WO2020209366A1 - 篩い分け装置 - Google Patents

篩い分け装置 Download PDF

Info

Publication number
WO2020209366A1
WO2020209366A1 PCT/JP2020/016146 JP2020016146W WO2020209366A1 WO 2020209366 A1 WO2020209366 A1 WO 2020209366A1 JP 2020016146 W JP2020016146 W JP 2020016146W WO 2020209366 A1 WO2020209366 A1 WO 2020209366A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
vibration
acceleration
vibrating
gantry
Prior art date
Application number
PCT/JP2020/016146
Other languages
English (en)
French (fr)
Inventor
澄夫 田川
慎平 信藤
祥吾 川野
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019076338A external-priority patent/JP7263894B2/ja
Priority claimed from JP2019076425A external-priority patent/JP7331427B2/ja
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to US17/602,632 priority Critical patent/US11988546B2/en
Priority to KR1020217036428A priority patent/KR20210144894A/ko
Priority to EP20787160.9A priority patent/EP3954471A4/en
Priority to CN202080028167.2A priority patent/CN113661016B/zh
Publication of WO2020209366A1 publication Critical patent/WO2020209366A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/42Drive mechanisms, regulating or controlling devices, or balancing devices, specially adapted for screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to a sieving device that sifts granules by particle size by vibration.
  • Patent Document 1 Conventionally, as a device for sieving ground wheat and the like, for example, the purifier described in Patent Document 1 is known.
  • This purifier supports the four corners of the sheave box, which is arranged with a plurality of sieve nets having different roughness, with columns via rubber springs.
  • the sheave box is connected to the vibration motor, and the supply gutter that supplies the stock before sorting is connected to the upper end of the sheave box.
  • a collection device for collecting the fallen stock will be installed below the sheave box.
  • the sheave box and the collecting device vibrate back and forth, and the stock supplied onto the sheave box through the supply gutter is shaken, so that the stock is sorted by particle size and collected. Collected by a collector.
  • the sieving device such as the purifier described in Patent Document 1 does not have a function of monitoring the vibration state of the sheave box during operation. Therefore, at the time of installation, the swing angle and swing width of the sheave box were visually adjusted to appropriate values.
  • the maintenance staff visually inspected whether the rocking state was properly maintained. Furthermore, the frequency of the sheave box was only set by the output frequency of the motor inverter.
  • the judgment differs depending on the person in charge, so even if there is an abnormality, the response may be delayed, and if the rubber spring that supports the sheave box deteriorates or the machine breaks down, the abnormality is overlooked. An accident may occur.
  • the stock does not spread evenly on the sieve, and the purification performance may deteriorate.
  • the set value and the actual frequency may differ, and as a result, the sieving performance may not reach the product specifications.
  • the bearing inside the vibrating motor is damaged, it will stop suddenly, and it will not be possible to detect the danger until such an accident occurs. Further, if the mounting bolt of the vibration motor is loosened, the vibration may not be properly transmitted to the sheave box, and the sieving performance may be deteriorated. Further, if the bearing of the vibrating motor is loose, the life of the motor may be shortened.
  • the problem to be solved by the present invention is to provide a sieving device that constantly monitors the vibrating state of the vibrating portion, can quickly detect a mechanical failure, a failure of the vibrating motor, etc., and prevents the purification function due to sieving from deteriorating.
  • Another object of the present invention is to provide a sieving device capable of constantly monitoring the vibrating state of the vibrating motor itself and quickly responding to an abnormality in the vibrating motor.
  • the invention according to claim 1 of the present application is a sieving device including a gantry and a vibrating portion having a sieving frame that reciprocates in one direction in a plan view with respect to the gantry.
  • the vibration unit is provided with a first sensor unit having a vibration unit acceleration detection unit capable of detecting at least the acceleration of the vibration unit, and vibration of the vibration unit is based on the acceleration of the vibration unit detected by the first sensor unit.
  • the first sensor unit includes a vibration unit angular velocity detection unit capable of detecting the angular velocity of the vibration unit, and the vibration state measuring unit is the vibration detected by the first sensor unit.
  • the invention according to claim 3 of the present application includes a gantry acceleration detection unit capable of detecting the acceleration of the gantry and a second sensor unit having a gantry angular velocity detection unit capable of detecting the angular velocity of the gantry.
  • the sieve according to claim 1 or 2 wherein the vibration state measuring unit measures the vibration state of the gantry based on the acceleration and the angular velocity of the gantry detected by the second sensor unit. It is a device.
  • the invention according to claim 4 of the present application is the sieving device according to claim 2 or 3, wherein the vibration state measured by the vibration state measuring unit is a vibration angle.
  • the invention according to claim 5 of the present application is the sieving device according to claim 1 or 3, wherein the vibration state measured by the vibration state measuring unit is displacement.
  • the vibration state measuring unit can measure at least a displacement in a direction orthogonal to one direction in which the vibrating unit reciprocates based on the acceleration detected by the vibration unit acceleration detecting unit.
  • the invention according to claim 7 of the present application is the sieving device according to claim 1, wherein the vibration state of the vibration unit measured by the vibration state measurement unit is a frequency in one direction.
  • the invention according to claim 8 of the present application is the sieving device according to any one of claims 1 to 7, wherein the invention includes a display device for displaying the vibration state measured by the vibration state measuring unit. is there.
  • the invention according to claim 9 of the present application reciprocates with respect to the gantry and the gantry in one direction in a plan view, and rotates a vibrating portion having a sieve frame and a rotor inside the casing to rotate the vibrating portion.
  • the sieving device is provided in the casing of the vibrating motor and can detect the acceleration of the vibrating motor in the radial direction of rotation of the rotor.
  • the acceleration detection unit and the vibration monitoring device that measures the vibration state of the vibration motor based on the acceleration of the vibration motor detected by the acceleration detection unit and monitors the vibration unit and / or the vibration motor. It is a sieving device characterized by being provided.
  • the invention according to claim 10 of the present application includes the first acceleration detection unit that detects acceleration in a plane view in a plane with respect to at least one direction in which the vibration unit reciprocates.
  • the invention according to claim 11 of the present application is characterized in that the acceleration detection unit includes at least a second acceleration detection unit that detects acceleration in a direction orthogonal to one direction in which the vibration unit reciprocates.
  • the acceleration detection unit includes a first acceleration detection unit that detects acceleration in a parallel direction in a plan view with respect to one direction in which the vibration unit reciprocates, and the vibration unit reciprocates.
  • vibration electric motors are provided on both sides of the vibration unit with the central axis along the one direction interposed therebetween, and these vibration motors are provided with a first acceleration detection unit and a second acceleration detection unit, respectively.
  • the invention according to claim 14 of the present application is characterized in that, when the measured value deviates from a predetermined threshold value, the vibration monitoring device displays the cause of the abnormality and the coping method thereof on the display device. 13.
  • the sieving device according to any one of 13.
  • the vibration state of the vibrating portion can be constantly monitored, it is possible to immediately detect that the vibration state is out of the appropriate range. As a result, it is possible to quickly respond to a machine failure or the like, and it is possible to prevent a decrease in sieving accuracy.
  • a second sensor unit consisting of a gantry acceleration detection unit capable of detecting the gantry acceleration and a gantry angular velocity detection unit capable of detecting the gantry angular velocity is provided, and the gantry vibration state is measured to measure the gantry horizontal. It is possible to know the state, the degree of vibration transmission from surrounding machines, and the degree of shaking due to the hardness of the base such as the ground or structure on which the gantry is installed. Then, it is possible to suppress a decrease in sieving performance due to these effects.
  • the vibration state measuring unit can measure the displacement in the direction orthogonal to the one direction in which the vibrating unit vibrates based on the acceleration detected by the vibration unit acceleration detecting unit, so that the vibration in one direction can be measured.
  • the magnitude of vibration in the direction orthogonal to this can be accurately measured without being affected, and the abnormality detection accuracy is improved.
  • the vibration state can be known in real time, and it is easy to notice the occurrence of an abnormality.
  • the vibration state of the vibration motor can be constantly monitored, it is possible to quickly detect abnormalities in the bearings, mounting bolts, bearings, etc. of the vibration motor and respond promptly. This makes it possible to prevent a decrease in sieving accuracy and a decrease in durability of the oscillating motor.
  • a first acceleration detection unit that detects acceleration in a plane view in one direction in which the vibrating unit reciprocates, it supports not only the vibrating electric motor but also the vibrating state of the vibrating unit and the vibrating unit. It is possible to quickly detect abnormalities in reciprocating vibration due to obstacles in the part that is being damaged.
  • the effect of vibration in one direction which is the normal vibration of the vibration unit, is included.
  • the vibration state in the direction orthogonal to this can be accurately measured without receiving the above, and the abnormality detection accuracy is improved.
  • vibration motors are provided on both sides of the central axis along one direction of the vibration unit, and these vibration motors are provided with a first acceleration detection unit and a second acceleration detection unit, respectively, resulting in two vibrations. It is possible to quickly detect a malfunction in the synchronization of the electric motor.
  • the vibration monitoring device displays the cause of the abnormality and the countermeasures on the display device, so that even an inexperienced person has an abnormality. Sometimes you can deal with it immediately and correctly.
  • the sieving device 1 of the present invention includes a gantry 2 and a vibrating portion 4 that reciprocates in one direction with respect to the gantry 2 and has a sieving frame 3.
  • the direction in which the vibrating unit 4 reciprocates vibrates in the X direction (the left-right direction of the paper surface in FIG. 1 and the depth direction of the paper surface in FIG. 2), and the direction orthogonal to the X direction in the plan view is the Y direction (the depth of the paper surface in FIG. 1).
  • the direction, the horizontal direction of the paper surface in FIG. 2, the direction orthogonal to the X direction and the Y direction is referred to as the Z direction (the vertical direction of the paper surface in FIGS. 1 and 2).
  • Supports 5 are provided at the four corners of the gantry 2, and the vibrating portion 4 is supported by rubber springs 6 attached to these columns 5.
  • a vibrating electric motor 7 is provided in the vibrating unit 4, and the vibrating unit 4 reciprocates in the X direction by operating the vibrating electric motor 7.
  • the gantry 2 is provided with a frame (not shown), and the frame is provided with a cover 30.
  • the gantry 2, the frame, and the cover 30 do not reciprocate.
  • the supply cylinder 8 supplies the granules before sieving into the sieving frame 3 from above.
  • the vibrating unit 4 is provided with a collecting device 9 for collecting the particles that have passed through each of the sieve nets of the sieve frame 3 according to the class, and the particles collected by the collecting device 9 are taken out of the machine. Further, the granules remaining on the sieve frame 3 are discharged to the outside of the machine through a route different from the granules collected by the collecting device 9.
  • the first sensor unit 10 is attached to the outer surface of the sieve frame 3 of the vibrating portion 4.
  • the first sensor unit 10 includes a vibrating unit acceleration detecting unit 11 capable of detecting the acceleration of the vibrating unit 4 in the triaxial direction and a vibration capable of detecting the angular velocity of the vibrating unit 4 in the triaxial direction. It has a part angular velocity detection unit 12.
