WO2020208962A1 - 光学計測装置、光学計測方法、及び光学計測プログラム - Google Patents

光学計測装置、光学計測方法、及び光学計測プログラム Download PDF

Info

Publication number
WO2020208962A1
WO2020208962A1 PCT/JP2020/007670 JP2020007670W WO2020208962A1 WO 2020208962 A1 WO2020208962 A1 WO 2020208962A1 JP 2020007670 W JP2020007670 W JP 2020007670W WO 2020208962 A1 WO2020208962 A1 WO 2020208962A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
signal
receiving unit
amount distribution
Prior art date
Application number
PCT/JP2020/007670
Other languages
English (en)
French (fr)
Inventor
祐太 鈴木
潤 ▲高▼嶋
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020208962A1 publication Critical patent/WO2020208962A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Definitions

  • the present invention relates to an optical measuring device, an optical measuring method, and an optical measuring program.
  • a light source that generates irradiation light having a plurality of wavelength components and an axial chromatic aberration are generated with respect to the irradiation light from the light source, and at least a part thereof is arranged on an extension line of the optical axis.
  • a sensor head that receives the reflected light from the measurement object, a light receiving unit that separates the reflected light received by the sensor head into each wavelength component and receives the light of each wavelength component, a light source, a light receiving unit, and a sensor.
  • the distance from the sensor head to the object is measured based on the peak light receiving amount in the light receiving amount distribution signal (waveform) obtained by the light receiving unit.
  • the sensor head reaches the light receiving sensor (imaging element) of the light receiving unit.
  • a component of the device characteristic waveform caused by a device such as a spectroscope is included.
  • the half width becomes large, and the measurement accuracy may decrease.
  • the device characteristics vary from individual to optical measuring device.
  • an object of the present invention is to provide an optical measuring device, an optical measuring method, and an optical measuring program capable of suppressing a decrease in measurement accuracy.
  • the optical measuring device is an optical system that collects the reflected light reflected by an object, and a light receiving unit that is configured so that each of a plurality of pixels can detect the amount of received light.
  • a light receiving unit that obtains a light receiving amount distribution signal for each pixel for the emitted light, and a restoring unit that restores the light receiving amount distribution original signal from the light receiving amount distribution signal based on the light receiving unit characteristic signal measured using the light receiving unit. , Equipped with.
  • the light receiving amount distribution original signal is restored from the light receiving amount distribution signal based on the light receiving part characteristic signal measured by using the light receiving part.
  • the inventors of the present invention have found that the light-receiving amount distribution signal obtained by the light-receiving part includes a light-receiving part characteristic signal. Further, the inventors of the present invention have found that the light-receiving part characteristic signal can be removed from the light-receiving amount distribution signal obtained by the light-receiving part by measuring the light-receiving part characteristic signal in advance using the light-receiving part.
  • the optical system causes chromatic aberration along the optical axis direction with respect to light containing a plurality of wavelength components, irradiates the object with the light causing the chromatic aberration, and the light receiving portion is focused. It may be configured to obtain a light receiving amount distribution signal for each wavelength component of light.
  • the optical system causes chromatic aberration along the optical axis direction with respect to light containing a plurality of wavelength components, irradiates the object with the light causing the chromatic aberration, and the light receiving portion is focused. It is configured to obtain a received light distribution signal for each wavelength component of the emitted light. As a result, it is possible to easily realize a white confocal optical measuring device that suppresses a decrease in measurement accuracy.
  • the restoration unit performs a deconvolution calculation of the light receiving unit characteristic function representing the light receiving unit characteristic signal and the light receiving amount function representing the light receiving amount distribution signal, and obtains the light receiving amount original function representing the light receiving amount distribution original signal. You may.
  • the deconvolution calculation of the light receiving amount function and the light receiving part characteristic function is performed, and the light receiving amount original function is obtained.
  • the light receiving portion characteristic signal is combined with the light receiving amount distribution original signal. That is, the inventors of the present invention have found that the light receiving amount function is a combined product of the light receiving part characteristic function and the light receiving amount original function, that is, convolution. Therefore, the light receiving amount original function can be obtained by performing the deconvolution calculation of the light receiving amount function and the light receiving portion characteristic function, and the light receiving amount distribution original signal can be easily restored.
  • the light receiving unit characteristic function is selected based on the wavelength component of the peak light receiving amount in the light receiving amount distribution signal among a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit. It may be obtained by using the received light receiving part characteristic signal.
  • the light receiving unit characteristic function is based on the wavelength component of the peak light receiving amount in the light receiving amount distribution signal among a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit. It is obtained by using the selected light receiving part characteristic signal. Thereby, the light receiving part characteristic function can be easily obtained from the light receiving part characteristic signal of the wavelength corresponding to the wavelength component of the peak light receiving amount in the light receiving amount distribution signal.
  • the light receiving unit characteristic function may be obtained by using a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit.
  • the light receiving unit characteristic function is obtained by using a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit.
  • the light receiving unit characteristic function can be obtained by complementing the light receiving unit characteristic signals at the wavelengths before and after.
  • a storage unit that stores information regarding the light receiving unit characteristic signal may be further provided.
  • a measuring unit that measures the distance from the optical measuring device to the object based on the received light distribution original signal may be further provided.
  • the distance from the optical measuring device to the object is measured based on the received light amount distribution original signal.
  • the accuracy of the measured distance can be improved as compared with the distance based on the received light amount distribution signal.
  • the optical measurement method is an optical measurement method of an optical measurement device including an optical system and a light receiving unit, and collects reflected light reflected by an object by the optical system. Measurement is performed using the optical step and the light receiving step for obtaining a light receiving amount distribution signal for each pixel for the collected light by the light receiving unit configured so that each of a plurality of pixels can detect the light receiving amount. It includes a restoration step of restoring the light receiving amount distribution original signal from the light receiving amount distribution signal based on the light receiving unit characteristic signal.
  • the light receiving amount distribution original signal is restored from the light receiving amount distribution signal based on the light receiving part characteristic signal measured by using the light receiving part.
  • the inventors of the present invention have found that the light-receiving amount distribution signal obtained by the light-receiving part includes a light-receiving part characteristic signal. Further, the inventors of the present invention have found that the light-receiving part characteristic signal can be removed from the light-receiving amount distribution signal obtained by the light-receiving part by measuring the light-receiving part characteristic signal in advance using the light-receiving part.
  • the optical system causes chromatic aberration along the optical axis direction with respect to light containing a plurality of wavelength components, irradiates the object with the light causing the chromatic aberration, and the light receiving portion is focused. It may be configured to obtain a light receiving amount distribution signal for each wavelength component of light.
  • the optical system causes chromatic aberration along the optical axis direction with respect to light containing a plurality of wavelength components, irradiates the object with the light causing the chromatic aberration, and the light receiving portion is focused. It is configured to obtain a received light distribution signal for each wavelength component of the emitted light. As a result, it is possible to easily realize a white confocal optical measurement method that suppresses a decrease in measurement accuracy.
  • the restoration step performs a deconvolution calculation of the light receiving part characteristic function representing the light receiving part characteristic signal and the light receiving amount function representing the light receiving amount distribution signal, and obtains the light receiving amount original function representing the light receiving amount distribution original signal. May include that.
  • the deconvolution calculation of the light receiving amount function and the light receiving part characteristic function is performed, and the light receiving amount original function is obtained.
  • the light receiving portion characteristic signal is combined with the light receiving amount distribution original signal. That is, the inventors of the present invention have found that the light receiving amount function is a combined product of the light receiving part characteristic function and the light receiving amount original function, that is, convolution. Therefore, the light receiving amount original function can be obtained by performing the deconvolution calculation of the light receiving amount function and the light receiving portion characteristic function, and the light receiving amount distribution original signal can be easily restored.
  • the light receiving unit characteristic function is selected based on the wavelength component of the peak light receiving amount in the light receiving amount distribution signal among a plurality of light receiving unit characteristic signals obtained by incident light of different wavelengths on the light receiving unit. It may be obtained by using the light receiving part characteristic signal.
  • the light receiving unit characteristic function is based on the wavelength component of the peak light receiving amount in the light receiving amount distribution signal among a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit. It is obtained by using the selected light receiving part characteristic signal. Thereby, the light receiving part characteristic function can be easily obtained from the light receiving part characteristic signal of the wavelength corresponding to the wavelength component of the peak light receiving amount in the light receiving amount distribution signal.
  • the light receiving unit characteristic function may be obtained by using a plurality of light receiving unit characteristic signals obtained by incident light of different wavelengths on the light receiving unit.
  • the light receiving unit characteristic function is obtained by using a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit.
  • the light receiving unit characteristic function can be obtained by complementing the light receiving unit characteristic signals at the wavelengths before and after.
  • a storage step of storing information regarding the light receiving unit characteristic signal in the storage unit may be further included.
  • a measurement step of measuring the distance from the optical measuring device to the object based on the received light distribution original signal may be further included.
  • the distance from the optical measuring device to the object is measured based on the received light amount distribution original signal.
  • the accuracy of the measured distance can be improved as compared with the distance based on the received light amount distribution signal.
  • the optical measurement program is an optical measurement program of an optical measurement device including an optical system and a light receiving unit, which is executed by a computer, and the reflected light reflected by an object is used as an optical system.
  • the light receiving amount distribution original signal is restored from the light receiving amount distribution signal based on the light receiving part characteristic signal measured by using the light receiving part.
  • the inventors of the present invention have found that the light-receiving amount distribution signal obtained by the light-receiving part includes a light-receiving part characteristic signal. Further, the inventors of the present invention have found that the light-receiving part characteristic signal can be removed from the light-receiving amount distribution signal obtained by the light-receiving part by measuring the light-receiving part characteristic signal in advance using the light-receiving part.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of an optical measuring device according to an embodiment.
  • FIG. 2 is a waveform diagram illustrating a light receiving amount distribution signal obtained by the light receiving unit shown in FIG.
  • FIG. 3 is a waveform diagram illustrating a light receiving amount distribution signal obtained by the light receiving unit.
  • FIG. 4 is a waveform diagram illustrating a light receiving portion characteristic signal S included in the light receiving amount distribution signal shown in FIG.
  • FIG. 5 is a waveform diagram illustrating a light reception amount distribution original signal of the light collected by the sensor head.
  • FIG. 6 is a conceptual diagram for explaining an example of the deconvolution method.
  • FIG. 7 is a conceptual diagram for explaining an example of a method of creating a light receiving unit characteristic matrix.
  • FIG. 8 is a conceptual diagram for explaining another example of the method of creating the light receiving unit characteristic matrix.
  • FIG. 9 is a flowchart illustrating a schematic operation of measuring the distance to an object in the optical measuring device according to the embodiment.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of an optical measuring device 100 according to an embodiment.
  • the optical measuring device 100 includes a light source 10, a light guide unit 20, a sensor head 30, a light receiving unit 40, a control unit 50, a storage unit 60, an operation unit 70, and a display unit. 80 and.
  • the light source 10, a part of the light guide unit 20, the light receiving unit 40, the control unit 50, the storage unit 60, the operation unit 70, and the display unit 80 are housed in the controller 90.
  • each part of the optical measuring device 100 is not limited to the configuration in which the sensor head 30 and the controller 90 are separately housed.
  • each part of the optical measuring device 100 may be housed in three or more parts.
  • the optical measuring device 100 measures the distance from the device, specifically, the sensor head 30 to the object TA in a predetermined measurement cycle. Further, the optical measuring device 100 may measure a change in distance with respect to a certain position, that is, a displacement in a predetermined measurement cycle.
  • the light source 10 is configured to emit light containing a plurality of wavelength components.
  • the light source 10 operates based on a control signal input from the control unit 50, and changes the amount of light based on the control signal, for example.
  • the light source 10 preferably emits light containing a plurality of wavelength components.
