WO2020226375A1 - 나노 소재 및 이의 제조 방법 - Google Patents
나노 소재 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2020226375A1 WO2020226375A1 PCT/KR2020/005840 KR2020005840W WO2020226375A1 WO 2020226375 A1 WO2020226375 A1 WO 2020226375A1 KR 2020005840 W KR2020005840 W KR 2020005840W WO 2020226375 A1 WO2020226375 A1 WO 2020226375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ligand
- nanomaterial
- exposed surface
- present application
- crystal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G21/00—Compounds of lead
- C01G21/21—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/661—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Definitions
- the present application relates to a nanomaterial and a method of manufacturing the same.
- Quantum dots are nanoparticles having a size of several tens of nanometers or less that have semiconductor characteristics, and have characteristics different from bulk particles due to quantum limiting effects. Specifically, the band gap varies depending on the size of the quantum dot, so that the absorbed wavelength can be changed, and the quantum limiting effect due to the small size shows new optical, electrical, and physical properties that are not found in bulk materials. Accordingly, research on a technology for manufacturing photoelectric conversion devices such as solar cells (solar cells) and light emitting diodes using such quantum dots has been actively conducted.
- Republic of Korea Patent No. 10-15574908 which is the background technology of the present application, includes quantum dot emission layers having different organic ligand distributions on the surfaces in contact with the hole transport layer and the electron transport layer, so that the band level of the quantum dot emission layer can be adjusted. Although it is for a material, the registered patent does not recognize the quantitative control of the energy level of the quantum dot by controlling the exposed surface.
- An object of the present application is to provide a nanomaterial and a method of manufacturing the same as to solve the problems of the prior art described above.
- an object of the present application is to provide an electronic device including the nanomaterial.
- the first aspect of the present application is in a nanomaterial including a quantum dot having a crystal structure, wherein the quantum dot includes an exposed surface in a specific direction, and a ligand is added to the exposed surface. It provides a nanomaterial that is bound.
- the energy level may be different depending on the ratio of the exposed surface or the amount of the ligand to be bound, but is not limited thereto.
- an energy level may be adjusted by a difference in electronegativity between the exposed surface and the ligand, but is not limited thereto.
- the exposed surface may be selected from the group consisting of (111), (100), (110), and combinations thereof, but is not limited thereto.
- the exposed surface may be composed of only one component, but is not limited thereto.
- the ligand is F, Cl, Br, I, 3-mercaptopropionic acid (Mercaptopropionic acid), ethanedithiol (Ethandithiol), and one comprising those selected from the group consisting of combinations thereof.
- the ligand is F, Cl, Br, I, 3-mercaptopropionic acid (Mercaptopropionic acid), ethanedithiol (Ethandithiol), and one comprising those selected from the group consisting of combinations thereof.
- Mercaptopropionic acid ethanedithiol
- Ethandithiol ethanedithiol
- the ligand is F, Cl, Br, I, 3-mercaptopropionic acid (Mercaptopropionic acid), ethanedithiol (Ethandithiol), and one comprising those selected from the group consisting of combinations thereof.
- it is not limited thereto.
- the quantum dot is a tetrahedron, a cylinder, a rod, a triangle, a disk, a tripod, a tetrapod, a cube, a box, a star, a tube, a tetrahedron, an octahedron, and combinations thereof. It may have a structure selected from the group consisting of, but is not limited thereto.
- the quantum dots are indium phosphide (InP), lead sulfide (PbS), indium arsenide (InAs), indium antimonide (InSb), gallium arsenide (GaAs), gallium phosphide (GaP), and antimonide.
- a second aspect of the present application includes controlling a ratio of an exposed surface of a quantum dot having a crystal structure in a specific direction; And it provides a method of manufacturing a nanomaterial comprising the step of binding the ligand to the exposed surface.
- the step of exchanging the ligand for another ligand may be additionally performed, but is not limited thereto.
- the ligand may be one selected from the group consisting of an amine-based ligand, a thiol-based ligand, a phosphine-based ligand, a phosphine oxide-based ligand, and combinations thereof, but is not limited thereto. .
- the other ligand is F, Cl, Br, I, 3-mercaptopropionic acid (Mercaptopropionic acid), ethane dithiol (Ethandithiol), including those selected from the group consisting of combinations thereof It may be, but is not limited thereto.
- the ratio of the exposed surface of the quantum dot having the crystal structure in a specific direction may be controlled by controlling the growth of the crystal, but is not limited thereto.
- a third aspect of the present application provides an electronic device including the nanomaterial according to the first aspect of the present application.
- the present application is to solve the problems of the prior art described above, and provides a nano material and a method of manufacturing the same.
- the nanomaterials according to the present application may have different surface energies depending on which direction the crystal plane (exposed surface) is selected as the surface of the crystal, even if the crystal is made of the same material.
- a ligand may be bound to the exposed surface of the nanomaterial according to the present application, and the energy level of the nanomaterial may be changed due to a difference in electronegativity due to the binding of the ligand to the exposed surface.
- the different exposed surfaces have different surface energies, even when the same type of ligand is used, the amount of the ligand attached to the exposed surfaces in different directions is different.
- the nanomaterial according to the present application can control the exposed surface to have a specific direction, and accordingly, the amount to which the ligand is attached can be adjusted, so that the energy level of the nanomaterial can be quantitatively adjusted.
- the nanomaterial according to the present application enables quantitative control of the energy level, fine adjustment of the energy level is possible, thereby solving the problem of balance between charge and hole injection and extraction when applied to an all-optical/photoelectric device.
- the effect obtainable in the present application is not limited to the effects as described above, and other effects may exist.
- FIG. 1 is a schematic diagram of an arbitrary crystal structure for explaining the nanomaterial according to the present application.
- FIG. 2 is a schematic diagram of another arbitrary crystal structure for explaining the nanomaterial according to the present application.
- FIG. 3 is a schematic diagram showing (100), (111), and (110) planes in a face centered cubic (FCC) crystal structure as an example to describe a nanomaterial according to an embodiment of the present application .
- FCC face centered cubic
- FIG. 4 is a schematic diagram of a quantum dot included in a nanomaterial according to an embodiment of the present application.
- FIG. 5 is a conceptual diagram for adjusting the energy level of a nanomaterial according to an embodiment of the present application.
- FIG. 7 is a flow chart of a method of manufacturing a nanomaterial according to an embodiment of the present application.
- TEM 8 is a microscope (TEM) image of an InP quantum dot in a tetrahedral shape according to an embodiment.
- FIG. 9 is a photograph of a nanomaterial before and after ligand exchange according to an embodiment of the present application.
- FT-IR spectroscopic analysis
- FT-IR spectroscopic analysis
- FT-IR spectroscopic analysis
- FIG 13 is a result of an ultraviolet photoelectron spectroscopy (UPS) of a nanomaterial according to an embodiment of the present application.
- UPS ultraviolet photoelectron spectroscopy
- TEM 14 is a microscope (TEM) image of a spherical InP quantum dot according to a comparative example of the present application.
- 16 is a graph of absorbance according to wavelength of light of a nanomaterial according to an exemplary embodiment and a comparative example of the present application.
- the term “combination of these” included in the expression of the Makushi format refers to one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Makushi format, and the component It means to include one or more selected from the group consisting of.
- the first aspect of the present application is in a nanomaterial including a quantum dot having a crystal structure, wherein the quantum dot includes an exposed surface in a specific direction, and a ligand is added to the exposed surface. It provides a nanomaterial that is bound.
- the exposed facet refers to a surface of a nanomaterial according to the present application as a crystallographic plane (crystal plane), and the term of the exposed surface may be used interchangeably with the surface or crystal plane.
- the exposed surface has a specific crystal surface direction, and the crystal surface direction is expressed as a Miller index.
- the Miller index is a technique for expressing a crystal direction ([uvw]) or a crystal plane ((hkl)). If the sizes of the lattice constants a, b, and c of the crystal are the same, and the angles formed by the a-axis, b-axis, and c-axis of the crystal are the same as 90°, the ⁇ uvw> crystal direction group is [uvw], selected from the group consisting of [uv-w], [u-vw], [uvw], [-uvw], [-uv-w], [-u-vw], [-uvw], and combinations thereof It means a set of crystal directions, and the ⁇ uvw> crystal direction group may be the same as the ⁇ uwv>, ⁇ vuw>, ⁇ vwu>, ⁇ wuv>, and ⁇ wvu> crystal direction groups.
- the Miller index expresses a crystal plane ((hkl) on a crystal structure as a direction.
