WO2020213225A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2020213225A1
WO2020213225A1 PCT/JP2020/003722 JP2020003722W WO2020213225A1 WO 2020213225 A1 WO2020213225 A1 WO 2020213225A1 JP 2020003722 W JP2020003722 W JP 2020003722W WO 2020213225 A1 WO2020213225 A1 WO 2020213225A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid chamber
membrane
passage
main
chamber side
Prior art date
Application number
PCT/JP2020/003722
Other languages
English (en)
French (fr)
Inventor
小島 宏
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US17/603,382 priority Critical patent/US11993150B2/en
Priority to JP2021514799A priority patent/JP7383699B2/ja
Priority to CN202080028589.XA priority patent/CN113727874A/zh
Priority to EP20791920.0A priority patent/EP3957505A4/en
Publication of WO2020213225A1 publication Critical patent/WO2020213225A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/107Passage design between working chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1283Adjustable supports, e.g. the mounting or the characteristics being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles, industrial machines, etc., and absorbs and attenuates vibrations of vibration generating parts such as engines.
  • the present application claims priority based on Japanese Patent Application No. 2019-07874 filed in Japan on April 17, 2019, the contents of which are incorporated herein by reference.
  • This vibration isolator includes a tubular first mounting member connected to either one of the vibration generating portion and the vibration receiving portion, a second mounting member connected to the other, a first mounting member, and a second. It includes an elastic body that connects the mounting members, and a partition member that partitions the liquid chamber in the first mounting member into a main liquid chamber and a sub liquid chamber having the elastic body as a part of a partition wall.
  • the partition member includes a membrane forming a part of a partition wall of the main liquid chamber and an orifice passage extending from the main liquid chamber toward the sub liquid chamber side.
  • the damping force generated at the time of inputting the bound load for flowing the liquid from the main liquid chamber toward the auxiliary liquid chamber side and the liquid flowing from the auxiliary liquid chamber toward the main liquid chamber side cannot be different from that of the damping force.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a vibration isolator capable of differentiating the damping force generated when a bound load is input and the damping force generated when a rebound load is input. With the goal.
  • the anti-vibration device includes a tubular first mounting member connected to either one of a vibration generating portion and a vibration receiving portion, a second mounting member connected to the other, and the first mounting.
  • An elastic body connecting the member and the second mounting member, and a partition member for partitioning the liquid chamber in the first mounting member into a main liquid chamber and a sub liquid chamber having the elastic body as a part of a partition wall.
  • the partition member includes a membrane forming a part of a partition wall of the main liquid chamber and an orifice passage extending from the main liquid chamber toward the sub liquid chamber side, and the orifice passage includes the main liquid.
  • the main liquid chamber side passage located on the chamber side and the sub liquid chamber side passage extending from the main liquid chamber side passage toward the sub liquid chamber side are provided, and the main liquid chamber side passage and the sub liquid chamber are provided.
  • the side passages extend in the circumferential direction and are arranged at different positions in the radial direction.
  • the damping force generated when the bound load is input and the damping force generated when the rebound load is input can be made different.
  • FIG. 7 It is a vertical sectional view of the vibration isolation device which concerns on 1st Embodiment of this invention. It is a schematic diagram of the vibration isolation device shown in FIG. It is a vertical sectional view of the vibration isolation device which concerns on 2nd Embodiment of this invention. It is a schematic diagram of the vibration isolation device shown in FIG. It is a vertical sectional view of the vibration isolation device which concerns on 3rd Embodiment of this invention. It is a schematic diagram of the vibration isolation device shown in FIG. It is a vertical sectional view of the vibration isolation device which concerns on 4th Embodiment of this invention. It is a schematic diagram of the vibration isolation device shown in FIG. 7.
  • the vibration isolator 1 has a tubular first mounting member 11 connected to one of a vibration generating portion and a vibration receiving portion, and a second mounting member 12 connected to the other.
  • the elastic body 13 connecting the first mounting member 11 and the second mounting member 12, the liquid chamber 14 in the first mounting member 11, the main liquid chamber 15 in which the elastic body 13 is a part of the partition wall, and
  • a partition member 17 for partitioning the auxiliary liquid chamber 16 is provided.
  • the partition member 17 partitions the liquid chamber 14 in the axial direction along the central axis O of the first mounting member 11.
  • this vibration isolator 1 When this vibration isolator 1 is used, for example, as an engine mount for an automobile, the first mounting member 11 is connected to the vehicle body as a vibration receiving portion, and the second mounting member 12 is connected to the engine as a vibration generating portion. .. As a result, the vibration of the engine is suppressed from being transmitted to the vehicle body.
  • the first mounting member 11 may be connected to the vibration generating portion, and the second mounting member 12 may be connected to the vibration receiving portion.
  • the main liquid chamber 15 side along the axial direction with respect to the partition member 17 is referred to as the upper side
  • the sub liquid chamber 16 side is referred to as the lower side.
  • the direction intersecting the central axis O is called the radial direction
  • the direction rotating around the central axis O is called the circumferential direction.
  • the first mounting member 11 is formed in a bottomed tubular shape.
  • the bottom of the first mounting member 11 is formed in an annular shape and is arranged coaxially with the central axis O.
  • the inner peripheral surface of the lower portion of the first mounting member 11 is covered with a covering rubber integrally formed with the elastic body 13.
  • the front and back surfaces of the second mounting member 12 are formed in a flat plate shape orthogonal to the central axis O.
  • the second mounting member 12 is formed in a disk shape, for example, and is arranged coaxially with the central axis O.
  • the second mounting member 12 is arranged above the first mounting member 11.
  • the outer diameter of the second mounting member 12 is the same as the inner diameter of the first mounting member 11.
  • the elastic body 13 connects the inner peripheral surface of the upper part of the first mounting member 11 and the lower surface of the second mounting member 12.
  • the upper end opening of the first mounting member 11 is sealed by the elastic body 13.
  • the elastic body 13 is vulcanized and adhered to the first mounting member 11 and the second mounting member 12.
  • the elastic body 13 is formed in a humpback tubular shape and is arranged coaxially with the central axis O.
  • the top wall portion is connected to the second mounting member 12, and the lower end portion of the peripheral wall portion is connected to the first mounting member 11.
  • the peripheral wall portion of the elastic body 13 gradually extends outward in the radial direction from the upper side to the lower side.
  • the diaphragm ring 18 is liquid-tightly fitted into the lower end portion of the first mounting member 11 via the covering rubber.
  • the diaphragm ring 18 is formed in a double tubular shape and is arranged coaxially with the central axis O.
  • the outer peripheral portion of the diaphragm 19 formed so as to be elastically deformable by rubber or the like is vulcanized and adhered to the diaphragm ring 18.
  • the outer peripheral portion of the diaphragm 19 is vulcanized and adhered to the inner peripheral surface of the outer cylinder portion and the outer peripheral surface of the inner cylinder portion.
  • the diaphragm 19 expands and contracts with the inflow and outflow of the liquid into the auxiliary liquid chamber 16.
  • the liquid chamber 14 in which the liquid is sealed is defined in the first mounting member 11 by the diaphragm 19 and the elastic body 13.
  • the front and back surfaces of the partition member 17 are formed in a disk shape orthogonal to the central axis O, and are fitted into the first mounting member 11 via the covering rubber.
  • the liquid chamber 14 in the first mounting member 11 is defined by the partition member 17, the main liquid chamber 15 defined by the elastic body 13 and the partition member 17, and the auxiliary liquid chamber 16 defined by the diaphragm 19 and the partition member 17. And, it is divided into.
  • the partition member 17 closes the tubular main body member 34 fitted in the first mounting member 11 via the covering rubber and the upper end opening of the main body member 34, and is a part of the partition wall of the main liquid chamber 15.
  • the first sandwiching portion 25 and the second sandwiching portion that sandwich the membrane 31 forming the above, the tubular lower member 33 fitted in the main body member 34, and the outer peripheral edge portion 31a of the membrane 31 from both sides in the axial direction. 38 and a first orifice passage (orifice passage) 21 extending from the main liquid chamber 15 toward the auxiliary liquid chamber 16 side are provided.
  • the membrane 31 is formed in a disk shape by an elastic material such as rubber.
  • the membrane 31 is arranged coaxially with the central axis O.
  • the volume of the membrane 31 is smaller than the volume of the elastic body 13.
  • the membrane 31 is formed to be thinner than the disk-shaped main body portion 31b and the main body portion 31b, and protrudes outward in the radial direction from the lower portion of the main body portion 31b, and the outer peripheral edge portion 31a continuously extends over the entire circumference. And. At the outer end portion in the radial direction of the outer peripheral edge portion 31a, locking protrusions protruding toward both sides in the axial direction are formed.
  • the main body member 34 is arranged coaxially with the central axis O.
  • a first orifice groove 23a that opens outward in the radial direction and extends in the circumferential direction is formed on the outer peripheral surface of the main body member 34. The radial outer opening of the first orifice groove 23a is closed by the covering rubber.
  • a first communication hole 23b that communicates the main liquid chamber 15 and the first orifice groove 23a is formed on the upper surface of the main body member 34.
  • the first communication hole 23b communicates the main liquid chamber 15 and the first orifice groove 23a in the axial direction.
  • the first orifice groove 23a extends in the circumferential direction from the first communication hole 23b over an angle range exceeding 180 ° toward one side in the circumferential direction about the central axis O.
  • the first sandwiching portion 25 supports the lower surface of the membrane 31 and the second sandwiching portion 38 supports the upper surface of the membrane 31.
  • the first sandwiching portion 25 and the second sandwiching portion 38 are each formed in an annular shape and are arranged coaxially with the central axis O.
  • the outer peripheral edge portion 31a of the membrane 31 is sandwiched and fixed in the axial direction by the first sandwiching portion 25 and the second sandwiching portion 38, so that the membrane 31 is axially sandwiched with the outer peripheral edge portion 31a as a fixed end. It is supported so that it can be elastically deformed.
  • the first sandwiching portion 25 is connected to the main body member 34 via the outer flange portion 24.
  • the outer flange portion 24 is formed integrally with the main body member 34, and protrudes inward in the radial direction from the upper end portion of the main body member 34.
  • the outer flange portion 24 is arranged coaxially with the central axis O.
  • the first sandwiching portion 25 is formed integrally with the outer flange portion 24, and protrudes inward in the radial direction from the outer flange portion 24.
  • the lower surfaces of the first sandwiching portion 25 and the outer flange portion 24 are flush with each other.
  • the upper surface of the first sandwiching portion 25 is located below the upper surface of the outer flange portion 24.
  • a lower annular groove that extends continuously over the entire circumference is formed on the outer peripheral edge portion on the upper surface of the first sandwiching portion 25.
  • the outer peripheral portion is arranged on the upper surface of the outer flange portion 24, and the inner peripheral portion supports the upper surface of the membrane 31.
  • An upper annular groove that extends continuously over the entire circumference is formed on the outer peripheral edge portion on the lower surface of the inner peripheral portion of the second sandwiching portion 38.
  • the upper annular groove is axially opposed to the lower annular groove of the first sandwiching portion 25.
  • the locking projections of the outer peripheral edge portion 31a of the membrane 31 are separately locked to the upper annular groove and the lower annular groove.
  • the portion located above the outer peripheral edge portion 31a is inserted inside the inner peripheral portion of the second sandwiching portion 38.
  • the outer peripheral surface of the portion located above the outer peripheral edge 31a hereinafter, referred to as the outer peripheral surface 31c of the main body 31b of the membrane 31
  • a radial gap is provided between the inner peripheral surface and the inner peripheral surface.
  • the inner peripheral surface of the inner peripheral portion of the second sandwiching portion 38 and the outer peripheral surface 31c of the main body portion 31b of the membrane 31 extend in the axial direction, respectively.
  • the inner peripheral surface of the inner peripheral portion of the second sandwiching portion 38 and the outer peripheral surface 31c of the main body portion 31b of the membrane 31 are substantially parallel to each other.
  • the inner peripheral surface of the inner peripheral portion of the second sandwiching portion 38 and the outer peripheral surface 31c of the main body portion 31b of the membrane 31 may be inclined to each other.
  • the lower member 33 is formed in a tubular shape and is arranged coaxially with the central axis O.
  • the lower member 33 is liquid-tightly fitted in the main body member 34.
  • the upper end opening edge of the peripheral wall portion of the lower member 33 is integrally in contact with the lower surfaces of the first sandwiching portion 25 and the outer flange portion 24.
  • the membrane 31 and the diaphragm 19 face each other in the axial direction through the inside of the lower member 33 and the inside of the first sandwiching portion 25.
  • the sub-liquid chamber 16 is defined by the lower surface of the membrane 31, the inner peripheral surface of the lower member 33, and the diaphragm 19.
  • the auxiliary liquid chamber 16 is arranged on the opposite side of the main liquid chamber 15 with the membrane 31 interposed therebetween. That is, the auxiliary liquid chamber 16 and the main liquid chamber 15 are axially partitioned by the membrane 31.
  • a second orifice groove 33a that opens outward in the radial direction and extends in the circumferential direction is formed on the outer peripheral surface of the peripheral wall portion of the lower member 33.
  • the radial outer opening of the second orifice groove 33a is closed by the inner peripheral surface of the main body member 34.
  • a second communication hole 33b that communicates the second orifice groove 33a and the auxiliary liquid chamber 16 is formed on the inner peripheral surface of the peripheral wall portion of the lower member 33.
  • the second communication hole 33b communicates the second orifice groove 33a with the auxiliary liquid chamber 16 in the radial direction.
  • the positions of the second communication hole 33b and the first communication hole 23b in the circumferential direction are the same as each other.
  • the second orifice groove 33a extends in the circumferential direction from the second communication hole 33b over an angle range exceeding 180 ° toward one side in the circumferential direction about the central axis O.
  • the second orifice groove 33a is located inside the first orifice groove 23a in the radial direction.
  • One end in the circumferential direction of each of the second orifice groove 33a and the first orifice groove 23a is arranged at the same position in the circumferential direction.
  • the diaphragm ring 18 described above projects outward from the lower end of the lower member 33 in the radial direction.
  • the diaphragm ring 18 is integrally formed with the lower member 33.
  • the lower surface of the main body member 34 is in liquidtight contact with the upper surface of the diaphragm ring 18.
  • connection hole 21c that communicates the first orifice groove 23a and the second orifice groove 33a is formed on the inner peripheral surface of the main body member 34.
  • the connection hole 21c communicates the first orifice groove 23a and the second orifice groove 33a in the radial direction.
  • the first orifice passage 21 extending from the main liquid chamber 15 toward the auxiliary liquid chamber 16 has a first orifice groove 23a whose radial outer opening is closed by the covering rubber and a radial outer opening. Is composed of a second orifice groove 33a closed by the inner peripheral surface of the main body member 34 and a connection hole 21c.
  • the portion located on the main liquid chamber 15 side and defined by the first orifice groove 23a is referred to as the main liquid chamber side passage 21a, and the main liquid chamber side passage 21a passes through the connection hole 21c.
  • the portion extending from the secondary liquid chamber 16 side and defined by the second orifice groove 33a is referred to as a secondary liquid chamber side passage 21b.
  • the main liquid chamber side passage 21a is located outside the auxiliary liquid chamber side passage 21b in the radial direction.
  • the main liquid chamber side passage 21a may be located inside the auxiliary liquid chamber side passage 21b in the radial direction.
  • the flow path cross-sectional areas of the main liquid chamber side passage 21a and the sub liquid chamber side passage 21b may be equal to each other or different from each other.
  • connection hole 21c connects the one end in the circumferential direction of the first orifice groove 23a and the one end in the circumferential direction in the second orifice groove 33a.
  • the main liquid chamber side passage 21a and the sub liquid chamber side passage 21b have a passage length longer than the flow path diameter.
  • the cross-sectional shape of the flow path of the first orifice passage 21 is rectangular, and in this case, the flow path diameter is when the cross-sectional shape of the flow path is replaced with a circular shape having the same cross-sectional area of the flow path. It can be represented by the diameter of this circular shape.
  • the cross-sectional shape of the first orifice passage 21 is not limited to a rectangular shape and may be changed as appropriate. If the first orifice passage has a normal straight shape, a pressure loss occurs due to resonance due to the moment of inertia of the orifice. Since the first orifice passage of the present application is bent by 180 °, the pressure loss is further increased by further damping due to turbulent flow.
