WO2020209578A1 - Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법 - Google Patents

Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법 Download PDF

Info

Publication number
WO2020209578A1
WO2020209578A1 PCT/KR2020/004699 KR2020004699W WO2020209578A1 WO 2020209578 A1 WO2020209578 A1 WO 2020209578A1 KR 2020004699 W KR2020004699 W KR 2020004699W WO 2020209578 A1 WO2020209578 A1 WO 2020209578A1
Authority
WO
WIPO (PCT)
Prior art keywords
active
active metal
nanocluster
group
solution
Prior art date
Application number
PCT/KR2020/004699
Other languages
English (en)
French (fr)
Inventor
방은별
김도언
박윤희
박종남
김강용
최용훈
Original Assignee
덕산네오룩스 주식회사
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사, 울산과학기술원 filed Critical 덕산네오룩스 주식회사
Priority claimed from KR1020200042058A external-priority patent/KR20200120529A/ko
Publication of WO2020209578A1 publication Critical patent/WO2020209578A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to an active nanocluster for manufacturing a III-V quantum dot, a quantum dot including the same, and a method of manufacturing the same.
  • Quantum dots are semiconducting nano-sized particles having a three-dimensionally limited size, and exhibit excellent optical and electrical properties that semiconducting materials do not have in a bulk state. For example, even if a quantum dot is made of the same material, the color of light emitted may vary depending on the size of the particle. Due to such characteristics, quantum dots are attracting attention as next-generation high-brightness light emitting diodes (LEDs), bio sensors, lasers, and nanomaterials for solar cells.
  • LEDs next-generation high-brightness light emitting diodes
  • quantum dots have various advantages compared to fluorescent dyes of organic materials that are generally used. Through the quantum limiting effect by adjusting the size, it is possible to emit various spectra from quantum dots of the same composition, and it is possible to secure an emission spectrum with very high quantum efficiency and color purity of ⁇ 80% compared to dyes of organic materials. .
  • the quantum dot is a semiconductor composition of an inorganic material, it can have excellent light stability of about 100 to 1000 times compared to a fluorescent dye of an organic material.
  • Quantum dots using II-VI compound semiconductor composition composed of II and VI elements on the periodic table are materials capable of high luminous efficiency, light stability, and light in the visible region. come.
  • Patent Document 1 Korean Patent Registration No. 10-1462658 (Registration Date 2014.11.11)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2018-0095955 (published on August 28, 2018)
  • An aspect of the present invention is to provide an active nanocluster used in the synthesis of III-V-based quantum dots capable of improving the half-width (FWHM) and obtaining high quantum efficiency.
  • Another aspect of the present invention is to provide a method for preparing the above-described active nanoclusters.
  • Another aspect of the present invention is to provide a III-V quantum dot having an improved half-width (FWHM) and high quantum efficiency using active nanoclusters.
  • FWHM half-width
  • Another aspect of the present invention is to provide a III-V quantum dot capable of improving the half-width (FWHM) and obtaining high quantum efficiency.
  • Another aspect of the present invention is to provide a method of manufacturing the aforementioned group III-V quantum dots.
  • an active metal oxide-carboxylate-containing active nanocluster is provided.
  • it provides a quantum dot comprising the above-described active nanoclusters.
  • a seed comprising a Group III element, a Group V element, and an active metal capable of having various oxidation numbers, and wherein the molar ratio of the Group III element and the active metal is 1:3 to 1:30 Branches provide group III-V quantum dots.
  • an active metal oxide obtained by thermally decomposing an active metal-carboxylate-a precursor step of forming an active nanocluster comprising a carboxylate; And a seed forming step of forming a seed in which an active metal, a group III element, and a group V element are alloyed by injecting a group III element precursor and a group V element precursor solution into the precursor solution prepared in the precursor step. It provides a method of manufacturing foot-based quantum dots.
  • a seed comprising a group III element and a group V element; And a growth layer including a group III element and a group V element formed on an outer surface of the seed.
  • a group III-V quantum dot including an active metal capable of having various oxidation numbers in at least one of the seed or growth layer constituting the band gap control layer, having a band gap control layer comprising:
  • a group III element, a group V element, and an active metal capable of having various oxidation numbers are included, and selected from the group consisting of Al, Ga, Ti, Mg, Na, Li, and Cu.
  • the quantum dot has a seed doped with at least one additional element, and the quantum dot provides a III-V group quantum dot having an emission wavelength of 500 nm to 650 nm and a half width of 50 nm or less.
  • a group III element, a group V element, and an active metal capable of having various oxidation numbers are included, and selected from the group consisting of Al, Ga, Ti, Mg, Na, Li, and Cu.
  • the raw material of the active metal provides a group III-V quantum dot, which is an active nanocluster solution containing a compound represented by the following formula (1).
  • T is selected from the group consisting of Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru, and combinations thereof, and x, y, z are natural numbers, x>y.
  • an active metal oxide obtained by thermally decomposing an active metal-carboxylate-a precursor step of forming an active nanocluster comprising a carboxylate; And a solution containing a group III element precursor, a group V element precursor, and at least one additional element selected from the group consisting of Al, Ga, Ti, Mg, Na, Li, and Cu to the precursor solution prepared in the precursor step. It provides a method of manufacturing a group III-V quantum dot comprising a seed forming step of alloying an active metal with a group III element and a group V element, and forming a seed containing the additional element.
  • the active nanocluster according to an aspect of the present invention has an effect of efficiently forming quantum dots and suppressing rapid saturation of the growth of quantum dots, thereby improving half-width and increasing quantum efficiency.
  • the active nanocluster according to another aspect of the present invention can be effectively prepared by heating an active metal-carboxylate and thermally decomposing it for a predetermined time.
  • III-V-based quantum dots according to another aspect of the present invention suppress rapid precursor depletion, thereby improving the half-width (FWHM) and having high quantum efficiency.
  • the method of manufacturing a III-V quantum dot according to another aspect of the present invention has an advantage that it is more suitable for mass production than a conventional method for synthesizing high-efficiency quantum dots by synthesizing a highly reactive reaction medium through simple pyrolysis.
  • a solution containing one or more additional elements selected from the group consisting of Al, Ga, Ti, Mg, Na, Li, Sn, and Cu is injected to prevent lattice mismatch.
  • FWHM half-width
  • FIG. 1 is a schematic diagram showing a method of manufacturing an active nanocluster according to an aspect of the present invention.
  • Example 2 is a graph showing MALDI-TOP (Matris Assisted Laser Desorption-Time of Flight) data obtained from the solution prepared in Example 1 in order to identify the active nanoclusters according to an aspect of the present invention.
  • MALDI-TOP Micros Assisted Laser Desorption-Time of Flight
  • Example 3 is a graph measuring UV and PL spectra of the seed of the quantum dots of Example 4 of the present invention and the seed of the quantum dots of Comparative Example 2.
  • Figure 4 is a graph of measuring UV and PL spectrum by preparing the quantum dot of Example 4 and the quantum dot of Comparative Example 2 of the present invention.
  • Example 5 is a graph of measuring a PL spectrum by preparing the quantum dots of Example 5 and Comparative Example 3 of the present invention.
  • Example 6 is a graph measuring a PL spectrum for each step of seed, growth, and shell formation in the quantum dot of Example 5 of the present invention.
  • a part such as a layer, film, region, plate, etc.
  • this includes not only “directly over” another part, but also a case where another part is in the middle.
  • another part when one part is “right above” another part, it means that there is no other part in the middle.
  • the reference part means that it is located above or below the reference part, and means that it is located “above” or “on” in the direction opposite to gravity. no.
  • the term "on a plane” means when the target part is viewed from above, and when “on a cross-sectional view”, it means when the target part is viewed from the side.
  • active metal precursor refers to a chemical substance prepared in advance to react an active metal, and refers to all compounds including an active metal.
  • the first aspect of the present invention is an active nanocluster including an active metal oxide-carboxylate.
  • the active metal refers to a metal that can be used as a metal in a metal oxide-carboxylate having an activity that is included in a seed, an active layer, a shell, etc. during the manufacture of a quantum dot to improve the half width and contribute to the improvement of quantum efficiency.
  • the active metal at least one selected from the group consisting of Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru, and combinations thereof that may have various oxidation numbers may be used.
  • the active metal oxide is an oxide of an active metal selected from the group consisting of Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru, and combinations thereof, and is active in the present invention.
  • the nanocluster may include the active metal oxide alone or in combination of two or more.
  • cluster refers to a particle in which a single atom, molecule, or other type of atom is agglomerated or bound within hundreds to thousands of atoms.
  • the particle average particle diameter of such a cluster is preferably 1.5 nm or less, for example, and the lower limit of the average particle diameter is 0.5 nm, which is more preferable because it can suppress rapid saturation of the growth of quantum dots.
  • the active nanocluster includes an active metal oxide-carboxylate.
  • the active metal oxide-carboxylate includes a compound represented by the following formula (1).
  • T is an active metal
  • carboxylate is a salt or ester of a carboxylic acid
  • the salt of a carboxylic acid has the general formula M(RCOO)n
  • the carboxylate ester is a general formula of RCOOR'.
  • M is a metal
  • n is a natural number
  • R and R' are organic groups other than hydrogen.
  • the active metal oxide-carboxylate may include two or more active metal oxides having different values of x.
  • the value of x of the two or more different active metal oxides may be 2 to 10.
  • it may include Zn 4 O (carboxylate) 5 , Zn 7 O 2 (carboxylate) 9 , and the like.
  • it may include Zn 4 O (carboxylate) 6 , Zn 7 O 2 (carboxylate) 10 and the like.
  • active nanocluster used in the present invention refers to an active metal oxide-carboxylate.
  • the active metal oxide reacts with an active metal precursor and a carboxylic acid to synthesize an active metal-carboxylate, and thermally decomposes the active metal oxide to convert all of the active metal oxide particles through the form of an active metal oxide-carboxylate. Therefore, such an active metal oxide is usually used.
  • an active nanocluster solution a solution containing an active metal oxide-carboxylate (hereinafter, referred to as an active nanocluster solution) is formed through multi-stage control of the thermal decomposition temperature, and the active nanocluster solution is used as a raw material of the active metal oxide. It can provide one technical feature for what you use.
  • a quantum dot having an alloy bond between a group III element and a group V element can be prepared, and as a result, the half width (FWHM) is improved and the quantum efficiency is increased, By suppressing the rapid saturation of the quantum dot growth, it is possible to provide an effect of efficiently growing the quantum dot.
  • the active nanocluster solution includes the active metal oxide-carboxylate and the active metal-carboxylate.
  • Zn oleate is first synthesized by the reaction of oleic acid as a carboxylate with Zn acetate, which is an active metal precursor.
  • active nanoclusters such as Zn 4 O (carboxylate) 5 , Zn 7 O 2 (carboxylate) 9 , Zn 4 O (carboxylate) 6 , and Zn 7 O 2 (carboxylate) 10 are synthesized.
  • ZnO nanoparticles are obtained as a final reactant.
  • active metal oxide-carboxylate as an active nanocluster exists in a solution in which unreacted Zn oleate (corresponding to the aforementioned active metal-carboxylate) is mixed. .
  • the content ratio of the active metal oxide-carboxylate and the active metal-carboxylate contained in the active nanocluster solution can be confirmed by measuring the weight change according to the activation of the active metal precursor.
  • Figure 2 which shows the measurement results using MALDI-TOP (Matris Assisted Laser Desorption-Time of Flight), when activated, 1683 m/z as well as 975 m/z appearing in the existing black graph as well as the red graph , Peak at 3020 m/z, and as a result of calculating the abundance ratio by integrating each peak and comparing the areas, 1683 m/ which represents Zn 4 O(carboxylate) 6 and Zn 7 O 2 (carboxylate) 10 , respectively, among all peaks. It was confirmed that the mass distribution occupied by the z and 3020m/z peaks was about 80%.
  • the active metal oxide-carboxylate has a higher mass distribution than the active metal-carboxylate, and is preferably included in a ratio of 60:40 to 99:1.
  • the active nanocluster improves the half-width (FWHM) and increases the quantum efficiency during quantum dot manufacturing.
  • quantum dots grow efficiently by suppressing rapid saturation of the growth of quantum dots. That is, the half width of the quantum dot is, for example, 50 nm or less, preferably 30 nm to 45 nm, more preferably 34 nm to 45 nm.
  • a second aspect of the present invention shows a method for producing an active nanocluster containing an active metal oxide-carboxylate obtained using an active metal-carboxylate.
  • the active nanocluster is prepared by reacting an active metal precursor with a carboxylic acid to prepare an active metal oxide-carboxylate and then thermally decomposing it.
  • the manufacturing method includes step 1-1, step 1-2, step 1-3, and step 1-4.
  • the name of each step is a name given to distinguish each step from other steps, and does not include all the technical meanings of each step.
  • Step 1-1 is a step of reducing pressure by mixing an active metal precursor and a carboxylic acid.
  • Active metal precursors include, for example, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetate dihydrate, and zinc acetylacetonate when the active metal is zinc.
  • Zinc acetylacetonate Zinc acetylacetonate hydrate, Zinc iodide, Zinc bromide, Zinc chloride, Zinc fluoride, Zinc fluoride Zinc fluoride tetrahydrate, Zinc carbonate, Zinc cyanide, Zinc nitrate, Zinc nitrate hexahydrate, Zinc oxide, Zinc Zinc peroxide, Zinc perchlorate, Zinc perchlorate hexahydrate, Zinc sulfate, Diphenyl zinc, Zinc naphthenate, Zinc oleate (Zinc oleate) and zinc stearate (Zinc stearate) may be at least one selected from the group consisting of.
  • Carboxylic acid is required to react with the active metal precursor to make an active metal-carboxylate, and palmitic acid, myristate acid, oleic acid, stearic acid, and the like may be used.
  • the active metal precursor and the carboxylic acid are mixed in a molar ratio of 1:1 to 1:3 to prepare a mixed solution. If it is out of the above range, there is a problem in that unreacted excess salt or acid may unintentionally participate in the subsequent process.
  • the pressure to be reduced is preferably 100 torr to 0.001 torr, for example. If it is out of the above range, there occurs a problem that the removal of impurities or additionally generated products is not smooth.
  • Step 1-2 is a step of first reacting the mixed solution after raising the temperature of the mixed solution after step 1-1 to a first temperature.
  • the range of the first temperature varies depending on the type of carboxylic acid to be used, but is preferably room temperature (25°C) to 200°C as an example.
  • the pressure is maintained as it is.
  • the heating time is, for example, 10 minutes to 1 hour, and the reaction time is preferably 10 minutes to 3 hours, for example.
  • Step 1-3 is a step in which the mixed solution after step 1-2 is heated to a second temperature higher than the first temperature, and then the mixed solution is subjected to a secondary reaction.
  • the range of the second temperature may be in the range of 200°C to 500°C, for example, and is preferably a temperature higher than the first temperature.
  • the pressure is maintained as it is.
  • the heating time is, for example, 10 minutes to 1 hour, and the reaction time is preferably 10 minutes to 3 hours, for example.
  • Steps 1-4 are steps of injecting the mixed solution into the solvent in an inert atmosphere and then lowering the temperature to the third temperature (decreasing temperature).
  • the solvent is for controlling the concentration of the mixed solution, and both a coordinating solvent and a non-coordinating solvent may be used, and in general, octadecene may be used.
  • the range of the third temperature may be room temperature, and the pressure may maintain normal pressure.
  • the temperature reduction time is preferably 20 minutes to 2 hours.
  • an active nanocluster solution containing [Formula 1] T x O y (Carboxylate) z is prepared.
  • 1 is a schematic diagram in which an active nanocluster of the present embodiment is generated. According to this, it can be seen that the active metal-stearate in the solid state obtained by reacting the active metal precursor with the carboxylic acid was dissolved at 140°C, and then activated at 320°C to form an active nanocluster.
  • quantum dots can be prepared using active nanoclusters.
  • the quantum dot includes a seed and a shell, wherein the shell may be selectively included, and the seed is alloyed with an active metal derived from the above-described active nanocluster.
  • the present invention can prepare an active nanocluster using a method for producing an active nanocluster, through which quantum dots can be manufactured.
  • a third aspect of the present invention is a group III-V quantum dot synthesized using the active nanocluster according to the first aspect.
  • the quantum dot on the third side includes a seed and a shell.
  • the shell may be selectively included, and the active metal derived from the aforementioned active nanocluster is alloyed and included in the seed.
  • the active metal may be at least one selected from the group consisting of Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru, and combinations thereof, which may have various oxidation numbers. have.
  • the molar ratio of the group III element: active metal in the present invention may be, for example, 1:3 to 1:30, preferably 1:3 to 1:20, more preferably 1:4 It may be from 1:15, and more preferably from 1:5 to 1:10.
