WO2020213279A1 - ステータおよびモータ - Google Patents

ステータおよびモータ Download PDF

Info

Publication number
WO2020213279A1
WO2020213279A1 PCT/JP2020/009152 JP2020009152W WO2020213279A1 WO 2020213279 A1 WO2020213279 A1 WO 2020213279A1 JP 2020009152 W JP2020009152 W JP 2020009152W WO 2020213279 A1 WO2020213279 A1 WO 2020213279A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
yoke
core
stator core
split
Prior art date
Application number
PCT/JP2020/009152
Other languages
English (en)
French (fr)
Inventor
高山 佳典
基史 大辻
興治 井上
翔吾 岡部
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080017916.1A priority Critical patent/CN113491052B/zh
Priority to ES20791083T priority patent/ES2953924T3/es
Priority to US17/603,866 priority patent/US20220216742A1/en
Priority to EP20791083.7A priority patent/EP3937349B1/en
Publication of WO2020213279A1 publication Critical patent/WO2020213279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This disclosure relates to stators and motors.
  • stator there is an inner rotor type stator having an annular stator core formed by connecting a plurality of divided cores at a joint surface (see, for example, Japanese Patent Application Laid-Open No. 2002-95192 (Patent Document 1)).
  • Each of the plurality of divided cores of the stator has a yoke portion extending in the circumferential direction and a teeth portion extending radially inward from the yoke portion.
  • a convex portion is provided on one side of the yoke portion of the split core in the circumferential direction and a concave portion is provided on the other side in the circumferential direction.
  • a plurality of divided cores are assembled in an annular shape by fitting them into the recesses.
  • the above stator has a problem that the outer peripheral end of the joint portion of the split cores must be welded in the stacking direction in order to secure the force for fastening the split cores to each other.
  • the present disclosure proposes a stator capable of securing a fastening force between the split cores without welding the split cores, and a motor including the stator.
  • the stator of the present disclosure has a stator core with a plurality of split cores arranged in an annular shape.
  • the split core has a yoke portion and a teeth portion that protrudes from the yoke portion in the radial direction of the stator core.
  • a fitting portion is provided along the axial direction of the stator core from the upper end surface to the lower end surface of the stator core on the joint surface side where the yoke portions of the divided cores adjacent to each other are connected to each other. It is characterized in that the fitting portion is provided with caulking.
  • a fitting portion is provided along the axial direction of the stator core from the upper end surface to the lower end surface of the stator core on the joint surface side where the yoke portions of the divided cores adjacent to each other are connected to each other, and the fitting portion is provided.
  • the fitting portion is plastically deformed, so that the fastening force between the split cores can be improved even if the fitting portion has dimensional variations in processing. Therefore, the fastening force between the divided cores can be secured without welding the divided cores to each other.
  • the fastening force between the split cores can be secured, so that the length of the contact portion in the fitting portion can be shortened to reduce the leakage flux, and the efficiency of the motor provided with this stator can be reduced. Can be improved.
  • the caulking portion is provided on the fitting portion on at least one of the upper end surface and the lower end surface of the stator core.
  • the fastening force between the split cores can be easily improved by providing the fitting portion with caulking on at least one of the upper end surface and the lower end surface of the stator core. Further, since the strain due to caulking stays at at least one of the upper end side and the lower end side of the stator core, the influence of iron loss due to the caulking strain is small.
  • the caulking is provided so as to straddle the divided cores adjacent to each other.
  • the caulking is provided on the divided cores adjacent to each other so as to straddle the stator core in the radial direction.
  • the split cores adjacent to each other are plastically deformed in the radial direction to the portions constituting the fitting portions of the respective split cores. Therefore, the fastening force between the split cores can be further improved.
  • the fitting portion has a convex portion of the yoke portion provided on one side of the stator core in the circumferential direction and a concave portion of the yoke portion provided on the other side of the circumferential direction.
  • Each of the convex portion and the concave portion has two linear portions parallel to each other extending from one end on the joint surface side and an arc portion connecting between the other ends of the two straight portions.
  • divisions adjacent to each other by convex portions and concave portions having two straight portions parallel to each other extending from one end on the joint surface side and an arc portion connecting between the other ends of the two straight portions.
  • the cores can be easily connected to each other.
  • the motor of the present disclosure is with any one of the above stators It is characterized by including a rotor arranged so as to face each other in the radial direction of the stator.
  • the leakage flux of the stator can be reduced and the efficiency can be improved.
  • a stator having a stator core capable of ensuring a fastening force between the split cores without welding the split cores to each other.
  • FIG. 1 is a cross-sectional view of the motor 100 provided with the stator 1 of the first embodiment of the present disclosure, and shows a cross-sectional view of the motor 100 as seen from the line II of FIG. Further, FIG. 2 is a cross-sectional view of the motor 100 as viewed from the line II-II of FIG.
  • this motor 100 is a so-called outer rotor type motor 100, and includes an annular stator 1 and a rotor 2 arranged so as to face the radial outer side of the stator 1.
  • the motor 100 rotationally drives a member such as a fan (not shown) via a shaft 3.
  • the rotor 2 includes a mold resin 20, a plurality of back yokes 21, and a plurality of magnets 22.
  • the mold resin 20 is formed in a cup shape and covers the stator core 10 of the stator 1.
  • the mold resin 20 is fixed to the shaft 3 via the connecting member 23.
  • BMC Bulk Molding Compound
  • the back yoke 21 and the magnet 22 are integrally molded with the mold resin 20.
  • eight back yokes 21 are arranged in a ring shape.
  • Eight magnets 22 are arranged in an annular shape inside the back yoke 21 in the radial direction.
  • the magnets 22, 22 adjacent to each other in the circumferential direction have different magnetisms.
  • the stator 1 includes a stator core 10, an insulator 11, and a coil 12.
  • the stator core 10 is composed of a plurality of laminated electromagnetic steel plates.
  • the stator core 10 has an annular stator yoke 30 and a plurality of tooth portions 31 projecting radially outward from the outer peripheral surface of the stator yoke 30.
  • twelve tooth portions 31 are arranged at intervals in the circumferential direction.
  • the insulator 11 is attached to each tooth portion 31 of the stator core 10.
  • the insulator 11 is made of an insulating material such as resin.
  • the coil 12 is wound around the teeth portion 31 of the stator core 10 in a concentrated manner via an insulator 11. An electric current is passed through the coil 12 to generate an electromagnetic force in the stator core 10, and the electromagnetic force causes the rotor 2 to rotate together with the shaft 3.
  • the mold resin portion 13 integrally molds the stator core 10, the insulator 11, and the coil 12.