  • the cross-sectional shape of the flow path in at least one of the main liquid chamber side passage 21a and the sub liquid chamber side passage 21b is a horizontally long flat shape that is short in the axial direction and long in the radial direction.
  • the ratio of the radial size to the axial size in the one passage is larger than the ratio in the other passage of the main liquid chamber side passage 21a and the sub liquid chamber side passage 21b. ..
  • the flow path cross-sectional shape of the main liquid chamber side passage 21a is the above-mentioned flat shape, and the flow path cross-sectional shape of the sub liquid chamber side passage 21b is square, and the main liquid chamber side passage is formed.
  • the ratio in 21a is larger than the ratio in the auxiliary liquid chamber side passage 21b.
  • the auxiliary liquid chamber 16 has a smaller ratio of the main liquid chamber side passage 21a and the auxiliary liquid chamber side passage 21b in the liquid flow direction in the first orifice passage 21 with respect to the main liquid chamber 15.
  • the main liquid chamber 15 is located in the main liquid chamber side passage 21a and the auxiliary liquid chamber side passage 21b in the flow direction of the liquid in the first orifice passage 21 with respect to the sub liquid chamber 16. Of these, it is located on the main liquid chamber side passage 21a side having a large ratio.
  • the ratio in the main liquid chamber side passage 21a is 1.3 or more.
  • the flow path cross-sectional area of the main liquid chamber side passage 21a is larger than the flow path cross-sectional area of the sub liquid chamber side passage 21b. It is more preferable that the ratio in the main liquid chamber side passage 21a is 1.5 or more.
  • the cross-sectional shape of the passage 21b on the side of the auxiliary liquid chamber may also be the flat shape described above.
  • the ratio in the main liquid chamber side passage 21a may be less than 1.3.
  • the flow path cross-sectional area of the main liquid chamber side passage 21a may be equal to or less than the flow path cross-sectional area of the sub liquid chamber side passage 21b.
  • the uneven bulging portion 23 reduces the bulging deformation toward the auxiliary liquid chamber 16 side rather than the bulging deformation toward the main liquid chamber 15 side. It is formed.
  • the uneven bulging portion 23 is curved so as to project toward the auxiliary liquid chamber 16 side.
  • the uneven bulging portion 23 covers the entire area of the main body portion 31b located inside the outer peripheral edge portion 31a axially sandwiched by the first sandwiching portion 25 and the second sandwiching portion 38 in the membrane 31. It is formed integrally.
  • the uneven bulging portion 23 is not limited to the above-mentioned curved shape, and may be appropriately changed, for example, by changing the size of the grooves formed on the upper and lower surfaces of the membrane 31.
  • the first sandwiching portion 25 that supports the membrane 31 from the auxiliary liquid chamber 16 side is radially inside the second sandwiching portion 38 that supports the membrane 31 from the main liquid chamber 15 side. It protrudes long.
  • the portion of the first sandwiching portion 25 located inside the second sandwiching portion 38 in the radial direction supports the outer peripheral portion on the lower surface of the main body portion 31b of the membrane 31.
  • the upper surface with which the membrane 31 abuts is gradually inclined downward toward the inside in the radial direction and away from the main liquid chamber 15.
  • the upper surface of the inner peripheral edge portion of the first sandwiching portion 25 is formed in a curved surface shape that protrudes upward toward the main liquid chamber 15 side.
  • the upper surface of the inner peripheral edge portion of the first sandwiching portion 25 may be a flat surface extending in a direction orthogonal to the central axis O.
  • the lower surface of the membrane 31 is in contact with the upper surface of the inner peripheral edge of the first sandwiching portion 25.
  • the unevenly bulging portion 23 of the membrane 31 projects inside the first sandwiching portion 25.
  • the axial positions of the lower end portion on the lower surface of the uneven bulging portion 23 and the lower surface of the first sandwiching portion 25 are equal to each other.
  • the lower end portion of the lower surface of the uneven bulging portion 23 is located at the central portion in the radial direction of the membrane 31.
  • the lower surface of the membrane 31 is in non-contact with the inner peripheral surface of the first sandwiching portion 25.
  • the membrane 31 is in contact with the entire surface of the upper surface of the first sandwiching portion 25 and the lower surface of the inner peripheral portion of the second sandwiching portion 38.
  • the lower surface of the membrane 31 may be separated upward from the upper surface of the inner peripheral edge portion of the first sandwiching portion 25.
  • the unevenly bulging portion 23 of the membrane 31 may be positioned above the inner peripheral surface of the first sandwiching portion 25.
  • the lower surface of the membrane 31 may be brought into contact with the inner peripheral surface of the first sandwiching portion 25.
  • the support protrusion 41 is formed on the upper surface of the first sandwiching portion 25.
  • the support protrusion 41 receives a load from the vibration isolator 1, and the membrane 31 is deformed or displaced toward the main liquid chamber 15.
  • the lower surface of the membrane 31 is formed in a portion that can be separated upward.
  • the support protrusion 41 is formed in a curved surface shape that protrudes upward.
  • the plurality of support protrusions 41 are arranged on the membrane 31 at equal intervals in the radial direction and the circumferential direction.
  • the support protrusion 41 may be formed on the lower surface of the outer peripheral edge portion 31a of the membrane 31. Of the lower surface of the membrane 31 that is in contact with the upper surface of the first sandwiching portion 25, the support projection 41 receives a load from the vibration isolator 1, and the membrane 31 is deformed or displaced toward the main liquid chamber 15. When this is done, it may be formed in a portion that can be separated upward from the upper surface of the first sandwiching portion 25.
  • the support protrusion 41 may or may not be formed on both the first sandwiching portion 25 and the outer peripheral edge portion 31a of the membrane 31.
  • the ratio in the main liquid chamber side passage 21a is larger than the ratio in the sub liquid chamber side passage 21b, so that when the bound load is input, the main In the main liquid chamber side passage 21a where the liquid in the liquid chamber 15 first flows in and flows, it becomes possible to generate a large flow velocity difference between the inner portion in the radial direction and the outer portion in the radial direction.
  • a large pressure loss can be caused in combination with the fact that the flow rate of the liquid is opposite to the flow direction of the liquid in the subsequent passage 21b on the side of the auxiliary liquid chamber. As a result, a high damping force can be generated when a bound load is input.
  • the liquid in the auxiliary liquid chamber 16 flows through the first orifice passage 21 toward the main liquid chamber 15 at the time of inputting the rebound load, it first flows into the auxiliary liquid chamber side passage 21b and flows.
  • the flow velocity of the liquid flowing in the main liquid chamber side passage 21a has already decreased due to the fact that the flow direction of the liquid in the above direction is opposite to the subsequent flow direction of the liquid in the main liquid chamber side passage 21a. Therefore, in the main liquid chamber side passage 21a, the difference in flow velocity between the inner portion in the radial direction and the outer portion in the radial direction is less likely to occur. As a result, the damping force generated when the rebound load is input can be suppressed to be lower than the damping force generated when the rebound load is input.
  • Each of the above-mentioned effects does not employ, for example, a member that operates when the hydraulic pressure in the main liquid chamber 15 reaches a predetermined value, and as described above, for example, the main liquid chamber side passage 21a and the auxiliary liquid.
  • the ratio in one of the chamber-side passages 21b is larger than the ratio in the other passage, and the cross-sectional shape of the passage in the one passage is set to the above-mentioned flat shape. Therefore, even if the vibration has a relatively small amplitude, the above-mentioned action and effect can be stably and accurately performed.
  • the swelling portion 23 is formed on the membrane 31, the amount of swelling deformation of the membrane 31 when the same pressing force is applied is larger than the swelling deformation toward the main liquid chamber 15 side.
  • the bulging deformation toward the side is smaller. Therefore, when the rebound load is input to the vibration isolator 1, the membrane 31 is greatly bulged and deformed toward the main liquid chamber 15 by the eccentric bulging portion 23, so that the generated damping force can be suppressed to a low level. it can.
  • the bound load is input to the vibration isolator 1
  • the bulging deformation toward the auxiliary liquid chamber 16 side of the membrane 31 is compared with the bulging deformation toward the main liquid chamber 15 side when the rebound load is input. The positive pressure in the main liquid chamber 15 is difficult to relax, and the generated damping force becomes high.
  • the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased. Further, even if the main liquid chamber 15 suddenly tries to become negative pressure due to the input of a large rebound load, the membrane 31 is greatly bulged and deformed toward the main liquid chamber 15 side by the uneven bulging portion 23. Since the negative pressure in the main liquid chamber 15 can be suppressed, the occurrence of cavitation can also be suppressed.
  • the uneven bulging portion 23 is curved so as to project toward the auxiliary liquid chamber 16 side, when the same pressing force is applied to the membrane 31, the uneven bulging portion 23 is directed toward the main liquid chamber 15 side. It is possible to easily and surely realize a configuration in which the bulging deformation toward the auxiliary liquid chamber 16 side is smaller than the swelling deformation. Further, the uneven bulging portion 23 is located inside the outer peripheral edge portion 31a axially sandwiched by the first sandwiching portion 25 and the second sandwiching portion 38 of the membrane 31 in the radial direction.
  • the first sandwiching portion 25 protruding inward in the radial direction from the second sandwiching portion 38 supports the membrane 31 from the auxiliary liquid chamber 16 side, so that the same pressing is performed.
  • the amount of swelling deformation of the membrane 31 when pressure is applied is smaller for the swelling deformation toward the secondary liquid chamber 16 side than for the swelling deformation toward the main liquid chamber 15 side. That is, when the bound load is input to the vibration isolator 1, the bulging deformation of the membrane 31 toward the auxiliary liquid chamber 16 side is suppressed by the first sandwiching portion 25, and the positive pressure of the main liquid chamber 15 is relaxed.
  • the second sandwiching portion 38 does not protrude inward in the radial direction from the first sandwiching portion 25, so that the membrane
  • the bulging deformation toward the main liquid chamber 15 side of 31 is larger than the bulging deformation toward the auxiliary liquid chamber 16 side when the bound load is input, and the generated damping force can be suppressed low. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased.
  • the outer peripheral edge portion 31a of the membrane 31 is formed with a plurality of support protrusions 41 projecting toward the other and abutting against each other, a load is applied to the vibration isolator 1. Is input, and when the membrane 31 is deformed or displaced toward the auxiliary liquid chamber 16, the outer peripheral edge portion 31a of the membrane 31 is prevented from colliding with the first sandwiching portion 25 at once over a wide area. Is possible, and the generated tapping sound can be suppressed to a small level.
  • the support projection 41 is not formed on the first sandwiching portion 25.
  • the partition member 17 is located on the opposite side of the main liquid chamber 15 with the membrane 31 interposed therebetween, and has an intermediate liquid chamber 35 that communicates the auxiliary liquid chamber side passage 21b of the first orifice passage 21 with the auxiliary liquid chamber 16.
  • the first orifice passage 21 communicates the main liquid chamber 15 with the intermediate liquid chamber 35.
  • the intermediate liquid chamber 35 has a smaller ratio of the main liquid chamber side passage 21a and the auxiliary liquid chamber side passage 21b in the flow direction of the liquid in the first orifice passage 21 with respect to the main liquid chamber 15. It is located on the passage 21b side. Then, in the membrane 31, the rigidity of the lower portion forming a part of the partition wall of the intermediate liquid chamber 35 is lower than the rigidity of the upper portion forming a part of the partition wall of the main liquid chamber 15.
  • the rigidity of the upper portion of the main body portion 31b is higher than the rigidity of the lower portion of the other main body portion 31b and the outer peripheral edge portion 31a.
  • a reinforcing member 31d such as a canvas is embedded in the upper part of the main body 31b.
  • the thicknesses of the upper part and the lower part of the main body portion 31b are equal to each other.
  • the high and low rigidity of the upper part and the lower part of the membrane 31 shall be specified by the magnitude of the reaction force measured when the upper part and the lower part of the membrane 31 are separately pushed and elastically deformed by the same displacement amount in the axial direction. Can be done.
  • the reinforcing member 31d may not be embedded in the upper portion of the main body portion 31b, and the upper portion of the main body portion 31b may be formed of a material having higher rigidity than the material forming the lower portion of the main body portion 31b and the outer peripheral edge portion 31a.
  • the membrane 31 may be formed by, for example, two-color molding.
  • the lower member 33 is formed in a bottomed tubular shape, is arranged coaxially with the central axis O, and closes the lower end opening of the main body member 34.
  • the upper surface of the bottom wall portion of the lower member 33 is separated downward from the lower surface of the membrane 31.
  • the above-mentioned intermediate liquid chamber 35 is defined by the upper surface of the bottom wall portion of the lower member 33, the inner peripheral surface of the peripheral wall portion, and the lower surface of the membrane 31. That is, the intermediate liquid chamber 35 has the membrane 31 as a part of the partition wall, and the intermediate liquid chamber 35 and the main liquid chamber 15 are axially partitioned by the membrane 31.
  • the internal volume of the intermediate liquid chamber 35 is smaller than the internal volume of the main liquid chamber 15.
  • the second communication hole 33b formed on the inner peripheral surface of the peripheral wall portion of the lower member 33 connects the second orifice groove 33a and the intermediate liquid chamber 35 in the radial direction.
  • the auxiliary liquid chamber 16 is defined by the lower surface of the bottom wall portion of the lower member 33 and the diaphragm 19.
  • the bottom wall portion of the lower member 33 forms a partition wall that axially partitions the auxiliary liquid chamber 16 and the intermediate liquid chamber 35.
  • a second orifice passage 22 that communicates the auxiliary liquid chamber 16 and the intermediate liquid chamber 35 is formed in the bottom wall portion of the lower member 33.
  • the second orifice passage 22 connects the auxiliary liquid chamber 16 and the intermediate liquid chamber 35 in the axial direction.
  • the opening on the intermediate liquid chamber 35 side in the second orifice passage 22 faces the membrane 31.
  • the second orifice passage 22 is a through hole formed in the bottom wall portion of the lower member 33, and a plurality of the second orifice passages 22 are formed in the bottom wall portion of the lower member 33. At least a part of these second orifice passages 22 is axially opposed to the membrane 31.
  • each second orifice passage 22 are smaller than the flow path cross-sectional area and the flow path length of the first orifice passage 21, respectively.
  • the length of the second orifice passage 22 is smaller than the inner diameter.
  • the length of the second orifice passage 22 may be equal to or greater than the inner diameter.
  • the liquid flow resistance in each second orifice passage 22 is smaller than the liquid flow resistance in the first orifice passage 21.
  • a regulating projection 26 for restricting excessively large bulging deformation of the membrane 31 toward the intermediate liquid chamber 35 side is provided.
  • the regulation protrusion 26 is integrally formed with the lower member 33.
  • the regulation protrusion 26 is formed in a tubular shape and is arranged coaxially with the central axis O.
  • the regulation protrusion 26 may be formed solidly, and may not be arranged coaxially with the central axis O.
  • the opening direction in which the first orifice passage 21 opens toward the intermediate liquid chamber 35 is the intermediate liquid in the second orifice passage 22. It intersects the opening direction that opens toward the chamber 35.
  • the second communication hole 33b opens radially toward the intermediate liquid chamber 35
  • the second orifice passage 22 opens axially toward the intermediate liquid chamber 35. That is, the opening direction of the second communication hole 33b toward the intermediate liquid chamber 35 is orthogonal to the opening direction of the second orifice passage 22 toward the intermediate liquid chamber 35.
  • the cross-sectional area of the intermediate liquid chamber 35 along the direction orthogonal to the opening direction in which the second orifice passage 22 opens toward the intermediate liquid chamber 35 is the flow path cross-sectional area of the second orifice passage 22.
  • the rigidity of the lower portion forming a part of the partition wall of the intermediate liquid chamber 35 forms a part of the partition wall of the main liquid chamber 15. Since it is lower than the rigidity of the upper part, when the same pressing force is applied, the diaphragm 31 bulges toward the main liquid chamber 15 side due to the bulging deformation of the diaphragm 31 toward the intermediate liquid chamber 35 side. Deformation becomes large. Therefore, when the rebound load is input to the vibration isolator 1, the membrane 31 is greatly bulged and deformed toward the main liquid chamber 15, and the generated damping force can be suppressed to a low level.
  • the bulging deformation of the membrane 31 toward the intermediate liquid chamber 35 side is compared with the bulging deformation toward the main liquid chamber 15 side when the rebound load is input.