  • the light source 10 is configured to include, for example, a white LED (Light Emitting Diode) to generate white light.
  • the light emitted by the light source 10 may be any light that includes a wavelength range that covers the distance range required for the optical measuring device 100, and is not limited to white light.
  • the light guide unit 20 is for propagating light.
  • the light guide unit 20 includes, for example, a first cable 21, a second cable 22, a third cable 23, and an optical coupler 24.
  • One end (left end in FIG. 1) of the first cable 21 is optically connected to the light source 10.
  • One end (the right end in FIG. 1) of the second cable 22 is optically connected to the sensor head 30.
  • One end (left end in FIG. 1) of the third cable 23 is optically connected to the light receiving portion 40.
  • the other end of the first cable 21 (right end in FIG. 1), the other end of the third cable 23 (right end in FIG. 1), and the other end of the second cable 22 (left end in FIG. 1) are connected via an optical coupler 24. Is optically coupled.
  • the optical coupler 24 transmits the light incident from the first cable 21 to the second cable 22, and also divides the light incident from the second cable 22 and transmits the light incident from the second cable 22 to the first cable 21 and the third cable 23, respectively. ..
  • the light transmitted from the second cable 22 to the first cable 21 by the optical coupler 24 is terminated by the light source 10.
  • the optical coupler 24 is configured to include, for example, a fusion-stretching type (melt-stretching type) optical coupler.
  • the first cable 21, the second cable 22, and the third cable 23 are each composed of, for example, an optical fiber.
  • Each optical fiber may be a single core having a single core or a multi-core having a plurality of cores.
  • the sensor head 30 is detachably configured to be attached to and detached from the controller 90 via the second cable 22.
  • the sensor head 30 includes, for example, a collimator lens 31, a diffraction lens 32, and an objective lens 33.
  • the collimator lens 31, the diffractive lens 32, and the objective lens 33 are configured to irradiate the object TA with light. Further, the collimator lens 31, the diffractive lens 32, and the objective lens 33 are configured to collect the reflected light reflected by the object TA.
  • the sensor head 30 according to the present embodiment corresponds to an example of the "optical system" of the present invention.
  • the collimator lens 31 is configured to convert the light incident from the second cable into parallel light.
  • the collimator lens 31 is configured to include a single or a plurality of lenses.
  • the collimator lens 31 is also for condensing the light incident on the sensor head 30.
  • the diffractive lens 32 is configured to cause chromatic aberration along the optical axis direction in parallel light.
  • the objective lens 33 is configured to collect and irradiate the object TA with the light that causes chromatic aberration. Since axial chromatic aberration is generated by the diffractive lens 32, the light emitted from the objective lens 33 has a focal point at a different distance (position) for each wavelength.
  • light L1 having a first wavelength having a relatively long focal length and light L2 having a second wavelength having a relatively short focal length are shown.
  • the light L1 of the first wavelength is focused (focused) on the surface of the object TA, while the light L2 of the second wavelength is focused (focused) in front of the object TA.
  • the light reflected on the surface of the object TA is collected by the collimator lens 31 through the objective lens 33 and the diffractive lens 32, and is incident on the second cable 22.
  • the light L1 of the first wavelength of the reflected light is focused on the end face of the second cable 22 which is confocal, and most of it is incident on the second cable 22.
  • other wavelengths are out of focus at the end face of the second cable 22 and do not enter the second cable 22.
  • a part of the reflected light incident on the second cable 22 is transmitted to the third cable 23 by the optical coupler 24 and emitted to the light receiving unit 40.
  • the second cable 22 is an optical fiber
  • its core corresponds to a pinhole. Therefore, by reducing the core diameter of the optical fiber, the pinhole that collects the reflected light becomes small, and light having a wavelength focused on the surface of the object TA can be stably detected.
  • the light receiving unit 40 is configured to obtain a light receiving amount distribution signal, which will be described later, with respect to the light collected by the sensor head 30.
  • the light collected by the sensor head 30 is, for example, the reflected light reflected by the object TA.
  • the light receiving unit 40 includes, for example, a collimator lens 41, a spectroscope (diffraction grating) 42, an adjusting lens 43, a light receiving sensor 44, and a processing circuit 45.
  • the collimator lens 41 is configured to convert the light emitted from the third cable 23 into parallel light.
  • the spectroscope 42 is configured to disperse (separate) this parallel light for each wavelength component.
  • the adjusting lens 43 is configured to adjust the spot diameter of the dispersed wavelength of light.
  • the light receiving sensor 44 is configured to be able to detect the amount of light received for each wavelength component of the dispersed light.
  • the light receiving sensor 44 includes a plurality of light receiving elements.
  • the light receiving elements are arranged one-dimensionally corresponding to the spectral direction of the spectroscope 42. As a result, each light receiving element is arranged corresponding to the light of each wavelength component dispersed, and the light receiving sensor 44 can detect the amount of light received for each wavelength component.
  • One light receiving element of the light receiving sensor 44 corresponds to one pixel. Therefore, it can be said that the light receiving sensor 44 is configured so that each of the plurality of pixels can detect the light receiving amount.
  • the light receiving elements are not limited to the case where they are arranged in one dimension, and may be arranged in two dimensions. It is preferable that the light receiving elements are arranged two-dimensionally on the detection surface including the spectral direction of the spectroscope 42, for example.
  • Each light receiving element accumulates electric charges according to the amount of light received during a predetermined exposure time based on the control signal input from the processing circuit 45. Then, each light receiving element outputs an electric signal corresponding to the accumulated electric charge during the non-exposure time, that is, during the non-exposure time, based on the control signal input from the processing circuit 45. As a result, the amount of light received during the exposure time is converted into an electric signal.
  • the processing circuit 45 is configured to control light reception by the light receiving sensor 44. Further, the processing circuit 45 is configured to perform signal processing for outputting the electric signal input from each light receiving element of the light receiving sensor 44 to the control unit 50.
  • the processing circuit 45 includes, for example, an amplifier circuit and an A / D (Analog-to-Digital) conversion circuit.
  • the amplifier circuit amplifies the electric signal input from each light receiving element with a predetermined gain. Then, the A / D conversion circuit samples, quantizes, and encodes the electric signal of each amplified light receiving element, and converts it into a digital signal.
  • the light receiving amount detected by each light receiving element is converted into a digital value, and a light receiving amount distribution signal for each light receiving element, that is, for each pixel (hereinafter, simply referred to as “light receiving amount distribution signal”) is obtained.
  • the processing circuit 45 outputs this received light amount distribution signal to the control unit 50.
  • the predetermined exposure time of each light receiving element, the predetermined gain of the amplifier circuit, and the like can be changed based on the control signal.
  • FIG. 2 is a waveform diagram illustrating a light receiving amount distribution signal obtained by the light receiving unit 40 shown in FIG.
  • the horizontal axis is a pixel (each light receiving element of the light receiving sensor 44), and the vertical axis is the light receiving amount.
  • the received light distribution signal usually has a Gaussian distribution (also referred to as a normal distribution). Therefore, the received light amount distribution signal has a waveform in which the received light amount of a certain pixel peaks.
  • the pixels of the peak light receiving amount in the light receiving amount distribution signal obtained from the light receiving sensor 44 are irradiated from the sensor head 30 and the object TA It is a pixel corresponding to the wavelength of light focused on. Then, the wavelength corresponds to the distance from the sensor head 30 to the object TA.
  • the light L1 having the first wavelength focused on the surface of the object TA appears as the wavelength of the peak light receiving amount of the light receiving amount distribution signal.
  • the peak light reception amount of the light reception amount distribution signal is 100%
  • the intermediate point at the intersection of the 50% light reception amount line and the light reception amount distribution signal is obtained, and the pixel at the intermediate point is used. Obtain the corresponding wavelength ⁇ .
  • the relationship (correspondence) between the wavelength ⁇ and the distance is stored in advance in the memory or the like of the control unit 50.
  • the measuring unit 52 measures the distance from the sensor head 30 to the object TA based on the wavelength ⁇ of the received amount of the peak in the received amount distribution signal of the reflected light.
  • the influence of the wavelength component other than the peak on the distance can be suppressed, and the distance can be measured based on the wavelength component of the peak focused on the object TA. it can. Therefore, the distance from the optical measuring device 100 to the object TA can be measured stably and with high accuracy.
  • the waveform of the received light distribution signal has (can be regarded as) a Gaussian distribution, it can be expressed (approximate) by a Gaussian function.
  • the half width is known as an index showing the degree of spread of the Gaussian distribution.
  • the full width at half maximum is the length (width) of two intersections of the line of the light receiving amount of 50% of the peak (maximum value) of the light receiving amount and the light receiving amount distribution signal, that is, the full width at half maximum. is there.
  • the full width at half maximum shall mean the full width at half maximum, unless otherwise specified.
  • the received light amount distribution signal preferably has a pulsed waveform in which the pixel corresponding to the wavelength of the light focused on the object TA peaks.
  • the full width at half maximum of the received light distribution signal is ideally a value of approximately zero. It can be said that the measurement accuracy of the optical measuring device 100 is high, for example, if the half width of the received light distribution signal is a small value of substantially zero, it can be correctly measured as a different measured value even if there is a slight difference in distance. Therefore, the full width at half maximum of the received light amount distribution signal serves as an index of measurement accuracy and measurement performance in the optical measuring device 100.
  • the waveform of the received light distribution signal does not become a pulse due to various factors such as the optical performance of the optical system of the sensor head 30 and the optical performance of the spectroscope. Therefore, as shown in FIG. 2, the full width at half maximum Whm of the received light amount distribution signal becomes large, and the distribution is widened at present.
  • FIG. 3 is a waveform diagram illustrating the light receiving amount distribution signal Srd obtained by the light receiving unit 40.
  • FIG. 4 is a waveform diagram illustrating the light receiving portion characteristic signal Src included in the light receiving amount distribution signal shown in FIG.
  • FIG. 5 is a waveform diagram illustrating the light reception amount distribution original signal Srp of the light collected by the sensor head 30.
  • the horizontal axis represents pixels (each light receiving element of the light receiving sensor 44), and the vertical axis represents the amount of light received.
  • FIGS. 3 to 5 show an example in which the front surface and the back surface of a light-transmitting object TA such as glass are detected and the thickness of the object TA is measured.
  • the light receiving amount distribution signal Srd obtained by the light receiving unit 40 is focused on a pixel (wavelength) focused on the surface of the transparent object TA and on the back surface of the object TA.
  • the peak of the amount of received light appears at two points with the pixel (wavelength). In this case, an intermediate point is obtained for each peak light receiving amount, and the difference in distance from the wavelength corresponding to each peak light receiving amount, that is, the thickness of the object TA is measured.
  • the inventors of the present invention have found that the light receiving amount distribution signal Srd obtained by the light receiving unit 40 includes the light receiving unit characteristic signal Src.
  • the light receiving unit characteristic signal Src is a process in which the light collected by the light receiving unit 40, specifically, the sensor head 30, is emitted from the third cable 23 and is incident on each light receiving element of the light receiving sensor 44.
  • the light receiving amount distribution original signal Srp is a light receiving amount distribution signal of the light collected by the sensor head 30 before being affected by the characteristics of the light receiving unit 40.
  • the light receiving amount distribution signal Srd shown in FIG. 3 obtained by the light receiving unit 40 includes the light receiving unit characteristic signal Src shown in FIG. 4 before the light reaches the light receiving sensor 44. It has been synthesized.
  • the light receiving amount distribution original signal Srp since the light receiving amount distribution original signal Srp does not include the light receiving portion characteristic signal Src shown in FIG. 4, it is possible to obtain the above-mentioned intermediate point for each peak light receiving amount. .. Therefore, the thickness of the object TA can be measured from the received light amount distribution original signal Srp.
  • control unit 50 is configured to control the operation of each unit of the optical measuring device 100. Further, the control unit 50 is configured to realize each function described later by executing a program stored in the storage unit 60 or the like. It is configured to realize each function described later by executing a program or the like.
  • the control unit 50 includes, for example, a microprocessor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), a ROM (Read Memory) Memory Memory, and a ROM (Read Memory) Memory. It is configured to include a memory such as a memory.
  • control unit 50 includes, for example, a restoration unit 51 and a measurement unit 52 as its functional configuration.
  • the restoration unit 51 restores the light reception amount distribution original signal Srp shown in FIG. 5 from the light reception amount distribution signal Srd shown in FIG. 3 based on the light reception unit characteristic signal Src shown in FIG. 4 measured by the light receiving unit 40. It is configured to do.
  • the light receiving amount distribution signal Srd includes the light receiving portion characteristic signal Src.
  • the inventors of the invention can remove the light receiving unit characteristic signal Src from the light receiving amount distribution signal Srd obtained by the light receiving unit 40 by measuring the light receiving unit characteristic signal Src in advance using the light receiving unit 40. I found.
  • the restoration unit 51 performs a deconvolution calculation of the light receiving unit characteristic function representing the light receiving unit characteristic signal Src and the function representing the light receiving amount distribution signal Srd with the light receiving amount function (hereinafter, also simply referred to as "deconvolution"). Is performed, and the light receiving amount original function representing the light receiving amount distribution original signal Srp is obtained.