- ⁇ hkl ⁇ A group of crystal planes is (hkl), (hk-l), (h-kl), (hkl), (-hkl) , (-hk-l), (-h-kl), (-hkl), and a set of crystal faces selected from the group consisting of combinations thereof, and the ⁇ hkl ⁇ crystal face group is ⁇ hlk ⁇ , ⁇ khl ⁇ , ⁇ klh ⁇ , ⁇ lhk ⁇ , and ⁇ lkh ⁇ may be the same as the crystal face groups
- (hkl ) Plane means perpendicular to the [uvw] direction.
- a plane perpendicular to the ⁇ 110> crystal direction is [110], [101], or a plane perpendicular to the [011] crystal direction, that is, (110), (101), (011), (-1, 1, 0), (-1, 0, 1), (0, -1, 1), (1, -1, 0), (1, 0, -1), (0, 1, -1) sides It may include.
- FIG. 1 is a schematic diagram of an arbitrary crystal structure for explaining the nanomaterial according to the present application.
- the inner atom forms four bonds (solid lines) with surrounding atoms
- the outermost layer atoms (atoms present in the cross section of the crystal structure) form three bonds (solid lines) with surrounding atoms. It forms and has one dangling bond that cannot be bonded.
- a specific energy the size of the energy is different for each type of atom
- binding energy the energy is called binding energy.
- One dangling bond has extra energy that can further bond with one atom. Since the extra energy has one per atom of the outermost layer, it exists as many as the number of atoms of the outermost layer present on the surface of the crystal material as a whole.
- FIG. 2 is a schematic diagram of another arbitrary crystal structure for explaining the nanomaterial according to the present application.
- the inner atom forms 6 bonds (solid lines) with surrounding atoms, and the outermost layer atom forms 4 bonds and has 2 dangling bonds.
- the crystal of FIG. 2 has a higher surface energy because more dangling bonds exist in the cross section.
- the basic principle of the difference in surface energy can be seen through FIGS. 1 and 2.
- the angle or direction in which the atoms are bonded differs (that is, the direction of the crystal plane) is different depending on the direction in which the cross-section (crystal plane) is formed within the same crystal structure, not when the crystal structure is different as shown in FIGS. 1 and 2. Different) Therefore, even in the same crystal, the dangling bond in an unbound state exists in a different state according to the cross-section, and accordingly, the surface energy is different for each cross-section. That is, even in the case of crystals made of the same material, crystals having different crystal planes on the surface have different surface energy.
- the nanomaterials according to the present application may have different surface energies depending on which direction the surface of the quantum dot crystal has a crystal plane even if it includes a quantum dot crystal made of the same element.
- the exposed surface may be selected from the group consisting of (111), (100), (110), and combinations thereof, but is not limited thereto.
- FIG. 3 illustrates the (100), (111), and (110) planes in a face centered cubic (FCC) crystal structure as an example to explain the nanomaterial according to the present application, but the nanomaterial according to the present application Is not limited thereto, and may have various crystal structures in addition to the FCC crystal structure, and may have various crystal planes in addition to the (100), (111), and (110) planes.
- FCC face centered cubic
- the nanomaterial according to the present application includes a quantum dot having a zinc blende structure
- (111), (110), and (100) planes formed as exposed surfaces on the quantum dots are each It may have the following characteristics.
- the (111) plane is a plane on which only one type of atoms among positively charged atoms or negatively charged atoms is exposed, and a positively or negatively charged ligand may be bonded to the (111) plane.
- the surface energy to which the ligand is bound may be different from the surface energy to which the ligand is not bound.
- the (110) plane may have, for example, a surface in which both positively charged atoms and negatively charged atoms are exposed, and thus self passivation is likely to occur, and thus ligands may not adhere well. This may vary depending on the crystal structure.
- the (100) plane is, for example, a plane exposed to only one of the positively charged atoms or negatively charged atoms, such as the (111) plane, but unlike the (111) plane, the (100) When the plane is exposed, it may be energetically more unstable than the (111) plane because it has two dangling bonds per atom.
- the properties of the (111), (110), and (100) planes may vary depending on the crystal structure of the quantum dot, and are not limited to the above.
- the nanomaterial according to the present application may adjust the crystal direction or atomic composition of the exposed surface by controlling the degree of crystal growth.
- FIG. 4 is a diagram showing quantum dots included in a nanomaterial according to an embodiment of the present application, which forms indium phosphide (InP) of a tetrahedron, and all four surfaces (exposed surfaces) of the tetrahedron are (111) planes. What is controlled is shown as an example.
- InP indium phosphide
- the exposed surface may be composed of only one component, but is not limited thereto.
- the nanomaterial is not limited to the bar illustrated in FIG. 4, for example, even if it is a nanomaterial including indium phosphide quantum dots as in FIG. 4, only indium (In) exists on the crystal plane or only phosphorus (P) It may be present or controlled to expose indium and phosphorus at the same ratio, and the composition of the exposed surface is not limited thereto.
- the surface of the nanomaterial according to the present application is controlled to have an exposed surface in a specific direction, and the exposed surfaces in different directions have different compositions of atoms exposed on the exposed surface.
- the energy level may be different depending on the ratio of the exposed surface or the amount of the ligand to be bound, but is not limited thereto.
- the surface energy of the exposed surface itself is different depending on which direction it has, and furthermore, whether or not the ligand can be bound, the amount of ligand binding, and the binding strength of the ligand are different. Since the nanomaterial according to the present application can control the exposed surface, the nanomaterial can be designed according to the purpose by predicting binding with the ligand.
- the nanomaterial is capable of finely adjusting the energy level of the nanomaterial by predicting and quantitatively adjusting the binding amount of the ligand and the binding strength of the ligand on the exposed surface.
- the nanomaterial according to the present invention Energy can be controlled by controlling the amount of binding of the ligand using one type of ligand.
- FIG. 5 is a conceptual diagram for adjusting the energy level of a nanomaterial according to an embodiment of the present application.
- the figure to the left of the arrow shows that holes injected into the hole transfer layer (HTL) and electrons injected into the electron transport layer (ETL) are not smoothly transported. It indicates that light cannot be generated in the emission layer (EML), and the figure to the right of the arrow is the energy level of the HTL and the ETL is properly adjusted, so that the transport of the hole and the electron is smooth, and light is generated in the EML. Indicates that. In order to generate light as described above, it is essential to finely control the energy levels of the HTL and ETL.
- the HTL or the EML had to be changed to a crystalline substance having a different energy level, or the kind of ligand bound to the crystalline substance had to be changed. It was difficult to adjust.
- the nanomaterial according to the present application can control the binding (amount, intensity, etc.) of the exposed surface and the ligand by controlling the exposed surface of the quantum dot crystal material composed of the same element.
- the energy level of the nanomaterial can be adjusted by adjusting the binding amount of the ligand, the energy level of the nanomaterial is determined according to the binding amount of the ligand even if the same type of ligand is used without changing the type of the ligand. can be changed. Accordingly, it is easy to predict and quantify the energy level of the nanomaterial according to ligand binding.
- the nanomaterial according to the present application can control the exposed surface, the energy level can be finely adjusted, thereby solving the problem of balance between charge and hole injection and extraction when applied to an all-optical/photoelectric device.
- the adjustable energy level in the nanomaterial according to the present application includes the energy level of the valence band and/or the energy level of the conduction band.
- the size of a band gap between the valence band and the conduction band is not significantly changed and is maintained.
- the nanomaterial according to the present application may be one that facilitates transport of electrons and holes while maintaining a specific band gap by simultaneously changing energy levels of the valence band and conduction band.
- FIG. 6 is a nanomaterial according to a comparative example of the present application, in which spherical indium phosphide (InP) is formed.
- the surface of the spherical indium phosphide is not controlled, indicating that there is no exposed surface in a specific direction. If the exposed surface is not controlled as described above, the effects of the nanomaterial according to the present application cannot be obtained.
- the ligand comprises a ligand selected from the group consisting of F, Cl, Br, I, 3-mercaptopropionic acid, ethandithiol, and combinations thereof. It may be, but is not limited thereto.
- the ligand may include thiol, amine, fatty acid, and the like.
- the ligand in the case of a nanomaterial containing a ligand having an excessively long chain, it may interfere with the injection of holes and electrons when implemented in a device, so the ligand is a ligand having a short chain. It is preferable to use.
- an energy level may be adjusted by a difference in electronegativity between the exposed surface and the ligand, but is not limited thereto.
- the binding strength with the quantum dot crystal may be adjusted according to the type of the ligand
- the energy level of the nanomaterial may also be changed according to the type of the ligand.
- the quantum dot is a tetrahedron, a cylinder, a rod, a triangle, a disk, a tripod, a tetrapod, a cube, a box, a star, a tube, a tetrahedron, an octahedron, and combinations thereof. It may have a structure selected from the group consisting of, but is not limited thereto.
- the quantum dots are indium phosphide (InP), lead sulfide (PbS), indium arsenide (InAs), indium antimonide (InSb), gallium arsenide (GaAs), gallium phosphide (GaP), and antimonide.