  • the first sensor unit 10 is connected to the monitoring device 13 (see FIG. 2) installed on the outer surface of the cover 30.
  • the monitoring device 13 is provided with a vibration state measuring unit 14, a display device 16, an alarm buzzer 17, and the like.
  • the vibration unit acceleration detection unit 11, the vibration unit angular velocity detection unit 12, the display device 16, and the alarm buzzer 17 of the first sensor unit 10 are connected to the vibration state measurement unit 14. Further, the vibration state measuring unit 14 is connected to the operation management system of the facility via a general-purpose external communication means.
  • the vibration state measurement unit 14 is a calculation processing unit, and vibrates based on the acceleration of the vibration unit 4 detected by the vibration unit acceleration detection unit 11 and the angular velocity of the vibration unit 4 detected by the vibration unit angular velocity detection unit 12. The vibration state of the part 4 is measured. The measured vibration state is converted into display information and sent to the display device 16.
  • the sieving device 1 By performing the operation start operation, the sieving device 1 is activated, the vibrating unit 4 vibrates reciprocally, and the first sensor unit 10 starts detection.
  • the acceleration of the vibration unit 4 detected by the vibration unit acceleration detection unit 11 of the first sensor unit 10 and the angular velocity of the vibration unit 4 detected by the vibration unit angular velocity detection unit 12 are the vibration state measurement units by wireless communication or wired communication, respectively. Sent to 14.
  • the vibration state measuring unit 14 measures the displacement of the vibrating unit 4 in the three axial directions and the frequency in the X-axis direction from the acceleration of the vibrating unit 4, and the vibration angle of the vibrating unit 4 in the three directions from the acceleration and the angular velocity of the vibrating unit 4. To measure.
  • Displacement measurement is obtained by removing noise from the detected acceleration and integrating twice, excluding the effect of gravitational acceleration.
  • the vibration angle is calculated from the acceleration and angular velocity of the vibrating unit 4 using a Kalman filter, an extended Kalman filter, a Madgwick filter, a complementary filter, or the like.
  • the vibration state measuring unit 14 synthesizes a waveform from the measured displacements of the vibration unit 4 in the X-axis direction, the Y-axis direction, and the Z-axis direction, and displays the displacement on the display screen of the display device 16 as shown in FIG.
  • the size and direction of the Lissajous figure on the XY axes (the figure on the left side of FIG. 5), the Lissajous figure on the XX axis (the figure in the center of FIG. 5), and the Lissajous figure on the YY axis (FIG. 5) are orthogonal to each other. Display as the figure on the right side of.
  • the displacements of the vibrating unit 4 in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the vibration angles in the three directions tilt angle in the XY plane due to vibration, tilt angle in the XY plane, Y- The tilt angle in the Z plane), the frequency in the X-axis direction, and the amplitude in the X-axis direction measured from the synthesized waveform are displayed as numerical values on the screen of the display device 16.
  • the displacements are -4.48 to 4.48 mm in the X-axis direction, -0.02 to 0.01 mm in the Y-axis direction, -0.47 to 0.47 mm in the Z-axis direction, and the vibration angles.
  • the tilt angle in the XX plane is 6.0 °
  • the tilt angle in the XY plane is 0.0 °
  • the tilt angle in the YY plane is 0.0 °
  • the amplitude in the X-axis direction is 9.
  • With 00 mm and a frequency of 10.00 Hz in the X-axis direction it is displayed that stable operation is in progress.
  • the vibrating portion 4 vibrates in the X-axis direction, slightly vibrates in the Z-axis direction, and hardly vibrates in the Y-axis direction. Further, the reason why only the inclination angle in the XZ plane is 6.0 ° is that the sieve frame 3 is inclined downward in the left direction of the paper surface as shown in FIG. 1, and the actual vibrating portion 4 is in the X axis direction. Instead of vibrating in parallel with, it is shown that it vibrates in an inclined manner as shown by the double-headed arrow in FIG.
  • vibration state measuring unit 14 displacement, vibration angle, frequency, and amplitude in an appropriate range of the vibration unit 4 are set in advance as determination values.
  • the vibration state measuring unit 14 compares the measured displacement with the displacement determination value, compares the measured vibration angle with the angle determination value, compares the measured frequency with the frequency determination value, and measures.
  • the calculated amplitude is compared with the amplitude judgment value.
  • the screen of the display device 16 displays the vibration state of the vibration state 4 and indicates that it is normal as in "stable operation". Display in characters.
  • a second sensor unit 18 attached to the gantry 2 is provided.
  • the second sensor unit 18 has a gantry acceleration detection unit 19 capable of detecting the acceleration of the gantry 2 similar to the first sensor unit 10, and a gantry angular velocity detection unit 20 capable of detecting the angular velocity of the gantry 2.
  • the second sensor unit 18 is connected to the vibration state measuring unit 14 of the monitoring device 13.
  • the acceleration of the gantry 2 detected by the gantry acceleration detection unit 19 of the second sensor unit 18 and the angular velocity of the gantry 2 detected by the gantry angular velocity detection unit 20 are transmitted to the vibration state measurement unit 14 of the monitoring device 13.
  • the vibration state measuring unit 14 measures the vibration state of the gantry 2 in the same manner as the measurement of the vibration state of the vibration unit 4 in the first embodiment. As a result, it is possible to detect the displacement of the gantry 2 due to the installation angle of the gantry 2, the influence of vibration transmitted from the machines arranged around the gantry 2, the hardness of the base on which the sieving device 1 is installed, and the like.
  • the gantry 2 Since the gantry 2 is originally fixed and is not affected by the reciprocating vibration of the vibrating portion 4 by the rubber spring 6, the displacement and the installation angle are usually measured, and the frequency and amplitude are not measured.
  • the vibration state measuring unit 14 converts the measured vibration state of the gantry 2 into display information and sends it to the display device 16, and causes the screen of the display device 16 to display the vibration state of the vibration unit 4 as shown in FIG. ..
  • the Lissajous figure of the XY axes (the figure on the left side of FIG. 8), the Lissajous figure of the XY axes (the figure in the center of FIG. 8), in which the displacements of the gantry 2 are orthogonal to each other, are displayed. It is displayed as a Lissajous figure on the YZ axis (the figure on the right side of FIG. 8).
  • the displacements of the gantry 2 in the X-axis direction, the Y-axis direction, and the Z-axis direction are displayed as numerical values.
  • the displacements are normal as ⁇ 0.10 to 0.10 mm in the X-axis direction, ⁇ 0.02 to 0.01 mm in the Y-axis direction, and ⁇ 0.02 to 0.02 mm in the Z-axis direction. Is displayed.
  • the gantry 2 is hardly displaced, that is, the vibration of the vibrating part 4 is not transmitted, and it can be seen that the rubber spring 6 is fully functioning.
  • the displacement of the gantry 2 in an appropriate range is set as a determination value in the vibration state measurement unit 14, and the vibration state measurement unit 14 compares the measured displacement with the displacement determination value.
  • the characters such as "normal” are displayed on the screen of the display device 16.
  • the vibration state measuring unit 14 converts the measured vibration state of the gantry 2 into display information and sends it to the display device 16, and displays the vibration state of the vibration unit 4 on the screen of the display device 16 as shown in FIG. You may also let them do it.
  • the installation angle of the gantry 2 is displayed as an image imitating a spirit level.
  • FIG. 9 shows the current state of the gantry 2 in a circular range in which the X-axis and the Y-axis are represented as a spirit level.
  • the thick line circle that imitates the air bubbles is the current state of the gantry 2.
  • the diameter of the two-dot dashed line indicates the permissible range.
  • the installation angle around the X-axis and the installation angle around the Y-axis are displayed as numerical values. In the figure, the displayed installation angles are 0.2 ° around the X-axis and -0.4 ° around the Y-axis, and the current state is within the permissible range.
  • the installation angle of is shown to be normal.
  • FIG. 10A and 10B show the direction of the installation angle of the gantry 2.
  • the installation angle around the Y axis of the gantry 2 is displayed as a plus when the left side is raised and a minus when the left side is lowered with respect to the second sensor unit 18.
  • the installation angle around the X axis of the gantry 2 is displayed as a plus when the right side is raised and a minus when the right side is lowered with the second sensor unit 18 as the center.
  • the display device 16 is used as a touch panel, and buttons such as “calibration”, “hold”, and “reset” can be operated on the display screen in addition to the image imitating the spirit level. It may be displayed.
  • the "calibration” button is provided as a momentary switch so that the ON state continues while it is touched. Further, the "hold” button and the “reset” button are provided as alternate switches so that the ON state and the OFF state are alternately switched each time they are touched.
  • the installation angle around the X-axis and Y-axis of the gantry 2 at that time is set to 0 °, and the state of change in the installation angle after that can be measured.
  • the displayed installation angle value of the gantry 2 can be stopped at any timing. As a result, even if the measured installation angle value fluctuates at any time due to the vibration transmitted from the vibrating unit 4 to the gantry 2 and it is difficult to see, the installation angle value displayed on the display screen of the display device 16 can be displayed. It is possible to stop and check.
  • the displayed value of the installation angle of the gantry 2 can be returned to the factory default adjustment value of the vibration state measuring unit 14.
  • the vibration state measuring unit 14 may be set with the determination values of the displacement and the installation angle in the appropriate range of the gantry 2, and the measured displacement and the installation angle may be compared with the determination values to make a determination.
  • the sieving device 1 of the present embodiment has a gantry 2 and a sieving frame 3, and has a vibrating portion 4 that reciprocates in one direction with respect to the gantry 2. It includes two vibrating electric motors M1 and M2 that generate reciprocating vibration of the vibrating unit 4 by rotating the rotor inside the casing 107.
  • the direction parallel to the reciprocating vibration direction of the vibrating unit 4 in the plan view is the X direction (the left-right direction of the paper surface in FIG. 11 and the depth direction of the paper surface in FIG. 12), and the direction orthogonal to the X direction in the plan view is Y.
  • the direction (the depth direction of the paper surface in FIG. 11 and the left-right direction of the paper surface in FIG. 12).
  • Supports 5 are provided at the four corners of the gantry 2, and the vibrating portion 4 is supported by rubber springs 6 attached to these columns 5.
  • the gantry 2 is provided with a frame (not shown), and the frame is provided with a cover 30.
  • the gantry 2, the frame, and the cover 30 do not reciprocate.
  • the supply cylinder 8 supplies the granules before sieving into the sieving frame 3 from above.
  • the vibrating unit 4 is provided with a collecting device 9 for collecting the particles that have passed through each of the sieve nets of the sieve frame 3 according to the class, and the particles collected by the collecting device 9 are taken out of the machine. Further, the granules remaining on the sieve frame 3 are discharged to the outside of the machine through a route different from the granules collected by the collecting device 9.
  • the vibrating electric motors M1 and M2 are provided on both sides of the vibrating portion 4 with the central axis along the X direction. Then, the rotor and the unbalanced weight inside the casing 107 of these two vibrating electric motors M1 and M2 rotate in opposite directions, and the unbalanced weights synchronize to vibrate the vibrating portion 4 in the X direction.
  • the rotor, unbalanced weight, and the like inside the casing 107 of the vibration motors M1 and M2 correspond to the rotor of the present invention.
  • the plane containing the rotating circle of the rotor is substantially parallel to the XY plane.
  • the vibrating electric motors M1 and M2 also vibrate together with the vibrating unit 4.
  • acceleration detection units 110 and 111 capable of detecting acceleration in the radial direction of rotation of the rotor are provided on the outer surface of the casing 107 of the vibration motors M1 and M2, respectively.
  • the acceleration detection units 110 and 111 detect the acceleration of the vibration motors M1 and M2.
  • the acceleration detection unit 110 of the vibration electric motor M1 includes a first acceleration detection unit A1 that detects acceleration in the X direction and a second acceleration detection unit A2 that detects acceleration in the Y direction.
