成磁珠液容器410的安装。在本实施例中,安装部210形成安装座结构,可以将安装部210设置在磁性件100的侧下方,使得安装后的磁珠液容器410能够处于磁性件100的磁场内。
在另一种实施例中,安装部具有夹持结构,用于夹持和释放磁珠液容器。该磁珠液容器可转动地被夹持结构夹持住。
在安装磁珠液容器时,通过夹持结构将磁珠液容器夹持,实现磁珠液容器的安装,在需要取下磁珠液容器时,先使夹持结构释放磁珠液容器,再取下磁珠液容器。在本实施例中,夹持结构可以夹持磁珠液容器的上部、中部或下部,当夹持结构用于夹持磁珠液容器的上部时,可以将安装部设置在磁性件的侧上方,当夹持结构用于夹持磁珠液容器的中部时,可以将安装部设置在磁性件一侧的中部位置,当夹持结构用于夹持磁珠液容器的下部时,可以将安装部设置在磁性件的侧下方,使得安装后的磁珠液容器能够处于磁性件的磁场内。
在另一种实施例中,安装部具有悬吊结构,用于挂设磁珠液容器。
在安装磁珠液容器时,将磁珠液容器挂设在悬吊结构上,实现磁珠液容器的安装。在本实施例中,磁珠液容器通常挂设在安装部的底部,因此可以将安装部设置在磁性件的侧上方,使得安装后的磁珠液容器能够处于磁性件的磁场内。
在其他实施例中,安装部还可以具有其他合适的安装结构,只要能实现磁珠液容器在安装部上的安装即可。
考虑到外界的灰尘、悬浮物可能会堆积在混匀装置表面,影响混匀装置的使用寿命和工作效果,操作者在操作时若不小心将手伸入第一齿轮盘310处也可能会导致操作者受伤,发明人在一些实施例中给混匀装置增加了外盖。
请参考图5,在一种实施例中,混匀装置还包括外盖500,外盖500用于盖设在混匀装置的顶部。
外盖500一方面可以减少堆积在混匀装置表面的灰尘,延长混匀装置的使用寿 命,提升混匀装置的工作效果,另一方面也可以降低操作者操作失误受伤的可能性,提升了混匀装置的安全性。
混匀装置增加了外盖500后,如果每次取放磁珠液容器410都要打开外盖500会使得操作很不方便,发明人在一些实施例的外盖500上开设了取放口510。
请参考图5,在一种实施例中,外盖500具有取放口510,取放口510对应安装部210和磁珠液容器410开设。
使用者可以通过取放口510取放磁珠液容器410,使得使用者无需频繁开启和关闭外盖500,方便于使用者的操作。在本实施例中,取放口510为扇形,在其他实施例中,取放口还可以设置成扇环形或其他合适的形状,当取放口为扇环形时,外盖500能够更有效地遮挡第一齿轮盘310。
另一方面,本实施例提供一种样本分析设备,包括上述任一的混匀装置,用以对磁珠试剂进行混匀。
具体地,混匀装置可以设置成样本分析设备不可拆卸的一部分,也可以设置成可拆卸的结构。
另一方面,结合上述实施例,本发明实施例还提供一种磁珠试剂的混匀方法,如图6和7所示,该方法包括:
建立磁场S10:提供用于吸引磁珠的磁场;例如,提供磁铁以产生磁场,或使电磁铁的线圈通电而产生磁场;放入试剂S30:将待混匀的磁珠试剂置于磁场内;例如,将装有磁珠试剂的试剂容器放入试剂安装部,磁珠试剂即置于磁场内,磁场即对磁珠试剂中的磁珠产生作用力。
混匀S30:使磁场和磁珠试剂中至少一个运动,改变磁珠试剂在磁场中的相对位置;例如,磁珠试剂的容器正向或反向转动(公转或自转,或两者同时进行),试剂容器的转动能促使磁珠试剂的混匀,磁场的作用力更进一步的提升混匀效果。
通过磁珠试剂与磁场间的相对运动,改变磁力作用于磁珠的方向,使得磁珠在磁力作用下沿各个不同的方向流动,达到混匀的目的。
其中,如图6所示,该建立磁场步骤S10可在放入试剂步骤S30之前完成;或者如图7所示,该建立磁场步骤S10可在放入试剂步骤S30之后完成;再或者,两者 可以同时进行。
基于上述原理,发明人在一些混匀方法中通过使磁珠试剂运动来实现磁珠试剂和磁场间的相对运动。
在一种实施例的混匀步骤中,承载磁珠试剂的磁珠液容器交替进行正向自转和反向自转,该自转运动配合上磁场的磁吸作用,可以提高磁珠的混匀效果。
在一种实施例的混匀步骤中,磁珠试剂围绕产生磁场的磁性件转动。
上述两种实施例分别公开了磁珠试剂自转和绕磁性件公转的混匀方法,这两种方法可以分开单独使用,也可以结合起来使用,即,使磁珠试剂在自转的同时绕磁性件公转,当两者叠加时,可使磁珠产生更多方向上的运动,进一步提升混匀效果。
在一种实施例中,提供一种上述任一的混匀装置,混匀方法应用于混匀装置,以上述各实施例所示混匀装置来实现该混匀方法。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。