  • the mold resin portion 13 is composed of, for example, a BMC (Bulk Molding Compound).
  • the mold resin portion 13 supports the shaft 3 via the bearing 14.
  • the mold resin portion 13 is provided with a mounting base 15 for mounting the motor 100 to another member (not shown).
  • a cover 16 is attached to the mounting base 15.
  • the cover 16 covers the rotor 2 to prevent dust, water, and the like from entering.
  • the cover 16 is formed by integrally molding the bearing housing 17 with a molding resin.
  • the cover 16 supports the shaft 3 via a bearing 18.
  • FIG. 3 is a plan view of the stator core 10. As shown in FIG. 3, the stator core 10 has a plurality of divided cores 40 arranged in an annular shape.
  • the split core 40 has a yoke portion 41 on the inner side in the radial direction and a teeth portion 31 protruding radially outward from the yoke portion 41.
  • Twelve split cores 40 are arranged in a ring shape, and the yoke portions 41 of the adjacent split cores 40 are connected to each other to form the stator core 10.
  • FIG. 4 is a plan view of the split core 40 constituting the stator core 10.
  • the yoke portion 41 of the split core 40 is located on one of the joint surfaces 43 in the circumferential direction of the stator core 40.
  • a convex portion 41a provided along the axial direction of the stator core 10 from the upper end surface to the lower end surface of the above, and the stator core 10 from the upper end surface to the lower end surface of the split core 40 on the other joint surface 43 side in the circumferential direction. It has a recess 41b provided along the axial direction of the above.
  • the convex portion 41a of the yoke portion 41 is an arc connecting two straight portions L11 and L12 parallel to each other extending from one end on the joint surface 43 side and the other ends of the two straight portions L11 and L12. It has a part C11.
  • the arc portion C11 is provided so that the tip end side (the side opposite to the joint surface 43) of the convex portion 41a bulges.
  • the straight portions L11 and L12 each form an angle of 90 deg with respect to the joint surface 43 on one side in the circumferential direction of the yoke portion 41.
  • the recess 41b of the yoke portion 41 is formed by two linear portions L21 and L22 extending from one end on the joint surface 43 side and parallel to each other, and an arc portion C21 connecting the other ends of the two straight portions L21 and L22.
  • the arc portion C21 is provided so that the side of the recess 41b opposite to the joint surface 43 bulges.
  • the straight portions L21 and L22 each form an angle of 90 deg with respect to the joint surface 43 on the other side in the circumferential direction of the yoke portion 41.
  • the caulking 47 is provided on the yoke portion 41 side of the split core 40, and the caulking 48 is provided on the radial outer side of the teeth portion 31.
  • the caulking 47, 48 a plurality of electromagnetic steel plates constituting the split core 40 are integrally fixed.
  • FIG. 5 is a plan view showing a state in which two divided cores 40 are connected, and in FIG. 5, L1 is a center line in the radial direction of each divided core 40.
  • L1 is a center line in the radial direction of each divided core 40.
  • the convex portion 41a of the yoke portion 41 of one split core 40 and the concave portion 41b of the yoke portion 41 of the other split core 40 are fitted.
  • Adjacent yoke portions 41 are joined to each other.
  • the fitting portion 42 is composed of the convex portion 41a and the concave portion 41b of the yoke portion 41.
  • the fitting portion 42 includes a convex portion 41a of the yoke portion 41 of one split core 40 and a peripheral portion of the concave portion 41b forming the recess 41b in the yoke portion 41 of the other split core 40.
  • the end of the fitting portion 42 is located inside in the radial direction.
  • the virtual circle VC is a circle centered on the center O1 of the stator core 10 and passes through the center P1 of the joint surface 43 of the yoke portion 41 of each divided core 40.
  • the plane along the joint surface 43 of the yoke portion 41 passes through the center O1 of the stator core 10.
  • the outer peripheral portions of the adjacent teeth portions 31, 31 are separated from each other.
  • the adjacent yoke portions 41 are connected to each other, and the stator yoke 30 is formed by the 12 connected yoke portions 41.
  • each split core 40 Before connecting the adjacent yoke portions 41 to each other, each split core 40 covers the teeth portion 31 with an insulator 11 (shown in FIGS. 1 and 2) and coiles the teeth portion 31 covered with the insulator 11. Wind 12 (shown in FIG. 1).
  • the fitting portion 42 provided in the yoke portion 41 of the split core 40 extends in a direction orthogonal to the joint surface 43.
  • one of the caulking 44A to 44G is provided on the fitting portion 42 on the upper end surface and the lower end surface of the stator core 10.
  • the fitting portion 42 is plastically deformed, so that the fastening force between the split cores 40 can be improved.
  • the fastening force between the split cores 40 can be secured by the caulking 44A to 44G, so that the length of the contact portion in the fitting portion 42 is shortened to reduce the leakage flux. can do.
  • the strain caused by the caulking 44A to 44G stays on the upper end side and the lower end side of the stator core 10, the influence of the iron loss due to the strain of the caulking 44A to 44G is small.
  • FIG. 6 shows an enlarged view of a main part including the fitting portion 42 of the split core 40 of the first example, and as shown in FIG. 6, a length is formed on the convex portion 41a of the fitting portion 42 of the yoke portion 41.
  • a thick linear caulking 44A is provided so that the direction is along the circumferential direction of the stator core 10.
  • FIG. 7 shows an enlarged view of a main part including the fitting portion 42 of the split core 40 of the second example, and as shown in FIG. 7, a circle is formed on the convex portion 41a of the fitting portion 42 of the yoke portion 41.
  • a caulking 44B having a shape is provided.
  • FIG. 8 shows an enlarged view of a main part including the fitting portion 42 of the split core 40 of the third example, and as shown in FIG. 8, with the tip portion of the convex portion 41a of one of the adjacent yoke portions 41.
  • a thick linear caulking 44C is provided so as to straddle the other adjacent yoke portion 41 so that the longitudinal direction is along the circumferential direction of the stator core 10.
  • FIG. 9 shows an enlarged view of a main part including the fitting portion 42 of the split core 40 of the fourth example, and as shown in FIG. 9, the convex portion 41a of one of the adjacent yoke portions 41 and the convex portion 41a thereof.
  • a thick linear caulking 44D is provided so as to straddle both sides of the portion 41a in the radial direction and the other adjacent yoke portion 41 so that the longitudinal direction is along the radial direction.
  • FIG. 10 shows an enlarged view of a main part including the fitting part of the split core 40 of the fifth example, and as shown in FIG. 10, the convex portion 41a of one of the adjacent yoke portions 41 has a longitudinal direction.
  • a thick linear caulking 44E is provided along the radial direction.
  • FIG. 11 shows an enlarged view of a main part including the fitting portion 42 of the split core 40 of the sixth example, and as shown in FIG. 11, on both sides of the concave portion 41b of one of the adjacent yoke portions 41 in the radial direction.
  • Thick linear caulking 44F, 44G is provided so that the longitudinal direction is along the circumferential direction of the stator core 10.
  • FIG. 12 shows the magnetic flux distribution of the stator core 10 obtained by simulation. Note that, in FIG. 12, the rotor 2 has a configuration for simulation, unlike the configuration shown in FIG.
