WO2021215576A1 - 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법 - Google Patents
그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법 Download PDFInfo
- Publication number
- WO2021215576A1 WO2021215576A1 PCT/KR2020/006683 KR2020006683W WO2021215576A1 WO 2021215576 A1 WO2021215576 A1 WO 2021215576A1 KR 2020006683 W KR2020006683 W KR 2020006683W WO 2021215576 A1 WO2021215576 A1 WO 2021215576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shell
- inner shell
- compound
- core
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to a quantum dot and a method for manufacturing the same, and more particularly, to a quantum dot based on a graded-multishell structure and a method for manufacturing the same.
- Quantum dots are colloidal semiconductor crystals, have a size of several nanometers to several tens of nanometers, and have advantages in high color purity, color reproducibility, and photostability.
- quantum dots can control a wide range of emission wavelengths by controlling the particle size of semiconductor crystals, and have the advantage of being a solution process and thus a simple manufacturing process.
- the quantum dot may include a core and a shell surrounding the core, wherein the core is formed based on an indium phosphide (InP) compound, and the shell is formed based on a ZnS compound.
- InP indium phosphide
- the aforementioned InP / ZnS-based quantum dots cause a lattice mismatch due to a difference in lattice constant between the InP core and the ZnS shell, resulting in wide half-width characteristics and non-uniform shell epitaxial growth. There is a problem that the characteristics are generated.
- An object of the present invention is to provide a quantum dot capable of minimizing a lattice mismatch and maximizing a quantum confinement effect by forming a graded structure-based inner shell between a core and an outer shell, and a method for manufacturing the same.
- the present invention provides a quantum dot capable of improving optical properties by forming an inner shell through a graded heating-up growth process to minimize mismatch of a thermal expansion coefficient (TEC) and manufacturing the same
- TEC thermal expansion coefficient
- a quantum dot according to an embodiment of the present invention includes a core, an inner shell surrounding the core, and an outer-shell surrounding the inner shell, wherein the inner shell is external from the core.
- the concentration of the compound can be changed stepwise toward the shell.
- the composition ratio of the compound may be changed stepwise from the core to the outer shell.
- the inner shell may include a first inner shell having a multi-layer and a second inner shell having a multi-layer.
- the concentration of the group II element increases from the core toward the outer shell, the concentration of the first group VI element decreases, and the second inner shell has the concentration of the first group VI element from the core toward the outer shell. decreases, and the concentration of the second group VI element may increase.
- the first inner shell comprises a Zn a Se b / Zn c Se d / Zn e Se f multi-layer, wherein a is from 0.3 to 0.6, b is from 0.2 to 0.3, c is from 0.36 to 0.72, and d is 0.16 to 0.24, e is 0.39 to 0.78, f is 0.14 to 0.21, and a to f may satisfy the conditions of a ⁇ c ⁇ e and b > d > f.
- the second inner shell comprises a Zn g Se h S i / Zn j Se k S 1 multi-layer, wherein g is 0.1 to 0.5, h is 0.005 to 0.020, i is 0.5 to 2.0, and j is 0.1 to 0.5, k is 0.0025 to 0.010, l is 1.0 to 4.0, and g to l may satisfy the conditions of g ⁇ j, h > k and i ⁇ l.
- the inner shell may include at least one of a group II-III-VI compound, a group III-III-II-VI compound, and combinations thereof.
- the core comprises at least one of a group III-V compound, a group II-VI compound, a group II-III-VI compound, a group III-III-II-VI compound, and combinations thereof, and the outer shell comprises a group II-VI compound may include.
- the manufacturing method of quantum dots comprises the steps of forming a core, forming an inner shell surrounding the core, and an outer-shell surrounding the inner shell. ), wherein the inner shell may have a stepwise change in the concentration of the compound from the core toward the outer shell.
- the step of forming the inner shell is a step of forming a first inner shell surrounding the core while increasing the growth temperature stepwise within the temperature range of 120 ° C. to 330 ° C. and the growth temperature within the temperature range of 260 ° C. to 320 ° C.
- the method may further include forming a second inner shell surrounding the first inner shell while increasing in stages.
- the step of forming the first inner shell includes the steps of forming a first shell layer surrounding the core while increasing the growth temperature stepwise within the temperature range of 120°C to 210°C, and within the temperature range of 240°C to 270°C. forming a second shell layer surrounding the first shell layer while increasing the growth temperature stepwise; and a third shell surrounding the second shell layer while increasing the growth temperature stepwise within a temperature range of 300° C. to 330° C.
- the method may further include forming a layer.
- the first shell layer comprises a Zn a Se b compound
- the second shell layer comprises a Zn c Se d compound
- the third shell layer comprises a Zn e Se f compound, wherein a is 0.3 to 0.6; b is 0.2 to 0.3, c is 0.36 to 0.72, d is 0.16 to 0.24, e is 0.39 to 0.78, f is 0.14 to 0.21, and a to f is a ⁇ c ⁇ e and b > d > f condition can be satisfied.
- the forming of the second inner shell includes the steps of forming a fourth shell layer surrounding the first inner shell while increasing the growth temperature stepwise within a temperature range of 260° C. to 300° C. and a fourth at a growth temperature of 320° C.
- the method may further include forming a fifth shell layer surrounding the shell layer.
- the fourth shell layer is a Zn g Se h S i comprising the compound
- the fifth shell layer comprises a Zn j Se k S l compound, where and g is from 0.1 to 0.5, h is from 0.005 to 0.020, i is 0.5 to 2.0, j is 0.1 to 0.5, k is 0.0025 to 0.010, l is 1.0 to 4.0, and g to l may satisfy the conditions of g ⁇ j, h > k and i ⁇ l.
- a graded structure-based inner shell is formed between the core and the outer shell to minimize lattice mismatch and maximize quantum confinement.
- the present invention can minimize the mismatch of the thermal expansion coefficient (TEC) by forming the inner shell through a graded heating-up growth process, through which the optical properties can improve
- TEC thermal expansion coefficient
- FIG. 1 is a view for explaining a quantum dot according to an embodiment of the present invention.
- FIG. 2 is a view for explaining an embodiment of a quantum dot according to an embodiment of the present invention.
- FIG. 3 is a diagram for explaining a bandgap energy diagram of a quantum dot according to an embodiment.
- 4 is a view for explaining the bandgap energy characteristics of quantum dots according to an embodiment.
- 5A to 5E are diagrams for explaining optical characteristics of red light-emitting quantum dots according to an embodiment.
- 6A to 6E are diagrams for explaining optical characteristics of green light-emitting quantum dots according to an exemplary embodiment.
- FIG. 7 is a view for explaining a method of manufacturing a quantum dot according to an embodiment.
- FIG. 8 is a view for explaining an example of a method of manufacturing a red light-emitting quantum dot according to an embodiment.
- FIG. 9 is a view for explaining an example of a method of manufacturing a green light-emitting quantum dot according to an embodiment.
- an (eg, first) component is referred to as being “connected (functionally or communicatively)” or “connected” to another (eg, second) component, that component is It may be directly connected to the element, or may be connected through another element (eg, a third element).
- the expression “a device configured to” may mean that the device is “capable of” with other devices or parts.
- a processor configured (or configured to perform) A, B, and C refers to a dedicated processor (eg, an embedded processor) for performing the operations, or by executing one or more software programs stored in a memory device.
- a dedicated processor eg, an embedded processor
- a general-purpose processor eg, a CPU or an application processor
- FIG. 1 is a view for explaining a quantum dot according to an embodiment of the present invention.
- an inner shell based on a graded structure is formed between the core and the outer shell to minimize lattice mismatch and maximize the quantum confinement effect.
- the quantum dot 100 can minimize the mismatch in the coefficient of thermal expansion (TEC) by forming an inner shell through a graded temperature increase growth process, thereby improving optical properties.
- TEC coefficient of thermal expansion
- the quantum dot 100 may be a red light-emitting quantum dot or a green light-emitting quantum dot.
- Group described below may mean a group of the periodic table of elements.
- 'Group I' may include Groups IA and IB, and examples of the 'Group I' element may include Li, Na, K, Ru, and Cs, but is not limited thereto.
- Group II' may include Groups IIA and IIB, and examples of Group II elements may include, but are not limited to, Cd, Zn, Hg and Mg.
- Group III' may include groups IIIA and IIIB, and examples of group III elements may include, but are not limited to, Al, In, Ga, and Tl.
- Group IV' may include groups IVA and IVB, and examples of group IV elements may include, but are not limited to, Si, Ge, and Sn.
- Group V' may include group VA, and may include, but is not limited to, N, P, As, Sb, and Bi as examples of group V elements.
- Group VI' may include group VIA, and examples of group VI elements may include, but are not limited to, S, Se, and Te.
- the quantum dot 100 is a core (core) 110, an inner shell (inter-shell) (120, 130) surrounding the core 110, and an outer shell surrounding the inner shell (120, 130) ( outer-shell) 140 , where the inner shells 120 and 130 may have a concentration of the compound that changes stepwise from the core 110 toward the outer shell 140 . That is, the inner shells 120 and 130 may be formed in a graded structure.
- the core 110 includes at least one of a group III-V compound, a group II-VI compound, a group II-III-VI compound, a group III-III-II-VI compound, and combinations thereof, and the outer shell 140 may comprise II-VI compounds.
- the group III-V compound is a binary compound selected from GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and combinations thereof, and GaNP, GaNAs, GaNSb , GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InNAs, InNSb, InPAs, InPSb and a ternary compound selected from combinations thereof, and GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, It may include at least one of a quaternary compound selected from GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and combinations thereof.
- the group II-VI compound is a binary compound selected from CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, MgSe, MgS, and combinations thereof, and CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe , ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS and combinations thereof; At least one of a quaternary compound selected from CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe,
- the core 110 may include at least one of an InP compound, an InGaP compound, an InAlP compound, an InBP compound, and a GaP compound.
- the core 110 may include an InP compound
- the outer shell 140 may include a ZnS compound.
- the core 110 may be formed of a multi-layer including an inner-core and an outer-core.
- the outer core may be implemented with the same bandgap and structure as the inner core, and may be implemented with a relatively thin thickness compared to the inner core.
- the quantum dot 100 is a red light-emitting quantum dot
- the core 110 is formed by suppressing the Ostwald aging phenomenon through a multi-layer core process to form a core size corresponding to the desired red wavelength (620 to 630 nm) bandgap energy while maintaining a uniform size distribution. can be (adjusted).
- the inner core may comprise an In m P n compound and the outer core may comprise an In o P p compound, wherein m is from 0.30 to 0.04, n is from 0.25 to 0.35, and o is from 0.15 to 0.20, p is 0.125 to 0.175, and m to p may satisfy the conditions of m > o and n > p.
- the inner shells 120 and 130 may include at least one of a group II-III-VI compound, a group III-III-II-VI compound, and combinations thereof.