- a second aspect of the present application controlling a ratio of an exposed surface of a quantum dot having a crystal structure in a specific direction; And it provides a method of manufacturing a nano-material comprising the step of binding the ligand to the exposed surface.
- FIG. 7 is a flow chart of a method of manufacturing a nanomaterial according to an embodiment of the present application.
- a ratio of an exposed surface of a quantum dot having a crystal structure in a specific direction is controlled (S100).
- the ligand is bound to the exposed surface (S200).
- the nanomaterial according to the present application can be prepared, for example, by a colloidal nanoparticle synthesis method, in which nanocrystals (quantum dots) are synthesized in a solution, and a ligand having a long chain must be used to maintain the nano size. .
- a colloidal nanoparticle synthesis method in which nanocrystals (quantum dots) are synthesized in a solution, and a ligand having a long chain must be used to maintain the nano size.
- a ligand having a long chain must be used to maintain the nano size.
- the ligand may be one or more ligands.
- the ligand may be one or more ligands.
- the process of exchanging the ligand for another ligand may be additionally performed, but is not limited thereto.
- the ligand may be one selected from the group consisting of an amine-based ligand, a thiol-based ligand, a phosphine-based ligand, a phosphine oxide-based ligand, and combinations thereof, but is not limited thereto.
- oleylamine (Oleylamine) ligand can be used.
- the other ligand is F, Cl, Br, I, 3-mercaptopropionic acid (Mercaptopropionic acid), ethane dithiol (Ethandithiol), including those selected from the group consisting of combinations thereof It may be, but is not limited thereto.
- the nanomaterial prepared by exchanging the ligand having the long chain as the ligand having the short chain facilitates injection of holes and electrons without being disturbed by the ligand when applied to a device. can do.
- the ratio of the exposed surface of the quantum dot having the crystal structure in a specific direction may be controlled by controlling the growth of the crystal, but is not limited thereto.
- the nanocrystals grow, they tend to grow in a direction in which the total energy (cast energy) decreases, so under normal conditions, it is difficult to control the exposed surface as desired by forming a surface with low surface energy and growing.
- an arbitrary The quantum dot is a method of stabilizing the surface energy by binding a ligand, and destabilizing the surface energy by binding an arbitrary ligand to a surface not to be exposed, or a method of using a stereoscopic effect according to ligand binding, temperature control, etc.
- the exposed surface can be controlled as desired.
- a third aspect of the present application provides an electronic device including the nanomaterial according to the first aspect of the present application.
- indium chloride (InCl 3 ) and 5 ml of oleylamine were placed in a 3-neck flask and heated at 140°C. The temperature was maintained for 1 hour in a vacuum atmosphere. Subsequently, after converting to a nitrogen atmosphere, the temperature was raised to 250°C, and then 0.18 ml of tris(dimethylamino)phosphine was mixed with 0.5 ml of oleylamine solution and injected, followed by reaction for 1 hour. The reaction was finished.
- the energy level can be further changed through an additional ligand exchange reaction.
- FIG. 8 is a microscopic (TEM) image of a tetrahedral InP quantum dot prepared according to Example 1.
- FIG. 8 is a microscopic (TEM) image of a tetrahedral InP quantum dot prepared according to Example 1.
- FIG. 9 is a photograph before and after the ligand exchange of the nanomaterial according to an embodiment of the present application, the InP quantum dots to which the oleylamine ligand was bound before the ligand exchange was dispersed in hexane, a non-polar solvent, and existed in the upper layer, and after the ligand exchange, Cl It can be seen that the InP quantum dots after being substituted with a ligand are dispersed in dimethylforamide, a polar aprotic solvent, and exist in the lower layer.
- FT-IR 10 is a spectroscopic analysis (FT-IR) result according to an embodiment of the present application.
- the temperature was changed to a nitrogen atmosphere, and the reaction temperature (70 ⁇ 170° C.) suitable for the desired size was set. At this time, the higher the reaction temperature, the larger the particles could be synthesized.
- the synthesized solution was precipitated and separated by adding an anti-solvent such as methanol and acetone.
- quantum dots having three different particle sizes were synthesized (PbS 1.72 ; band gap 1.72 eV, PbS 0.97 ; band gap 0.97 eV, and PbS 0.81 ; band gap 0.81 eV).
- the ligand exchange reaction was carried out in the same manner as in Example 1(1-2), and the oleic acid (OA) ligand was exchanged with iodide (I) and thiol ligand.
- the degree of change of the energy level according to the ratio of the exposed surface of the quantum dot can be confirmed. Specifically, in the case of PbS 1.72 , when S binds as a ligand and when I binds as a ligand, the energy level change is not large, whereas in the case of PbS 0.81 , the energy level change due to different ligands is large. Through this, it can be seen that the difference in the degree to which the energy level changes even if the same ligand is attached depending on the exposed surface.
- indium chloride (InCl 3 ) and 5 ml of oleylamine were added to a 3-neck flask and maintained in a vacuum atmosphere at 140°C for 1 hour. I did. Subsequently, after converting to a nitrogen atmosphere, the temperature was raised to 250°C, and then 1.26 ml of tris(dimethylamino)phosphine was mixed with 0.5 ml of oleylamine solution and injected, and after 1 hour reaction The reaction was finished.
- the solution in the flask was cooled to room temperature, and then precipitated and separated with 5 ml of hexane and 35 ml of acetone to finally obtain spherical indium phosphide quantum dots.
- the tetrahedron and spherical InP quantum dots having the same band gap have different energy levels after ligand exchange. This is due to changes in the coverage of the ligand and the quantum dot, the bonding force, the dipole due to the bonding force, etc., depending on the exposed surface.
- Example 1 For Example 1 and Comparative Example 1, absorbance according to the wavelength of light was analyzed.
- 16 is a graph of absorbance according to wavelength of light of nanomaterials of Example 1 and Comparative Example 1 of the present application.
- Example 1 and Comparative Example 1 are almost the same since the shape of the spectrum from the point at which the absorption is started is similar.
- An optical band gap was obtained through the absorbance graph of FIG. 16, and a point at which absorption occurs or a point at which an absorption peak appears is defined as a band gap.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Luminescent Compositions (AREA)
Abstract
본원은 결정 구조를 가지는 양자점을 포함하는 나노 소재에 있어서, 상기 양자점은 특정 방향의 노출면을 포함하고, 상기 노출면에 리간드가 결합되는 것인, 나노 소재에 대한 것이다.
Description
본원은 나노 소재 및 이의 제조 방법에 관한 것이다.
양자점은 반도체 특성을 가지고 있는 수십 나노미터 이하의 크기를 갖는 나노 입자로서, 양자 제한 효과에 의해 벌크 입자와는 다른 특성을 갖는다. 구체적으로, 양자점의 크기에 따라 밴드갭이 달라지게 되어 흡수하는 파장을 변화시킬 수 있고, 작은 크기로 인한 양자 제한 효과는 벌크 물질에서 볼 수 없는 새로운 광학적, 전기적, 물리적 특성을 보인다. 따라서 이러한 양자점을 이용하여 솔라셀(태양전지), 발광 다이오드와 같은 광전 변환소자를 제조하는 기술에 대한 연구가 활발히 이루어지고 있다.
이와 같이 양자점을 이용한 광전/전광 소자 기술이 다양하게 개발되고 있으나, 양자점으로 전하를 주입하거나 추출하는 효율이 낮아 소자의 효율 증대 및 안정성 확보에 큰 어려움이 있으므로 양자점을 포함한 반도체 나노 소재의 물성 및 에너지 준위를 조절하는 기술이 필수적이다.
반도체 나노 소재는 그 입자의 부피 대비 매우 큰 표면적을 갖기 때문에 표면 환경 변화를 이용하여 소재의 물성을 조절할 수 있다.
종래에는 단순히 리간드와 나노 소재 간의 전기 음성도 차이를 이용하여 소재의 에너지 준위를 조절하는 방식을 이용하였으나, 나노 소재 표면에 붙일 수 있는 리간드의 종류에는 한계가 있고, 서로 다른 리간드를 나노 소재 표면에 결합시킬 경우 에너지 준위 외의 다른 물성의 차이가 발생할 수 있고, 에너지 준위의 정량 제어가 불가능하다는 문제점이 있었다.
본원의 배경이 되는 기술인 대한민국 등록특허 제 10-1557498 호는 정공 전달층과 전자 전달층에 접하는 면이 서로 다른 유기 리간드 분포를 가지는 양자점 발광층을 포함하도록 함으로써 양자점 발광층의 밴드 레벨을 조절할 수 잇는 양자점 발광소재에 대한 것이나, 상기 등록특허는 노출면을 제어함으로써 양자점의 에너지 준위를 정량 조절하는 것에 대해서는 인식하지 못하고 있다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 나노 소재 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본원은 상기 나노 소재를 포함하는 전자 소자를 제공하는 것을 목적으로 한다.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은, 결정 구조를 가지는 양자점을 포함하는 나노 소재에 있어서, 상기 양자점은 특정 방향의 노출면을 포함하고, 상기 노출면에 리간드가 결합되는 것인, 나노 소재를 제공한다.