  • the magnetic flux density in the fitting portion 42 of the split core 40 is lower than the magnetic flux density in the region radially outside the fitting portion 42 in the joint surface 43 of the split core 40. Therefore, the leakage flux due to the fitting portion 42 can be reduced.
  • the fitting portion 42 is provided on the joint surface 43 in which the yoke portions 41 of the split cores 40 adjacent to each other are connected to each other, and the fitting portions 42 are provided with caulking 44A to 44G. Since the fitting portion 42 is plastically deformed, the fastening force between the split cores 40 can be improved even if the fitting portion 42 has dimensional variations in processing. Therefore, the fastening force between the divided cores 40 can be secured without welding the divided cores 40 to each other.
  • the fastening force between the split cores 40 can be secured, so that the length of the contact portion in the fitting portion 42 can be shortened to reduce the leakage flux, and the efficiency of the motor 100 can be reduced. Can be improved.
  • the fastening force between the split cores 40 can be easily improved by providing the caulking portions 42A to 44G on the upper end surface and the lower end surface of the stator core 10.
  • the fitting portions 42 of the split cores 40 adjacent to each other are formed. Since it is plastically deformed in the radial direction, the fastening force between the split cores 40 can be further improved.
  • the convex portion 41a of the fitting portion 42 is an arc portion that connects two straight portions L11 and L12 that are parallel to each other extending from one end on the joint surface 43 side and the other ends of the two straight portions L11 and L12.
  • the recess 41b of the fitting portion 42 has a shape having C11, and the recess 41b of the fitting portion 42 is formed between two parallel straight portions L21 and L22 extending from one end on the joint surface 43 side and the other ends of the two straight portions L21 and L22.
  • the convex portion 41a of one of the split cores 40 adjacent to each other is inserted into the concave portion 41b of the other split core 40 from the circumferential direction of the stator core 10.
  • the split cores 40 can be easily connected to each other.
  • the leakage flux of the stator 1 can be reduced and the efficiency can be improved.
  • a virtual circle VC in which the convex portion 41a and the concave portion 41b of the fitting portion 42 are centered on the center O1 of the stator core 10 and pass through the center P1 of the joint surface 43 of the yoke portion 41.
  • the fitting portion is provided on the joint surface regardless of the position of the yoke portion on the joint surface.
  • the convex portion 41a of the fitting portion 42 has two linear portions L11 and L12 parallel to each other extending from one end on the joint surface 43 side, and the two straight portions L11 and L12.
  • the shape has an arc portion C11 connecting the ends
  • the recess 41b of the fitting portion 42 has two straight portions L21 and L22 parallel to each other extending from one end on the joint surface 43 side and the two straight portions L21.
  • the shape has an arc portion C21 connecting the other ends of L22, but the shape of the convex portion and the concave portion of the fitting portion 42 is not limited to this.
  • one of the two straight portions parallel to each other of the convex portion and the concave portion of the fitting portion may be a curved portion, both may be curved portions instead of the two straight portions, and the arc portion may be replaced. It may be a polygonal part.
  • FIG. 13 is a plan view of the split core 140 constituting the stator core of the stator of the second embodiment of the present disclosure.
  • the split core 140 of the stator of the second embodiment has the same configuration as the split core 40 of the stator 1 of the first embodiment except for the fitting portion 142 composed of the convex portion 141a and the concave portion 141b of the yoke portion 141. Therefore, Fig. 1 and Fig. 2 are used.
  • the yoke portion 141 of the split core 140 has a convex portion 141a provided on one side in the circumferential direction of the stator core 10 and a concave portion 141b provided on the other side in the circumferential direction.
  • the convex portion 141a of the yoke portion 141 is an arc connecting two straight portions L31 and L32 parallel to each other extending from one end on the joint surface 143 side and the other ends of the two straight portions L31 and L32. It has a part C31.
  • the arc portion C31 is provided so that the tip end side (the side opposite to the joint surface 143) of the convex portion 141a bulges.
  • the straight portion L31 forms an angle of 85 deg with respect to the joint surface 143 on one side in the circumferential direction of the yoke portion 141. Further, the straight portion L32 forms an angle of 95 deg with respect to the joint surface 143 on one side in the circumferential direction of the yoke portion 141.
  • the recess 141b of the yoke portion 141 includes two straight portions L41 and L42 that are parallel to each other extending from one end on the joint surface 143 side and an arc portion C41 that connects the other ends of the two straight portions L41 and L42.
  • the arc portion C41 is provided so that the side of the recess 141b opposite to the joint surface 143 bulges.
  • the straight portion L41 forms an angle of 95 deg with respect to the joint surface 143 on the other side of the yoke portion 141 in the circumferential direction. Further, the straight portion L42 forms an angle of 85 deg with respect to the joint surface 143 on one side in the circumferential direction of the yoke portion 141.
  • a caulking 147 is provided on the yoke portion 141 side of the split core 140, and a caulking 148 is provided on the radial outer side of the tooth portion 131.
  • a plurality of electromagnetic steel plates constituting the divided core 40 are integrally fixed by the caulking 147,148.
  • the stator of the second embodiment has the same effect as the stator 1 of the first embodiment.
  • the fitting portion 142 provided in the yoke portion 141 of the split core 140 extends diagonally outward with respect to the direction orthogonal to the joint surface 143. As a result, the fitting portion 142 is less likely to be disengaged from the force acting on the split core 140 in the direction orthogonal to the joint surface 143, so that the coupling force between the split cores 140 can be maintained.
  • the outer rotor type stator 1 and the motor 100 including the stator 1 have been described, but the present invention may be applied to the inner rotor type stator and the motor including the stator 1.
  • the yoke portions 41,141 of the divided cores 40, 140 arranged in an annular shape are connected by the fitting portions 42, 142, but the shapes of the fitting portions are not limited to this, and they are not limited to each other.
  • Any fitting structure may be used, which is provided along the axial direction of the stator core from the upper end surface to the lower end surface of the stator core on the joint surface side where the yoke portions of the adjacent split cores are connected to each other.
  • the end of the fitting portion is located radially inside the joint surface of the yoke portion of the split core with respect to the center between the radially outer end and the radial inner end of the stator core.
  • a part of the fitting portion on the side opposite to the joint surface is a virtual circle centered on the center of the stator core and is the center between the radial outer end and the radial inner end of the joint surface. It may be located radially outside the virtual circle passing through.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