  • the acceleration detection unit 111 of the vibration electric motor M2 includes a first acceleration detection unit A3 that detects acceleration in the X direction and a second acceleration detection unit A4 that detects acceleration in the Y direction.
  • the first acceleration detection units A1 and A3 are sensors that detect acceleration in the uniaxial direction, and are installed so as to detect the accelerations of the X-direction vibration motors M1 and M2 in the radial direction of rotation of the rotor, respectively.
  • the second acceleration detection units A2 and A4 are sensors that detect acceleration in the uniaxial direction, and are installed so as to detect accelerations of the vibration motors M1 and M2 in the Y direction in the radial direction of rotation of the rotor, respectively.
  • the first acceleration detection units A1 and A3 and the second acceleration detection units A2 and A4 are connected to the vibration monitoring device 113 (see FIG. 14) installed on the outer surface of the cover 30.
  • the vibration monitoring device 113 is provided with a signal processing unit 114, a display device 16, an alarm buzzer 17, and the like.
  • first acceleration detection units A1 and A3, the second acceleration detection units A2 and A4, the display device 16, and the alarm buzzer 17 are connected to the signal processing unit 114. Further, the signal processing unit 114 is connected to the operation management system of the facility via a general-purpose external communication means.
  • the sieving device 1 By performing the operation start operation, the sieving device 1 is activated, the vibrating electric motors M1 and M2 rotate, and the vibrating unit 4 reciprocates in the X direction (the actual vibrating unit 4 may vibrate in parallel with the X direction). However, as shown by the double-headed arrow in FIG. 11, it tilts and vibrates.)
  • the first acceleration detection unit A1 and the second acceleration detection unit A2 of the vibration motor M1 and the first acceleration detection unit A3 and the second acceleration detection unit A4 of the vibration motor M2 start detection.
  • the acceleration signals in the X and Y directions of the vibration electric motors M1 and M2 acquired by the first acceleration detection units A1 and A3 and the second acceleration detection units A2 and A4 are sent to the signal processing unit 114 by wireless communication or wired communication. Sent.
  • the signal processing unit 114 sets the X and Y directions of the vibration electric motor M1 and the vibration transmitter M2 based on the acceleration signals sent from the first acceleration detection units A1 and A3 and the second acceleration detection units A2 and A4.
  • the vibration frequency F is detected in each of the X and Y directions.
  • the abnormality is determined by comparing this vibration frequency F with the threshold values Fmin to Fmax of the vibration frequency set in advance as the normal range.
  • the signal processing unit 114 performs warning processing.
  • this vibration frequency abnormality determination it can be determined whether the vibrating part is operating at a predetermined frequency or whether the vibrating machine is operating at a predetermined frequency.
  • the vibration frequency F, the signal having the frequency 2F twice the frequency F, and the signal having the frequency 3F three times the vibration frequency F are subjected to a process of attenuating a band other than the predetermined band by a bandpass filter (BPF), and the effective acceleration values are added up and the value is obtained. Is compared with the preset thresholds a1 and a2, and the abnormality determination A is performed.
  • bands other than F ⁇ 1 Hz, 2F ⁇ 2 Hz, and 3F ⁇ 3 Hz are attenuated, but this range can be arbitrarily changed.
  • the signal processing unit 114 performs caution processing when the total value exceeds the threshold value a1 and does not reach the threshold value a2, and performs warning processing when the total value exceeds the threshold value a2.
  • the signal processing unit 114 applies a band stop filter (BSF) to a signal having a vibration frequency F, a frequency 2F twice the vibration frequency F, and a frequency 3F three times the vibration frequency F to remove a predetermined band, and FFT-converts the extracted signal.
  • BSF band stop filter
  • the overall value for each low frequency band (1 Hz to 100 Hz), mid frequency band (100 Hz to 1 kHz), and high frequency band (1 kHz or more) is calculated.
  • the removal frequency band is F ⁇ 1 Hz, 2F ⁇ 2 Hz, 3F ⁇ 3 Hz, but this range can be arbitrarily changed.
  • the abnormality determination B is performed by comparing the overall value of the low frequency band with the set threshold values b1 and b2, and if the threshold value b1 is exceeded and the threshold value b2 is not reached, cautionary processing is performed, and if the threshold value b2 is exceeded. Perform warning processing.
  • the overall value of the mid-frequency band is compared with the threshold values c1 and c2 to perform abnormality determination C. If the threshold value c1 is exceeded and the threshold value c2 is not reached, caution processing is performed, and if the threshold value c2 is exceeded, warning processing is performed. ..
  • the overall value of the high frequency band is compared with the threshold values d1 and d2 to perform abnormality determination D. If the threshold value d1 is exceeded and the threshold value d2 is not reached, caution processing is performed, and if the threshold value d2 is exceeded, warning processing is performed.
  • the threshold set for performing caution processing is a level that needs to be inspected within about one month.
  • the operation of the sieving device 1 is continued, but there is an abnormality, the cause of the abnormality corresponding to the abnormality of the vibration state, and the countermeasure for the abnormality are displayed on the display device 16.
  • the same contents displayed on the display device 16 are sent to the operation management system by external communication.
  • the threshold value set for performing warning processing is larger than the threshold value for performing caution processing, and is a level that requires immediate action.
  • the warning processing of the signal processing unit 114 the operation of the sieving device 1 is immediately stopped, the alarm buzzer 17 is activated to notify the operator or the supervisor of the occurrence of an abnormality, and the abnormality of the vibration state is dealt with.
  • the cause of the abnormality and the countermeasure for the abnormality are displayed on the display device 16. At the same time, the same contents displayed on the display device 16 are sent to the operation management system by external communication.
  • the abnormality of the vibration state, the cause of the abnormality corresponding to the abnormality, and the countermeasures thereof are as shown in FIG.
  • the vibration frequency based on the acceleration signal in the X direction acquired by the first acceleration detection units A1 and A3 is good (GO), and the acceleration in the Y direction acquired by the second acceleration detection units A2 and A4.
  • the display device 16 indicates that the cause of the abnormality is "imbalance of the vertical weights of the vibration motors" and “vibration of the two motors". Display such as “number deviation”, “rubber spring settling”, etc., and display "inspection of vibration frequency of vibration motor”, “inspection of rubber spring”, etc. as a countermeasure.
  • the display device 16 displays "Rubber spring settling" as the cause of the abnormality and "Inspection of the rubber spring” as a countermeasure.
  • the display device 16 displays "bearing wear” as the cause of the abnormality and "inspection of the bearing, lubrication of grease” as a countermeasure. ..
  • the vibration state measuring unit measures all the vibration angles, displacements, frequencies, and amplitudes of the vibrating parts and displays them on the monitoring device, but it may be a part.
  • the vibration of the vibrating part in one direction (X direction) in the plan view is not a problem because it should vibrate.
  • the vibration in the directions orthogonal to this (Y direction, Z direction) is too large, there are effects such as scattering of granules and machine failure. Therefore, the vibration state measuring unit is used in the Y direction and the Z direction. It is also possible to measure only the displacement of and omit the displacement in the X direction without measuring.
  • the vibration state measuring unit measures the installation angle and displacement of the gantry and displays them on the monitoring device, but either one may be used.
  • the vibration state measuring unit measures the installation angle and displacement of the gantry and displays it on the monitoring device.
  • at least one of the frequency and the amplitude may be measured. good.
  • the frequency and amplitude can be monitored, and it is possible to quickly discover that the vibration of the vibrating portion is transmitted due to, for example, breakage of the rubber spring.
  • the vibration state is measured when the vibrating portion starts the reciprocating motion, but the present invention is not limited to this, and the first sensor unit, the second sensor unit, and even when the vibrating portion does not reciprocate.
  • the monitoring device 13 may be operated to measure the vibration state. In this case, the postures of the vibrating portion and the gantry when the vibrating portion is stationary can be measured.
  • the first sensor unit is attached to the sieve frame of the vibrating unit 4, but is not limited to this. Any place may be used as long as it vibrates.
  • the monitoring device is attached to the cover of the sieving device, but the present invention is not limited to this, and the monitoring device may not be directly attached to the sieving device but may be provided at a distance. Those provided with such a monitoring device are also included in the sieving device of the present invention.
  • the installation angle of the gantry is displayed as a spirit level as shown in FIG. 9, but the present invention is not limited to this, and the displacement may be displayed as a numerical value in the same manner as the displacement shown in FIG.
  • the "displacement (pp)" may be arranged next to the "installation angle” to be displayed in the same manner as the "vibration angle” in FIG.
  • the vibration state measuring unit may set an angle determination value for the installation angle of the gantry, and the vibration state measurement unit may compare the measured installation angle with the angle determination value.
  • "normal” or the like may be displayed on the screen of the display device in the same manner as the displacement shown in FIG.
  • the alarm buzzer is activated by performing abnormality processing as in the case of displacement, and the text display on the display device is changed from "normal” to "abnormal". You may change it to.
  • the measurement of the vibrating part and the gantry has been described as being performed while the vibrating part of the sieving device is in operation, but the present invention is not limited to this, and the measurement may be performed while the vibrating part is stopped. In this case, it is possible to monitor the state of the installed posture immediately after the installation and before the operation, the posture when the operation is stopped, and the transmission of vibration from another sieving device operated adjacently.
  • the vibrating unit acceleration detecting unit and the vibrating unit angular velocity detecting unit are provided, but the present invention is not limited to this.
  • the vibration unit acceleration detection unit may be provided only. In this case, the angular velocity cannot be detected and the vibration angle cannot be measured, but simple measurement can be performed and the cost can be reduced.
  • the first acceleration detection units A1 and A3 for detecting the acceleration in the X direction in which the vibration unit 4 reciprocates, and the second acceleration detection units A2 and A4 for detecting the acceleration in the Y direction orthogonal to the X direction. was provided.
  • the vibration direction important for determining whether or not the vibration motors M1 and M2 are vibrating at an appropriate vibration frequency is the X direction, the second acceleration detection units A2 and A4 can be omitted.
  • an acceleration detection unit may be provided at an intermediate position between the two vibration motors M1 and M2, or one of them. It is also possible to provide an acceleration detection unit only on the vibration motor of the above and to maintain two bearings at the same time. In order to monitor the abnormality of each vibrating motor, it is necessary to provide an acceleration detection unit for each of the two vibrating motors M1 and M2.
  • the acceleration detection unit uses a sensor that detects acceleration in the uniaxial direction, but the present invention is not limited to this.
  • a sensor capable of detecting acceleration in the biaxial direction may be used.
  • the X-axis and the Y-axis are measured. By using such a sensor, it is possible to save the trouble of installing two detection units in the vibration motor.
  • the vibration frequency is measured and determined, but the vibration frequency may be measured and displayed on the display device. In this way, it becomes easy to know whether or not the vibrating unit or the vibrating electric motor is operating at the set vibration frequency.
  • the vibrating unit and the vibrating electric motor are monitored, but either one may be monitored.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】振動部の振動状態を常時監視し、機械的な故障、振動電動機の障害等をいち早く察知でき、篩い分けによる純化機能が低下するのを防ぐ。  【解決手段】架台と、架台に対して平面視の一方向に往復振動し、篩枠を有する振動部とを備える篩い分け装置であって、振動部は、振動部の加速度を検知可能な振動部加速度検知部と、振動部の角速度を検知可能な振動部角速度検知部とを有する第1センサユニットと、第1センサユニットが検知した振動部の加速度及び角速度に基づいて、振動部の振動状態を測定する振動状態測定部とを備える。

