WO2020208752A1 - 室外ユニット、冷凍サイクル装置および冷凍機 - Google Patents

室外ユニット、冷凍サイクル装置および冷凍機 Download PDF

Info

Publication number
WO2020208752A1
WO2020208752A1 PCT/JP2019/015681 JP2019015681W WO2020208752A1 WO 2020208752 A1 WO2020208752 A1 WO 2020208752A1 JP 2019015681 W JP2019015681 W JP 2019015681W WO 2020208752 A1 WO2020208752 A1 WO 2020208752A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
passage
flow path
expansion valve
temperature
Prior art date
Application number
PCT/JP2019/015681
Other languages
English (en)
French (fr)
Inventor
智隆 石川
悠介 有井
素 早坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021513096A priority Critical patent/JP7150148B2/ja
Priority to CN201980094860.7A priority patent/CN113692517B/zh
Priority to EP19923884.1A priority patent/EP3954947B1/en
Priority to PCT/JP2019/015681 priority patent/WO2020208752A1/ja
Publication of WO2020208752A1 publication Critical patent/WO2020208752A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an outdoor unit, a refrigeration cycle device and a refrigerator.
  • Patent Document 1 prevents the temperature of the refrigerant discharged from the compressor from becoming excessively high by controlling the torque of the motor built in the compressor. Refrigeration equipment is disclosed.
  • An object of the present invention is to provide an outdoor unit, a refrigerating cycle device, and a refrigerator capable of ensuring the degree of supercooling of the refrigerant at the inlet portion of the load device even when the evaporation temperature is high.
  • the outdoor unit of the present disclosure is an outdoor unit of a refrigeration cycle device configured to be connected to a load device including a first expansion valve and an evaporator.
  • the outdoor unit includes a compressor having a suction port, a discharge port, and an intermediate pressure port, a condenser, a heat exchanger, and a second expansion valve.
  • the heat exchanger has a first passage and a second passage, and is configured to exchange heat between the refrigerant flowing through the first passage and the refrigerant flowing through the second passage.
  • the flow path from the compressor to the condenser, the first passage of the heat exchanger, and the second expansion valve forms a circulation flow path through which the refrigerant circulates together with the load device.
  • the outdoor unit is arranged in the first refrigerant flow path and the first refrigerant flow path, in which the refrigerant flows from the portion between the outlet of the first passage and the second expansion valve of the circulation flow path to the inlet of the second passage.
  • the degree of supercooling of the liquid refrigerant sent from the outdoor unit to the load device can be ensured even when the evaporation temperature changes, so that the refrigerating capacity is reduced. Can be prevented.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus according to the embodiment of the present disclosure. It should be noted that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, and extension pipes 84 and 88.
  • the outdoor unit 2 is an outdoor unit of the refrigeration cycle device 1 configured to be connected to the load device 3.
  • the outdoor unit 2 includes a compressor 10 having a suction port G1, a discharge port G2, and an intermediate pressure port G3, a condenser 20, a fan 22, a heat exchanger 30, a second expansion valve 40, and pipes 80 to 83. , 89 and.
  • the heat exchanger 30 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the load device 3 includes a first expansion valve 50, an evaporator 60, and pipes 85, 86, 87.
  • the first expansion valve 50 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2.
  • the compressor 10 compresses the refrigerant sucked from the pipes 89 and 97 and discharges it to the pipe 80.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80 and flows it to the pipe 81.
  • the condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat (heat dissipation) with the outside air. By this heat exchange, the refrigerant is condensed and changed to a liquid phase.
  • the fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
  • the condenser 20 is also referred to when cooling the refrigerant in the supercritical state. Further, in the present specification, for the sake of simplicity, the amount of decrease of the refrigerant in the supercritical state from the reference temperature is also referred to as the degree of supercooling.
  • the flow path from the compressor 10 to the condenser 20, the first passage H1 of the heat exchanger 30, and the second expansion valve 40 is together with the flow path in which the first expansion valve 50 and the evaporator 60 of the load device 3 are arranged. , Form a circulation flow path through which the refrigerant circulates.
  • this circulation flow path is also referred to as a "main circuit" of the refrigeration cycle.
  • the outdoor unit 2 includes a first refrigerant flow path (91 to 94) in which a refrigerant flows from a portion between the outlet of the first passage H1 and the second expansion valve 40 of the circulation flow path to the inlet of the second passage H2.
  • a flow path switching unit 74 for switching the destination of the refrigerant flowing out from the suction port G1 or the intermediate pressure port G3 is provided.
  • this flow path that branches from the main circuit and sends the refrigerant to the compressor 10 via the second passage H2 is referred to as an “injection flow path”.
  • the outdoor unit 2 is further arranged in the first refrigerant flow path, and is a portion between the receiver (receiver) 73 for storing the refrigerant and the outlet of the first passage H1 of the circulation flow path and the second expansion valve 40.
  • the third expansion valve 71 arranged in the pipe 91 between the receiver 73 and the inlet of the receiver 73, and the liquid receiver provided between the outlet pipe 94 of the receiver 73 and the gas discharge port of the receiver 73.