Claims (32)

  1. 一种磁珠试剂的混匀装置,其特征在于,包括:
    磁性件,用以产生磁场;
    试剂容器存放机构,所述试剂容器存放机构具有至少一个安装部,用于安装存放有待混匀磁珠试剂的磁珠液容器,所述安装部对应磁性件设置,使位于所述安装部上的磁珠液容器能够处于所述磁场内;
    以及驱动机构,所述驱动机构具有能够驱动磁性件、安装部和磁珠液容器中的至少其一运动并使所述磁珠液容器相对磁场产生运动的驱动结构。
  2. 如权利要求1所述的混匀装置,其特征在于,所述安装部具有能够限定磁珠液容器沿第一轴线纵向延伸设置的结构,所述磁性件中南极或北极沿与所述第一轴线成非零夹角的方向设置。
  3. 如权利要求2所述的混匀装置,其特征在于,所述磁性件的南极或北极垂直朝向所述第一轴线。
  4. 如权利要求1-3任一项所述的混匀装置,其特征在于,所述驱动机构包括第一驱动组件,所述第一驱动组件能够驱动所述磁珠液容器交替正向自转和反向自转。
  5. 如权利要求4所述的混匀装置,其特征在于,所述安装部为至少两个,其沿弧形或圆形分布在磁性件的周边,使位于安装部上的磁珠液容器能够围绕磁性件设置。
  6. 如权利要求5所述的混匀装置,其特征在于,所述试剂容器存放机构包括环形底座,所述安装部沿弧形或圆形排布在所述环形底座上,所述磁性件位于所述环形底座的中间孔位处。
  7. 如权利要求6所述的混匀装置,其特征在于,所述第一驱动组件包括第一齿轮盘、与所述环形底座同轴心设置并固定连接的第二齿轮盘和驱动第二齿轮盘转动的电机,所述第一齿轮盘固定设置并位于所述环形底座的中间孔位处,所述第一齿轮盘的轮齿伸入到 对应安装部的磁珠液容器安装区域内,以便于使所述第一齿轮盘的轮齿能够与磁珠液容器上的齿轮相啮合。
  8. 如权利要求5或6所述的混匀装置,其特征在于,所述第一驱动组件包括第一齿轮盘和驱动第一齿轮盘转动的电机,所述安装部沿弧形或圆形围绕第一齿轮盘设置,所述第一齿轮盘的轮齿伸入到对应安装部的磁珠液容器安装区域内,以便于使所述第一齿轮盘的轮齿能够与磁珠液容器上的齿轮相啮合。
  9. 如权利要求7或8所述的混匀装置,其特征在于,所述磁性件固定安装在第一齿轮盘上。
  10. 如权利要求9所述的混匀装置,其特征在于,所述磁性件为至少两个,其沿弧形或圆形排布在第一齿轮盘上。
  11. 如权利要求10所述的混匀装置,其特征在于,所述磁性件与安装部数量一致,每个磁性件对应一个安装部设置,使位于所述安装部上的磁珠液容器能够处于对应磁性件的磁场内。
  12. 如权利要求4所述的混匀装置,其特征在于,所述驱动机构包括第二驱动组件,所述第二驱动组件具有输出端,所述输出端与试剂容器存放机构传动连接,以驱动所述安装部绕磁性件转动。
  13. 如权利要求1-12任一项所述的混匀装置,其特征在于,所述安装部具有限位凸起和/或限位凹槽,用于安装磁珠液容器。
  14. 一种磁珠试剂的混匀装置,其特征在于,包括:
    磁性件,用以产生磁场;
    试剂容器存放机构,所述试剂容器存放机构具有至少一个安装部;
    磁珠液容器,用于存放待混匀磁珠试剂,所述磁珠液容器安装在安装部上,并位于所述磁性件产生的磁场内;
    以及驱动机构,所述驱动机构与磁性件、安装部和磁珠液容器中的至少其一传动连接,以驱动所述磁珠液容器相对磁场产生运动。
  15. 如权利要求14所述的混匀装置,其特征在于,所述磁性件中南极或北极朝向所述磁珠液容器的腔体侧壁设置。
  16. 如权利要求15所述的混匀装置,其特征在于,所述磁性件中南极或北极垂直朝向所述磁珠液容器的腔体侧壁。
  17. 如权利要求14-16任一项所述的混匀装置,其特征在于,所述驱动机构包括第一驱动组件,所述第一驱动组件与磁珠液容器传动连接,驱动所述磁珠液容器交替正向自转和反向自转。
  18. 如权利要求17所述的混匀装置,其特征在于,所述安装部为至少两个,其呈弧形或圆形分布在磁性件的周边,位于安装部上的磁珠液容器围绕磁性件设置。
  19. 如权利要求18所述的混匀装置,其特征在于,所述试剂容器存放机构包括环形底座,所述安装部排布在所述环形底座上,所述磁性件位于所述环形底座的中间孔位处。
