WO2020204620A1 - 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법 - Google Patents

폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법 Download PDF

Info

Publication number
WO2020204620A1
WO2020204620A1 PCT/KR2020/004498 KR2020004498W WO2020204620A1 WO 2020204620 A1 WO2020204620 A1 WO 2020204620A1 KR 2020004498 W KR2020004498 W KR 2020004498W WO 2020204620 A1 WO2020204620 A1 WO 2020204620A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
catalyst
tin
stannous
compound
Prior art date
Application number
PCT/KR2020/004498
Other languages
English (en)
French (fr)
Inventor
김천기
박미소
김무송
Original Assignee
효성티앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200036752A external-priority patent/KR102225086B1/ko
Application filed by 효성티앤씨 주식회사 filed Critical 효성티앤씨 주식회사
Priority to EP20785227.8A priority Critical patent/EP3950768A4/en
Priority to CN202080025243.4A priority patent/CN113677733A/zh
Priority to US17/440,509 priority patent/US20220169784A1/en
Priority to JP2021559219A priority patent/JP7475364B2/ja
Publication of WO2020204620A1 publication Critical patent/WO2020204620A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester polymerization catalyst and a method of manufacturing polyester using the same, and more particularly, it is environmentally friendly and capable of conducting polymerization with a small amount instead of a catalyst that causes environmental problems such as antimony during the production of polyester. It relates to a new polyester polymerization catalyst and a method for producing polyester using the same.
  • Polyester resins have excellent mechanical properties and chemical properties, and have been widely used in various fields such as beverage containers, medical supplies, packaging materials, sheets, films, tire cords, and automobile molded products.
  • the polymerization catalyst of polyester resin is a material that influences the quality and production efficiency of the resin, and is a field in which fierce competition for development of the polyester resin manufacturing technology is in progress. Given the current price and efficiency, the most commercially successful catalyst for polyester polymerization is an antimony catalyst.
  • the antimony metal precipitates and causes a problem such as catalytic reduction at a level of about 10 to 15% of the input amount or discoloration of the product color. It lowers the L value and may cause process problems such as imprisonment contamination, increased pressurization, and emissary. Accordingly, advanced countries are gradually pushing for restrictions or bans on the use of antimony-based catalysts, and development of eco-friendly polyester polymerization catalysts that can replace metals that cause toxicity such as antimony is in a hurry.
  • U.S. Patent Publication No. 2010-0184916 discloses information on manufacturing polyester using titanium, which is a representative eco-friendly metal.
  • the titanium catalyst has a problem in that the resin has a large degree of yellowing, so that the color tone of the resin is not excellent, the thermal stability is not excellent, and the content of oligomer is large. Due to these drawbacks, the titanium catalyst has a limitation that is difficult to commercially apply to polyester production, although the metal itself has excellent activity.
  • US Patent No. 6,365,659 discloses information on manufacturing polyester by mixing and using eco-friendly metals germanium, aluminum, and zirconium.
  • the germanium compound catalyst itself has high activity, but the germanium catalyst has a problem in commercial application due to the high price of the catalyst when the amount used for polymerization is large.
  • the present invention is to solve the problems of the prior art as described above, one object of the present invention is an eco-friendly catalyst that can replace heavy metal catalysts such as antimony, which are harmful to the human body and the environment, and has high catalytic activity, so even a small amount It is to provide a polyester polymerization catalyst that exhibits sufficient polymerization activity and can secure a high viscosity level even with a small content.
  • Another object of the present invention is to provide a method for producing polyester using the catalyst of the present invention.
  • Another object of the present invention is to provide a polyester that can be practically provided without using an antimony-based compound as a polycondensation catalyst, has few foreign substances, and has excellent heat resistance and color (Color L).
  • One aspect of the present invention for solving the above technical problem relates to a polyester polymerization catalyst comprising an inorganic tin first compound (stannous tin compound).
  • a polycondensation catalyst comprising an inorganic tin first compound (stannous tin compound) It relates to a method for producing a polyester characterized by using an ester polymerization catalyst.