  • a gas vent passage 93 for discharging the refrigerant gas in the vessel 73 and a fourth expansion valve 72 arranged in the gas vent passage 93 are provided.
  • the liquid receiver 73 By providing the liquid receiver 73 in the injection flow path in this way, it becomes easy to secure the degree of supercooling in the pipes 82 and 83 which are liquid pipes. This is because the receiver 73 generally has a gas refrigerant, so that the refrigerant temperature becomes a saturation temperature. Therefore, if the receiver 73 is arranged in the pipe 82, the degree of supercooling cannot be ensured.
  • the intermediate pressure liquid refrigerant can be stored inside the receiver 73 even when the high pressure portion of the main circuit is in the supercritical state. Therefore, the design pressure of the container of the receiver 73 can be made lower than that of the high pressure portion, and the cost can be reduced by thinning the container.
  • the outdoor unit 2 further includes pressure sensors 110, 111, 112, temperature sensors 120, 121, 122, and a control device 100 that controls the flow path switching unit 74.
  • the pressure sensor 110 detects the suction pressure PL of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 111 detects the discharge pressure PH of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 112 detects the pressure P1 of the pipe 83 at the outlet of the second expansion valve 40, and outputs the detected value to the control device 100.
  • the outdoor unit 2 can reduce the refrigerant pressure to or less than the design pressure of the load device 3 (for example, 4 MPa) before sending it to the load device 3.
  • the design pressure of the load device 3 for example, 4 MPa
  • a general-purpose product having the same design pressure as the conventional one can be used as the load device 3.
  • the temperature sensor 120 detects the discharge temperature TH of the compressor 10 and outputs the detected value to the control device 100.
  • the temperature sensor 121 detects the refrigerant temperature T1 of the pipe 81 at the outlet of the condenser 20, and outputs the detected value to the control device 100.
  • the temperature sensor 122 detects the refrigerant temperature T2 at the outlet of the first passage H1 on the cooled side of the heat exchanger 30, and outputs the detected value to the control device 100.
  • the second refrigerant flow path includes a pipe 96 that connects the outlet of the second passage H2 of the heat exchanger 30 and the flow path switching portion 74, and the flow path switching portion 74.
  • the flow path switching unit 74 includes pipes 97 and 98 in which the pipe 96 is branched into two, and on-off valves 75 and 76 arranged in the pipes 97 and 98, respectively.
  • the pipe 97 is connected between the pipe 96 and the intermediate pressure port G3.
  • the pipe 98 is connected between the pipe 96 and the suction port G1.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • FIG. 2 is a flowchart for explaining the control of the flow path switching unit 74.
  • the control device 100 determines in step S1 whether the on-off valve 75 is in the open state and the on-off valve 76 is in the closed state. If the on-off valve 75 is in the open state and the on-off valve 76 is in the closed state (YES in S1), the intermediate pressure port G3 is selected as the destination of the refrigerant flowing through the injection flow path. On the contrary, when the suction port G1 is selected as the destination of the refrigerant flowing through the injection flow path, the on-off valve 75 is in the closed state and the on-off valve 76 is in the open state.
  • step S2 the control device 100 determines whether or not the refrigerant temperature T2 at the outlet of the first passage H1 of the heat exchanger 30 is equal to or higher than the first temperature Tth1. To judge.
  • the control device 100 When the refrigerant temperature T2 at the outlet of the first passage H1 of the heat exchanger 30 is higher than the first temperature Tth1 (YES in S2), the control device 100 sucks the destination of the refrigerant in the processes of steps S3 to S7.
  • the flow path switching unit 74 is controlled so as to.
  • the control device 100 sequentially executes the processes of steps S4 to S7 to set the destination of the refrigerant to the suction port G1.
  • the flow path switching unit 74 is controlled so as to.
  • the intake air temperature TL of the compressor 10 can be obtained by converting from the intake pressure PL detected by the pressure sensor 110.
  • the operation of the compressor 10 is stopped in step S4, the on-off valve 75 is closed in step S5, the on-off valve 76 is opened in step S6, and the operation of the compressor 10 is restarted in step S7.
  • the control device 100 controls the flow path switching unit 74 so that the destination of the refrigerant is the intermediate pressure port G3.
  • Tth1 Tth2.
  • the control device 100 sequentially executes the processes of steps S10 to S13 to set the destination of the refrigerant to the intermediate pressure port.
  • the flow path switching unit 74 is controlled so as to be G3.
  • the operation of the compressor 10 is stopped in step S10, the on-off valve 76 is closed in step S11, the on-off valve 75 is opened in step S12, and the operation of the compressor 10 is restarted in step S13.
  • the control device 100 controls the flow path switching unit 74 so as to increase the pressure difference, and the refrigerant is transferred from the intermediate pressure port G3 to the suction port G1. Switch the destination of. Therefore, since the amount of decompression in the third expansion valve 71 can be secured, the amount of temperature decrease in the third expansion valve 71 increases. Thereby, the temperature difference between the refrigerant temperature of the first passage H1 and the refrigerant temperature of the second passage H2 of the heat exchanger 30 can be secured. Therefore, the amount of heat exchanged by the heat exchanger 30 increases, and the refrigerant temperature T2 can be lowered.