  20. 如权利要求19所述的混匀装置,其特征在于,所述第一驱动组件包括第一齿轮盘、与所述环形底座同轴心设置并固定连接的第二齿轮盘和驱动第二齿轮盘转动的电机,所述第一齿轮盘固定设置并位于所述环形底座的中间孔位处,所述磁珠液容器安装有与其同轴心设置的齿轮,所述第一齿轮盘的轮齿与磁珠液容器上的齿轮相啮合,驱动磁珠液容器自转。
  21. 如权利要求18或19所述的混匀装置,其特征在于,所述第一驱动组件包括第一齿轮盘和驱动第一齿轮盘转动的电机,所述安装部沿弧形或圆形围绕第一齿轮盘设置,所述磁珠液容器安装有与其同轴心设置的齿轮,所述第一齿轮盘的轮齿与磁珠液容器上的齿轮相啮合,驱动磁珠液容器自转。
  22. 如权利要求20或21所述的混匀装置,其特征在于,所述磁性件固定安装在第一齿轮盘上。
  23. 如权利要求22所述的混匀装置,其特征在于,所述磁性件为至少两个,其沿弧形或圆形排布在第一齿轮盘上。
  24. 如权利要求23所述的混匀装置,其特征在于,所述磁性件与安装部数量一致,每个磁性件对应一个安装部设置,使位于所述安装部上的磁珠液容器能够处于对应磁性件的磁场内。
  25. 如权利要求17所述的混匀装置,其特征在于,所述驱动机构包括第二驱动组件,所述第二驱动组件具有输出端,其与试剂容器存放机构传动连接,驱动所述安装部绕磁性件转动。
  26. 如权利要求14-25任一项所述的混匀装置,其特征在于,所述磁珠液容器可转动地安装在安装部上。
  27. 如权利要求14-25任一项所述的混匀装置,其特征在于,还包括试剂组件,所述试剂组件包括试管座、至少一个用于存放其他试剂的附加试剂管以及所述磁珠液容器,所述磁珠液容器可转动地安装在试管座上,所述试管座可拆卸地安装在所述安装部上。
  28. 一种样本分析设备,其特征在于,包括如权利要求1-27任一项所述的混匀装置,用以对磁珠试剂进行混匀。
  29. 一种磁珠试剂的混匀方法,其特征在于,包括:
    建立磁场:提供用于吸引磁珠的磁场;
    放入试剂:将待混匀的磁珠试剂置于所述磁场内;
    混匀:使磁场和磁珠试剂中至少一个运动,改变所述磁珠试剂在磁场中的相对位置。
  30. 如权利要求29所述的混匀方法,其特征在于,在混匀步骤中,承载所述磁珠试剂的磁珠液容器交替进行正向自转和反向自转。
  31. 如权利要求29或30所述的混匀方法,其特征在于,在混匀步骤中,所述磁珠试剂围绕产生所述磁场的磁性件转动。
  32. 如权利要求29-31任一项所述的混匀方法,其特征在于,提供一种如权利要求1-27任一项所述的混匀装置,所述混匀方法应用于所述混匀装置。
PCT/CN2019/083626 2019-04-22 2019-04-22 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备 WO2020215175A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/083626 WO2020215175A1 (zh) 2019-04-22 2019-04-22 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备
CN201980074935.5A CN113015910A (zh) 2019-04-22 2019-04-22 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备
US17/506,487 US20220040650A1 (en) 2019-04-22 2021-10-20 Device and method for mixing magnetic bead reagent and sample analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083626 WO2020215175A1 (zh) 2019-04-22 2019-04-22 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/506,487 Continuation US20220040650A1 (en) 2019-04-22 2021-10-20 Device and method for mixing magnetic bead reagent and sample analysis apparatus