  • concentration of the active metal exceeds the above range, there is a problem in that the growth of the quantum dots is limited.
  • the concentration of the active metal exceeds the above range, the growth of the quantum dots is rapidly saturated and the stability of the crystal lattice is deteriorated, thereby reducing the efficiency of the quantum dots.
  • the activated active metal precursor may be an active nanocluster including the active metal oxide-carboxylate of Formula 1 described in the first aspect of the present invention.
  • Seeds are Group III elements Al, Ga, In, Ti or a combination thereof and group V elements P, As, Sb, Bi, or a combination thereof, for example, GaN, GaP, GaAs, GaSb, AlN, AlP , AlAs, AlSb, InN, InP, InAs, InSb, and a binary compound selected from the group consisting of a mixture thereof;
  • the active metal When the active metal is alloyed with a group III element or a combination thereof, a group V element, or a combination thereof, the active metal appears to play a role in stabilizing the crystal lattice in the seed and complementing the defect.
  • the active metal is an active metal derived from an active nanocluster.
  • the molar ratio of the group III element and the group V element of the seed may be, for example, 1: 0.5 to 1: 1.2, and preferably 1: 0.7 to 1: 1.
  • the molar ratio of the group III element and the group V element exceeds the above range, there is a problem that it is difficult to obtain a quantum dot in a desired wavelength band, and if it is less than the above range, there is a problem that even growth is suppressed.
  • the seed may contain additional elements. Additional elements are included in the seed to change the properties of the quantum dot depending on the content. When additional elements such as Al, Ga, Ti, Mg, Na, Li, and Cu are included in the seed, there is an effect of increasing quantum efficiency by reducing surface defects by preventing lattice mismatch.
  • the molar ratio of the group III element of the seed: the additional element may be, for example, 1: 0.2 to 1: 0.8, and preferably 1: 0.3 to 1: 0.6.
  • the quantum efficiency may not be changed because the lattice mismatch cannot be effectively prevented.
  • the shell is formed by surrounding the outer surface of the seed.
  • the shell may be one selected from the group consisting of a II-VI semiconductor, a III-V semiconductor, and a IV-VI semiconductor material.
  • the shell can increase stability by coating the outer surface of the seed to prevent surface defects of the nanocrystals.
  • Group II element one selected from the group consisting of Zn, Cd, Hg, Mg, or a combination thereof
  • the Group III element one selected from the group consisting of Al, Ga, In, Ti or a combination thereof
  • a Group IV element one selected from the group consisting of Si, Ge, Sn, Pb, or a combination thereof
  • a Group VI element in the group consisting of O, S, Se, Te or a combination thereof Any one of your choice can be used.
  • the shell is preferably a group II-VI semiconductor.
  • the molar ratio of the group III element of the seed and the group VI element of the precursor used to form the shell may be, for example, 1: 3 to 1: 20, preferably 1: 5 to 1: 15, and , More preferably, it may be 1: 8 to 1: 10.
  • the molar ratio of the precursor used for shell coating is greater than or less than the above ratio, there is a problem in that uniform shell coating is not achieved.
  • CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, PbS, PbSe, PbSeS, PbTe, GaAs, GaP, InP, InGaP, InZnP, InAs, CuS, InN, GaN, InGaN, AlP, AlAs, InAs , GaAs, GaSb, InSb, AlSb, HgS, HgTe, HgCdTe, ZnCdS, ZnCdSe, CdSeTe, CuInSe2, CuInS2, AgInS2, SnTe, etc. can be used as shell materials.
  • the average diameter of the quantum dots is, for example, 1.5 nm to 5 nm, and the thickness of the shell alone is preferably 0.5 nm to 5 nm, or 0.5 nm to 1 nm, for example. If it is out of the above range, the emission wavelength does not match or the efficiency is deteriorated.
  • the quantum dot according to this aspect has a light emission wavelength of 500 nm to 650 nm, or 540 nm to 650 nm, for example, and a half width of 50 nm or less, 30 nm to 45 nm, or 34 to 45 nm, for example.
  • the manufacturing method of group III-V quantum dots includes a precursor step, a seed formation step, a shell formation step, and a purification step.
  • the name of each step is a name given to distinguish each step from other steps, and does not include all the technical meanings of each step.
  • the precursor step is a step of preparing an active nanocluster of Formula 1 defined in the second aspect of the present invention. Active nanoclusters are prepared by pyrolyzing an active metal-carboxylate.
  • the precursor step is the same as step 1-1, step 1-2, step 1-3, and step 1-4 as described in the second aspect of the present invention, and detailed descriptions are omitted.
  • the seed formation step is a step of injecting a group III element precursor and a group V element precursor solution into the precursor solution prepared in the precursor step to form a seed in which an active metal, a group III element, and a group V element are alloyed.
  • the seed formation step includes step 2-1, step 2-2, step 2-2, and step 2-4.
  • Step 2-1 is a step of mixing and stirring the active nanocluster solution, the group III element precursor solution, and the solvent.
  • the active nanocluster solution is as described above.
  • the Group III element precursor solution contains a Group III element precursor, a solvent, and a surfactant.
  • a Group III element precursor all precursors containing Group III elements, such as a halogen salt of a Group III element, may be used.
  • the indium precursor may be, for example, indium acetylacetonate, indium chloride, indium acetate, and trimethyl indium.
  • Alkyl Indium, Aryl Indium, Indium(III) Myristate, Indium(III) Myristate Acetate and Indium Myristate 2 acetate (Indium(III) Myristate) ) Myristate 2 Acetate) may be any one selected from the group consisting of, preferably indium acetylacetonate (Indium(III) acetylacetonate).
  • the solvent is 2,6,10,15,19,23-hexamethyltetrachoic acid (Squalane), 1-octadecene (ODE), trioctylamine (TOA), tributylphosphine oxide, octadecene, octadecylamine, It may be at least one selected from the group consisting of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO).
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • the surfactant may be selectively used, and may be a carboxylic acid-based compound, a phosphonic acid-based compound, or a mixture of these two compounds.
  • Carboxylic acid-based compounds include, for example, oleic acid, palmitic acid, stearic acid, linoleic acid, myristic acid, and lauric acid. It may be one or more selected from the group consisting of, and the phosphonic acid-based compound is for example hexylphosphonic acid, octadecylphosphonic acid, tetradecylphosphonic acid, hexadecylphosphonic acid ( It may be at least one selected from the group consisting of hexadecylphosphonic acid), decylphosphonic acid, octylphosphonic acid, and butylphosphonic acid.
  • Step 2-2 is a step of reacting for 50 to 100 minutes after raising the temperature to A temperature for 5 to 20 minutes while decompressing the solution of step 2-1.
  • a temperature is, for example, 100 °C to 150 °C.
  • impurities in the precursor may not be removed, and when the temperature is higher than the temperature range, the concentration of the solution changes, which may hinder efficient quantum dot growth.
  • Step 2-3 is a step of raising the temperature of the solution of step 2-2 to the B temperature for several seconds to 1 hour in an inert atmosphere, and injecting the group V element precursor solution.
  • the B temperature is higher than the A temperature and is preferably 200°C to 400°C. When the temperature is lower than the temperature range, quantum dot formation does not occur effectively, and when it is higher than the temperature, it is difficult to control the emission wavelength.
  • the Group V element precursor solution contains a Group V element precursor and a solvent.
  • Group V element precursors are, for example, tris(trimethylsilyl)phosphine ((Tris(trimethylsilyl)phosphine, TMSP), aminophosphine, white phosphorus, tris(pyrazolyl)phosphane), Organometallic phosphorus such as calcium phosphide may be used.
  • an alkylphosphine-based surfactant can be added to the group V element precursor solution, and when added together, the group V element and the alkylphosphine-based surfactant are combined to form a new organic complex. Stable reaction is possible, making it more suitable for mass production.
  • the size of the quantum dots may be adjusted according to the type of the alkylphosphine surfactant.
  • the alkylphosphine-based surfactant is not limited thereto, but triethyl phosphine, tributyl phosphine, trioctyl phosphine, triphenyl phosphine, and triphenyl phosphine. It may be one or more selected from the group consisting of cyclohexyl phosphine.
  • the solvent of the group V element precursor solution may include, for example, trioctylphosphine (TOP), tributylphosphine (TBP), octadecene (ODE), amines (primary amine, secondary amine, third amine), etc.
  • TOP trioctylphosphine
  • TBP tributylphosphine
  • ODE octadecene
  • amines primary amine, secondary amine, third amine
  • the molar concentration of the group V element precursor solution is preferably 0.001M to 2M, for example.
  • the molar ratio of the active metal and the group V element is, for example, 1: 0.02 to 1: 0.006, and 1: 0.03 to 1: 0.005. If it is out of the above range, a problem of forming non-uniform quantum dots may occur.
  • the shell formation step is a step of forming a shell on the seed surface after the seed formation step.
  • the shell forming step includes steps 4-1, 4-2, and 4-3.
  • the shell is formed by injecting one or both of a group III element precursor solution and a group V element precursor solution, or one or both of a group II element precursor solution and a group VI element precursor solution. That is, the shell is formed by injecting a group II element precursor or/and a group VI element precursor or a group III element precursor or/and a group V element precursor.
  • the shell is made of a II-VI group semiconductor.
  • the molar ratio of the group III element of the seed and the group VI element of the precursor used to form the shell may be, for example, 1: 3 to 1: 20, preferably 1: 5 to 1: 15, and , More preferably, it may be 1: 8 to 1: 10.
  • the molar ratio of the precursor used for shell coating is greater than or less than the above ratio, there is a problem in that uniform shell coating is not achieved.
  • the group II element when a shell is formed from a group II element and a group VI element, the group II element remains unreacted group II element involved in the formation of the active nanocluster, so that the group II element can be included without a separate injection.
  • Step 4-2 is a step of heating the solution in step 4-1 to X° C. for 10 to 30 minutes and reacting for 2 to 4 hours.
  • the range of X temperature is preferably 200°C to 400°C. If it is out of the above temperature range, there is a problem that effective shell coating is not performed.
  • Step 4-3 is a step of cooling to room temperature while blowing the solution in step 4-1 with an inert gas. If the inert gas is not blown, there is a problem that the surface of the quantum dot is oxidized due to the injection of air at a high temperature.
  • the purification step includes step 5-1, step 5-2, and step 5-3.
  • the solution after the shell formation step is placed in a container capable of centrifugation, and for example, an alcohol solvent and a polar solvent (eg, 2-propanol) are added and centrifuged to discard the supernatant to obtain a precipitate.
  • an alcohol solvent and a polar solvent eg, 2-propanol
  • the number of rotations during centrifugation is preferably 1000 rpm to 20000 rpm, for example.
  • Step 5-2 is a step of dissolving the precipitate in an organic solvent such as hexane, toluene, octadecane, and heptane.
  • Step 5-3 is a step of repeating steps 5-1 and 5-2 at least once, and then storing them in a dissolved state in a non-polar solvent.
  • the fifth aspect of the present invention is a group III-V quantum dot synthesized using the active nanocluster according to the first aspect.
  • the fifth side of the quantum dot is a seed containing a group III element and a group V element; And a growth layer including a group III element and a group V element formed on the outer surface of the seed, and a variety of oxidation numbers are applied to at least one of the seed and the growth layer constituting the bandgap control layer. It is a group III-V quantum dot containing an active metal that may have.
  • band gap control layer used in the present invention refers to a layer that has a seed and a growth layer and provides improved half width and light emission efficiency by controlling the band gap.
  • the growth layer is a semiconductor layer grown on the outer surface of the seed, and the growth layer is a III-V semiconductor layer composed of a group III element or a combination thereof and a group V element or a combination thereof, and the group III elements and group V included in the seed It may be made of the same type of semiconductor material as the element, and may contain an active metal. In addition, at least one of the seed and the growth layer should be included in the active metal.
  • the activated active metal precursor may be an active nanocluster including the active metal oxide-carboxylate of Formula 1 described in the first aspect of the present invention.
  • the description of the seed overlapping with the seed disclosed in the third aspect of the present invention will be omitted.
  • the seed may further include additional elements. Additional elements are included in the seed to change the properties of the quantum dot depending on the content. When additional elements such as Al, Ga, Ti, Mg, Na, Li, and Cu are included in the seed, there is an effect of increasing quantum efficiency by reducing surface defects by preventing lattice mismatch.
  • the molar ratio of the group III element of the seed: the additional element may be, for example, 1: 0.2 to 1: 0.8, and preferably 1: 0.3 to 1: 0.6.
  • the molar ratio of the group III element and the additional element of the seed exceeds or is less than the above range, it does not effectively prevent lattice mismatch, and thus there may be no change in quantum efficiency.
  • the growth layer is a semiconductor layer grown on the outer surface of the seed.
  • the growth layer is a group III-V semiconductor layer composed of a group III element or a combination thereof and a group V element or a combination thereof, and the group III element and group V element included in the seed It may be made of the same type of semiconductor material and contains an active metal. The active metal at this time may also be made of the same type as the active metal included in the seed.
  • the active metal When the active metal is alloyed with a group III element or a combination thereof and a group V element or a combination thereof, the active metal serves to stabilize the crystal lattice in the seed and compensate for defects.
  • the molar ratio of the group III element of the bandgap control layer and the active metal of the bandgap control layer may be, for example, 1: 0.2 to 1: 2, preferably 1: 0.2 to 1: 1, more Preferably, it may be 1:0.5 to 1:1.
  • concentration of the active metal exceeds the above range, the growth of the growth layer is suppressed, and it is difficult to control the wavelength of the nanocrystal.
  • the molar ratio of the group III element of the band gap control layer and the group V element of the band gap control layer may be, for example, 1: 0.5 to 1: 2, preferably 1: 0.5 to 1: 1, More preferably, it may be 1:0.6 to 1:1.
  • concentration of the group V element in the bandgap control layer exceeds the above range, the stability of the synthesized quantum dots may be lowered.
  • the thickness of the growth layer included in the bend gap control layer may be, for example, 0.5 nm to 2.5 nm, and preferably 1 nm to 2 nm. If it exceeds the above range, there is a problem of red shifting than the desired wavelength band, and if it is less than the above range, there is a problem that the stability of the quantum dot is deteriorated.
  • the molar ratio of the group III element and the active metal of the bandgap control layer may be, for example, 1:0.2 to 1:2, and preferably 1:0.2. It may be from 1: 1, more preferably from 1: 0.3 to 1: 0.8.
  • concentration of the active metal exceeds the above range, growth of the growth layer is suppressed, and it is difficult to control the wavelength of the nanocrystal, and when the concentration is less than the above range, luminous efficiency may be lowered.
  • the growth layer included in the band gap control layer may further include an additional element. Additional elements are included in the growth layer to change the properties of the quantum dot depending on the content. When the growth layer contains additional elements other than the active metal, for example, Al, Ga, Ti, Mg, Na, Li, and Cu, the growth of the growth layer may be promoted and the emission wavelength may be changed.
  • the shell is formed by surrounding the outer surface of the seed and the growth layer, that is, the band gap control layer.
  • the shell is as described in the second aspect of the present invention.
  • the quantum dot according to this aspect has a light emission wavelength of 500 nm to 650 nm, or 540 nm to 650 nm, for example, and a half width of 50 nm or less, 30 nm to 45 nm, or 34 nm to 45 nm, for example.
  • the method of manufacturing an active metal alloy III-V quantum dot includes a precursor step, a seed formation step, a growth layer formation step, a shell formation step, and a refining step.
  • the step of forming the seed and the step of forming the growth layer may be referred to as a step of forming a band gap control layer.
  • the name of each step is a name given to distinguish each step from other steps, and does not include all the technical meanings of each step.
  • the precursor step is interpreted as a concept separate from the active metal precursor.
  • the precursor step may be a step of preparing an active nanocluster of Formula 1 defined in the second aspect of the present invention.
  • the precursor step is the same as step 1-1, step 1-2, step 1-3, and step 1-4 as described in the second aspect of the present invention, and a detailed description thereof will be omitted.
  • the seed formation step is a step of injecting a group III element precursor and a group V element precursor solution into the precursor solution prepared in the precursor step to form a seed in which an active metal, a group III element, and a group V element are alloyed.
  • the seed formation step may be the same as step 2-1, step 2-2, step 2-2, and step 2-4, and detailed descriptions will be omitted.
  • the growth layer formation step is a step of forming a growth layer on the outer surface of the seed after the seed formation step.
  • the growth layer is a semiconductor layer grown on the outer surface of the seed.
  • the growth layer is a group III-V semiconductor layer composed of a group III element or a combination thereof and a group V element or a combination thereof, and the group III and group V elements included in the seed It may be made of the same type of semiconductor material and contains an active metal. The active metal at this time may also be made of the same type as the active metal included in the seed.
  • the growth layer is formed by injecting a group III element-active metal-group V element (hereinafter referred to as 3-M-5) complex solution to the solution in the seed formation step.