ステータは、環状に配置された複数の分割コア(40)を有するステータコアを備える。分割コア(40)は、径方向内側のヨーク部(41)と、ヨーク部(41)から径方向外側に突出するティース部(31)とを有する。互いに隣接する分割コア(40)のヨーク部(41)同士が連結された接合面(43)側に、ステータコアの上端面から下端面に亘ってステータコアの軸方向に沿って嵌合部(42)が設けられ、嵌合部(42)にカシメ(44C)が設けられている。

Description

ステータおよびモータ
 本開示は、ステータおよびモータに関する
 従来、ステータとしては、複数の分割コアを接合面で結合することにより構成された環状のステータコアを備えたインナーロータ形のステータがある(例えば、特開2002-95192号公報(特許文献1)参照)。このステータの複数の分割コアは、周方向に延びるヨーク部と、そのヨーク部から径方向内側に延びるティース部とをそれぞれ有する。
特開2002-95192号公報
 上記従来のステータでは、分割コアのヨーク部の周方向の一方に凸部を設けると共に周方向の他方に凹部を設け、隣接する分割コア同士を一方の分割コアの凸部を他方の分割コアの凹部に嵌め合わせることにより、複数の分割コアを環状に組み立てている。
 しかしながら、上記ステータでは、分割コア同士を締結する力を確保するため、分割コアの接合部分の外周端を積層方向に溶着しなければならないという問題がある。
 本開示では、分割コア同士を溶着することなく、分割コア間の締結力を確保できるステータおよびそのステータを備えるモータを提案する。
 本開示のステータは、
 環状に配置された複数の分割コアを有するステータコアを備え、
 上記分割コアは、ヨーク部と、上記ヨーク部から上記ステータコアの径方向に突出するティース部とを有し、
 互いに隣接する上記分割コアの上記ヨーク部同士が連結された接合面側に、上記ステータコアの上端面から下端面に亘って上記ステータコアの軸方向に沿って嵌合部が設けられ、
 上記嵌合部にカシメが設けられていることを特徴とする。
 本開示によれば、互いに隣接する分割コアのヨーク部同士が連結された接合面側に、ステータコアの上端面から下端面に亘ってステータコアの軸方向に沿って嵌合部を設け、その嵌合部にカシメを設けることによって、嵌合部が塑性変形することで、嵌合部に加工上の寸法ばらつきが生じても分割コア間の締結力を向上できる。したがって、分割コア同士を溶着することなく、分割コア間の締結力を確保できる。また、嵌合部が小さい形状であっても、分割コア間の締結力を確保できるので、嵌合部における接触部分の長さを短くして漏れ磁束を低減でき、このステータを備えるモータの効率を向上できる。
 また、本開示の1つの態様に係るステータでは、
 上記ステータコアの上端面または下端面の少なくとも一方において上記嵌合部に上記カシメを設けている。
 本開示によれば、ステータコアの上端面または下端面の少なくとも一方において嵌合部にカシメを設けることによって、分割コア間の締結力を簡単に向上できる。また、カシメによる歪は、ステータコアの上端側または下端側の少なくとも一方に留まるので、カシメの歪による鉄損の影響は少ない。
 また、本開示の1つの態様に係るステータでは、
 上記カシメは、互いに隣接する上記分割コアに跨がって設けられている。
 本開示によれば、互いに隣接する分割コアに跨がってカシメを設けることによって、互いに隣接する分割コアそれぞれの嵌合部を構成する部分に亘って塑性変形するので、分割コア間の締結力をさらに向上できる。
 また、本開示の1つの態様に係るステータでは、
 上記カシメは、互いに隣接する上記分割コアに上記ステータコアの径方向に跨がって設けられている。
 本開示によれば、互いに隣接する分割コアにステータコアの径方向に跨がってカシメを設けることによって、互いに隣接する分割コアそれぞれの嵌合部を構成する部分に径方向に亘って塑性変形するので、分割コア間の締結力をさらに向上できる。
 また、本開示の1つの態様に係るステータでは、
 上記嵌合部は、上記ヨーク部の上記ステータコアの周方向の一方側に設けられた凸部と、上記ヨーク部の上記周方向の他方側に設けられた凹部とを有すると共に、
 上記凸部と上記凹部のそれぞれは、上記接合面側の一端から夫々延びる互いに平行な2つの直線部と、該2つの直線部の他端間を接続する円弧部とを有する。
 本開示によれば、接合面側の一端から夫々延びる互いに平行な2つの直線部と、該2つの直線部の他端間を接続する円弧部とを有する凸部と凹部によって、互いに隣接する分割コア同士を容易に結合できる。
 また、本開示のモータは、
 上記のいずれか1つのステータと、
 上記ステータの径方向に対向するように配置されたロータと
を備えることを特徴とする。
 本開示によれば、ステータの漏れ磁束を低減でき、効率を向上できる。
 本開示によれば、分割コア同士を溶着することなく、分割コア間の締結力を確保できるステータコアを備えたステータを製造できる。
本開示の第1実施形態のステータを備えたモータの断面図である。 図1のII-II線から見たモータの断面図である。 上記ステータコアの平面図である。 上記ステータコアを構成する分割コアの平面図である。 上記分割コアを連結させた状態を示す平面図である。 第1例の分割コアの嵌合部を含む要部の拡大図である。 第2例の分割コアの嵌合部を含む要部の拡大図である。 第3例の分割コアの嵌合部を含む要部の拡大図である。 第4例の分割コアの嵌合部を含む要部の拡大図である。 第5例の分割コアの嵌合部を含む要部の拡大図である。 第6例の分割コアの嵌合部を含む要部の拡大図である。 上記ステータコアの磁束分布を示す図である。 本開示の第2実施形態のステータのステータコアを構成する分割コアの平面図である。
 以下、実施形態を説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さ等の図面上の寸法は、図面の明瞭化と簡略化のために実際の尺度から適宜変更されており、実際の相対寸法を表してはいない。
 〔第1実施形態〕
 図1は、本開示の第1実施形態のステータ1を備えたモータ100の断面図であり、図2のI-I線から見たモータ100の断面を示す。また、図2は図1のII-II線から見たモータ100の断面図である。
 図1に示すように、このモータ100は、いわゆるアウターロータ型のモータ100であり、環状のステータ1と、ステータ1の径方向外側に対向するように配置されたロータ2とを備える。このモータ100は、シャフト3を介して、図示しないファン等の部材を回転駆動する。
 図1,図2に示すように、ロータ2は、モールド樹脂20と、複数のバックヨーク21と、複数の磁石22とを備える。
 モールド樹脂20は、カップ状に形成され、ステータ1のステータコア10を覆う。モールド樹脂20は、連結部材23を介してシャフト3に固定されている。この実施形態では、モールド樹脂20にBMC(Bulk Molding Compound)を用いている。
 バックヨーク21および磁石22は、モールド樹脂20により一体にモールドされている。この第1実施形態では、8つのバックヨーク21が環状に配列されている。バックヨーク21の径方向内側に8つの磁石22が環状に配列されている。周方向に隣り合う磁石22,22の磁性が異なっている。
 ステータ1は、ステータコア10と、インシュレータ11と、コイル12とを備える。
 ステータコア10は、積層された複数の電磁鋼板で構成されている。ステータコア10は、環状のステータヨーク30と、このステータヨーク30の外周面から径方向外側に突出する複数のティース部31とを有する。この第1実施形態では、12個のティース部31が周方向に間隔をあけて配列されている。