본원의 일 구현예에 따르면, 상기 노출면의 비율 또는 상기 결합되는 리간드의 양에 따라 에너지 준위가 상이한 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 노출면과 상기 리간드의 전기음성도 차이에 의해 에너지 준위가 조절되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 노출면은 (111), (100), (110), 및 이들의 조합들로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 노출면은 1 개의 성분만으로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 양자점은 정사면체, 원통형, 막대형, 삼각형, 원판형, 트리포드형, 테트라포드형, 큐브형, 박스형, 스타형, 튜브형, 사면체형, 팔면체형, 및 이들의 조합들로 이루어진 군에서 선택된 구조를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 양자점은 인화인듐(InP), 황화납(PbS), 비화인듐(InAs), 안티몬화인듐(InSb), 비화갈륨(GaAs), 인화갈륨(GaP), 안티몬화갈륨(GaSb), 셀렌화카드뮴(CdSe), 황화카드뮴(CdS), 텔루르화카드뮴(CdTe), 황화아연(ZnS), 셀레늄화아연(ZnSe), 텔루르화아연(ZnTe), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 2 측면은, 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율을 제어하는 단계; 및 상기 노출면에 리간드를 결합시키는 단계를 포함하는 나노 소재의 제조 방법을 제공한다.
본원의 일 구현예에 따르면, 상기 리간드를 다른 리간드로 교환하는 단계를 추가 수행하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 리간드는 아민계 리간드, 티올계 리간드, 포스핀계 리간드, 포스핀 옥사이드계 리간드 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 다른 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율은 결정의 성장을 조절하여 제어되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 3 측면은, 본원의 제 1 측면에 따른 나노 소재를 포함하는 전자소자를 제공한다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 나노 소재 및 이의 제조 방법을 제공한다.
본원에 따른 나노 소재는 동일한 물질로 이루어진 결정이라 하더라도 결정의 표면으로서 어떤 방향의 결정면(노출면)을 선택하느냐에 따라 서로 다른 표면 에너지를 가질 수 있다.
본원에 따른 나노 소재의 상기 노출면에는 리간드가 결합될 수 있는데, 상기 노출면에 상기 리간드가 결합함으로써 전기음성도 차이에 의해 상기 나노 소재의 에너지 준위가 변경될 수 있다.
상술하였듯, 서로 다른 상기 노출면은 서로 다른 표면 에너지를 가지므로, 동일한 종류의 리간드를 이용하여도, 상기 서로 다른 방향의 노출면에는 부착되는 상기 리간드의 양이 상이하다.
즉, 본원에 따른 나노 소재는 상기 노출면을 특정한 방향을 가지도록 제어할 수 있고, 이에 따라 상기 리간드가 부착되는 양을 조절 가능하므로 상기 나노 소재의 에너지 준위를 정량적으로 조절할 수 있다.
본원에 따른 나노 소재는 상기 에너지 준위의 정량적 제어가 가능하므로 상기 에너지 준위의 미세 조정이 가능하여 전광/광전 소자에 적용 시에 전하 및 정공 주입 및 추출의 균형 문제를 해결할 수 있다.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.
도 1 은 본원에 따른 나노 소재를 설명하기 위한 임의의 결정 구조의 모식도이다.
도 2 는 본원에 따른 나노 소재를 설명하기 위한 또 다른 임의의 결정구조의 모식도이다.
도 3 은 본원의 일 구현예에 따른 나노 소재를 설명하기 위하여 예시적으로 면심입방 (FCC, Face centered cubic) 결정구조에서의 (100), (111), 및 (110) 면을 도시한 모식도이다.
도 4 는 본원의 일 구현예에 따른 나노 소재에 포함된 양자점의 모식도이다.
도 5 는 본원의 일 구현예에 따른 나노 소재의 에너지 준위 조절에 대한 개념도이다.
도 6 은 본원의 일 비교예에 따른 나노 소재이다.
도 7 은 본원의 일 구현예에 따른 나노 소재의 제조 방법의 순서도이다.
도 8 은 일 실시예에 따른 사면체 모양의 InP 양자점의 현미경(TEM) 이미지이다.
도 9 는 본원의 일 실시예에 따른 나노 소재의 리간드 교환 전 후의 사진이다.
도 10 은 본원의 일 실시예에 따른 나노 소재의 분광학적 분석(FT-IR) 결과이다.
도 11 은 본원의 일 실시예에 따른 나노 소재에 대한 분광학적 분석(FT-IR) 결과이다.
도 12 는 본원의 일 실시예에 따른 나노 소재에 대한 분광학적 분석(FT-IR) 결과이다.
도 13 은 본원의 일 실시예에 따른 나노 소재에 대한 광전자 분광 분석(ultraviolet photoelectron spectroscopy, UPS) 결과이다.
도 14 는 본원의 일 비교예에 따른 구형의 InP 양자점의 현미경(TEM) 이미지이다.
도 15 는 본원의 일 실시예 및 일 비교예에 따른 나노 소재의 에너지 준위 차이를 나타낸다.
도 16 은 본원의 일 실시예 및 일 비교예에 따른 나노 소재의 빛의 파장에 따른 흡광도 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다.
이하, 본원의 나노 소재 및 이의 제조 방법에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은, 결정 구조를 가지는 양자점을 포함하는 나노 소재에 있어서, 상기 양자점은 특정 방향의 노출면을 포함하고, 상기 노출면에 리간드가 결합되는 것인, 나노 소재를 제공한다.
본원에서 상기 노출면(facet)은 결정학적 면 (Crystallographic plane, 결정면)으로서, 본원에 따른 나노 소재의 표면을 칭하는 것이고, 상기 노출면이라는 용어는 표면 또는 결정면과 혼용되어 사용될 수 있다. 또한, 상기 노출면은 특정한 결정면 방향을 가지고, 상기 결정면 방향은 밀러 지수(Miller index)로서 표시한다.
상기 밀러 지수는 결정 방향([uvw]) 또는 결정면((hkl))의 표현 기법이다. 결정의 격자 상수 a, b, 및 c 의 크기가 동일하고, 및 상기 결정의 a 축, b 축, 및 c 축이 이루는 각도가 90° 로서 동일하다면, <uvw> 결정 방향군은 [uvw], [uv-w], [u-vw], [u-v-w], [-uvw], [-uv-w], [-u-vw], [-u-v-w], 및 이들의 조합들로 이루어진 군에서 선택된 결정 방향의 집합을 의미하고, 상기 <uvw> 결정 방향군은 <uwv>, <vuw>, <vwu>, <wuv>, 및 <wvu> 결정 방향군과 동일할 수 있다.
또한, 상기 밀러 지수는 결정구조 상의 결정면((hkl)을 방향처럼 표현한다. {hkl} 결정면군은 (hkl), (hk-l), (h-kl), (h-k-l), (-hkl), (-hk-l), (-h-kl), (-h-k-l), 및 이들의 조합들로 이루어진 군에서 선택된 결정면의 집합을 의미하고, 상기 {hkl} 결정면군은 {hlk}, {khl}, {klh}, {lhk}, 및 {lkh} 결정면군과 동일할 수 있다. 또한, [uvw] 및 (hkl) 에서 u=h, v=k, 및 w=l 이 성립하면, (hkl)면은 [uvw] 방향에 수직함을 의미한다.
예를 들어, <110> 결정 방향에 수직인 면은 [110], [101], 또는 [011] 결정 방향에 수직인 면, 즉 (110), (101), (011), (-1, 1, 0), (-1, 0, 1), (0, -1, 1), (1, -1, 0), (1, 0, -1), (0, 1, -1) 면을 포함할 수 있다.
이와 관련하여, 본원에서 특별한 기재가 없는 한, (h,k,l) 또는 [u,v,w] 의 기재는 결정면의 밀러지수 (uvw) 또는 결정방향의 밀러지수 [uvw] 를 의미한다.
도 1 은 본원에 따른 나노 소재를 설명하기 위한 임의의 결정 구조의 모식도이다.