  • 3-M-5 group III element-active metal-group V element
  • the molar ratio of the group III element and the active metal is preferably 1: 0.2 to 1: 0.8, and the molar ratio of the active metal and the group V element is, for example, 1: 1 to 1: 1.5 It is preferable to be.
  • a molar ratio outside the above range there is a problem in that non-uniform quantum dots are synthesized because the growth of the growth layer does not occur evenly.
  • the 3-M-5 complex solution is injected into the solution at temperature B after the seed formation step, and reacted, and the temperature is reduced to temperature C in an inert atmosphere.
  • the range of the C temperature is preferably 130°C to 170°C, for example.
  • the reason for reducing the temperature to the C temperature is to inject the shell precursor, and when the temperature is higher than the above temperature range, uniform shell coating is not formed, and the half width is widened.
  • the 3-M-5 complex solution is a solution in which a group III element, an active metal, and a group V element are mixed, and the preparation method of the 3-M-5 complex solution includes steps 3-1, 3-2, and It includes steps 3-3, 3-4 and 3-5.
  • Step 3-1 is a step of injecting and stirring a group III element precursor, an active metal precursor, and a solvent.
  • any precursor containing a Group III element such as a halogen salt of a Group III element may be used.
  • the group III element is indium
  • the indium precursor is, for example, indium acetylacetonate, indium chloride, indium acetate, trimethyl indium indium
  • Alkyl Indium, Aryl Indium, Indium(III) Myristate, Indium(III) Myristate Acetate and Indium(III) Myristate Acetate and Indium(III) ) Myristate 2 Acetate) may be any one selected from the group consisting of, preferably indium acetylacetonate (Indium(III) acetylacetonate).
  • a compound containing an active metal may be used without limitation, and the active metal is selected from the group consisting of Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, and Ru. At least one or more metals to be used may be used.
  • the active metal is Zn
  • zinc acetate, Zn (acac) (Zn (acetylacetonate)) or the like may be used. In this case, there is an advantage in that In-Zn carboxylate is easily synthesized when an acac-based precursor is used than zinc acetate (Zn acetate).
  • the solvent of step 3-1 is, for example, 2,6,10,15,19,23-hexamethyltetracoic acid (Squalane), 1-octadecene (ODE), trioctylamine (TOA), tributylphosphine It may be at least one selected from the group consisting of oxide, octadecene, octadecylamine, trioctylphosphine (TOP), and trioctylphosphine oxide (TOPO).
  • Squalane 2,6,10,15,19,23-hexamethyltetracoic acid
  • ODE 1-octadecene
  • TOA trioctylamine
  • tributylphosphine It may be at least one selected from the group consisting of oxide, octadecene, octadecylamine, trioctylphosphine (TOP), and trioctylphosphine oxide (TOPO
  • Step 3-2 is a step of reacting for 50 to 100 minutes after raising the temperature to ⁇ temperature for 5 to 20 minutes while decompressing the solution of step 3-1.
  • ⁇ temperature may be, for example, 100 °C to 150 °C, is preferably 110 °C to 130 °C.
  • the reason for raising the temperature and reducing the pressure in this step is to remove a small amount of impurities remaining in the precursor and simultaneously synthesize In-Zn carboxylate. If the temperature is higher than the above temperature range, the concentration of the solvent may change due to a different amount of the solvent. If the temperature is lower than the above temperature, impurities may not be properly removed.
  • Step 3-3 is a step of replacing the solution of step 3-2 with an inert atmosphere and then raising the temperature to ⁇ temperature.
  • the ⁇ temperature is preferably around 250°C to 300°C in consideration of the reactivity of the group V precursor to be added later for instant seed generation.
  • Step 3-4 is a step of injecting a group V element precursor solution into the solution of step 3-3 and reacting for 10 to 100 minutes at room temperature (25°C). This room temperature condition is to prevent In-Zn-P from becoming particles due to the high reactivity of the group V element precursor.
  • the Group V element precursor solution in Step 3-3 contains a Group V element precursor and a solvent.
  • Group V element precursors are, for example, organometallics such as tris(trimethylsilyl)phosphine (TMSP), amino phosphine, white phosphorus, tri(pyrazolyl)phosphane), and calcium phosphide. Organometallic phosphorus can be used.
  • an alkylphosphine-based surfactant can be added to the group V element precursor solution, and when used together, a new organic complex is formed by combining the group V element and the alkylphosphine-based surfactant.
  • the reaction is possible, making it more suitable for mass production.
  • the size of the quantum dots may be adjusted according to the type of the alkylphosphine surfactant.
  • An alkylphosphine surfactant can be added to the group V element precursor solution, and when used together, a new organic complex is formed by combining the group V element and the alkylphosphine surfactant, thereby enabling a more stable reaction and mass production. Becomes more suitable for The size of the quantum dots may be adjusted according to the type of the alkylphosphine surfactant.
  • the alkylphosphine-based surfactant is not limited thereto, but triethyl phosphine, tributyl phosphine, trioctyl phosphine, triphenyl phosphine, and triphenyl phosphine. It may be one or more selected from the group consisting of cyclohexyl phosphine.
  • the solvent for the group V element precursor solution may be, for example, TOP, TBP, ODE, amines (primary amine, secondary amine, third amine), etc., and the molar concentration of the group V element precursor solution is 0.001M to 2M Is preferred.
  • the molar ratio of the group III element and the active metal is 1:0.2 to 1:0.8. Preferably, it may be 1:0.3 to 1:0.6. If the molar ratio of the group III element and the active metal does not satisfy the above range, it may not be able to effectively prevent lattice mismatch and thus provide a change in quantum efficiency.
  • the molar ratio of the active metal to the group V element is preferably 1:1 to 1:1.5, for example. In the case of a molar ratio outside the above range, there may be a problem in that non-uniform quantum dots are synthesized because the growth of the growth layer does not occur evenly.
  • the additional elements included in the growth layer may be separately included, or additional elements in which the additional elements included during seed formation may be unreacted may be included.
  • additional elements when an additional element is to be injected into the growth layer, 1) a precursor containing the additional element is injected before the growth layer is injected, or 2) a seed is formed with a group V element.
  • An example of the latter is a method of forming a seed by mixing a GaCl3-toluene solution with a TOP-TMSP solution.
  • the shell formation step is a step of forming a shell on the surface of the growth layer after the growth layer formation step.
  • the shell forming step includes steps 4-1, 4-2, and 4-3.
  • the shell forming step may be the same as step 4-1, step 4-2, and step 4-3 as described in the fourth aspect of the present invention, and a detailed description thereof will be omitted.
  • the purification step includes step 5-1, step 5-2, and step 5-3.
  • the refining step may also be the same as step 5-1, step 5-2, and step 5-3, as described in the fourth aspect of the present invention, and a detailed description will be omitted.
  • Tris (trimethylsilyl) phosphine Tris (trimethylsilyl) phosphine, TMSP was injected into the solution, and the solution thus prepared is referred to as an In-Zn-P complex solution.
  • InZnP@ZnSeS quantum dots were prepared as follows using the Zn-OXO activated nanocluster solution synthesized in Example 1.
  • TMSP tris(trimethylsilyl)phosphine
  • the above InZnP seed was reacted by injecting a TOP-Se solution in which selenium was dissolved in trioctylphosphine as a shell material and a TOP-S solution in which sulfur was dissolved in trioctylphosphine.
  • the obtained quantum dots were put in acetone or ethanol and centrifuged.
  • InZnP/InZnP growth@ZnSeS quantum dots were prepared as follows using the Zn-OXO activated nanocluster solution synthesized in Example 1.
  • TMSP tris(trimethylsilyl)phosphine
  • the prepared InZnP/InZnP quantum dot solution was reacted by injecting a TOP-Se solution in which selenium was dissolved in trioctylphosphine as a shell material and a TOP-S solution in which sulfur was dissolved in trioctylphosphine.
  • InZnGaP@ZnSeS quantum dots were prepared as follows using the Zn-OXO activated nanocluster solution synthesized in Example 1.
  • the above InZnP seed was reacted by injecting a TOP-Se solution in which selenium was dissolved in trioctylphosphine as a shell material and a TOP-S solution in which sulfur was dissolved in trioctylphosphine.
  • the obtained quantum dots were put in acetone or ethanol and centrifuged.
  • Example 7 InZnGaP/InZnP growth@ZnSeS quantum dots using Zn-OXO>
  • InZnGaP/InZnP growth@ZnSeS quantum dots were prepared as follows.
  • the prepared InZnGaP/InZnP quantum dot solution was reacted by injecting a TOP-Se solution in which selenium was dissolved in trioctylphosphine as a shell material and a TOP-S solution in which sulfur was dissolved in trioctylphosphine.
  • InZnP@ZnSeS quantum dots were prepared in the same manner as in Example 4 using the active nanocluster solution synthesized in Example 1. At this time, the concentration of each precursor was all the same as in Example 1 except that the concentration of In: 0.1 mmol, Zn: 0.25 mmol.
  • InZnP@ZnSeS quantum dots were prepared in the same manner as in Example 4 using the active nanocluster solution synthesized in Example 1. At this time, the concentration of each precursor was the same as in Example 1, except that the concentration of In: 0.1 mmol, Zn: 6.25 mmol.
  • a quantum dot including a band gap control layer was prepared in the same manner as in Example 5, except that an In-P composite solution without Zn acetate was prepared and used in the In-Zn-P composite solution of Example 3.
  • Example 11 InZnP/InZnP growth@ZnSeS quantum dots using Zn-OXO>
  • a band gap control layer was included in the same manner as in Example 5, except that 2.5 mmol of Zn acetate was added to the In-Zn-P composite solution of Example 3 instead of 0.5 mmol to prepare an In-Zn-P composite solution. Quantum dots were prepared.
  • Quantum dots were prepared in the same manner as in Example 4, except that the active nanocluster solution of ⁇ Zn-OXO> in Example 4 was replaced with the zinc oleate solution synthesized in Comparative Example 1.
  • Quantum dots were prepared in the same manner as in Example 5, except that the active nanocluster solution of ⁇ Zn-OXO> in Example 5 was replaced with the zinc oleate solution synthesized in Comparative Example 1.
  • Quantum dots were prepared in the same manner as in Example 6, except that the active nanocluster solution of ⁇ Zn-OXO> in Example 6 was replaced with the zinc oleate solution synthesized in Comparative Example 1.
  • Quantum dots were prepared in the same manner as in Example 7, except that the active nanocluster solution of ⁇ Zn-OXO> in Example 7 was replaced with the zinc oleate solution synthesized in Comparative Example 1.
  • Figure 2 specifically shows the weight change according to the activation of the active metal precursor (Zn (oleate) 2 ), when activated, at 1683 m/z and 3020 m/z as in the red graph as well as 975 m/z shown in the existing black graph. Peaks are formed, and as a result of analyzing the 1683m/z and 3020m/z peaks at this time, it was found that they correspond to Zn 4 O (carboxylate) 6 and Zn 7 O 2 (carboxylate) 10 . From this, it was confirmed that active nanoclusters were synthesized by activating the active metal precursor.
  • the active metal precursor Zn (oleate) 2
  • Example 4 The quantum dots of Example 4 and the quantum dots of Comparative Example 2 were prepared, and UV and PL spectra were measured and shown in FIG. 4.
  • UV and PL spectra of the seed of the quantum dots of Example 4 of the present invention and the seed of the quantum dots of Comparative Example 2 were measured and shown in FIG. 3.
  • Figure 4 is a graph obtained by measuring the UV and PL spectrum by preparing the quantum dot of Example 4 and the quantum dot of Comparative Example 2 of the present invention.
  • Example 4 had quantum dots having a smaller size and uniformity and high quantum efficiency compared to Comparative Example 2 due to the use of active nanoclusters.
  • Example 5 The quantum dots of Example 5 and the quantum dots of Comparative Example 3 were prepared, and UV and PL spectra were measured and shown in FIG. 5.
  • FIG. 6 a graph measuring the PL spectrum of each step of seed, growth, and shell formation is shown in FIG. 6.
  • Example 5 due to the use of active nanoclusters, quantum dots including a bandgap control layer having a smaller size and uniformity and an improved half-value width compared to Comparative Example 3 were prepared.
  • the quantum dots obtained by Examples 4 to 7 and the quantum dots obtained by Comparative Examples 2 to 5 were dissolved in Toluene, respectively, and analyzed by light irradiation at a wavelength of 450 nm using Otsuka Electronics QE-2000 [luminescence Wavelength peak (Emission peak), quantum efficiency (Quantum Yield), full width at half maximum (FWHM)] was confirmed.
  • the measurement results are shown in Table 1 and FIGS. 4 to 6.
  • the quantum dots of Examples 4 to 7 using an active nanocluster have a narrow half width compared to the quantum dots of Comparative Examples 2 to 5 using zinc oleate instead of the active nanocluster, and have excellent luminous efficiency. .
  • the half width was significantly improved compared to the quantum dots of Comparative Example 2, which did not contain additional elements and used zinc oleate instead of the active nanocluster. Has increased. That is, when the active nanocluster was used, it was confirmed that the half width was remarkably improved and the luminous efficiency was increased.
  • both the quantum dots of Example 4 and the quantum dots of Comparative Example 2 showed emission maximums of 500 nm to 550 nm, of which, in the case of Example 4, the emission maximum shifted to the right compared to the quantum dots of Comparative Example 2 It was confirmed that the half width and luminous efficiency were also improved.
  • the quantum dots of Example 6 containing an additional element and using an active nanocluster according to the present invention have a narrow half width compared to the quantum dots of Comparative Example 4 that contain the additional element and use zinc oleate instead of the active nanocluster, and have excellent light emission. Showed efficiency.
  • Example 7 contains an additional element, and looking at the measurement results, the luminous efficiency is slightly improved. Can be confirmed.
  • Example 7 contains an additional element, and the measurement results show that the luminous efficiency is slightly improved. I can confirm.
  • the measurement results are shown in Table 2.
  • Example 4 1:8 530 39 94
  • Example 8 1:1 545 45 20
  • Example 9 1:25 527 43 80
  • the measurement results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명에 개시된 기술은 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터 및 이의 제조방법을 제공한다.

Description

Ⅲ-Ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법
본 발명은 Ⅲ―Ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법에 관한 것이다.
양자점(quantum dot, QD)이란 3차원적으로 제한된 크기를 가지는 반도체성 나노크기 입자로서, 벌크(bulk) 상태에서 반도체성 물질이 갖고 있지 않은 우수한 광학적, 전기적 특성을 나타낸다. 예를 들면, 양자점은 같은 물질로 만들어지더라도 입자의 크기에 따라서 방출하는 빛의 색상이 달라질 수 있다. 이와 같은 특성에 의해 양자점은 차세대 고휘도 발광 다이오드(light emitting diode, LED), 바이오센서(bio sensor), 레이저, 태양전지 나노소재 등으로 주목받고 있다.
또한, 양자점은 일반적으로 사용되고 있는 유기물질 계열의 형광 염료(fluorescent dye)와 비교하여 다양한 장점을 가지고 있다. 크기 조절에 의한 양자제한 효과를 통하여 동일 조성의 양자점에서 다양한 스펙트럼을 방출할 수 있으며, 유기물질의 염료와 비교하여 ~80%의 매우 높은 양자효율과 색 순도가 매우 우수한 발광 스펙트럼의 확보가 가능하다. 아울러 양자점은 무기물 계열의 반도체 조성이므로 유기물 계열의 형광 염료와 비교하여 100배~1000배 정도로 우수한 광 안정성을 가질 수 있다.
주기율표 상에서 Ⅱ족의 원소와 Ⅵ족의 원소들로 구성되는 Ⅱ―Ⅵ족 화합물 반도체 조성을 이용한 양자점은 높은 발광효율과 광안정성, 가시영역의 빛을 낼 수 있는 소재로서 현재까지 가장 많은 연구가 진행되어 왔다.
대표적인 Ⅱ―Ⅵ족 화합물 반도체 양자점에 대한 연구는 높은 발광효율 및 안정성 등의 이점으로 많은 주목을 끌며 진행되어 왔지만, Cd2+ 및 Se2- 등을 함유하고 있어 환경 유해성 및 독성 차원에서 심각한 문제점이 야기될 뿐만 아니라, 바이오 분야로 응용할 경우 인체에 유해한 영향을 미칠 수 있으므로 최근에는 Ⅱ―Ⅵ족 양자점을 대체할 수 있는 Ⅲ―Ⅴ계의 화합물 반도체 양자점이 많이 연구되고 있다.
그러나 통상적인 Ⅲ―Ⅴ족 반도체 나노 결정은 전구체부터 수득된 나노 결정에 이르기까지 산소와 수분에 민감한 영향을 받고 합성 과정 또한 단순하지 않다.