Description

篩い分け装置
 本発明は、振動によって粒状物を粒径ごとに篩い分ける篩い分け装置に関する。
 従来、挽砕された小麦等を篩い分ける装置として、例えば、特許文献1に記載されたピュリファイアが知られている。
 このピュリファイアは、目の粗さが異なる複数の篩網を配設したシーブボックスの四隅部を、ラバースプリングを介して支柱で支持する。また、シーブボックスを振動電動機に連結し、シーブボックスの上部一端に分別前のストックを供給する供給樋を連結する。さらに、シーブボックスの下方に、落下したストックを捕集する捕集装置を設置する。
 そして、振動電動機を作動させると、シーブボックス及び捕集装置が前後方向に往復振動し、供給樋を通してシーブボックス上に供給されたストックが揺り動かされることにより、ストックが粒径ごとに分別され、捕集装置で捕集される。
特開平8-39002号公報
 特許文献1に記載のピュリファイアのような篩い分け装置は、運転時にシーブボックスの振動状態を監視する機能を備えていない。そのため、据え付け時に、目視によってシーブボックスの揺動角度及び揺動幅を適正値に調整していた。
 また、稼動を始めてからも、保守担当者が目視によって、揺動状態が適正に保たれているか否か点検していた。さらに、シーブボックスの振動数は、モータインバータの出力周波数で設定しているだけであった。
 しかし、目視による点検では、担当者によって判断が異なるため異常であっても対処が遅れることがあり、シーブボックスを支持するラバースプリングが劣化したり、機械が故障した場合に、異常を見過ごして、事故が発生するおそれがある。また、振動電動機に障害が発生すると、ストックが篩上に均一に広がらず、純化性能が落ちることもあった。
 さらに、振動部の振動数を計測していないので、設定値と実際の振動数とが異なる場合があり、この結果、篩い分け性能が製品仕様まで達しないこともあった。
 また、振動電動機内部のベアリングが損傷すると、突然停止してしまい、このようなアクシデントが発生するまで、危険を察知することができない。また、振動電動機の取り付けボルトが緩むと、振動が適正にシーブボックスに伝わらず、篩い分け性能が低下することがある。また、振動電動機の軸受けにガタが生ずると、電動機の寿命が短くなるといったことが起こりうる。
 本発明が解決しようとする課題は、振動部の振動状態を常時監視し、機械的な故障、振動電動機の障害等をいち早く察知でき、篩い分けによる純化機能が低下するのを防ぐ篩い分け装置を提供することにある。また、振動電動機自体の振動状態を常時監視し、振動電動機の異常に迅速に対応できる篩い分け装置を提供することにある。
 本願請求項1に係る発明は、架台と、前記架台に対して平面視の一方向に往復振動し、篩枠を有する振動部と、を備える篩い分け装置であって、前記篩い分け装置は、少なくとも前記振動部の加速度を検知可能な振動部加速度検知部を有する第1センサユニットを前記振動部に備え、前記第1センサユニットが検知した前記振動部の加速度に基づいて、前記振動部の振動状態を測定する振動状態測定部と、を備えることを特徴とする篩い分け装置である。
 本願請求項2に係る発明は、前記第1センサユニットは、前記振動部の角速度を検知可能な振動部角速度検知部を備え、前記振動状態測定部は、前記第1センサユニットが検知した前記振動部の角速度に基づいて、前記振動部の振動状態を測定することを特徴とする請求項1に記載の篩い分け装置である。
 本願請求項3に係る発明は、前記架台は、前記架台の加速度を検知可能な架台加速度検知部と、前記架台の角速度を検知可能な架台角速度検知部とを有する第2センサユニットと、を備え、前記振動状態測定部は、該第2センサユニットが検知した前記架台の加速度及び角速度に基づいて前記架台の振動状態を測定することを特徴とする請求項1又は請求項2に記載の篩い分け装置である。
 本願請求項4に係る発明は、前記振動状態測定部が測定する振動状態は振動角度であることを特徴とする請求項2又は請求項3に記載の篩い分け装置である。
 本願請求項5に係る発明は、前記振動状態測定部が測定する振動状態は変位であることを特徴とする請求項1又は請求項3に記載の篩い分け装置である。
 本願請求項6に係る発明は、前記振動状態測定部は、前記振動部加速度検知部が検知した加速度に基づいて、少なくとも前記振動部が往復振動する一方向に対して直交方向の変位を測定可能であることを特徴とする請求項5に記載の篩い分け装置である。
 本願請求項7に係る発明は、前記振動状態測定部が測定する前記振動部の振動状態は、前記一方向の振動数であることを特徴とする請求項1に記載の篩い分け装置である。
 本願請求項8に係る発明は、前記振動状態測定部が測定した振動状態を表示する表示装置を有することを特徴とする請求項1乃至請求項7のいずれか1項に記載の篩い分け装置である。
 本願請求項9に係る発明は、架台と、前記架台に対して平面視の一方向に往復振動し、篩枠を有する振動部と、ケーシング内部の回転子を回転させることで前記振動部の前記往復振動を発生させる振動電動機と、を備える篩い分け装置であって、前記篩い分け装置は、前記振動電動機のケーシングに設けられ、前記回転子の回転の半径方向における前記振動電動機の加速度を検知可能な加速度検知部と、前記加速度検知部が検知した前記振動電動機の加速度に基づいて、前記振動電動機の振動状態を測定し、前記振動部及び/又は前記振動電動機を監視する振動監視装置と、を備えることを特徴とする篩い分け装置である。
 本願請求項10に係る発明は、前記加速度検知部には、少なくとも前記振動部が往復振動する一方向に対して平面視で平行方向の加速度を検知する第一加速度検知部が含まれる、ことを特徴とする請求項9に記載の篩い分け装置である。
 本願請求項11に係る発明は前記加速度検知部には、少なくとも前記振動部が往復振動する一方向に対して平面視で直交方向の加速度を検知する第二加速度検知部が含まれる、ことを特徴とする請求項9に記載の篩い分け装置である。
 本願請求項12に係る発明は、前記加速度検知部には、前記振動部が往復振動する一方向に対して平面視で平行方向の加速度を検知する第一加速度検知部と、前記振動部が往復振動する一方向に対して平面視で直交方向の加速度を検知する第二加速度検知部が含まれる、ことを特徴とする請求項9に記載の篩い分け装置である。
 本願請求項13に係る発明は、前記振動部の前記一方向に沿う中心軸を挟んだ両側にそれぞれ振動電動機を設け、これら振動電動機に、それぞれ第一加速度検知部及び第二加速度検知部を設けたことを特徴とする請求項12に記載の篩い分け装置である。
 本願請求項14に係る発明は、前記振動監視装置は、測定した測定値が所定の閾値から外れたとき、異常の原因とその対処方法を表示装置に表示することを特徴とする請求項9乃至13のいずれか1項に記載の篩い分け装置である。
 本発明によれば、振動部の振動状態を常時監視可能であるので、振動状態が適正範囲から外れたことを直ちに察知できる。これにより、機械の故障等に速やかに対応することが可能となり、篩い分け精度の低下も防止できる。
 加えて、架台の加速度を検知可能な架台加速度検知部、及び、架台の角速度を検知可能な架台角速度検知部から成る第2センサユニットを設け、架台の振動状態を測定することにより、架台の水平状態、周辺の機械からの振動の伝わり具合、架台が設置された地盤や構造物などの基盤の硬軟による揺れ程度などを知ることができる。そして、これらの影響による篩い分け性能の低下を抑制できる。
 加えて、振動状態測定部が、振動部加速度検知部が検知した加速度に基づいて、振動部が振動する一方向に対して直交方向の変位を測定可能とすることにより、一方向への振動の影響を受けずに、これに直交する方向の振動の大きさを正確に測定でき、異常感知精度が高まる。
 加えて、振動状態測定部が測定した振動状態を表示する監視装置を有することにより、振動状態をリアルタイムで知ることができ、異常の発生に気付き易い。
 さらに、振動電動機の振動状態を常時監視可能なので、振動電動機のベアリング、取り付けボルト、軸受等の異常をいち早く察知し、速やかに対応することができる。これにより、篩い分け精度の低下や、振動電動機の耐久性の低下を防止することが可能となる。
 加えて、振動部が往復振動する一方向に対して平面視で平行方向の加速度を検知する第一加速度検知部が含まれることにより、振動電動機のみならず振動部の振動状態や振動部を支持している部分の障害などによる往復振動の異常を速やかに検知することができる。
 加えて、振動部が往復振動する一方向に対して平面視で直交方向の加速度を検知する第二加速度検知部が含まれることにより、振動部の正常な振動である一方向への振動の影響を受けずに、これに直交する方向の振動状態を正確に測定でき、異常感知精度が高まる。
 加えて、振動部の一方向に沿う中心軸を挟んだ両側にそれぞれ振動電動機を設け、これら振動電動機に、それぞれ第一加速度検知部及び第二加速度検知部を設けたことにより、二台の振動電動機の同期の不調をいち早く検知することができる。
 加えて、振動監視装置は、測定した測定値が所定の閾値から外れたとき、異常の原因とその対処方法を表示装置に表示することにより、経験に乏しい者であっても、異常が発生したときに直ちに、かつ、正しく対処することができる。