Publications (1)

Publication Number Publication Date
WO2020215175A1 true WO2020215175A1 (zh) 2020-10-29

Family

ID=72940843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083626 WO2020215175A1 (zh) 2019-04-22 2019-04-22 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备

Country Status (3)

Country Link
US (1) US20220040650A1 (zh)
CN (1) CN113015910A (zh)
WO (1) WO2020215175A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202460530U (zh) * 2012-01-18 2012-10-03 上海蓝怡科技有限公司 恒温磁性微粒试剂杯混匀装置
CN102764607A (zh) * 2006-06-21 2012-11-07 斯彼诺米克斯公司 一种用于处理和混合液体介质中的磁性颗粒的设备和方法
CN203170251U (zh) * 2013-04-16 2013-09-04 深圳迈瑞生物医疗电子股份有限公司 试剂瓶
US20140086005A1 (en) * 2007-02-08 2014-03-27 Kathleen Vincent Reagent cartridge mixing tube
CN105510613A (zh) * 2015-12-21 2016-04-20 利多(香港)有限公司 试剂混匀传送装置和混匀方法
CN205562577U (zh) * 2016-02-03 2016-09-07 深圳雷杜生命科学股份有限公司 化学发光试剂盘结构
CN208082677U (zh) * 2018-05-08 2018-11-13 深圳迎凯生物科技有限公司 自动清洗分离装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774803A (en) * 1952-09-20 1956-12-18 Asea Ab Inductive stirring device for metallurgical furnace
US3219318A (en) * 1961-08-22 1965-11-23 Hershler Abe Fluid treating method and apparatus
US3967934A (en) * 1969-06-13 1976-07-06 Baxter Laboratories, Inc. Prothrombin timer
US3985649A (en) * 1974-11-25 1976-10-12 Eddelman Roy T Ferromagnetic separation process and material
US4390283A (en) * 1979-09-04 1983-06-28 Beckman Instruments, Inc. Magnetic strirrer for sample container
EP0083617A1 (de) * 1981-07-11 1983-07-20 JOCHIMSEN, Siegfried Blutgerinnungszeitmessgerät und verfahren zum erfassen und messen der blutgerinnungszeit
US5352036A (en) * 1992-09-23 1994-10-04 Habley Medical Technology Corporation Method for mixing and dispensing a liquid pharmaceutical with a miscible component
US5529391A (en) * 1994-09-22 1996-06-25 Duke University Magnetic stirring and heating/cooling apparatus
US6884357B2 (en) * 1995-02-21 2005-04-26 Iqbal Waheed Siddiqi Apparatus and method for processing magnetic particles
JP3962789B2 (ja) * 1995-02-21 2007-08-22 ダブリュー. シディキー,イクバール 磁性粒子を利用した混合/分離装置及びその方法
GB9719774D0 (en) * 1997-09-18 1997-11-19 Glaxo Group Ltd Device
US6176609B1 (en) * 1998-10-13 2001-01-23 V & P Scientific, Inc. Magnetic tumble stirring method, devices and machines for mixing in vessels
US6357907B1 (en) * 1999-06-15 2002-03-19 V & P Scientific, Inc. Magnetic levitation stirring devices and machines for mixing in vessels
US6382827B1 (en) * 2000-11-01 2002-05-07 Dade Behring Inc. Method and apparatus for mixing liquid solutions using a rotating magnet to generate a stirring vortex action
US20020118594A1 (en) * 2001-02-28 2002-08-29 Vellinger John C. Apparatus and method for mixing small volumes of liquid