- inner shells 120 and 130 may include a first inner shell 120 having a multi-layer and a second inner shell 130 having a multi-layer.
- the inner shells 120 and 130 may include at least one of a ZnSe compound, a ZnSeS compound, a ZnTe compound, a ZnTeSe compound, a ZnTeSeS compound, and a ZnTeS compound.
- the first inner shell 120 may include a ZnSe compound
- the second inner shell 130 may include a ZnSeS compound.
- the composition ratio of the compound may be changed in stages from the core 120 toward the outer shell 140 .
- first inner shell 120 and the second inner shell 130 may be designed with a composition ratio capable of minimizing the lattice mismatch of the outer shell, thereby minimizing the lattice mismatch to achieve a uniform epitaxial layer. Improvement of optical properties (increase in quantum yield and decrease in half width) through epitaxial growth can be expected.
- the concentration of the group II element may increase from the core 110 toward the outer shell 140 , and the concentration of the first group VI element may decrease.
- the concentration of the first group VI element may decrease and the concentration of the second group VI element may increase from the core 110 toward the outer shell 140 .
- the group II element constituting the first inner shell 120 and the second inner shell 130 may be a Zn element
- the first group VI element may be a Se element
- the second group VI element may be an S element. have.
- FIG. 2 is a view for explaining an embodiment of a quantum dot according to an embodiment of the present invention.
- FIG. 2 is a view for explaining an example of a quantum dot according to an embodiment described with reference to FIG. 1 , and descriptions that overlap with those described with reference to FIG. 1 among the contents described with reference to FIG. 2 will be omitted. .
- the quantum dots according to an embodiment have an InP core 210 , a first inner shell 220 surrounding the InP core 210 , and a second inner shell surrounding the first inner shell 230 . and a ZnS outer shell 240 surrounding the shell and the second inner shell.
- the concentration of the compound may be changed in stages from the InP core 210 toward the ZnS outer shell 240 , and the first inner shell 220 .
- each of the second inner shell 230 may be implemented as a multi-layer (multi-layer).
- the first inner shell 220 includes a Zn a Se b / Zn c Se d / Zn e Se f multi-layer, wherein a is 0.3 to 0.6, b is 0.2 to 0.3, and c is 0.36 to 0.72, d is 0.16 to 0.24, e is 0.39 to 0.78, f is 0.14 to 0.21, and a to f may satisfy the conditions of a ⁇ c ⁇ e and b > d > f.
- the first inner shell 220 includes a Zn a Se b compound-based first shell layer surrounding the core 210 , a Zn c Se d compound-based second shell layer surrounding the first shell layer, and a second A Zn e Se f compound-based second shell layer surrounding the shell layer may be included.
- the second inner shell 230 comprises a Zn g Se h S i / Zn j Se k S 1 multi-layer, wherein g is 0.1 to 0.5, h is 0.005 to 0.020, and i is 0.5 to 0.5 2.0, j is 0.1 to 0.5, k is 0.0025 to 0.010, l is 1.0 to 4.0, and g to l may satisfy the conditions of g ⁇ j, h > k and i ⁇ l.
- the quantum dot according to an embodiment is a red light-emitting quantum dot
- g satisfies the condition of g ⁇ j can be
- FIG. 3 is a diagram for explaining a bandgap energy diagram of a quantum dot according to an embodiment.
- FIG. 3 shows a band-gap energy diagram of a quantum dot based on an InP/ZnS structure
- FIG. 3(b) is an InP/ZnSeS/ZnS structure-based diagram. shows the bandgap energy diagram of the quantum dots
- FIG. 3 ( c ) shows the bandgap energy diagram of the quantum dots (quantum dots according to an embodiment) based on the InP / ZnSe / ZnSeS / ZnS structure.
- the quantum dots (E g,InP core ⁇ E g,ZnS shell ) based on the InP / ZnS structure are quantum wells through the quantum confinement effect in the InP core. (quantum well) is formed, which causes a lattice mismatch of about 8.6% due to the lattice constant difference between the InP core (5.93A) and the ZnS shell (5.42A), resulting in wide half-width characteristics and non-uniform shell epitaxial growth characteristics. you can see what you see.
- the quantum dots based on the InP / ZnSeS / ZnS structure having a ZnSeS inner shell also show a high lattice mismatch of about 4.6% to 8.6%.
- the concentration (and composition ratio) of the compound changes stepwise from the InP core to the ZnS outer shell.
- ZnSe (5.66A) / ZnSe 1 By providing the -x S x (5.66 to 5.42A, where x is a positive real number) inner shell, it is possible to improve wide half-width characteristics and non-uniform shell epitaxial growth characteristics.
- the band alignment of the ZnSe (5.66A) / ZnSe 1-x S x inner shell is larger than the InP core bandgap energy (1.35 eV) and smaller than the ZnS shell (3.6 eV) bandgap energy. It is possible to improve the wide half-width characteristics and non-uniform shell epitaxial growth characteristics by mitigating the lattice mismatch (4.6%).
- 4 is a view for explaining the bandgap energy characteristics of quantum dots according to an embodiment.
- bandgap energy characteristics (energy band-gap) according to lattice constants of quantum dots according to an embodiment may be summarized as shown in Table 1 below.
- the conventional quantum dots (InP/ZnS structure-based quantum dots) caused a lattice constant mismatch due to the difference in lattice constants between the InP core and the ZnS outer shell, but the quantum dots (InP/ZnSe according to an embodiment) Quantum dots based on the /ZnSeS/ZnS structure) can minimize the lattice constant mismatch by inserting a ZnSe/ZnSeS inner shell between the InP core and the ZnS outer shell.
- the first inner shell (ZnSe layer) of the ZnSe / ZnSeS inner shell may be formed of three layers, and the second inner shell (ZnSeS layer) may be formed of two layers, each layer having Bandgap engineering can be performed to minimize the lattice constant mismatch with the adjacent InP core or ZnS outer shell.
- 5A to 5E are diagrams for explaining optical characteristics of red light-emitting quantum dots according to an embodiment.
- reference numeral 510 denotes an absorbance characteristic according to a change in wavelength of a red light-emitting quantum dot (InP / ZnSe / ZnSeS / ZnS) according to an embodiment
- reference numeral 520 shows the luminescence intensity characteristic (PL intensity) according to the wavelength change of the red light-emitting quantum dot according to an embodiment.
- Reference numerals 530 to 550 show XRD (X ray diffraction) analysis results of red light-emitting quantum dots, selected area electron diffraction (SAED) images and transmission electron microscopy (TEM) images, respectively, according to an embodiment.
- SAED selected area electron diffraction
- TEM transmission electron microscopy
- the InP core of the red light-emitting quantum dots is formed of In m P n / In o P p multi-layers
- the first inner shell of the red light-emitting quantum dots is Zn a Se b / Zn c Se d / Zn e Se f
- the second inner shell may be formed of a Zn g Se h S i / Zn j Se k S 1 multi-layer.
- the red light-emitting quantum dots according to an embodiment show high crystallinity ((111) crystals, (220) crystals, and (311) crystals), and are formed to a size of about 7.74 ⁇ 1.9 nm. can be checked
- red light-emitting quantum dots according to an embodiment may be summarized as shown in Table 2 below.
- 6A to 6E are diagrams for explaining optical characteristics of green light-emitting quantum dots according to an exemplary embodiment.
- reference numeral 610 denotes an absorbance characteristic according to a change in wavelength of green light-emitting quantum dots (InP / ZnSe / ZnSeS / ZnS) according to an embodiment
- reference numeral 620 shows the luminescence intensity characteristic (PL intensity) according to the wavelength change of the green light emitting quantum dot according to an embodiment.
- Reference numerals 630 to 650 show an X-ray diffraction (XRD) analysis result, a selected area electron diffraction (SAED) image and a transmission electron microscopy (TEM) image of the green light-emitting quantum dot according to an embodiment, respectively.
- XRD X-ray diffraction
- SAED selected area electron diffraction
- TEM transmission electron microscopy
- the first inner shell of the green light-emitting quantum dots is formed of a Zn a Se b / Zn c Se d / Zn e Se f multi-layer
- the second inner shell is Zn g Se h S i / Zn j Se k S l can be formed in multi-layers.
- the green light emitting quantum dots according to an embodiment show high crystallinity ((111) crystals, (220) crystals, and (311) crystals), and are formed to a size of about 4.7 ⁇ 1.1 nm. can be checked
- the optical properties of the green light emitting quantum dots (GQDs) according to an embodiment may be summarized as shown in Table 3 below.
- the green light emitting quantum dots according to an embodiment increased about 42% in quantum yield and decreased by about 14 nm in half width compared to the green light emitting quantum dots based on the existing InP / ZnS structure (check the improvement of optical properties) can do.
- FIG. 7 is a view for explaining a method of manufacturing a quantum dot according to an embodiment.
- FIG. 7 is a view for explaining a method for manufacturing a quantum dot according to an embodiment described with reference to FIGS. 1 to 6 , and among the contents described with reference to FIG. 7 below, the content described with reference to FIGS. 1 to 7 and FIG. A duplicate description will be omitted.
- the method for manufacturing quantum dots according to an embodiment may form a core.
- the core formed through the method for manufacturing quantum dots according to an embodiment in step 710 may include an InP compound.
- the method of manufacturing quantum dots according to an embodiment may form an inner core (inter-core) and an outer-core surrounding the formed inner core.
- the inner core may comprise an In m P n compound and the outer core may comprise an In o P p compound, wherein m is from 0.30 to 0.04, n is from 0.25 to 0.35, and o is from 0.15 to 0.20, p is 0.125 to 0.175, and m to p may satisfy the conditions of m > o and n > p.
- the method for preparing quantum dots according to an embodiment is 0.3 mmol of indium acetate, 10 mL of 1-octadecene (ODE), and 0.9 mmol of palmitic acid (palmitic).
- acid, PA indium acetate
- ODE 1-octadecene
- palmitic palmitic acid
- step 710 the quantum dot manufacturing method according to an embodiment is heated to 320° C. and then 0.15 mmol solution of tris (trimethylsilyl) phosphine (TMS3P) is rapidly injected, and the inner core is reacted. can form.
- TMS3P tris (trimethylsilyl) phosphine
- step 710 the method for preparing quantum dots according to an embodiment is performed through a separate reactor with 0.2 mmol of indium acetate, 5 mL of 1-octadecene (ODE), and 0.6 mmol of palmitic acid.
- ODE 1-octadecene
- palmitic acid Palmitic acid, PA
- tris (trimethylsilyl) phosphine tris(trimethylsilyl) phosphine, TMS3P) 0.1 mmol outer core mixture solution may be slowly dropped into the inner core reactor to form the outer core.
- the quantum dot manufacturing method may form an inner shell (inter-shell) surrounding the core.