本発明の第1実施形態を示す篩い分け装置の側面図である。 本発明の第1実施形態を示す篩い分け装置の正面図である。 本発明の第1実施形態に係る監視装置及び第1センサユニットのブロック図である。 本発明の第1実施形態を示す篩い分け装置の信号処理ブロック図である。 本発明の第1実施形態における監視装置の表示例を示す図である。 本発明の第2実施形態を示す篩い分け装置の正面図である。 本発明の第2実施形態に係る監視装置、第1センサユニット及び第2センサユニットのブロック図である。 本発明の第2実施形態における監視装置の表示例を示す図である。 本発明の第2実施形態における監視装置の表示例を示す図である。 本発明の第2実施形態における篩い分け装置の架台の設置角度の向きを示す側面図である。 本発明の第2実施形態における篩い分け装置の架台の設置角度の向きを示す正面図である。 本発明の第3実施形態を示す篩い分け装置の側面図である。 本発明の第3実施形態を示す篩い分け装置の背面図である。 本発明の第3実施形態における振動電動機の背面図である。 本発明の第3実施形態における振動電動機の平面図である。 本発明の第3実施形態を示す篩い分け装置の正面図である。 本発明の第3実施形態における加速度検知部及び振動監視装置のブロック図である。 本発明の第3実施形態を示す篩い分け装置の信号処理ブロック図である。 本発明の第3実施形態における加速度信号の判定結果と異常原因との対応関係を例示する図である。
 以下、本発明の実施の形態につき図面を参照する等して説明する。なお、本発明は、実施形態に限定されないことはいうまでもない。
 [第1実施形態]
 図1乃至図5は、本発明の第1実施形態を示す。
 図1及び図2に示すように、本発明の篩い分け装置1は、架台2と、架台2に対して平面視で一方向に往復振動し、篩枠3を有する振動部4とを備える。
 以下の説明では、振動部4が往復振動する方向をX方向(図1における紙面左右方向、図2における紙面奥行き方向)、平面視でX方向に直交する方向をY方向(図1における紙面奥行き方向、図2における紙面左右方向)、X方向及びY方向に直交する方向をZ方向(図1及び図2における紙面上下方向)という。
 架台2の四隅には支柱5が設けられ、これら支柱5に取り付けたラバースプリング6によって振動部4が支持されている。
 振動部4には振動電動機7が設けられ、振動電動機7を作動させることにより振動部4がX方向に往復振動する。
 架台2には図示しないフレームが設けられており、フレームにはカバー30が設けられている。架台2、フレーム、カバー30は往復振動しない。
 供給筒8は、篩枠3内に篩い分け前の粒状物を上方から供給している。
 振動部4の篩枠3内には、目の粗さが異なる複数の篩網が、下になるほど目が細かくなるよう積層されている。
 振動部4には、篩枠3の各篩網を通過した粒状物を級別に捕集する捕集装置9が設置され、捕集装置9で捕集された粒状物は機外へ取り出される。また、篩枠3上に残った粒状物は、捕集装置9で捕集された粒状物とは別の経路を通って機外へ排出される。
 以上の構造は従来周知なので、詳細な説明は省略する。
 図1及び図2に示すように、振動部4の篩枠3の外側面に第1センサユニット10が取り付けられる。
 図3に示すように、第1センサユニット10は、振動部4の3軸方向の加速度を検知可能な振動部加速度検知部11、及び、振動部4の3軸方向の角速度を検知可能な振動部角速度検知部12を有する。
 第1センサユニット10は、カバー30の外面に設置された監視装置13(図2参照)に接続される。
 監視装置13には、振動状態測定部14、表示装置16、警報ブザー17などが設けられる。
 また、第1センサユニット10の振動部加速度検知部11及び振動部角速度検知部12、表示装置16並びに警報ブザー17は、振動状態測定部14に接続される。さらに、振動状態測定部14は、汎用の外部通信手段を介して施設の運転管理システムに接続されている。
 振動状態測定部14は、演算処理部であって、振動部加速度検知部11が検知した振動部4の加速度、及び、振動部角速度検知部12が検知した振動部4の角速度に基づいて、振動部4の振動状態を測定する。測定された振動状態は、表示情報に変換されて表示装置16に送られる。
 次に、図4を参照して、篩い分け装置1の信号処理について説明する。
 運転開始操作を行うことにより篩い分け装置1が起動し、振動部4が往復振動すると共に、第1センサユニット10が検知を開始する。
 第1センサユニット10の振動部加速度検知部11が検知した振動部4の加速度、及び、振動部角速度検知部12が検知した振動部4の角速度は、それぞれ無線通信あるいは有線通信によって振動状態測定部14に送られる。
 振動状態測定部14は、振動部4の加速度から振動部4の3軸方向の変位及びX軸方向の振動数を測定し、振動部4の加速度及び角速度から振動部4の3方向の振動角度を測定する。
 変位の測定は、検知された加速度からノイズ分を除去し、さらに、重力加速度の影響を除いて2回積分することにより求められる。
 振動角度は、振動部4の加速度及び角速度からカルマンフィルタ、拡張カルマンフィルタ、Madgwickフィルタ、相補フィルタ等を用いて算出する。
 振動状態測定部14は、測定された振動部4のX軸方向、Y軸方向、Z軸方向の変位から波形を合成し、図5に示すように、表示装置16の表示画面に、変位の大きさと方向を、互いに直交するX-Y軸のリサージュ図形(図5の左側の図形)、X-Z軸のリサージュ図形(図5の中央の図形)、Y-Z軸のリサージュ図形(図5の右側の図形)として表示させる。
 また、振動部4のX軸方向、Y軸方向、Z軸方向それぞれの変位と、3方向の振動角度(振動によるX-Y面内における傾斜角度、X-Z面内における傾斜角度、Y-Z面内における傾斜角度)、X軸方向の振動数、ならびに、合成された波形から測定されるX軸方向の振幅を数値として表示装置16の画面に表示する。
 図5では、変位として、X軸方向が-4.48~4.48mm、Y軸方向が-0.02~0.01mm、Z軸方向が-0.47~0.47mm、振動角度として、X-Z面内における傾斜角度が6.0°、X-Y面内における傾斜角度が0.0°、Y-Z面内における傾斜角度が0.0°、X軸方向の振幅が9.00mm、X軸方向の振動数が10.00Hzとして、安定運転中であることが表示されている。
 この数値で示されるように、X軸方向に振動部4は振動しており、Z軸方向に若干振動し、Y軸方向にはほぼ振動していないことがわかる。また、X-Z面内における傾斜角度だけ6.0°であるのは、図1で示すように篩枠3が紙面左方向下側に傾斜しており、実際の振動部4はX軸方向に平行に振動するのではなく、図1の両矢印で示すように、傾斜して振動していることを示している。
 振動状態測定部14には、予め、振動部4の適正範囲の変位、振動角度、振動数、振幅が判定値として設定されている。振動状態測定部14は、測定された変位と変位判定値とを比較し、測定された振動角度と角度判定値とを比較し、測定された振動数と振動数判定値とを比較し、測定された振幅と振幅判定値とを比較する。
 振動状態測定部14の測定値がすべて判定値内に収まっている場合は、表示装置16の画面に、振動部4の振動状態の表示とともに、「安定運転中」のように正常であることを文字で表示する。
 一方、これらの値が判定値から外れた場合は、異常処理を行って警報ブザー17を作動させると共に、表示装置16の文字による表示を「不安定」などに変更し、作業者あるいは監督者に異常の発生を知らせる。
 [第2実施形態]
 図6乃至図10は、本発明の第2実施形態を示す。
 第2実施形態では、第1実施形態の構造に加えて、図6に示すように、架台2に取り付けられた第2センサユニット18を備える。
 第2センサユニット18は、第1センサユニット10と同様の架台2の加速度を検知可能な架台加速度検知部19、及び、架台2の角速度を検知可能な架台角速度検知部20を有する。
 図7に示すように、第2センサユニット18は監視装置13の振動状態測定部14に接続される。第2センサユニット18の架台加速度検知部19が検知した架台2の加速度、及び架台角速度検知部20が検知した架台2の角速度は監視装置13の振動状態測定部14に送信される。
 振動状態測定部14は、第1実施形態における振動部4の振動状態の測定と同様に、架台2の振動状態を測定する。これにより、架台2の設置角度、周囲に配置された機械から伝わる振動の影響、篩い分け装置1が設置された基盤の硬軟などによる架台2の揺れを変位として検知することができる。
 なお、架台2は、本来固定されており、ラバースプリング6により振動部4の往復振動の影響を受けないので、通常は、変位及び設置角度を測定し、振動数及び振幅は測定しない。
 振動状態測定部14は、測定した架台2の振動状態を表示情報に変換して表示装置16に送り、振動部4の振動状態を表示装置16の画面に、図8に示すような表示をさせる。
 表示装置16の表示画面には、架台2の変位が、互いに直交するX-Y軸のリサージュ図形(図8の左側の図形)、X-Z軸のリサージュ図形(図8の中央の図形)、Y-Z軸のリサージュ図形(図8の右側の図形)として表示される。
 また、架台2のX軸方向、Y軸方向、Z軸方向それぞれの変位が数値として表示される。
 図8では、変位として、X軸方向が-0.10~0.10mm、Y軸方向が-0.02~0.01mm、Z軸方向が-0.02~0.02mmとして、正常であることが表示されている。
 この数値で示されるように、架台2ほとんど変位しておらず、すなわち振動部4の振動が伝わってきておらず、ラバースプリング6が十分に機能していることがわかる。
 振動状態測定部14には、架台2の適正範囲の変位が判定値として設定されており、振動状態測定部14は、測定された変位と変位判定値とを比較する。
 振動状態測定部14の測定値がすべて判定値内に収まっている場合は、表示装置16の画面に、「正常」のように文字で表示する。
 測定値が判定値から外れた場合は、異常処理を行って警報ブザー17を作動させると共に、表示装置16の文字による表示を「正常」から「異常」などに変更する。
 作業者あるいは監督者は、同じく警報ブザー17が作動しても、文字による表示を見て、振動部4の不具合であるのか、架台2の不具合であるのか直ちに理解できる。