US6467946B1 (en) * 2001-04-24 2002-10-22 Dade Microscan Inc. Method and apparatus for mixing liquid samples in a container using rotating magnetic fields
US6880384B2 (en) * 2001-06-26 2005-04-19 Radiometer Medical A/S Blood analyzer, blood sample handler, and method for handling a blood sample
DE10156790A1 (de) * 2001-11-19 2003-06-18 Chemagen Biopolymer Technologi Vorrichtung und Verfahren zum Behandeln von Magnetpartikeln
JP2006247535A (ja) * 2005-03-10 2006-09-21 Toyo Univ 回転磁場を利用した反応促進方法
US7484880B2 (en) * 2005-06-24 2009-02-03 V & P Scientific, Inc. Vortex stirring of vessels in a two-dimensional array
DE102005030986B4 (de) * 2005-07-02 2011-06-22 Ernst 64342 Stetter Verwendung rotierender magnetische Nanopartikel
DE102006030056B3 (de) * 2006-06-29 2007-06-21 Ika - Werke Gmbh & Co. Kg Mikrotiterplatte mit Rührelementen
CN202011883U (zh) * 2007-12-12 2011-10-19 里兰斯坦福初级大学理事会 用于捕获和分离目标细胞的装置
CN101700477B (zh) * 2009-05-12 2012-01-11 湖南科美达电气股份有限公司 多模式磁场电磁搅拌器
EP2529236A2 (en) * 2010-01-29 2012-12-05 Peter B. Howell, Jr. Rotationally actuated magnetic bead trap and mixer
CN202570040U (zh) * 2012-05-07 2012-12-05 深圳市爱康电子有限公司 试剂混匀器
CN103235148B (zh) * 2013-04-25 2014-09-24 深圳市国赛生物技术有限公司 一种试剂盘
KR102381695B1 (ko) * 2014-06-18 2022-04-01 루미넥스 코포레이션 자기 혼합 장치 및 방법
CN104226168B (zh) * 2014-09-30 2016-09-28 博奥赛斯(天津)生物科技有限公司 一种磁珠试剂混匀装置
WO2017028824A1 (zh) * 2015-08-17 2017-02-23 宇环数控机床股份有限公司 磁流变抛光设备的磁场发生装置
CN204882191U (zh) * 2015-08-28 2015-12-16 西安工业大学 流动注射磁珠分离仪器
JP6959105B2 (ja) * 2016-11-11 2021-11-02 株式会社アルバック 撹拌装置
CN206657019U (zh) * 2017-03-31 2017-11-21 迈克医疗电子有限公司 磁珠液混匀装置、体外诊断设备、磁珠瓶
JP6977987B2 (ja) * 2017-05-12 2021-12-08 学校法人東北学院 磁界測定装置及び磁界測定方法
US10610843B2 (en) * 2017-11-28 2020-04-07 Talis Biomedical Corporation Magnetic mixing apparatus
CN207798506U (zh) * 2017-12-26 2018-08-31 深圳德夏生物医学工程有限公司 磁力搅拌装置
JP6782264B2 (ja) * 2018-02-20 2020-11-11 株式会社日立ハイテク 自動分析装置
CN109622086B (zh) * 2019-01-31 2021-10-15 河南科技大学 预置磁珠的微流控芯片、制造方法及微流控检测设备
EP4065260A4 (en) * 2019-11-27 2023-08-02 JBS Science Inc. METHOD AND DEVICE FOR MIXING MAGNETIC PARTICLES IN A LIQUID MEDIUM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764607A (zh) * 2006-06-21 2012-11-07 斯彼诺米克斯公司 一种用于处理和混合液体介质中的磁性颗粒的设备和方法
US20140086005A1 (en) * 2007-02-08 2014-03-27 Kathleen Vincent Reagent cartridge mixing tube
CN202460530U (zh) * 2012-01-18 2012-10-03 上海蓝怡科技有限公司 恒温磁性微粒试剂杯混匀装置
CN203170251U (zh) * 2013-04-16 2013-09-04 深圳迈瑞生物医疗电子股份有限公司 试剂瓶
CN105510613A (zh) * 2015-12-21 2016-04-20 利多(香港)有限公司 试剂混匀传送装置和混匀方法
CN205562577U (zh) * 2016-02-03 2016-09-07 深圳雷杜生命科学股份有限公司 化学发光试剂盘结构
CN208082677U (zh) * 2018-05-08 2018-11-13 深圳迎凯生物科技有限公司 自动清洗分离装置