- the quantum dot manufacturing method may form a first inner shell and a second inner shell having a multi-layer, preferably the first inner shell is ZnSe compound, and the second inner shell may include a ZnSeS compound.
- step 720 3 mmol of zinc stearate is rapidly injected with 10 mL of a 1-octadecane mixed solution to react at 330° C. for 30 minutes. have.
- step 720 0.5 ml of Se-TOP 1.6M concentration is injected and reacted at 330° C. for 30 minutes, and Se-TOP 1.6M concentration of 0.06 ml, S-TOP 2M continuously A concentration of 2 ml may be injected and reacted for 120 minutes to form a first inner shell (ZnS)/second inner shell (ZnSeS).
- ZnS first inner shell
- ZnSeS second inner shell
- step 720 after the reaction is completed, ethanol is added to a quantum dot solution rapidly cooled to room temperature to form a precipitate, which is separated by centrifugation and redispersed in hexane or toluene.
- the concentration of the compound may be changed step by step from the core toward the outer shell.
- the method of manufacturing quantum dots according to an embodiment requires a growth process at a high temperature for high crystallinity and uniform shell growth of the first inner shell and the second inner shell after core growth.
- the growth process at such a high temperature may cause a high thermal expansion coefficient mismatch between the core and the inner shell and between the first inner shell and the second inner shell, thereby causing crystal defects of the interface.
- the quantum dot manufacturing method can grow the inner shell by minimizing the TEC mismatch by applying a graded heating-up growth process to gradually change the growth temperature, , it is possible to realize high optical properties by minimizing crystal defects through this.
- the method for manufacturing quantum dots may use a SILAR (successive ironic layer adsorption and reaction) synthesis method to grow an inner shell on the core.
- SILAR synthetic ironic layer adsorption and reaction
- the method for manufacturing the quantum dot according to an embodiment in step 720 surrounds the core while increasing the growth temperature stepwise within the temperature range of 120°C to 330°C. may form a first inner shell, and a second inner shell surrounding the first inner shell while increasing the growth temperature stepwise within a temperature range of 260 °C to 320 °C.
- the first inner shell includes a first shell layer including a Zn a Se b compound, a second shell layer including a Zn c Se d compound, and a third shell layer including a Zn e Se f compound wherein a is 0.3 to 0.6, b is 0.2 to 0.3, c is 0.36 to 0.72, d is 0.16 to 0.24, e is 0.39 to 0.78, f is 0.14 to 0.21, and a to f may satisfy the condition a ⁇ c ⁇ e and b > d > f.
- the second inner shell can comprise a fifth shell layer comprising a fourth shell layer and a Zn j Se k S l compound containing Zn g Se h S i compound, where, g is 0.1 to 0.5, and , h is 0.005 to 0.020, i is 0.5 to 2.0, j is 0.1 to 0.5, k is 0.0025 to 0.010, l is 1.0 to 4.0, and g to l is g ⁇ j, h > k and i ⁇ l condition can be satisfied.
- the method for manufacturing the quantum dot according to an embodiment in step 720 increases the growth temperature stepwise within the temperature range of 120 ° C to 210 ° C.
- a surrounding first shell layer may be formed.
- the quantum dot manufacturing method may form a second shell layer surrounding the first shell layer while increasing the growth temperature stepwise within a temperature range of 240°C to 270°C.
- the method of manufacturing quantum dots according to an embodiment may form a third shell layer surrounding the second shell layer while increasing the growth temperature stepwise within a temperature range of 300°C to 330°C.
- the method of manufacturing quantum dots according to an embodiment may form a fourth shell layer surrounding the third shell layer within a temperature range of 260°C to 300°C.
- the method of manufacturing quantum dots according to an embodiment may form a fifth shell layer surrounding the fourth shell layer at a growth temperature of 320°C.
- the method for manufacturing the quantum dot according to an embodiment in step 720 surrounds the core while increasing the growth temperature stepwise within the temperature range of 200 ° C to 300 ° C.
- a first inner shell may be formed, and a second inner shell surrounding the first inner shell may be formed while gradually increasing the growth temperature within a temperature range of 260°C to 320°C.
- the method for manufacturing the quantum dot according to the embodiment in step 720 increases the growth temperature stepwise within the temperature range of 200°C to 220°C while forming the core.
- a surrounding first shell layer may be formed.
- the quantum dot manufacturing method may form a second shell layer surrounding the first shell layer while increasing the growth temperature stepwise within a temperature range of 240°C to 260°C.
- the method for manufacturing quantum dots according to an embodiment may form a third shell layer surrounding the second shell layer while increasing the growth temperature stepwise within a temperature range of 280°C to 300°C.
- the method for manufacturing quantum dots according to an embodiment may form a fourth shell layer surrounding the third shell layer while increasing the growth temperature stepwise within a temperature range of 260°C to 300°C.
- the method of manufacturing quantum dots according to an embodiment may form a fifth shell layer surrounding the fourth shell layer at a growth temperature of 320°C.
- the graded temperature increase growth process when the quantum dot according to an embodiment is a red light-emitting quantum dot or a green light-emitting quantum dot will be described in more detail with reference to FIGS. 8 to 9 of the following Examples.
- the method of manufacturing quantum dots according to an embodiment may form an outer-shell surrounding the inner shell.
- the outer shell may comprise a ZnS compound.
- FIG. 8 is a view for explaining an example of a method of manufacturing a red light-emitting quantum dot according to an embodiment.
- reference numeral 800 denotes a method of manufacturing a quantum dot using a graded heating-up growth process when the quantum dot is a red light-emitting quantum dot according to an exemplary embodiment.
- the method for manufacturing quantum dots includes an InP core, Zn a Se b / Zn b Se c / Zn e Se f first inner shell formed of a multi-layer, Zn g Se h S i / Zn j Se k S l a second inner shell and a ZnS outer shell formed of multi-layers.
- each of the Zn a Se b layer, the Zn b Se c layer and the Zn e Se f layer of the first inner shell is a first to third shell layer, and the Zn g Se h S i layer and Zn j layer of the second inner shell
- Each of the Se k S l layers is It may be a fourth to fifth shell layer.
- the method of manufacturing quantum dots according to an embodiment may form an InP core at a growth temperature of 320° C. (growth temp.).
- the method of manufacturing quantum dots according to an embodiment may perform a purification process on the formed InP core after the InP core is formed.
- a purification process using a centrifuge is performed after forming the InP core to remove side products generated in the core formation process.
- a Zn precursor is injected at a growth temperature of 150° C.
- a Se precursor is injected at a growth temperature of 210° C. to form a first shell layer, and the first shell layer It is also possible to inject the InP compound at a growth temperature of 120 °C prior to injecting the Se precursor in the formation process.
- the method for manufacturing quantum dots injects the InP compound at a temperature (120° C.) higher than the boiling point (110° C.) of the organic solvent to vaporize the organic solvent.
- a Zn precursor is injected at a growth temperature of 240° C.
- a Se precursor is injected at a growth temperature of 270° C. to form a second shell layer.
- a Zn precursor is injected at a growth temperature of 300° C.
- a Se precursor is injected at a growth temperature of 330° C. to form a third shell layer.
- a Zn precursor is injected at a growth temperature of 260° C.
- a Se precursor and an S precursor are injected at a growth temperature of 300° C. to form a fourth shell layer.
- a Zn precursor, a Se precursor, and an S precursor may be injected at a growth temperature of 320° C. to form a fifth shell layer.
- the ZnS outer shell may be formed at a growth temperature of 230°C.
- FIG. 9 is a view for explaining an example of a method of manufacturing a green light-emitting quantum dot according to an embodiment.
- reference numeral 900 denotes a method of manufacturing a quantum dot using a graded heating-up growth process when the quantum dot is a green light emitting quantum dot according to an exemplary embodiment.
- the method of manufacturing quantum dots according to an embodiment includes an InP core, Zn a Se b / Zn b Se c / Zn e Se f first inner shell formed of a multi-layer, Zn g Se h S i / Zn j Se k S l a second inner shell and a ZnS outer shell formed of multi-layers.
- each of the Zn a Se b layer, the Zn b Se c layer and the Zn e Se f layer of the first inner shell is a first to third shell layer, and the Zn g Se h S i layer and Zn j layer of the second inner shell
- Each of the Se k S l layers is It may be a fourth to fifth shell layer.
- the method for manufacturing quantum dots according to an embodiment may form an InP core at a growth temperature of 180° C. (growth temp.).
- a Se precursor may be injected at a growth temperature of 200° C.
- a Zn precursor may be injected at a growth temperature of 220° C. to form the first shell layer.
- a Se precursor may be injected at a growth temperature of 240° C.
- a Zn precursor may be injected at a growth temperature of 260° C. to form a second shell layer.
- a Se precursor may be injected at a growth temperature of 280° C.
- a Zn precursor may be injected at a growth temperature of 300° C. to form a third shell layer.
- a Se precursor and an S precursor are injected at a growth temperature of 260° C.
- a Zn precursor is injected at a growth temperature of 300° C. to form a fourth shell layer.
- a Zn precursor, a Se precursor, and an S precursor may be injected at a growth temperature of 320° C. to form a fifth shell layer.
- the ZnS outer shell may be formed at a growth temperature of 230°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Luminescent Compositions (AREA)
- Optical Filters (AREA)
Abstract
본 발명은 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법에 관한 것으로서, 일실시예에 따른 코어(core), 코어를 둘러싸는 내부 쉘(inter-shell) 및 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 포함하고, 여기서 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있다.
Description
본 발명은 양자점 및 그 제조방법에 관한 것으로, 보다 상세하게는 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법에 관한 것이다.
양자점(quantum dot)은 콜로이드성 반도체 결정체로, 수 나노미터에서 수십 나노미터의 크기를 가지며 높은 색 순도, 색재현성 및 광안정성 등에 이점이 있다.
구체적으로, 양자점은 반도체 결정의 입자 크기를 조절함으로써 다양한 범위의 발광 파장을 제어할 수 있으며 용액공정이 가능하여 제조 공정이 간단하다는 이점이 있어, 차세대 발광물질로 각광받고 있다.
예를 들면, 양자점은 코어(core)와 코어를 둘러싸는 쉘(shell)을 포함할 수 있고, 여기서 코어는 InP(indium phosphide) 화합물에 기반하여 형성되며, 쉘은 ZnS 화합물에 기반하여 형성될 수 있다.
그러나, 상술한 InP / ZnS 기반의 양자점은 InP 코어와 ZnS 쉘 간의 격자 상수(lattice constant) 차이에 의한 격자 불일치(lattice mismatch)를 유발하여 넓은 반치폭 특성과 불균일한 쉘 에피택셜 성장(shell epitaxial growth) 특성이 발생된다는 문제가 있다.