  • the flowchart may be modified to switch the flow path. Similarly, the flowchart may be modified so that the flow path is switched during operation without performing the processes of steps S10 and S13 among the processes of steps S10 to S13.
  • FIG. 3 is a flowchart for explaining the control of the third expansion valve 71.
  • the third expansion valve 71 is feedback-controlled so that the discharge temperature TH of the compressor 10 matches the target temperature.
  • the control device 100 increases the opening degree of the third expansion valve 71 in step S22.
  • the amount of refrigerant flowing into the intermediate pressure port G3 or the suction port G1 via the liquid receiver 73 increases, so that the discharge temperature TH decreases.
  • the control device 100 reduces the opening degree of the third expansion valve 71 in step S24. As a result, the amount of refrigerant flowing into the intermediate pressure port G3 or the suction port G1 via the liquid receiver 73 is reduced, so that the discharge temperature TH rises.
  • the opening degree of the third expansion valve 71 maintains the current state.
  • control device 100 controls the opening degree of the third expansion valve 71 so that the discharge temperature TH of the compressor 10 approaches the target temperature.
  • the frequency of changing the opening degree of the third expansion valve 71 may be reduced by setting the target temperature in step S21> the target temperature in step S23.
  • FIG. 4 is a flowchart for explaining the control of the fourth expansion valve 72.
  • the refrigerant temperature T1 at the outlet of the condenser 20 matches the target temperature. Feedback is controlled.
  • step S31 when the supercooling degree SC determined by the refrigerant temperature T1 at the outlet of the condenser 20 and the pressure of the condenser 20 (approximate by PH) is larger than the target value (YES in S31), control is performed.
  • the device 100 increases the opening degree of the fourth expansion valve 72 in step S32.
  • the gas refrigerant is discharged from the receiver 73 and the amount of liquid refrigerant increases, so that the amount of refrigerant circulating in the main circuit decreases, so that the refrigerant temperature rises as a whole and the refrigerant temperature T1 rises. Cooling degree SC decreases.
  • the control device 100 is set in step S34.
  • the opening degree of the fourth expansion valve 72 is reduced.
  • the amount of gas refrigerant in the receiver 73 increases and the amount of liquid refrigerant decreases, so that the amount of refrigerant circulating in the main circuit increases, so that the refrigerant temperature as a whole decreases and the refrigerant temperature T1 decreases. Cooling degree SC increases.
  • the opening degree of the fourth expansion valve 72 maintains the current state.
  • control device 100 controls the opening degree of the fourth expansion valve 72 so that the refrigerant temperature T1 at the outlet of the condenser 20 approaches the target temperature.
  • the frequency of changing the opening degree of the fourth expansion valve 72 may be reduced by setting the target value in step S31> the target value in step S33.
  • the control device 100 controls the compressor 10 and the second expansion valve 40 so as to use the supercritical region of the refrigerant. For example, when the outside air temperature is higher than the supercritical temperature of the refrigerant, such as in summer, the control device 100 increases the rotation speed of the compressor 10 to be higher than in spring or autumn to increase the pressure in the high pressure portion. In this case, the pressure in the high voltage portion of the main circuit becomes high. Depressurization is performed by the second expansion valve 40 so that the load device 3 can be shared with a device normally used as a refrigerant. At this time, the second expansion valve 40 is controlled as follows.
  • FIG. 5 is a flowchart for explaining the control of the second expansion valve 40.
  • the second expansion valve 40 is feedback-controlled so that the pressure P1 matches the target pressure.
  • the control device 100 reduces the opening degree of the second expansion valve 40 in step S42. As a result, the amount of decompression by the second expansion valve 40 increases, so that the pressure P1 decreases.
  • the control device 100 increases the opening degree of the second expansion valve 40 in step S44. As a result, the amount of decompression by the second expansion valve 40 is reduced, so that the pressure P1 rises.
  • the opening degree of the second expansion valve 40 maintains the current state.
  • the pressure in the load device 3 can be set to be equal to or lower than the design pressure of the device normally used as a refrigerant, and the load device of the conventional machine using a refrigerant such as R410A can be shared. Is possible.
  • the refrigeration cycle device 1 may be used as an air conditioner or the like.
  • Refrigeration cycle device 2 Outdoor unit, 3 Load device, 10 Compressor, 20 Condenser, 22 Fan, 30 Heat exchanger, 40 2nd expansion valve, 50 1st expansion valve, 60 Evaporator, 71 3rd expansion valve , 72 4th expansion valve, 73 receiver, 74 flow path switching part, 75,76 on-off valve, 80,81,82,83,85,89,91,94,96,97,98 piping, 84,88 Extension piping, 93 degassing passage, 100 control device, 102 CPU, 104 memory, 110, 111, 112 pressure sensor, 120, 121, 122 temperature sensor, G1 suction port, G2 discharge port, G3 intermediate pressure port, H1 first Passage, H2 2nd passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