  • the positive pressure in the main liquid chamber 15 is difficult to relax, and the generated damping force becomes high. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased.
  • the rigidity of the lower part forming a part of the partition wall of the intermediate liquid chamber 35 is lower than the rigidity of the upper part forming a part of the partition wall of the main liquid chamber 15, so that a large rebound load can be input.
  • the membrane 31 can be smoothly swelled and deformed toward the main liquid chamber 15, and the negative pressure of the main liquid chamber 15 is suppressed. Therefore, the occurrence of cavitation can be suppressed.
  • the intermediate liquid chamber 35 is opened. It is possible to prevent the inflowing liquid from the main liquid chamber 15 side from going straight toward the second orifice passage 22, and this liquid can be diffused in the intermediate liquid chamber 35. As a result, the flow velocity is surely reduced until the liquid in the main liquid chamber 15 flows into the second orifice passage 22, and a high damping force can be generated when the bound load is input.
  • the vibration isolator 3 according to the third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • the same parts as the components in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the different points will be described.
  • the support projection 41 is not formed on the first sandwiching portion 25.
  • the cross-sectional shape of the flow path of the sub-liquid chamber side passage 21b is the above-mentioned flat shape, and the cross-sectional shape of the flow path of the main liquid chamber side passage 21a is square, and the above-mentioned in the sub-liquid chamber side passage 21b.
  • the ratio is larger than the ratio in the main liquid chamber side passage 21a.
  • the main liquid chamber 15 has a smaller ratio of the main liquid chamber side passage 21a and the sub liquid chamber side passage 21b in the liquid flow direction in the first orifice passage 21 with respect to the sub liquid chamber 16.
  • the auxiliary liquid chamber 16 is located in the main liquid chamber side passage 21a and the auxiliary liquid chamber side passage 21b in the flow direction of the liquid in the first orifice passage 21 with respect to the main liquid chamber 15. Of these, it is located on the side of the auxiliary liquid chamber side passage 21b, which has a large ratio.
  • the uneven bulging portion 36 causes the bulging deformation toward the auxiliary liquid chamber 16 side to be larger than the bulging deformation toward the main liquid chamber 15 side. It is formed.
  • the uneven bulging portion 36 is curved so as to project toward the main liquid chamber 15 side.
  • the membrane 37 is formed to be thinner than the disk-shaped main body 37b and the main body 37b, and protrudes outward in the radial direction from the upper portion of the main body 37b, and the outer peripheral edge portion 37a continuously extends over the entire circumference. And.
  • the first sandwiching portion 27 projecting long inward in the radial direction supports the upper surface of the membrane 37 and is the second.
  • the sandwiching portion 29 supports the lower surface of the membrane 37.
  • the second sandwiching portion 29 is integrally formed with the outer flange portion 24, and protrudes inward in the radial direction from the outer flange portion 24.
  • the lower surfaces of the second sandwiching portion 29 and the outer flange portion 24 are flush with each other.
  • the upper end opening edge of the peripheral wall portion of the lower member 33 is in contact with the lower surfaces of the second sandwiching portion 29 and the outer flange portion 24.
  • the upper surface of the second sandwiching portion 29 is located below the upper surface of the outer flange portion 24.
  • a lower annular groove that extends continuously over the entire circumference is formed on the outer peripheral edge portion on the upper surface of the second sandwiching portion 29.
  • the portion located below the outer peripheral edge portion 37a is inserted inside the second sandwiching portion 29.
  • the outer peripheral surface of the portion located below the outer peripheral edge 37a hereinafter, referred to as the outer peripheral surface 37c of the main body 37b of the membrane 37
  • the inner peripheral surface of the second sandwiching portion 29 extend in the axial direction, respectively.
  • the inner peripheral surface of the second sandwiching portion 29 and the outer peripheral surface 37c of the main body portion 37b of the membrane 37 are substantially parallel to each other.
  • the inner peripheral surface of the second sandwiching portion 29 and the outer peripheral surface 37c of the main body portion 37b of the membrane 37 may be inclined to each other.
  • the outer peripheral portion is arranged on the upper surface of the outer flange portion 24, and the inner peripheral portion supports the upper surface of the membrane 37.
  • An upper annular groove that extends continuously over the entire circumference is formed on the outer peripheral edge portion on the lower surface of the inner peripheral portion of the first sandwiching portion 27.
  • the upper annular groove is axially opposed to the lower annular groove of the second sandwiching portion 29.
  • the locking projections of the outer peripheral edge portion 37a of the membrane 37 are separately locked to the upper annular groove and the lower annular groove.
  • the portion located inward in the radial direction from the second sandwiching portion 29 supports the outer peripheral portion on the upper surface of the main body portion 37b of the membrane 37.
  • the inner peripheral edge portion of the first sandwiching portion 27 (hereinafter referred to as the inner peripheral edge portion of the first sandwiching portion 27), the lower surface with which the membrane 37 abuts gradually becomes a secondary liquid as it goes inward in the radial direction. It is inclined upward so as to be away from the chamber 16.
  • the lower surface of the inner peripheral edge portion of the first sandwiching portion 27 is formed in a curved surface shape with a protrusion toward the auxiliary liquid chamber 16 side.
  • the lower surface of the inner peripheral edge portion of the first sandwiching portion 27 may be a flat surface extending in a direction orthogonal to the central axis O.
  • the upper surface of the membrane 37 is in contact with the lower surface of the inner peripheral edge of the first sandwiching portion 27.
  • the unevenly bulging portion 36 of the membrane 37 projects inside the first sandwiching portion 27.
  • the axial positions of the upper end portion on the upper surface of the uneven bulging portion 36 and the upper surface of the first sandwiching portion 27 are equal to each other.
  • the upper surface of the membrane 37 is not in contact with the inner peripheral surface of the inner peripheral portion of the first sandwiching portion 27.
  • the membrane 37 is in contact with the lower surface of the inner peripheral portion of the first sandwiching portion 27 and the upper surface of the second sandwiching portion 29 over the entire area.
  • the upper surface of the membrane 37 may be separated downward from the lower surface of the inner peripheral edge portion of the first sandwiching portion 27.
  • the unevenly bulging portion 36 of the membrane 37 may be positioned below the inner peripheral surface of the inner peripheral portion of the first sandwiching portion 27.
  • the upper surface of the membrane 37 may be brought into contact with the inner peripheral surface of the inner peripheral portion of the first sandwiching
  • the ratio in the main liquid chamber side passage 21a is smaller than the ratio in the sub liquid chamber side passage 21b, so that when the rebound load is input, the secondary In the sub-liquid chamber side passage 21b where the liquid in the liquid chamber 16 first flows in and flows, it becomes possible to generate a large flow velocity difference between the inner portion in the radial direction and the outer portion in the radial direction.
  • a large pressure loss can be generated.
  • a high damping force can be generated when the rebound load is input.
  • the liquid in the main liquid chamber 15 flows through the first orifice passage 21 toward the auxiliary liquid chamber 16 side at the time of inputting the bound load, it first flows into the main liquid chamber side passage 21a and flows.
  • the flow velocity of the liquid flowing in the auxiliary liquid chamber side passage 21b has already decreased due to the fact that the flow direction of the liquid at that time is opposite to the subsequent distribution direction in the auxiliary liquid chamber side passage 21b. Therefore, in the auxiliary liquid chamber side passage 21b, the difference in flow velocity between the inner portion in the radial direction and the outer portion in the radial direction is less likely to occur. As a result, the damping force generated when the bound load is input can be suppressed to be lower than the damping force generated when the rebound load is input.
  • the uneven bulging portion 36 is formed in the membrane 37, the amount of bulging deformation of the membrane 37 when the same pressing force is applied is larger than the bulging deformation toward the auxiliary liquid chamber 16 side in the main liquid chamber 15.
  • the bulging deformation toward the side is smaller. Therefore, when the bound load is input to the vibration isolator 3, the membrane 37 is greatly bulged and deformed toward the auxiliary liquid chamber 16 by the eccentric bulging portion 36, so that the generated damping force can be suppressed to a low level. it can.
  • the rebound load is input to the vibration isolator 3
  • the swelling deformation toward the main liquid chamber 15 side of the membrane 37 is compared with the swelling deformation toward the sub liquid chamber 16 side when the bound load is input.
  • the negative pressure in the main liquid chamber 15 is difficult to relax, and the generated damping force becomes high. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • the amount of swelling deformation of the membrane 37 at the time is smaller for the swelling deformation toward the main liquid chamber 15 side than for the swelling deformation toward the auxiliary liquid chamber 16 side. That is, when the rebound load is input to the vibration isolator 3, the bulging deformation of the membrane 37 toward the main liquid chamber 15 side is suppressed by the first sandwiching portion 27, and the negative pressure of the main liquid chamber 15 is relaxed.
  • the second sandwiching portion 29 does not protrude inward in the radial direction from the first sandwiching portion 27, so that the membrane
  • the swelling deformation toward the auxiliary liquid chamber 16 side of 37 is larger than the swelling deformation toward the main liquid chamber 15 side when the rebound load is input, and the generated damping force can be suppressed low. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • a radial gap is provided between the outer peripheral surface 37c of the main body portion 37b of the membrane 37 and the inner peripheral surface of the second sandwiching portion 29, even if the vibration has a relatively small amplitude.
  • the membrane 37 can be smoothly bulged and deformed toward the auxiliary liquid chamber 16, and the generated damping force can be surely suppressed to a low level.
  • the outer peripheral surface 37c of the main body portion 37b is changed to the inner peripheral surface of the second sandwiching portion 29.
  • the vibration isolator 4 according to the fourth embodiment of the present invention will be described with reference to FIGS. 7 and 8.
  • the same parts as the components in the second embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the different points will be described.
  • the swelling portion 23 is not formed on the membrane 31, and the upper surface and the lower surface of the main body portion 31b are flat.
  • the rigidity of the membrane 31 is equal over the entire area of the membrane 31.
  • the inner peripheral surfaces of the first sandwiching portion 25 and the second sandwiching portion 38 are located at equivalent positions in the radial direction.
  • the regulation protrusion 26 is not arranged on the lower member 33.
  • a restraining member 42 for suppressing swelling deformation toward the intermediate liquid chamber 35 side of the membrane 31 is provided.
  • the intermediate liquid chamber 35 has a smaller ratio of the main liquid chamber side passage 21a and the auxiliary liquid chamber side passage 21b in the flow direction of the liquid in the first orifice passage 21 with respect to the main liquid chamber 15. It is located on the room side passage 21b side.
  • the restraining member 42 is arranged on the partition member 17.
  • the restraining member 42 is formed in a columnar shape erected upward from the bottom wall portion of the lower member 33.
  • the lower surface of the membrane 31 is in contact with or close to the upper end surface of the restraining member 42.
  • the membrane 31 is in contact with the upper end surface of the restraint member 42 in a state where no upward pressing force is applied from the restraint member 42.
  • the membrane 31 swells smoothly toward the main liquid chamber 15 side with a small force when the rebound load is input. It can be deformed, and an increase in damping force can be reliably prevented.
  • the restraining member 42 is in contact with or close to the radial central portion of the membrane 31.
  • the restraining member 42 may be formed in a tubular shape, for example, may come into contact with a portion of the membrane 31 that is distant from the central portion in the radial direction, or may hit the lower surface of the membrane 31 over the entire area. It may be formed in a plate shape that is in contact with each other, and may be appropriately changed without being limited to the above embodiment.
  • the restraining member 42 may be appropriately changed, for example, by disposing it on the first mounting member 11.
  • the restraining member 42 may be integrally formed of the same material as the membrane 31. The restraining member 42 may come into contact with the membrane 31 in a state where an upward pressing force is applied.
  • the suppression member 42 for suppressing the swelling deformation toward the intermediate liquid chamber 35 side of the membrane 31 is provided, the liquid is discharged from the main liquid chamber 15. This is because when a bound load to be circulated toward the auxiliary liquid chamber 16 side is input and a positive pressure acts on the main liquid chamber 15, the membrane 31 is prevented from bulging and deforming toward the intermediate liquid chamber 35 side. , The positive pressure of the main liquid chamber 15 is not relaxed, and a high damping force can be generated.
  • the restraining member 42 does not suppress the deformation of the membrane 31 and the membrane 31 is not deformed. As the 31 smoothly bulges and deforms toward the main liquid chamber 15, the increase in damping force is suppressed.
  • the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased. Further, as described above, since the swelling deformation of the membrane 31 toward the main liquid chamber 15 side is not suppressed by the restraining member 42, the main liquid chamber 15 suddenly becomes negative with the input of a large rebound load. Even if it tries to become a pressure, the membrane 31 bulges and deforms toward the main liquid chamber 15, so that the negative pressure of the main liquid chamber 15 can be suppressed, and the occurrence of cavitation can also be suppressed.
  • the bulging portions 23 and 36 are formed on the membranes 31 and 37, but the membranes 31 and 37 having no bulging portions 23 and 36 may be adopted.
  • the first sandwiching portions 25 and 27 project longer inward in the radial direction than the second sandwiching portions 38 and 29, but the present invention is not limited to this, for example. 2
  • the sandwiching portions 38, 29 may be projected longer inward in the radial direction than the first sandwiching portions 25, 27, or the first sandwiching portions 25, 27, and the second sandwiching portions 38, Each inner peripheral surface of 29 may be positioned at an equivalent position in the radial direction.
  • the rigidity of the portion of the membrane 37 that forms part of the partition wall of the main liquid chamber 15 may be lower than the rigidity of the portion that forms part of the partition wall of the auxiliary liquid chamber 16.
  • the restraining member 42 a configuration for suppressing the bulging deformation of the membrane 31 toward the main liquid chamber 15 side may be adopted.
  • the compression type anti-vibration devices 1 to 4 in which a positive pressure acts on the main liquid chamber 15 by the action of a supporting load have been described, but the main liquid chamber 15 is located on the lower side in the vertical direction.
  • the auxiliary liquid chamber 16 is attached so as to be located on the upper side in the vertical direction, and can be applied to a suspension type vibration isolator in which a negative pressure acts on the main liquid chamber 15 by applying a supporting load.
  • the anti-vibration devices 1 to 4 according to the present invention are not limited to the engine mount of the vehicle, and can be applied to other than the engine mount. For example, it can be applied to the mount of a generator mounted on a construction machine, or it can be applied to the mount of a machine installed in a factory or the like.
  • the present invention for example, when the ratio of the radial size to the axial size in the main liquid chamber side passage is larger than the ratio in the sub liquid chamber side passage, when the bound load is input, the main In the main liquid chamber side passage where the liquid in the liquid chamber first flows in and flows, it becomes possible to generate a large flow velocity difference between the inner portion in the radial direction and the outer portion in the radial direction, and the liquid at this time Combined with the fact that the flow direction is opposite to the flow direction of the liquid in the passage on the side of the auxiliary liquid chamber after that, a large pressure loss can be caused. As a result, a high damping force can be generated when a bound load is input.
  • the liquid on the auxiliary liquid chamber side flows through the orifice passage toward the main liquid chamber when the rebound load is input, it first flows into the auxiliary liquid chamber side passage and flows, so that the liquid flow direction at this time.
  • the flow velocity of the liquid flowing in the main liquid chamber side passage has already decreased, so the main liquid In the chamber side passage, the difference in flow velocity between the inner portion in the radial direction and the outer portion in the radial direction is less likely to occur.
  • the damping force generated when the rebound load is input can be suppressed to be lower than the damping force generated when the rebound load is input.
  • the liquid on the sub liquid chamber side first flows in and flows when the rebound load is input.
  • the chamber side passage it is possible to generate a large flow velocity difference between the radial inner portion and the radial outer portion, and the flow direction of the liquid at this time is the subsequent main liquid chamber side passage. Combined with the direction opposite to the flow direction, a large pressure loss can occur. As a result, a high damping force can be generated when the rebound load is input.
  • the liquid in the main liquid chamber flows through the orifice passage toward the auxiliary liquid chamber side when the bound load is input, it first flows into the main liquid chamber side passage and flows, so that the liquid flow direction at this time.
  • the flow velocity of the liquid flowing in the auxiliary liquid chamber side passage has already decreased, so that the secondary liquid chamber side In the passage, the difference in flow velocity between the inner portion in the radial direction and the outer portion in the radial direction is less likely to occur.
  • the damping force generated when the bound load is input can be suppressed to be lower than the damping force generated when the rebound load is input.