 インシュレータ11は、ステータコア10の各ティース部31に取り付けられている。インシュレータ11は、樹脂等の絶縁性材料からなる。
 コイル12は、ステータコア10のティース部31に、インシュレータ11を介して集中巻きで巻回されている。コイル12に電流を流してステータコア10に電磁力を発生させ、この電磁力によってロータ2をシャフト3とともに回転させる。
 モールド樹脂部13は、ステータコア10、インシュレータ11およびコイル12を一体にモールドしている。モールド樹脂部13は、例えば、BMC(Bulk Molding Compound)から構成されている。
 モールド樹脂部13は、軸受14を介してシャフト3を支持している。モールド樹脂部13には、モータ100を図示しない他の部材に取り付けるための取付台15が設けられている。また、取付台15には、カバー16が取り付けられている。カバー16は、ロータ2を覆って、ごみや水などの侵入を防止している。カバー16は、モールド樹脂によって軸受ハウジング17を一体にモールドすることにより形成されている。カバー16は、軸受18を介してシャフト3を支持している。
 図3は、ステータコア10の平面図である。図3に示すように、ステータコア10は、環状に配置された複数の分割コア40を有する。分割コア40は、径方向内側のヨーク部41と、このヨーク部41から径方向外側に突出するティース部31とを有する。
 12個の分割コア40を環状に配列し、隣り合う分割コア40のヨーク部41同士を連結してステータコア10を形成している。
 図4は、ステータコア10を構成する分割コア40の平面図であり、図4に示すように、分割コア40のヨーク部41は、ステータコア10の周方向一方の接合面43側に、分割コア40の上端面から下端面に亘ってステータコア10の軸方向に沿って設けられた凸部41aと、上記周方向他方の接合面43側に、分割コア40の上端面から下端面に亘ってステータコア10の軸方向に沿って設けられた凹部41bとを有する。
 平面視において、ヨーク部41の凸部41aは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L11,L12と、その2つの直線部L11,L12の他端間を接続する円弧部C11とを有する。円弧部C11は、凸部41aの先端側(接合面43と反対の側)が膨らむように設けられている。
 直線部L11,L12は、ヨーク部41の周方向一方側の接合面43に対して夫々90degの角度を成している。
 また、ヨーク部41の凹部41bは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L21,L22と、その2つの直線部L21,L22の他端間を接続する円弧部C21とを有する。円弧部C21は、凹部41bの接合面43と反対の側が膨らむように設けられている。
 直線部L21,L22は、ヨーク部41の周方向他方側の接合面43に対して夫々90degの角度を成している。
 また、分割コア40のヨーク部41側にカシメ47が設けられていると共に、ティース部31の径方向外側にカシメ48が設けられている。このカシメ47,48によって、分割コア40を構成する複数の電磁鋼板を一体に固定している。
 図5は、2つの分割コア40を連結させた状態を示す平面図であり、図5において、L1は、各分割コア40の径方向における中心線である。図5に示すように、隣り合う分割コア40のヨーク部41,41において、一方の分割コア40のヨーク部41の凸部41aと、他方の分割コア40のヨーク部41の凹部41bとが嵌まり合って、隣り合うヨーク部41同士が結合される。ヨーク部41の凸部41aと凹部41bで嵌合部42を構成している。
 ここで、嵌合部42は、一方の分割コア40のヨーク部41の凸部41aと、他方の分割コア40のヨーク部41において凹部41bを形成している凹部41bの周縁部分とを含む。
 分割コア40のヨーク部41の接合面43において、ステータコア10の径方向外側の端と径方向内側の端との間の中心P1(図5に示す仮想円VCと接合面43との交点)よりも径方向内側に嵌合部42の端が位置する。仮想円VCは、ステータコア10の中心O1を中心とする円であって、かつ、各分割コア40のヨーク部41の接合面43の中心P1を通る円である。ヨーク部41の接合面43に沿った平面は、ステータコア10の中心O1を通る。
 一方、全ての分割コア40のティース部31において、隣り合うティース部31,31の外周部は、互いに分離されている。
 このようにして、隣り合うヨーク部41同士を連結して、連結された12個のヨーク部41でステータヨーク30を構成する。
 なお、各分割コア40は、隣り合うヨーク部41同士を連結する前に、ティース部31をインシュレータ11(図1,図2に示す)で覆って、インシュレータ11で覆われたティース部31にコイル12(図1に示す)を巻回する。
 上記第1実施形態のステータ1では、分割コア40のヨーク部41に設けられた嵌合部42は、接合面43に直交する方向に延びている。
 ここで、図6~図11の第1例~第6例に示すように、ステータコア10の上端面および下端面の嵌合部42にカシメ44A~44Gのうちのいずれかを設ける。これにより、嵌合部42が塑性変形することで、分割コア40間の締結力を向上できる。また、嵌合部42が小さい形状であっても、カシメ44A~44Gにより分割コア40間の締結力を確保できるので、嵌合部42における接触部分の長さを短くして、漏れ磁束を小さくすることができる。また、カシメ44A~44Gによる歪は、ステータコア10の上端側および下端側に留まるので、カシメ44A~44Gの歪による鉄損の影響は少ない。
 図6は、第1例の分割コア40の嵌合部42を含む要部の拡大図を示しており、図6に示すように、ヨーク部41の嵌合部42の凸部41aに、長手方向がステータコア10の周方向に沿うように、太い線状のカシメ44Aを設けている。
 図7は、第2例の分割コア40の嵌合部42を含む要部の拡大図を示しており、図7に示すように、ヨーク部41の嵌合部42の凸部41aに、円形状のカシメ44Bを設けている。
 図8は、第3例の分割コア40の嵌合部42を含む要部の拡大図を示しており、図8に示すように、隣接する一方のヨーク部41の凸部41aの先端部分と、隣接する他方のヨーク部41に跨がって、長手方向がステータコア10の周方向に沿うように、太い線状のカシメ44Cを設けている。
 図9は、第4例の分割コア40の嵌合部42を含む要部の拡大図を示しており、図9に示すように、隣接する一方のヨーク部41の凸部41aと、その凸部41aの径方向両側かつ隣接する他方のヨーク部41に跨がって、長手方向が径方向に沿うように、太い線状のカシメ44Dを設けている。
 図10は、第5例の分割コア40の嵌合部を含む要部の拡大図を示しており、図10に示すように、隣接する一方のヨーク部41の凸部41aに、長手方向が径方向に沿うように、太い線状のカシメ44Eを設けている。
 図11は、第6例の分割コア40の嵌合部42を含む要部の拡大図を示しており、図11に示すように、隣接する一方のヨーク部41の凹部41bの径方向両側に、長手方向がステータコア10の周方向に沿うように、太い線状のカシメ44F,44Gを設けている。
 図12は、シミュレーションにより求めたステータコア10の磁束分布を示している。なお、図12において、ロータ2は、図2の構成と異なり、シミュレーション用の構成をしている。
 図12に示すように、分割コア40の嵌合部42における磁束密度は、分割コア40の接合面43における嵌合部42よりも径方向外側の領域の磁束密度よりも低い。したがって、嵌合部42による漏れ磁束を低減できる。