또한, 나노 결정의 성장 속도 조절이 용이하지 않아 발광 파장 영역이 제한적이며, 다양한 크기 분포로 인하여 색 순도가 낮기 때문에 발광 소자로의 응용에 제한적이었다. 따라서, 산소와 수분에 대한 민감도를 낮출 수 있는 새로운 재료에 대한 개발이 요구되고 있다. 또한, 나노 결정의 성장 속도를 제어할 수 있고, 균일한 크기로 성장시킬 수 있는 기술 개발이 절실히 요구되고 있다.
선행기술문헌
(특허문헌 1) 대한민국 등록특허 제10-1462658호 (등록일 2014.11.11)
(특허문헌 2) 대한민국 공개특허 제10-2018-0095955호 (공개일 2018.08.28)
본 발명의 일 측면은 반치폭(FWHM)이 개선되고 높은 양자효율(Quantum Efficiency)을 얻을 수 있는 Ⅲ―Ⅴ계 양자점 합성에 이용되는 활성 나노 클러스터를 제공하는 것을 목적으로 한다.
본 발명의 다른 측면은 전술한 활성 나노 클러스터의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 측면은 활성 나노 클러스터를 이용하여 반치폭(FWHM)이 개선되고 높은 양자효율(Quantum Efficiency)을 가지는 Ⅲ―Ⅴ계 양자점을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 측면은 반치폭(FWHM)이 개선되고 높은 양자효율 (Quantum Efficiency)을 얻을 수 있는 Ⅲ―Ⅴ계 양자점을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 측면은 전술한 Ⅲ―Ⅴ족계 양자점의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 측면에 따르면, 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터를 제공한다.
본 발명의 다른 측면에 따르면, 전술한 활성 나노 클러스터를 포함하는 양자점을 제공한다.
본 발명의 또 다른 측면에 따르면, Ⅲ족원소, Ⅴ족원소 및 다양한 산화수를 가질 수 있는 활성금속을 포함하고, 상기 Ⅲ족원소와 상기 활성금속의 몰 비가 1 : 3 내지 1 : 30인 시드를 가지는 Ⅲ―Ⅴ족계 양자점을 제공한다.
본 발명의 또 다른 측면에 따르면, 활성금속-카르복실레이트를 열분해하여 얻어지는 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터를 형성하는 전구체단계; 및 상기 전구체단계에서 제조된 전구체용액에 Ⅲ족원소 전구체 및 Ⅴ족원소 전구체 용액을 주입하여 활성금속과 Ⅲ족원소 및 Ⅴ족원소가 합금된 시드를 형성하는 시드형성단계;를 포함하는 Ⅲ―Ⅴ족계 양자점의 제조방법을 제공한다.
본 발명의 또 다른 측면에 따르면, Ⅲ족원소 및 Ⅴ족원소를 포함하는 시드; 및 상기 시드의 외면에 형성되는 Ⅲ족원소, Ⅴ족원소를 포함하는 성장층; 을 포함하는 밴드갭 제어층을 가지고, 상기 밴드갭 제어층을 구성하는 상기 시드 또는 성장층 중 적어도 하나에 다양한 산화수를 가질 수 있는 활성금속을 포함하는 Ⅲ―Ⅴ족계 양자점을 제공한다.
본 발명의 또 다른 측면에 따르면, Ⅲ족원소, Ⅴ족원소, 다양한 산화 수를 가질 수 있는 활성금속을 포함하고, Al, Ga, Ti, Mg, Na, Li 및 Cu로 구성되는 군에서 선택되는 하나 이상의 추가원소가 도핑된 시드를 가지며, 상기 양자점은 발광파장이 500nm 내지 650nm이고, 반치폭은 50nm 이하인 Ⅲ―Ⅴ족계 양자점을 제공한다.
본 발명의 또 다른 측면에 따르면, Ⅲ족원소, Ⅴ족원소, 다양한 산화 수를 가질 수 있는 활성금속을 포함하고, Al, Ga, Ti, Mg, Na, Li 및 Cu로 구성되는 군에서 선택되는 하나 이상의 추가원소가 포함된 시드를 가지는 Ⅲ―Ⅴ족계 양자점으로서, 상기 활성금속의 원료물질은 하기 화학식 1으로 나타내는 화합물을 포함하는 활성 나노클러스터 용액인 Ⅲ―Ⅴ족계 양자점을 제공한다.
[화학식 1] TxOy(Carboxylate)z
상기 화학식 1에서, T는 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru 및 이들의 조합으로 이루어진 군에서 선택되고, x, y, z는 자연수이며, x>y이다.
본 발명의 또 다른 측면에 따르면, 활성금속-카르복실레이트를 열분해하여 얻어지는 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터를 형성하는 전구체단계; 및 상기 전구체단계에서 제조된 전구체용액에 Ⅲ족원소 전구체, Ⅴ족원소 전구체 및 Al, Ga, Ti, Mg, Na, Li 및 Cu로 구성되는 군에서 선택되는 하나 이상의 추가원소를 포함한 용액을 주입하여 활성금속과 Ⅲ족원소 및 Ⅴ족원소가 합금되고, 상기 추가원소가 포함된 시드를 형성하는 시드형성단계;를 포함하는 Ⅲ―Ⅴ족계 양자점의 제조방법을 제공한다.
본 발명의 일 측면에 따른 활성 나노 클러스터는 효율적으로 양자점을 형성하며 양자점의 성장이 빠르게 포화되는 것을 억제하여 반치폭을 개선시키고 양자효율을 증대시키는 효과가 있다.
본 발명의 다른 측면에 따른 활성 나노 클러스터는 활성금속-카르복실레이트를 가열하여 일정 시간 열분해함으로써 효과적으로 제조될 수 있다.
또한, 본 발명의 다른 측면에 따른 Ⅲ―Ⅴ계 양자점은 급격한 전구체 고갈을 억제하여 반치폭(FWHM)이 개선되고 높은 양자효율(Quantum Efficiency)을 가지게 된다.
또한, 본 발명의 다른 측면에 따른 Ⅲ―Ⅴ계 양자점의 제조방법은 간단한 열분해를 통해 반응성 높은 반응 매개를 합성함으로써 종래의 고효율 양자점을 합성하기 위한 방법보다 대량 생산에 보다 적합하다는 장점이 있다.
또한, 본 발명의 다른 측면에 따른 Ⅲ―Ⅴ족계 양자점은 Al, Ga, Ti, Mg, Na, Li, Sn 및 Cu로 구성되는 군에서 선택되는 하나 이상의 추가원소를 포함한 용액을 주입하여 격자 불일치를 줄이고, 시드 내부의 표면결함을 제어함으로써 반치폭(FWHM)을 개선시키고 양자효율(Quantum Efficiency)을 증대시키는 효과가 있다.
도 1은 본 발명의 일 측면에 따른 활성 나노 클러스터의 제조방법을 나타내는 모식도이다.
도 2는 본 발명의 일 측면에 따른 활성 나노 클러스터를 확인하기 위하여 실시예 1에서 제조한 용액으로부터 MALDI-TOP(Matris Assisted Laser Desorption-Time of Flight) 데이터를 구하여 도시한 그래프이다.
도 3은 본 발명의 실시예 4의 양자점 중 시드와 비교예 2의 양자점 중 시드에 대한 UV 및 PL spectrum을 측정한 그래프이다.
도 4는 본 발명의 실시예 4의 양자점과 비교예 2의 양자점을 제조하여 UV 및 PL spectrum을 측정한 그래프이다.
도 5는 본 발명의 실시예 5의 양자점과 비교예 3의 양자점을 제조하여 PL spectrum을 측정한 그래프이다.
도 6은 본 발명의 실시예 5의 양자점에 있어 시드, 성장층, 쉘 형성 단계별 PL spectrum을 측정한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 활성 나노 클러스터 및 양자점의 제조방법을 상세하게 설명하면 다음과 같다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 도면에서 나타낸 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
본 발명에서 "활성금속 전구체"란 활성금속을 반응시키기 위하여 미리 제조되는 화학물질로, 활성금속을 포함하는 모든 화합물을 지칭하는 개념이다.
<본 발명의 제1측면>
본 발명의 제1측면은 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터이다. 본 발명에서 활성금속이란 양자점 제조시에 시드, 활성층, 쉘 등에 포함되어 반치폭이 개선되고 양자효율의 향상에 기여하는 활성을 가진 금속산화물-카르복실레이트에서의 금속으로 사용될 수 있는 금속을 지칭한다.
활성금속은 다양한 산화 수를 가질 수 있는 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru 및 이들의 조합이 이루는 군에서 선택되는 적어도 하나가 사용될 수 있다.
또한, 상기 활성금속산화물은 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru 및 이들의 조합으로 이루어진 군에서 선택되는 활성금속의 산화물이며, 본 발명에서 활성 나노클러스터는 상기 활성금속산화물이 단독 또는 둘 이상을 혼합하여 포함할 수 있다.
본 발명에서 "클러스터(cluster)"란 단일 원자, 분자 또는 다른 종류의 원자가 수백 내지 수천 개 이내로 뭉쳐 있거나 결합되어 있는 입자를 의미한다. 이러한 클러스터의 입자 평균입경은 일례로 1.5nm 이하인 것이 바람직하고, 평균입경의 하한치는 0.5nm인 것이 양자점의 성장이 빠르게 포화되는 것을 억제할 수 있어 보다 바람직하다.
활성 나노 클러스터는 활성금속산화물-카르복실레이트를 포함한다. 이 때, 활성금속산화물-카르복실레이트는 하기 화학식 1로 나타내는 화합물을 포함한다.
[화학식 1] TxOy(Carboxylate)z
상기 식에서, T는 활성금속이고, 카르복실레이트(Carboxylate)는 카르복실산의 염이나 에스테르로서, 카르복실산의 염은 일반식 M(RCOO)n을 가지며, 카르복실레이트 에스테르는 RCOOR'의 일반식을 가지고, M은 금속이고, n은 자연수이며, R과 R'는 수소가 아닌 유기그룹이다.
이 때, x, y, z는 자연수이고, x>y이고, x+y=z 또는 2x=2y+z이다.
또한, 상기 활성금속산화물-카르복실레이트는 x의 값이 서로 상이한 2종 이상의 활성금속산화물을 포함할 수 있다.
예를 들어, 상기 서로 상이한 2종 이상의 활성금속산화물의 x의 값이 2 내지 10일 수 있다.
상기 x값이 서로 상이한 2개 이상의 활성금속산화물은 x+y=z의 관계를 각각 만족할 수 있다. 일례로, Zn4O(carboxylate)5, Zn7O2(carboxylate)9 등을 포함할 수 있다.
상기 x값이 서로 상이한 2개 이상의 활성금속산화물은 2x=2y+z의 관계를 각각 만족할 수 있다. 일례로, Zn4O(carboxylate)6, Zn7O2(carboxylate)10 등을 포함할 수 있다.
본 발명에서 사용하는 용어 “활성 나노클러스터”는 활성금속산화물-카르복실레이트를 칭한다.
참고로, 상기 활성금속산화물은 활성금속 전구체와 카르복실산을 반응시켜 활성금속-카르복실레이트를 합성하고, 이를 열분해하여 활성금속산화물-카복실레이트의 형태를 거쳐 활성금속산화물의 입자 형태로 모두 전환되므로 이러한 활성금속산화물을 통상 사용하게 된다.
한편, 본 발명에서는 상기 열분해 온도의 다단 제어를 통해 활성금속산화물-카복실레이트를 포함하는 용액(이하, 활성 나노클러스터 용액이라고 함)을 형성하고, 해당 활성 나노클러스터 용액을 활성금속산화물의 원료물질로 사용하는 것에 하나의 기술적 특징을 제공할 수 있다.
종래와 달리, 상기 활성 나노클러스터 용액을 사용함에 따라 III족원소와 V족원소간 합금 결합을 가지는 양자점을 제조할 수 있으며, 그 결과 반치폭(FWHM)이 개선되고 양자효율 (Quantum Efficiency)을 높이고, 양자점의 성장이 빠르게 포화되는 것을 억제하여 효율적으로 양자점을 성장시키는 효과를 제공할 수 있다.
이 때, 활성 나노클러스터 용액은 상기 활성금속산화물-카르복실레이트와 활성금속-카르복실레이트를 포함한다.
일례로, 활성금속으로 아연을 사용한 예를 들어보면, 활성금속 전구체인 Zn acetate와 carboxylate로서 올레익산의 반응에 의해 Zn oleate가 우선 합성된다. 이를 2단계의 온도제어에 의해 열분해시키면 Zn4O(carboxylate)5, Zn7O2(carboxylate)9, Zn4O(carboxylate)6, Zn7O2(carboxylate)10과 같은 활성 나노클러스터가 합성되며 최종 반응물로서 ZnO나노파티클을 수득하게 된다. 따라서 Zn oleate가 모두 ZnO 나노파티클로 변환되기에 앞서 활성 나노클러스터로서 활성금속산화물-카복실레이트는 용액 내에 미반응 Zn oleate(전술한 활성금속-카르복실레이트에 해당)가 혼합된 상태로 존재하게 된다.
실제로, 활성 나노클러스터 용액에 포함되는 활성금속산화물-카르복실레이트와 활성금속-카르복실레이트의 함량 비는 활성금속 전구체의 활성화에 따른 무게 변화를 측정하여 확인할 수 있다. 일례로, MALDI-TOP(Matris Assisted Laser Desorption-Time of Flight)를 이용하여 측정한 결과를 나타낸 도 2를 참조하면, 활성화시 기존의 검은색 그래프에서도 나타나는 975m/z 뿐만 아니라 빨간색 그래프처럼 1683m/z, 3020m/z에서 피크를 확인할 수 있으며, 각 피크를 적분해서 넓이를 비교해서 존재비를 계산한 결과, 전체 피크 중에서 Zn4O(carboxylate)6, Zn7O2(carboxylate)10을 각각 나타내는 1683m/z, 3020m/z 피크가 차지하는 Mass 분포가 80% 정도인 것으로 확인되었다.
즉, 본 측면에서 활성금속산화물-카르복실레이트는 활성금속-카르복실레이트보다 매스분포가 더 높고, 바람직하게는 60 : 40 내지 99:1의 비로 포함된다.
즉, 상기 활성 나노클러스터는 양자점 제조시 반치폭(FWHM)이 개선되고 양자효율 (Quantum Efficiency)을 높이게 된다. 또한, 양자점의 성장이 빠르게 포화되는 것을 억제하여 효율적으로 양자점이 성장하게 된다. 즉, 양자점의 반치폭은 일례로 50nm 이하, 바람직하게는 30nm 내지 45nm, 보다 바람직하게는 34nm 내지 45nm이다.
<본 발명의 제2측면>
본 발명의 제2측면은 본 발명은 활성금속-카르복실레이트를 사용하여 얻어지는 활성금속산화물-카르복실레이트를 포함하는 활성 나노클러스터의 제조방법을 나타낸다.
다시 말해, 활성 나노 클러스터는 활성금속 전구체를 카르복실산과 반응시켜 활성금속산화물-카르복실레이트를 제조한 후 이를 열분해하여 제조된다. 구체적으로 제조방법은 제1-1 단계, 제1-2단계, 제1-3단계 및 제1-4단계를 포함한다. 각 단계의 명칭은 각 단계를 다른 단계와 구별하기 위하여 부여한 명칭으로 각 단계의 기술적인 모든 의미를 포함하는 것은 아니다.
상기 제1-1단계는 활성금속 전구체와 카르복실산을 혼합하여 감압시키는 단계이다.
활성금속 전구체는 예를 들면, 활성금속이 아연인 경우 디메틸 아연(dimethyl zinc), 디에틸 아연(diethyl zinc), 아연 아세테이트(Zinc acetate), 아연 아세테이트 이수화물(Zinc acetate dihydrate), 아연 아세틸아세토네이트 (Zinc acetylacetonate), 아연 아세틸아세토네이트 수화물(Zinc acetylacetonate hydrate), 아연 아이오다이드(Zinc iodide), 아연 브로마이드(Zinc bromide), 아연 클로라이드(Zinc chloride), 아연 플루오라이드(Zinc fluoride), 아연 플루오라이드 사수화물(Zinc fluoride tetrahydrate), 아연 카보네이트(Zinc carbonate), 아연 시아나이드(Zinc cyanide), 아연 나이트레이트(Zinc nitrate), 아연 나이트레이트 육수화물(Zinc nitrate hexahydrate), 아연 옥사이드(Zinc oxide), 아연 퍼옥사이드(Zinc peroxide), 아연 퍼클로레이트(Zinc perchlorate), 아연 퍼클로레이트 육수화물(Zinc perchlorate hexahydrate), 아연 설페이트(Zinc sulfate), 디페닐 아연(Diphenyl zinc), 아연 나프탈레이트(Zinc naphthenate), 아연 올레이트(Zinc oleate) 및 아연 스테아레이트(Zinc stearate)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
이에 활성금속이 아연이 아닌 경우도 동일하게 적용될 수 있다.