  • the light receiving portion characteristic signal Src shown in FIG. 4 is synthesized with the light receiving amount distribution original signal Srp shown in FIG. That is, the function representing the light receiving amount distribution signal Srd is the light receiving amount function h (x, d), the function representing the light receiving amount distribution original signal Srp is the light receiving amount original function g (x, d), and the function representing the light receiving part characteristic signal Src.
  • the inventors of the present invention have found that the light receiving amount function h (x, d) can be expressed by the following equation (1), where is the light receiving unit characteristic function f (x). Note that x is an individual identifier, and d is the distance from the sensor head 30 to the object TA.
  • h (x, d) f (x) * g (x, d) ... (1)
  • Equation (1) means that the light receiving amount function h (x, d) is a combined product of the light receiving part characteristic function f (x) and the light receiving amount original function g (x, d), that is, a convolution. There is. Therefore, the restoration unit 51 can obtain the light reception amount original function g (x, d) by performing the deconvolution calculation of the light reception amount function h (x, d) and the light reception unit characteristic function f (x). , The light receiving amount distribution original signal Srp can be easily restored.
  • FIG. 6 is a conceptual diagram for explaining an example of the deconvolution method.
  • the light receiving amount original function g (x, d) is obtained by using the Jacobi method or the Gauss-Seidel method as an example of the deconvolution method.
  • the Jacobi method and the Gauss-Seidel method it is common to use a matrix. Therefore, when deconvolution is performed using the Jacobi method or the Gauss-Seidel method, the light receiving amount matrix Y whose component is the value of the dependent variable of the light receiving amount function h (x, d) and the light receiving part characteristic function f.
  • the light receiving part characteristic matrix ⁇ having the value of the dependent variable of (x) as a component is determined in advance.
  • the light receiving unit characteristic matrix ⁇ is a diagonal matrix in which the peak light receiving amount of the light receiving amount distribution original signal Srp is arranged in the diagonal component. The details of the light receiving unit characteristic matrix ⁇ will be described later.
  • Equation (1) can be paraphrased into the following equation (2).
  • Y (x, d) ⁇ (x) * X (x, d) ...
  • the light receiving amount matrix Y is a matrix of N rows (N is an integer of 2 or more) and 1 column
  • the light receiving part characteristic matrix ⁇ is a matrix of N rows and M columns (M is an integer of 2 or more).
  • the light receiving amount original matrix X to be obtained is a matrix of N rows and 1 column.
  • FIG. 7 is a conceptual diagram for explaining an example of a method of creating the light receiving unit characteristic matrix ⁇ .
  • FIG. 8 is a conceptual diagram for explaining another example of the method of creating the light receiving unit characteristic matrix ⁇ .
  • a plurality of light receiving unit characteristic signals Src are acquired in advance in order to create the light receiving unit characteristic matrix ⁇ .
  • the plurality of light receiving unit characteristic signals Src are light receiving amount distribution signals obtained by injecting light having different wavelengths on the light receiving unit 40.
  • the light receiving unit characteristic signal Src of the light receiving unit 40 is dominated by the characteristics of the spectroscope 42. Therefore, before the optical measuring device 100 is shipped, in the inspection device of the spectroscope 42, light of a single wavelength is incident on the spectroscope 42, and the spectroscopic light is received by the light receiving sensor to obtain a light receiving amount distribution signal. ..
  • a plurality of light receiving unit characteristic signals Src can be acquired.
  • the pixel corresponding to the peak light receiving amount that is, the wavelength ⁇ is obtained.
  • one of the plurality of light receiving unit characteristic signals Src is selected based on this wavelength ⁇ . For example, among the plurality of light receiving unit characteristic signals Src, the light receiving unit characteristic signal Src whose wavelength corresponding to the peak light receiving amount is closest to the wavelength ⁇ obtained from the light receiving amount distribution signal Srd is selected. Then, by arranging the peak light receiving amount of the selected light receiving part characteristic signal Src on the diagonal component, the light receiving part characteristic matrix ⁇ can be created.
  • the light receiving unit characteristic matrix ⁇ having the value of the dependent variable of the light receiving unit characteristic function f (x) as a component is a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit 40.
  • the light receiving unit characteristic signal Src selected based on the wavelength component of the peak light receiving amount in the light receiving amount distribution signal Srd is used to obtain the Src.
  • the light receiving part characteristic function f (x) can be easily obtained from the light receiving part characteristic signal Src of the wavelength ⁇ corresponding to the wavelength component of the peak light receiving amount in the light receiving amount distribution signal Srd.
  • each of the peak light receiving amounts of the plurality of light receiving unit characteristic signals Src is arranged in one of the diagonal components of the light receiving unit characteristic matrix ⁇ .
  • it is necessary to complement the wavelengths between the wavelengths used when obtaining the plurality of light receiving part characteristic signals Src from the light receiving part characteristic signals Src at the preceding and following wavelengths and arrange them diagonally. is there.
  • the light receiving unit characteristic matrix ⁇ having the value of the dependent variable of the light receiving unit characteristic function f (x) as a component is a plurality of light receiving unit characteristic signals measured by incident light of different wavelengths on the light receiving unit 40. It may be obtained by using Src. As a result, even if there is no light receiving part characteristic signal Src corresponding to the wavelength component of the peak light receiving amount in the light receiving amount distribution signal Srd, the light receiving part characteristic function f (x) is complemented from the light receiving part characteristic signals Src at the preceding and following wavelengths. You can ask.
  • the Jacobi method or the Gauss-Seidel method is used as the deconvolution method, but the method is not limited to this.
  • the present invention can be applied as a means of deconvolution if it is a method of the technical idea of restoring the original signal, that is, the light receiving amount distribution original signal Srp by using the filter component, that is, the light receiving portion characteristic signal Src. ..
  • a method of deconvolution using a Fourier transform or a neural network can be applied.
  • the light receiving amount original signal may be restored by obtaining the inverse matrix of the light receiving part characteristic matrix in advance and obtaining the product with the light receiving amount distribution signal. As a result, it is possible to speed up the calculation related to the restoration of the light receiving amount distribution original signal.
  • X ⁇ -1 * Y ... (3)
  • the measuring unit 52 is configured to measure the distance from the optical measuring device 100, more accurately, the sensor head 30, to the object TA based on the received light amount distribution original signal Srp. ing. Thereby, the accuracy of the measured distance can be improved as compared with the distance based on the received light amount distribution signal Srd.
  • Each function of the control unit 50 can be realized by a program executed by a computer (microprocessor). Therefore, each function included in the control unit 50 can be realized by hardware, software, or a combination of hardware and software, and is not limited to any case.
  • control unit 50 when each function of the control unit 50 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such a case.
  • the storage unit 60 is configured to store programs, data, and the like.
  • the storage unit 60 includes, for example, a hard disk drive, a solid state drive, and the like.
  • the storage unit 60 stores in advance various programs executed by the control unit 50, data necessary for executing the programs, and the like.
  • the storage unit 60 stores the light receiving unit characteristic function f (x) as information regarding the light receiving unit characteristic signal Src.
  • the storage unit 60 may store the inverse function of the light receiving unit characteristic function f (x) instead of the light receiving unit characteristic function f (x).
  • the light receiving unit characteristic matrix created in the example shown in FIG. The inverse matrix of ⁇ or the light receiving part characteristic matrix ⁇ may be stored.
  • the operation unit 70 is for inputting information by the operation of the user (user).
  • the operation unit 70 includes, for example, buttons, switches, and the like.
  • a signal corresponding to the operation is input to the control unit 50.
  • the control unit 50 generates data corresponding to the signal, so that information can be input to the optical measuring device 100.
  • the display unit 80 is for outputting information. Specifically, the display unit 80 is configured to display, for example, the measured distance, setting contents, operating state, communication state, and the like.
  • the display unit 80 includes, for example, a multi-digit 7- or 11-segment display and an indicator lamp that emits light in a plurality of colors.
  • FIG. 9 is a flowchart illustrating a schematic operation of measuring the distance to the object TA in the optical measuring device 100 according to the embodiment.
  • the control unit 50 of the optical measuring device 100 executes the distance measurement process S200 shown in FIG. 9 when the optical measuring device 100 is activated by, for example, an operation of a user (user).
  • the storage unit 60 uses the light receiving unit characteristic matrix ⁇ and the light receiving unit characteristic matrix described in the example shown in FIG. 8 as information of the light receiving unit characteristic function f (x). It is assumed that the information corresponding to the inverse matrix or inverse function of ⁇ is stored. Further, by recording the characteristics of each sensor controller, the variation of the controller can be removed and the original signal of the sensor head can be restored.
  • the control unit 50 outputs a control signal at a predetermined cycle, and emits light from the light source 10 to the object TA (S201).
  • control unit 50 obtains a light reception amount distribution signal Srd of the light reflected by the object TA and collected by the sensor head 30 from the light receiving unit 40 (S202).
  • the restoration unit 51 uses the light receiving amount distribution signal Srd obtained in step S202 to derive a light receiving amount function h (x, d) representing the light receiving amount distribution signal Srd (S203). Specifically, the restoration unit 51 determines each component of the light receiving amount matrix Y from a part or all of the values (light receiving amount) of each pixel in the light receiving amount distribution signal Srd, and obtains the light receiving amount matrix Y.
  • the restoration unit 51 reads out the light receiving unit characteristic matrix ⁇ shown in FIG. 8 from the storage unit 60 as information of the light receiving unit characteristic function f (x) (S204).
  • the restoration unit 51 performs a deconvolution operation using the light receiving amount function h (x, d) derived in step S203 and the information of the light receiving unit characteristic function f (x) read out in step S204 (S205). ). As a result, the light receiving amount original function g (x, d) is restored.
  • the restoration unit 51 calculates the light reception amount original matrix X by solving the multidimensional simultaneous equations using the light reception amount matrix Y and the light reception unit characteristic matrix ⁇ .
  • the measuring unit 52 measures the distance from the optical measuring device 100 to the object TA based on the light receiving amount original function g (x, d) restored as a result of step S205 (S206).
  • the measuring unit 52 may display the distance measured in step S206 on the display unit 80.
  • control unit 50 returns to step S201 and repeats the processes from step S201 to step S206 until, for example, the optical measuring device 100 is stopped.
  • the optical measuring device 100 measures the distance from the sensor head 30 to the object TA, but the present invention is not limited to this.
  • the measured value measured by the optical measuring device may, for example, measure a change in distance with respect to a certain position, that is, a displacement.
  • the optical measuring device 100 measures the distance by the white confocal method
  • the optical measuring device may measure the distance by, for example, a triangular ranging method.
  • the triangular distance measuring method does not use the coaxial optical system as shown in FIG. 1, but comprises the light emitted from the light source to the object and the light reflected by the object by another optical system.
  • the object is irradiated with the laser light emitted from the light source, the laser light reflected by the object is measured by the light receiving portion, and the position and orientation relationship between the optical axis of the laser light and the light receiving portion and the laser light measured by the light receiving portion It is configured to measure the distance from the optical measuring device to the object based on the incident angle of.
  • the incident angle of the laser beam is determined based on the light receiving portion distribution signal measured by using the light receiving portion.
  • FIG. 3 is based on the light receiving unit characteristic signal Src shown in FIG. 4 measured by using the light receiving unit 40.
  • the light receiving amount distribution original signal Srp shown in FIG. 5 is restored from the light receiving amount distribution signal Srd shown in FIG.
  • the inventors of the present invention have found that the light receiving amount distribution signal Srd obtained by the light receiving unit 40 includes the light receiving unit characteristic signal Src.
  • the inventors of the present invention can remove the light receiving unit characteristic signal Src from the light receiving amount distribution signal Srd obtained by the light receiving unit 40 by measuring the light receiving unit characteristic signal Src in advance using the light receiving unit 40. I found. Therefore, based on the light receiving unit characteristic signal Src measured using the light receiving unit 40, it is possible to restore the light receiving amount distribution original signal Srp from which the light receiving unit characteristic signal Src has been removed. Therefore, since the half width of the restored light reception amount distribution original signal Srp is smaller than that of the light reception amount distribution signal Srd, it is possible to suppress a decrease in measurement accuracy based on this light reception amount distribution original signal Srp. it can.
  • a restoration unit (51) that restores the light reception amount distribution original signal (Srp) from the light reception amount distribution signal (Srd) based on the light reception unit characteristic signal (Src) measured by the light receiving unit (40) is provided.
  • a restoration step of restoring the light receiving amount distribution original signal (Srp) from the light receiving amount distribution signal (Srd) based on the light receiving part characteristic signal (Src) measured by using the light receiving unit is included.
  • Optical measurement method. 15 An optical measurement program of an optical measuring device (100) including a sensor head (30) and a light receiving unit (40), which is executed by a computer.
  • a restoration step of restoring the light receiving amount distribution original signal (Srp) from the light receiving amount distribution signal (Srd) based on the light receiving part characteristic signal (Src) measured by using the light receiving unit is included.
  • Optical measurement program is included.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