  • Each of the above-mentioned effects does not employ, for example, a member that operates when the hydraulic pressure in the main liquid chamber reaches a predetermined value, and for example, the main liquid chamber side passage and the auxiliary liquid chamber side passage as described above. Since the ratio in one of the passages is larger than the ratio in the other passage, and the cross-sectional shape of the flow path in the one passage is set to the above-mentioned flat shape. Even if the vibration has a relatively small amplitude, the above-mentioned action and effect can be stably and accurately performed.
  • the sub liquid chamber or an intermediate liquid chamber that communicates the sub liquid chamber side passage with the sub liquid chamber is arranged on the opposite side of the main liquid chamber that sandwiches the membrane in the axial direction.
  • the bulging deformation toward the liquid chamber side of either the main liquid chamber, the sub liquid chamber, or the intermediate liquid chamber is formed, and the one liquid chamber has the main liquid chamber side passage and the secondary liquid chamber in the flow direction of the liquid in the orifice passage. It may be located on the other passage side where the ratio is small among the liquid chamber side passages.
  • the opposite liquid chamber located on the opposite side of the main liquid chamber across the membrane.
  • the ratio in the auxiliary liquid chamber side passage is smaller than the ratio in the main liquid chamber side passage, the amount of swelling deformation of the membrane when the same pressing force is applied is on the main liquid chamber side.
  • the bulging deformation toward the opposite liquid chamber side is smaller than the bulging deformation toward the opposite liquid chamber. Therefore, when the rebound load is input to the vibration isolator, the membrane is greatly bulged and deformed toward the main liquid chamber side by the uneven bulging portion, so that the generated damping force can be suppressed low.
  • the bulging deformation toward the opposite liquid chamber side of the membrane becomes smaller than the bulging deformation toward the main liquid chamber side when the rebound load is input.
  • the positive pressure in the main liquid chamber is difficult to relax, and the generated damping force increases. Furthermore, even if the main liquid chamber suddenly becomes negative pressure due to the input of a large rebound load, the membrane bulges and deforms greatly toward the main liquid chamber side due to the uneven bulging part, so that the main liquid chamber becomes Since the negative pressure can be suppressed, the occurrence of cavitation can also be suppressed. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased.
  • the ratio in the main liquid chamber side passage is smaller than the ratio in the sub liquid chamber side passage, the same pressing force is applied because the uneven bulge is formed in the membrane.
  • the amount of swelling deformation of the membrane at that time is smaller for the swelling deformation toward the main liquid chamber side than for the swelling deformation toward the opposite liquid chamber side. Therefore, when the bound load is input to the vibration isolator, the membrane is greatly bulged and deformed toward the opposite liquid chamber side by the uneven bulging portion, so that the generated damping force can be suppressed low.
  • the rebound load is input to the vibration isolator, the swelling deformation toward the main liquid chamber side of the membrane becomes smaller than the swelling deformation toward the opposite liquid chamber side when the bound load is input. The negative pressure in the main liquid chamber is difficult to relieve, and the generated damping force increases. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • the uneven bulging portion may be curved so as to project toward one of the liquid chambers.
  • the outer peripheral edge portion of the membrane is provided with a first sandwiching portion and a second sandwiching portion that sandwich the outer peripheral edge portion from both sides in the axial direction, and the uneven bulging portion is in the radial direction from the outer peripheral edge portion of the membrane. It may be integrally formed over the entire area located inside.
  • the uneven bulging portion is integrally formed over the entire area of the membrane that is located inward in the radial direction from the outer peripheral edge portion, the membrane is largely bulged toward the other liquid chamber side. It can be deformed, and the damping force generated when the bound load is input and the damping force generated when the rebound load is input can be greatly different.
  • the auxiliary liquid chamber or the intermediate liquid chamber that communicates the auxiliary liquid chamber side passage with the sub liquid chamber is arranged, and the membrane is provided.
  • the outer peripheral edge portion of the above is provided with a first sandwiching portion and a second sandwiching portion for sandwiching the outer peripheral edge portion from both sides in the axial direction, and the first sandwiching portion includes the main liquid chamber, the sub liquid chamber, or the intermediate liquid.
  • the membrane is supported from the chamber and one liquid chamber side located on the other passage side in the flow direction of the liquid in the orifice passage, and the second sandwiching portion is the main liquid chamber and the said.
  • the membrane is supported from the auxiliary liquid chamber or the intermediate liquid chamber, and the membrane is supported from the other liquid chamber side located on the one passage side in the liquid flow direction in the orifice passage, and the first sandwiching portion is , It may project longer inward in the radial direction than the second sandwiching portion.
  • the first sandwiching portion that protrudes inward in the radial direction supports the membrane from the one liquid chamber side and the second sandwiching portion. Since the portion supports the membrane from the other liquid chamber side, the amount of swelling deformation of the membrane when the same pressing force is applied is larger than the swelling deformation toward the other liquid chamber side. The bulging deformation toward the liquid chamber side becomes smaller.
  • the auxiliary liquid chamber or the intermediate liquid chamber located on the opposite side of the main liquid chamber across the membrane is referred to as the opposite liquid chamber.
  • the first sandwiching portion that protrudes inward in the radial direction from the second sandwiching portion is formed. Since the membrane is supported from the opposite liquid chamber side, the amount of swelling deformation of the membrane when the same pressing force is applied is directed toward the opposite liquid chamber side rather than the swelling deformation toward the main liquid chamber side.
  • the bulging deformation is smaller. That is, when the bound load is input to the vibration isolator, the bulging deformation of the membrane toward the opposite liquid chamber side is suppressed by the first sandwiching portion, and the positive pressure of the main liquid chamber is difficult to relax, resulting in damping.
  • the second interlocking part does not protrude inward in the radial direction from the first interlocking part, so it faces the main liquid chamber side of the membrane.
  • the swelling deformation becomes larger than the swelling deformation toward the opposite liquid chamber side when the bound load is input, and the generated damping force can be suppressed low. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased.
  • the membrane since the membrane is more likely to bulge and deform toward the main liquid chamber side than the opposite liquid chamber side, the main liquid chamber suddenly becomes negative pressure with the input of a large rebound load. Even if it tries to do so, the membrane bulges and deforms toward the main liquid chamber side, so that the negative pressure in the main liquid chamber can be suppressed, and the occurrence of cavitation can also be suppressed.
  • the ratio in the main liquid chamber side passage is smaller than the ratio in the sub liquid chamber side passage, the first sandwiching portion that protrudes inward in the radial direction from the second sandwiching portion.
  • the membrane is supported from the main liquid chamber side, the amount of swelling deformation of the membrane when the same pressing force is applied is toward the main liquid chamber side rather than the swelling deformation toward the opposite liquid chamber side. The bulging deformation is smaller.
  • the second pinching portion does not protrude inward in the radial direction from the first pinching portion, so that the second sandwiching portion is directed toward the opposite liquid chamber side of the membrane.
  • the swelling deformation becomes larger than the swelling deformation toward the main liquid chamber side when the rebound load is input, and the generated damping force can be suppressed low. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • a plurality of support protrusions may be formed on at least one of the first sandwiching portion and the outer peripheral edge portion of the membrane to project and abut toward the other.
  • the membrane is located on the outer peripheral edge portion sandwiched between the first sandwiching portion and the second sandwiching portion, and a main body portion that is located inside in the radial direction from the outer peripheral edge portion and is formed thickly.
  • a radial gap between the outer peripheral surface of the main body portion located on the other liquid chamber side of the outer peripheral edge portion and the inner peripheral surface of the second sandwiching portion. May be provided.
  • the membrane can be squeezed even if the vibration has a relatively small amplitude. , It becomes possible to smoothly bulge and deform toward the other liquid chamber side, and the generated damping force can be surely suppressed to a low level. Further, when the membrane tries to bulge and deform excessively toward the other liquid chamber side, the outer peripheral surface of the main body portion can be brought into contact with the inner peripheral surface of the second sandwiching portion. , It is possible to prevent a large load from being applied to the connection portion between the outer peripheral portion and the main body portion in the membrane.
  • the sub liquid chamber or an intermediate liquid chamber that communicates the sub liquid chamber side passage with the sub liquid chamber is arranged, and the membrane is provided.
  • the rigidity of the portion forming a part of the partition wall of the main liquid chamber, the auxiliary liquid chamber, or the intermediate liquid chamber is a part of the partition wall of the other liquid chamber.
  • the one liquid chamber has a smaller ratio of the main liquid chamber side passage and the sub liquid chamber side passage in the liquid flow direction in the orifice passage than the rigidity of the portion forming the above. It may be located in.
  • the auxiliary liquid chamber or the intermediate liquid chamber located on the opposite side of the main liquid chamber across the membrane is referred to as the opposite liquid chamber.
  • the ratio in the auxiliary liquid chamber side passage is smaller than the ratio in the main liquid chamber side passage
  • the rigidity of the portion forming a part of the partition wall of the opposite liquid chamber in the membrane forms a part of the partition wall of the main liquid chamber. It is lower than the rigidity of the part.
  • the membrane bulges and deforms greatly toward the main liquid chamber side, so that the generated damping force can be suppressed to a low level.
  • the bulging deformation toward the opposite liquid chamber side of the membrane becomes smaller than the bulging deformation toward the main liquid chamber side when the rebound load is input.
  • the positive pressure in the main liquid chamber is difficult to relax, and the generated damping force increases. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased.
  • the rigidity of the part forming a part of the partition wall of the opposite liquid chamber is lower than the rigidity of the part forming a part of the partition wall of the main liquid chamber.
  • the rigidity of the portion forming a part of the partition wall of the main liquid chamber in the membrane is the opposite liquid chamber. It is lower than the rigidity of the part that forms part of the partition wall.
  • the swelling deformation toward the main liquid chamber side of the membrane becomes smaller than the swelling deformation toward the opposite liquid chamber side when the bound load is input.
  • the negative pressure in the main liquid chamber is difficult to relieve, and the generated damping force increases. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • the sub liquid chamber or an intermediate liquid chamber that communicates the sub liquid chamber side passage with the sub liquid chamber is arranged on the opposite side of the main liquid chamber that sandwiches the membrane in the axial direction.
  • the liquid chamber is provided with a restraining member for suppressing the swelling deformation of the membrane toward the liquid chamber side of either the liquid chamber, the auxiliary liquid chamber, or the intermediate liquid chamber, and the one liquid chamber is provided.
  • the liquid in the orifice passage it may be located on the other passage side where the ratio is small among the main liquid chamber side passage and the sub liquid chamber side passage.
  • the auxiliary liquid chamber or the intermediate liquid chamber located on the opposite side of the main liquid chamber across the membrane is referred to as the opposite liquid chamber.
  • the restraining member suppresses the bulging deformation of the membrane toward the opposite liquid chamber side. Therefore, when the bound load is input to the vibration isolator, the swelling deformation of the membrane toward the opposite liquid chamber side is suppressed by the restraining member, the positive pressure of the main liquid chamber is difficult to relax, and the generated damping force is high.
  • the deterrent member does not suppress the deformation of the membrane, and the membrane smoothly bulges and deforms toward the main liquid chamber side, so that the damping force increases. Is suppressed. From the above, the ratio of the damping force generated when the bound load is input to the damping force generated when the rebound load is input can be surely increased. Further, as described above, since the bulging deformation of the membrane toward the main liquid chamber side is not suppressed by the restraining member, the main liquid chamber will suddenly become negative pressure with the input of a large rebound load. Even so, when the membrane bulges and deforms toward the main liquid chamber side, the negative pressure in the main liquid chamber can be suppressed, and the occurrence of cavitation can also be suppressed.
  • the restraining member suppresses the bulging deformation of the membrane toward the main liquid chamber side. Therefore, when the rebound load is input to the anti-vibration device, the bulging deformation of the membrane toward the main liquid chamber side is suppressed by the restraining member, the negative pressure in the main liquid chamber is difficult to relax, and the generated damping force is high.
  • the deterrent member does not suppress the deformation of the membrane, and the membrane smoothly bulges and deforms toward the opposite liquid chamber side, so that the damping force increases. Is suppressed. From the above, the ratio of the damping force generated when the rebound load is input to the damping force generated when the bound load is input can be surely increased.
  • the ratio of the radial size to the axial size in the one passage may be 1.3 or more.