도 1 의 결정 구조에서 내부 원자는 주위의 원자들과 4 개의 결합(실선)을 형성하고, 최외각층 원자(결정 구조의 단면에 존재하는 원자)는 주위의 원자들과 3 개의 결합(실선)을 형성하고, 결합을 하지 못하고 있는 1 개의 댕글링 본드(dangling bond)를 가지고 있다. 원자끼리 결합을 하기 위해서는 특정한 에너지(에너지의 크기는 원자의 종류마다 상이함)를 필요로 하며, 상기 에너지를 결합 에너지라고 한다. 상기 댕글링 본드 1 개는 원자 1 개와 추가로 결합할 수 있는 여분의 에너지(extra energy)를 가지고 있다. 상기 여분의 에너지는 최외각층 원자 1 개당 1 개씩 가지고 있으므로 상기 결정 물질 전체로 본다면 표면에 존재하는 최외각층 원자의 수만큼 존재한다.
도 2 는 본원에 따른 나노 소재를 설명하기 위한 또 다른 임의의 결정 구조의 모식도이다.
도 2 의 결정 구조에서 내부 원자는 주위의 원자들과 6 개의 결합(실선)을 형성하고, 최외각층 원자는 4 개의 결합을 형성하고 2 개의 댕글링 본드를 가지고 있다. 도 1 의 결정과 비교하여 도 2 의 결정은 단면에 더 많은 댕글링 본드가 존재하므로 표면 에너지가 더 높다. 이와 같이 도 1 및 도 2 를 통해 표면 에너지의 차이가 발생하는 기본 원리를 알 수 있다.
또한, 도 1 및 도 2와 같이 결정 구조가 상이한 경우가 아니라, 동일한 결정 구조 내에서도, 결정을 어느 방향으로 바라본 단면(결정면)을 형성하느냐에 따라 원자가 결합한 각도나 방향이 상이(즉, 결정면의 방향이 상이함)하므로 동일한 결정에서도 상기 단면에 따라 미결합 상태의 상기 댕글링 본드가 상이한 상태로 존재하고, 이에 따라 단면마다 표면 에너지가 상이하다. 즉, 동일한 물질로 이루어진 결정이라 하더라도 표면에 서로 다른 결정면을 가지는 결정은 표면 에너지가 상이하다.
이와 같은 원리로, 본원에 따른 나노 소재는 동일한 원소로 이루어진 양자점 결정을 포함하더라도 상기 양자점 결정의 표면이 어떤 방향의 결정면을 가지는지에 따라 서로 다른 표면 에너지를 가질 수 있다.
본원의 일 구현예에 따르면, 상기 노출면은 (111), (100), (110), 및 이들의 조합들로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
도 3 은 본원에 따른 나노 소재를 설명하기 위하여 예시적으로 면심입방 (FCC, Face centered cubic) 결정구조에서의 (100), (111), 및 (110) 면을 도시하였으나, 본원에 따른 나노 소재는 이에 제한되지 않고 상기 FCC 결정 구조 이외에도 다양한 결정 구조를 가질 수 있고, 상기 (100), (111), 및 (110) 면 이외에도 다양한 결정면을 가질 수 있다.
예를 들어, 본원에 따른 나노 소재가 섬아연석형 결정 구조(zinc blende structure)를 가지는 양자점을 포함하는 경우 상기 양자점 상에 노출면으로서 형성된 (111), (110), 및 (100) 면은 각각 하기와 같은 특징을 가질 수 있다.
상기 (111) 면은, 양전하를 띠는 원자 또는 음전하를 띠는 원자 중 한 종류의 원자들만 노출되는 면으로서, 상기 (111) 면 상에는 양전하 또는 음전하를 띠는 리간드가 결합할 수 있다. 상기 리간드가 결합된 표면 에너지는 상기 리간드가 결합되지 않은 표면 에너지와 상이할 수 있다.
상기 (110) 면은 예를 들어, 양전하를 띠는 원자 및 음전하를 띠는 원자가 모두 노출된 면으로서 자기부동태화(self passivation)가 일어나기 쉬워 리간드가 잘 붙지 못하는 특성을 가질 수 있다. 이는 결정 구조에 따라 달라질 수 있다.
상기 (100) 면은 예를 들어, 상기 (111) 면과 같이 양전하를 띠는 원자 또는 음전하를 띠는 원자 중 한가지 원자들만이 노출된 면이지만, 상기 (111)면과는 달리 상기 (100)면이 노출될 경우에는 한 개의 원자당 두 개의 댕글링 본드를 갖기 때문에 에너지적으로 (111)면보다 불안정할 수 있다.
다만, 이와 같은 (111), (110), 및 (100) 면의 성질은 상기 양자점의 결정 구조에 따라 달라질 수 있으며, 상술한 바에 제한되지 않는다.
이와 관련하여, 후술하겠지만. 본원에 따른 나노 소재는 결정의 성장 정도를 조절하여 상기 노출면의 결정 방향 또는 원자 조성을 조절할 수 있다.
도 4 는 본원의 일 구현예에 따른 나노 소재에 포함된 양자점을 도시한 것으로서, 사면체의 인화인듐(InP)을 형성한 것이고, 상기 사면체의 네 개의 표면(노출면)은 모두 (111) 면으로서 제어되어 있는 것을 예시적으로 나타내고 있다.
본원의 일 구현예에 따르면, 상기 노출면은 1 개의 성분만으로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.
도 4 를 참조하면, 상기 사면체 인화인듐은 표면 상에 인듐만이 노출되어 있는 것을 확인할 수 있다. 이와 같이 인듐만 노출된 (111) 면은 음전하를 가지는 리간드와의 결합이 용이할 수 있다.
상기 나노 소재는 도 4 에 예시된 바에 제한되지 않으며, 예를 들어, 도 4 와 동일하게 인화인듐 양자점을 포함하는 나노 소재라 하더라도, 결정면 상에 인듐(In)만 존재하게 하거나 인(P)만이 존재하게 하거나, 또는 인듐과 인이 동일한 비율로 노출되게 조절할 수 있으며, 상기 노출면의 조성은 이에 제한되는 것은 아니다.
즉, 본원에 따른 나노 소재는 특정 방향의 노출면을 가지도록 표면이 제어되어 있고, 서로 다른 방향의 노출면은 상기 노출면 상에 노출된 원자의 조성이 상이하다.
본원의 일 구현예에 따르면, 상기 노출면의 비율 또는 상기 결합되는 리간드의 양에 따라 에너지 준위가 상이한 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 노출면은 어떤 방향을 가지는지에 따라 그 자체로도 표면에너지가 상이하며, 더욱이 리간드의 결합 가능 여부, 리간드의 결합량, 리간드의 결합 세기가 상이다. 본원에 따른 나노 소재는 상기 노출면을 제어 가능하므로, 상기 리간드와의 결합을 예측하여 목적에 맞게 상기 나노 소재를 설계할 수 있다.
이에 따라, 상기 나노 소재는 상기 노출면 상에 상기 리간드의 결합량 및 상기 리간드의 결합 세기를 예측하여 정량적으로 조절함으로써 상기 나노 소재 에너지 준위를 미세하게 조절할 수 있는 것이다.
상술하였듯, 서로 다른 상기 노출면은 서로 다른 표면 에너지를 가지므로, 동일한 종류의 리간드를 이용하여도, 상기 서로 다른 방향의 노출면에는 결합되는 상기 리간드의 양이 상이하므로 본원에 따른 나노 소재는 한 가지 종류의 리간드를 이용하여 상기 리간드의 결합량을 조절함으로써 에너지를 조절할 수 있다.
도 5 는 본원의 일 구현예에 따른 나노 소재의 에너지 준위 조절에 대한 개념도이다.
도 5 를 참조하면, 화살표 왼쪽의 그림은 정공수송층(HTL, Hole transfer layer)에 주입된 정공(hole)과 전자수송층(ETL, Electron Transport Layer)에 주입된 전자(electron)의 수송이 원활하지 못하여 발광층(EML, Emission layer)에서 빛을 발생시키지 못하는 것을 나타내고, 화살표 오른쪽의 그림은 상기 HTL 및 상기 ETL 의 에너지 준위가 적절히 조절됨으로써 상기 정공과 상기 전자의 수송이 원활하게 되어 상기 EML 에서 빛이 발생하는 것을 나타낸다. 이와 같이 빛을 발생시키기 위해서는 상기 HTL 및 ETL 의 에너지 준위를 미세하게 조절하는 것이 필수적이다.
종래 기술에서는 상기 HTL 및 상기 EML 의 에너지 준위를 조절하기 위하여 상기 HTL 또는 상기 EML 을 다른 에너지 준위를 가지는 결정 물질로 변경하거나, 상기 결정 물질에 결합되는 리간드의 종류를 변경하여야 했으므로, 에너지 준위의 미세 조정이 어려웠다.
반면, 본원에 따른 나노 소재는 동일한 원소로 구성된 양자점 결정 물질의 상기 노출면을 제어함으로써 상기 노출면과 리간드의 결합(양, 세기 등)을 조절할 수 있다.