카르복실산은 활성금속 전구체와 반응하여 활성금속-카르복실레이트를 만들기 위해 필요하며, 팔미트산, 미리스테이트산, 올레익산, 스테아릭산 등이 사용될 수 있다.
상기 제1-1단계에서 활성금속 전구체와 카르복실산은 일례로 1:1 내지 1:3의 몰 비로 혼합하여 혼합용액으로 제조한다. 상기 범위를 벗어나는 경우 미반응된 여분의 염 혹은 산이 의도하지 않게 이후 공정에 참여할 수 있는 문제점이 발생한다.
이 때, 감압되는 압력은 일례로 100 torr 내지 0.001 torr가 바람직하다. 상기 범위를 벗어나는 경우 불순물 혹은 추가 생성된 생성물의 제거가 원활하지 않다는 문제점이 발생한다.
제1-2단계는 제1-1단계 후의 혼합용액을 제1온도로 승온한 뒤 혼합용액을 1차 반응시키는 단계이다. 제1온도의 범위는 사용하는 카르복실산의 종류에 따라 상이하지만, 일례로 상온(25℃) 내지 200℃가 바람직하다. 이 때 압력은 그대로 유지된다. 또한 이 때 승온시간은 일례로 10분 내지 1시간이고, 반응시간은 일례로 10분 내지 3시간이 바람직하다.
제1-3단계는 제1-2단계 후의 혼합용액을 제1온도보다 높은 제2 온도로 승온한 뒤 혼합용액을 2차반응시키는 단계이다. 제2온도의 범위는 일례로 200℃ 내지 500℃ 범위 내일 수 있고, 상기 제1 온도보다 높은 온도인 것이 바람직하다. 이 때 압력은 그대로 유지된다. 또한 이 때 승온시간은 일례로 10분 내지 1시간이고, 반응시간은 일례로 10분 내지 3시간이 바람직하다.
제1-4단계는 불활성 분위기 하에서 혼합용액을 용매에 주입한 후 제3 온도로 온도를 낮추는(감온) 단계이다. 상기 용매는 혼합용액의 농도를 조절하기 위한 것으로, 배위성 용매 및 비배위성 용매 모두 가능하며, 일반적으로 옥타데센이 사용될 수 있다. 제3 온도의 범위는 상온일 수 있고, 압력은 상압을 유지할 수 있다. 감온 시간은 20분 내지 2시간이 바람직하다.
제1-4단계 후에 [화학식 1] TxOy(Carboxylate)z를 포함하는 활성 나노 클러스터 용액이 제조된다. 도 1은 본 실시예의 활성 나노 클러스터가 생성되는 모식도이다. 이에 따르면, 활성금속 전구체와 카르복실산을 반응시켜 얻은 고체 상태의 활성금속-스테아레이트를 140℃에서 녹이고, 이후 320℃에서 활성화시켜 활성 나노 클러스터를 형성한 것을 확인할 수 있다.
본 발명은 활성 나노클러스터를 사용하여 양자점을 제조할 수 있다. 상기 양자점은 시드 및 쉘을 포함하고 이때 쉘은 선택적으로 포함될 수 있으며, 시드는 전술한 활성 나노클러스터에서 유래한 활성금속이 합금화되어 포함된다.
다른 측면에서, 본 발명은 활성 나노클러스터의 제조방법을 사용하여 활성 나노클러스터를 제조할 수 있고, 이를 통해 양자점을 제조할 수 있다.
<본 발명의 제3측면>
본 발명의 제3측면은 제1측면에 따른 활성 나노 클러스터를 이용하여 합성된 Ⅲ―Ⅴ족계 양자점이다.
제3측면의 양자점은 시드 및 쉘을 포함한다. 이 때 쉘은 선택적으로 포함될 수 있으며, 시드에 전술한 활성 나노 클러스터에서 유래한 활성금속이 합금화되어 포함된다.
여기서 상기 활성금속은 다양한 산화 수를 가질 수 있는 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru 및 이들의 조합이 이루는 군에서 선택되는 적어도 하나가 사용될 수 있다.
본 발명에서 상기 시드는 상기 Ⅲ족원소 : 활성금속의 몰 비는 일례로 1 : 3 내지 1 : 30일 수 있고, 바람직하게는 1:3 내지 1:20일 수 있고, 더욱 바람직하게는 1 : 4 내지 1 : 15일 수 있고, 보다 바람직하게는 1 : 5 내지 1 : 10일 수 있다. 활성금속의 농도가 상기 범위를 초과하는 경우 양자점의 생장이 제한되는 문제점이 있고, 상기 범위 미만에서는 생장이 빠르게 포화되고 결정 격자의 안정성이 떨어져 양자점의 효율이 떨어지는 문제가 있다.
활성화된 활성금속 전구체는 본 발명의 제1 측면에서 설명한 화학식 1의 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터일 수 있다.
시드는 Ⅲ족원소인 Al, Ga, In, Ti 또는 이들의 조합과 V족원소인 P, As, Sb, Bi 또는 이들의 조합된 물질, 예를 들면, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, InGaP 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, GaAlNP, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택된 물질에 활성금속이 합금화되어 있다.
활성금속은 Ⅲ족원소 또는 그 조합, V족원소 또는 그 조합과 합금화될 때 시드 내에서 결정 격자를 안정화시키고 결함을 보완하는 역할을 하는 것으로 보인다. 이 때, 활성금속은 활성 나노 클러스터 유래의 활성금속이다.
또한 시드의 Ⅲ족원소와 V족원소의 몰 비는 일례로 1 : 0.5 내지 1 : 1.2일 수 있고, 바람직하게는 1 : 0.7 내지 1 : 1일 수 있다. Ⅲ족원소와 V족원소의 몰 비가 상기 범위를 초과하는 경우 원하는 파장대의 양자점을 얻기 힘들다는 문제가 있고, 상기 범위 미만인 경우 고른 생장이 억제된다는 문제가 있다.
추가적으로 시드에는 추가원소를 포함할 수 있다. 추가원소는 시드 내에 포함되어 함량에 따라 양자점의 특성을 변화시킨다. 시드에 추가원소, 예를 들면, Al, Ga, Ti, Mg, Na, Li, Cu 등의 원소가 포함되는 경우 격자불일치를 막아 표면 결함을 줄여 양자효율을 높이는 효과가 있다.
이 때 시드의 Ⅲ족원소 : 추가원소의 몰 비는 일례로 1 : 0.2 내지 1 : 0.8일 수 있고, 바람직하게는 1 : 0.3 내지 1 : 0.6일 수 있다. 시드의 Ⅲ족원소와 추가원소의 몰 비가 상기 범위를 초과하거나 미만인 경우 효과적으로 격자 불일치를 막아주지 못아 양자효율의 변화가 없을 수 있다.
쉘은 시드의 외면을 감싸며 형성된다. 쉘은 Ⅱ-Ⅵ족 반도체, Ⅲ-V족 반도체 및 Ⅳ-Ⅵ족 반도체 물질로 이루어지는 군에서 선택되는 하나일 수 있다. 쉘은 시드 외면을 코팅함으로써 나노 결정의 표면 결함을 방지하여 안정성을 증가시킬 수 있다.
Ⅱ족원소로는 Zn, Cd, Hg, Mg 또는 이들의 조합으로 이루어지는 군에서 하나가 사용될 수 있으며, Ⅲ족원소로는 Al, Ga, In, Ti 또는 이들의 조합으로 이루어지는 군에서 선택되는 하나가, 그리고 Ⅳ족원소로는 Si, Ge, Sn, Pb 또는 이들의 조합으로 이루어지는 군에서 선택되는 하나가 사용될 수 있으며, Ⅵ족원소로는 O, S, Se, Te 또는 이들의 조합으로 이루어지는 군에서 선택되는 하나가 사용될 수 있다.
본 발명에서 상기 쉘은 Ⅱ-Ⅵ족 반도체를 사용하는 것이 바람직하다. 이 때, 상기 시드의 III족원소와 쉘 형성에 이용되는 전구체의 Ⅵ족원소의 몰 비는 일례로 1 : 3 내지 1 : 20일 수 있고, 바람직하게는 1 : 5 내지 1 : 15일 수 있고, 보다 바람직하게는 1 : 8 내지 1 : 10일 수 있다. 쉘 코팅에 이용되는 전구체의 몰 비가 상기 비율보다 초과하거나 미만일 경우 균일한 쉘 코팅이 이루어지지 않는 문제점이 있다.
본 측면에서 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, PbS, PbSe, PbSeS, PbTe, GaAs, GaP, InP, InGaP, InZnP, InAs, CuS, InN, GaN, InGaN, AlP, AlAs, InAs, GaAs, GaSb, InSb, AlSb, HgS, HgTe, HgCdTe, ZnCdS, ZnCdSe, CdSeTe, CuInSe2, CuInS2, AgInS2, SnTe 등이 쉘 물질로 사용가능하다.
활성금속 합금 Ⅲ-V족 양자점에서 양자점의 평균 직경은 일례로 1.5nm 내지 5nm이고, 쉘만의 두께는 일례로 0.5nm 내지 5nm, 또는 0.5nm 내지 1nm인 것이 바람직하다. 상기 범위를 벗어나는 경우 발광파장이 안 맞거나, 효율이 떨어진다.
본 측면에 따른 양자점은 발광파장이 일례로 500nm 내지 650nm, 또는 540nm 내지 650nm이고, 반치폭은 일례로 50nm 이하, 30nm 내지 45nm, 또는 34 내지 45nm이다.
<본 발명의 제4측면>
Ⅲ-V족 양자점의 제조방법은 전구체단계, 시드형성단계, 쉘형성단계 및 정제단계를 포함한다. 각 단계의 명칭은 각 단계를 다른 단계와 구별하기 위하여 부여한 명칭으로 각 단계의 기술적인 모든 의미를 포함하는 것은 아니다.
전구체단계는 본 발명의 제2 측면에서 정의한 화학식 1의 활성 나노클러스터를 제조하는 단계이다. 활성 나노클러스터는 활성금속-카르복실레이트를 열분해하여 제조된다. 전구체단계는 본 발명의 제2측면에서 살펴본 바와 같이 제1-1단계, 제1-2단계, 제1-3단계, 제1-4단계와 동일하며, 구체적인 설명은 생략한다.
시드형성단계는 전구체단계에서 제조된 전구체용액에 Ⅲ족원소 전구체 및 Ⅴ족원소 전구체 용액을 주입하여 활성금속과 Ⅲ족원소 및 Ⅴ족원소가 합금된 시드를 형성하는 단계이다. 시드형성단계는 제2-1단계, 제2-2단계, 제2-2단계 및 2-4단계를 포함한다.
제2-1단계는 활성 나노 클러스터 용액과 Ⅲ족원소 전구체용액 및 용매를 혼합하여 교반하는 단계이다. 활성 나노 클러스터 용액은 전술한 바와 같다.
Ⅲ족원소 전구체용액은 Ⅲ족원소 전구체, 용매 및 계면활성제를 포함한다. Ⅲ족원소 전구체는 Ⅲ족원소의 할로겐염등 Ⅲ족원소가 포함된 전구체 모두가 사용될 수 있다.
Ⅲ족원소가 인듐인 경우, 상기 인듐 전구체는 일례로 인듐 아세틸아세토네이트(Indium(Ⅲ) acetylacetonate), 인듐 클로라이드(Indium(Ⅲ) chloride), 인듐 아세테이트(Indium(Ⅲ) acetate), 트리메틸 인듐(Trimethyl indium), 알킬 인듐(Alkyl Indium), 아릴 인듐(Aryl Indium), 인듐 미리스테이트(Indium(Ⅲ) Myristate), 인듐 미리스테이트 아세테이트(Indium(Ⅲ) Myristate Acetate) 및 인듐 미리스테이트 2 아세테이트(Indium(Ⅲ) Myristate 2 Acetate)로 이루어진 군에서 선택되는 어느 하나일 수 있고, 바람직하게는 인듐 아세틸아세토네이트(Indium(Ⅲ) acetylacetonate)일 수 있다.
용매는 2,6,10,15,19,23-헥사메틸테트라코산(Squalane), 1-옥타데센(ODE), 트리옥틸아민(TOA), 트리부틸포스핀 옥사이드, 옥타데센, 옥타데실아민, 트리옥틸포스핀(TOP) 및 트리옥틸포스핀 옥사이드(TOPO)로 이루어지는 군에서 선택되는 하나 이상일 수 있다.
계면활성제는 선택적으로 사용될 수 있으며, 카르복실산(carboxylic acid)계 화합물, 포스폰산(phosphonic acid)계 화합물이거나, 이들 두 화합물의 혼합물일 수 있다.
카르복실산계 화합물은 일례로 올레익산(Oleic acid), 팔미틱산(Palmitic acid), 스테아릭산(Stearic aicd), 리놀레익산(Linoleic acid), 미리스틱산(Myristic aicd) 및 라우릭산(Lauric acid)으로 이루어진 군에서 선택되는 하나 이상일 수 있고, 상기 포스폰산계 화합물은 일례로 헥실포스폰산(Hexylphosphonic acid), 옥타데실포스폰산(Octadecylphosphonic acid), 테트라데실포스폰산(Tetradecylphosphonic acid), 헥사데실포스폰산(hexadecylphosphonic acid), 데실포스폰산(Decylphosphonic acid), 옥틸포스폰산(Octylphosphonic acid) 및 부틸포스폰산(Butylphosphonic acid)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
제2-2단계는 제2-1단계의 용액을 감압하면서 A온도까지 5분 내지 20분간 승온시킨 후 50분 내지 100분간 반응시키는 단계이다. A온도는 일례로 100℃ 내지 150℃이다. 상기 범위보다 낮은 온도에서는 전구체 안의 불순물이 제거되지 않을 가능성이 있으며, 온도 범위보다 높을 경우 용액의 농도가 변하여 효율적인 양자점 성장에 방해가 될 수 있다.
제2-3단계는 불활성 분위기에서 제2-2단계의 용액을 B온도까지 수초 내지 1시간동안 승온시키고, Ⅴ족원소 전구체용액을 주입하는 단계이다. B온도는 A온도보다 높으며, 200℃ 내지 400℃인 것이 바람직하다. 상기 온도 범위보다 낮은 온도일 경우 양자점 형성이 효과적으로 일어나지 않으며, 상기 온도보다 높을 경우 발광파장 제어에 어려움이 있다.
Ⅴ족원소 전구체용액은 Ⅴ족원소 전구체 및 용매를 포함한다. Ⅴ족원소 전구체는 일례로 트리스(트리메틸실릴)포스핀((Tris(trimethylsilyl)phosphine, TMSP), 아미노포스핀, 백린(white phosphorus), 트리스(피라졸릴)포스판(Tri(pyrazolyl)phosphane), 칼슘 포스파이드(calcium phosphide) 등의 유기금속인(organometallic phosphorus)이 사용될 수 있다.
이 때, Ⅴ족원소 전구체 용액에 알킬포스핀(alkylphosphine)계 계면활성제를 함께 첨가할 수 있고, 같이 첨가하면 Ⅴ족원소와 알킬포스핀계 계면활성제가 결합하여 새로운 유기 복합체를 형성하게 되고, 이로써 더욱 안정적인 반응이 가능하여 대량 생산에 더욱 적합해진다. 상기 알킬포스핀계 계면활성제의 종류에 따라 양자점의 크기를 조절할 수 있다. 상기 알킬포스핀계 계면활성제는 이에 한정되지는 않지만, 트리에틸 포스핀(triethyl phosphine), 트리부틸 포스핀(tributyl phosphine), 트리옥틸 포스핀(trioctyl phosphine), 트리페닐 포스핀(triphenyl phosphine) 및 트리시클로헥실 포스핀(tricyclohexyl phosphine)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 V족 원소 전구체 용액의 용매는 일례로 트리옥틸포스핀(TOP), 트리부틸포스핀(TBP), 옥타데센(ODE), 아민류(primary amine, secondary amine, third amine) 등이 사용될 수 있으며, Ⅴ족원소 전구체 용액의 몰 농도는 일례로 0.001M 내지 2M가 바람직하다.
이 때, 활성금속과 Ⅴ족원소의 몰비가 일례로 1 : 0.02 내지 1: 0.006, 1 : 0.03 내지 1 : 0.005가 되도록 하는 것이 바람직하다. 상기 범위를 벗어나는 경우 불균일한 양자점이 형성되는 문제가 발생할 수 있다.
쉘형성단계는 시드형성단계 후 시드표면에 쉘을 형성하는 단계이다. 쉘형성단계는 제4-1단계, 제4-2단계 및 제4-3단계를 포함한다.