室外ユニット(2)は、圧縮機(10)と、凝縮器(20)と、第1通路(H1)を流れる冷媒と第2通路(H2)を流れる冷媒との間で熱交換を行なう熱交換器(30)と、第2膨張弁(40)とを備える。室外ユニット(2)は、循環流路の第1通路(H1)の出口と第2膨張弁(40)との間の部分から、第2通路(H2)の入口に冷媒を流す第1冷媒流路(91~94)と、第2通路(H2)の出口から圧縮機(10)の吸入ポート(G1)または中間圧ポート(G3)に冷媒を流す第2冷媒流路(96~98)と、第2冷媒流路に配置され、第2通路(H2)の出口から流出する冷媒の行き先を吸入ポート(G1)および中間圧ポート(G3)のいずれか一方に切り替える流路切替部(74)とをさらに備える。

Description

室外ユニット、冷凍サイクル装置および冷凍機
 この発明は、室外ユニット、冷凍サイクル装置および冷凍機に関する。
 特開2017-187189号公報(特許文献1)には、圧縮機に内蔵されたモータに対してトルクを制御することにより圧縮機から吐出される冷媒の温度が過度に高温になるのを防止する冷凍装置が開示されている。
特開2017-187189号公報
 近年、冷媒としてCOなどの自然冷媒が注目を集めている。COの臨界温度は31℃で低いため、COを用いた冷凍サイクル装置の凝縮過程は外気が高温となる夏場などでは超臨界圧力状態で行なわれる。このため、システム全体が高圧になってしまうという問題がある。システム全体を高圧に耐えるように設計すると、従来のフロンまたは代替フロンのシステムよりもコストが上昇する。コストダウンのためには、負荷装置だけでも従来使用されてきた装置がそのまま使用できることが望ましい。
 しかし、負荷装置の設計圧を低くすると、室外ユニットから負荷装置に液冷媒を送る液管において予め膨張弁で減圧することが必要となる。このとき、負荷装置の膨張弁の手前で液冷媒にガス冷媒が混入すると、膨張弁の流量が著しく低下するため、能力低下を回避するために十分な過冷却度(SC:Subcool)の確保が必要である。
 また、性能向上のため、内部熱交換器を設けて過冷却度を高め、冷却側の冷媒を圧縮機の中間圧ポートに戻す中間圧インジェクション回路を採用することも考えられるが、蒸発温度が高い場合には中間圧も高いため、内部熱交換器で過冷却度を確保することが困難となる。このため、冷凍サイクル装置の能力が低下する可能性もある。
 この発明の目的は、蒸発温度が高い場合でも負荷装置の入口部分の冷媒の過冷却度を確保することが可能な室外ユニット、冷凍サイクル装置および冷凍機を提供することである。
 本開示の室外ユニットは、第1膨張弁および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットである。室外ユニットは、吸入ポート、吐出ポート、中間圧ポートを有する圧縮機と、凝縮器と、熱交換器と、第2膨張弁とを備える。熱交換器は、第1通路および第2通路を有し、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行なうように構成される。圧縮機から、凝縮器、熱交換器の第1通路、第2膨張弁に至る流路は、負荷装置と共に、冷媒が循環する循環流路を形成する。室外ユニットは、循環流路の第1通路の出口と第2膨張弁との間の部分から、第2通路の入口に冷媒を流す第1冷媒流路と、第1冷媒流路に配置される第3膨張弁と、第2通路の出口から圧縮機の吸入ポートまたは中間圧ポートに冷媒を流す第2冷媒流路と、第2冷媒流路に配置され、第1通路の出口から流出する冷媒の行き先を吸入ポートおよび中間圧ポートのいずれか一方に切り替える流路切替部とをさらに備える。
 本開示の室外ユニットおよびそれを備える冷凍サイクル装置、冷凍機によれば、蒸発温度が変化した場合でも室外ユニットから負荷装置に送出される液冷媒の過冷却度が確保できるので、冷凍能力の低下を防ぐことができる。
本開示の実施の形態1に従う冷凍サイクル装置の全体構成図である。 流路切替部74の制御を説明するためのフローチャートである。 第3膨張弁71の制御について説明するためのフローチャートである。 第4膨張弁72の制御について説明するためのフローチャートである。 第2膨張弁40の制御について説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本開示の実施の形態に従う冷凍サイクル装置の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 図1を参照して、冷凍サイクル装置1は、室外ユニット2と、負荷装置3と、延長配管84,88とを備える。
 室外ユニット2は、負荷装置3に接続されるように構成された冷凍サイクル装置1の室外ユニットである。室外ユニット2は、吸入ポートG1、吐出ポートG2、中間圧ポートG3を有する圧縮機10と、凝縮器20と、ファン22と、熱交換器30と、第2膨張弁40と、配管80~83、89とを備える。熱交換器30は、第1通路H1および第2通路H2を有し、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成される。
 負荷装置3は、第1膨張弁50と、蒸発器60と、配管85、86,87とを含む。第1膨張弁50は、たとえば、室外ユニット2と独立して制御される温度膨張弁である。
 圧縮機10は、配管89および97から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10の回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。
 凝縮器20は、圧縮機10から配管80に吐出された冷媒を凝縮して配管81へ流す。凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転数を調整することにより、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を調整することができる。
 なお、本明細書では、説明の容易のため、超臨界状態の冷媒を冷却する場合も凝縮器20と呼ぶこととする。また、本明細書では、説明の容易のため、超臨界状態の冷媒の基準温度からの低下量も過冷却度と呼ぶこととする。
 圧縮機10から、凝縮器20、熱交換器30の第1通路H1、第2膨張弁40に至る流路は、負荷装置3の第1膨張弁50、蒸発器60が配置される流路と共に、冷媒が循環する循環流路を形成する。以下、この循環流路を冷凍サイクルの「メイン回路」とも言う。