본 발명은 그레이디드 구조 기반의 내부 쉘을 코어와 외부 쉘 사이에 형성하여 격자 불일치(lattice mismatch)를 최소화하고 양자 구속 효과(quantum confinement)를 극대화할 수 있는 양자점 및 그 제조방법을 제공하고자 한다.
또한, 본 발명은 그레이디드 승온 성장 프로세스(graded heating-up growth process)를 통해 내부 쉘을 형성하여 열팽창 계수(thermal expansion coefficient; TEC)의 불일치를 최소화하여 광학적 특성을 향상시킬 수 있는 양자점 및 그 제조방법을 제공하고자 한다.
본 발명의 일실시예에 따른 양자점은 코어(core), 코어를 둘러싸는 내부 쉘(inter-shell) 및 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 포함하고, 여기서 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있다.
내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 화합물의 조성비가 단계적으로 변화할 수 있다.
내부 쉘은 멀티-레이어(multi-layer)를 갖는 제1 내부 쉘 및 멀티-레이어를 갖는 제2 내부 쉘을 포함할 수 있다.
제1 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 II족 원소의 농도는 증가하고, 제1 VI족 원소의 농도는 감소하며, 제2 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 제1 VI족 원소의 농도는 감소하고, 제2 VI족 원소의 농도는 증가할 수 있다.
제1 내부 쉘은 ZnaSeb / ZncSed / ZneSef 멀티-레이어를 포함하고, 여기서, a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, a 내지 f는 a < c < e 및 b > d > f의 조건을 만족할 수 있다.
제2 내부 쉘은 ZngSehSi / ZnjSekSl 멀티-레이어를 포함하고, 여기서, g는 0.1 내지 0.5이고, h는 0.005 내지 0.020이며, i는 0.5 내지 2.0이고, j는 0.1 내지 0.5이며, k는 0.0025 내지 0.010이고, l는 1.0 내지 4.0이며, g 내지 l은 g≤j, h > k 및 i < l의 조건을 만족할 수 있다.
내부 쉘은 II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함할 수 있다.
코어는 III-V족 화합물, II-VI족 화합물, II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함하고, 외부 쉘은 II-VI족 화합물을 포함할 수 있다.
본 발명의 일실시예에 따른 양자점의 제조방법은 코어(core)를 형성하는 단계와, 코어를 둘러싸는 내부 쉘(inter-shell)을 형성하는 단계 및 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 형성하는 단계를 포함하고, 여기서 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있다.
내부 쉘을 형성하는 단계는 120℃내지 330℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 내부 쉘을 형성하는 단계 및 260℃내지 320℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 내부 쉘을 둘러싸는 제2 내부 쉘을 형성하는 단계를 더 포함할 수 있다.
제1 내부 쉘을 형성하는 단계는 120℃내지 210℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 쉘 레이어를 형성하는 단계와, 240℃내지 270℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 쉘 레이어를 둘러싸는 제2 쉘 레이어를 형성하는 단계 및 300℃내지 330℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제2 쉘 레이어를 둘러싸는 제3 쉘 레이어를 형성하는 단계를 더 포함할 수 있다.
제1 쉘 레이어는 ZnaSeb 화합물을 포함하고, 제2 쉘 레이어는 ZncSed 화합물을 포함하며, 제3 쉘 레이어는 ZneSef 화합물을 포함하고, 여기서 a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, a 내지 f는 a < c < e 및 b > d > f의 조건을 만족할 수 있다.
제2 내부 쉘을 형성하는 단계는 260℃내지 300℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 내부 쉘을 둘러싸는 제4 쉘 레이어를 형성하는 단계 및 320℃의 성장 온도에서 제4 쉘 레이어를 둘러싸는 제5 쉘 레이어를 형성하는 단계를 더 포함할 수 있다.
제4 쉘 레이어는 ZngSehSi 화합물을 포함하고, 제5 쉘 레이어는 ZnjSekSl 화합물을 포함하고, 여기서, g는 0.1 내지 0.5이고, h는 0.005 내지 0.020이며, i는 0.5 내지 2.0이고, j는 0.1 내지 0.5이며, k는 0.0025 내지 0.010이고, l는 1.0 내지 4.0이며, g 내지 l은 g ≤ j, h > k 및 i < l의 조건을 만족할 수 있다.
일실시예에 따르면, 본 발명은 그레이디드 구조 기반의 내부 쉘을 코어와 외부 쉘 사이에 형성하여 격자 불일치(lattice mismatch)를 최소화하고 양자 구속 효과(quantum confinement)를 극대화할 수 있다.
일실시예에 따르면, 본 발명은 그레이디드 승온 성장 프로세스(graded heating-up growth process)를 통해 내부 쉘을 형성하여 열팽창 계수(thermal expansion coefficient; TEC)의 불일치를 최소화할 수 있으며, 이를 통해 광학적 특성을 향상시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 양자점을 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 양자점의 구현예를 설명하기 위한 도면이다.
도 3은 일실시예에 따른 양자점의 밴드갭 에너지 다이어그램을 설명하기 위한 도면이다.
도 4는 일실시예에 따른 양자점의 밴드갭 에너지 특성을 설명하기 위한 도면이다.
도 5a 내지 도 5e는 일실시예에 따른 레드 발광 양자점의 광학적 특성을 설명하기 위한 도면이다.
도 6a 내지 도 6e는 일실시예에 따른 그린 발광 양자점의 광학적 특성을 설명하기 위한 도면이다.
도 7은 일실시예에 따른 양자점의 제조방법을 설명하기 위한 도면이다.
도 8은 일실시예에 따른 레드 발광 양자점의 제조 방법에 대한 예시를 설명하기 위한 도면이다.
도 9는 일실시예에 따른 그린 발광 양자점의 제조 방법에 대한 예시를 설명하기 위한 도면이다.
이하, 본 문서의 다양한 실시 예들이 첨부된 도면을 참조하여 기재된다.
실시 예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시 예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다.
하기에서 다양한 실시 예들을 설명에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
그리고 후술되는 용어들은 다양한 실시 예들에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 문서에서, "A 또는 B" 또는 "A 및/또는 B 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다.
"제1," "제2," "첫째," 또는 "둘째," 등의 표현들은 해당 구성요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다.
어떤(예: 제1) 구성요소가 다른(예: 제2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제3 구성요소)를 통하여 연결될 수 있다.
본 명세서에서, "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, 하드웨어적 또는 소프트웨어적으로 "~에 적합한," "~하는 능력을 가지는," "~하도록 변경된," "~하도록 만들어진," "~를 할 수 있는," 또는 "~하도록 설계된"과 상호 호환적으로(interchangeably) 사용될 수 있다.
어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다.
예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(예: CPU 또는 application processor)를 의미할 수 있다.
또한, '또는' 이라는 용어는 배타적 논리합 'exclusive or' 이기보다는 포함적인 논리합 'inclusive or' 를 의미한다.
즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다' 라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.
상술한 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다.
그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 상술한 실시 예들이 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 다양한 실시 예들이 내포하는 기술적 사상의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니되며 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.
도 1은 본 발명의 일실시예에 따른 양자점을 설명하기 위한 도면이다.
도 1을 참조하면, 일실시예에 따른 양자점(100)은 그레이디드 구조 기반의 내부 쉘을 코어와 외부 쉘 사이에 형성하여 격자 불일치를 최소화하고 양자 구속 효과를 극대화할 수 있다.
또한, 양자점(100)은 그레이디드 승온 성장 프로세스를 통해 내부 쉘을 형성하여 열팽창 계수(TEC)의 불일치를 최소화할 수 있으며, 이를 통해 광학적 특성을 향상시킬 수 있다.
예를 들면, 양자점(100)은 레드(red) 발광 양자점 또는 그린(green) 발광 양자점일 수 있다.
이하에서 설명하는 "족(Group) "은 원소 주기율표의 족을 의미할 수 있다.
또한, 'I족'은 IA족 및 IB족을 포함할 수 있고, 'I족' 원소의 예로서 Li, Na, K, Ru, Cs을 포함할 수 있으나, 이에 한정되지는 않는다.
'II족'은 IIA족 및 IIB족을 포함할 수 있고, II족 원소의 예로서 Cd, Zn, Hg 및 Mg을 포함할 수 있으나, 이에 한정되지는 않는다.
'III족'은 IIIA족 및 IIIB족을 포함할 수 있고, III족 원소의 예로서 Al, In, Ga, 및 Tl을 포함할 수 있으나, 이에 한정되지는 않는다.
'IV족'은 IVA족 및 IVB족을 포함할 수 있고, IV족 원소의 예로서 Si, Ge 및 Sn을 포함할 수 있으나, 이에 한정되지는 않는다.
'V족'은 VA족을 포함할 수 있고, V족 원소의 예로서 N, P, As, Sb 및 Bi를 포함할 수 있으나, 이에 한정되지는 않는다.
'VI족'은 VIA족을 포함할 수 있고, VI족 원소의 예로서 S, Se 및 Te을 포함할 수 있으나, 이에 한정되지는 않는다.
구체적으로, 양자점(100)은 코어(core)(110)와, 코어(110)를 둘러싸는 내부 쉘(inter-shell)(120, 130) 및 내부 쉘(120, 130)을 둘러싸는 외부 쉘(outer-shell)(140)을 포함할 수 있으며, 여기서, 내부 쉘(120, 130)은 코어(110)로부터 외부 쉘(140) 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있다. 즉, 내부 쉘(120, 130)은 그레이디드(graded) 구조로 형성될 수 있다.
코어(110)는 III-V족 화합물, II-VI족 화합물, II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함하고, 외부 쉘(140)은 II-VI족 화합물을 포함할 수 있다.
예를 들면, III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 조합에서 선택되는 이원소 화합물과, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InNAs, InNSb, InPAs, InPSb 및 이들의 조합에서 선택되는 삼원소 화합물과, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 조합에서 선택되는 사원소 화합물 중 적어도 하나를 포함할 수 있다.
또한, II-VI족 화합물은 CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, MgSe, MgS 및 이들의 조합에서 선택되는 이원소 화합물과, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS 및 이들의 조합에서 선택되는 삼원소 화합물과, HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 및 이들의 조합에서 선택되는 사원소 화합물 중 적어도 하나를 포함할 수 있다.
보다 구체적인 예를 들면, 코어(110)는 InP 화합물, InGaP 화합물, InAlP 화합물, InBP 화합물 및 GaP 화합물 중 적어도 하나를 포함할 수 있다.
바람직하게는 코어(110)는 InP 화합물을 포함하고, 외부 쉘(140)은 ZnS 화합물을 포함할 수 있다.
한편, 코어(110)는 내부 코어(inner-core) 및 외부 코어(outer-core)를 포함하는 멀티-레이어(multi-layer)로 형성될 수도 있다.
예를 들면, 외부 코어는 내부 코어와 동일 밴드갭 및 구조로 구현될 수 있으며, 내부 코어에 비해 상대적으로 얇은 두께로 구현될 수도 있다.