計測精度の低下を抑制することができる。光学計測装置100は、対象物TAによって反射された反射光を集光するセンサヘッド30と、複数の画素のそれぞれが受光量を検出可能に構成される受光部40であって、集光された光について画素毎の受光量分布信号Srdを得る受光部40と、受光部40を用いて測定される受光部特性信号Srcに基づいて、受光量分布信号Srdから受光量分布原信号Srpを復元する復元部51と、を備える。

Description

光学計測装置、光学計測方法、及び光学計測プログラム
 本発明は、光学計測装置、光学計測方法、及び光学計測プログラムに関する。
 従来、光学計測装置として、複数の波長成分を有する照射光を発生する光源と、光源からの照射光に対して軸上色収差を生じさせるとともに、光軸の延長線上に少なくともその一部が配置される計測対象物からの反射光を受光するセンサヘッドと、センサヘッドで受光される反射光を各波長成分に分離して、各波長成分の光を受光する受光部と、光源と受光部とセンサヘッドとを光学的に接続する導光部と、受光部における各波長成分の受光量に基づいて、光学系から計測対象物までの距離を算出する処理部と、を備えるものが知られている(特許文献1参照)。この光学計測装置は、受光波形における複数の波長成分の各々の受光量を、その受光量の基準値と比較して、受光量の基準値に対する変化量が複数の波長成分のいずれにおいても予め定められた閾値以上である場合には、受光波形の異常を検知する。
特開2017-173159号公報
 特許文献1に記載された光学計測装置では、受光部で得られた受光量分布信号(波形)におけるピーク受光量に基づいて、センサヘッドから対象物までの距離を計測している。
 しかしながら、センサヘッドで受光された光が受光部の受光センサ(撮像素子)に到達するまでの間に、分光器等のデバイスに起因するデバイス特性波形の成分が含まれてしまう。その結果、デバイス特性波形の成分が含まれる受光部の受光量分布波形において、例えば半値幅が大きくなってしまい、計測精度が低下することがあった。また、デバイス特性は光学計測装置毎で個体差がある。
 そこで、本発明は、計測精度の低下を抑制することのできる光学計測装置、光学計測方法、及び光学計測プログラムを提供することを目的とする。
 本発明の一態様に係る光学計測装置は、対象物によって反射された反射光を集光する光学系と、複数の画素のそれぞれが受光量を検出可能に構成される受光部であって、集光された光について画素毎の受光量分布信号を得る受光部と、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号を復元する復元部と、を備える。
 この態様によれば、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号が復元される。ここで、本発明の発明者達は、受光部によって得られる受光量分布信号に、受光部特性信号が含まれることを見出した。また、本発明の発明者達は、あらかじめ受光部を用いて受光部特性信号を測定しておくことで、受光部によって得られる受光量分布信号から受光部特性信号を除去できることを見出した。よって、受光部を用いて測定される受光部特性信号に基づくことにより、受光部特性信号が除去された受光量分布原信号を復元することが可能となる。従って、受光量分布信号と比較して、復元された受光量分布原信号の半値幅は小さくなるので、この受光量分布原信号に基づくことで、計測精度の低下を抑制することができる。
 前述した態様において、光学系は、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を対象物に照射し、受光部は、集光された光について波長成分毎の受光量分布信号を得るように構成されてもよい。
 この態様によれば、光学系が、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を対象物に照射し、受光部が、集光された光について波長成分毎の受光量分布信号を得るように構成される。これにより、計測精度の低下を抑制する白色共焦点方式の光学計測装置を容易に実現することができる。
 前述した態様において、復元部は、受光部特性信号を表す受光部特性関数と受光量分布信号を表す受光量関数との逆畳み込み演算を行い、受光量分布原信号を表す受光量原関数を求めてもよい。
 この態様によれば、受光量関数と受光部特性関数との逆畳み込み演算を行い、受光量原関数が求められる。前述したように、受光量分布信号は、受光量分布原信号に、受光部特性信号が合成されている。すなわち、本発明の発明者達は、受光量関数が受光部特性関数と受光量原関数との合成積、つまり、畳み込みであることを見出した。よって、受光量関数と受光部特性関数との逆畳み込み演算を行うことにより、受光量原関数を求めることができ、受光量分布原信号を容易に復元することができる。
 前述した態様において、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号のうち、受光量分布信号におけるピーク受光量の波長成分に基づいて選択された受光部特性信号を用い、求められてもよい。
 この態様によれば、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号のうち、受光量分布信号におけるピーク受光量の波長成分に基づいて選択された受光部特性信号を用い、求められる。これにより、受光量分布信号におけるピーク受光量の波長成分に対応する波長の受光部特性信号から、受光部特性関数を簡易に求めることができる。
 前述した態様において、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号を用い、求められてもよい。
 この態様によれば、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号を用い、求められる。これにより、受光量分布信号におけるピーク受光量の波長成分に対応する受光部特性信号がない場合でも、前後の波長における受光部特性信号から補完して受光部特性関数を求めることができる。
 前述した態様において、受光部特性信号に関する情報を記憶する記憶部をさらに備えてもよい。
 この態様によれば、受光部特性信号に関する情報が記憶される。これにより、受光量分布原信号を復元するための応答時間を短くすることができる。
 前述した態様において、受光量分布原信号に基づいて、光学計測装置から対象物までの距離を計測する計測部をさらに備えてもよい。
 この態様によれば、受光量分布原信号に基づいて、光学計測装置から対象物までの距離が計測される。これにより、受光量分布信号に基づく距離と比較して、計測される距離の精度を向上させることができる。
 また、本発明の他の態様に係る光学計測方法は、光学系と受光部とを備える光学計測装置の光学計測方法であって、対象物によって反射された反射光を光学系によって集光する集光ステップと、複数の画素のそれぞれが受光量を検出可能に構成される受光部によって、集光された光について画素毎の受光量分布信号を得る受光ステップと、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号を復元する復元ステップと、を含む。
 この態様によれば、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号が復元される。ここで、本発明の発明者達は、受光部によって得られる受光量分布信号に、受光部特性信号が含まれることを見出した。また、本発明の発明者達は、あらかじめ受光部を用いて受光部特性信号を測定しておくことで、受光部によって得られる受光量分布信号から受光部特性信号を除去できることを見出した。よって、受光部を用いて測定される受光部特性信号に基づくことにより、受光部特性信号が除去された受光量分布原信号を復元することが可能となる。従って、受光量分布信号と比較して、復元された受光量分布原信号の半値幅は小さくなるので、この受光量分布原信号に基づくことで、計測精度の低下を抑制することができる。
 前述した態様において、光学系は、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を対象物に照射し、受光部は、集光された光について波長成分毎の受光量分布信号を得るように構成されてもよい。
 この態様によれば、光学系が、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を対象物に照射し、受光部が、集光された光について波長成分毎の受光量分布信号を得るように構成される。これにより、計測精度の低下を抑制する白色共焦点方式の光学計測方法を容易に実現することができる。
 前述した態様において、復元ステップは、受光部特性信号を表す受光部特性関数と受光量分布信号を表す受光量関数との逆畳み込み演算を行い、受光量分布原信号を表す受光量原関数を求めることを含んでもよい。
 この態様によれば、受光量関数と受光部特性関数との逆畳み込み演算を行い、受光量原関数が求められる。前述したように、受光量分布信号は、受光量分布原信号に、受光部特性信号が合成されている。すなわち、本発明の発明者達は、受光量関数が受光部特性関数と受光量原関数との合成積、つまり、畳み込みであることを見出した。よって、受光量関数と受光部特性関数との逆畳み込み演算を行うことにより、受光量原関数を求めることができ、受光量分布原信号を容易に復元することができる。
 前述した態様において、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して得られる複数の受光部特性信号のうち、受光量分布信号におけるピーク受光量の波長成分に基づいて選択された受光部特性信号を用い、求められてもよい。
 この態様によれば、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号のうち、受光量分布信号におけるピーク受光量の波長成分に基づいて選択された受光部特性信号を用い、求められる。これにより、受光量分布信号におけるピーク受光量の波長成分に対応する波長の受光部特性信号から、受光部特性関数を簡易に求めることができる。
 前述した態様において、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して得られる複数の受光部特性信号を用い、求められてもよい。
 この態様によれば、受光部特性関数は、受光部にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号を用い、求められる。これにより、受光量分布信号におけるピーク受光量の波長成分に対応する受光部特性信号がない場合でも、前後の波長における受光部特性信号から補完して受光部特性関数を求めることができる。
 前述した態様において、受光部特性信号に関する情報を記憶部に記憶する記憶ステップをさらに含んでもよい。
 この態様によれば、受光部特性信号に関する情報が記憶される。これにより、受光量分布原信号を復元するための応答時間を短くすることができる。
 前述した態様において、受光量分布原信号に基づいて、光学計測装置から対象物までの距離を計測する計測ステップをさらに含んでもよい。
 この態様によれば、受光量分布原信号に基づいて、光学計測装置から対象物までの距離が計測される。これにより、受光量分布信号に基づく距離と比較して、計測される距離の精度を向上させることができる。