 室外ユニット2は、循環流路の第1通路H1の出口と第2膨張弁40との間の部分から、第2通路H2の入口に冷媒を流す第1冷媒流路(91~94)と、第2通路H2の出口から圧縮機10の吸入ポートG1または中間圧ポートG3に冷媒を流す第2冷媒流路(96~98)と、第2冷媒流路に配置され、第2通路H2の出口から流出する冷媒の行き先を吸入ポートG1および中間圧ポートG3のいずれか一方に切り替える流路切替部74とをさらに備える。以下において、メイン回路から分岐して第2通路H2を経由して圧縮機10に冷媒を送るこの流路を、「インジェクション流路」と呼ぶである。
 室外ユニット2は、さらに、第1冷媒流路に配置され、冷媒を貯留する受液器(レシーバ)73と、循環流路の第1通路H1の出口と第2膨張弁40との間の部分と受液器73の入口との間の配管91に配置された第3膨張弁71と、受液器73の出口の配管94と受液器73のガス排出口との間に設けられ受液器73内の冷媒ガスを排出するガス抜き通路93と、ガス抜き通路93に配置された第4膨張弁72とを備える。
 このようにインジェクション流路に受液器73を設けることにより、液管である配管82,83における過冷却度を確保することが容易となる。受液器73には一般にガス冷媒があるため、冷媒温度は飽和温度となるので、配管82に受液器73を配置すると過冷却度を確保できないからである。
 また、中間圧部分に受液器73を設けると、メイン回路の高圧部が超臨界状態である場合でも受液器73の内部に中間圧の液冷媒を貯留することが可能となる。このため、受液器73の容器の設計圧を高圧部よりも低くすることができ、容器の薄肉化によるコスト低減も図れる。
 室外ユニット2は、さらに、圧力センサ110,111,112と、温度センサ120,121,122と、流路切替部74を制御する制御装置100を備える。
 圧力センサ110は、圧縮機10の吸入圧力PLを検出し、その検出値を制御装置100へ出力する。圧力センサ111は、圧縮機10の吐出圧力PHを検出し、その検出値を制御装置100へ出力する。圧力センサ112は、第2膨張弁40の出口の配管83の圧力P1を検出し、その検出値を制御装置100へ出力する。
 室外ユニット2は、第2膨張弁40を液管に備えることによって、負荷装置3の設計圧(例えば、4MPa)以下に冷媒圧力を減圧してから負荷装置3に送出することができる。これによりCO2などの超臨界を利用する冷媒を使用しても、負荷装置3として従来と同じ設計圧の汎用製品を使用することができる。
 温度センサ120は、圧縮機10の吐出温度THを検出し、その検出値を制御装置100へ出力する。温度センサ121は、凝縮器20の出口の配管81の冷媒温度T1を検出し、その検出値を制御装置100へ出力する。温度センサ122は、熱交換器30の被冷却側の第1通路H1の出口の冷媒温度T2を検出し、その検出値を制御装置100へ出力する。
 第2冷媒流路は、熱交換器30の第2通路H2の出口と流路切替部74との間を接続する配管96と、流路切替部74とを含んで構成される。流路切替部74は、配管96が2分岐した配管97,98と、配管97,98にそれぞれ配置される開閉弁75,76とを含む。配管97は配管96と中間圧ポートG3との間に接続される。配管98は配管96と吸入ポートG1との間に接続される。開閉弁75,76の一方を選択的に開くことによって、インジェクション流路を流れる冷媒の行き先が切り替えられる。
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 図2は、流路切替部74の制御を説明するためのフローチャートである。図1、図2を参照して、制御装置100は、ステップS1において開閉弁75が開状態かつ開閉弁76が閉状態であるか否かを判断する。開閉弁75が開状態かつ開閉弁76が閉状態であれば(S1でYES)、インジェクション流路を流れる冷媒の行き先として、中間圧ポートG3が選択されている。逆にインジェクション流路を流れる冷媒の行き先として、吸入ポートG1が選択されている場合は、開閉弁75が閉状態かつ開閉弁76が開状態である。
 開閉弁75が開状態である場合(S1でYES)、ステップS2において、制御装置100は、熱交換器30の第1通路H1の出口の冷媒温度T2が第1温度Tth1以上であるか否かを判断する。
 制御装置100は、熱交換器30の第1通路H1の出口の冷媒温度T2が第1温度Tth1よりも高い場合には(S2でYES)、ステップS3~S7の処理において、冷媒の行き先を吸入ポートG1とするように流路切替部74を制御する。制御装置100は、熱交換器30の第1通路H1の出口の冷媒温度T2=第1温度Tth1である場合も(S2でYES)、ステップS3~S7の処理において、冷媒の行き先を吸入ポートG1とするように流路切替部74を制御する。
 具体的には、制御装置100は、圧縮機10の吸気温度TLがしきい値TLth1以上である場合(S3でYES)にステップS4~S7の処理を順次実行して冷媒の行き先を吸入ポートG1とするように流路切替部74を制御する。なお、圧縮機10の吸気温度TLは、圧力センサ110で検出した吸入圧力PLから換算して得ることができる。ステップS4では圧縮機10の運転が停止され、ステップS5では開閉弁75が閉止され、ステップS6では開閉弁76が開かれ、ステップS7において圧縮機10の運転が再開される。
 なお、冷媒温度T2が第1温度Tth1よりも低い場合(S2でNO)は過冷却度の確保ができており、また圧縮機10の吸気温度TLがしきい値TLth1より低い場合(S3でNO)は、蒸発温度が低いので中間圧も低くなるため、制御装置100は、ステップS4~S7の流路切替部74の切替を行なわない。
 一方、開閉弁75が閉状態である場合(S1でNO)において、熱交換器30の第1通路H1の出口の冷媒温度T2が第2温度Tth2よりも低い場合には(S8でYES)、ステップS9~S13の処理において、制御装置100は、冷媒の行き先を中間圧ポートG3とするように流路切替部74を制御する。制御装置100は、冷媒温度T2=第2温度Tth2である場合も(S2でYES)、冷媒の行き先を中間圧ポートG3とするように流路切替部74を制御する。なお、Tth1>Tth2である。
 具体的には、制御装置100は、圧縮機10の吸気温度TLがしきい値TLth1以下である場合(S9でYES)にステップS10~S13の処理を順次実行して冷媒の行き先を中間圧ポートG3とするように流路切替部74を制御する。なお、TLth1>TLth2である。ステップS10では圧縮機10の運転が停止され、ステップS11では開閉弁76が閉止され、ステップS12では開閉弁75が開かれ、ステップS13において圧縮機10の運転が再開される。