보다 구체적으로, 양자점(100)이 레드 발광 양자점인 경우, 단일 코어로 원하는 레드 파장(620 내지 630nm) 밴드갭 에너지에 해당하는 코어 사이즈를 형성하는 경우, 오스트발트 숙성(ostwald ripening) 현상에 의해 매우 넓은 코어 사이즈 분포(FWHM 증가)를 야기할 수 있다.
반면, 본 발명은 코어(110)를 멀티-레이어 코어 프로세스를 통해, 오스트발트 숙성 현상을 억제하여 원하는 레드 파장(620 내지 630nm) 밴드갭 에너지에 해당하는 코어 사이즈를 균일한 사이즈 분포를 유지하면서 형성(조절)할 수 있다.
예를 들면, 내부 코어는 InmPn 화합물을 포함하고, 외부 코어는 InoPp 화합물을 포함할 수 있으며, 여기서, m은 0.30 내지 0.04이고, n은 0.25 내지 0.35이며, o는 0.15 내지 0.20이고, p는 0.125 내지 0.175이며, m 내지 p는 m > o, n > p의 조건을 만족할 수 있다.
내부 쉘(120, 130)은 II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함할 수 있다.
또한, 내부 쉘(120, 130)은 멀티-레이어(multi-layer)를 갖는 제1 내부 쉘(120) 및 멀티-레이어를 갖는 제2 내부 쉘(130)을 포함할 수 있다.
예를 들면, 내부 쉘(120, 130)은 쉘은 ZnSe 화합물, ZnSeS 화합물, ZnTe 화합물, ZnTeSe 화합물, ZnTeSeS 화합물 및 ZnTeS 화합물 중 적어도 하나를 포함할 수 있다. 바람직하게는 제1 내부 쉘(120)은 ZnSe 화합물을 포함하고, 제2 내부 쉘(130)은 ZnSeS 화합물을 포함할 수 있다.
내부 쉘(120, 130)은 코어(120)로부터 외부 쉘(140) 쪽으로 갈수록 화합물의 조성비가 단계적으로 변화할 수 있다.
즉, 제1 내부 쉘(120) 및 제2 내부 쉘(130)은 외부 쉘의 격자 불일치(lattice mismatch)를 최소화할 수 있는 조성비로 설계될 수 있으며, 이로 인해 격자 불일치를 최소화하여 균일한 에피택셜 성장(epitaxial growth)을 통한 광학 특성의 개선(양자 수율의 증가 및 반치폭의 감소)을 기대할 수 있다.
구체적으로, 제1 내부 쉘(120)은 코어(110)로부터 외부 쉘(140) 쪽으로 갈수록 II족 원소의 농도는 증가하고, 제1 VI족 원소의 농도는 감소할 수 있다. 또한, 제2 내부 쉘(130)은 코어(110)로부터 외부 쉘(140) 쪽으로 갈수록 제1 VI족 원소의 농도는 감소하고, 제2 VI족 원소의 농도는 증가할 수 있다.
바람직하게는, 제1 내부 쉘(120) 및 제2 내부 쉘(130)을 구성하는 II족 원소는 Zn 원소이고, 제1 VI족 원소는 Se 원소이며, 제2 VI족 원소는 S 원소일 수 있다.
도 2는 본 발명의 일실시예에 따른 양자점의 구현예를 설명하기 위한 도면이다.
다시 말해, 도 2는 도 1을 통해 설명한 일실시예에 따른 양자점에 대한 예시를 설명하는 도면으로, 이후 도 2를 통해 설명하는 내용 중 도 1을 통해 설명한 내용과 중복되는 설명은 생략하기로 한다.
도 2를 참조하면, 일실시예에 따른 양자점은 InP 코어(210)와, InP 코어(210)를 둘러싸는 제1 내부 쉘(220)과, 제1 내부 쉘(230)을 둘러싸는 제2 내부 쉘 및 제2 내부 쉘을 둘러싸는 ZnS 외부 쉘(240)을 포함할 수 있다.
또한, 제1 내부 쉘(220) 및 제2 내부 쉘(230)은 InP 코어(210)로부터 ZnS 외부 쉘(240) 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있으며, 제1 내부 쉘(220) 및 제2 내부 쉘(230) 각각은 멀티-레이어(multi-layer)로 구현될 수 있다.
구체적으로, 제1 내부 쉘(220)은 ZnaSeb / ZncSed / ZneSef 멀티-레이어를 포함하고, 여기서, a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, a 내지 f는 a < c < e 및 b > d > f의 조건을 만족할 수 있다.
즉, 제1 내부 쉘(220)은 코어(210)를 둘러싸는 ZnaSeb 화합물 기반의 제1 쉘 레이어, 제1 쉘 레이어를 둘러싸는 ZncSed 화합물 기반의 제2 쉘 레이어 및 제2 쉘 레이어를 둘러싸는 ZneSef 화합물 기반의 제2 쉘 레이어를 포함할 수 있다.
또한, 제2 내부 쉘(230)은 ZngSehSi / ZnjSekSl 멀티-레이어를 포함하고, 여기서, g는 0.1 내지 0.5이고, h는 0.005 내지 0.020이며, i는 0.5 내지 2.0이고, j는 0.1 내지 0.5이며, k는 0.0025 내지 0.010이고, l는 1.0 내지 4.0이며, g 내지 l은 g ≤ j, h > k 및 i < l의 조건을 만족할 수 있다.
예를 들면, 일실시예에 따른 양자점이 레드 발광 양자점인 경우에 g는 g = j의 조건을 만족하고, 일실시예에 따른 양자점이 레드 발광 양자점인 경우에 g는 g < j의 조건을 만족할 수 있다.
도 3은 일실시예에 따른 양자점의 밴드갭 에너지 다이어그램을 설명하기 위한 도면이다.
도 3을 참조하면, 도 3의 (a)는 InP / ZnS 구조 기반의 양자점의 밴드갭 에너지 다이어그램(band-gap energy diagram)을 도시하고, 도 3의 (b)는 InP / ZnSeS / ZnS 구조 기반의 양자점의 밴드갭 에너지 다이어그램을 도시하며, 도 3의 (c)는 InP / ZnSe / ZnSeS / ZnS 구조 기반의 양자점(일실시예에 따른 양자점)의 밴드갭 에너지 다이어그램을 도시한다.
도 3의 (a) 내지 (c)를 참조하면, InP / ZnS 구조 기반의 양자점(Eg,InP core < Eg,ZnS shell)은 InP 코어 내 양자 구속 효과(quantum confinement effect)를 통해 양자 우물(quantum well)을 형성하고, 이로 인해 InP 코어(5.93A)와 ZnS 쉘(5.42A)간에 격자 상수 차이에 의해 약 8.6%의 격자 불일치를 유발하여 넓은 반치폭 특성과 불균일한 쉘 에피택셜 성장 특성을 보이는 것을 확인할 수 있다.
ZnSeS 내부 쉘을 구비하는 InP / ZnSeS / ZnS 구조 기반의 양자점에서도 약 4.6% 내지 8.6%의 높은 격자 불일치를 보이는 것을 확인할 수 있다.
반면, 일실시예에 따른 양자점(InP / ZnSe / ZnSeS / ZnS 구조 기반의 양자점)은 InP 코어로부터 ZnS 외부 쉘 쪽으로 갈수록 화합물의 농도(및 조성비)가 단계적으로 변화하는 ZnSe (5.66A) / ZnSe1-xSx(5.66 내지 5.42A, 여기서 x는 양의 실수) 내부 쉘을 구비함으로써, 넓은 반치폭 특성과 불균일한 쉘 에피택셜 성장 특성을 개선할 수 있다.
구체적으로, ZnSe(5.66A) / ZnSe1-xSx 내부 쉘은 InP 코어 밴드갭 에너지(1.35eV) 보다는 크고, ZnS 쉘(3.6 eV) 밴드갭 에너지 보다는 작은 에너지로 밴드 정렬(band alignment)이 가능하며, 격자 불일치를 완화(4.6%)시켜 넓은 반치폭 특성과 불균일한 쉘 에피택셜 성장 특성을 개선할 수 있다.
도 4는 일실시예에 따른 양자점의 밴드갭 에너지 특성을 설명하기 위한 도면이다.
도 4를 참조하면, 일실시예에 따른 양자점의 격자 상수(lattice constant)에 따른 밴드갭 에너지 특성(energy band-gap)은 하기 표1과 같이 정리될 수 있다.
[표1]
도 4 및 표 1에 따르면, 기존의 양자점(InP/ZnS 구조 기반 양자점)은 InP 코어와 ZnS 외부 쉘과의 격자 상수 차이에 의한 격자 상수 불일치를 유발하였으나, 일실시예에 따른 양자점(InP/ZnSe/ZnSeS/ZnS 구조 기반 양자점)은 InP 코어와 ZnS 외부 쉘 사이에 ZnSe / ZnSeS 내부 쉘을 삽입하여 격자 상수 불일치를 최소화할 수 있다.
예를 들면, ZnSe / ZnSeS 내부 쉘의 제1 내부 쉘(ZnSe 층)은 3개의 레이어(layer)로 형성되고, 제2 내부 쉘(ZnSeS 층)은 2개의 레이어로 형성될 수 있으며, 각 레이어는 인접한 InP 코어 또는 ZnS 외부 쉘과의 격자 상수 불일치를 최소화할 수 있도록 밴드갭 엔지니어링이 수행될 수 있다.
도 5a 내지 도 5e는 일실시예에 따른 레드 발광 양자점의 광학적 특성을 설명하기 위한 도면이다.
도 5a 내지 도 5e를 참조하면, 참조부호 510은 일실시예에 따른 레드 발광 양자점(InP / ZnSe / ZnSeS / ZnS)의 파장(wavelength) 변화에 따른 흡광도 특성(absorption)을 도시하고, 참조부호 520은 일실시예에 따른 레드 발광 양자점의 파장 변화에 따른 발광 강도 특성(PL intensity)을 도시한다.
참조부호 530 내지 550은 일실시예에 따른 레드 발광 양자점의 XRD(X ray diffraction) 분석결과, SAED(selected area electron diffraction) 이미지 및 TEM(transmission electron microscopy) 이미지를 각각 도시한다.
예를 들면, 일실시예에 따른 레드 발광 양자점의 InP 코어는 InmPn / InoPp 멀티-레이어로 형성되고, 레드 발광 양자점의 제1 내부 쉘은 ZnaSeb / ZncSed / ZneSef 멀티-레이어로 형성되며, 제2 내부 쉘은 ZngSehSi / ZnjSekSl 멀티-레이어로 형성될 수 있다.
참조부호 510 내지 550에 따르면, 일실시예에 따른 레드 발광 양자점은 높은 결정성((111) 결정, (220) 결정 및 (311) 결정)을 보이며, 약 7.74 ± 1.9 nm의 크기로 형성되는 것을 확인할 수 있다.