 また、振動状態測定部14は、測定した架台2の振動状態を表示情報に変換して表示装置16に送り、振動部4の振動状態とともに表示装置16の画面に、図9に示すような表示もさせるようにしても良い。
 表示装置16の表示画面には、架台2の設置角度が、水準器を模した画像として表示される。
 図9では、水準器として、X軸とY軸が表された円形の範囲の中で架台2の現在の状態を示している。気泡を模した太線の円が、架台2の現在の状態である。二点破線の円径は、許容範囲を示している。また、X軸まわりの設置角度及びY軸まわりの設置角度を数値として表示している。図では、表示している設置角度は、X軸まわりの設置角度が0.2°、Y軸まわりの設置角度が-0.4°であり、現在の状態が許容範囲内であり、架台2の設置角度が、正常であることが示されている。
 図10A及び図10Bは、架台2の設置角度の方向を示す。図10Aに示すように、架台2のY軸まわり設置角度は、第2センサユニット18を中心として、左側が上がるとプラス、下がるとマイナスとして表示される。図10Bに示すように、架台2のX軸まわり設置角度は、第2センサユニット18を中心として、右側が上がるとプラス、下がるとマイナスとして表示される。
 このように水準器を模した表示をすることで、作業者あるいは監督者は架台の設置状態を容易に理解することができる。
 なお、図示はしていないが、表示装置16をタッチパネルとして、表示画面には、水準器を模した画像以外にも「キャリブレーション」、「ホールド」、「リセット」といった文字によるボタンを操作可能に表示するようにしてもよい。
 例えば、「キャリブレーション」ボタンは、モーメンタリスイッチとして、タッチされている間はONの状態が継続されるように設けられる。また、「ホールド」ボタンと「リセット」ボタンはオルターネートスイッチとして、タッチされる度にONの状態とOFFの状態が交互に切り替わるように設けられる。
 「キャリブレーション」ボタンをタッチして離したタイミングで、そのときの架台2のX軸及びY軸まわり設置角度を0°として、それ以降の設置角度の変化の状態を測定することができる。
 「ホールド」ボタンをタッチすることで、表示されている架台2の設置角度の値を任意のタイミングで止めることができる。これにより、振動部4から架台2に伝わった振動が原因で、測定された設置角度の値が随時変動して目視しにくい状態でも、表示装置16の表示画面に表示される設置角度の値を止めて確認することが可能となる。
 「リセット」ボタンをタッチすることで、表示される架台2の設置角度の値を、振動状態測定部14の工場出荷時の初期調整値に戻すことができる。
 このように、監視装置13に設けられた表示装置16を操作することで振動状態測定部14の調整を行えるようにすることで、振動状態測定部14取付け時の調整や、定期的なメンテナンスを行う手間を大幅に削減することが可能となる。
 また、振動状態測定部14に架台2の適正範囲の変位及び設置角度の判定値を設定しておき、測定された変位と設置角度とそれぞれ判定値と比較して判定させるようにしても良い。
 この場合、振動状態測定部14の測定値がすべて判定値内に収まっている場合は、表示装置16の画面に、「正常」のように文字で表示する。測定値が判定値から外れた場合は、異常処理を行って警報ブザー17を作動させると共に、表示装置16の文字による表示を「正常」から「異常」などに変更する。
 このようにすれば、作業者あるいは監督者は、警報ブザー17が作動しても、文字による表示を見て、振動部4の不具合であるのか、架台2の不具合であるのか直ちに理解できる。
 [第3実施形態]
 次に、第3実施形態について説明する。
 図11及び図12に示すように、本実施形態の篩い分け装置1は、架台2と、篩枠3を有し、架台2に対して平面視で一方向に往復振動する振動部4と、ケーシング107内部の回転子を回転させることで振動部4の往復振動を発生させる二台の振動電動機M1,M2とを備える。
 以下の説明では、振動部4が往復振動する方向に平面視で平行な方向をX方向(図11における紙面左右方向、図12における紙面奥行き方向)、平面視でX方向に直交する方向をY方向(図11における紙面奥行き方向、図12における紙面左右方向)という。
 架台2の四隅には支柱5が設けられ、これら支柱5に取り付けたラバースプリング6によって振動部4が支持されている。
 架台2には図示しないフレームが設けられており、フレームにはカバー30が設けられている。架台2、フレーム、カバー30は往復振動しない。
 供給筒8は、篩枠3内に篩い分け前の粒状物を上方から供給している。
 振動部4の篩枠3内には、目の粗さが異なる複数の篩網が、下になるほど目が細かくなるよう積層されている。
 振動部4には、篩枠3の各篩網を通過した粒状物を級別に捕集する捕集装置9が設置され、捕集装置9で捕集された粒状物は機外へ取り出される。また、篩枠3上に残った粒状物は、捕集装置9で捕集された粒状物とは別の経路を通って機外へ排出される。
 以上の構造は従来周知なので、詳細な説明は省略する。
 振動電動機M1,M2は、振動部4のX方向に沿う中心軸を挟んだ両側にそれぞれ設けられる。そして、これら二台の振動電動機M1,M2のケーシング107の内部のローター及びアンバランスウェイトが互いに逆方向に回転し、アンバランスウェイトが同期して振動部4をX方向に往復振動させる。これらの振動電動機M1,M2のケーシング107の内部のローター及びアンバランスウェイトなどは本発明の回転子に相当する。回転子の回転円が含まれる面はXY平面に略平行である。振動電動機M1,M2も振動部4と共に振動する。
 図13A及び図13Bに示すように、振動電動機M1,M2のケーシング107の外面には、回転子の回転の半径方向における加速度を検知可能な加速度検知部110,111がそれぞれ設けられる。加速度検知部110,111は、振動電動機M1,M2の加速度を検知する。
 振動電動機M1の加速度検知部110は、X方向の加速度を検知する第一加速度検知部A1、及び、Y方向の加速度を検知する第二加速度検知部A2を含む。
 また、振動電動機M2の加速度検知部111は、X方向の加速度を検知する第一加速度検知部A3、及び、Y方向の加速度を検知する第二加速度検知部A4を含む。
 第一加速度検知部A1及びA3は、一軸方向の加速度を検知するセンサーであり、回転子の回転の半径方向におけるX方向の振動電動機M1、M2の加速度をそれぞれ検知するように設置されている。第二加速度検知部A2及びA4は、一軸方向の加速度を検知するセンサーであり、回転子の回転の半径方向におけるY方向の振動電動機M1、M2の加速度をそれぞれ検知するように設置されている。
 図15に示すように、第一加速度検知部A1,A3、及び、第二加速度検知部A2,A4は、カバー30の外面に設置された振動監視装置113(図14参照)に接続される。
 振動監視装置113には、信号処理部114、表示装置16、警報ブザー17などが設けられる。
 また、第一加速度検知部A1,A3、第二加速度検知部A2,A4、表示装置16、警報ブザー17は、信号処理部114に接続される。さらに、信号処理部114は、汎用の外部通信手段を介して施設の運転管理システムに接続されている。
 次に、図16を参照して、篩い分け装置1の信号処理について説明する。
 運転開始操作を行うことにより篩い分け装置1が起動し、振動電動機M1,M2が回転して振動部4がX方向に往復振動する(実際の振動部4はX方向に平行に振動するのではなく、図11の両矢印で示すように、傾斜して振動する。)。振動開始と共に、振動電動機M1の第一加速度検知部A1及び第二加速度検知部A2と、振動電動機M2の第一加速度検知部A3及び第二加速度検知部A4が検知を開始する。
 第一加速度検知部A1,A3、及び、第二加速度検知部A2,A4によって取得された振動電動機M1,M2のX方向及びY方向の加速度信号は、無線通信あるいは有線通信によって信号処理部114に送られる。
 信号処理部114は、第一加速度検知部A1,A3、及び、第二加速度検知部A2,A4から送られた加速度信号に基づいて、振動電動機M1のX方向、Y方向、振動電送機M2のX方向、Y方向についてそれぞれ振動周波数Fを検出する。
 そして、この振動周波数Fを、予め正常範囲として設定されている振動周波数の閾値Fmin~Fmaxと比較して異常判定を行う。検出した振動周波数Fが閾値Fmin~Fmaxを越えたら、信号処理部114は警告処理を行う。
 X方向に往復振動するものであるので、X方向よりY方向の振動数が少ないことが予想される。よって、Y方向に係る閾値はFmaxを小さく設定すれば早く異常を検出することができる。
 この振動周波数異常判定では、振動部が所定の振動数で動作しているか、又は、振動機が所定の振動数で動作しているかなどが判定できる。
 また、振動周波数Fとその2倍の周波数2F、及び3倍の周波数3Fの信号を、バンドパスフィルタ(BPF)で所定以外の帯域を減衰させる処理を行い、加速度実効値を合算し、その値を予め設定されている閾値a1、a2と比較して異常判定Aを行う。図16に示す例では、F±1Hz、2F±2Hz、3F±3Hz以外の帯域を減衰させているが、この範囲は任意に変更できる。
 信号処理部114は、異常判定Aの結果、合算値が閾値a1を超えて、閾値a2に達しない場合は注意処理を行い、閾値a2を超えたら警告処理を行う。
 さらに、信号処理部114は、振動周波数Fとその2倍の周波数2F、及び3倍の周波数3Fの信号をバンドストップフィルタ(BSF)にかけて所定の帯域を除去し、取り出した信号をFFT変換して、低域周波数帯域(1Hz~100Hz)、中域周波数帯域(100Hz~1kHz)、高域周波数帯域(1kHz以上)毎のオーバーオール値を計算する。図16に示す例では、除去周波数帯域がF±1Hz、2F±2Hz、3F±3Hzであるが、この範囲は任意に変更できる。