더욱이, 상기 리간드의 결합량을 조절하여 상기 나노 소재의 에너지 준위를 조절할 수 있으므로, 리간드의 종류를 변경하지 않고 동일한 종류의 리간드를 사용하여도 상기 리간드의 결합량에 따라 상기 나노 소재의 에너지 준위가 변경될 수 있다. 이에 따라, 리간드 결합에 따른 상기 나노 소재의 에너지 준위 예측 및 정량 조절이 용이하다.
즉, 본원에 따른 나노 소재는 상기 노출면의 제어가 가능하므로 상기 에너지 준위의 미세 조정이 가능하여 전광/광전 소자에 적용 시에 전하 및 정공 주입 및 추출의 균형 문제를 해결할 수 있다.
본원에 따른 나노 소재에서 조절 가능한 에너지 준위는 원자가 띠(Valence band)의 에너지 준위 및/또는 전도띠(conduction band)의 에너지 준위를 포함한다.
바람직하게는, 본원에 따른 나노 소재는 상기 원자가 띠와 상기 전도띠 사이의 밴드갭(band gap)의 크기는 유의미하게 변경되지 않고 유지된다.
도 5 를 참조하면, 본원에 따른 나노 소재는 상기 원자가 띠와 전도띠의 에너지 준위를 동시에 변경하여 특정한 밴드갭을 유지하면서 전자와 정공의 수송을 용이하게 하는 것일 수 있다.
도 6 은 본원의 일 비교예에 따른 나노 소재로서, 구형의 인화인듐(InP)을 형성한 것이다. 상기 구형의 인화인듐의 표면은 제어되어 있지 않아 특정 방향의 노출면이 존재하지 않는 것을 나타낸다. 이와 같이 상기 노출면이 제어되어있지 않은 경우에는 상술한 본원에 따른 나노 소재의 효과들을 가질 수 없다.
본원의 일 구현예에 따르면, 상기 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 리간드를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 리간드는 상기 예시 이외에도 티올(thiol), 아민(amine), 지방산(fatty acid) 등을 포함할 수 있다.
이와 관련하여, 과도하게 긴 체인(long chain)을 가지는 리간드를 포함하는 나노 소재의 경우 소자에 구현 시에 정공과 전자의 주입을 방해할 수 있으므로, 상기 리간드는 짧은 체인(short chain)을 가지는 리간드를 사용하는 것이 바람직하다.
본원의 일 구현예에 따르면, 상기 노출면과 상기 리간드의 전기음성도 차이에 의해 에너지 준위가 조절되는 것일 수 있으나, 이에 제한되는 것은 아니다.
이와 관련하여, 본원에 따른 나노 소재는 상기 리간드의 종류에 따라 상기 양자점 결정과의 결합 세기가 조절될 수 있으므로, 상기 리간드 종류에 따라서도 상기 나노 소재의 에너지 준위가 변경될 수 있다.
본원의 일 구현예에 따르면, 상기 양자점은 정사면체, 원통형, 막대형, 삼각형, 원판형, 트리포드형, 테트라포드형, 큐브형, 박스형, 스타형, 튜브형, 사면체형, 팔면체형, 및 이들의 조합들로 이루어진 군에서 선택된 구조를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 양자점은 인화인듐(InP), 황화납(PbS), 비화인듐(InAs), 안티몬화인듐(InSb), 비화갈륨(GaAs), 인화갈륨(GaP), 안티몬화갈륨(GaSb), 셀렌화카드뮴(CdSe), 황화카드뮴(CdS), 텔루르화카드뮴(CdTe), 황화아연(ZnS), 셀레늄화아연(ZnSe), 텔루르화아연(ZnTe), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 2 측면은, 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율을 제어하는 단계; 및 상기 노출면에 리간드를 결합시키는 단계를 포함하는 나노 소재의 제조 방법을 제공한다.
본원의 제 2 측면에 따른 나노 소재의 제조 방법에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.
도 7 은 본원의 일 구현예에 따른 나노 소재의 제조 방법의 순서도이다.
먼저, 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율을 제어한다 (S100).
이어서, 상기 노출면에 리간드를 결합시킨다 (S200).
본원에 따른 나노 소재는 예를 들어, 콜로이드 나노입자 합성법에 의해 제조될 수 있는데, 나노 결정(양자점)이 용액 상에서 합성되며 나노 사이즈를 유지하기 위해서는 긴 체인(long chain)을 갖는 리간드를 이용해야 한다. 결정 성장 과정에서 짧은 체인(short chain)을 갖는 리간드를 사용하면 나노 사이즈를 유지하지 못하고 벌크화 되어 성장할 수 있다는 문제가 있다.
상기 결정의 성장 시에 상기 리간드는 1종 이상의 리간드를 사용하는 것일 수 있다. 예를 들어, 올레일아민(oleylamine) 및 클로라이드(Cl) 리간드를 동시에 사용하는 것도 가능하다.
본원의 일 구현예에 따르면, 상기 리간드를 다른 리간드로 교환하는 과정을 추가 수행하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 리간드는 아민계 리간드, 티올계 리간드, 포스핀계 리간드, 포스핀 옥사이드계 리간드 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 올레일아민(Oleylamine) 리간드를 사용할 수 있다.
본원의 일 구현예에 따르면, 상기 다른 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 긴 체인(long chain)을 갖는 리간드를 상기 짧은 체인(short chain)을 갖는 리간드로서 교환하여 제조된 상기 나노 소재는 소자에 적용 시에 상기 리간드의 방해를 받지 않고 정공 및 전자의 주입을 용이하게 할 수 있다.
본원의 일 구현예에 따르면, 상기 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율은 결정의 성장을 조절하여 제어되는 것일 수 있으나, 이에 제한되는 것은 아니다.
나노 결정이 성장할 때, 전체 에너지(깁스 에너지)가 작아지는 방향으로 성장하려는 경향이 있으므로, 일반적인 조건 하에서는 표면 에너지가 낮은 표면을 형성하며 성장하여 원하는대로 노출면을 제어하기 어렵다.
이에, 본원에 따른 나노 소재의 제조 방법에서는 상기 양자점을 성장시키는 과정에서 상기 양자점의 구성 물질인 모노머(monomer)를 성장중인 양자점 표면의 반응 속도보다 느린 속도로 공급하면서, 노출시키고 싶은 면에 임의의 리간드를 결합시켜 표면에너지를 안정화 시키고, 노출시키고 싶지 않은 면에 임의의 리간드를 결합시켜 표면에너지를 불안정화 시키는 방법, 또는 리간드 결합에 따른 입체효과(Steric effect)를 이용하는 방법, 온도 조절 등으로 상기 양자점 결정의 성장을 조절하여 상기 노출면을 원하는대로 제어할 수 있다.
본원의 제 3 측면은, 본원의 제 1 측면에 따른 나노 소재를 포함하는 전자소자를 제공한다.
본원의 제 3 측면에 전자소자에 대하여, 본원의 제 1 측면 및/또는 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면 및/또는 제 2 측면에 기재된 내용은 본원의 제 3 측면에 동일하게 적용될 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
[실시예 1] 노출면이 제어된 인화인듐(InP) 나노 소재의 제조
<1-1. 사면체 모양의 인화인듐(InP) 양자점의 제조>
노출면이 (111) 로 이루어진 사면체 모양의 인화인듐 를 제조하기 위해 0.24 g 의 염화인듐 (InCl3)과 올레일아민(Oleylamine) 5 ml를 3구 플라스크(3-neck flask)에 넣고 140℃ 의 온도에서 진공 분위기로 1시간 유지하였다. 이어서, 질소 분위기로 전환시켜준 후 250℃ 의 온도로 승온시킨 후 트리스(디메틸아미노)포스핀{Tris(dimethylamino)phosphine} 0.18 ml를 올레일아민 0.5 ml 용액과 혼합하여 주사하고, 1시간 반응 후 반응을 종료하였다. 이때, 입자가 성장하며 깁스 에너지를 낮추기 위해 표면에너지가 작은 (111)면이 노출되게 되어 사면체 모양의 양자점이 형성된다. 반응이 종료된 플라스크 내의 용액을 상온으로 식혀준 후 5 ml 의 헥산(hexane)과 35 ml 의 아세톤(Acetone)로 침전분리하여 인화인듐 양자점을 제조하였다.
형성된 사면체 모양의 InP 양자점은 In원자가 주요하게 노출되어 있기 때문에 추가적인 리간드 교환 반응을 통해 에너지 준위를 보다 크게 변화시킬 수 있다.
도 8 은 상기 실시예 1 에 따라 제조된 사면체 모양의 InP 양자점의 현미경(TEM) 이미지이다.
<1-2. 리간드 교환 반응>
제조된 양자점에서 리간드를 교환하기 위하여 0.01 g/ml 농도로 분산된 용액 1ml 에 4 ml 의 헥산(hexane)과 InCl3 를 디메틸포름아마이드(dimethylformamide)에 분산시킨 0.6 M 의 용액 3ml를 첨가한 후 격렬하게 흔들어 주었다.