 上記構成のステータ1によれば、互いに隣接する分割コア40のヨーク部41同士が連結された接合面43に嵌合部42を設け、その嵌合部42にカシメ44A~44Gを設けることによって、嵌合部42が塑性変形することで、嵌合部42に加工上の寸法ばらつきが生じても、分割コア40間の締結力を向上できる。したがって、分割コア40同士を溶着することなく、分割コア40間の締結力を確保できる。また、嵌合部42が小さい形状であっても、分割コア40間の締結力を確保できるので、嵌合部42における接触部分の長さを短くして漏れ磁束を低減でき、モータ100の効率を向上できる。
 また、図6~図11に示すように、ステータコア10の上端面および下端面において嵌合部42にカシメ44A~44Gを設けることによって、分割コア40間の締結力を簡単に向上できる。
 また、図8,図9に示すように、互いに隣接する分割コア40に跨がってカシメ44C,44Dを設けることによって、互いに隣接する分割コア40それぞれの嵌合部42を構成する部分に亘って塑性変形するので、分割コア40間の締結力をさらに向上できる。
 また、図9に示すように、互いに隣接する分割コア40にステータコア10の径方向に跨がってカシメ44Dを設けることによって、互いに隣接する分割コア40それぞれの嵌合部42を構成する部分に径方向に亘って塑性変形するので、分割コア40間の締結力をさらに向上できる。
 また、嵌合部42の凸部41aは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L11,L12と、該2つの直線部L11,L12の他端間を接続する円弧部C11とを有する形状とし、嵌合部42の凹部41bは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L21,L22と、該2つの直線部L21,L22の他端間を接続する円弧部C21とを有する形状とすることによって、互いに隣接する分割コア40の一方の分割コア40の凸部41aを、ステータコア10の周方向から他方の分割コア40の凹部41bに挿入することができ、分割コア40同士を容易に結合できる。
 また、上記構成のモータ100によれば、ステータ1の漏れ磁束を低減でき、効率を向上できる。
 上記第1実施形態では、平面視において、嵌合部42の凸部41aと凹部41bの部分を、ステータコア10の中心O1を中心としかつヨーク部41の接合面43の中心P1を通る仮想円VCよりもステータコア10の径方向内側に設けたが、ヨーク部の接合面における位置に関わらず、接合面に嵌合部が設けられたものであればよい。
 また、上記第1実施形態では、嵌合部42の凸部41aは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L11,L12と、該2つの直線部L11,L12の他端間を接続する円弧部C11とを有する形状とし、嵌合部42の凹部41bは、接合面43側の一端から夫々延びる互いに平行な2つの直線部L21,L22と、該2つの直線部L21,L22の他端間を接続する円弧部C21とを有する形状としたが、嵌合部42の凸部と凹部の形状は、これに限らない。例えば、嵌合部の凸部および凹部の互いに平行な2つの直線部のうちの一方を曲線部としてもよいし、2つの直線部の代わりに両方が曲線部としてよく、また円弧部の代わりに多角形部としてもよい。
 〔第2実施形態〕
 図13は、本開示の第2実施形態のステータのステータコアを構成する分割コア140の平面図である。この第2実施形態のステータの分割コア140は、ヨーク部141の凸部141aと凹部141bで構成された嵌合部142を除いて第1実施形態のステータ1の分割コア40と同一の構成をしており、図1,図2を援用する。
 図13に示すように、分割コア140のヨーク部141は、ステータコア10の周方向の一方側に設けられた凸部141aと、上記周方向の他方側に設けられた凹部141bとを有する。
 平面視において、ヨーク部141の凸部141aは、接合面143側の一端から夫々延びる互いに平行な2つの直線部L31,L32と、その2つの直線部L31,L32の他端間を接続する円弧部C31とを有する。円弧部C31は、凸部141aの先端側(接合面143と反対の側)が膨らむように設けられている。
 直線部L31は、ヨーク部141の上記周方向の一方側の接合面143に対して85degの角度を成している。また、直線部L32は、ヨーク部141の上記周方向の一方側の接合面143に対して95degの角度を成している。
 また、ヨーク部141の凹部141bは、接合面143側の一端から夫々延びる互いに平行な2つの直線部L41,L42と、その2つの直線部L41,L42の他端間を接続する円弧部C41とを有する。円弧部C41は、凹部141bの接合面143と反対の側が膨らむように設けられている。
 直線部L41は、ヨーク部141の上記周方向の他方側の接合面143に対して95degの角度を成している。また、直線部L42は、ヨーク部141の上記周方向の一方側の接合面143に対して85degの角度を成している。
 分割コア140のヨーク部141側にカシメ147が設けられていると共に、ティース部131の径方向外側にカシメ148が設けられている。このカシメ147,148によって、分割コア40を構成する複数の電磁鋼板を一体に固定している。
 上記第2実施形態のステータは、第1実施形態のステータ1と同様の効果を有する。
 また、上記第2実施形態のステータでは、分割コア140のヨーク部141に設けられた嵌合部142は、接合面143に直交する方向に対して斜め外向きに延びている。これにより、分割コア140に対して接合面143に直交する方向に働く力に対して、嵌合部142の嵌め合いが外れにくくなるので、分割コア140間の結合力を保つことができる。
 上記第1,第2実施形態では、アウターロータ型のステータ1およびそのステータ1を備えるモータ100について説明したが、インナーロータ型のステータおよびそのステータを備えるモータにこの発明を適用してもよい。
 上記第1,第2実施形態では、環状に配列された分割コア40,140のヨーク部41,141を嵌合部42,142により連結したが、嵌合部の形状はこれに限らず、互いに隣接する分割コアのヨーク部同士が連結される接合面側に、ステータコアの上端面から下端面に亘ってステータコアの軸方向に沿って設けられた嵌め合い構造であればよい。
 さらに、分割コアのヨーク部の接合面において、ステータコアの径方向外側の端と径方向内側の端との間の中心よりも径方向内側に嵌合部の端が位置していることが好ましい。この場合、嵌合部の接合面と反対の側の一部は、ステータコアの中心を中心とする仮想円であってかつ接合面における径方向外側の端と径方向内側の端との間の中心を通る仮想円よりも径方向外側に位置してもよい。
 本開示の具体的な実施の形態について説明したが、本開示は上記第1,第2実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。
 1…ステータ
 2…ロータ
 3…シャフト
 10…ステータコア
 11…インシュレータ
 12…コイル
 13…モールド樹脂部
 14…軸受
 15…取付台
 16…カバー
 17…軸受ハウジング
 18…軸受
 20…モールド樹脂
 21…バックヨーク
 22…磁石
 23…連結部材
 30…ステータヨーク
 31,131…ティース部
 40,140…分割コア
 41,141…ヨーク部
 41a,141a…凸部
 41b,141b…凹部
 42,142…嵌合部
 43,143…接合面
 44A~44G…カシメ
 47,48,147,148…カシメ
 50…上インシュレータ部
 60…下インシュレータ部
 100…モータ
 L11,L12,L21,L22,L31,L32,L41,L42…直線部
 C11,C21,C31,C41…円弧部