 なお、冷媒温度T2が第2温度Tth2よりも高い場合(S8でNO)は過冷却度の確保ができておらず、また圧縮機10の吸気温度TLがしきい値TLth2より高い場合(S9でNO)は、蒸発温度が高いので中間圧も高くなっているため、制御装置100は、流路切替部74は冷媒の行き先を吸入ポートG1としたまま維持し、流路切替を行なわない。
 以上説明したように制御装置100は、配管82と配管94の圧力差が小さい場合には、圧力差を拡大するように流路切替部74を制御して中間圧ポートG3から吸入ポートG1に冷媒の送り先を切り替える。このため、第3膨張弁71における減圧量が確保できるため、第3膨張弁71での温度低下量が増える。これにより、熱交換器30の第1通路H1の冷媒温度と第2通路H2の冷媒温度との温度差を確保できる。したがって熱交換器30での熱交換量が増加し、冷媒温度T2を下げることが可能となる。
 なお、図2のフローチャートのように運転停止中に流路の切替を行なう方が挙動が安定するので好ましいが、ステップS4~S7の処理のうちステップS4およびS7の処理を行なわずに運転中に流路の切替を行なうようにフローチャートを変形しても良い。同様に、ステップS10~S13の処理のうちステップS10およびS13の処理を行なわずに運転中に流路の切替を行なうようにフローチャートを変形しても良い。
 図3は、第3膨張弁71の制御について説明するためのフローチャートである。図1、図3を参照して、第3膨張弁71は、圧縮機10の吐出温度THが目標温度に一致するようにフィードバック制御される。具体的には、制御装置100は、ステップS21において、圧縮機10の吐出温度THが目標温度より高い場合には(S21でYES)、ステップS22において第3膨張弁71の開度を増加させる。これによって、受液器73を経由して中間圧ポートG3または吸入ポートG1に流入する冷媒が増えるため、吐出温度THが低下する。
 一方、圧縮機10の吐出温度THが目標温度より低い場合には(S21でNOかつS23でYES)、制御装置100は、ステップS24において第3膨張弁71の開度を減少させる。これによって、受液器73を経由して中間圧ポートG3または吸入ポートG1に流入する冷媒が減るため、吐出温度THが上昇する。
 吐出温度TH=目標温度であれば(S21でNO、かつS23でNO)、第3膨張弁71の開度は現在の状態を維持する。
 このように、制御装置100は、圧縮機10の吐出温度THが目標温度に近づくように第3膨張弁71の開度を制御する。
 なお、ステップS21の目標温度>ステップS23の目標温度として、第3膨張弁71の開度の変更の頻度を減らすようにしても良い。
 図4は、第4膨張弁72の制御について説明するためのフローチャートである。図1、図4を参照して、第4膨張弁72は、凝縮器20の出口の冷媒の過冷却度を確保するため、凝縮器20の出口の冷媒温度T1が目標温度に一致するようにフィードバック制御される。具体的には、ステップS31において、凝縮器20の出口の冷媒温度T1と凝縮器20の圧力(PHで近似)によって定まる過冷却度SCが目標値より大きい場合には(S31でYES)、制御装置100は、ステップS32において第4膨張弁72の開度を増加させる。これによって、受液器73からガス冷媒が抜け、液冷媒量が増加するため、メイン回路を循環する冷媒量が減少するので、冷媒温度が全体的に上昇し、冷媒温度T1が上昇するので過冷却度SCが減少する。
 一方、凝縮器20の出口の冷媒温度T1と凝縮器20の圧力(PHで近似)によって定まる過冷却度SCが目標値より小さい場合には(S33でYES)、制御装置100は、ステップS34において第4膨張弁72の開度を減少させる。これによって、受液器73のガス冷媒量が増え、液冷媒量が減るため、メイン回路を循環する冷媒量が増加するので、冷媒温度が全体的に低下し、冷媒温度T1が低下するので過冷却度SCが増加する。
 過冷却度SC=目標値であれば(S31でNO、かつS33でNO)、第4膨張弁72の開度は現在の状態を維持する。
 このように、制御装置100は、凝縮器20の出口の冷媒温度T1が目標温度に近づくように第4膨張弁72の開度を制御する。
 なお、ステップS31の目標値>ステップS33の目標値として、第4膨張弁72の開度の変更の頻度を減らすようにしても良い。
 制御装置100は、冷媒の超臨界領域を使用するように、圧縮機10および第2膨張弁40の制御を行なう。たとえば、夏季など外気温度が冷媒の超臨界温度よりも高い場合、制御装置100は圧縮機10の回転速度を春季または秋季よりも高めて高圧部の圧力を上昇させる。この場合、メイン回路の高圧部の圧力が高くなる。負荷装置3を通常冷媒で使用される装置と共用可能とするために、第2膨張弁40で減圧が行なわれる。このとき第2膨張弁40は以下のように制御される。
 図5は、第2膨張弁40の制御について説明するためのフローチャートである。図1、図5を参照して、第2膨張弁40は、圧力P1が目標圧力に一致するようにフィードバック制御される。具体的には、ステップS41において、圧力P1が目標圧力より高い場合には(S41でYES)、制御装置100は、ステップS42において第2膨張弁40の開度を減少させる。これによって、第2膨張弁40による減圧量が増えるので、圧力P1は低下する。
 一方、圧力P1が目標圧力より低い場合には(S41でNOかつS43でYES)、ステップS44において制御装置100は、第2膨張弁40の開度を増加させる。これによって、第2膨張弁40による減圧量が減るので、圧力P1は上昇する。
 圧力P1=目標圧力であれば(S41でNO、かつS43でNO)、第2膨張弁40の開度は現在の状態を維持する。
 このように圧力P1が制御されるため、負荷装置3内の圧力を通常冷媒で使用される装置の設計圧力以下にすることができ、R410Aなどの冷媒を使用する従来機の負荷装置の共用化が可能となる。
 以上、本実施の形態を冷凍サイクル装置1を備える冷凍機を例示して説明したが、冷凍サイクル装置1は、空気調和機などに利用されても良い。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 冷凍サイクル装置、2 室外ユニット、3 負荷装置、10 圧縮機、20 凝縮器、22 ファン、30 熱交換器、40 第2膨張弁、50 第1膨張弁、60 蒸発器、71 第3膨張弁、72 第4膨張弁、73 受液器、74 流路切替部、75,76 開閉弁、80,81,82,83,85,89,91,94,96,97,98 配管、84,88 延長配管、93 ガス抜き通路、100 制御装置、102 CPU、104 メモリ、110,111,112 圧力センサ、120,121,122 温度センサ、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、H1 第1通路、H2 第2通路。