도 9 는 본원의 일 실시예에 따른 나노 소재의 리간드 교환 전 후의 사진으로서, 리간드 교환 전 올레일아민 리간드가 결합하고 있던 InP 양자점은 비극성 용매인 헥산에 분산되어 상층에 존재하고, 리간드 교환 후 Cl 리간드로 치환된 후의 InP 양자점은 극성 비양성자성 용매인 디메틸포름아마이드(Dimethylforamide)에 분산되어 하층에 존재하는 것을 확인할 수 있다.
도 10 은 본원의 일 실시예에 따른 분광학적 분석(FT-IR) 결과이다.
도 10 을 참조하면 상기 실시예에서 제조된 나노 소재에서 리간드 교환 전의 리간드(올레일아민)가 완전히 제거된 것을 확인할 수 있다.
구체적으로는, 리간드 교환 반응 전 3,000 wavenumber 영역에서 보이는 올레일아민(Oleylamine)의 C-H 의 스펙트럼이 리간드 교환 반응 후 사라진 것을 확인 할 수 있고, 이를 통해 리간드 교환 전의 올레일아민 리간드가 Cl로 치환되었음을 확인 할 수 있다.
[실시예 2] 노출면이 제어된 황화납(PbS) 나노 소재의 제조
<2-1. 황화납(PbS) 양자점의 제조>
노출면이 제어된 황화납 나노소재를 합성하기 위해서 1.13 g (2.98 mmol)의 아세테이트산 납 삼수화물(lead acetate trihydrate)과 2.1 ml (6.65 mmol)의 올레산(oleic acid), 그리고 30 ml 의 옥타데신 (1-octadecene, ODE) 을 3구 플라스크에 넣어주었다.
진공환경에서 110 ℃ 의 온도로 5 시간 동안 수분과 기타 불순물을 제거해 준 후 질소 분위기로 바꿔 준 후 원하는 사이즈에 맞는 반응온도로(70 ~ 170 ℃) 온도를 설정하였다. 이때, 반응온도가 높을수록 더 큰 입자를 합성할 수 있었다.
각 반응온도에서 0.158ml 의 비스(트리메틸실릴)설파이드 {Bis(trimethylsilyl)sulfide} 와 5 ml 의 옥타데센(Octadecene) 용액이 혼합된 용액을 인젝션 시켜주며, 인젝션과 함께 떨어진 온도가 다시 상기 반응 온도로 상승되었을 때 0.158ml 의 비스(트리메틸실릴)설파이드와 5 ml 의 옥타데센이 혼합된 용액을 2차, 3차로 인젝션 시켜준 후 반응을 종료시켰다.
합성된 용액은 메탄올, 아세톤과 같은 안티솔벤트를 첨가하여 침전분리하였다.
위와 같은 방법에 따라 3 가지의 서로 다른 입자 크기를 가지는 양자점을 합성하였다 (PbS1.72; 밴드갭이 1.72 eV, PbS0.97; 밴드갭이 0.97 eV, 및 PbS0.81; 밴드갭이 0.81 eV)
도 11 은 상기 실시예 2(2-1)에 따른 PbS 양자점에 대한 분광학적 분석(FT-IR) 결과이다.
도 11 을 통해, 상기 PbS 양자점의 밴드갭이 클수록 111면(Pb-rich)의 비율이 증가하고, 상기 PbS 양자점의 밴드갭이 작을수록 (100) 면(Pb및 S 가 1:1 에 가까움)의 비율이 증가한다는 것을 확인할 수 있다.
<2-2. 리간드 교환 반응>
상기 실시예 1(1-2) 과 동일한 방법으로 리간드 교환 반응을 수행하여 올레산(OA) 리간드를 아이오다이드(I) 및 티올(Thiol) 리간드로 교환하였다.
도 12 는 상기 실시예 2(2-1)에 따른 PbS 양자점(PbS1.72, PbS0.97, PbS0.81)에 대한 리간드 교환 반응 전후의 분광학적 분석(FT-IR) 결과이다.
도 12 를 참조하면, 상기 세 종류의 PbS 양자점에 올레산(OA) 리간드를 iodide (I, 파란색) 그리고 thiol (S, 붉은색) 리간드로 교환 후의 FT-IR 스펙트럼에서 1,500 cm-1 및 3,000 cm-1 부근의 픽(C-H 시그널)이 사라졌으므로 이를 통해 기존 리간드인 올레산이 모두 제거가 된 것을 알 수 있다.
도 13 은 상기 실시예 2(2-2) 에 따른 PbS 나노 소재에 대한 광전자 분광 분석(ultraviolet photoelectron spectroscopy, UPS) 결과이다.
도 13 을 참조하면, 리간드 교환을 수행한 후 상기 양자점의 노출면의 비율에 따른 에너지 준위의 변화 정도를 확인할 수 있다. 구체적으로, PbS1.72 의 경우 S 가 리간드로서 결합할 때와 I 가 리간드로서 결합할 때 에너지 준위의 변화 폭이 크지 않은 반면 PbS0.81 의 경우 상이한 리간드에 의한 에너지 준위 변화 폭이 큰 것을 볼 수 있다. 이를 통해 노출면에 따라 같은 리간드를 붙여줘도 에너지 준위가 변화하는 정도의 차이가 커짐을 알 수 있다.
[비교예 1] 노출면이 제어되지 않은 인화인듐(InP) 나노 소재의 제조
1-1. 구형 인화인듐(InP) 양자점의 제조
구형의 인화인듐 양자점을 합성하기 위해서 0.24 g 의 염화인듐(InCl3)과 올레일아민(Oleylamine) 5 ml를 3구 플라스크(3-neck flask)에 넣고 140℃ 의 온도에서 진공 분위기로 1시간 유지하였다. 이어서, 질소 분위기로 전환시켜준 후 250℃ 의 온도로 승온시킨 후 트리스(디메틸아미노)포스핀{Tris(dimethylamino)phosphine} 1.26 ml를 올레일아민 0.5 ml 용액과 혼합하여 주사하고, 1시간 반응 후 반응을 종료하였다. 반응이 종료된 플라스크 내의 용액을 상온으로 식혀준 후 5 ml 의 헥산(hexane)과 35 ml 의 아세톤(Acetone)로 침전분리하여 최종적으로 구형의 인화인듐 양자점을 수득하였다.
도 14 는 본원의 상기 비교예 1 에 따른 구형의 InP 양자점의 현미경(TEM) 이미지이다.
1-2. 리간드 교환
비교예 1-1 에서 제조한 나노 소재가 0.01 g/ml 농도로 분산된 용액 1ml 에 4 ml 의 헥산(hexane)과 InCl3 를 디메틸포름아마이드(dimethylformamide)에 분산시킨 0.6 M 의 용액 3ml를 첨가한 후 격렬하게 흔들어 주었다.
[실험예1]
실시예 1 및 비교예 1 의 나노 소재에 대하여 광전자 분석(UPS, Ultraviolet Photoelectron Spectroscopy)을 수행하였다.
도 15 는 본원의 실시예 1의 나노 소재와 비교예 1 의 나노 소재의 에너지 준위 차이를 나타낸다.
도 15 를 참조하면 동일한 밴드갭을 갖는 사면체와 구형의 InP 양자점이 리간드 교환 후 서로 다른 에너지 준위를 갖는 것을 알 수 있다. 이는, 노출면에 따라 리간드와 양자점의 커버리지(coverage), 결합력, 결합력에 의한 다이폴(dipole) 등의 변화로 인해 차이가 발생하는 것이다.
[실험예 2]
실시예 1 과 비교예 1 에 대하여 빛의 파장에 따른 흡광도를 분석하였다.
도 16 은 본원의 실시예 1 및 비교예 1 의 나노 소재의 빛의 파장에 따른 흡광도 그래프이다.
도 16 을 참조하면, 흡수가 시작되는 지점부터 그 이후의 스펙트럼의 형상이 비슷하므로 상기 실시예 1 및 비교예 1 의 밴드갭이 거의 비슷하다는 것을 알 수 있다. 도 16 의 흡광도 그래프를 통해 옵티컬 밴드갭(optical band gap) 을 구하여 흡수가 일어나는 지점 또는 흡수의 픽이 나타나는 지점을 밴드갭으로 정의하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
Claims (14)
- 결정 구조를 가지는 양자점을 포함하는 나노 소재에 있어서,상기 양자점은 특정 방향의 노출면을 포함하고,상기 노출면에 리간드가 결합되는 것인,나노 소재.
- 제 1 항에 있어서,상기 노출면의 비율 또는 상기 리간드의 양에 따라 에너지 준위가 상이한 것인, 나노 소재.