  • the damping force generated when the bound load is input and the damping force generated when the rebound load is input can be made different.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

防振装置(1、2、3、4)の仕切部材(17)は、メンブラン(31)およびオリフィス通路(21)を備え、オリフィス通路は、主液室側通路(21a)および副液室側通路(21b)を備え、主液室側通路、および副液室側通路は、周方向に延びるとともに、径方向の位置を互いに異ならせて配置され、液体がオリフィス通路を流れる際、主液室側通路での流通方向と、副液室側通路での流通方向と、が逆向きとされ、主液室側通路、および副液室側通路のうちの少なくとも一方の通路における流路断面形状が、第1取付部材の中心軸線(O)に沿う軸方向に短く、径方向に長い横長の扁平形状とされ、前記一方の通路における、軸方向の大きさに対する径方向の大きさの比率が、主液室側通路、および副液室側通路のうちの他方の通路における前記比率より大きい。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。
本願は、2019年4月17日に日本に出願された特願2019-078794号に基づき優先権を主張し、その内容をここに援用する。
 従来から、例えば下記特許文献1に記載の防振装置が知られている。この防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、第1取付部材と第2取付部材とを連結した弾性体と、第1取付部材内の液室を、弾性体を隔壁の一部に有する主液室および副液室に仕切る仕切部材と、を備えている。仕切部材は、主液室の隔壁の一部をなすメンブランと、主液室から副液室側に向けて延びるオリフィス通路と、を備えている。
日本国特開2007-85523号公報
 しかしながら、前記従来の防振装置では、液体を主液室から副液室側に向けて流通させるバウンド荷重の入力時に生ずる減衰力と、液体を副液室から主液室側に向けて流通させるリバウンド荷重の入力時に生ずる減衰力と、を異ならせることができない。
 本発明は、前述した事情に鑑みてなされたものであって、バウンド荷重の入力時に生ずる減衰力と、リバウンド荷重の入力時に生ずる減衰力と、を異ならせることができる防振装置を提供することを目的とする。
 本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、前記第1取付部材と前記第2取付部材とを連結した弾性体と、前記第1取付部材内の液室を、前記弾性体を隔壁の一部に有する主液室および副液室に仕切る仕切部材と、を備え、前記仕切部材は、前記主液室の隔壁の一部をなすメンブランと、前記主液室から前記副液室側に向けて延びるオリフィス通路と、を備え、前記オリフィス通路は、前記主液室側に位置する主液室側通路と、前記主液室側通路から前記副液室側に向けて延びる副液室側通路と、を備え、前記主液室側通路、および前記副液室側通路は、周方向に延びるとともに、径方向の位置を互いに異ならせて配置され、液体が前記オリフィス通路を流れる際、前記主液室側通路での流通方向と、前記副液室側通路での流通方向と、が逆向きとされ、前記主液室側通路、および前記副液室側通路のうちの少なくとも一方の通路における流路断面形状が、前記第1取付部材の中心軸線に沿う軸方向に短く、径方向に長い横長の扁平形状とされ、前記一方の通路における、前記軸方向の大きさに対する径方向の大きさの比率が、前記主液室側通路、および前記副液室側通路のうちの他方の通路における前記比率より大きい。
 本発明によれば、バウンド荷重の入力時に生ずる減衰力と、リバウンド荷重の入力時に生ずる減衰力と、を異ならせることができる。
本発明の第1実施形態に係る防振装置の縦断面図である。 図1に示す防振装置の模式図である。 本発明の第2実施形態に係る防振装置の縦断面図である。 図3に示す防振装置の模式図である。 本発明の第3実施形態に係る防振装置の縦断面図である。 図5に示す防振装置の模式図である。 本発明の第4実施形態に係る防振装置の縦断面図である。 図7に示す防振装置の模式図である。
 以下、本発明の第1実施形態に係る防振装置を、図1および図2を参照しながら説明する。
 図1に示すように、防振装置1は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材11、および他方に連結される第2取付部材12と、第1取付部材11と第2取付部材12とを連結した弾性体13と、第1取付部材11内の液室14を、弾性体13を隔壁の一部とする主液室15、および副液室16に仕切る仕切部材17と、を備えている。図示の例では、仕切部材17は、液室14を、第1取付部材11の中心軸線Oに沿う軸方向に仕切っている。
 この防振装置1が、例えば自動車のエンジンマウントとして使用される場合、第1取付部材11が振動受部としての車体に連結され、第2取付部材12が振動発生部としてのエンジンに連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。なお、第1取付部材11を振動発生部に連結し、第2取付部材12を振動受部に連結してもよい。
 以下、仕切部材17に対して軸方向に沿う主液室15側を上側といい、副液室16側を下側という。また、この防振装置1を軸方向から見た平面視において、中心軸線Oに交差する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。
 第1取付部材11は有底筒状に形成されている。第1取付部材11の底部は、環状に形成され、前記中心軸線Oと同軸に配置されている。第1取付部材11の下部の内周面は、弾性体13と一体に形成された被覆ゴムにより覆われている。
 第2取付部材12は、表裏面が前記中心軸線Oに直交する平板状に形成されている。第2取付部材12は、例えば円板状に形成され、前記中心軸線Oと同軸に配置されている。
第2取付部材12は、第1取付部材11の上方に配置されている。第2取付部材12の外径は、第1取付部材11の内径と同等になっている。
 弾性体13は、第1取付部材11の上部の内周面と、第2取付部材12の下面と、を連結している。弾性体13により、第1取付部材11の上端開口部が密閉されている。弾性体13は、第1取付部材11および第2取付部材12に加硫接着されている。弾性体13は、有頂筒状に形成され前記中心軸線Oと同軸に配置されている。弾性体13のうち、頂壁部が第2取付部材12に連結され、周壁部における下端部が第1取付部材11に連結されている。弾性体13の周壁部は、上方から下方に向かうに従い漸次、径方向の外側に向けて延びている。
 第1取付部材11の下端部内に、前記被覆ゴムを介してダイヤフラムリング18が液密に嵌合されている。ダイヤフラムリング18は、二重筒状に形成されて前記中心軸線Oと同軸に配置されている。ダイヤフラムリング18に、ゴム等で弾性変形可能に形成されたダイヤフラム19の外周部が加硫接着されている。ダイヤフラムリング18のうち、外筒部分の内周面、および内筒部分の外周面に、ダイヤフラム19の外周部が加硫接着されている。ダイヤフラム19は、副液室16内への液体の流入および流出に伴い拡縮変形する。
 ダイヤフラム19および弾性体13により、液体が封入される液室14が第1取付部材11内に画成されている。なお、液室14に封入される液体としては、例えば水やエチレングリコールなどを用いることができる。
 仕切部材17は、表裏面が前記中心軸線Oに直交する円盤状に形成され、第1取付部材11内に前記被覆ゴムを介して嵌合されている。仕切部材17により、第1取付部材11内の液室14が、弾性体13および仕切部材17により画成された主液室15と、ダイヤフラム19および仕切部材17により画成された副液室16と、に区画されている。
 仕切部材17は、第1取付部材11内に前記被覆ゴムを介して嵌合された筒状の本体部材34と、本体部材34の上端開口部を閉塞するとともに主液室15の隔壁の一部をなすメンブラン31と、本体部材34内に嵌合された筒状の下側部材33と、メンブラン31の外周縁部31aを軸方向の両側から挟み込む第1挟着部25および第2挟着部38と、主液室15から副液室16側に向けて延びる第1オリフィス通路(オリフィス通路)21と、を備えている。
 メンブラン31は、ゴム等の弾性材料によって円板状に形成されている。メンブラン31は、前記中心軸線Oと同軸に配置されている。メンブラン31の体積は、弾性体13の体積より小さい。メンブラン31は、円板状の本体部31bと、本体部31bより薄肉に形成されるとともに、本体部31bの下部から径方向の外側に向けて突出し、全周にわたって連続して延びる外周縁部31aと、を備える。外周縁部31aにおける径方向の外端部に、軸方向の両側に向けて突出する係止突起が形成されている。
 本体部材34は、前記中心軸線Oと同軸に配置されている。本体部材34の外周面には、径方向の外側に向けて開口し、周方向に延びる第1オリフィス溝23aが形成されている。第1オリフィス溝23aにおける径方向の外側の開口は、前記被覆ゴムにより閉塞されている。本体部材34の上面には、主液室15と第1オリフィス溝23aとを連通する第1連通孔23bが形成されている。第1連通孔23bは、主液室15と第1オリフィス溝23aとを軸方向に連通している。
 第1オリフィス溝23aは、前記中心軸線Oを中心に、第1連通孔23bから周方向の一方側に向けて180°を超える角度範囲にわたって周方向に延びている。
 第1挟着部25は、メンブラン31の下面を支持し、第2挟着部38は、メンブラン31の上面を支持している。第1挟着部25および第2挟着部38はそれぞれ、環状に形成されるとともに、前記中心軸線Oと同軸に配置されている。
 メンブラン31の外周縁部31aが、第1挟着部25と第2挟着部38とにより軸方向に挟まれて固定されることにより、メンブラン31は、外周縁部31aを固定端として軸方向に弾性変形可能に支持されている。
 第1挟着部25は、外側フランジ部24を介して本体部材34に連結されている。外側フランジ部24は、本体部材34と一体に形成され、本体部材34の上端部から径方向の内側に向けて突出している。外側フランジ部24は、前記中心軸線Oと同軸に配置されている。第1挟着部25は、外側フランジ部24と一体に形成され、外側フランジ部24から径方向の内側に向けて突出している。第1挟着部25および外側フランジ部24それぞれの下面は面一になっている。第1挟着部25の上面は、外側フランジ部24の上面より下方に位置している。第1挟着部25の上面における外周縁部に、全周にわたって連続して延びる下環状溝が形成されている。
 第2挟着部38のうち、外周部は外側フランジ部24の上面に配置され、内周部がメンブラン31の上面を支持している。第2挟着部38の内周部の下面における外周縁部に、全周にわたって連続して延びる上環状溝が形成されている。この上環状溝は、第1挟着部25の下環状溝と軸方向で対向している。これらの上環状溝および下環状溝に、メンブラン31の外周縁部31aの前記係止突起が各別に係止されている。
 ここで、メンブラン31の本体部31bのうち、外周縁部31aより上方に位置する部分は、第2挟着部38の内周部の内側に挿入されている。メンブラン31の本体部31bのうち、外周縁部31aより上方に位置する部分の外周面(以下、メンブラン31の本体部31bの外周面31cという)と、第2挟着部38の内周部の内周面と、の間に径方向の隙間が設けられている。第2挟着部38の内周部の内周面、およびメンブラン31の本体部31bの外周面31cはそれぞれ、軸方向に延びている。第2挟着部38の内周部の内周面と、メンブラン31の本体部31bの外周面31cと、は略平行になっている。なお、第2挟着部38の内周部の内周面、およびメンブラン31の本体部31bの外周面31cを互いに傾斜させてもよい。
 下側部材33は、筒状に形成され、前記中心軸線Oと同軸に配置されている。下側部材33は、本体部材34内に液密に嵌合されている。下側部材33の周壁部の上端開口縁は、第1挟着部25および外側フランジ部24の各下面に一体に当接している。
 ここで、下側部材33の内側、および第1挟着部25の内側を通して、メンブラン31とダイヤフラム19とが軸方向に対向している。これにより、メンブラン31の下面、下側部材33の内周面、およびダイヤフラム19により副液室16が画成されている。副液室16は、メンブラン31を挟んで主液室15の反対側に配設されている。つまり、メンブラン31により副液室16と主液室15とが軸方向に仕切られている。
 下側部材33の周壁部の外周面には、径方向の外側に向けて開口し、周方向に延びる第2オリフィス溝33aが形成されている。第2オリフィス溝33aにおける径方向の外側の開口は、本体部材34の内周面により閉塞されている。下側部材33の周壁部の内周面には、第2オリフィス溝33aと副液室16とを連通する第2連通孔33bが形成されている。第2連通孔33bは、第2オリフィス溝33aと副液室16とを径方向に連通している。第2連通孔33b、および第1連通孔23bそれぞれの周方向の位置は互いに同等になっている。
 第2オリフィス溝33aは、前記中心軸線Oを中心に、第2連通孔33bから周方向の一方側に向けて180°を超える角度範囲にわたって周方向に延びている。第2オリフィス溝33aは、第1オリフィス溝23aより径方向の内側に位置している。第2オリフィス溝33a、および第1オリフィス溝23aそれぞれにおける周方向の一方側の端部は、同等の周方向の位置に配置されている。
 下側部材33の下端部から径方向の外側に向けて、前述したダイヤフラムリング18が突出している。ダイヤフラムリング18は、下側部材33と一体に形成されている。ダイヤフラムリング18の上面に、本体部材34の下面が液密に当接している。
 ここで、本体部材34の内周面に、第1オリフィス溝23aと第2オリフィス溝33aとを連通する接続孔21cが形成されている。接続孔21cは、第1オリフィス溝23aと第2オリフィス溝33aとを径方向に連通している。そして、主液室15から副液室16側に向けて延びる第1オリフィス通路21は、径方向の外側の開口が前記被覆ゴムにより閉塞された第1オリフィス溝23aと、径方向の外側の開口が本体部材34の内周面により閉塞された第2オリフィス溝33aと、接続孔21cと、により構成されている。
 以下、第1オリフィス通路21のうち、主液室15側に位置して第1オリフィス溝23aにより画成された部分を主液室側通路21aといい、接続孔21cを通して主液室側通路21aから副液室16側に向けて延び、第2オリフィス溝33aにより画成された部分を副液室側通路21bという。
 主液室側通路21aは、副液室側通路21bより径方向の外側に位置している。なお、主液室側通路21aを、副液室側通路21bより径方向の内側に位置させてもよい。
 主液室側通路21a、および副液室側通路21bそれぞれの流路断面積を、互いに同等にしてもよいし、異ならせてもよい。
 ここで、接続孔21cは、第1オリフィス溝23aにおける周方向の一方側の端部と、第2オリフィス溝33aにおける周方向の一方側の端部と、を接続している。これにより、液体が、主液室側通路21aおよび副液室側通路21bのうちのいずれか一方の通路から、接続孔21cを通して、いずれか他方の通路に流入しこの他方の通路を流れる過程において、前記一方の通路を流れる液体の流通方向と、前記他方の通路を流れる液体の流通方向と、が周方向の逆向きになる。
 主液室側通路21aおよび副液室側通路21bは、流路径より流路長が長い通路となっている。図示の例では、第1オリフィス通路21の流路断面形状が矩形状となっており、この場合、流路径は、流路断面形状を、同一の流路断面積を有する円形状に置き換えたときの、この円形状の直径で表すことができる。
 なお、第1オリフィス通路21の流路断面形状は、矩形状に限らず適宜変更してもよい。
仮に、第1オリフィス通路が、通常のストレート形状の場合、オリフィスの慣性モーメントによる共振での圧力損失が発生する。本願の第1オリフィス通路は、180°屈曲しているため、さらに乱流による減衰が加わることで圧力損失がより上昇する。
 そして、本実施形態では、主液室側通路21a、および副液室側通路21bのうちの少なくとも一方の通路における流路断面形状が、軸方向に短く、径方向に長い横長の扁平形状とされ、前記一方の通路における、軸方向の大きさに対する径方向の大きさの比率が、主液室側通路21a、および副液室側通路21bのうちの他方の通路における前記比率より大きくなっている。
 図示の例では、主液室側通路21aの流路断面形状が、前述の扁平形状とされ、副液室側通路21bの流路断面形状は、正方形状となっていて、主液室側通路21aにおける前記比率が、副液室側通路21bにおける前記比率より大きくなっている。
 これにより、副液室16は、主液室15に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の小さい副液室側通路21b側に位置し、主液室15は、副液室16に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の大きい主液室側通路21a側に位置している。
 主液室側通路21aにおける前記比率は、1.3以上となっている。主液室側通路21aの流路断面積は、副液室側通路21bの流路断面積より大きくなっている。主液室側通路21aにおける前記比率が、1.5以上となっていることがより好ましい。
 なお、副液室側通路21bの流路断面形状も前述の扁平形状としてもよい。主液室側通路21aにおける前記比率を、1.3未満にしてもよい。主液室側通路21aの流路断面積を、副液室側通路21bの流路断面積以下としてもよい。
 また、メンブラン31に、同一の押圧力が加えられたときに、主液室15側に向けた膨出変形より、副液室16側に向けた膨出変形を小さくする偏膨出部23が形成されている。
 偏膨出部23は、副液室16側に向けて突となるように湾曲している。偏膨出部23は、メンブラン31のうち、第1挟着部25および第2挟着部38により軸方向に挟み込まれた外周縁部31aより径方向の内側に位置する本体部31bの全域にわたって一体に形成されている。なお、偏膨出部23は、前述の湾曲形状に限らず例えば、メンブラン31の上下面に形成する溝の大きさを異ならせる等、適宜変更してもよい。
 さらに本実施形態では、メンブラン31を副液室16側から支持する第1挟着部25は、メンブラン31を主液室15側から支持する第2挟着部38よりも、径方向の内側に長く突出している。第1挟着部25において、第2挟着部38より径方向の内側に位置する部分は、メンブラン31の本体部31bの下面における外周部を支持している。第1挟着部25の内周縁部において、メンブラン31が当接する上面は、径方向の内側に向かうに従い漸次、主液室15から離れるように下方に向けて傾斜している。図示の例では、第1挟着部25の内周縁部の上面は、主液室15側の上方に向けて突の曲面状に形成されている。なお、第1挟着部25の内周縁部の上面は、前記中心軸線Oに直交する方向に延びる平坦面であってもよい。
 メンブラン31の下面は、第1挟着部25の内周縁部の上面に当接している。メンブラン31の偏膨出部23は、第1挟着部25の内側に張り出している。偏膨出部23の下面における下端部、および第1挟着部25の下面それぞれの軸方向の位置は、互いに同等になっている。偏膨出部23の下面における下端部は、メンブラン31における径方向の中央部に位置している。メンブラン31の下面は、第1挟着部25の内周面と非接触となっている。メンブラン31は、第1挟着部25の上面、および第2挟着部38の内周部の下面それぞれにおける全域にわたって当接している。
 なお、メンブラン31の下面を、第1挟着部25の内周縁部の上面から上方に離間させてもよい。メンブラン31の偏膨出部23を、第1挟着部25の内周面より上方に位置させてもよい。メンブラン31の下面を、第1挟着部25の内周面に接触させてもよい。