 また、本発明の他の態様に係る光学計測プログラムは、コンピュータに実行させる、光学系と受光部とを備える光学計測装置の光学計測プログラムであって、対象物によって反射された反射光を光学系によって集光する集光ステップと、複数の画素のそれぞれが受光量を検出可能に構成される受光部によって、集光された光について画素毎の受光量分布信号を得る受光ステップと、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号を復元する復元ステップと、を含む。
 この態様によれば、受光部を用いて測定される受光部特性信号に基づいて、受光量分布信号から受光量分布原信号が復元される。ここで、本発明の発明者達は、受光部によって得られる受光量分布信号に、受光部特性信号が含まれることを見出した。また、本発明の発明者達は、あらかじめ受光部を用いて受光部特性信号を測定しておくことで、受光部によって得られる受光量分布信号から受光部特性信号を除去できることを見出した。よって、受光部を用いて測定される受光部特性信号に基づくことにより、受光部特性信号が除去された受光量分布原信号を復元することが可能となる。従って、受光量分布信号と比較して、復元された受光量分布原信号の半値幅は小さくなるので、この受光量分布原信号に基づくことで、計測精度の低下を抑制することができる。
 本発明によれば、計測精度の低下を抑制することができる。
図1は、一実施形態に係る光学計測装置の概略構成を例示する構成図である。 図2は、図1に示す受光部によって得られる受光量分布信号を例示する波形図である。 図3は、受光部によって得られる受光量分布信号を例示する波形図である。 図4は、図3に示した受光量分布信号に含まれる受光部特性信号Sを例示する波形図である。 図5は、センサヘッドによって集光された光の受光量分布原信号を例示する波形図である。 図6は、逆畳み込みの手法の一例を説明するための概念図である。 図7は、受光部特性行列の作成方法の一例を説明するための概念図である。 図8は、受光部特性行列の作成方法の他の例を説明するための概念図である。 図9は、一実施形態に係る光学計測装置における対象物までの距離の計測の概略動作を例示するフローチャートである。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。従って、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。さらに、本発明の技術的範囲は、当該実施形態に限定して解するべきではない。
 まず、図1を参照しつつ、本実施形態に係る光学計測装置の構成について説明する。図1は、一実施形態に係る光学計測装置100の概略構成を例示する構成図である。
 図1に示すように、光学計測装置100は、光源10と、導光部20と、センサヘッド30と、受光部40と、制御部50と、記憶部60と、操作部70と、表示部80と、を備える。光源10、導光部20の一部、受光部40、制御部50、記憶部60、操作部70、及び表示部80は、コントローラ90に収容されている。
 但し、光学計測装置100の各部は、センサヘッド30と、コントローラ90とに分けて収容される構成に限定されるものではない。例えば、光学計測装置100の各部は、3つ以上に分けて収容されていてもよい。
 光学計測装置100は、当該装置から、具体的にはセンサヘッド30から対象物TAまでの距離を所定の計測周期で計測する。また、光学計測装置100は、ある位置を基準とした距離の変化、つまり、変位を所定の計測周期で計測してもよい。
 光源10は、複数の波長成分を含む光を発するように構成されている。光源10は、制御部50から入力される制御信号に基づいて動作し、例えば、当該制御信号に基づいて光の光量を変更する。
 光源10は、複数の波長成分を含む光を発することが好ましい。この場合、光源10は、例えば白色LED(Light Emitting Diode)を含んで構成され、白色光を発生させる。但し、光源10が発する光は、光学計測装置100に要求される距離範囲をカバーする波長範囲を含む光であればよく、白色光に限定されるものではない。
 導光部20は、光を伝搬するためのものである。導光部20は、例えば、第1ケーブル21と、第2ケーブル22と、第3ケーブル23と、光カプラ24と、を備える。
 第1ケーブル21は、その一端(図1において左端)が光源10と光学的に接続している。第2ケーブル22は、その一端(図1において右端)がセンサヘッド30と光学的に接続している。第3ケーブル23は、その一端(図1において左端)が受光部40と光学的に接続している。第1ケーブル21の他端(図1において右端)及び第3ケーブル23の他端(図1において右端)と、第2ケーブル22の他端(図1において左端)とは、光カプラ24を介して光学的に結合されている。
 光カプラ24は、第1ケーブル21から入射された光を第2ケーブル22に伝送するとともに、第2ケーブル22から入射された光を分割して第1ケーブル21及び第3ケーブル23にそれぞれ伝送する。なお、光カプラ24によって第2ケーブル22から第1ケーブル21に伝送された光は、光源10において終端される。
 光カプラ24は、例えば融着延伸型(溶融延伸型)の光カプラを含んで構成される。一方、第1ケーブル21、第2ケーブル22、及び第3ケーブル23は、それぞれ、例えば光ファイバで構成される。各光ファイバは、単一のコアを有するシングルコアであってもよいし、複数のコアを有するマルチコアであってもよい。
 センサヘッド30は、第2ケーブル22を介してコントローラ90に脱着自在に構成されている。
 センサヘッド30は、例えば、コリメータレンズ31と、回折レンズ32と、対物レンズ33と、を備える。コリメータレンズ31、回折レンズ32、及び対物レンズ33は、対象物TAに光を照射するように構成されている。また、コリメータレンズ31、回折レンズ32、及び対物レンズ33は、対象物TAによって反射された反射光を集光するように構成されている。なお、本実施形態に係るセンサヘッド30は、本発明の「光学系」の一例に相当する。
 コリメータレンズ31は、第2ケーブルから入射された光を平行光に変換するように構成されている。コリメータレンズ31は、単一又は複数のレンズを含んで構成される。また、コリメータレンズ31は、センサヘッド30に入射する光を集光するためのものでもある。
 回折レンズ32は、平行光に光軸方向に沿う色収差を生じさせるように構成されている。対物レンズ33は、色収差を生じさせた光を対象物TAに集めて照射するように構成されている。回折レンズ32によって軸上色収差を発生させているので、対物レンズ33から照射される光は、波長ごとに異なる距離(位置)に焦点を有する。
 図1に示す例では、焦点距離が相対的に長い第1波長の光L1と、焦点距離が相対的に短い第2波長の光L2とを示している。第1波長の光L1は対象物TAの表面で焦点が合う(焦点を結ぶ)一方、第2波長の光L2は対象物TAの手前で焦点が合う(焦点を結ぶ)。
 対象物TAの表面で反射された光は、対物レンズ33及び回折レンズ32を通ってコリメータレンズ31で集光され、第2ケーブル22に入射する。反射光のうちの第1波長の光L1は、共焦点となる第2ケーブル22の端面において焦点が合い、そのほとんどが第2ケーブル22に入射する。一方、その他の波長は、第2ケーブル22の端面で焦点が合わず、第2ケーブル22に入射しない。第2ケーブル22に入射した反射光は、光カプラ24によってその一部が第3ケーブル23に伝送され、受光部40に出射される。
 第2ケーブル22が光ファイバである場合、そのコアはピンホールに相当する。よって、光ファイバのコア径を小さくすることにより、反射光を集光するピンホールが小さくなり、対象物TAの表面に焦点の合った波長の光を安定して検出することができる。
 受光部40は、センサヘッド30で集光された光について、後述する受光量分布信号を得るように構成されている。センサヘッド30で集光された光は、例えば、対象物TAによって反射された反射光である。受光部40は、例えば、コリメータレンズ41と、分光器(回折格子)42と、調整レンズ43と、受光センサ44と、処理回路45と、を備える。
 コリメータレンズ41は、第3ケーブル23から出射された光を平行光に変換するように構成されている。分光器42は、この平行光を波長成分毎に分光(分離)するように構成されている。調整レンズ43は、分光された波長別の光のスポット径を調整するように構成されている。
 受光センサ44は、分光された光に対し、波長成分毎に受光量を検出可能に構成されている。受光センサ44は、複数の受光素子を含んで構成される。各受光素子は、分光器42の分光方向に対応させて一次元に配列されている。これにより、各受光素子は分光された各波長成分の光に対応して配置され、受光センサ44は波長成分毎に受光量を検出可能になる。
 受光センサ44の一受光素子は、一画素に対応している。よって、受光センサ44は、複数の画素のそれぞれが受光量を検出可能に構成されているともいえる。なお、各受光素子は、一次元に配列される場合に限定されるものではなく、二次元に配列されていてもよい。各受光素子は、例えば分光器42の分光方向を含む検出面上に、二次元に配列されることが好ましい。
 各受光素子は、処理回路45から入力される制御信号に基づいて、所定の露光時間の間に受光した光の受光量に応じて電荷を蓄積する。そして、各受光素子は、処理回路45から入力される制御信号に基づいて、露光時間以外、つまり、非露光時間の間に、蓄積した電荷に応じた電気信号を出力する。これにより、露光時間に受光した受光量が電気信号に変換される。
 処理回路45は、受光センサ44による受光を制御するように構成されている。また、処理回路45には、受光センサ44の各受光素子から入力される電気信号ついて、制御部50に出力するための信号処理を行うように構成されている。処理回路45は、例えば、増幅回路と、A/D(Analog-to-Digital)変換回路と、を含んで構成される。増幅回路は、各受光素子から入力された電気信号を所定のゲインでそれぞれ増幅する。そして、A/D変換回路は、増幅された各受光素子の電気信号に対し、標本化、量子化、及び符号化を行って、デジタル信号に変換する。このようにして、各受光素子が検出した受光量がデジタル値に変換され、受光素子毎、つまり、画素毎の受光量の分布信号(以下、単に「受光量分布信号」という)が得られる。処理回路45は、この受光量分布信号を制御部50に出力する。各受光素子の所定の露光時間、増幅回路の所定のゲイン等は、制御信号に基づいて変更することが可能である。
 ここで、図2を参照しつつ、受光量分布信号に基づく距離の計測について説明する。図2は、図1に示す受光部40によって得られる受光量分布信号を例示する波形図である。図2において、横軸は画素(受光センサ44の各受光素子)であり、縦軸は受光量である。
 図2に示すように、受光量分布信号は、通常、ガウス分布(正規分布ともいう)になることが知られている。そのため、受光量分布信号は、ある画素の受光量がピークとなる波形を有する。前述したように、センサヘッド30から焦点が合う点までの距離は波長によって異なるので、受光センサ44から得た受光量分布信号におけるピーク受光量の画素は、センサヘッド30から照射され、対象物TAで焦点が合った光の波長に対応する画素である。そして、当該波長は、センサヘッド30から対象物TAまでの距離に対応する。図1に示す例では、対象物TAの表面で焦点が合う第1波長の光L1が、受光量分布信号のピーク受光量の波長として現れる。