- 제 2 항에 있어서,상기 노출면과 상기 리간드의 전기음성도 차이에 의해 에너지 준위가 조절되는 것인, 나노 소재.
- 제 1 항에 있어서,상기 노출면은 (111), (100), (110) 및 이들의 조합들로 이루어진 군에서 선택된 것인, 나노 소재.
- 제 4 항에 있어서,상기 노출면은 1 개의 성분만으로 이루어진 것인, 나노 소재.
- 제 1 항에 있어서,상기 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 나노 소재.
- 제 1 항에 있어서,상기 양자점은 정사면체, 원통형, 막대형, 삼각형, 원판형, 트리포드형, 테트라포드형, 큐브형, 박스형, 스타형, 튜브형, 사면체형, 팔면체형, 및 이들의 조합들로 이루어진 군에서 선택된 구조를 가지는, 나노 소재.
- 제 1 항에 있어서,상기 양자점은 인화인듐(InP), 황화납(PbS), 비화인듐(InAs), 안티몬화인듐(InSb), 비화갈륨(GaAs), 인화갈륨(GaP), 안티몬화갈륨(GaSb), 셀렌화카드뮴(CdSe), 황화카드뮴(CdS), 텔루르화카드뮴(CdTe), 황화아연(ZnS), 셀레늄화아연(ZnSe), 텔루르화아연(ZnTe), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 나노 소재.
- 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율을 제어하는 단계; 및상기 노출면에 리간드를 결합시키는 단계를 포함하는, 나노 소재의 제조 방법.
- 제 9 항에 있어서,상기 리간드를 다른 리간드로 교환하는 단계를 추가 수행하는 것인, 나노 소재의 제조 방법.
- 제 9 항에 있어서,상기 리간드는 아민계 리간드, 티올계 리간드, 포스핀계 리간드, 포스핀 옥사이드계 리간드 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 나노 소재의 제조 방법.
- 제 10 항에 있어서,상기 다른 리간드는 F, Cl, Br, I, 3-머캅토프로피온산(Mercaptopropionic acid), 에탄디티올(Ethandithiol), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 나노 소재의 제조 방법.
- 제 9 항에 있어서,상기 결정 구조를 가지는 양자점의 특정 방향의 노출면의 비율은 결정의 성장을 조절하여 제어되는 것인, 나노 소재의 제조 방법.
- 제 1 항 내지 제 8 항 중 어느 한 항에 따른 나노 소재를 포함하는,전자 소자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/425,501 US20220081613A1 (en) | 2019-05-08 | 2020-05-04 | Electronic element with nanomaterial and manufacturing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190053556 | 2019-05-08 | ||
KR10-2019-0053556 | 2019-05-08 | ||
KR1020200050969A KR20200130129A (ko) | 2019-05-08 | 2020-04-27 | 나노 소재 및 이의 제조 방법 |
KR10-2020-0050969 | 2020-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020226375A1 true WO2020226375A1 (ko) | 2020-11-12 |
Family
ID=73051507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/005840 WO2020226375A1 (ko) | 2019-05-08 | 2020-05-04 | 나노 소재 및 이의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220081613A1 (ko) |
KR (1) | KR102677486B1 (ko) |
WO (1) | WO2020226375A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7391600B2 (ja) * | 2019-10-11 | 2023-12-05 | キヤノン株式会社 | 光電変換素子 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030035206A (ko) * | 2001-10-30 | 2003-05-09 | 한국과학기술원 | 구, 막대, 별모양을 포함한 다양한 형태의 무기 나노결정의 화학적 합성방법 |
KR101480475B1 (ko) * | 2014-04-11 | 2015-01-09 | 한국기계연구원 | 할로겐염에 의해 안정화된 양자점 및 그 제조방법 |
KR101557498B1 (ko) * | 2008-11-05 | 2015-10-07 | 삼성전자주식회사 | 양자점 발광소자 및 그 제조방법 |
KR20180070991A (ko) * | 2016-12-19 | 2018-06-27 | 국민대학교산학협력단 | 양자점 잉크 제조방법, 이로부터 제조된 양자점 잉크 및 이를 포함하는 태양전지 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101878341B1 (ko) * | 2016-11-29 | 2018-07-13 | 울산과학기술원 | 양자점 발광 다이오드, 및 상기 양자점 발광 다이오드의 제조 방법 |
-
2020
- 2020-05-04 WO PCT/KR2020/005840 patent/WO2020226375A1/ko active Application Filing
- 2020-05-04 US US17/425,501 patent/US20220081613A1/en active Pending
-
2023
- 2023-03-06 KR KR1020230029044A patent/KR102677486B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030035206A (ko) * | 2001-10-30 | 2003-05-09 | 한국과학기술원 | 구, 막대, 별모양을 포함한 다양한 형태의 무기 나노결정의 화학적 합성방법 |
KR101557498B1 (ko) * | 2008-11-05 | 2015-10-07 | 삼성전자주식회사 | 양자점 발광소자 및 그 제조방법 |
KR101480475B1 (ko) * | 2014-04-11 | 2015-01-09 | 한국기계연구원 | 할로겐염에 의해 안정화된 양자점 및 그 제조방법 |
KR20180070991A (ko) * | 2016-12-19 | 2018-06-27 | 국민대학교산학협력단 | 양자점 잉크 제조방법, 이로부터 제조된 양자점 잉크 및 이를 포함하는 태양전지 |
Non-Patent Citations (1)
Title |
---|
LIM SUNG JUN; MA LIANG; SCHLEIFE ANDRÉ; SMITH ANDREW M: "Quantum dot surface engineering: Toward inert fluorophores with compact size and bright, stable emission", COORDINATION CHEMISTRY REVIEWS, vol. 320, 2016, pages 216 - 237, XP029605953, DOI: 10.1016/j.ccr. 2016.03.012 * |
Also Published As
Publication number | Publication date |
---|---|
KR102677486B1 (ko) | 2024-06-21 |
KR20230038438A (ko) | 2023-03-20 |
US20220081613A1 (en) | 2022-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017116013A1 (ko) | 양자점 및 이의 제조방법 | |
WO2017116014A1 (ko) | 양자점 및 이의 제조방법 | |
WO2019190147A1 (ko) | 고색순도 디스플레이 적용을 위한 발광파장 및 좁은 반가폭을 가지는 적색 발광 양자점 및 이의 제조방법 | |
WO2020130592A1 (ko) | 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법 | |
WO2017115920A1 (ko) | 합금-쉘 양자점 제조 방법, 합금-쉘 양자점 및 이를 포함하는 백라이트 유닛 | |
WO2012002780A2 (en) | Composition for light-emitting particle-polymer composite, light-emitting particle-polymer composite, and device including the light-emitting particle-polymer composite | |
WO2016200225A1 (ko) | 양자점 또는 염료를 함유하는 대면적 필름 및 이의 제조 방법 | |
WO2020226375A1 (ko) | 나노 소재 및 이의 제조 방법 | |
WO2016129813A1 (ko) | 인화인듐계 양자점 및 그 제조방법 | |
WO2017171482A1 (ko) | 비화학양론적 콜로이드 양자점의 밴드 내 전자전이를 이용한 적외선 장치 | |
WO2013042863A1 (en) | Nano particle complex and method of fabricating the same | |
WO2020209578A1 (ko) | Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법 | |
WO2021054650A2 (ko) | 양자점의 제조방법, 및 이에 의해 제조된 양자점 | |
WO2019078573A1 (ko) | 비카드뮴계 양자점, 비카드뮴계 양자점의 제조 방법 및 비카드뮴계 양자점을 포함하는 양자점 필름 | |
WO2013042861A1 (en) | Nano particle, nano particle complex having the same and method of fabricating the same | |
WO2020209581A1 (ko) | Ⅲ - ⅴ 계 양자점 및 이의 제조방법 | |
WO2020209580A1 (ko) | Ⅲ-ⅴ계 양자점 및 이의 제조방법 | |
WO2017022904A1 (ko) | 단일 또는 다중 코어쉘 구조의 나이트라이드계 나노융합 구상체 | |
KR20200130129A (ko) | 나노 소재 및 이의 제조 방법 | |
WO2021215576A1 (ko) | 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법 | |
WO2021210722A1 (ko) | 발광성 도펀트를 구비하는 멀티쉘 구조 기반의 양자점 | |
WO2020209579A1 (ko) | Ⅲ-ⅴ계 양자점 및 이의 제조방법 | |
WO2024106776A1 (ko) | 양자점, 양자점의 제조방법 및 전자장치 | |
WO2024111837A1 (ko) | 다중 쉘 양자점 및 이의 제조 방법 | |
WO2022039335A1 (ko) | 반도체 나노입자 및 이를 포함한 전자 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20802580 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20802580 Country of ref document: EP Kind code of ref document: A1 |