Also Published As

Publication number Publication date
US20220040650A1 (en) 2022-02-10
CN113015910A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN104190344B (zh) 光辐照多样品平行反应装置
US7776221B2 (en) Device and method for separating magnetic or magnetizable particles from a liquid
CN203170251U (zh) 试剂瓶
JP4130956B2 (ja) 遊星運動式真空撹拌脱泡装置
JP2000271465A (ja) 攪拌脱泡装置
CN214374842U (zh) 磁珠试剂的混匀装置及样本分析设备
WO2020215175A1 (zh) 一种磁珠试剂的混匀装置、混匀方法以及样本分析设备
CN111521833A (zh) 具有多反应模式的化学发光免疫分析反应盘及分析仪
CN210180787U (zh) 磁珠试剂的混匀装置及样本分析设备
CN205517499U (zh) 一种小型漩涡式试管震荡混匀器
CN217261445U (zh) 一种核酸提取设备及试剂管包装组件与试剂管组件
CN212440970U (zh) 一种溶液快速混合装置
CN110554181A (zh) 一种试剂盒及试剂盘装置
CN104374936A (zh) 用于分析仪器的粉末自动加样装置
CN208780540U (zh) 消化道多重病原体液相芯片检测试剂盒
CN205361189U (zh) 容量瓶的旋转混匀装置
CN114682144A (zh) 样本分析设备及样本分析方法
CN210079376U (zh) 试剂混匀机构、试剂存储装置及化学发光免疫分析仪
CN209173437U (zh) 一种探针用密封胶除气泡装置
CN114682142A (zh) 样本分析设备及样本分析方法
CN220584232U (zh) 一种免疫分析仪孵育盘
CN220110924U (zh) 一种利用永磁铁混匀磁珠溶液装置
CN218393334U (zh) 搅拌头以及搅拌设备
CN215931473U (zh) 一种磁珠混匀装置
CN217587122U (zh) 磁分离清洗装置以及样本分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926316

Country of ref document: EP

Kind code of ref document: A1