 さらに本実施形態では、第1挟着部25、およびメンブラン31の外周縁部31aのうちの少なくとも一方に、他方に向けて突出して当接する複数の支持突起41が形成されている。
 図示の例では、支持突起41は、第1挟着部25の上面に形成されている。支持突起41は、メンブラン31の下面に当接している第1挟着部25の上面のうち、防振装置1に荷重が入力され、メンブラン31が、主液室15側に向けて変形若しくは変位したときに、メンブラン31の下面が上方に離間可能な部分に形成されている。支持突起41は、上方に向けて突の曲面状に形成されている。複数の支持突起41は、メンブラン31に、径方向および周方向に等間隔をあけて配置されている。
 なお、支持突起41は、メンブラン31の外周縁部31aの下面に形成されてもよい。支持突起41は、第1挟着部25の上面に当接しているメンブラン31の下面のうち、防振装置1に荷重が入力され、メンブラン31が、主液室15側に向けて変形若しくは変位したときに、第1挟着部25の上面から上方に離間可能な部分に形成されてもよい。支持突起41は、第1挟着部25、およびメンブラン31の外周縁部31aの双方に形成されてもよいし、いずれにも形成しなくてもよい。
 以上説明したように、本実施形態に係る防振装置1によれば、主液室側通路21aにおける前記比率が、副液室側通路21bにおける前記比率より大きいので、バウンド荷重の入力時に、主液室15の液体が、まず流入して流通する主液室側通路21a内において、径方向の内側部分と径方向の外側部分とで大きな流速差を生じさせることが可能になり、このときの液体の流通方向が、その後の副液室側通路21b内での液体の流通方向と逆向きになることと相俟って、大きな圧力損失を生じさせることができる。これにより、バウンド荷重の入力時に高い減衰力を発生させることができる。
 一方、リバウンド荷重の入力時に、副液室16の液体が、主液室15に向けて第1オリフィス通路21を流通するときには、まず副液室側通路21bに流入して流通するので、このときの液体の流通方向が、その後の主液室側通路21a内での液体の流通方向と逆向きになることと相俟って、主液室側通路21a内を流通する液体の流速がすでに低下しているため、主液室側通路21a内において、径方向の内側部分と径方向の外側部分とで流速差が生じにくくなる。これにより、リバウンド荷重の入力時に発生する減衰力を、バウンド荷重の入力時に生ずる減衰力より低く抑えることができる。
 以上より、バウンド荷重の入力時に生ずる減衰力を、リバウンド荷重の入力時に生ずる減衰力より確実に高めることが可能になり、これらの両減衰力の差を大きくし、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を高めることができる。
 主液室側通路21aにおける前記比率が、1.3以上となっているので、前述の各作用効果が確実に奏功される。
 前述した各作用効果が、例えば、主液室15内の液圧が所定値に達したときに作動する部材を採用せず、前述したような、例えば、主液室側通路21a、および副液室側通路21bのうちのいずれか一方の通路における前記比率が、いずれか他方の通路における前記比率より大きく、前記一方の通路における流路断面形状を前述の扁平形状としたなどの構成によって奏されることから、比較的振幅の小さい振動であっても、前述の作用効果を安定して精度よく奏功させることができる。
 メンブラン31に偏膨出部23が形成されているので、同一の押圧力が加えられたときのメンブラン31の膨出変形量が、主液室15側に向けた膨出変形より副液室16側に向けた膨出変形の方が小さくなる。
 したがって、リバウンド荷重が防振装置1に入力されると、メンブラン31が、偏膨出部23により主液室15側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、バウンド荷重が防振装置1に入力されると、メンブラン31の副液室16側に向けた膨出変形が、リバウンド荷重の入力時の主液室15側に向けた膨出変形と比べて小さくなり、主液室15の正圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、大きなリバウンド荷重の入力に伴い、主液室15が急激に負圧になろうとしても、メンブラン31が偏膨出部23により主液室15側に向けて大きく膨出変形することで、主液室15の負圧を抑えることができることから、キャビテーションの発生を抑制することもできる。
 また、偏膨出部23が、副液室16側に向けて突となるように湾曲しているので、メンブラン31に同一の押圧力が加えられたときに、主液室15側に向けた膨出変形より、副液室16側に向けた膨出変形が小さくなる構成を、容易かつ確実に実現することができる。
 また、偏膨出部23が、メンブラン31のうち、第1挟着部25、および第2挟着部38により軸方向に挟み込まれた外周縁部31aより径方向の内側に位置する本体部31bの全域にわたって一体に形成されているので、メンブラン31を主液室15側に向けて大きく膨出変形させることが可能になり、バウンド荷重の入力時に生ずる減衰力と、リバウンド荷重の入力時に生ずる減衰力と、を大きく異ならせることができる。
 また、偏膨出部23が、第1挟着部25の内側に張り出しているので、同一の押圧力が加えられたときの、副液室16側に向けたメンブラン31の膨出変形を、主液室15側に向けたメンブラン31の膨出変形よりも小さくする構成をより一層確実に実現することができる。
 また本実施形態では、第2挟着部38よりも径方向の内側に向けて長く突出した第1挟着部25が、メンブラン31を副液室16側から支持しているので、同一の押圧力が加えられたときのメンブラン31の膨出変形量が、主液室15側に向けた膨出変形より副液室16側に向けた膨出変形の方が小さくなる。
 すなわち、バウンド荷重が防振装置1に入力されると、メンブラン31の副液室16側に向けた膨出変形が第1挟着部25により抑止され、主液室15の正圧が緩和しにくく、発生する減衰力が高くなる一方、リバウンド荷重が防振装置1に入力されると、第2挟着部38が第1挟着部25よりも径方向の内側に突出していない分、メンブラン31の主液室15側に向けた膨出変形が、バウンド荷重の入力時の副液室16側に向けた膨出変形と比べて大きくなり、発生する減衰力を低く抑えることができる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 この構成においても、メンブラン31が副液室16側よりも主液室15側に向けて膨出変形しやすくなっていることから、大きなリバウンド荷重の入力に伴い、主液室15が急激に負圧になろうとしても、メンブラン31が主液室15側に向けて膨出変形することで、主液室15の負圧を抑えることが可能になり、キャビテーションの発生を抑制することができる。
 また、第1挟着部25、およびメンブラン31の外周縁部31aのうちの少なくとも一方に、他方に向けて突出して当接する複数の支持突起41が形成されているので、防振装置1に荷重が入力され、メンブラン31が、副液室16側に向けて変形若しくは変位したときに、メンブラン31の外周縁部31aが、広範囲にわたって一気に、第1挟着部25に衝突するのを抑制することが可能になり、発生する打音を小さく抑えることができる。
 また、メンブラン31の本体部31bの外周面31cと、第2挟着部38の内周部の内周面と、の間に径方向の隙間が設けられているので、比較的振幅の小さい振動であっても、リバウンド荷重の入力時に、メンブラン31を、主液室15側に向けて円滑に膨出変形させることが可能になり、発生する減衰力を確実に低く抑えることができる。また、メンブラン31が、リバウンド荷重の入力時に、主液室15側に向けて過度に大きく膨出変形しようとしたときに、本体部31bの外周面31cを第2挟着部38の内周部の内周面に当接させることも可能になり、メンブラン31における外周縁部31aと本体部31bとの接続部分に大きな負荷が加わるのを防ぐことができる。
 次に、本発明の第2実施形態に係る防振装置2を、図3および図4を参照しながら説明する。
 なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
 本実施形態では、第1挟着部25に支持突起41が形成されていない。また、仕切部材17が、メンブラン31を挟んで主液室15の反対側に位置し、かつ第1オリフィス通路21の副液室側通路21bと副液室16とを連通する中間液室35を備え、第1オリフィス通路21は、主液室15と中間液室35とを連通している。
 中間液室35は、主液室15に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の小さい副液室側通路21b側に位置している。
 そして、メンブラン31において、中間液室35の隔壁の一部をなす下部の剛性が、主液室15の隔壁の一部をなす上部の剛性より低くなっている。
 メンブラン31のうち、本体部31bの上部の剛性が、その他の本体部31bの下部および外周縁部31aの各剛性より高くなっている。本体部31bの上部に、例えば帆布などの補強部材31dが埋設されている。本体部31bの上部および下部の各厚さは、互いに同等になっている。メンブラン31の上部および下部の各剛性の高低は、メンブラン31の上部および下部を、軸方向に同一の変位量で各別に押込んで弾性変形させたときに測定される反力の大小により特定することができる。
 なお、本体部31bの上部に、補強部材31dを埋設せず、本体部31bの下部および外周縁部31aを形成する材質より剛性の高い材質で、本体部31bの上部を形成してもよい。メンブラン31は、例えば2色成形などにより形成してもよい。
 ここで、下側部材33は、有底筒状に形成され、前記中心軸線Oと同軸に配置され、本体部材34の下端開口部を閉塞している。下側部材33の底壁部の上面は、メンブラン31の下面から下方に離れている。下側部材33における底壁部の上面、および周壁部の内周面と、メンブラン31の下面と、により、前述の中間液室35が画成されている。つまり、中間液室35は、メンブラン31を隔壁の一部に有し、メンブラン31により中間液室35と主液室15とが軸方向に仕切られている。中間液室35の内容積は、主液室15の内容積より小さくなっている。
 下側部材33の周壁部の内周面に形成された第2連通孔33bは、第2オリフィス溝33aと中間液室35とを径方向に連通している。
 下側部材33における底壁部の下面と、ダイヤフラム19と、により副液室16が画成されている。下側部材33の底壁部は、副液室16と中間液室35とを軸方向に仕切る仕切壁をなしている。
 下側部材33の底壁部には、副液室16と中間液室35とを連通する第2オリフィス通路22が形成されている。第2オリフィス通路22は、副液室16と中間液室35とを軸方向に連通している。第2オリフィス通路22における中間液室35側の開口部は、メンブラン31に対向している。第2オリフィス通路22は、下側部材33の底壁部に形成された貫通孔とされ、下側部材33の底壁部に複数形成されている。これらの第2オリフィス通路22のうちの少なくとも一部が、メンブラン31と軸方向に対向している。
 各第2オリフィス通路22の流路断面積、および流路長はそれぞれ、第1オリフィス通路21の流路断面積、および流路長より小さくなっている。第2オリフィス通路22は、流路長が内径より小さくなっている。なお、第2オリフィス通路22の流路長を内径以上としてもよい。各第2オリフィス通路22における液体の流通抵抗が、第1オリフィス通路21における液体の流通抵抗より小さくなっている。
 下側部材33における底壁部の上面に、メンブラン31の、中間液室35側に向けた過度に大きな膨出変形を規制する規制突起26が配設されている。規制突起26は、下側部材33と一体に形成されている。規制突起26は、筒状に形成され、前記中心軸線Oと同軸に配設されている。
 なお、規制突起26は、中実に形成してもよく、前記中心軸線Oと同軸に配設しなくてもよい。
 また本実施形態では、第1オリフィス通路21が中間液室35に向けて開口する開口方向、つまり第2連通孔33bの中間液室35に向けた開口方向が、第2オリフィス通路22が中間液室35に向けて開口する開口方向と交差している。図示の例では、第2連通孔33bが、中間液室35に向けて径方向に開口し、第2オリフィス通路22が、中間液室35に向けて軸方向に開口している。すなわち、第2連通孔33bの中間液室35に向けた開口方向が、第2オリフィス通路22が中間液室35に向けて開口する開口方向と直交している。
 また本実施形態では、第2オリフィス通路22が中間液室35に向けて開口する開口方向に直交する方向に沿った、中間液室35の横断面積が、第2オリフィス通路22の流路断面積、第1オリフィス通路21の副液室側通路21bの流路断面積、および第1オリフィス通路21の主液室側通路21aの流路断面積より大きくなっている。
 以上説明したように、本実施形態に係る防振装置2によれば、メンブラン31において、中間液室35の隔壁の一部をなす下部の剛性が、主液室15の隔壁の一部をなす上部の剛性より低くなっているので、同一の押圧力が加えられたときに、中間液室35側に向けたメンブラン31の膨出変形より、主液室15側に向けたメンブラン31の膨出変形が大きくなる。
 したがって、リバウンド荷重が防振装置1に入力されると、メンブラン31が、主液室15側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。
一方、バウンド荷重が防振装置1に入力されると、メンブラン31の中間液室35側に向けた膨出変形が、リバウンド荷重の入力時の主液室15側に向けた膨出変形と比べて小さくなり、主液室15の正圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、メンブラン31において、中間液室35の隔壁の一部をなす下部の剛性が、主液室15の隔壁の一部をなす上部の剛性より低くなっていることから、大きなリバウンド荷重の入力に伴い、主液室15が急激に負圧になろうとしたときに、メンブラン31を主液室15側に向けて円滑に膨出変形させることが可能になり、主液室15の負圧が抑えられ、キャビテーションの発生を抑制することができる。
 また、第1オリフィス通路21が中間液室35に向けて開口する開口方向が、第2オリフィス通路22が中間液室35に向けて開口する開口方向と交差しているので、中間液室35に流入した主液室15側からの液体が、第2オリフィス通路22に向けて直行するのを抑制することが可能になり、この液体を中間液室35内で拡散させることができる。これにより、主液室15の液体が第2オリフィス通路22に流入するまでの間に、その流速が確実に低減されることとなり、バウンド荷重の入力時に高い減衰力を発生させることができる。
 次に、本発明の第3実施形態に係る防振装置3を、図5および図6を参照しながら説明する。
 なお、この第3実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
 本実施形態では、第1挟着部25に支持突起41が形成されていない。また、副液室側通路21bの流路断面形状が、前述の扁平形状とされ、主液室側通路21aの流路断面形状は、正方形状となっていて、副液室側通路21bにおける前記比率が、主液室側通路21aにおける前記比率より大きくなっている。
 これにより、主液室15は、副液室16に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の小さい主液室側通路21a側に位置し、副液室16は、主液室15に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の大きい副液室側通路21b側に位置している。
 偏膨出部36は、メンブラン37に同一の押圧力が加えられたときに、主液室15側に向けた膨出変形より、副液室16側に向けた膨出変形を大きくさせるように形成されている。図示の例では、偏膨出部36は、主液室15側に向けて突となるように湾曲している。
 メンブラン37は、円板状の本体部37bと、本体部37bより薄肉に形成されるとともに、本体部37bの上部から径方向の外側に向けて突出し、全周にわたって連続して延びる外周縁部37aと、を備える。
 さらに本実施形態では、第1挟着部27および第2挟着部29のうち、径方向の内側に向けて長く突出した第1挟着部27が、メンブラン37の上面を支持し、第2挟着部29が、メンブラン37の下面を支持している。
 第2挟着部29は、外側フランジ部24と一体に形成され、外側フランジ部24から径方向の内側に向けて突出している。第2挟着部29および外側フランジ部24の各下面は面一となっている。第2挟着部29および外側フランジ部24の各下面に、下側部材33の周壁部の上端開口縁が当接している。第2挟着部29の上面は、外側フランジ部24の上面より下方に位置している。第2挟着部29の上面における外周縁部に、全周にわたって連続して延びる下環状溝が形成されている。
 ここで、メンブラン37の本体部37bのうち、外周縁部37aより下方に位置する部分は、第2挟着部29の内側に挿入されている。メンブラン37の本体部37bのうち、外周縁部37aより下方に位置する部分の外周面(以下、メンブラン37の本体部37bの外周面37cという)と、第2挟着部29の内周面と、の間に径方向の隙間が設けられている。第2挟着部29の内周面、およびメンブラン37の本体部37bの外周面37cはそれぞれ、軸方向に延びている。第2挟着部29の内周面と、メンブラン37の本体部37bの外周面37cと、は略平行になっている。なお、第2挟着部29の内周面、およびメンブラン37の本体部37bの外周面37cを互いに傾斜させてもよい。
 第1挟着部27のうち、外周部は外側フランジ部24の上面に配置され、内周部がメンブラン37の上面を支持している。第1挟着部27の内周部の下面における外周縁部に、全周にわたって連続して延びる上環状溝が形成されている。この上環状溝は、第2挟着部29の下環状溝と軸方向で対向している。これらの上環状溝および下環状溝に、メンブラン37の外周縁部37aの前記係止突起が各別に係止されている。
 第1挟着部27において、第2挟着部29より径方向の内側に位置する部分は、メンブラン37の本体部37bの上面における外周部を支持している。第1挟着部27の内周部の内周縁部(以下、第1挟着部27の内周縁部という)において、メンブラン37が当接する下面は、径方向の内側に向かうに従い漸次、副液室16から離れるように上方に向けて傾斜している。図示の例では、第1挟着部27の内周縁部の下面は、副液室16側に向けて突の曲面状に形成されている。なお、第1挟着部27の内周縁部の下面は、前記中心軸線Oに直交する方向に延びる平坦面であってもよい。
 メンブラン37の上面は、第1挟着部27の内周縁部の下面に当接している。メンブラン37の偏膨出部36は、第1挟着部27の内側に張り出している。偏膨出部36の上面における上端部、および第1挟着部27の上面それぞれの軸方向の位置は、互いに同等になっている。メンブラン37の上面は、第1挟着部27の内周部の内周面と非接触となっている。メンブラン37は、第1挟着部27の内周部の下面、および第2挟着部29の上面それぞれにおける全域にわたって当接している。
 なお、メンブラン37の上面を、第1挟着部27の内周縁部の下面から下方に離間させてもよい。メンブラン37の偏膨出部36を、第1挟着部27の内周部の内周面より下方に位置させてもよい。メンブラン37の上面を、第1挟着部27の内周部の内周面に接触させてもよい。
 以上説明したように、本実施形態に係る防振装置3によれば、主液室側通路21aにおける前記比率が、副液室側通路21bにおける前記比率より小さいので、リバウンド荷重の入力時に、副液室16の液体が、まず流入して流通する副液室側通路21b内において、径方向の内側部分と径方向の外側部分とで大きな流速差を生じさせることが可能になり、このときの液体の流通方向が、その後の主液室側通路21a内での流通方向と逆向きになることと相俟って、大きな圧力損失を生じさせることができる。これにより、リバウンド荷重の入力時に高い減衰力を発生させることができる。