 具体的には、受光量分布信号のピーク受光量を100%としたときに、50%の受光量の線と受光量分布信号との2つの交点における中間点を求め、当該中間点の画素に対応する波長λを得る。
 波長λと距離との関係(対応)は、制御部50のメモリ等にあらかじめ記憶される。計測部52がこの関係を参照することで、反射光の受光量分布信号におけるピークの受光量の波長λに基づいて、センサヘッド30から対象物TAまでの距離が計測される。これにより、反射光の波長成分毎の受光量分布において、ピーク以外の波長成分が距離に及ぼす影響を抑制し、対象物TAに焦点が合ったピークの波長成分に基づいて距離を計測することができる。従って、光学計測装置100から対象物TAまでの距離を、安定して高精度に計測することができる。
 前述したように、受光量分布信号の波形は、ガウス分布である(と見なせる)ことから、ガウス関数で表現(近似)することができる。また、ガウス分布の広がりの程度を表す指標として半値幅が知られている。図2に示す例において、半値幅Whmは、受光量のピーク(最大値)の50%の受光量の線と受光量分布信号との2つの交点の長さ(幅)、つまり、半値全幅である。以下の説明において、特に明示する場合を除き、半値幅は半値全幅を意味するものとする。
 ここで、理想的には、受光量分布信号は、対象物TAで焦点が合った光の波長に対応する画素がピークとなるパルス状の波形となることが好ましい。言い換えれば、受光量分布信号の半値幅は、略ゼロの値となることが理想である。受光量分布信号の半値幅が略ゼロの小さい値であれば、例えば僅かな距離の違いでも異なる計測値として正しく計測することができる等、光学計測装置100の計測精度は高いといえる。よって、受光量分布信号の半値幅は、光学計測装置100における計測精度や計測性能の指標となる。
 しかしながら、実際には、様々な要因、例えばセンサヘッド30の光学系の光学性能と分光器の光学性能等が原因となり、受光量分布信号の波形はパルス状にはならない。そのため、図2に示すように、受光量分布信号の半値幅Whmは大きくなり、その分布は広がってしまうのが現状である。
 次に、図3から図5を参照しつつ、受光部40によって得られる受光量分布信号と受光量分布原信号との関係について説明する。図3は、受光部40によって得られる受光量分布信号Srdを例示する波形図である。図4は、図3に示した受光量分布信号に含まれる受光部特性信号Srcを例示する波形図である。図5は、センサヘッド30によって集光された光の受光量分布原信号Srpを例示する波形図である。図3から図5において、横軸は画素(受光センサ44の各受光素子)であり、縦軸は受光量である。また、図3から図5は、ガラス等の光透過性を有する対象物TAの表面及び裏面を検出し、当該対象物TAの厚さを計測する場合の例を示している。
 図3に示すように、受光部40によって得られる受光量分布信号Srdには、透明体である対象物TAの表面で焦点が合う画素(波長)と、当該対象物TAの裏面で焦点が合う画素(波長)との2カ所で、受光量のピークが現れる。この場合、それぞれのピーク受光量に対して中間点を求め、それぞれのピーク受光量に対応する波長から距離の差、つまり、対象物TAの厚さを計測する。
 しかし、2つの受光量ピークに対するそれぞれのガウス分布において、半値幅の値が大きい場合、図3に示すように、2つのガウス分布が分離されず、各ピーク受光量に対する前述の中間点を求めることができなかった。そのため、受光部40の受光量分布信号Srdから対象物TAの厚さを計測することができない場合があった。
 ここで、本発明の発明者達は、受光部40によって得られる受光量分布信号Srdに、受光部特性信号Srcが含まれることを見出した。受光部特性信号Srcは、受光部40、具体的には、センサヘッド30によって集光された光が、第3ケーブル23から出射されてから受光センサ44の各受光素子に入射するまでの過程において、コリメータレンズ41、分光器42、調整レンズ43等の各デバイスの特性によって、受光量分布原信号Srpに合成される信号(成分)である。受光量分布原信号Srpは、センサヘッド30によって集光された光について、受光部40の特性による影響を受ける前の受光量分布信号である。
 図3から図5に示す例では、受光部40によって得られる図3に示す受光量分布信号Srdには、光が受光センサ44に至るまでの間に、図4に示す受光部特性信号Srcが合成されている。図5に示すように、受光量分布原信号Srpには、図4に示す受光部特性信号Srcが含まれていないので、各ピーク受光量に対して前述の中間点を求めることが可能である。よって、この受光量分布原信号Srpから対象物TAの厚さを計測することができる。
 図1の説明に戻ると、制御部50は、光学計測装置100の各部の動作を制御するように構成されている。また、制御部50は、記憶部60に記憶されたプログラムを実行する等によって、後述する各機能を実現するように構成されている。プログラムを実行する等によって、後述する各機能を実現するように構成されている。制御部50は、例えば、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等のマイクロプロセッサと、ROM(Read Only Memory)、RAM(Random Access Memory)、バッファメモリ等のメモリと、を含んで構成される。
 また、制御部50は、その機能構成として、例えば、復元部51と、計測部52と、を備える。
 復元部51は、受光部40を用いて測定される、図4に示す受光部特性信号Srcに基づいて、図3に示す受光量分布信号Srdから図5に示す受光量分布原信号Srpを復元するように構成されている。前述したように、受光量分布信号Srdには受光部特性信号Srcが含まれている。ここで、発明の発明者達は、あらかじめ受光部40を用いて受光部特性信号Srcを測定しておくことで、受光部40によって得られる受光量分布信号Srdから受光部特性信号Srcを除去できることを見出した。よって、受光部40を用いて測定される受光部特性信号Srcに基づくことにより、受光部特性信号Srcが除去された受光量分布原信号Srpを復元することが可能となる。従って、受光量分布信号Srdと比較して、復元された受光量分布原信号Srpの半値幅は小さくなるので、この受光量分布原信号Srpに基づくことで、計測精度の低下を抑制することができる。
 より詳細には、復元部51は、受光部特性信号Srcを表す受光部特性関数と受光量分布信号Srdを表す関数を受光量関数との逆畳み込み演算(以下、単に「逆畳み込み」ともいう)を行い、受光量分布原信号Srpを表す受光量原関数を求めるように構成されている。
 前述したように、図3に示す受光量分布信号Srdは、図5に示す受光量分布原信号Srpに、図4に示す受光部特性信号Srcが合成されている。すなわち、受光量分布信号Srdを表す関数を受光量関数h(x、d)、受光量分布原信号Srpを表す関数を受光量原関数g(x、d)、受光部特性信号Srcを表す関数を受光部特性関数f(x)とすると、受光量関数h(x、d)は以下の式(1)で表すことができることを、本発明の発明者達は見出した。なお、xは個体識別子であり、dはセンサヘッド30から、対象物TAまでの距離である。
   h(x、d)=f(x)*g(x、d) …(1)
 式(1)は、受光量関数h(x、d)が受光部特性関数f(x)と受光量原関数g(x、d)との合成積、つまり、畳み込みであることを意味している。よって、復元部51が、受光量関数h(x、d)と受光部特性関数f(x)との逆畳み込み演算を行うことにより、受光量原関数g(x、d)を求めることができ、受光量分布原信号Srpを容易に復元することができる。
 ここで、図6を参照しつつ、受光量原関数g(x、d)を求めるための逆畳み込みについて説明する。図6は、逆畳み込みの手法の一例を説明するための概念図である。
 以下の説明では、逆畳み込みの手法の一例として、ヤコビ法又はガウス=ザイデル法を用いて受光量原関数g(x、d)を求める。ヤコビ法及びガウス=ザイデル法では、行列を用いることが一般的である。このため、ヤコビ法又はガウス=ザイデル法を用いて逆畳み込みを行う場合には、受光量関数h(x、d)の従属変数の値を成分とする受光量行列Yと、受光部特性関数f(x)の従属変数の値を成分とする受光部特性行列Λとを、あらかじめ決めておく。受光部特性行列Λは、対角成分に受光量分布原信号Srpのピーク受光量を配置した対角行列である。なお、受光部特性行列Λの詳細については、後述する。
 受光量原関数g(x、d)の従属変数の値を成分とする行列を受光量原行列Xとすると、式(1)は、以下の式(2)に言い換えられる。
   Y(x、d)=Λ(x)*X(x、d) …(2)
 図6に示すように、受光量行列YをN行(Nは2以上の整数)1列の行列、受光部特性行列ΛをN行M列(Mは2以上の整数)の行列とすると、求めるべき受光量原行列XはN行1列の行列となる。このN次元の連立方程式について、ヤコビ法又はガウス=ザイデル法を用いることで、受光量原行列Xの各成分x、x、…、xの値を求めることができる。なお、受光部特性行列Λの列の数Mは、基本的に分光器42の波長長に依存する値である。
 ここで、図7から図8を参照しつつ、受光部特性行列Λの作成方法について説明する。図7は、受光部特性行列Λの作成方法の一例を説明するための概念図である。図8は、受光部特性行列Λの作成方法の他の例を説明するための概念図である。
 受光部特性行列Λの作成するために、図7に示すように、複数の受光部特性信号Srcをあらかじめ取得しておく。複数の受光部特性信号Srcは、受光部40にそれぞれ異なる波長の光を入射して得られた受光量分布信号である。具体的には、受光部40の受光部特性信号Srcは、分光器42の特性が支配的である。そのため、光学計測装置100の出荷前に、分光器42の検査装置において、単一波長の光を分光器42に入射し、その分光された光を受光センサで受光して受光量分布信号を得る。この一連の作業を複数、例えば、互いに波長の異なる5種類の光について繰り返すことで、複数の受光部特性信号Srcを取得することができる。
 最初に、受光部40によって得られた受光量分布信号Srdについて、ピーク受光量に対応する画素、つまり、波長λを求める。次に、この波長λに基づいて、複数の受光部特性信号Srcのうちの一つを選択する。例えば、複数の受光部特性信号Srcのうち、ピーク受光量に対応する波長が、受光量分布信号Srdから求められた波長λに最も近い受光部特性信号Srcが選択される。そして、選択された受光部特性信号Srcのピーク受光量を対角成分に配置することで、受光部特性行列Λを作成することができる。
 このように、受光部特性関数f(x)の従属変数の値を成分とする受光部特性行列Λは、受光部40にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号Srcのうち、受光量分布信号Srdにおけるピーク受光量の波長成分に基づいて選択された受光部特性信号Srcを用い、求められる。これにより、受光量分布信号Srdにおけるピーク受光量の波長成分に対応する波長λの受光部特性信号Srcから、受光部特性関数f(x)を簡易に求めることができる。