 次いで、低域周波数帯域のオーバーオール値を設定されている閾値b1,b2と比較して異常判定Bを行い、閾値b1を越えて閾値b2に達しない場合は注意処理を行い、閾値b2を越えたら警告処理を行う。
 また、中域周波数帯域のオーバーオール値を閾値c1,c2と比較して異常判定Cを行い、閾値c1を越えて閾値c2に達しない場合は注意処理を行い、閾値c2を越えたら警告処理を行う。
 高域周波数帯域のオーバーオール値を閾値d1,d2と比較して異常判定Dを行い、閾値d1を越えて閾値d2に達しない場合は注意処理を行い、閾値d2を越えたら警告処理を行う。
 注意処理を行うために設定される閾値は、およそ一ヶ月以内に点検が必要なレベルである。信号処理部114の注意処理としては、篩い分け装置1の運転は継続するが、異常が有ること、振動状態の異常に対応する異常原因とその対処方法を表示装置16に表示することである。それとともに、外部通信によって表示装置16に表示したものと同じ内容を運転管理システムに送る。
 警告処理を行うために設定される閾値は、注意処理を行う閾値よりも大きく、直ちに対処が必要なレベルである。信号処理部114の警告処理としては、直ちに篩い分け装置1の運転を停止すると共に、警報ブザー17を作動させて作業者あるいは監督者に異常の発生を知らせることや、振動状態の異常に対応する異常原因とその対処方法を表示装置16に表示することである。それとともに、外部通信によって表示装置16に表示したものと同じ内容を運転管理システムに送る。
 振動状態の異常と、これに対応する異常原因及びその対処方法は、図17に示すようなものである。
 一例として、異常判定Aにおいて、第一加速度検知部A1,A3で取得したX方向の加速度信号に基づく振動周波数が良好(GO)で、第二加速度検知部A2,A4で取得したY方向の加速度信号に基づく振動周波数が異常(NG)の場合、及び両方向の振動状態が異常の場合は、表示装置16に、異常原因として「振動モータの上下ウェイトのアンバランス」、「2台のモータの振動数のずれ」、「ラバースプリングのへたり」等のように表示し、対処方法として「振動モータの振動周波数の点検」、「ラバースプリングの点検」等と表示する。
 一方、異常判定Aにおいて、第一加速度検知部A1,A3で検知したX方向の振動状態が異常(NG)で、第二加速度検知部A2,A4で検知したY方向の振動状態が良好(GO)の場合は、表示装置16に、異常原因として「ラバースプリングのへたり」と表示し、対処方法として「ラバースプリングの点検」と表示する。
 また、高域周波数帯域の異常判定Dで、第一加速度検知部A1,A3で取得したX方向の加速度信号に基づくオーバーオール値、及び、第二加速度検知部A2,A4で取得したY方向の加速度信号に基づくオーバーオール値のうち、少なくとも一方が異常(NG)の場合、表示装置16に、異常原因として「ベアリングの磨耗」と表示し、対処方法として「ベアリングの点検、グリスの注油」と表示する。
 なお、図17において、振動状態の異常と、異常原因との対応関係は、あくまでも例としてあげたものである。篩い分け装置の使用や設置環境などによって、判断方法や対応方法が異なるので、適宜定める。
 〔その他の変形例〕
 本発明は上記の実施の形態に限定されるものではない。例えば以下のようなものも含まれる。
 第1実施形態では、振動状態測定部が振動部の振動角度、変位、振動数、振幅をすべて測定して監視装置に表示したが、一部であってもよい。
 また、振動部の平面視における一方向(X方向)への振動は、本来振動すべき方向なのであまり問題にならない。しかし、これに直交する方向(Y方向、Z方向)への振動が大きすぎると、粒状物の飛散、機械の故障等のような影響があるので、振動状態測定部は、Y方向とZ方向の変位のみを測定し、X方向の変位は測定せずに省略することもできる。
 篩枠上の粒状物がこぼれないようにするには、X-Z面内の傾斜角度とY-Z面内の傾斜角度を警戒すればよい。このため、角度判定値としてX-Z面内及びY-Z面内における適正な傾斜角度のみを設定しておき、これら角度判定値と、測定したX-Z面内の傾斜角度、及びY-Z面内の傾斜角度を比較してもよい。
 二台の振動電動機7が互いに逆方向に回転し内部のアンバランスウェイトが同期して振動部の平面視における一方向(X方向)への振動させるような篩い分け装置では、少なくともY方向の変位を特に注視するようにすれば、二台の振動電動機の同期の不調などもいち早く発見できるようになる。
 第2実施形態では、振動状態測定部が架台の設置角度及び変位を測定して監視装置で表示したが、いずれか一方であってもよい。
 第2実施形態では、振動状態測定部が架台の設置角度及び変位を測定して監視装置で表示したが、振動部の測定と同様に、振動数及び振幅の少なくとも一方を測定するようにしても良い。この場合、振動数や振幅を監視することができ、例えば、ラバースプリングの破損などによる振動部の振動が伝わったことをいち早く発見することができる。
 本実施形態では、振動部が往復運動を開始しているときに振動状態を測定していたが、これに限られず、往復運動をしていないときにでも第1センサユニット、第2センサユニット及び監視装置13を作動させて、振動状態を測定するようにしても良い。この場合には、振動部の静止時における振動部及び架台の姿勢を測定することができる。
 本実施形態では、第1センサユニットは、振動部4の篩枠に取り付けられたが、これに限られない。振動する部分であればいずれの場所でも良い。
 本実施形態では、監視装置は、篩い分け装置のカバーに取り付けられたが、これに限られず、篩い分け装置に直接取り付けられず、離間したところに設けられる監視装置でも良い。このような監視装置を備えるものでも本発明の篩い分け装置に含まれる。
 本実施形態では、架台の設置角度を図9に示すように水準器として表示したが、これに限られず、図8に示す変位と同様に数値として表示するようにしても良い。例えば、図8に示す画面において、「変位(p-p)」の横に並べて「設置角度」として、図5の「振動角度」と同様な表示をするようにしても良い。
 また、振動状態測定部に架台の設置角度に角度判定値を設定し、振動状態測定部に測定された設置角度と角度判定値とを比較させるようにしても良い。この場合、測定された設置角度が角度判定値内に収まっている場合には、表示装置の画面に図8に示された変位と同様に「正常」などの表示を行っても良い。また、測定された設置角度が角度判定値から外れた場合にも変位のときと同様に、異常処理を行って警報ブザーを作動させると共に、表示装置の文字による表示を「正常」から「異常」などに変更するようにしても良い。
 本実施形態では、振動部及び架台の測定は、篩い分け装置の振動部の運転中に行っているもので説明したが、これに限られず、振動部の運転停止中に行っても良い。この場合には、設置直後で稼働する前の設置した姿勢の状態や運転停止時の姿勢、また隣接して運転される他の篩い分け装置からの振動の伝達なども監視することができる。
 本実施形態では、振動部の振動状態を検出するために、振動部加速度検知部及び振動部角速度検知部を備えるようにしたが、これに限られない。振動部加速度検知部だけを設けるようにしても良い。この場合には角速度は検知できず振動角度は測定できないが簡易な測定ができ、コストダウンが図れる。
 第3実施形態では、振動部4が往復振動するX方向の加速度を検知する第一加速度検知部A1,A3と、X方向に直交するY方向の加速度を検知する第二加速度検知部A2,A4を設けた。ここで、振動電動機M1,M2が適正振動周波数で振動しているか否かを判断するのに重要な振動方向はX方向なので、第二加速度検知部A2,A4は省略することもできる。
 二台の振動電動機M1,M2のベアリングは、劣化傾向がほぼ同じなので、ベアリングの劣化を監視するだけであれば、二台の振動電動機M1,M2の中間位置に加速度検知部を設けたり、一方の振動電動機にだけ加速度検知部を設けて、2個のベアリングを同時にメンテナンスすることもできる。個々の振動電動機の異常を監視するためには、二台の振動電動機M1,M2にそれぞれ加速度検知部を設ける必要がある。
 第3実施形態では、加速度検知部は一軸方向の加速度を検知するセンサーを用いたが、これに限られない。二軸方向の加速度を検知可能なセンサーを用いても良い。この場合には、X軸とY軸を測定する。このようなセンサーを用いれば、振動電動機に検知部を二箇所設置する手間を省くことができる。
 第3実施形態では、振動周波数を測定し判定するものであったが、振動周波数を測定して、それを表示装置で表示するようにしても良い。このようにすれば、振動部や振動電動機が設定された振動周波数で動作しているか否かが容易に分かるようになる。
 第3実施形態では、振動部及び振動電動機を監視するものであったが、いずれか一方を監視するものでも良い。
 いずれの実施形態における各技術的事項を他の実施形態に適用して実施例としても良い。
 1       篩い分け装置
 2       架台
 3       篩枠
 4       振動部
 5       支柱
 6       ラバースプリング
 7       振動電動機
 107     ケーシング
 8       供給筒
 9       捕集装置
 10      第1センサユニット
 110,111 加速度検知部
 11      振動部加速度検知部
 12      振動部角速度検知部
 13      監視装置
 14      振動状態測定部
 113     振動監視装置
 114     信号処理部
 16      表示装置
 17      警報ブザー
 18      第2センサユニット
 19      架台加速度検知部
 20      架台角速度検知部
 30      カバー