Claims (9)

  1.  第1膨張弁および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットであって、
     吸入ポート、吐出ポート、中間圧ポートを有する圧縮機と、
     凝縮器と、
     第1通路および第2通路を有し、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行なうように構成された熱交換器と、
     第2膨張弁とを備え、
     前記圧縮機から、前記凝縮器、前記熱交換器の前記第1通路、前記第2膨張弁に至る流路は、前記負荷装置と共に、冷媒が循環する循環流路を形成し、
     前記循環流路の前記第1通路の出口と前記第2膨張弁との間の部分から、前記第2通路の入口に冷媒を流す第1冷媒流路と、
     前記第1冷媒流路に配置される第3膨張弁と、
     前記第2通路の出口から前記圧縮機の前記吸入ポートまたは前記中間圧ポートに冷媒を流す第2冷媒流路と、
     前記第2冷媒流路に配置され、前記第2通路の出口から流出する冷媒の行き先を前記吸入ポートおよび前記中間圧ポートのいずれか一方に切り替える流路切替部とをさらに備える、室外ユニット。
  2.  前記第1冷媒流路に配置され、冷媒を貯留する受液器と、
     前記受液器の出口と前記受液器との間に設けられ前記受液器内の冷媒ガスを排出するガス抜き通路と、
     前記ガス抜き通路に配置された第4膨張弁とをさらに備え、
     前記第3膨張弁は、前記循環流路の前記第1通路の出口と前記第2膨張弁との間の部分と前記受液器の入口との間に配置される、請求項1に記載の室外ユニット。
  3.  前記流路切替部を制御する制御装置をさらに備え、
     前記制御装置は、前記熱交換器の第1通路の出口の温度が第1温度よりも高い場合には、冷媒の行き先を前記吸入ポートとするように前記流路切替部を制御する、請求項2に記載の室外ユニット。
  4.  前記制御装置は、前記熱交換器の第1通路の出口の温度が第2温度よりも低い場合には、冷媒の行き先を前記中間圧ポートとするように前記流路切替部を制御する、請求項3に記載の室外ユニット。
  5.  前記制御装置は、前記圧縮機の吐出ポートの冷媒温度が目標温度に近づくように前記第3膨張弁の開度を制御する、請求項3に記載の室外ユニット。
  6.  前記制御装置は、前記凝縮器の出口の冷媒温度が目標温度に近づくように前記第4膨張弁の開度を制御する、請求項3に記載の室外ユニット。
  7.  前記制御装置は、前記冷媒の超臨界領域を使用するように、前記圧縮機および前記第2膨張弁の制御を行なう、請求項3~6のいずれか1項に記載の室外ユニット。
  8.  請求項1~7のいずれか1項に記載の室外ユニットと、前記負荷装置とを備える冷凍サイクル装置。
  9.  請求項8に記載の冷凍サイクル装置を備える冷凍機。
PCT/JP2019/015681 2019-04-10 2019-04-10 室外ユニット、冷凍サイクル装置および冷凍機 WO2020208752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021513096A JP7150148B2 (ja) 2019-04-10 2019-04-10 室外ユニット、冷凍サイクル装置および冷凍機
CN201980094860.7A CN113692517B (zh) 2019-04-10 2019-04-10 室外单元、制冷循环装置及制冷机
EP19923884.1A EP3954947B1 (en) 2019-04-10 2019-04-10 Outdoor unit, refrigeration cycle device, and refrigerating machine
PCT/JP2019/015681 WO2020208752A1 (ja) 2019-04-10 2019-04-10 室外ユニット、冷凍サイクル装置および冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015681 WO2020208752A1 (ja) 2019-04-10 2019-04-10 室外ユニット、冷凍サイクル装置および冷凍機