Claims (6)

  1.  環状に配置された複数の分割コア(40,140)を有するステータコア(10)を備え、
     上記分割コア(40,140)は、ヨーク部(41,141)と、上記ヨーク部(41,141)から上記ステータコア(10)の径方向に突出するティース部(31,131)とを有し、
     互いに隣接する上記分割コア(40,140)の上記ヨーク部(41,141)同士が連結された接合面(43,143)側に、上記ステータコア(10)の上端面から下端面に亘って上記ステータコア(10)の軸方向に沿って嵌合部(42,142)が設けられ、
     上記嵌合部(42,142)にカシメ(44A~44G)が設けられていることを特徴とするステータ(1)。
  2.  請求項1に記載のステータ(1)において、
     上記ステータコア(10)の上端面または下端面の少なくとも一方において上記嵌合部(42,142)に上記カシメ(44A~44G)を設けていることを特徴とするステータ(1)。
  3.  請求項1または2に記載のステータ(1)において、
     上記カシメ(44A~44G)は、互いに隣接する上記分割コア(40,140)に跨がって設けられていることを特徴とするステータ(1)。
  4.  請求項1から3までのいずれか1つに記載されたステータ(1)において、
     上記カシメ(44A~44G)は、互いに隣接する上記分割コア(40,140)に上記ステータコア(10)の径方向に跨がって設けられていることを特徴とするステータ(1)。
  5.  請求項1から4までのいずれか1つに記載のステータ(1)において、
     上記嵌合部(42,142)は、上記ヨーク部(41,141)の上記ステータコア(10)の周方向の一方側に設けられた凸部(41a)と、上記ヨーク部(41,141)の上記周方向の他方側に設けられた凹部(41b)とを有すると共に、
     上記凸部(41a)と上記凹部(41b)のそれぞれは、上記接合面(43,143)側の一端から夫々延びる互いに平行な2つの直線部(L11,L12,L21,L22,L31,L32,L41,L42)と、該2つの直線部(L11,L12,L21,L22,L31,L32,L41,L42)の他端間を接続する円弧部(C11,C21,C31,C41)とを有することを特徴とするステータ(1)。
  6.  請求項1から5までのいずれか1つに記載のステータ(1)と、
     上記ステータ(1)の径方向に対向するように配置されたロータ(2)と
    を備えることを特徴とするモータ(100)。
PCT/JP2020/009152 2019-04-17 2020-03-04 ステータおよびモータ WO2020213279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080017916.1A CN113491052B (zh) 2019-04-17 2020-03-04 定子和马达
ES20791083T ES2953924T3 (es) 2019-04-17 2020-03-04 Estator y motor
US17/603,866 US20220216742A1 (en) 2019-04-17 2020-03-04 Stator and motor
EP20791083.7A EP3937349B1 (en) 2019-04-17 2020-03-04 Stator and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-078434 2019-04-17
JP2019078434A JP7211883B2 (ja) 2019-04-17 2019-04-17 ステータおよびモータ