또한, 일실시예에 따른 레드 발광 양자점(RQD)의 광학 특성은 하기 표2와 같이 정리될 수 있다.
[표2]
표2에 따르면, 일실시예에 따른 레드 발광 양자점은 기존 InP / ZnS 구조 기반의 레드 발광 양자점과 비교하여 양자 수율은 약 45% 증가하고, 반치폭은 약 25nm 감소한 것을 확인(광학적 특성 향상을 확인)할 수 있다.
도 6a 내지 도 6e는 일실시예에 따른 그린 발광 양자점의 광학적 특성을 설명하기 위한 도면이다.
도 6a 내지 도 6e를 참조하면, 참조부호 610은 일실시예에 따른 그린 발광 양자점(InP / ZnSe / ZnSeS / ZnS)의 파장(wavelength) 변화에 따른 흡광도 특성(absorption)을 도시하고, 참조부호 620은 일실시예에 따른 그린 발광 양자점의 파장 변화에 따른 발광 강도 특성(PL intensity)을 도시한다.
참조부호 630 내지 650은 일실시예에 따른 그린 발광 양자점의 XRD(X ray diffraction) 분석결과, SAED(selected area electron diffraction) 이미지 및 TEM(transmission electron microscopy) 이미지를 각각 도시한다.
예를 들면, 일실시예에 따른 그린 발광 양자점의 제1 내부 쉘은 ZnaSeb / ZncSed / ZneSef 멀티-레이어로 형성되며, 제2 내부 쉘은 ZngSehSi / ZnjSekSl 멀티-레이어로 형성될 수 있다.
참조부호 610 내지 650에 따르면, 일실시예에 따른 그린 발광 양자점은 높은 결정성((111) 결정, (220) 결정 및 (311) 결정)을 보이며, 약 4.7 ± 1.1 nm의 크기로 형성되는 것을 확인할 수 있다.
또한, 일실시예에 따른 그린 발광 양자점(GQD)의 광학 특성은 하기 표3과 같이 정리될 수 있다.
[표3]
표3에 따르면, 일실시예에 따른 그린 발광 양자점은 기존 InP / ZnS 구조 기반의 그린 발광 양자점과 비교하여 양자 수율은 약 42% 증가하고, 반치폭은 약 14nm 감소한 것을 확인(광학적 특성 향상을 확인)할 수 있다.
도 7은 일실시예에 따른 양자점의 제조방법을 설명하기 위한 도면이다.
다시 말해, 도 7은 도 1 내지 도 6을 통해 설명한 일실시예에 따른 양자점의 제조방법을 설명하기 위한 도면으로, 이하에서 도 7을 통해 설명하는 내용 중 도 1 내지 도 7을 통해 설명한 내용과 중복되는 설명은 생략하기로 한다.
도 7을 참조하면, 710 단계에서 일실시예에 따른 양자점의 제조방법은 코어(core)를 형성할 수 있다.
바람직하게는, 710 단계에서 일실시예에 따른 양자점의 제조방법을 통해 형성되는 코어는 InP 화합물을 포함할 수 있다.
또한, 710 단계에서 일실시예에 따른 양자점의 제조방법은 내부 코어(inter-core)를 형성하고, 형성된 내부 코어를 둘러싸는 외부 코어(outer-core)를 형성할 수도 있다.
예를 들면, 내부 코어는 InmPn 화합물을 포함하고, 외부 코어는 InoPp 화합물을 포함할 수 있으며, 여기서, m은 0.30 내지 0.04이고, n은 0.25 내지 0.35이며, o는 0.15 내지 0.20이고, p는 0.125 내지 0.175이며, m 내지 p는 m > o, n > p의 조건을 만족할 수 있다.
보다 구체적인 예를 들면, 710 단계에서 일실시예에 따른 양자점의 제조방법은 인듐 아세테이트(indium acetate) 0.3 mmol, 10mL의 1-옥타데칸(1-octadecene, ODE) 및 0.9 mmol의 팔미트산(palmitic acid, PA)을 3-목 플라스크(3-neck flask)에 넣고, 진공하에 150℃로 가열할 수 있으며, 1시간 후 반응기 내 분위기를 질소(N2)로 전환할 수 있다.
다음으로, 710 단계에서 일실시예에 따른 양자점의 제조방법은 320℃로 가열 한 후 트리스(트리메틸실릴)포스핀(tris(trimethylsilyl)phosphine, TMS3P) 0.15 mmol 용액을 신속히 주입하고, 반응시켜 내부 코어를 형성할 수 있다.
다음으로, 710 단계에서 일실시예에 따른 양자점의 제조방법은 별도의 반응기를 통하여 인듐 아세테이트(indium acetate) 0.2 mmol, 5mL의 1-옥타데칸(1-octadecene, ODE), 0.6 mmol의 팔미트산(Palmitic acid, PA) 및 트리스(트리메틸실릴)포스핀(tris(trimethylsilyl)phosphine, TMS3P) 0.1 mmol 외부 코어 혼합물 용액을 내부 코어 반응기에 천천히 적하하여 외부 코어를 형성할 수 있다.
720 단계에서 일실시예에 따른 양자점의 제조방법은 코어를 둘러싸는 내부 쉘(inter-shell)을 형성할 수 있다.
구체적으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 멀티-레이어(multi-layer)를 갖는 제1 내부 쉘 및 제2 내부 쉘을 형성할 수 있으며, 바람직하게는 제1 내부 쉘은 ZnSe 화합물을 포함하고, 제2 내부 쉘은 ZnSeS 화합물을 포함할 수 있다.
보다 구체적인 예를 들면, 720 단계에서 일실시예에 따른 양자점의 제조방법은 아연 스티아레이트(Zinc stearate) 3 mmol을 10mL의 1-옥타데칸 혼합 용액을 빠르게 주입하여 330℃에서 30분간 반응시킬 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 Se-TOP 1.6M 농도 0.5ml를 주입하여 330℃, 30분간 반응시키고, 연속적으로 Se-TOP 1.6M 농도 0.06ml, S-TOP 2M 농도 2ml 주입하여 120분 동안 반응시켜 제1 내부 쉘(ZnS)/제2 내부 쉘(ZnSeS)을 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 반응 종료 후, 상온으로 신속하게 식힌 양자점 용액에 에탄올을 넣어 침전을 형성하고, 이를 원심 분리에 의해 분리하여 헥산 또는 톨루엔에 재분산시킬 수 있다.
한편, 720 단계에서 일실시예에 따른 양자점의 제조방법을 통해 형성되는 내부 쉘은 코어로부터 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화할 수 있다.
구체적으로, 일실시예에 따른 양자점의 제조방법은 코어 성장 이후 제1 내부 쉘 및 제2 내부 쉘의 높은 결정성과 균일한 쉘 성장을 위해 고온에서의 성장 프로세스를 필요로 한다. 그러나 이러한 고온에서의 성장 프로세스는 코어와 내부 쉘간, 제1 내부 쉘과 제2 내부 쉘간 높은 TEC 불일치(thermal expansion coefficient mismatch)를 유발하여 계면(interface)의 결정결함을 유발할 수 있다.
이에, 720 단계에서 일실시예에 따른 양자점의 제조방법은 그레이디드 승온 성장 프로세스(graded heating-up growth process)를 적용하여 성장 온도를 단계적으로 변화시킴으로써 TEC 불일치를 최소화하여 내부 쉘을 성장시킬 수 있으며, 이를 통해 결정 결함을 최소화하여 높은 광학적 특성을 구현할 수 있다.
또한, 720 단계에서 일실시예에 따른 양자점의 제조방법은 SILAR (successive ironic layer adsorption and reaction) 합성법을 이용하여 코어 상에 내부 쉘을 성장시킬 수 있다.
구체적으로, 일실시예에 따른 양자점이 레드 발광 양자점인 경우에, 720 단계에서 일실시예에 따른 양자점의 제조방법은 120℃내지 330℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 내부 쉘을 형성하고, 260℃내지 320℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 내부 쉘을 둘러싸는 제2 내부 쉘을 형성할 수 있다.
예를 들면, 제1 내부 쉘은 ZnaSeb 화합물을 포함하는 제1 쉘 레이어와, ZncSed 화합물을 포함하는 제2 쉘 레이어 및 ZneSef 화합물을 포함하는 제3 쉘 레이어를 구비할 수 있으며, 여기서 a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, a 내지 f는 a < c < e 및 b > d > f의 조건을 만족할 수 있다.
또한, 제2 내부 쉘은 ZngSehSi 화합물을 포함하는 제4 쉘 레이어 및 ZnjSekSl 화합물을 포함하는 제5 쉘 레이어를 포함할 수 있으며, 여기서, g는 0.1 내지 0.5이고, h는 0.005 내지 0.020이며, i는 0.5 내지 2.0이고, j는 0.1 내지 0.5이며, k는 0.0025 내지 0.010이고, l는 1.0 내지 4.0이며, g 내지 l은 g ≤ j, h > k 및 i < l의 조건을 만족할 수 있다.
보다 구체적으로, 일실시예에 따른 양자점이 레드 발광 양자점인 경우에, 720 단계에서 일실시예에 따른 양자점의 제조방법은 120℃내지 210℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 240℃내지 270℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 쉘 레이어를 둘러싸는 제2 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 300℃내지 330℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제2 쉘 레이어를 둘러싸는 제3 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 260℃내지 300℃의 온도 범위 내에서 제3 쉘 레이어를 둘러싸는 제4 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 320℃의 성장 온도에서 제4 쉘 레이어를 둘러싸는 제5 쉘 레이어를 형성할 수 있다.
한편, 일실시예에 따른 양자점이 그린 발광 양자점인 경우에, 720 단계에서 일실시예에 따른 양자점의 제조방법은 200℃내지 300℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 내부 쉘을 형성하고, 260℃내지 320℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 내부 쉘을 둘러싸는 제2 내부 쉘을 형성할 수도 있다.
보다 구체적으로, 일실시예에 따른 양자점이 그린 발광 양자점인 경우에, 720 단계에서 일실시예에 따른 양자점의 제조방법은 200℃내지 220℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 코어를 둘러싸는 제1 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 240℃내지 260℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제1 쉘 레이어를 둘러싸는 제2 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 280℃내지 300℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제2 쉘 레이어를 둘러싸는 제3 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 260℃내지 300℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 제3 쉘 레이어를 둘러싸는 제4 쉘 레이어를 형성할 수 있다.
다음으로, 720 단계에서 일실시예에 따른 양자점의 제조방법은 320℃의 성장 온도에서 제4 쉘 레이어를 둘러싸는 제5 쉘 레이어를 형성할 수 있다.