제4-1단계는 쉘을 Ⅲ족원소 전구체 용액과 Ⅴ족원소 전구체용액 중 하나 또는 모두를 주입하여 형성하거나, Ⅱ족원소 전구체 용액과 Ⅵ족원소 전구체용액 중 하나 또는 모두를 주입하여 형성한다. 즉, 쉘은 Ⅱ족원소 전구체 또는/및 Ⅵ족원소 전구체 또는 Ⅲ족원소 전구체 또는/및 Ⅴ족원소 전구체를 주입하여 형성된다.
상기 쉘은 Ⅱ-Ⅵ족 반도체로 이루어지는 것이 바람직하다.
이 때, 상기 시드의 III족원소와 쉘 형성에 이용되는 전구체의 VI족원소의 몰 비는 일례로 1 : 3 내지 1 : 20일 수 있고, 바람직하게는 1 : 5 내지 1 : 15일 수 있고, 보다 바람직하게는 1 : 8 내지 1 : 10일 수 있다. 쉘 코팅에 이용되는 전구체의 몰비가 상기 비율보다 초과하거나 미만일 경우 균일한 쉘 코팅이 이루어지지 않는 문제점이 있다.
한편 Ⅱ족원소와 Ⅵ족원소로 쉘을 형성할 경우, Ⅱ족원소는 활성 나노클러스터 형성에 관여한 미반응의 Ⅱ족원소가 남아있어 별도로 주입하지 않아도 Ⅱ족원소의 포함이 가능하다.
제4-2단계는 제4-1단계에서의 용액을 X℃까지 10 내지 30분 동안 승온시킨후 2시간 내지 4시간 동안 반응시키는 단계이다. X온도의 범위는 200℃ 내지 400℃가 바람직하다. 상기 온도 범위를 벗어날 경우 효과적인 쉘 코팅이 되지 않는 문제점이 있다.
제4-3단계는 제4-1단계에서의 용액을 불활성 기체로 블로잉 해주면서 상온까지 식히는 단계이다. 불활성 기체로 블로잉 해주지 않을 경우 높은 온도에서 공기의 주입으로 인해 양자점 표면이 산화되는 문제점이 있다.
정제단계는 제5-1단계, 제5-2단계, 제5-3단계를 포함한다.
제5-1단계는 쉘형성단계 이후의 용액을 원심분리가능한 용기에 담고 일례로 알코올류의 용매 및 극성 용매(예를 들면, 2-프로판올)를 첨가하여 원심분리시켜 상층액을 버리고 침전물을 얻는 단계이다.
또한 원심분리시에 회전수는 일례로 1000rpm 내지 20000rpm가 바람직하다.
제5-2단계는 침전물을 헥산, 톨루엔, 옥타데칸, 헵탄 등의 유기용매에 녹이는 단계이다.
제5-3단계는 제5-1단계와 제5-2단계를 적어도 1회 이상 반복한 후 비극성 용매에 녹은 상태로 보관하는 단계이다.
<본 발명의 제5측면>
본 발명의 제5측면은 제1측면에 따른 활성 나노 클러스터를 이용하여 합성된 Ⅲ―Ⅴ족계 양자점이다.
제5측면의 양자점은 Ⅲ족원소 및 Ⅴ족원소를 포함하는 시드; 및 상기 시드의 외면에 형성되는 Ⅲ족원소, Ⅴ족원소를 포함하는 성장층;을 포함하는 밴드갭 제어층을 가지고, 상기 밴드갭 제어층을 구성하는 시드 및 성장층 중 적어도 하나에 다양한 산화수를 가질 수 있는 활성금속을 포함하는 Ⅲ―Ⅴ족계 양자점이다.
본 발명에서 사용하는 용어 “밴드갭 제어층”은 시드와 성장층을 가지고, 밴드갭을 제어하여 개선된 반치폭과 발광 효율을 제공하는 층을 의미한다.
상기 성장층은 시드의 외면에서 성장한 반도체층으로서 성장층은 Ⅲ족원소 또는 이들의 조합 및 Ⅴ족원소 또는 이들의 조합으로 이루어진 Ⅲ―Ⅴ족 반도체층이고, 시드에 포함된 Ⅲ족원소 및 Ⅴ족원소와 동일한 종류의 반도체 물질로 이루어질 수 있으며, 활성금속을 포함할 수 있다. 또한, 활성금속은 시드 및 성장층 중에 적어도 하나는 포함되어야 한다.
활성화된 활성금속 전구체는 본 발명의 제1측면에서 설명한 화학식 1의 활성금속 산화물-카르복실레이트를 포함하는 활성 나노클러스터일 수 있다.
시드는 본 발명의 제3측면에 개시된 시드와 중복되는 기재는 생략한다. 시드에는 추가원소를 더 포함할 수 있다. 추가원소는 시드 내에 포함되어 함량에 따라 양자점의 특성을 변화시킨다. 시드에 추가원소, 예를 들면, Al, Ga, Ti, Mg, Na, Li, Cu 등의 원소가 포함되는 경우 격자불일치를 막아 표면 결함을 줄여 양자효율을 높이는 효과가 있다.
이 때 시드의 Ⅲ족원소 : 추가원소의 몰 비는 일례로 1 : 0.2 내지 1 : 0.8일 수 있고, 바람직하게는 1 : 0.3 내지 1 : 0.6일 수 있다. 시드의 Ⅲ족원소와 추가원소의 몰 비가 상기 범위를 초과하거나 미만인 경우 효과적으로 격자 불일치를 막아주지 않아 양자효율의 변화가 없을 수 있다.
성장층은 시드의 외면에서 성장한 반도체층으로서 성장층은 Ⅲ족원소 또는 이들의 조합 및 Ⅴ족원소 또는 이들의 조합으로 이루어진 Ⅲ―Ⅴ족 반도체층이고, 시드에 포함된 Ⅲ족원소 및 Ⅴ족원소와 동일한 종류의 반도체 물질로 이루어질 수 있으며, 활성금속을 포함한다. 이때의 활성금속도 시드에 포함된 활성금속과 동일한 종류로 이루어질 수 있다.
활성금속은 Ⅲ족원소 또는 그 조합과 Ⅴ족원소 또는 그 조합과 합금화될 때 시드 내에서 결정 격자를 안정화시키고 결함을 보완하는 역할을 한다.
이 때 밴드갭 제어층의 Ⅲ족원소와 밴드갭 제어층의 활성금속의 몰 비는 일례로 1 : 0.2 내지 1 : 2일 수 있고, 바람직하게는 1 : 0.2 내지 1 : 1일 수 있고, 보다 바람직하게는 1 : 0.5 내지 1 : 1일 수 있다. 활성금속의 농도가 상기 범위를 초과하는 경우 성장층의 성장이 억제되어 나노 결정의 파장을 조절하기 어려우며, 미만인 경우 발광효율이 낮아질 수 있다.
또한, 밴드갭 제어층의 Ⅲ족원소와 밴드갭 제어층의 Ⅴ족원소의 몰 비는 일례로 1 : 0.5 내지 1 : 2일 수 있고, 바람직하게는 1 : 0.5 내지 1 : 1일 수 있고, 보다 바람직하게는 1 : 0.6 내지 1 : 1일 수 있다. 밴드갭 제어층의 Ⅴ족원소의 농도가 상기 범위를 초과하는 경우 합성된 양자점의 안정성이 낮아지는 문제가 있으며, 미만인 경우 충분한 Ⅴ족 전구체가 주입되지 않아 성장의 어려움이 있을 수 있다.
이 때 벤드갭 제어층에 포함되는 성장층의 두께는 일례로 0.5nm 내지 2.5nm이고, 바람직하게는 1nm 내지 2nm일 수 있다. 상기 범위를 초과하는 경우 원하는 파장대보다 적색 이동하는 문제가 있고, 상기 범위 미만인 경우 양자점의 안정성이 떨어지는 문제점이 있다.
밴드갭 제어층에 포함되는 성장층에 활성금속이 포함될 경우, 밴드갭 제어층의 Ⅲ족원소와 활성금속의 몰 비는 일례로 1 : 0.2 내지 1 : 2일 수 있고, 바람직하게는 1 : 0.2 내지 1 : 1일 수 있고, 보다 바람직하게는 1 : 0.3 내지 1 : 0.8일 수 있다. 활성금속의 농도가 상기 범위를 초과하는 경우 성장층의 성장이 억제되어 나노 결정의 파장을 조절하기 어려우며, 미만인 경우 발광효율이 낮아질 수 있다.
밴드갭 제어층에 포함되는 성장층은 추가원소를 더 포함할 수 있다. 추가원소는 성장층 내에 포함되어 함량에 따라 양자점의 특성을 변화시킨다. 성장층에 활성금속 이외의 추가원소, 예를 들어, Al, Ga, Ti, Mg, Na, Li, Cu 등의 원소가 포함되는 경우 성장층의 성장을 촉진시키고 발광 파장을 변화시킬 수 있다.
이에 따라, 일 실시예에서 시드에서의 각 원소의 몰 비는 일례로 In : Zn : P = 1 : 8 : 0.7일 수 있고, 밴드갭 제어층의 각 원소의 몰 비는 일례로 In : Zn : P = 1 : 0.7 : 0.9일 수 있다.
쉘은 시드와 성장층, 즉 밴드갭 제어층의 외면을 감싸며 형성된다. 상기 쉘은 본 발명의 제2측면에서 설명한 바와 같다.
본 측면에 따른 양자점은 발광파장이 일례로 500nm 내지 650nm, 또는 540nm 내지 650nm이고, 반치폭은 일례로 50nm 이하, 30nm 내지 45nm, 또는 34nm 내지 45nm이다.
<본 발명의 제6측면>
활성금속 합금 Ⅲ-V족 양자점의 제조방법은 전구체단계, 시드형성단계, 성장층형성단계, 쉘형성단계 및 정제단계를 포함한다. 여기서 시드형성단계 및 성장층형성단계를 합쳐 밴드갭 제어층 형성단계라 칭할 수 있다. 각 단계의 명칭은 각 단계를 다른 단계와 구별하기 위하여 부여한 명칭으로 각 단계의 기술적인 모든 의미를 포함하는 것은 아니다. 특히 전구체단계는 활성금속 전구체와 별개의 개념으로 해석된다.
전구체단계는 본 발명의 상기 제2측면에서 정의한 화학식 1의 활성 나노 클러스터를 제조하는 단계일 수 있다. 전구체단계는 본 발명의 제2측면에서 살펴본 바와 같이 제1-1단계, 제1-2단계, 제1-3단계 및 제1-4단계와 동일하며, 구체적인 설명은 생략한다.
시드형성단계는 전구체단계에서 제조된 전구체용액에 Ⅲ족원소 전구체 및 Ⅴ족원소 전구체 용액을 주입하여 활성금속과 Ⅲ족원소 및 Ⅴ족원소가 합금된 시드를 형성하는 단계이다. 시드형성단계는 제2-1단계, 제2-2단계, 제2-2단계 및 2-4단계와 동일할 수 있고, 구체적인 설명은 생략한다.
성장층 형성단계는 시드형성단계 후 시드 외면에 성장층을 형성시키는 단계이다. 성장층은 시드의 외면에서 성장한 반도체층으로서 성장층은 Ⅲ족원소 또는 이들의 조합 및 V족원소 또는 이들의 조합으로 이루어진 Ⅲ―Ⅴ족 반도체층이고, 시드에 포함된 Ⅲ족원소 및 Ⅴ족원소와 동일한 종류의 반도체 물질로 이루어질 수 있으며, 활성금속을 포함한다. 이 때의 활성금속도 시드에 포함된 활성금속과 동일한 종류로 이루어질 수 있다.
성장층은 시드형성단계의 용액에 후술할 Ⅲ족원소-활성금속-Ⅴ족원소(이하, 3-M-5라 한다) 복합용액을 주입하여 형성시킨다.
3-M-5 복합용액에서 Ⅲ족원소와 활성금속의 몰 비는 일례로 1 : 0.2 내지 1 : 0.8이 바람직하고, 활성금속과 Ⅴ족원소의 몰 비는 일례로 1 : 1 내지 1 : 1.5인 것이 바람직하다. 상기 범위를 벗어나는 몰 비의 경우 성장층의 성장이 고르게 일어나지 않아 불균일한 양자점이 합성되는 문제점이 있다.
3-M-5 복합용액을 시드형성단계 후의 B온도의 용액에 주입하여 반응시키고, 불활성 분위기에서 C온도로 감온한다. C온도의 범위는 일례로 130℃ 내지 170℃가 바람직하다. C온도로 감온하는 이유는 쉘 전구체를 주입하기 위한 것으로, 상기 온도 범위보다 온도가 높을 경우 균일한 쉘 코팅이 이루어지지 않아 반치폭이 넓어지는 문제점이 있다.
한편, 3-M-5 복합용액은 Ⅲ족원소, 활성금속 및 Ⅴ족원소가 혼합된 용액으로서, 3-M-5 복합용액의 제조방법은 제3-1단계, 제3-2단계, 제3-3단계, 제3-4단계 및 제3-5단계를 포함한다.
제3-1단계는 Ⅲ족원소 전구체, 활성금속 전구체 및 용매를 주입하여 교반하는 단계이다.
Ⅲ족원소 전구체는 Ⅲ족원소의 할로겐염등 Ⅲ족원소가 포함된 전구체가 모두 사용될 수 있다. Ⅲ족원소가 인듐인 경우, 상기 인듐 전구체는 일례로 인듐 아세틸아세토네이트(Indium(III) acetylacetonate), 인듐 클로라이드(Indium(III) chloride), 인듐 아세테이트(Indium(III) acetate), 트리메틸 인듐(Trimethyl indium), 알킬 인듐(Alkyl Indium), 아릴 인듐(Aryl Indium), 인듐 미리스테이트(Indium(III) Myristate), 인듐 미리스테이트 아세테이트(Indium(III) Myristate Acetate) 및 인듐 미리스테이트 2 아세테이트(Indium(III) Myristate 2 Acetate)로 이루어진 군에서 선택되는 어느 하나일 수 있고, 바람직하게는 인듐 아세틸아세토네이트(Indium(III) acetylacetonate)일 수 있다.
활성금속 전구체는 활성금속이 포함된 화합물이 비제한적으로 사용될 수 있고, 활성금속은 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo 및 Ru로 구성되는 군에서 선택되는 적어도 하나 이상의 금속이 사용될 수 있다. 예를 들어, 활성금속이 Zn인 경우 아연 아세테이트(Zn acetate), Zn(acac)(Zn(acetylacetonate))등이 사용될 수 있다. 이 때, 아연 아세테이트(Zn acetate)보다 acac 기반의 전구체를 사용할 때 손쉽게 In-Zn 카르복실레이트가 합성되는 장점이 있다.
제3-1단계의 용매는, 일례로 2,6,10,15,19,23-헥사메틸테트라코산(Squalane), 1-옥타데센(ODE), 트리옥틸아민(TOA), 트리부틸포스핀 옥사이드, 옥타데센, 옥타데실아민, 트리옥틸포스핀(TOP) 및 트리옥틸포스핀 옥사이드(TOPO)로 이루어지는 군에서 선택되는 하나 이상일 수 있다.
제3-2단계는 제3-1단계의 용액을 감압시키면서 α온도로 5 내지 20분간 승온시킨 후 50 내지 100분간 반응시키는 단계이다. α온도는 일례로 100℃ 내지 150℃일 수 있고, 110℃ 내지 130℃인 것이 바람직하다. 이 단계에서 승온 감압하는 이유는 전구체 안에 남아있는 소량의 불순물들을 제거하는 동시에 In-Zn 카복실레이트가 합성되게 하기 위함이다. 상기 온도 범위 이상일 경우 용매의 양이 달라져 농도가 바뀔 수 있고, 상기 온도보다 낮을 경우 불순물이 제대로 제거되지 않을 수 있다.
제3-3단계는 제3-2단계의 용액을 불활성 분위기로 치환한 후 β온도로 승온하는 단계이다. β온도는 추후 첨가할 Ⅴ족 전구체의 반응성을 고려할 때 250 ℃ 내지 300℃ 내외인 것이 순간적인 시드 생성에 바람직하다.
제3-4단계는 제3-3단계의 용액에 Ⅴ족원소 전구체 용액을 주입하여 상온(25도)에서 10분 내지 100분 동안 반응시키는 단계이다. 이러한 상온 조건은 Ⅴ족원소 전구체의 높은 반응성으로 인해 In-Zn-P가 particle 형태로 가지 않도록 하기 위함이다.
제3-3단계의 Ⅴ족원소 전구체용액은 Ⅴ족원소 전구체 및 용매를 포함한다. Ⅴ족원소 전구체는 일례로 트리스(트리메틸실릴)포스핀(TMSP), 아미노 포스핀, 백린, 트리(피라졸릴)포스판(Tri(pyrazolyl)phosphane), 칼슘 포스파이드(calcium phosphide) 등의 유기금속인(organometallic phosphorus)이 사용될 수 있다.