Publications (1)

Publication Number Publication Date
WO2020208752A1 true WO2020208752A1 (ja) 2020-10-15

Family

ID=72751144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015681 WO2020208752A1 (ja) 2019-04-10 2019-04-10 室外ユニット、冷凍サイクル装置および冷凍機

Country Status (4)

Country Link
EP (1) EP3954947B1 (ja)
JP (1) JP7150148B2 (ja)
CN (1) CN113692517B (ja)
WO (1) WO2020208752A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022162775A1 (ja) * 2021-01-27 2022-08-04
WO2022249288A1 (ja) * 2021-05-25 2022-12-01 三菱電機株式会社 冷凍サイクル装置
WO2022249289A1 (ja) * 2021-05-25 2022-12-01 三菱電機株式会社 冷凍サイクル装置
EP4375591A4 (en) * 2021-07-30 2024-05-29 Midea Group Co., Ltd. AIR CONDITIONER CONTROL METHOD AND APPARATUS, AIR CONDITIONER AND RECORDING MEDIUM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127531A (ja) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp 冷凍空調装置
JP2010526985A (ja) * 2007-05-14 2010-08-05 キャリア コーポレイション フラッシュタンクエコノマイザを備えた冷媒蒸気圧縮システム
US20110094248A1 (en) * 2007-12-20 2011-04-28 Carrier Corporation Refrigerant System and Method of Operating the Same
WO2015063838A1 (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
JP2017187189A (ja) 2016-04-01 2017-10-12 ダイキン工業株式会社 冷凍装置
JP2018054236A (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318614A (ja) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd 空気調和機
JP5500240B2 (ja) * 2012-05-23 2014-05-21 ダイキン工業株式会社 冷凍装置
JP5516712B2 (ja) * 2012-05-28 2014-06-11 ダイキン工業株式会社 冷凍装置
JP6420686B2 (ja) * 2015-02-24 2018-11-07 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526985A (ja) * 2007-05-14 2010-08-05 キャリア コーポレイション フラッシュタンクエコノマイザを備えた冷媒蒸気圧縮システム
US20110094248A1 (en) * 2007-12-20 2011-04-28 Carrier Corporation Refrigerant System and Method of Operating the Same
JP2010127531A (ja) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp 冷凍空調装置
WO2015063838A1 (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
JP2017187189A (ja) 2016-04-01 2017-10-12 ダイキン工業株式会社 冷凍装置
JP2018054236A (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954947A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022162775A1 (ja) * 2021-01-27 2022-08-04
WO2022162775A1 (ja) 2021-01-27 2022-08-04 三菱電機株式会社 冷凍サイクル装置
JP7450772B2 (ja) 2021-01-27 2024-03-15 三菱電機株式会社 冷凍サイクル装置
WO2022249288A1 (ja) * 2021-05-25 2022-12-01 三菱電機株式会社 冷凍サイクル装置
WO2022249289A1 (ja) * 2021-05-25 2022-12-01 三菱電機株式会社 冷凍サイクル装置
JP7466771B2 (ja) 2021-05-25 2024-04-12 三菱電機株式会社 冷凍サイクル装置
EP4375591A4 (en) * 2021-07-30 2024-05-29 Midea Group Co., Ltd. AIR CONDITIONER CONTROL METHOD AND APPARATUS, AIR CONDITIONER AND RECORDING MEDIUM

Also Published As

Publication number Publication date
EP3954947A4 (en) 2022-03-23
JPWO2020208752A1 (ja) 2020-10-15
JP7150148B2 (ja) 2022-10-07
CN113692517B (zh) 2022-12-23
EP3954947A1 (en) 2022-02-16
CN113692517A (zh) 2021-11-23
EP3954947B1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2020208752A1 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
US20100175400A1 (en) Refrigeration apparatus
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP7116346B2 (ja) 熱源ユニット及び冷凍装置
JP7224480B2 (ja) 室外ユニットおよび冷凍サイクル装置
CN114270113B (zh) 热源机组及制冷装置
WO2021048899A1 (ja) 室外ユニット及び冷凍サイクル装置
JP7378561B2 (ja) 室外ユニットおよび冷凍サイクル装置
US11788759B2 (en) Refrigeration system and heat source unit
CN114364929B (zh) 室外单元以及冷冻循环装置
JP2009236430A (ja) 圧縮式冷凍機及びその容量制御方法
JP2010014386A (ja) 冷凍装置
WO2022013975A1 (ja) 冷熱源ユニットおよび冷凍サイクル装置
JP6835176B1 (ja) 冷凍装置
WO2021192292A1 (ja) 室外ユニットおよび冷凍サイクル装置
WO2024023993A1 (ja) 冷凍サイクル装置
JP7094443B2 (ja) 熱源側ユニットおよび冷凍サイクル装置
JP2018179370A (ja) 冷凍装置
JP2022083089A (ja) 熱源システムおよび冷凍装置
JP2022083173A (ja) 熱源システムおよび冷凍装置
JP2022070152A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923884

Country of ref document: EP

Effective date: 20211110