일실시예에 따른 양자점이 레드 발광 양자점 또는 그린 발광 양자점일 때의 그레이디드 승온 성장 프로세스는 이후 실시예 도 8 내지 9를 통해 보다 구체적으로 설명하기로 한다.
730 단계에서 일실시예에 따른 양자점의 제조방법은 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 형성할 수 있다. 바람직하게는 외부 쉘은 ZnS 화합물을 포함할 수 있다.
도 8은 일실시예에 따른 레드 발광 양자점의 제조 방법에 대한 예시를 설명하기 위한 도면이다.
도 8을 참조하면, 참조부호 800은 일실시예에 따른 양자점이 레드 발광 양자점인 경우에, 그레이디드 승온 성장 프로세스(graded heating-up growth process)를 이용한 양자점의 제조 방법을 도시 한다.
참조부호 800에 따르면, 일실시예에 따른 양자점의 제조 방법은 InP 코어, ZnaSeb / ZnbSec / ZneSef 멀티-레이어로 형성되는 제1 내부 쉘, ZngSehSi / ZnjSekSl 멀티-레이어로 형성되는 제2 내부 쉘 및 ZnS 외부 쉘을 포함할 수 있다.
또한, 제1 내부 쉘의 ZnaSeb 레이어, ZnbSec 레이어 및 ZneSef 레이어 각각은 제1 내지 제3 쉘 레이어고, 제2 내부 쉘의 ZngSehSi 레이어 및 ZnjSekSl 레이어 각각은 제4 내지 제5 쉘 레이어일 수 있다.
구체적으로, 일실시예에 따른 양자점의 제조 방법은 320℃의 성장 온도(growth temp.)에서 InP 코어를 형성할 수 있다.
예를 들면, 일실시예에 따른 양자점의 제조 방법은 InP 코어를 형성한 이후에 형성된 InP 코어에 대한 정제(purification) 과정을 수행할 수 있다.
즉, 일실시예에 따른 양자점의 제조 방법은 InP 코어를 형성한 이후에 원심 분리기(centrifuge)를 이용한 정제 과정을 수행하여 코어 형성 과정에서 발생된 부산물(side product)을 제거할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 150℃의 성장 온도에서 Zn 전구체를 주입하고, 210℃의 성장 온도에서 Se 전구체를 주입하여 제1 쉘 레이어를 형성할 수 있으며, 제1 쉘 레이어의 형성 과정에서 Se 전구체를 주입 이전에 120℃의 성장 온도에서 InP 화합물을 주입할 수도 있다.
즉, InP 화합물은 유기용매에 분산되어 있으므로, 일실시예에 따른 양자점의 제조 방법은 유기용매의 끓는점(110℃) 이상의 온도(120℃)에서 InP 화합물을 주입하여 유기용매를 기화시킬 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 240℃의 성장 온도에서 Zn 전구체를 주입하고, 270℃의 성장 온도에서 Se 전구체를 주입하여 제2 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 300℃의 성장 온도에서 Zn 전구체를 주입하고, 330℃의 성장 온도에서 Se 전구체를 주입하여 제3 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 260℃의 성장 온도에서 Zn 전구체를 주입하고, 300℃의 성장 온도에서 Se 전구체 및 S 전구체를 주입하여 제4 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 320℃의 성장 온도에서 Zn 전구체, Se 전구체 및 S 전구체를 주입하여 제5 쉘 레이어를 형성할 수 있다.
한편, 일실시예에 따른 양자점의 제조 방법은 내부 쉘(제1 내지 제5 쉘 레이어)을 형성한 이후, 230℃의 성장 온도에서 ZnS 외부 쉘을 형성할 수 있다.
도 9는 일실시예에 따른 그린 발광 양자점의 제조 방법에 대한 예시를 설명하기 위한 도면이다.
도 9를 참조하면, 참조부호 900은 일실시예에 따른 양자점이 그린 발광 양자점인 경우에, 그레이디드 승온 성장 프로세스(graded heating-up growth process)를 이용한 양자점의 제조 방법을 도시 한다.
참조부호 900에 따르면, 일실시예에 따른 양자점의 제조 방법은 InP 코어, ZnaSeb / ZnbSec / ZneSef 멀티-레이어로 형성되는 제1 내부 쉘, ZngSehSi / ZnjSekSl 멀티-레이어로 형성되는 제2 내부 쉘 및 ZnS 외부 쉘을 포함할 수 있다.
또한, 제1 내부 쉘의 ZnaSeb 레이어, ZnbSec 레이어 및 ZneSef 레이어 각각은 제1 내지 제3 쉘 레이어고, 제2 내부 쉘의 ZngSehSi 레이어 및 ZnjSekSl 레이어 각각은 제4 내지 제5 쉘 레이어일 수 있다.
구체적으로, 일실시예에 따른 양자점의 제조 방법은 180℃의 성장 온도(growth temp.)에서 InP 코어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 200℃의 성장 온도에서 Se 전구체를 주입하고, 220℃의 성장 온도에서 Zn 전구체를 주입하여 제1 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 240℃의 성장 온도에서 Se 전구체를 주입하고, 260℃의 성장 온도에서 Zn 전구체를 주입하여 제2 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 280℃의 성장 온도에서 Se 전구체를 주입하고, 300℃의 성장 온도에서 Zn 전구체를 주입하여 제3 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 260℃의 성장 온도에서 Se 전구체 및 S 전구체를 주입하고, 300℃의 성장 온도에서 Zn 전구체를 주입하여 제4 쉘 레이어를 형성할 수 있다.
다음으로, 일실시예에 따른 양자점의 제조 방법은 320℃의 성장 온도에서 Zn 전구체, Se 전구체 및 S 전구체를 주입하여 제5 쉘 레이어를 형성할 수 있다.
한편, 일실시예에 따른 양자점의 제조 방법은 내부 쉘(제1 내지 제5 쉘 레이어)을 형성한 이후, 230℃의 성장 온도에서 ZnS 외부 쉘을 형성할 수 있다.
결국, 본 발명을 이용하면 그레이디드 구조 기반의 내부 쉘을 코어와 외부 쉘 사이에 형성하여 격자 불일치를 최소화하고 양자 구속 효과를 극대화할 수 있다.
또한, 그레이디드 승온 성장 프로세스를 통해 내부 쉘을 형성하여 열팽창 계수(TEC)의 불일치를 최소화하여 광학적 특성을 향상시킬 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
Claims (14)
- 코어(core), 상기 코어를 둘러싸는 내부 쉘(inter-shell) 및 상기 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 포함하고,상기 내부 쉘은 상기 코어로부터 상기 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화하는 것을 특징으로 하는 양자점.
- 제1항에 있어서,상기 내부 쉘은 상기 코어로부터 상기 외부 쉘 쪽으로 갈수록 화합물의 조성비가 단계적으로 변화하는 것을 특징으로 하는 양자점.
- 제1항에 있어서,상기 내부 쉘은 멀티-레이어(multi-layer)를 갖는 제1 내부 쉘 및 멀티-레이어를 갖는 제2 내부 쉘을 포함하는 것을 특징으로 하는 양자점.
- 제3항에 있어서,상기 제1 내부 쉘은 상기 코어로부터 상기 외부 쉘 쪽으로 갈수록 II족 원소의 농도는 증가하고, 제1 VI족 원소의 농도는 감소하며,상기 제2 내부 쉘은 상기 코어로부터 상기 외부 쉘 쪽으로 갈수록 상기 제1 VI족 원소의 농도는 감소하고, 제2 VI족 원소의 농도는 증가하는 것을 특징으로 하는 양자점.
- 제4항에 있어서,상기 제1 내부 쉘은 ZnaSeb / ZncSed / ZneSef 멀티-레이어를 포함하고,여기서, 상기 a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, 상기 a 내지 f는 a < c < e 및 b > d > f의 조건을 만족하는 것을 특징으로 하는 양자점.
- 제4항에 있어서,상기 제2 내부 쉘은 ZngSehSi / ZnjSekSl 멀티-레이어를 포함하고,여기서, 상기 g는 0.1 내지 0.5이고, 상기 h는 0.005 내지 0.020이며, 상기 i는 0.5 내지 2.0이고, 상기 j는 0.1 내지 0.5이며, 상기 k는 0.0025 내지 0.010이고, 상기 l는 1.0 내지 4.0이며, 상기 g 내지 l은 g ≤ j, h > k 및 i < l의 조건을 만족하는 것을 특징으로 하는 양자점.
- 제1항에 있어서,상기 내부 쉘은 II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함하는 것을 특징으로 하는 양자점.
- 제1항에 있어서,상기 코어는 III-V족 화합물, II-VI족 화합물, II-III-VI족 화합물, III-III-II-VI족 화합물 및 이들의 조합 중 적어도 하나를 포함하고, 상기 외부 쉘은 II-VI족 화합물을 포함하는 것을 특징으로 하는 양자점.
- 코어(core)를 형성하는 단계;상기 코어를 둘러싸는 내부 쉘(inter-shell)을 형성하는 단계 및상기 내부 쉘을 둘러싸는 외부 쉘(outer-shell)을 형성하는 단계를 포함하고,상기 내부 쉘은 상기 코어로부터 상기 외부 쉘 쪽으로 갈수록 화합물의 농도가 단계적으로 변화하는 것을 특징으로 하는 양자점의 제조방법.
- 제9항에 있어서,상기 내부 쉘을 형성하는 단계는,120℃내지 330℃의 온도 범위 내에서 성장 온도를 단계적으로 증가시키면서 상기 코어를 둘러싸는 제1 내부 쉘을 형성하는 단계 및260℃내지 320℃의 온도 범위 내에서 상기 성장 온도를 단계적으로 증가시키면서 상기 제1 내부 쉘을 둘러싸는 제2 내부 쉘을 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점의 제조방법.
- 제10항에 있어서,상기 제1 내부 쉘을 형성하는 단계는,120℃내지 210℃의 온도 범위 내에서 상기 성장 온도를 단계적으로 증가시키면서 상기 코어를 둘러싸는 제1 쉘 레이어를 형성하는 단계;240℃내지 270℃의 온도 범위 내에서 상기 성장 온도를 단계적으로 증가시키면서 상기 제1 쉘 레이어를 둘러싸는 제2 쉘 레이어를 형성하는 단계 및300℃내지 330℃의 온도 범위 내에서 상기 성장 온도를 단계적으로 증가시키면서 상기 제2 쉘 레이어를 둘러싸는 제3 쉘 레이어를 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점의 제조방법.
- 제11항에 있어서,상기 제1 쉘 레이어는 ZnaSeb 화합물을 포함하고, 상기 제2 쉘 레이어는 ZncSed 화합물을 포함하며, 상기 제3 쉘 레이어는 ZneSef 화합물을 포함하고,여기서, 상기 a는 0.3 내지 0.6이고, b는 0.2 내지 0.3이며, c는 0.36 내지 0.72이고, d는 0.16 내지 0.24이며, e는 0.39 내지 0.78이고, f는 0.14 내지 0.21이며, 상기 a 내지 f는 a < c < e 및 b > d > f의 조건을 만족하는 것을 특징으로 하는 양자점의 제조방법.