 一方、バウンド荷重の入力時に、主液室15の液体が、副液室16側に向けて第1オリフィス通路21を流通するときには、まず主液室側通路21aに流入して流通するので、このときの液体の流通方向が、その後の副液室側通路21b内での流通方向と逆向きになることと相俟って、副液室側通路21b内を流通する液体の流速がすでに低下しているため、副液室側通路21b内において、径方向の内側部分と径方向の外側部分とで流速差が生じにくくなる。これにより、バウンド荷重の入力時に発生する減衰力を、リバウンド荷重の入力時に生ずる減衰力より低く抑えることができる。
 以上より、リバウンド荷重の入力時に生ずる減衰力を、バウンド荷重の入力時に生ずる減衰力より確実に高めることが可能になり、これらの両減衰力の差を大きくし、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を高めることができる。
 メンブラン37に偏膨出部36が形成されているので、同一の押圧力が加えられたときのメンブラン37の膨出変形量が、副液室16側に向けた膨出変形より主液室15側に向けた膨出変形の方が小さくなる。
 したがって、バウンド荷重が防振装置3に入力されると、メンブラン37が、偏膨出部36により副液室16側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、リバウンド荷重が防振装置3に入力されると、メンブラン37の主液室15側に向けた膨出変形が、バウンド荷重の入力時の副液室16側に向けた膨出変形と比べて小さくなり、主液室15の負圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、第2挟着部29よりも径方向の内側に向けて長く突出した第1挟着部27が、メンブラン37を主液室15側から支持しているので、同一の押圧力が加えられたときのメンブラン37の膨出変形量は、副液室16側に向けた膨出変形より主液室15側に向けた膨出変形の方が小さくなる。
 すなわち、リバウンド荷重が防振装置3に入力されると、メンブラン37の主液室15側に向けた膨出変形が第1挟着部27により抑止され、主液室15の負圧が緩和しにくく、発生する減衰力が高くなる一方、バウンド荷重が防振装置3に入力されると、第2挟着部29が第1挟着部27よりも径方向の内側に突出していない分、メンブラン37の副液室16側に向けた膨出変形が、リバウンド荷重の入力時の主液室15側に向けた膨出変形と比べて大きくなり、発生する減衰力を低く抑えることができる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、メンブラン37の本体部37bの外周面37cと、第2挟着部29の内周面と、の間に径方向の隙間が設けられているので、比較的振幅の小さい振動であっても、バウンド荷重の入力時に、メンブラン37を、副液室16側に向けて円滑に膨出変形させることが可能になり、発生する減衰力を確実に低く抑えることができる。また、メンブラン37が、バウンド荷重の入力時に、副液室16側に向けて過度に大きく膨出変形しようとしたときに、本体部37bの外周面37cを第2挟着部29の内周面に当接させることも可能になり、メンブラン37における外周縁部37aと本体部37bとの接続部分に大きな負荷が加わるのを防ぐことができる。
 また、偏膨出部36が、第1挟着部27の内側に張り出しているので、同一の押圧力が加えられたときの、副液室16側に向けたメンブラン37の膨出変形を、主液室15側に向けたメンブラン37の膨出変形よりも大きくする構成をより一層確実に実現することができる。
 次に、本発明の第4実施形態に係る防振装置4を、図7および図8を参照しながら説明する。
 なお、この第4実施形態においては、第2実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
 本実施形態では、メンブラン31に偏膨出部23が形成されておらず、本体部31bの上面および下面が平坦になっている。メンブラン31の剛性が、メンブラン31の全域にわたって同等になっている。第1挟着部25、および第2挟着部38の各内周面が、径方向における同等の位置に位置している。下側部材33に規制突起26が配設されていない。
 本実施形態では、メンブラン31の中間液室35側に向けた膨出変形を抑止する抑止部材42が配設されている。
 なお、中間液室35は、主液室15に対して、第1オリフィス通路21における液体の流通方向において、主液室側通路21aおよび副液室側通路21bのうち、前記比率の小さい副液室側通路21b側に位置している。
 抑止部材42は仕切部材17に配設されている。抑止部材42は、下側部材33の底壁部から上方に向けて立設された柱状に形成されている。抑止部材42の上端面に、メンブラン31の下面が当接、若しくは近接している。図示の例では、メンブラン31は、抑止部材42から上方に向けた押付力が加えられていない状態で、抑止部材42の上端面に当接している。この場合、並びに、抑止部材42の上端面に、メンブラン31の下面が近接している場合には、リバウンド荷重の入力時に、メンブラン31を主液室15側に向けて少ない力で円滑に膨出変形させることが可能になり、減衰力の上昇を確実に防ぐことができる。抑止部材42は、メンブラン31における径方向の中央部に当接、若しくは近接している。
 なお、抑止部材42は、例えば筒状に形成されてもよいし、メンブラン31のうち、径方向の中央部から離れた部分に当接等してもよいし、メンブラン31の下面に全域にわたって当接等する板状に形成されてもよく、前記実施形態に限らず適宜変更してもよい。
 抑止部材42は、例えば第1取付部材11に配設する等適宜変更してもよい。例えば、抑止部材42は、メンブラン31と同じ材質で一体に形成されてもよい。
 抑止部材42は、メンブラン31に、上方に向けた押付力を付与した状態で当接してもよい。
 以上説明したように、本実施形態に係る防振装置4によれば、メンブラン31の中間液室35側に向けた膨出変形を抑止する抑止部材42を備えるので、液体を主液室15から副液室16側に向けて流通させるバウンド荷重が入力され、主液室15に正圧が作用したときに、メンブラン31が中間液室35側に向けて膨出変形することが抑止されるため、主液室15の正圧が緩和されず、高い減衰力を発生させることができる。
 一方、この防振装置1に、液体を副液室16から主液室15側に向けて流通させるリバウンド荷重が入力されたときには、抑止部材42がメンブラン31の変形を抑止することがなく、メンブラン31が主液室15側に向けて円滑に膨出変形することで、減衰力の上昇が抑えられる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、前述のように、メンブラン31の主液室15側に向けた膨出変形が抑止部材42により抑止されることがないので、大きなリバウンド荷重の入力に伴い、主液室15が急激に負圧になろうとしても、メンブラン31が主液室15側に向けて膨出変形することで、主液室15の負圧を抑えることが可能になり、キャビテーションの発生を抑制することもできる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば前記第1~第3実施形態では、メンブラン31、37に偏膨出部23、36を形成したが、偏膨出部23、36を有しないメンブラン31、37を採用してもよい。
 また、前記第1~第3実施形態では、第1挟着部25、27を、第2挟着部38、29よりも、径方向の内側に長く突出したが、これに限らず例えば、第2挟着部38、29を、第1挟着部25、27よりも、径方向の内側に長く突出させてもよいし、第1挟着部25、27、および第2挟着部38、29の各内周面を径方向における同等の位置に位置させてもよい。
 前記第3実施形態において、メンブラン37のうち、主液室15の隔壁の一部をなす部分の剛性を、副液室16の隔壁の一部をなす部分の剛性より低くしてもよい。
 前記第4実施形態において、抑止部材42として、メンブラン31の主液室15側に向けた膨出変形を抑止する構成を採用してもよい。
 また、前記実施形態では、支持荷重が作用することで主液室15に正圧が作用する圧縮式の防振装置1~4について説明したが、主液室15が鉛直方向下側に位置し、かつ副液室16が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室15に負圧が作用する吊り下げ式の防振装置にも適用可能である。
 また、本発明に係る防振装置1~4は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントに適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例および各実施形態を適宜組み合わせてもよい。
 本発明によれば、例えば、主液室側通路における、前記軸方向の大きさに対する径方向の大きさの比率が、副液室側通路における前記比率より大きい場合、バウンド荷重の入力時に、主液室の液体が、まず流入して流通する主液室側通路内において、径方向の内側部分と径方向の外側部分とで大きな流速差を生じさせることが可能になり、このときの液体の流通方向が、その後の副液室側通路内での液体の流通方向と逆向きになることと相俟って、大きな圧力損失を生じさせることができる。これにより、バウンド荷重の入力時に高い減衰力を発生させることができる。
 一方、リバウンド荷重の入力時に、副液室側の液体が、主液室に向けてオリフィス通路を流通するときには、まず副液室側通路に流入して流通するので、このときの液体の流通方向が、その後の主液室側通路内での液体の流通方向と逆向きになることと相俟って、主液室側通路内を流通する液体の流速がすでに低下しているため、主液室側通路内において、径方向の内側部分と径方向の外側部分とで流速差が生じにくくなる。これにより、リバウンド荷重の入力時に発生する減衰力を、バウンド荷重の入力時に生ずる減衰力より低く抑えることができる。
 以上より、バウンド荷重の入力時に生ずる減衰力を、リバウンド荷重の入力時に生ずる減衰力より確実に高めることが可能になり、これらの両減衰力の差を大きくし、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を高めることができる。
 前述とは逆に、主液室側通路における前記比率が、副液室側通路における前記比率より小さい場合、リバウンド荷重の入力時に、副液室側の液体が、まず流入して流通する副液室側通路内において、径方向の内側部分と径方向の外側部分とで大きな流速差を生じさせることが可能になり、このときの液体の流通方向が、その後の主液室側通路内での流通方向と逆向きになることと相俟って、大きな圧力損失を生じさせることができる。これにより、リバウンド荷重の入力時に高い減衰力を発生させることができる。
 一方、バウンド荷重の入力時に、主液室の液体が、副液室側に向けてオリフィス通路を流通するときには、まず主液室側通路に流入して流通するので、このときの液体の流通方向が、その後の副液室側通路内での流通方向と逆向きになることと相俟って、副液室側通路内を流通する液体の流速がすでに低下しているため、副液室側通路内において、径方向の内側部分と径方向の外側部分とで流速差が生じにくくなる。これにより、バウンド荷重の入力時に発生する減衰力を、リバウンド荷重の入力時に生ずる減衰力より低く抑えることができる。
 以上より、リバウンド荷重の入力時に生ずる減衰力を、バウンド荷重の入力時に生ずる減衰力より確実に高めることが可能になり、これらの両減衰力の差を大きくし、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を高めることができる。
 前述した各作用効果が、例えば、主液室内の液圧が所定値に達したときに作動する部材を採用せず、前述したような、例えば、主液室側通路、および副液室側通路のうちのいずれか一方の通路における前記比率が、いずれか他方の通路における前記比率より大きく、前記一方の通路における流路断面形状を前述の扁平形状としたなどの構成によって奏されることから、比較的振幅の小さい振動であっても、前述の作用効果を安定して精度よく奏功させることができる。
 ここで、前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、前記メンブランには、同一の押圧力が加えられたときに、前記主液室と、前記副液室、若しくは前記中間液室と、のうちの、いずれか一方の液室側に向けた膨出変形より、他方の液室側に向けた膨出変形を大きくする偏膨出部が形成され、前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置してもよい。
 この場合、メンブランに偏膨出部が形成されているので、同一の押圧力が加えられたときに、主液室と、副液室、若しくは中間液室と、のうちの、いずれか一方の液室側に向けたメンブランの膨出変形より、他方の液室側に向けたメンブランの膨出変形が大きくなる。
 以下、メンブランを挟んで主液室の反対側に位置する副液室、若しくは中間液室のことを、反対液室という。
 具体的には、副液室側通路における前記比率が、主液室側通路における前記比率より小さい場合、同一の押圧力が加えられたときのメンブランの膨出変形量は、主液室側に向けた膨出変形より反対液室側に向けた膨出変形の方が小さくなる。
 したがって、リバウンド荷重が防振装置に入力されると、メンブランが、偏膨出部により主液室側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、バウンド荷重が防振装置に入力されると、メンブランの反対液室側に向けた膨出変形が、リバウンド荷重の入力時の主液室側に向けた膨出変形と比べて小さくなり、主液室の正圧が緩和しにくく、発生する減衰力が高くなる。
 さらに、大きなリバウンド荷重の入力に伴い、主液室が急激に負圧になろうとしても、メンブランが偏膨出部により主液室側に向けて大きく膨出変形することで、主液室の負圧を抑えることができることから、キャビテーションの発生を抑制することもできる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 前述とは逆に、主液室側通路における前記比率が、副液室側通路における前記比率より小さい場合、メンブランに偏膨出部が形成されていることから、同一の押圧力が加えられたときのメンブランの膨出変形量は、反対液室側に向けた膨出変形より主液室側に向けた膨出変形の方が小さくなる。
 したがって、バウンド荷重が防振装置に入力されると、メンブランが、偏膨出部により反対液室側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、リバウンド荷重が防振装置に入力されると、メンブランの主液室側に向けた膨出変形が、バウンド荷重の入力時の反対液室側に向けた膨出変形と比べて小さくなり、主液室の負圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、前記偏膨出部は、前記一方の液室側に向けて突となるように湾曲してもよい。
 この場合、メンブランに同一の押圧力が加えられたときに、主液室および反対液室のうち、いずれか他方の液室側に向けた膨出変形より、一方の液室側に向けた膨出変形が小さくなる構成を、容易かつ確実に実現することができる。
 また、前記メンブランの外周縁部を、前記軸方向の両側から挟み込む第1挟着部および第2挟着部を備え、前記偏膨出部は、前記メンブランのうち、外周縁部より径方向の内側に位置する部分の全域にわたって一体に形成されてもよい。
 この場合、偏膨出部が、メンブランのうち、外周縁部より径方向の内側に位置する部分の全域にわたって一体に形成されているので、メンブランを前記他方の液室側に向けて大きく膨出変形させることが可能になり、バウンド荷重の入力時に生ずる減衰力と、リバウンド荷重の入力時に生ずる減衰力と、を大きく異ならせることができる。
 また、前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、前記メンブランの外周縁部を、前記軸方向の両側から挟み込む第1挟着部および第2挟着部を備え、前記第1挟着部は、前記主液室と、前記副液室、若しくは前記中間液室と、のうち、前記オリフィス通路における液体の流通方向で前記他方の通路側に位置する一方の液室側から前記メンブランを支持し、前記第2挟着部は、前記主液室と、前記副液室、若しくは前記中間液室と、のうち、前記オリフィス通路における液体の流通方向で前記一方の通路側に位置する他方の液室側から前記メンブランを支持し、前記第1挟着部は、前記第2挟着部よりも、径方向の内側に長く突出してもよい。
 この場合、第1挟着部および第2挟着部のうち、径方向の内側に向けて長く突出した第1挟着部が、メンブランを前記一方の液室側から支持し、第2挟着部が、メンブランを前記他方の液室側から支持するので、同一の押圧力が加えられたときのメンブランの膨出変形量は、前記他方の液室側に向けた膨出変形より前記一方の液室側に向けた膨出変形の方が小さくなる。
 以下、メンブランを挟んで主液室の反対側に位置する副液室、若しくは中間液室のことを、反対液室という。
 具体的には、副液室側通路における前記比率が、主液室側通路における前記比率より小さい場合、第2挟着部よりも径方向の内側に向けて長く突出した第1挟着部が、メンブランを反対液室側から支持しているので、同一の押圧力が加えられたときのメンブランの膨出変形量が、主液室側に向けた膨出変形より反対液室側に向けた膨出変形の方が小さくなる。
 すなわち、バウンド荷重が防振装置に入力されると、メンブランの反対液室側に向けた膨出変形が第1挟着部により抑止され、主液室の正圧が緩和しにくく、発生する減衰力が高くなる一方、リバウンド荷重が防振装置に入力されると、第2挟着部が第1挟着部よりも径方向の内側に突出していない分、メンブランの主液室側に向けた膨出変形が、バウンド荷重の入力時の反対液室側に向けた膨出変形と比べて大きくなり、発生する減衰力を低く抑えることができる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、前述のように、メンブランが反対液室側よりも主液室側に向けて膨出変形しやすくなっていることから、大きなリバウンド荷重の入力に伴い、主液室が急激に負圧になろうとしても、メンブランが主液室側に向けて膨出変形することで、主液室の負圧を抑えることが可能になり、キャビテーションの発生を抑制することもできる。
 前述とは逆に、主液室側通路における前記比率が、副液室側通路における前記比率より小さい場合、第2挟着部よりも径方向の内側に向けて長く突出した第1挟着部が、メンブランを主液室側から支持しているので、同一の押圧力が加えられたときのメンブランの膨出変形量が、反対液室側に向けた膨出変形より主液室側に向けた膨出変形の方が小さくなる。
 すなわち、リバウンド荷重が防振装置に入力されると、メンブランの主液室側に向けた膨出変形が第1挟着部により抑止され、主液室の負圧が緩和しにくく、発生する減衰力が高くなる一方、バウンド荷重が防振装置に入力されると、第2挟着部が第1挟着部よりも径方向の内側に突出していない分、メンブランの反対液室側に向けた膨出変形が、リバウンド荷重の入力時の主液室側に向けた膨出変形と比べて大きくなり、発生する減衰力を低く抑えることができる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、前記第1挟着部、および前記メンブランの外周縁部のうちの少なくとも一方に、他方に向けて突出して当接する複数の支持突起が形成されてもよい。
 この場合、第1挟着部、およびメンブランの外周縁部のうちの少なくとも一方に、他方に向けて突出して当接する複数の支持突起が形成されているので、防振装置に荷重が入力され、メンブランが、前記一方の液室側に向けて変形若しくは変位したときに、メンブランの外周縁部が、広範囲にわたって一気に第1挟着部に衝突するのを抑制することが可能になり、発生する打音を小さく抑えることができる。