Publications (1)

Publication Number Publication Date
WO2020213279A1 true WO2020213279A1 (ja) 2020-10-22

Family

ID=72838273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009152 WO2020213279A1 (ja) 2019-04-17 2020-03-04 ステータおよびモータ

Country Status (6)

Country Link
US (1) US20220216742A1 (ja)
EP (1) EP3937349B1 (ja)
JP (1) JP7211883B2 (ja)
CN (1) CN113491052B (ja)
ES (1) ES2953924T3 (ja)
WO (1) WO2020213279A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095192A (ja) 2000-09-18 2002-03-29 Sony Corp サーボ・モータ用の固定子コア、及びサーボ・モータ
JP2003169431A (ja) * 2001-11-29 2003-06-13 Hitachi Ltd 電動機
JP2011217434A (ja) * 2010-03-31 2011-10-27 Honda Motor Co Ltd 電動機
JP2015002617A (ja) * 2013-06-14 2015-01-05 本田技研工業株式会社 回転電機のステータコア
JP2017046499A (ja) * 2015-08-27 2017-03-02 株式会社三井ハイテック 電機子および電機子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661132U (ja) * 1979-10-17 1981-05-23
JP3463490B2 (ja) * 1996-12-17 2003-11-05 神鋼電機株式会社 回転電機の固定子
JP3765561B2 (ja) * 2001-03-19 2006-04-12 株式会社三井ハイテック 積層鉄心の製造方法
JP2005102424A (ja) 2003-09-25 2005-04-14 Mitsui High Tec Inc 分割積層鉄心および分割積層鉄心の製造方法
JP2007228720A (ja) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp コア
JP5237720B2 (ja) * 2008-08-08 2013-07-17 三菱電機株式会社 積層固定鉄心
KR100989684B1 (ko) * 2009-01-19 2010-10-26 뉴모텍(주) 액시얼 타입 모터
JP2012115005A (ja) 2010-11-24 2012-06-14 Meidensha Corp 分割固定子積層鉄心
KR101368243B1 (ko) * 2011-11-10 2014-02-27 주식회사 아모텍 세탁기용 모터, 세탁기 모터 제조방법 및 이를 구비한 세탁기
KR101243589B1 (ko) * 2012-01-02 2013-03-20 뉴모텍(주) 세탁기용 모터의 고정자 코어
KR101383256B1 (ko) * 2012-09-24 2014-04-09 주식회사 아모텍 싱글 로터 타입 모터
JP5661132B2 (ja) 2013-02-15 2015-01-28 株式会社トキオ 車両連結構造
JP6463895B2 (ja) * 2014-02-28 2019-02-06 日本電産テクノモータ株式会社 モータ用ステータ及びその製造方法
KR101679470B1 (ko) * 2014-05-16 2016-11-25 뉴모텍(주) 모터의 적층 코어 및 제조 방법
CN107005103B (zh) * 2014-12-02 2018-09-21 三菱电机株式会社 旋转电机用定子铁芯、旋转电机及旋转电机的制造方法
WO2017041893A1 (en) * 2015-09-09 2017-03-16 Merck Patent Gmbh Liquid-crystalline medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095192A (ja) 2000-09-18 2002-03-29 Sony Corp サーボ・モータ用の固定子コア、及びサーボ・モータ
JP2003169431A (ja) * 2001-11-29 2003-06-13 Hitachi Ltd 電動機
JP2011217434A (ja) * 2010-03-31 2011-10-27 Honda Motor Co Ltd 電動機
JP2015002617A (ja) * 2013-06-14 2015-01-05 本田技研工業株式会社 回転電機のステータコア
JP2017046499A (ja) * 2015-08-27 2017-03-02 株式会社三井ハイテック 電機子および電機子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3937349A4

Also Published As

Publication number Publication date
EP3937349A4 (en) 2022-04-27
JP2020178431A (ja) 2020-10-29
CN113491052A (zh) 2021-10-08
ES2953924T3 (es) 2023-11-17
CN113491052B (zh) 2024-03-08
EP3937349B1 (en) 2023-07-26
JP7211883B2 (ja) 2023-01-24
EP3937349A1 (en) 2022-01-12
US20220216742A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4907654B2 (ja) 分割型鉄心及びその製造方法、固定子鉄心
JP6282795B2 (ja) モータ
US7893590B2 (en) Stator having high assembly
WO2017195498A1 (ja) 回転子および回転電機
WO2018037455A1 (ja) コンシクエントポール型の回転子、電動機および空気調和機
WO2020213279A1 (ja) ステータおよびモータ
JP2011172359A (ja) 分割型回転子及び電動機
JP4386909B2 (ja) モータ
JP2006311702A (ja) 回転電機のステータ構造
JP6410963B2 (ja) 回転電機
JP2020178430A (ja) ステータおよびモータ
CN111602317B (zh) 定子以及电动机
JP7150221B1 (ja) 電動機の固定子、電動機および電動機の固定子の製造方法
JP7122831B2 (ja) アウターロータ型回転電機
WO2021024517A1 (ja) 回転電機の回転子、回転電機、回転電機の回転子の製造方法、および回転電機の製造方法
JP2019054684A (ja) モータ
US20240136874A1 (en) Rotating electrical machine
CN111108665B (zh) 转子、马达和电动助力转向装置
WO2020194382A1 (ja) 回転子部材、回転子及び回転電機
JP2022011556A (ja) モータおよびモータの製造方法
JPWO2022118598A5 (ja)
KR20230168037A (ko) 스테이터 코어
JP2022155982A (ja) モータ
JP2008271670A (ja) 界磁子
JP4714512B2 (ja) モータの回転子及び回転子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020791083

Country of ref document: EP

Effective date: 20211005

NENP Non-entry into the national phase

Ref country code: DE