Claims (14)

  1.  架台と、前記架台に対して平面視の一方向に往復振動し、篩枠を有する振動部と、を備える篩い分け装置であって、
     前記篩い分け装置は、
     少なくとも前記振動部の加速度を検知可能な振動部加速度検知部を有する第1センサユニットを前記振動部に備え、
     前記第1センサユニットが検知した前記振動部の加速度に基づいて、前記振動部の振動状態を測定する振動状態測定部と、
     を備えることを特徴とする篩い分け装置。
  2.  前記第1センサユニットは、前記振動部の角速度を検知可能な振動部角速度検知部を備え、
     前記振動状態測定部は、前記第1センサユニットが検知した前記振動部の角速度に基づいて、前記振動部の振動状態を測定する
     ことを特徴とする請求項1に記載の篩い分け装置。
  3.  前記架台は、
     前記架台の加速度を検知可能な架台加速度検知部と、前記架台の角速度を検知可能な架台角速度検知部とを有する第2センサユニットと、を備え、
     前記振動状態測定部は、該第2センサユニットが検知した前記架台の加速度及び角速度に基づいて前記架台の振動状態を測定することを特徴とする請求項1又は請求項2に記載の篩い分け装置。
  4.  前記振動状態測定部が測定する振動状態は振動角度であることを特徴とする請求項2又は請求項3に記載の篩い分け装置。
  5.  前記振動状態測定部が測定する振動状態は変位であることを特徴とする請求項1又は請求項3に記載の篩い分け装置。
  6.  前記振動状態測定部は、前記振動部加速度検知部が検知した加速度に基づいて、少なくとも前記振動部が往復振動する一方向に対して直交方向の変位を測定可能であることを特徴とする請求項5に記載の篩い分け装置。
  7.  前記振動状態測定部が測定する前記振動部の振動状態は、前記一方向の振動数であることを特徴とする請求項1に記載の篩い分け装置。
  8.  前記振動状態測定部が測定した振動状態を表示する表示装置を有することを特徴とする請求項1乃至請求項7のいずれか1項に記載の篩い分け装置。
  9.  架台と、前記架台に対して平面視の一方向に往復振動し、篩枠を有する振動部と、ケーシング内部の回転子を回転させることで前記振動部の前記往復振動を発生させる振動電動機と、を備える篩い分け装置であって、
     前記篩い分け装置は、
     前記振動電動機のケーシングに設けられ、前記回転子の回転の半径方向における前記振動電動機の加速度を検知可能な加速度検知部と、
     前記加速度検知部が検知した前記振動電動機の加速度に基づいて、前記振動電動機の振動状態を測定し、前記振動部及び/又は前記振動電動機を監視する振動監視装置と、
     を備えることを特徴とする篩い分け装置。
  10.  前記加速度検知部には、
     少なくとも前記振動部が往復振動する一方向に対して平面視で平行方向の加速度を検知する第一加速度検知部が含まれる、
     ことを特徴とする請求項9に記載の篩い分け装置。
  11.  前記加速度検知部には、
     少なくとも前記振動部が往復振動する一方向に対して平面視で直交方向の加速度を検知する第二加速度検知部が含まれる、
     ことを特徴とする請求項9に記載の篩い分け装置。
  12.  前記加速度検知部には、
     前記振動部が往復振動する一方向に対して平面視で平行方向の加速度を検知する第一加速度検知部と、
     前記振動部が往復振動する一方向に対して平面視で直交方向の加速度を検知する第二加速度検知部が含まれる、
     ことを特徴とする請求項9に記載の篩い分け装置。
  13.  前記振動部の前記一方向に沿う中心軸を挟んだ両側にそれぞれ振動電動機を設け、これら振動電動機に、それぞれ第一加速度検知部及び第二加速度検知部を設けたことを特徴とする請求項12に記載の篩い分け装置。
  14.  前記振動監視装置は、測定した測定値が所定の閾値から外れたとき、異常の原因とその対処方法を表示装置に表示することを特徴とする請求項9乃至13のいずれか1項に記載の篩い分け装置。
PCT/JP2020/016146 2019-04-12 2020-04-10 篩い分け装置 WO2020209366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/602,632 US11988546B2 (en) 2019-04-12 2020-04-10 Sieving device
KR1020217036428A KR20210144894A (ko) 2019-04-12 2020-04-10 체분리 장치
EP20787160.9A EP3954471A4 (en) 2019-04-12 2020-04-10 SCREENING DEVICE
CN202080028167.2A CN113661016B (zh) 2019-04-12 2020-04-10 筛分装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019076338A JP7263894B2 (ja) 2019-04-12 2019-04-12 篩い分け装置
JP2019076425A JP7331427B2 (ja) 2019-04-12 2019-04-12 篩い分け装置
JP2019-076338 2019-04-12
JP2019-076425 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209366A1 true WO2020209366A1 (ja) 2020-10-15

Family

ID=72750702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016146 WO2020209366A1 (ja) 2019-04-12 2020-04-10 篩い分け装置

Country Status (5)

Country Link
US (1) US11988546B2 (ja)
EP (1) EP3954471A4 (ja)
KR (1) KR20210144894A (ja)
CN (1) CN113661016B (ja)
WO (1) WO2020209366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112620102A (zh) * 2020-11-27 2021-04-09 东北大学 双机双频自同步驱动双圆周运动轨迹振动筛参数确定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353863A (zh) * 2021-12-09 2022-04-15 内蒙古双欣矿业有限公司 一种基于物联网的选煤设备远程在线监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656276A (en) * 1979-10-11 1981-05-18 Nippon Kokan Kk Method of monitoring vibrating screen
JPH06229818A (ja) * 1993-02-05 1994-08-19 Meisei Electric Co Ltd 自動車の異常振動検出方法及び異常振動検出装置
JPH0839002A (ja) 1994-08-02 1996-02-13 Satake Eng Co Ltd ピュリファイア
JP2008161757A (ja) * 2006-12-27 2008-07-17 Jfe Steel Kk 振動篩の異常検知方法および装置
JP2014184412A (ja) * 2013-03-25 2014-10-02 Jfe Steel Corp 振動篩装置の動作制御方法
CN107314878A (zh) * 2017-06-29 2017-11-03 太原理工大学 一种惯性弛张筛实验台
CN107812708A (zh) * 2017-10-16 2018-03-20 北京科技大学 调节自同步椭圆振动机的振动方向角的方法和自同步椭圆振动机

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244527A (ja) 1994-03-07 1995-09-19 Murata Mfg Co Ltd 作業機
US5804733A (en) 1995-03-31 1998-09-08 Shinko Electric Co., Ltd. Elliptical vibratory apparatus
JP4142793B2 (ja) 1999-03-01 2008-09-03 栄蔵 丸田 構造物の振動シミュレーションにおける加振機時間遅れの補正方法
JP2000288470A (ja) 1999-04-02 2000-10-17 Sanshin Kogyo Kk 振動篩
US20030201237A1 (en) 2002-04-26 2003-10-30 Grichar Charles Newton Shale shakers
US7331469B2 (en) * 2004-04-29 2008-02-19 Varco I/P, Inc. Vibratory separator with automatically adjustable beach
US20050242003A1 (en) 2004-04-29 2005-11-03 Eric Scott Automatic vibratory separator
US7614306B2 (en) 2007-06-26 2009-11-10 Metso Minerals Industries, Inc. Stress monitoring system for vibrator screen units
UA87369C2 (ru) 2007-10-19 2009-07-10 Віктор Йосипович Слепян Способ резонансного возбуждения просевающих сеток грохота и резонансный грохот для его осуществления
US20090248360A1 (en) 2008-04-01 2009-10-01 Mike Garrison Method and system for machine condition monitoring and reporting
CN201302674Y (zh) * 2008-11-11 2009-09-02 西安锦程振动科技有限责任公司 便携式振动筛测控仪
CN101662248B (zh) 2009-09-28 2012-07-25 东北大学 空间三向自同步振动筛及其结构参数的确定方法
CA2790957C (en) * 2010-03-08 2015-02-10 National Oilwell Varco, L.P. Apparatus and method for separating solids from a solids laden drilling fluid
CN102075139A (zh) 2011-03-03 2011-05-25 南京工程学院 高振强振动机械的智能变频超前控制系统
CN102494882B (zh) 2011-11-30 2013-11-06 中国神华能源股份有限公司 矿用振动筛弹簧在线监测与故障诊断装置及其方法
JP6221652B2 (ja) * 2013-11-08 2017-11-01 セイコーエプソン株式会社 寿命予測方法、寿命予測装置、寿命予測システム、寿命演算装置及び回転機械
CN103706562A (zh) 2013-12-20 2014-04-09 柳州译海网络科技有限公司 一种智能型振动筛
DE102014001515A1 (de) * 2014-02-07 2015-08-13 Schenck Process Gmbh Schwingmaschine
JP6052323B2 (ja) 2015-04-02 2016-12-27 株式会社明電舎 電動機制御装置の回転子位置検出器異常判定装置
JP6587487B2 (ja) 2015-09-30 2019-10-09 倉敷化工株式会社 アクティブ除振装置及びそのセンサの設置方法
CN105478351B (zh) 2016-01-14 2017-07-21 河海大学常州校区 一种振动筛处理量实时检测系统及方法
CN205463146U (zh) * 2016-02-02 2016-08-17 新乡市格林实业发展有限公司 一种用于沥青搅拌设备的高智能振动筛
CN107202631A (zh) 2017-07-27 2017-09-26 信利光电股份有限公司 一种测试振动马达性能的方法、系统及单片机
DE102017009373B3 (de) 2017-10-10 2019-05-16 Schenck Process Europe Gmbh Mobile Vorrichtung zum Erfassen der Zustands- und Betriebsparameter von Schwingmaschinen, damit ausgerüstete Schwingmaschine sowie Verfahren zum Erfassen der Betriebs- und Zustandsparameter von Schwingmaschinen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656276A (en) * 1979-10-11 1981-05-18 Nippon Kokan Kk Method of monitoring vibrating screen
JPH06229818A (ja) * 1993-02-05 1994-08-19 Meisei Electric Co Ltd 自動車の異常振動検出方法及び異常振動検出装置
JPH0839002A (ja) 1994-08-02 1996-02-13 Satake Eng Co Ltd ピュリファイア
JP2008161757A (ja) * 2006-12-27 2008-07-17 Jfe Steel Kk 振動篩の異常検知方法および装置
JP2014184412A (ja) * 2013-03-25 2014-10-02 Jfe Steel Corp 振動篩装置の動作制御方法
CN107314878A (zh) * 2017-06-29 2017-11-03 太原理工大学 一种惯性弛张筛实验台
CN107812708A (zh) * 2017-10-16 2018-03-20 北京科技大学 调节自同步椭圆振动机的振动方向角的方法和自同步椭圆振动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954471A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112620102A (zh) * 2020-11-27 2021-04-09 东北大学 双机双频自同步驱动双圆周运动轨迹振动筛参数确定方法
CN112620102B (zh) * 2020-11-27 2021-11-02 东北大学 双机双频自同步驱动双圆周运动轨迹振动筛及其参数确定方法

Also Published As

Publication number Publication date
KR20210144894A (ko) 2021-11-30
US20220163374A1 (en) 2022-05-26
US11988546B2 (en) 2024-05-21
EP3954471A4 (en) 2023-04-05
EP3954471A1 (en) 2022-02-16
CN113661016A (zh) 2021-11-16
CN113661016B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
AU2015215266B2 (en) Vibrating machine
WO2020209366A1 (ja) 篩い分け装置
CN107206399B (zh) 离心机和用于检测离心机不平衡的方法
JP6625137B2 (ja) 工作機械
JP4924022B2 (ja) 振動篩の監視方法および振動篩
AU2008268985B2 (en) Stress monitoring system for vibrator screen units
CN111366321A (zh) 一种振动筛故障实时检测系统及方法
AU2019233820B2 (en) Minerals processing
JPH0344520A (ja) ベルトコンベア用回転ローラの異常検知方法及びその振動センサ
CN211914565U (zh) 一种振动筛故障实时检测系统
JP7367330B2 (ja) 篩い分け装置の運転監視システム
JP7331427B2 (ja) 篩い分け装置
JP7263894B2 (ja) 篩い分け装置
US20220161297A1 (en) Operation monitoring system for sifting device
JP2020171897A (ja) 篩い分け装置のベアリング監視システム
JPH09138179A (ja) 計測保全機構付き釣合い試験機
CN107421621A (zh) 球磨机的一体化测振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036428

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020787160

Country of ref document: EP

Effective date: 20211112