- 제10항에 있어서,상기 제2 내부 쉘을 형성하는 단계는,260℃내지 300℃의 온도 범위 내에서 상기 성장 온도를 단계적으로 증가시키면서 상기 제1 내부 쉘을 둘러싸는 제4 쉘 레이어를 형성하는 단계 및320℃의 상기 성장 온도에서 상기 제4 쉘 레이어를 둘러싸는 제5 쉘 레이어를 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점의 제조방법.
- 제13항에 있어서,상기 제4 쉘 레이어는 ZngSehSi 화합물을 포함하고, 상기 제5 쉘 레이어는 ZnjSekSl 화합물을 포함하고,여기서, 상기 g는 0.1 내지 0.5이고, 상기 h는 0.005 내지 0.020이며, 상기 i는 0.5 내지 2.0이고, 상기 j는 0.1 내지 0.5이며, 상기 k는 0.0025 내지 0.010이고, 상기 l는 1.0 내지 4.0이며, 상기 g 내지 l은 g ≤ j, h > k 및 i < l을 만족하는 것을 특징으로 하는 양자점의 제조방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/040,879 US11932794B2 (en) | 2020-04-24 | 2020-05-22 | Quantum-dot based on graded-shell structure and manufacturing method of the same |
JP2020552867A JP7294680B2 (ja) | 2020-04-24 | 2020-05-22 | グレーデッド-マルチシェル構造ベースの量子ドット及びその製造方法 |
CN202080002076.1A CN113853417B (zh) | 2020-04-24 | 2020-05-22 | 基于梯度-多壳结构的量子点及其制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0049814 | 2020-04-24 | ||
KR1020200049814 | 2020-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215576A1 true WO2021215576A1 (ko) | 2021-10-28 |
Family
ID=78269367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/006683 WO2021215576A1 (ko) | 2020-04-24 | 2020-05-22 | 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11932794B2 (ko) |
JP (1) | JP7294680B2 (ko) |
KR (1) | KR102402197B1 (ko) |
CN (1) | CN113853417B (ko) |
TW (1) | TWI766377B (ko) |
WO (1) | WO2021215576A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140121217A (ko) * | 2013-04-05 | 2014-10-15 | 한국기계연구원 | 양자점과 그의 제조방법 |
KR20150111307A (ko) * | 2014-03-24 | 2015-10-05 | 주식회사 나노스퀘어 | 양자점의 제조방법 |
KR20180016196A (ko) * | 2016-08-05 | 2018-02-14 | 재단법인대구경북과학기술원 | InP/ZnS 코어-쉘 양자점, 그 제조방법 및 이를 포함하는 LED |
KR20190085884A (ko) * | 2018-01-11 | 2019-07-19 | 삼성전자주식회사 | 양자점과 그 제조 방법, 및 이를 포함하는 전자 소자 |
KR20190106823A (ko) * | 2018-03-09 | 2019-09-18 | 삼성전자주식회사 | 양자점 및 이를 포함하는 소자 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080107578A (ko) | 2007-06-07 | 2008-12-11 | 삼성전자주식회사 | 코어/쉘 나노결정 및 그 제조방법 |
KR101060231B1 (ko) | 2008-09-05 | 2011-08-29 | 포항공과대학교 산학협력단 | 표면에 전하가 도입된 반도체 나노결정 및 이를 포함하는 광소자 |
FR2947099B1 (fr) | 2009-06-17 | 2013-11-15 | Cynegy Holdings France | Tuile photovoltaique pour toiture |
KR101537296B1 (ko) | 2012-10-26 | 2015-07-17 | 삼성전자 주식회사 | 반도체 나노결정 및 그 제조방법 |
KR101525524B1 (ko) | 2013-09-26 | 2015-06-03 | 삼성전자주식회사 | 나노 결정 입자 및 그의 합성 방법 |
KR101774775B1 (ko) | 2015-12-30 | 2017-09-20 | 주식회사 상보 | 합금-다중 쉘 양자점, 그 제조 방법, 합금-다중 쉘 양자점 및 이를 포함하는 백라이트 유닛 |
US10550325B2 (en) | 2016-06-06 | 2020-02-04 | Nanosys, Inc. | Method for synthesizing core shell nanocrystals at high temperatures |
EP3336158B1 (en) | 2016-12-14 | 2023-03-08 | Samsung Electronics Co., Ltd. | Emissive nanocrystal particle, method of preparing the same and device including emissive nanocrystal particle |
WO2018114982A1 (en) | 2016-12-23 | 2018-06-28 | Universiteit Gent | Quantum dots with a iii-v core and an alloyed ii-vi external shell |
KR101880509B1 (ko) * | 2017-10-18 | 2018-08-16 | 나노캠텍 주식회사 | 비카드뮴계 양자점, 비카드뮴계 양자점의 제조 방법 및 비카드뮴계 양자점을 포함하는 양자점 필름 |
TWI656195B (zh) | 2017-10-24 | 2019-04-11 | 奇美實業股份有限公司 | 量子點、發光材料及量子點的製造方法 |
EP3684883B1 (en) * | 2017-10-25 | 2024-04-03 | Shoei Chemical Inc. | Stable inp quantum dots with thick shell coating and method of producing the same |
US11499096B2 (en) | 2017-12-28 | 2022-11-15 | Shoei Chemical Inc. | Semiconductor nanoparticles and core/shell semiconductor nanoparticles |
KR102151096B1 (ko) | 2018-05-31 | 2020-09-02 | 한국생산기술연구원 | InP/ZnS 코어-쉘 양자점 제조 방법 및 이에 의하여 제조되는 InP/ZnS 코어-쉘 양자점 |
KR102194668B1 (ko) | 2018-09-21 | 2020-12-24 | 울산과학기술원 | 칼코게나이드과 할라이드가 공존하는 페로브스카이트 양자점 및 이의 제조방법 |
-
2020
- 2020-05-22 JP JP2020552867A patent/JP7294680B2/ja active Active
- 2020-05-22 WO PCT/KR2020/006683 patent/WO2021215576A1/ko active Application Filing
- 2020-05-22 CN CN202080002076.1A patent/CN113853417B/zh active Active
- 2020-05-22 US US17/040,879 patent/US11932794B2/en active Active
- 2020-09-24 TW TW109133156A patent/TWI766377B/zh active
-
2021
- 2021-03-17 KR KR1020210034764A patent/KR102402197B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140121217A (ko) * | 2013-04-05 | 2014-10-15 | 한국기계연구원 | 양자점과 그의 제조방법 |
KR20150111307A (ko) * | 2014-03-24 | 2015-10-05 | 주식회사 나노스퀘어 | 양자점의 제조방법 |
KR20180016196A (ko) * | 2016-08-05 | 2018-02-14 | 재단법인대구경북과학기술원 | InP/ZnS 코어-쉘 양자점, 그 제조방법 및 이를 포함하는 LED |
KR20190085884A (ko) * | 2018-01-11 | 2019-07-19 | 삼성전자주식회사 | 양자점과 그 제조 방법, 및 이를 포함하는 전자 소자 |
KR20190106823A (ko) * | 2018-03-09 | 2019-09-18 | 삼성전자주식회사 | 양자점 및 이를 포함하는 소자 |
Also Published As
Publication number | Publication date |
---|---|
CN113853417B (zh) | 2024-01-02 |
KR102402197B1 (ko) | 2022-05-26 |
US20230106112A1 (en) | 2023-04-06 |
TWI766377B (zh) | 2022-06-01 |
TW202140751A (zh) | 2021-11-01 |
KR20210131872A (ko) | 2021-11-03 |
CN113853417A (zh) | 2021-12-28 |
JP2022533864A (ja) | 2022-07-27 |
JP7294680B2 (ja) | 2023-06-20 |
US11932794B2 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017116013A1 (ko) | 양자점 및 이의 제조방법 | |
WO2017116014A1 (ko) | 양자점 및 이의 제조방법 | |
WO2017171482A1 (ko) | 비화학양론적 콜로이드 양자점의 밴드 내 전자전이를 이용한 적외선 장치 | |
WO2015178590A1 (ko) | 양자점 필름, 이를 포함하는 표시장치, 및 양자점 필름의 제조방법 | |
WO2015037968A1 (ko) | 광 산란 시트, 이를 포함하는 전자 소자 및 이의 제조방법 | |
WO2018056570A1 (ko) | 단일 전자 점유된 양자점 및 이의 자성 제어방법 | |
WO2019190147A1 (ko) | 고색순도 디스플레이 적용을 위한 발광파장 및 좁은 반가폭을 가지는 적색 발광 양자점 및 이의 제조방법 | |
JP7125723B2 (ja) | 量子ドットを含む有機発光表示装置 | |
WO2022075534A1 (ko) | 표시패널 및 그 제조방법 | |
WO2021020695A2 (ko) | 하이브리드 파장변환체, 이의 제조방법 및 이를 포함하는 발광장치 | |
WO2021215576A1 (ko) | 그레이디드-멀티쉘 구조 기반의 양자점 및 그 제조방법 | |
WO2021210722A1 (ko) | 발광성 도펀트를 구비하는 멀티쉘 구조 기반의 양자점 | |
WO2020209578A1 (ko) | Ⅲ-ⅴ계 양자점 제조를 위한 활성 나노 클러스터, 이를 포함하는 양자점 및 이들의 제조방법 | |
WO2022039335A1 (ko) | 반도체 나노입자 및 이를 포함한 전자 장치 | |
WO2020226375A1 (ko) | 나노 소재 및 이의 제조 방법 | |
WO2021054651A1 (ko) | 양자점 나노입자 및 이의 제조방법 | |
WO2020209580A1 (ko) | Ⅲ-ⅴ계 양자점 및 이의 제조방법 | |
WO2020209581A1 (ko) | Ⅲ - ⅴ 계 양자점 및 이의 제조방법 | |
WO2023287101A1 (ko) | 양자점 복합 입자 및 그 제조방법 | |
WO2021201340A1 (ko) | 표시패널 및 그 제조방법 | |
WO2016080817A1 (ko) | 유기발광장치 | |
WO2024144021A1 (ko) | 양자점, 양자점의 제조 방법 및 양자점을 포함한 전자 장치 | |
WO2023101060A1 (ko) | 양자점 및 이의 제조방법 | |
WO2024162801A1 (ko) | 금속 산화물 나노 입자 및 이의 제조 방법, 금속 산화물 나노 입자를 포함하는 발광 소자 | |
WO2021054654A1 (ko) | 양자점-고분자 복합체 입자 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020552867 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20932305 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20932305 Country of ref document: EP Kind code of ref document: A1 |