이 때, Ⅴ족원소 전구체 용액에 알킬포스핀(alkylphosphine)계 계면활성제를 함께 첨가할 수 있으며, 병용하면 Ⅴ족원소와 알킬포스핀계 계면활성제가 결합하여 새로운 유기 복합체를 형성하게 되고, 이로써 더욱 안정적인 반응이 가능하여 대량 생산에 더욱 적합해진다. 상기 알킬포스핀계 계면활성제의 종류에 따라 양자점의 크기를 조절할 수 있다.
상기 V족원소 전구체 용액에 알킬포스핀계 계면활성제를 함께 첨가할 수 있으며, 병용하면 V족원소와 알킬포스핀계 계면활성제가 결합하여 새로운 유기 복합체를 형성하게 되고, 이로써 더욱 안정적인 반응이 가능하여 대량 생산에 더욱 적합해진다. 상기 알킬포스핀계 계면활성제의 종류에 따라 양자점의 크기를 조절할 수 있다.
상기 알킬포스핀계 계면활성제는 이에 한정되지는 않지만, 트리에틸 포스핀(triethyl phosphine), 트리부틸 포스핀(tributyl phosphine), 트리옥틸 포스핀(trioctyl phosphine), 트리페닐 포스핀(triphenyl phosphine) 및 트리시클로헥실 포스핀(tricyclohexyl phosphine)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
또한, V족원소 전구체 용액에 대한 용매는 일례로 TOP, TBP, ODE, amine류(primary amine, secondary amine, third amine)등이 사용될 수 있으며, Ⅴ족원소 전구체 용액의 몰 농도는 0.001M 내지 2M가 바람직하다.
이 때, Ⅲ족원소와 활성금속의 몰 비가 1 : 0.2 내지 1: 0.8가 되도록 하는 것이 바람직하다. 바람직하게는 1 : 0.3 내지 1 : 0.6일 수 있다. Ⅲ족원소와 활성금속의 몰 비가 상기 범위를 만족하지 않을 경우 효과적으로 격자 불일치를 막아주지 못하여 양자효율의 변화를 제공하지 못할 수 있다.
활성금속과 Ⅴ족원소의 몰 비는 일례로 1 : 1 내지 1 : 1.5인 것이 바람직하다. 상기 범위를 벗어나는 몰 비의 경우 성장층의 성장이 고르게 일어나지 않아 불균일한 양자점이 합성되는 문제가 있을 수 있다.
성장층에 포함되는 추가원소는 별개로 포함시키거나 시드 형성시 포함되는 추가원소가 미반응된 추가원소가 포함될 수 있다. 일례로, 성장층에 추가원소를 주입하고 싶을 때, 1) 성장층 주입 전에 추가원소가 포함된 전구체를 투입하는 방식 또는 2) 시드 형성시 Ⅴ족원소와 함께 투입하는 방식이 있을 수 있다. 후자의 예로는 TOP-TMSP 용액에 GaCl3-톨루엔 용액을 섞고 시드를 형성하는 방식을 들 수 있다.
쉘형성단계는 성장층형성단계 후 성장층 표면에 쉘을 형성하는 단계이다. 쉘형성단계는 제4-1단계, 제4-2단계 및 제4-3단계를 포함한다. 상기 쉘형성단계는 본 발명의 제4측면에서 살펴본 바와 같이 제4-1단계, 제4-2단계 및 제4-3단계와 동일할 수 있고, 구체적인 설명은 생략한다.
정제단계는 제5-1단계, 제5-2단계, 제5-3단계를 포함한다. 상기 정제단계 또한 본 발명의 제4측면에서 살펴본 바와 같이, 제5-1단계, 제5-2단계 및 제5-3단계와 동일할 수 있고, 구체적인 설명은 생략한다.
이하, 본 발명의 실시예를 보다 상세하게 설명한다. 후술하는 실시예는 본 발명을 예시하기 위한 것으로, 본 발명을 이에 한정하려는 것은 아니다.
<실시예>
<실시예 1: Zn-OXO 제조>
활성 나노클러스터 용액의 제조
1. 아연 아세테이트(Zn acetate)와 올레익산(Oleic acid)을 250ml three neck flask에 넣고 실온에서 감압한 상태에서 120oC까지 가열하고 1시간 후 비활성가스로 채워줌으로써 Zn(Oleate)2 용액을 생성하였다.
2. 생성한 Zn(Oleate)2 용액을 고온으로 승온하여 활성 나노 클러스터를 제조하였다.
3. 이후 옥타데센(Octadecene)을 주입하고 상온으로 감온하였으며, 상기 혼합용액의 농도는 0.5M이다.
<실시예 2: Cu-OXO 제조>
활성 나노클러스터 용액의 제조
1. 구리 아세테이트(Cu(Ⅱ) acetate)와 올레익산(Oleic acid)를 250ml three neck flask에 넣고 실온에서 감압한 상태에서 120oC까지 가열하고 1시간 후 비활성가스로 채워줌으로써 Cu(Oleate)2 용액을 생성하였다.
2. 생성한 Cu(Oleate)2 용액을 고온으로 승온하여 활성 나노 클러스터를 제조하였다.
3. 이후 옥타데센(Octadecene)을 주입하고 상온으로 감온하였으며, 상기 혼합용액의 농도는 0.5M이다.
<실시예 3: 성장층에 사용되는 InZnP 복합용액 제조>
1. Three neck flask에 인듐 아세테이트(In acetate)와 아연 아세테이트(Zn acetate), 올레익산(Oleic acid) 및 옥타데센(Octadecene)을 주입하여 교반시켰다.
2. 상기 용액을 감압하면서 120oC로 승온하여 반응시켰다.
3. 상기 용액을 비활성기체로 치환한 후 감온하였다.
4. 상기 용액에 트리스(트리메틸실릴)포스핀 (Tris(trimethylsilyl)phosphine, TMSP)을 주입하였으며 이렇게 제조된 용액을 In-Zn-P 복합용액이라 칭한다.
<실시예 4: Zn-OXO를 이용한 InZnP@ZnSeS 양자점>
실시예1에서 합성한 Zn-OXO 활성나노클러스터 용액을 이용하여 하기와 같이 InZnP@ZnSeS 양자점을 제조하였다.
1. Three neck flask에 옥타데센(Octadecene, ODE), 활성나노클러스터, In 전구체를 넣고 교반시켰다. 이때 각 전구체의 농도는 In 0.1mmol, Zn 2mmol이 되도록 하였다.
2. 상기 용액을 감압하면서 120oC에서 1시간 반응시켰다.
3. 상기 용액을 비활성 가스로 채워준 후, 280oC에서 트리스(트리메틸실릴)포스핀(Tris(trimethylsilyl)phosphine, TMSP)을 주입하였다. 이때 In과 P의 몰비는 1:0.7이었다.
4. 상기 용액을 280oC에서 1시간 반응시킨 후 온도를 감온하여 InZnP 시드를 제조하였다.
5. 위 InZnP 시드에 쉘 물질로써 트리옥틸포스핀에 셀레늄을 용해시킨 TOP-Se 용액과 트리옥틸포스핀에 황을 용해시킨 TOP-S 용액을 주입하여 반응시켰다.
6. 얻어진 양자점을 아세톤이나 에탄올에 넣고 원심분리하였다.
7. 원심분리 후 침전물을 헥산(1-Hexane)에 분산시켜 양자점 용액을 얻었다.
<실시예 5: Zn-OXO를 이용한 InZnP/InZnP growth@ZnSeS 양자점>
실시예1에서 합성한 Zn-OXO 활성나노클러스터 용액을 이용하여 하기와 같이 InZnP/InZnP growth@ZnSeS 양자점을 제조하였다.
1. Three neck flask에 옥타데센(Octadecene, ODE), 활성나노클러스터, In 전구체를 넣고 교반시켰다. 이때 각 전구체의 농도는 In 0.1mmol, Zn 2mmol이 되도록 하였다.
2. 상기 용액을 감압하면서 120oC에서 1시간 반응시켰다.
3. 상기 용액을 비활성 가스로 채워준 후, 280oC에서 트리스(트리메틸실릴)포스핀(Tris(trimethylsilyl)phosphine, TMSP)을 주입하였다. 이때 In과 P의 몰비는 1:0.7이었다.
4. 상기 용액을 280oC에서 1시간 반응시킨 후 온도를 감온하여 InZnP 시드를 제조하였다.
5. 상기 InZnP 시드에 (제조예4)에서 제조된 In-Zn-P 복합용액을 5mL 주입하였다.
6. 주입 후 비활성 기체로 치환하면 밴드갭 제어층에 포함되는 InZnP 시드상에 밴드갭 제어층에 포함되는 InZnP 성장층을 함께 갖는 양자점이 제조되었다.
7. 제조된 InZnP/InZnP 양자점 용액에 쉘 물질로써 트리옥틸포스핀에 셀레늄을 용해시킨 TOP-Se 용액과 트리옥틸포스핀에 황을 용해시킨 TOP-S 용액을 주입하여 반응시켰다.
8. 얻어진 양자점을 아세톤이나 에탄올에 넣고 원심분리하였다.
9. 원심분리 후 침전물을 헥산(1-Hexane)에 분산시켜 양자점 용액을 얻었다.
<실시예 6: Zn-OXO를 이용한 InZnGaP@ZnSeS 양자점>
실시예1에서 합성한 Zn-OXO 활성나노클러스터 용액을 이용하여 하기와 같이 InZnGaP@ZnSeS 양자점을 제조하였다.
1. Three neck flask에 옥타데센(Octadecene, ODE), 활성나노클러스터 용액, In 전구체를 넣고 교반시켰다. 이때 각 전구체의 농도는 In 0.1mmol, Zn 2mmol이 되도록 하였다.
2. 상기 용액을 감압하면서 120oC에서 1시간 반응시켰다.
3. 상기 용액을 비활성 가스로 채워준 후, 280oC에서 트리스(트리메틸실릴)포스핀(Tris(trimethylsilyl)phosphine, TMSP)과 갈륨 클로라이드(Gallium chloride)을 주입하였다. 이때 In과 P와 Ga의 몰비는 1:0.7:0.5이었다.
4. 상기 용액을 280oC에서 1시간 반응시킨 후 온도를 감온하여 InZnGaP 시드를 제조하였다.
5. 위 InZnP 시드에 쉘 물질로써 트리옥틸포스핀에 셀레늄을 용해시킨 TOP-Se 용액과 트리옥틸포스핀에 황을 용해시킨 TOP-S 용액을 주입하여 반응시켰다.
6. 얻어진 양자점을 아세톤이나 에탄올에 넣고 원심분리하였다.
7. 원심분리 후 침전물을 헥산(1-Hexane)에 분산시켜 양자점 용액을 얻었다.
<실시예 7: Zn-OXO를 이용한 InZnGaP/InZnP growth@ZnSeS 양자점>
실시예1에서 합성한 Zn-OXO 활성나노클러스터 용액을 이용하여 하기와 같이 InZnGaP/InZnP growth@ZnSeS 양자점을 제조하였다.
1. Three neck flask에 옥타데센(Octadecene, ODE), 활성나노클러스터, In 전구체를 넣고 교반시켰다. 이때 각 전구체의 농도는 In 0.1mmol, Zn 2mmol이 되도록 하였다.
2. 상기 용액을 감압하면서 120oC에서 1시간 반응시켰다.
3. 상기 용액을 비활성 가스로 채워준 후, 280oC에서 트리스(트리메틸실릴)포스핀(Tris(trimethylsilyl)phosphine, TMSP)과 갈륨 클로라이드(Gallium chloride)을 주입하였다. 이때 In과 P와 Ga의 몰비는 1:0.7:0.5이었다.
4. 상기 용액을 280oC에서 1시간 반응시킨 후 온도를 감온하여 밴드갭 제어층에 포함되는 InZnGaP 시드를 제조하였다.
5. 상기 InZnP 시드에 (제조예4)에서 제조된 In-Zn-P 복합용액을 5mL 주입하였다.
6. 주입 후 비활성 기체로 치환하면 밴드갭 제어층에 포함되는 InZnGaP 시드상에 밴드갭 제어층에 포함되는 InZnP 성장층을 함께 갖는 양자점이 제조되었다.
7. 제조된 InZnGaP/InZnP 양자점 용액에 쉘 물질로써 트리옥틸포스핀에 셀레늄을 용해시킨 TOP-Se 용액과 트리옥틸포스핀에 황을 용해시킨 TOP-S 용액을 주입하여 반응시켰다.
8. 얻어진 양자점을 아세톤이나 에탄올에 넣고 원심분리하였다.
9. 원심분리 후 침전물을 헥산(1-Hexane)에 분산시켜 양자점 용액을 얻었다.
<실시예 8: Zn-OXO를 이용한 InZnP@ZnSeS 양자점>
실시예 1에서 합성한 활성 나노 클러스터 용액을 이용하여 실시예 4와 동일한 방법으로 InZnP@ZnSeS 양자점을 제조하였다. 이때 각 전구체의 농도가 In : 0.1 mmol, Zn : 0.25 mmol가 되도록 한 것을 제외하고는 실시예1과 모두 동일하였다.
<실시예 9: Zn-OXO를 이용한 InZnP@ZnSeS 양자점>
실시예 1에서 합성한 활성 나노 클러스터 용액을 이용하여 실시예 4와 동일한 방법으로 InZnP@ZnSeS 양자점을 제조하였다. 이때 각 전구체의 농도가 In : 0.1 mmol, Zn : 6.25 mmol가 되도록 한 것을 제외하고는 실시예1과 모두 동일하였다.
<실시예 10: Zn-OXO를 이용한 InZnP/InZnP growth@ZnSeS 양자점>
실시예 3의 In-Zn-P 복합용액에 Zn acetate를 넣지 않은 In-P 복합용액을 제조하여 사용한 것을 제외하고 실시예 5와 동일한 방법으로 밴드갭 제어층을 포함하는 양자점을 제조하였다.
<실시예 11: Zn-OXO를 이용한 InZnP/InZnP growth@ZnSeS 양자점>
실시예 3의 In-Zn-P 복합용액에 Zn acetate 0.5mmol 대신 2.5mmol를 넣어 In-Zn-P 복합용액을 제조하여 사용한 것을 제외하고는 실시예 5와 동일한 방법으로 밴드갭 제어층을 포함하는 양자점을 제조하였다.
<비교예>
<비교예 1: Zn(Oleate)2의 제조>
1.아연 아세테이트(Zn acetate)와 올레익산(Oleic acid)을 250ml three neck flask에 넣고 실온에서 감압한 상태에서 120oC까지 가열하고 1시간 후 비활성가스로 채워줌으로써 Zn(Oleate)2 용액을 생성하였다
<비교예 2: Zn Oleate를 이용한 InZnP@ZnSeS 양자점>
실시예4에서 <Zn-OXO>의 활성 나노 클러스터 용액을 비교예1에서 합성한 아연 올레이트(Zn oleate) 용액으로 대체한 것을 제외하고는 실시예 4와 동일한 공정에 의해 양자점을 제조하였다.
<비교예 3: Zn-Oleate를 이용한 InZnP/InZnP growth@ZnSeS 양자점>
실시예5에서 <Zn-OXO>의 활성 나노 클러스터 용액을 비교예1에서 합성한 아연 올레이트(Zn oleate) 용액으로 대체한 것을 제외하고는 실시예5와 동일한 공정에 의해 양자점을 제조하였다.
<비교예 4: Zn-Oleate를 이용한 InZnGaP@ZnSeS 양자점>
실시예6에서 <Zn-OXO>의 활성 나노 클러스터 용액을 비교예1에서 합성한 아연 올레이트(Zn oleate) 용액으로 대체한 것을 제외하고는 실시예6와 동일한 공정에 의해 양자점을 제조하였다.
<비교예 5: Zn oleate를 이용한 InZnGaP/InZnP growth@ZnSeS 양자점>
실시예7에서 <Zn-OXO>의 활성 나노 클러스터 용액을 비교예1에서 합성한 아연 올레이트(Zn oleate) 용액으로 대체한 것을 제외하고는 실시예7과 동일한 공정에 의해 양자점을 제조하였다.
<실험예>
<실험예 1>
활성금속 활성화에 따른 활성 나노 클러스터를 확인하기 위하여, 실시예 1에서 제조한 활성나노클러스터 용액에 대한 MALDI-TOP 데이터를 구하여 도 2에 도시하였다.