 あるいは、図7に示した例と同様に、複数の受光部特性信号Srcをあらかじめ取得しておき、図8に示すように、これら複数の受光部特性信号Srcを用いて受光部特性行列Λを作成してもよい。具体的には、複数の受光部特性信号Srcのピーク受光量のそれぞれを、受光部特性行列Λの対角成分の1つに配置する。図8に示す例の場合、複数の受光部特性信号Srcを得る際に使用した波長の間の波長については、前後の波長における受光部特性信号Srcから補完し、対角成分に配置する必要がある。
 このように、受光部特性関数f(x)の従属変数の値を成分とする受光部特性行列Λは、受光部40にそれぞれ異なる波長の光を入射して測定される複数の受光部特性信号Srcを用い、求められてもよい。これにより、受光量分布信号Srdにおけるピーク受光量の波長成分に対応する受光部特性信号Srcがない場合でも、前後の波長における受光部特性信号Srcから補完して受光部特性関数f(x)を求めることができる。
 本実施形態では、逆畳み込みの手法として、ヤコビ法又はガウス=ザイデル法を用いる例を示したが、これに限定されるものではない。逆畳み込みは、ヤコビ法又はガウス=ザイデル法以外に様々な手法が存在する。本発明は、フィルタ成分、つまり、受光部特性信号Srcを用いて、原信号、つまり、受光量分布原信号Srpを復元するという技術思想の手法であれば、逆畳み込みの手段として適用可能である。そのような手法として、例えば、フーリエ変換やニューラルネットワークを用いた逆畳み込みの手法を適用することができる。
 また、以下の式(3)に示すように、事前に受光部特性行列の逆行列を求めておき、受光量分布信号との積を求めることにより、受光量原信号を復元してもよい。これにより、受光量分布原信号の復元にかかる計算を高速化することができる。
   X=Λ-1*Y …(3)
 図1の説明に戻ると、計測部52は、受光量分布原信号Srpに基づいて、光学計測装置100、より正確にはセンサヘッド30から、対象物TAまでの距離を計測するように構成されている。これにより、受光量分布信号Srdに基づく距離と比較して、計測される距離の精度を向上させることができる。
 制御部50の各機能は、コンピュータ(マイクロプロセッサ)で実行されるプログラムによって実現することが可能である。したがって、制御部50が備える各機能は、ハードウェア、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現可能であり、いずれかの場合に限定されるものではない。
 また、制御部50の各機能が、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現される場合、その処理は、マルチタスク、マルチスレッド、若しくはマルチタスク及びマルチスレッドの両方で実行可能であり、いずれかの場合に限定されるものではない。
 記憶部60は、プログラムやデータ等を記憶するように構成されている。記憶部60は、例えば、ハードディスクドライブ、ソリッドステートドライブ等を含んで構成される。記憶部60は、制御部50が実行する各種プログラムやプログラムの実行に必要なデータ等をあらかじめ記憶している。
 また、記憶部60は、受光部特性信号Srcに関する情報として、受光部特性関数f(x)を記憶している。記憶部60は、受光部特性関数f(x)に代えて、受光部特性関数f(x)の逆関数を記憶してもよいし、例えば図8に示す例で作成された受光部特性行列Λ、又は受光部特性行列Λの逆行列を記憶していてもよい。このように、受光部特性信号Srcに関する情報を記憶することにより、受光量分布原信号Srpを復元するための応答時間を短くすることができる。
 操作部70は、利用者(ユーザ)の操作によって情報を入力するためのものである。操作部70は、例えば、ボタン、スイッチ等を含んで構成される。この場合、利用者が、ボタン、スイッチ等を操作したときに、操作に応じた信号が制御部50に入力される。そして、制御部50が当該信号に対応するデータを生成することで、光学計測装置100に情報を入力することが可能になる。
 表示部80は、情報を出力するためのものである。詳細には、表示部80は、例えば、計測された距離、設定内容、動作状態、通信状態等を表示するように構成されていている。表示部80は、例えば、複数桁の7又は11セグメントディスプレイと、複数色で発光する表示灯とを含んで構成される。
 次に、図9を参照しつつ、本実施形態に係る光学計測装置の動作の一例について説明する。図9は、一実施形態に係る光学計測装置100における対象物TAまでの距離の計測の概略動作を例示するフローチャートである。
 光学計測装置100の制御部50は、例えば利用者(ユーザ)の操作によって光学計測装置100が起動されると、図9に示す距離計測処理S200を実行する。なお、以下の説明では、説明の簡略化のため、記憶部60は、受光部特性関数f(x)の情報として、図8に示す例で説明した受光部特性行列Λ、並びに受光部特性行列Λの逆行列もしくは逆関数に相当する情報を記憶しているものとする。また、センサコントローラ毎の特性を記録することで、コントローラのばらつきを除去し、センサヘッドの原信号を復元できる。
 図9に示すように、最初に、制御部50は、所定の周期で制御信号を出力し、光源10から対象物TAへ光を投光する(S201)。
 次に、制御部50は、受光部40から、対象物TAによって反射され、センサヘッド30によって集光された光の受光量分布信号Srdを得る(S202)。
 次に、復元部51は、ステップS202において得られた受光量分布信号Srdを用い、当該受光量分布信号Srdを表す受光量関数h(x、d)を導き出す(S203)。具体的には、復元部51は、受光量分布信号Srdにおける各画素の値(受光量)の一部又は全部から受光量行列Yの各成分を決めて受光量行列Yを求める。
 次に、復元部51は、受光部特性関数f(x)の情報として、図8に示す受光部特性行列Λを記憶部60から読み出す(S204)。
 次に、復元部51は、ステップS203において導出した受光量関数h(x、d)と、ステップS204において読み出した受光部特性関数f(x)の情報とを用い、逆畳み込み演算を行う(S205)。これにより、受光量原関数g(x、d)が復元される。
 具体的には、復元部51は、受光量行列Yと受光部特性行列Λとを用い、多次元連立方程式を解くことで、受光量原行列Xを算出する。
 次に、計測部52は、ステップS205の結果、復元された受光量原関数g(x、d)に基づいて、光学計測装置100から対象物TAまでの距離を計測する(S206)。計測部52は、ステップS206で計測した距離を表示部80に表示させてもよい。
 ステップS206の後、制御部50は、ステップS201に戻り、例えば光学計測装置100が停止するまで、ステップS201からステップS206までの処理を繰り返す。
 本実施形態では、光学計測装置100が、センサヘッド30から対象物TAまでの距離を計測する例を示したが、これに限定されるものではない。光学計測装置が計測する計測値は、例えば、ある位置を基準とした距離の変化、つまり、変位を計測してもよい。
 また、本実施形態では、光学計測装置100が白色共焦点方式で距離を計測する例を示したが、これに限定されるものではない。光学計測装置は、例えば三角測距方式で距離を計測してもよい。三角測距方式とは、図1のような同軸光学系を使用せず、光源から対象物に照射する光と、対象物で反射した光を別の光学系で構成するものである。例えば光源から出射したレーザ光を対象物に照射し、対象物で反射したレーザ光を受光部で測定し、レーザ光の光軸と受光部の位置、姿勢関係と受光部で測定されたレーザ光の入射角度に基づいて、光学計測装置から対象物までの距離を計測するように構成される。この場合、レーザ光の入射角度は、受光部を用いて測定される受光部分布信号に基づいて決定される。
 以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る光学計測装置100、光学計測方法、及び光学計測プログラムによれば、受光部40を用いて測定される、図4に示す受光部特性信号Srcに基づいて、図3に示す受光量分布信号Srdから図5に示す受光量分布原信号Srpが復元される。ここで、本発明の発明者達は、受光部40によって得られる受光量分布信号Srdに、受光部特性信号Srcが含まれることを見出した。また、本発明の発明者達は、あらかじめ受光部40を用いて受光部特性信号Srcを測定しておくことで、受光部40によって得られる受光量分布信号Srdから受光部特性信号Srcを除去できることを見出した。よって、受光部40を用いて測定される受光部特性信号Srcに基づくことにより、受光部特性信号Srcが除去された受光量分布原信号Srpを復元することが可能となる。従って、受光量分布信号Srdと比較して、復元された受光量分布原信号Srpの半値幅は小さくなるので、この受光量分布原信号Srpに基づくことで、計測精度の低下を抑制することができる。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 (附記)
 1.対象物(TA)によって反射された反射光を集光するセンサヘッド(30)と、
 複数の画素のそれぞれが受光量を検出可能に構成される受光部(40)であって、集光された光について画素毎の受光量分布信号(Srd)を得る受光部(40)と、
 受光部(40)を用いて測定される受光部特性信号(Src)に基づいて、受光量分布信号(Srd)から受光量分布原信号(Srp)を復元する復元部(51)と、を備える、
 光学計測装置(100)。
 8.センサヘッド(30)と受光部(40)とを備える光学計測装置(100)の光学計測方法であって、
 対象物(TA)によって反射された反射光をセンサヘッド(30)によって集光する集光ステップと、
 複数の画素のそれぞれが受光量を検出可能に構成される受光部(40)によって、集光された光について画素毎の受光量分布信号(Srd)を得る受光ステップと、
 受光部を用いて測定される受光部特性信号(Src)に基づいて、受光量分布信号(Srd)から受光量分布原信号(Srp)を復元する復元ステップと、を含む、
 光学計測方法。
 15.コンピュータに実行される、センサヘッド(30)と受光部(40)とを備える光学計測装置(100)の光学計測プログラムであって、
 対象物(TA)によって反射された反射光をセンサヘッド(30)によって集光する集光ステップと、
 複数の画素のそれぞれが受光量を検出可能に構成される受光部(40)によって、集光された光について画素毎の受光量分布信号(Srd)を得る受光ステップと、
 受光部を用いて測定される受光部特性信号(Src)に基づいて、受光量分布信号(Srd)から受光量分布原信号(Srp)を復元する復元ステップと、を含む、
 光学計測プログラム。
 10…光源、20…導光部、21…第1ケーブル、22…第2ケーブル、23…第3ケーブル、24…光カプラ、30…センサヘッド、31…コリメータレンズ、32…回折レンズ、33…対物レンズ、35…記憶部、40…受光部、41…コリメータレンズ、42…分光器、43…調整レンズ、44…受光センサ、45…処理回路、50…制御部、51…復元部、52…計測部、60…記憶部、70…操作部、80…表示部、90…コントローラ、100…光学計測装置、L1,L2…光、S200…距離計測処理、Src…受光部特性信号、Srd…受光量分布信号、Srp…受光量分布原信号、TA…対象物、Whm…半値幅、λ…波長。