 また、前記メンブランは、前記第1挟着部および前記第2挟着部に挟み込まれた外周縁部と、前記外周縁部より径方向の内側に位置し、かつ厚肉に形成された本体部と、を備え、前記本体部のうち、前記外周縁部より前記他方の液室側に位置する部分の外周面と、前記第2挟着部の内周面と、の間に径方向の隙間が設けられてもよい。
 この場合、メンブランの本体部の外周面と、第2挟着部の内周面と、の間に径方向の隙間が設けられているので、比較的振幅の小さい振動であっても、メンブランを、前記他方の液室側に向けて円滑に膨出変形させることが可能になり、発生する減衰力を確実に低く抑えることができる。また、メンブランが、前記他方の液室側に向けて過度に大きく膨出変形しようとしたときに、本体部の外周面を第2挟着部の内周面に当接させることも可能になり、メンブランにおける外周縁部と本体部との接続部分に大きな負荷が加わるのを防ぐことができる。
 また、前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、前記メンブランにおいて、前記主液室と、前記副液室、若しくは前記中間液室と、のうちのいずれか一方の液室の隔壁の一部をなす部分の剛性が、他方の液室の隔壁の一部をなす部分の剛性より低く、前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置してもよい。
 以下、メンブランを挟んで主液室の反対側に位置する副液室、若しくは中間液室のことを、反対液室という。
 副液室側通路における前記比率が、主液室側通路における前記比率より小さい場合、メンブランにおいて、反対液室の隔壁の一部をなす部分の剛性が、主液室の隔壁の一部をなす部分の剛性より低くなる。これにより、同一の押圧力が加えられたときのメンブランの膨出変形量は、反対液室側に向けた膨出変形より主液室側に向けた膨出変形の方が大きくなる。
 したがって、リバウンド荷重が防振装置に入力されると、メンブランが、主液室側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、バウンド荷重が防振装置に入力されると、メンブランの反対液室側に向けた膨出変形が、リバウンド荷重の入力時の主液室側に向けた膨出変形と比べて小さくなり、主液室の正圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、メンブランにおいて、反対液室の隔壁の一部をなす部分の剛性が、主液室の隔壁の一部をなす部分の剛性より低くなっていることから、大きなリバウンド荷重の入力に伴い、主液室が急激に負圧になろうとしたときに、メンブランを主液室側に向けて円滑に膨出変形させることが可能になり、主液室の負圧が抑えられ、キャビテーションの発生を抑制することができる。
 前述とは逆に、主液室側通路における前記比率が、副液室側通路における前記比率より小さい場合、メンブランにおいて、主液室の隔壁の一部をなす部分の剛性が、反対液室の隔壁の一部をなす部分の剛性より低くなる。これにより、同一の押圧力が加えられたときのメンブランの膨出変形量は、主液室側に向けた膨出変形より反対液室側に向けた膨出変形の方が大きくなる。
 したがって、バウンド荷重が防振装置に入力されると、メンブランが、反対液室側に向けて大きく膨出変形することで、発生する減衰力を低く抑えることができる。一方、リバウンド荷重が防振装置に入力されると、メンブランの主液室側に向けた膨出変形が、バウンド荷重の入力時の反対液室側に向けた膨出変形と比べて小さくなり、主液室の負圧が緩和しにくく、発生する減衰力が高くなる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、前記主液室と、前記副液室、若しくは前記中間液室と、のうちのいずれか一方の液室側に向けた前記メンブランの膨出変形を抑止する抑止部材を備え、前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置してもよい。
 以下、メンブランを挟んで主液室の反対側に位置する副液室、若しくは中間液室のことを、反対液室という。
 副液室側通路における前記比率が、主液室側通路における前記比率より小さい場合、抑止部材は、メンブランの反対液室側に向けた膨出変形を抑止する。
 したがって、バウンド荷重が防振装置に入力されると、メンブランの反対液室側に向けた膨出変形が抑止部材により抑止され、主液室の正圧が緩和しにくく、発生する減衰力が高くなる一方、リバウンド荷重が防振装置に入力されたときには、抑止部材がメンブランの変形を抑止することがなく、メンブランが主液室側に向けて円滑に膨出変形することで、減衰力の上昇が抑えられる。
 以上より、リバウンド荷重の入力時に生ずる減衰力に対するバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 さらに、前述のように、メンブランの主液室側に向けた膨出変形が抑止部材により抑止されることがないので、大きなリバウンド荷重の入力に伴い、主液室が急激に負圧になろうとしても、メンブランが主液室側に向けて膨出変形することで、主液室の負圧を抑えることが可能になり、キャビテーションの発生を抑制することもできる。
 前述とは逆に、主液室側通路における前記比率が、副液室側通路における前記比率より小さい場合、抑止部材は、メンブランの主液室側に向けた膨出変形を抑止する。
 したがって、リバウンド荷重が防振装置に入力されると、メンブランの主液室側に向けた膨出変形が抑止部材により抑止され、主液室の負圧が緩和しにくく、発生する減衰力が高くなる一方、バウンド荷重が防振装置に入力されたときには、抑止部材がメンブランの変形を抑止することがなく、メンブランが反対液室側に向けて円滑に膨出変形することで、減衰力の上昇が抑えられる。
 以上より、バウンド荷重の入力時に生ずる減衰力に対するリバウンド荷重の入力時に生ずる減衰力の比率を確実に高めることができる。
 また、前記一方の通路における、前記軸方向の大きさに対する径方向の大きさの比率が、1.3以上となってもよい。
 この場合、前記一方の通路における前記比率が、1.3以上となっているので、前述の各作用効果が確実に奏功される。
本願の防振装置を当該分野に適用することにより、バウンド荷重の入力時に生ずる減衰力と、リバウンド荷重の入力時に生ずる減衰力と、を異ならせることができる。
 1、2、3、4 防振装置
 11 第1取付部材
 12 第2取付部材
 13 弾性体
 14 液室
 15 主液室
 16 副液室
 17 仕切部材
 21 第1オリフィス通路(オリフィス通路)
 21a 主液室側通路
 21b 副液室側通路
 23、36 偏膨出部
 31、37 メンブラン
 31a、37a 外周縁部
 35 中間液室
 41 支持突起
 42 抑止部材

Claims (10)

  1.  振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
     前記第1取付部材と前記第2取付部材とを連結した弾性体と、
     前記第1取付部材内の液室を、前記弾性体を隔壁の一部に有する主液室および副液室に仕切る仕切部材と、を備え、
     前記仕切部材は、
     前記主液室の隔壁の一部をなすメンブランと、
     前記主液室から前記副液室側に向けて延びるオリフィス通路と、を備え、
     前記オリフィス通路は、前記主液室側に位置する主液室側通路と、前記主液室側通路から前記副液室側に向けて延びる副液室側通路と、を備え、
     前記主液室側通路、および前記副液室側通路は、周方向に延びるとともに、径方向の位置を互いに異ならせて配置され、
     液体が前記オリフィス通路を流れる際、前記主液室側通路での流通方向と、前記副液室側通路での流通方向と、が逆向きとされ、
     前記主液室側通路、および前記副液室側通路のうちの少なくとも一方の通路における流路断面形状が、前記第1取付部材の中心軸線に沿う軸方向に短く、径方向に長い横長の扁平形状とされ、
     前記一方の通路における、前記軸方向の大きさに対する径方向の大きさの比率が、前記主液室側通路、および前記副液室側通路のうちの他方の通路における前記比率より大きい、防振装置。
  2.  前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、
     前記メンブランには、同一の押圧力が加えられたときに、前記主液室と、前記副液室、若しくは前記中間液室と、のうちの、いずれか一方の液室側に向けた膨出変形より、他方の液室側に向けた膨出変形を大きくする偏膨出部が形成され、
     前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置している、請求項1に記載の防振装置。
  3.  前記偏膨出部は、前記一方の液室側に向けて突となるように湾曲している、請求項2に記載の防振装置。
  4.  前記メンブランの外周縁部を、前記軸方向の両側から挟み込む第1挟着部および第2挟着部を備え、
     前記偏膨出部は、前記メンブランのうち、外周縁部より径方向の内側に位置する部分の全域にわたって一体に形成されている、請求項2または3に記載の防振装置。
  5.  前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、
     前記メンブランの外周縁部を、前記軸方向の両側から挟み込む第1挟着部および第2挟着部を備え、
     前記第1挟着部は、前記主液室と、前記副液室、若しくは前記中間液室と、のうち、前記オリフィス通路における液体の流通方向で前記他方の通路側に位置する一方の液室側から前記メンブランを支持し、
     前記第2挟着部は、前記主液室と、前記副液室、若しくは前記中間液室と、のうち、前記オリフィス通路における液体の流通方向で前記一方の通路側に位置する他方の液室側から前記メンブランを支持し、
     前記第1挟着部は、前記第2挟着部よりも、径方向の内側に長く突出している、請求項1から4のいずれか1項に記載の防振装置。
  6.  前記第1挟着部、および前記メンブランの外周縁部のうちの少なくとも一方に、他方に向けて突出して当接する複数の支持突起が形成されている、請求項5に記載の防振装置。
  7.  前記メンブランは、前記第1挟着部および前記第2挟着部に挟み込まれた外周縁部と、前記外周縁部より径方向の内側に位置し、かつ厚肉に形成された本体部と、を備え、
     前記本体部のうち、前記外周縁部より前記他方の液室側に位置する部分の外周面と、前記第2挟着部の内周面と、の間に径方向の隙間が設けられている、請求項5または6に記載の防振装置。
  8.  前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、
     前記メンブランにおいて、前記主液室と、前記副液室、若しくは前記中間液室と、のうちのいずれか一方の液室の隔壁の一部をなす部分の剛性が、他方の液室の隔壁の一部をなす部分の剛性より低く、
     前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置している、請求項1から7のいずれか1項に記載の防振装置。
  9.  前記メンブランを前記軸方向に挟む前記主液室の反対側に、前記副液室、または前記副液室側通路と前記副液室とを連通する中間液室が配設され、
     前記主液室と、前記副液室、若しくは前記中間液室と、のうちのいずれか一方の液室側に向けた前記メンブランの膨出変形を抑止する抑止部材を備え、
     前記一方の液室は、前記オリフィス通路における液体の流通方向において、前記主液室側通路および前記副液室側通路のうち、前記比率が小さい前記他方の通路側に位置している、請求項1から8のいずれか1項に記載の防振装置。
  10.  前記一方の通路における、前記軸方向の大きさに対する径方向の大きさの比率が、1.3以上となっている、請求項1から9のいずれか1項に記載の防振装置。
PCT/JP2020/003722 2019-04-17 2020-01-31 防振装置 WO2020213225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/603,382 US11993150B2 (en) 2019-04-17 2020-01-31 Anti-vibration device
JP2021514799A JP7383699B2 (ja) 2019-04-17 2020-01-31 防振装置
CN202080028589.XA CN113727874A (zh) 2019-04-17 2020-01-31 隔振装置
EP20791920.0A EP3957505A4 (en) 2019-04-17 2020-01-31 ANTI-VIBRATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078794 2019-04-17
JP2019-078794 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213225A1 true WO2020213225A1 (ja) 2020-10-22

Family

ID=72838105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003722 WO2020213225A1 (ja) 2019-04-17 2020-01-31 防振装置

Country Status (5)

Country Link
US (1) US11993150B2 (ja)
EP (1) EP3957505A4 (ja)
JP (1) JP7383699B2 (ja)
CN (1) CN113727874A (ja)
WO (1) WO2020213225A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085523A (ja) 2005-09-26 2007-04-05 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009052696A (ja) * 2007-08-28 2009-03-12 Toyota Motor Corp 液体封入式防振装置
WO2019074069A1 (ja) * 2017-10-11 2019-04-18 株式会社ブリヂストン 防振装置
JP2019078794A (ja) 2017-10-20 2019-05-23 トヨタ紡織株式会社 乗物用表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257562B1 (en) * 1998-12-11 2001-07-10 Toyo Tire & Rubber Co., Ltd. Liquid filled vibration isolating device
JP2005273906A (ja) * 2004-02-27 2005-10-06 Tokai Rubber Ind Ltd 液体封入式防振装置
JP5130094B2 (ja) 2008-03-31 2013-01-30 東海ゴム工業株式会社 圧力感応切換式オリフィス通路を備えた流体封入式防振装置
CN101813154B (zh) * 2009-02-24 2013-02-13 仓敷化工株式会社 液体封入式隔振装置
JP6448926B2 (ja) * 2014-06-23 2019-01-09 住友理工株式会社 流体封入式防振装置
JP6431437B2 (ja) * 2015-04-27 2018-11-28 株式会社ブリヂストン 防振装置
JP6619702B2 (ja) * 2016-06-23 2019-12-11 株式会社ブリヂストン 防振装置
JP6817004B2 (ja) * 2016-09-16 2021-01-20 株式会社ブリヂストン 防振装置
WO2019074049A1 (ja) * 2017-10-11 2019-04-18 株式会社ブリヂストン 防振装置
CN111201388B (zh) * 2017-10-11 2021-11-16 株式会社普利司通 隔振装置
KR20200142181A (ko) * 2019-06-12 2020-12-22 현대자동차주식회사 유체 봉입형 엔진 마운트
JP7346189B2 (ja) * 2019-09-17 2023-09-19 株式会社プロスパイラ 防振装置
JP7399587B2 (ja) * 2020-10-08 2023-12-18 株式会社プロスパイラ 防振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085523A (ja) 2005-09-26 2007-04-05 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009052696A (ja) * 2007-08-28 2009-03-12 Toyota Motor Corp 液体封入式防振装置
WO2019074069A1 (ja) * 2017-10-11 2019-04-18 株式会社ブリヂストン 防振装置
JP2019078794A (ja) 2017-10-20 2019-05-23 トヨタ紡織株式会社 乗物用表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957505A4

Also Published As

Publication number Publication date
EP3957505A1 (en) 2022-02-23
JP7383699B2 (ja) 2023-11-20
JPWO2020213225A1 (ja) 2020-10-22
EP3957505A4 (en) 2023-01-25
US20220176793A1 (en) 2022-06-09
CN113727874A (zh) 2021-11-30
US11993150B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
US8807545B2 (en) Liquid-sealed antivibration device
JP2005273684A (ja) 流体封入式防振装置
JP7159303B2 (ja) 防振装置
JP5801134B2 (ja) 液封入式防振装置
WO2019074069A1 (ja) 防振装置
WO2018198444A1 (ja) 防振装置
JP7145165B2 (ja) 防振装置
WO2018198442A1 (ja) 防振装置
WO2020213225A1 (ja) 防振装置
JP6674334B2 (ja) 防振装置
JP6962869B2 (ja) 防振装置
JP6889647B2 (ja) 防振装置
JP2010106976A (ja) 液封入式防振装置
WO2022075067A1 (ja) 防振装置
WO2021090938A1 (ja) 防振装置
WO2021090645A1 (ja) 防振装置
JP4989620B2 (ja) 液封入式防振装置
JP6889645B2 (ja) 防振装置
JP2009085252A (ja) 流体封入式防振装置
JP6978982B2 (ja) 防振装置
WO2021053905A1 (ja) 防振装置
US11378151B2 (en) Vibration-damping device
JP6155122B2 (ja) 防振装置
JP6853674B2 (ja) 防振装置
JP6986488B2 (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020791920

Country of ref document: EP

Effective date: 20211117