도 2는 구체적으로 활성금속 전구체(Zn(oleate)2)의 활성화에 따른 무게 변화를 나타낸 것으로, 활성화시 기존의 검은색 그래프에서도 나타나는 975m/z뿐만 아니라 빨간색 그래프처럼 1683m/z, 3020m/z에서 피크가 형성되게 되며, 이 때의 1683m/z, 3020m/z 피크를 분석한 결과, Zn4O(carboxylate)6, Zn7O2(carboxylate)10과 일치하는 것을 알 수 있었다. 이로부터 활성금속 전구체를 활성화시킴으로 인해 활성 나노 클러스터가 합성되었다는 것을 확인할 수 있었다.
또한 각 피크를 적분한 값에 의해 활성금속-카르복실레이트와, 활성금속산화물-카르복실레이트의 비율을 확인한 결과, 대략 20:80의 무게 비로 활성금속산화물-카르복실레이트가 포함되어 있는 것을 알 수 있었다.
<실험예 2>
실시예 4의 양자점과 비교예 2의 양자점을 제조하여 UV and PL spectrum을 측정하여 도 4에 도시하였다. 또한 본 발명의 실시예 4의 양자점 중 시드와 비교예 2의 양자점 중 시드에 대한 UV 및 PL spectrum을 측정하여 도 3에 나타내었다. 또한, 도 4는 본 발명의 실시예 4의 양자점과 비교예 2의 양자점을 제조하여 UV 및 PL spectrum을 측정한 그래프이다.
도 3 및 도 4에 따르면, 실시예 4의 경우 활성 나노 클러스터의 사용으로 인해 비교예 2에 비해 크기가 더 작고 균일하며 양자효율이 높은 양자점을 가지는 것을 확인할 수 있었다.
<실험예 3>
실시예 5의 양자점과 비교예 3의 양자점을 제조하여 UV and PL spectrum을 측정하여 도 5에 도시하였다. 또한 본 발명의 실시예 5의 양자점에 있어 시드, 성장층, 쉘 형성 단계별 PL spectrum을 측정한 그래프를 도 6에 나타내었다.
도 5에 따르면, 실시예 5의 경우 활성 나노 클러스터의 사용으로 인해 비교예 3에 비해 크기가 더 작고 균일하며 반치폭이 개선된 밴드갭 제어층을 포함하는 양자점을 제조하는 것을 확인할 수 있었다.
또한, 도 6에서 보듯이, 우측 이동(right shift)한 방출 최대 변화를 확인하였다.
<실험예 4>
상기 실시예 4 내지 7에 의해 수득된 양자점들과, 비교예 2 내지 5에 의해 수득된 양자점들을 각각 Toluene에 녹여 Otsuka Electronics QE-2000을 사용하여 450nm 파장으로 광조사하여 분석된 광발광 데이터[발광파장 피크 (Emission peak), 양자효율 (Quantum Yield), 반치폭 (Full width at half maximum, FWHM)]을 확인하였다. 상기 측정 결과는 표 1 및 도 4 내지 6에 나타내었다.
구분 Emission peak (nm) FWHM (nm) Q.Y.(%)
실시예4 530 39 94
실시예5 621 45 84
실시예6 535 38 96
실시예7 625 44 88
비교예2 535 56 75
비교예3 622 60 72
비교예4 541 56 80
비교예5 627 57 80
상기 표 1의 결과로부터 보듯이, 활성 나노클러스터를 사용하는 실시예 4 내지 7의 양자점의 경우 활성 나노클러스터 대신 아연올레이트를 사용한 비교예 2 내지 5의 양자점 대비 좁은 반치폭을 가지며 우수한 발광효율을 보였다.
구체적으로, 활성 나노클러스터를 사용하지만 추가원소를 포함하지 않는 실시예 4의 양자점의 경우 추가원소를 포함하지 않고 활성 나노클러스터 대신 아연올레이트를 사용한 비교예2의 양자점보다 반치폭이 현저히 개선되었고 발광효율이 증가하였다. 즉, 활성 나노클러스터를 사용하였을 때 반치폭이 현저히 개선되고 발광효율이 증가하는 결과를 확인하였다.
또한, 실시예 4의 양자점과 비교예 2의 양자점은 모두 방출 스펙트럼이 500nm 내지 550nm의 방출 최대를 나타내었고, 이중에서 실시예 4의 경우 비교예 2의 양자점보다 우측 이동(right shift)한 방출 최대를 나타내는 것을 확인하였으며, 반치폭과 발광효율 또한 개선되는 것을 알 수 있다.
또한, 본 발명에 따라 추가원소를 포함하고 활성나노클러스터를 사용하는 실시예6의 양자점은 추가원소를 포함하고 활성나노클러스터 대신 아연올레이트를 사용한 비교예4의 양자점 대비 좁은 반치폭을 가지며, 우수한 발광효율을 보였다.
참고로, 추가원소를 포함하지만 활성 나노클러스터 대신 아연올레이트를 사용한 비교예 4의 양자점의 경우 추가원소를 포함하지 않으면서 활성 나노클러스터 대신 아연올레이트를 사용한 비교예2의 양자점 대비 발광효율만 소폭 증가하는 결과를 확인하였다.
또한, 활성 나노클러스터를 각각 사용하는 본 발명의 실시예7의 양자점과 실시예4의 양자점을 비교하면, 실시예7이 추가원소를 포함한다는 차이가 있으며, 측정결과를 살펴보면 발광효율이 소폭 개선되는 것을 확인할 수 있다.
또한, 성장층을 각각 포함하는 본 발명의 실시예 5의 양자점과 실시예 7의 양자점을 비교하면, 실시예 7이 추가원소를 포함한다는 차이가 있으며, 측정결과를 보면 발광효율이 소폭 개선되는 것을 확인할 수 있다.
결과적으로, 본 발명에 따른 실시예 4 내지 7의 양자점의 경우, 비교예 2 내지 5의 양자점 대비 반치폭 및 발광효율 측면에서 현저히 우수한 결과를 나타낸 것을 알 수 있다.
<실험예 5>
시드 내 III족원소와 활성금속의 함량을 바꿔가며 제조된 실시예 8 및 실시예 9의 양자점들을 각각 Toluene에 녹여 Otsuka Electronics QE-2000을 사용하여 450nm 파장으로 광조사하여 분석된 광발광 데이터[발광파장 피크 (Emission peak), 양자효율 (Quantum Yield), 반치폭 (Full width at half maximum, FWHM)]을 확인하였다. 상기 측정 결과는 표 2에 나타내었다.
구분 시드의 In:Zn 함량비 Emission peak (nm) FWHM (nm) Q.Y.(%)
실시예4 1:8 530 39 94
실시예8 1:1 545 45 20
실시예9 1:25 527 43 80
상기 표 2의 결과로부터 보듯이, 실시예 4의 양자점과 실시예 8 및 9의 양자점을 대비하면, 시드를 구성하는 III족원소와 활성금속의 함량비 차이로 인해 반치폭 및 발광 효율에 있어 차이가 발생하는 것을 확인할 수 있었다.
<실험예 6>
밴드갭 제어층 내 III족원소와 활성금속의 함량을 바꿔가며 제조된 실시예 10 및 실시예 11의 양자점들을 각각 Toluene에 녹여 Otsuka Electronics QE-2000을 사용하여 450nm 파장으로 광조사하여 분석된 광발광 데이터[발광파장 피크 (Emission peak), 양자효율 (Quantum Yield), 반치폭 (Full width at half maximum, FWHM)]을 확인하였다. 상기 측정 결과는 표 3에 나타내었다.
구분 밴드갭 제어층의 In:Zn 함량비 Emission peak (nm) FWHM (nm) Q.Y.(%)
실시예5 1:0.7 621 45 84
실시예10 1:0.1 626 52 61
실시예11 1:2.6 620 50 72
상기 표 3의 결과로부터 보듯이, 실시예 5의 양자점과 실시예 10 및 11의 양자점을 대비하면, 밴드갭 제어층을 구성하는 III족원소와 활성금속의 함량비 차이로 인해 반치폭 및 발광 효율에 있어 차이가 발생하는 것을 확인할 수 있었다.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터.
  2. 제 1항에 있어서, 상기 활성금속산화물은 Zn, Mn, Cu, Fe, Ni, Co, Cr, Ti, Zr, Nb, Mo, Ru 및 이들의 조합으로 이루어진 군에서 선택되는 활성금속의 산화물이며, 상기 활성금속산화물이 단독 또는 둘 이상을 혼합하여 포함하는 활성 나노 클러스터.
  3. 제 1항에 있어서, 상기 활성 나노 클러스터의 입자 평균 입경이 0.5nm 내지 2.5nm인 활성 나노 클러스터.
  4. 제 1항에 있어서, 상기 활성금속산화물-카르복실레이트는 하기 화학식 1로 나타내는 화합물을 포함하는 활성 나노 클러스터.
    [화학식 1]
    TxOy(Carboxylate)z
    상기 화학식 1에서, T는 활성금속이고, x, y, z는 자연수이며, x>y이다.
  5. 제 4항에 있어서, 상기 활성금속산화물-카르복실레이트는 x의 값이 서로 상이한 2종 이상의 활성금속산화물을 포함하는 활성 나노 클러스터.
  6. 제 5항에 있어서, 상기 서로 상이한 2종 이상의 활성금속산화물의 x의 값이 2 내지 10인 활성 나노 클러스터.
  7. 제 1항에 있어서, 상기 활성 나노 클러스터가 활성금속 전구체와 카르복실산을 반응시켜 얻어지는 활성 나노 클러스터.
  8. 활성금속-카르복실레이트를 사용하여 얻어지는 활성금속산화물-카르복실레이트를 포함하는 활성 나노 클러스터의 제조방법.
  9. 활성금속 전구체와 카르복실산을 혼합하여 감압시키는 제 1-1 단계;
    상기 제 1-1 단계 후에 혼합용액을 25℃ 내지 200℃로 승온하여 1차 반응시키는 제 1-2 단계; 및
    상기 제 1-2 단계 후에 혼합용액을 200℃내지 500℃로 승온하여 2차 반응시키는 제 1-3단계;를 포함하는 활성 나노 클러스터의 제조방법.
  10. 제 8항에 있어서, 상기 활성금속-카르복실레이트는 활성금속 전구체와 카르복실산의 몰 비가 1:1 내지 1:3으로 제공되어 수득되는 활성 나노 클러스터의 제조방법.
  11. 제 1항 내지 제 7항 중 어느 한 항의 활성 나노 클러스터를 포함하는 양자점.
  12. 제 8항 내지 제 10항 중 어느 한 항의 활성 나노 클러스터의 제조방법을 포함하는 양자점의 제조방법.
PCT/KR2020/004699 2019-04-11 2020-04-07 Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법 WO2020209578A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190042755 2019-04-11
KR10-2019-0042755 2019-04-11
KR10-2020-0042058 2020-04-07
KR1020200042058A KR20200120529A (ko) 2019-04-11 2020-04-07 Ⅲ­ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2020209578A1 true WO2020209578A1 (ko) 2020-10-15

Family

ID=72751397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004699 WO2020209578A1 (ko) 2019-04-11 2020-04-07 Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법

Country Status (1)

Country Link
WO (1) WO2020209578A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220047087A (ko) * 2020-10-08 2022-04-15 덕산네오룩스 주식회사 Ⅲ―ⅴ족계 양자점의 제조방법 및 iii-v족계 양자점
CN114561211A (zh) * 2022-03-14 2022-05-31 合肥福纳科技有限公司 一种单核ⅲ-ⅴ族量子点及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089251A (ko) * 2009-09-11 2012-08-09 다카사고 고료 고교 가부시키가이샤 아연 클러스터
KR20140121346A (ko) * 2013-04-05 2014-10-15 삼성디스플레이 주식회사 양자점, 양자점의 제조 방법 및 이를 이용한 유기 발광 표시 장치의 제조 방법
KR20160009565A (ko) * 2013-05-22 2016-01-26 코베스트로 도이칠란트 아게 아연 클러스터 화합물, 및 아민과 디알킬 카르보네이트와의 반응에서의 촉매로서의 그의 용도
KR20170018468A (ko) * 2013-03-15 2017-02-17 나노코 테크놀로지스 리미티드 Iii-v/아연 칼코겐 화합물로 합금된 반도체 양자점

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089251A (ko) * 2009-09-11 2012-08-09 다카사고 고료 고교 가부시키가이샤 아연 클러스터
KR20170018468A (ko) * 2013-03-15 2017-02-17 나노코 테크놀로지스 리미티드 Iii-v/아연 칼코겐 화합물로 합금된 반도체 양자점
KR20140121346A (ko) * 2013-04-05 2014-10-15 삼성디스플레이 주식회사 양자점, 양자점의 제조 방법 및 이를 이용한 유기 발광 표시 장치의 제조 방법
KR20160009565A (ko) * 2013-05-22 2016-01-26 코베스트로 도이칠란트 아게 아연 클러스터 화합물, 및 아민과 디알킬 카르보네이트와의 반응에서의 촉매로서의 그의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOGHADDAM, E. ET AL.: "Investigation of Ultrasonic Effect on Morphology , Optical and Growth Properties of ZnO Quantum Dots", JOURNAL OF NANO RESEARCH, vol. 49, September 2017 (2017-09-01), pages 10 - 17 *
POSHKUS, A. C.: "Improved Synthesis of Basic Zinc Acetate, Hexakis (p-acetato)-p-oxotetrazinc", IND. ENG. CHEM. PROD. RES. DEV., vol. 2, 1983, pages 380 - 381, XP055747675 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220047087A (ko) * 2020-10-08 2022-04-15 덕산네오룩스 주식회사 Ⅲ―ⅴ족계 양자점의 제조방법 및 iii-v족계 양자점
KR102566030B1 (ko) 2020-10-08 2023-08-11 덕산네오룩스 주식회사 Ⅲ―ⅴ족계 양자점의 제조방법 및 iii-v족계 양자점
CN114561211A (zh) * 2022-03-14 2022-05-31 合肥福纳科技有限公司 一种单核ⅲ-ⅴ族量子点及其制备方法
CN114561211B (zh) * 2022-03-14 2023-10-24 合肥福纳科技有限公司 一种单核ⅲ-ⅴ族量子点及其制备方法

Similar Documents

Publication Publication Date Title
WO2017115920A1 (ko) 합금-쉘 양자점 제조 방법, 합금-쉘 양자점 및 이를 포함하는 백라이트 유닛
WO2020209578A1 (ko) Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법
US20200347295A1 (en) InP Quantum Dots with GaP and Alp Shells and Methods of Producing the Same
US8313969B2 (en) Method of preparing luminescent nanocrystals, the resulting nanocrystals and uses thereof
WO2019190147A1 (ko) 고색순도 디스플레이 적용을 위한 발광파장 및 좁은 반가폭을 가지는 적색 발광 양자점 및 이의 제조방법
WO2017171482A1 (ko) 비화학양론적 콜로이드 양자점의 밴드 내 전자전이를 이용한 적외선 장치
WO2020209580A1 (ko) Ⅲ-ⅴ계 양자점 및 이의 제조방법
WO2020209581A1 (ko) Ⅲ - ⅴ 계 양자점 및 이의 제조방법
WO2021020695A2 (ko) 하이브리드 파장변환체, 이의 제조방법 및 이를 포함하는 발광장치
CN113597461B (zh) Ⅲ-ⅴ族量子点及其制造方法
WO2020209579A1 (ko) Ⅲ-ⅴ계 양자점 및 이의 제조방법
WO2019078573A1 (ko) 비카드뮴계 양자점, 비카드뮴계 양자점의 제조 방법 및 비카드뮴계 양자점을 포함하는 양자점 필름
WO2022075719A1 (ko) Ⅲ-ⅴ족계 양자점 및 이의 제조방법
WO2022075720A1 (ko) 성장층을 가지는 ⅲ-ⅴ족계 양자점 및 이의 제조방법
KR20200120531A (ko) Ⅲ­ⅴ계 양자점 및 이의 제조방법
KR20200120529A (ko) Ⅲ­ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법
KR20180088552A (ko) 양자점의 제조 방법 및 이로부터 제조된 양자점을 포함하는 표시 장치
WO2020226375A1 (ko) 나노 소재 및 이의 제조 방법
KR101838583B1 (ko) 인듐갈륨계 금속 질화물의 양자점 및 이를 포함하는 콜로이드 분산액
WO2024106776A1 (ko) 양자점, 양자점의 제조방법 및 전자장치
KR102566030B1 (ko) Ⅲ―ⅴ족계 양자점의 제조방법 및 iii-v족계 양자점
WO2024106774A1 (ko) 양자점, 양자점의 제조방법 및 전자장치
WO2024106775A1 (ko) 양자점, 양자점의 제조방법 및 전자장치
WO2020226325A1 (ko) 발광성이 향상된 양자점 및 이의 제조 방법
KR102566038B1 (ko) Ⅲ―ⅴ족계 양자점 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788399

Country of ref document: EP

Kind code of ref document: A1