Claims (15)

  1.  対象物によって反射された反射光を集光する光学系と、
     複数の画素のそれぞれが受光量を検出可能に構成される受光部であって、前記集光された光について前記画素毎の受光量分布信号を得る受光部と、
     前記受光部を用いて測定される受光部特性信号に基づいて、前記受光量分布信号から受光量分布原信号を復元する復元部と、を備える、
     光学計測装置。
  2.  前記光学系は、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を前記対象物に照射し、
     前記受光部は、前記集光された光について前記波長成分毎の前記受光量分布信号を得るように構成される、
     請求項1に記載の光学計測装置。
  3.  前記復元部は、前記受光部特性信号を表す受光部特性関数と前記受光量分布信号を表す受光量関数との逆畳み込み演算を行い、前記受光量分布原信号を表す受光量原関数を求める、
     請求項2に記載の光学計測装置。
  4.  前記受光部特性関数は、前記受光部にそれぞれ異なる波長の光を入射して測定される複数の前記受光部特性信号のうち、前記受光量分布信号におけるピーク受光量の波長成分に基づいて選択された前記受光部特性信号を用い、求められる、
     請求項3に記載の光学計測装置。
  5.  前記受光部特性関数は、前記受光部にそれぞれ異なる波長の光を入射して測定される複数の前記受光部特性信号を用い、求められる、
     請求項3に記載の光学計測装置。
  6.  前記受光部特性信号に関する情報を記憶する記憶部をさらに備える、
     請求項1から5のいずれか一項に記載の光学計測装置。
  7.  前記受光量分布原信号に基づいて、前記光学計測装置から前記対象物までの距離を計測する計測部をさらに備える、
     請求項1から6のいずれか一項に記載の光学計測装置。
  8.  光学系と受光部とを備える光学計測装置の光学計測方法であって、
     対象物によって反射された反射光を前記光学系によって集光する集光ステップと、
     複数の画素のそれぞれが受光量を検出可能に構成される前記受光部によって、前記集光された光について前記画素毎の受光量分布信号を得る受光ステップと、
     前記受光部を用いて測定される受光部特性信号に基づいて、前記受光量分布信号から受光量分布原信号を復元する復元ステップと、を含む、
     光学計測方法。
  9.  前記光学系は、複数の波長成分を含む光に対して光軸方向に沿う色収差を生じさせ、色収差を生じさせた光を前記対象物に照射し、
     前記受光部は、前記集光された光について前記波長成分毎の前記受光量分布信号を得るように構成される、
     請求項8に記載の光学計測方法。
  10.  前記復元ステップは、前記受光部特性信号を表す受光部特性関数と前記受光量分布信号を表す受光量関数との逆畳み込み演算を行い、前記受光量分布原信号を表す受光量原関数を求めることを含む、
     請求項9に記載の光学計測方法。
  11.  前記受光部特性関数は、前記受光部にそれぞれ異なる波長の光を入射して得られる複数の前記受光部特性信号のうち、前記受光量分布信号におけるピーク受光量の波長成分に基づいて選択された前記受光部特性信号を用い、求められる、
     請求項10に記載の光学計測方法。
  12.  前記受光部特性関数は、前記受光部にそれぞれ異なる波長の光を入射して得られる複数の前記受光部特性信号を用い、求められる、
     請求項10に記載の光学計測方法。
  13.  前記受光部特性信号に関する情報を記憶部に記憶する記憶ステップをさらに含む、
     請求項8から12のいずれか一項に記載の光学計測方法。
  14.  前記受光量分布原信号に基づいて、前記光学計測装置から前記対象物までの距離を計測する計測ステップをさらに含む、
     請求項8から13のいずれか一項に記載の光学計測方法。
  15.  コンピュータに実行させる、光学系と受光部とを備える光学計測装置の光学計測プログラムであって、
     対象物によって反射された反射光を前記光学系によって集光する集光ステップと、
     複数の画素のそれぞれが受光量を検出可能に構成される前記受光部によって、前記集光された光について前記画素毎の受光量分布信号を得る受光ステップと、
     前記受光部を用いて測定される受光部特性信号に基づいて、前記受光量分布信号から受光量分布原信号を復元する復元ステップと、を含む、
     光学計測プログラム。
PCT/JP2020/007670 2019-04-10 2020-02-26 光学計測装置、光学計測方法、及び光学計測プログラム WO2020208962A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075017 2019-04-10
JP2019075017A JP7296239B2 (ja) 2019-04-10 2019-04-10 光学計測装置、光学計測方法、及び光学計測プログラム

Publications (1)

Publication Number Publication Date
WO2020208962A1 true WO2020208962A1 (ja) 2020-10-15

Family

ID=72750543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007670 WO2020208962A1 (ja) 2019-04-10 2020-02-26 光学計測装置、光学計測方法、及び光学計測プログラム

Country Status (3)

Country Link
JP (1) JP7296239B2 (ja)
TW (1) TWI755690B (ja)
WO (1) WO2020208962A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655064B1 (ko) * 2020-11-05 2024-04-09 세메스 주식회사 거리 측정 시스템 및 거리 측정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304525A (ja) * 2006-05-15 2007-11-22 Ricoh Co Ltd 画像入力装置および電子機器および画像入力方法
JP2012113690A (ja) * 2010-11-01 2012-06-14 Canon Inc 調整方法、調整装置、光学系の製造方法、撮像装置、及び、撮像装置の製造方法
JP2013068523A (ja) * 2011-09-22 2013-04-18 Omron Corp 光学計測装置
JP2014109766A (ja) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd 共焦点光学式検査装置および共焦点光学式検査方法
US20160045291A1 (en) * 2014-08-15 2016-02-18 Align Technology, Inc. Confocal imaging apparatus with curved focal surface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0211068D0 (en) 2002-05-14 2002-06-26 Amersham Biosciences Uk Ltd Method for assessing biofilms
JP3909363B2 (ja) * 2005-03-28 2007-04-25 オムロン株式会社 分光偏光計測方法
JP2009257820A (ja) * 2008-04-14 2009-11-05 Otsuka Denshi Co Ltd 光学特性測定装置および光学特性測定方法
JP2010039323A (ja) * 2008-08-07 2010-02-18 Nikon Corp 共焦点顕微鏡
JP2011215707A (ja) 2010-03-31 2011-10-27 Canon Inc 画像処理装置、撮像装置、画像処理方法およびプログラム
JP6485322B2 (ja) * 2015-10-27 2019-03-20 三菱電機株式会社 画像処理装置及び画像処理方法
WO2017116787A1 (en) * 2015-12-31 2017-07-06 Zygo Corporation Method and apparatus for optimizing the optical performance of interferometers
WO2019053768A1 (ja) * 2017-09-12 2019-03-21 株式会社ニコン 顕微鏡および観察方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304525A (ja) * 2006-05-15 2007-11-22 Ricoh Co Ltd 画像入力装置および電子機器および画像入力方法
JP2012113690A (ja) * 2010-11-01 2012-06-14 Canon Inc 調整方法、調整装置、光学系の製造方法、撮像装置、及び、撮像装置の製造方法
JP2013068523A (ja) * 2011-09-22 2013-04-18 Omron Corp 光学計測装置
JP2014109766A (ja) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd 共焦点光学式検査装置および共焦点光学式検査方法
US20160045291A1 (en) * 2014-08-15 2016-02-18 Align Technology, Inc. Confocal imaging apparatus with curved focal surface

Also Published As

Publication number Publication date
JP2020173170A (ja) 2020-10-22
TW202043702A (zh) 2020-12-01
TWI755690B (zh) 2022-02-21
JP7296239B2 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6835732B2 (ja) 光を検出するための装置と方法
US8212997B1 (en) Chromatic confocal point sensor optical pen with extended measuring range
JP5646604B2 (ja) 物体を3次元的に測定するための方法および測定装置
TW202022316A (zh) 光學測量裝置
JP5189777B2 (ja) 回折格子を備えるスペクトル分析ユニット
JP2019144570A (ja) 顕微鏡用の検出装置
JP2004069314A (ja) 焦点距離測定装置
JP2021530714A (ja) クロマティック共焦点エリアセンサ
KR20160138124A (ko) 분광기
JP2011237272A (ja) 光距離計及び距離測定方法
JP6969453B2 (ja) 光学計測装置
WO2020208962A1 (ja) 光学計測装置、光学計測方法、及び光学計測プログラム
JP4645176B2 (ja) 分光顕微鏡装置
JP2017116509A (ja) 共焦点変位計
JP7064167B2 (ja) 光学計測装置及び光学計測方法
JP2017116508A (ja) 共焦点変位計
CN116249891A (zh) 探测发射光的方法、探测设备和激光扫描显微镜
CN105938196B (zh) 彩色共焦点传感器和测量方法
JP6766911B2 (ja) 光学計測装置
JP2017116507A (ja) 共焦点変位計
JP6880513B2 (ja) 光学計測装置及び光学計測方法
JP7445201B2 (ja) 光学計測装置及び光学計測方法
CN111664805A (zh) 超光谱线扫描3d测量装置及测量方法
WO2020095667A1 (ja) 光学計測装置及び光学計測方法
JP2020101402A (ja) 共焦点センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788359

Country of ref document: EP

Kind code of ref document: A1