  • Another aspect of the present invention relates to a polyester produced using the polyester polymerization catalyst of the present invention.
  • the present invention by using a catalyst that does not contain heavy metals harmful to the human body and the environment, it is possible to manufacture a polyester resin that does not contain environmental pollution and components harmful to the human body.
  • the polyester polymerization catalyst composed of the first inorganic tin compound (stannous tin compound) of the present invention is composed of the first inorganic tin compound, and is eco-friendly and has high catalytic activity, so that the amount of catalyst input is less than 1/5 compared to the existing antimony catalyst. It can be lowered to and the thermal decomposition product of polyester can be improved by 50% or more.
  • the polyester polymerization catalyst of the present invention When the polyester polymerization catalyst of the present invention is applied, the heat resistance of the polyester is improved, so that the content of acetaldehyde generated as a polyester decomposition product can be reduced, and the content of cyclic oligomers can be improved by conducting a polycondensation reaction at a low polymerization temperature. .
  • novel polyester polymerization catalyst of the present invention In the case of a product to which the novel polyester polymerization catalyst of the present invention is applied, it can be commercialized even in the same extrusion process as the product to which the antimony catalyst is applied, and there are few catalyst foreign substances and exhibits improved heat resistance.
  • the polyester obtained by polycondensation in the presence of the polyester polymerization catalyst of the present invention can provide an effect of dramatically improving the thermal stability and color (Color L) of the polymer and improving processability compared to conventional products.
  • polyester polymerization catalyst composition of the present invention and a method for producing polyester will be described in more detail.
  • the polyester polymerization catalyst according to the present invention includes an inorganic tin first compound (Tin(II), stannous tin compound).
  • the inorganic tin first compound is a divalent inorganic tin compound having no Sn-C bond, and a metal salt form composed of a salt type is preferable. These inorganic tin first compounds may be used alone or in combination of two or more.
  • the organic tin compound is excluded from the present invention because it is a substance subject to strong environmental regulations compared to the inorganic tin compound used in the present invention.
  • the inorganic tin second compound (stannic compound) among the inorganic tin compounds the stability is high, but there is a limit of low activity as a catalyst.
  • the value of the redox potential energy is lower than that of the conventional antimony (Sb) catalyst or the inorganic tin second compound catalyst (stannic compound), so polyester There is a remarkable advantage of not being easily reduced during polymerization and extrusion (spinning, film forming) processes.
  • the inorganic tin first compound catalyst used in the present invention is easily reduced during the polymerization reaction and does not have a problem in that the activity decreases or catalyst residues in the polymerization reactor are generated due to the reduced product, and the spinning pack during the extrusion (spinning, film formation) process And it is possible to obtain a result of improved fairness because there is little occurrence of nozzle foreign matter.
  • the standard reduction potential means that the larger the value, the greater the reducibility, and the smaller the value, the lower the reducibility.
  • antimony (Sb) which has been mainly used in polyester polymerization, has a reducing power with a positive (+) standard reduction potential in the state of oxidation number 3 or 5, which has catalytic activity.
  • the inorganic tin compound used in the present invention has a standard reduction potential of less than OV in the oxidation state of 2, so that the reduction becomes involuntary to maintain catalytic activity, and polyester During the polymerization and extrusion process, it is possible to reduce the reduction product (catalyst residue) generated.
  • the inorganic tin first compound may be a divalent tin oxide, a carboxylate of divalent tin, or an alkoxide of divalent tin.
  • Non-limiting examples of the inorganic tin first compound include stannous oxide, stannous pyrophosphate, stannous phosphate, stannous tartrate, stannous acetate, stannous oxalate, stannous stearate, oleic acid.
  • stannous, stannous gluconate, stannous citrate, stannous 2-ethylhexanoate (tin(II) 2-ethylhexanoate), stannous ethoxide, stannous acetylacetonate and stannous glycolic acid Includes comments.
  • stannous oxalate, stannous acetate or stannous glycolate are preferred.
  • the polyester polymerization catalyst of the present invention can be added at any stage during polyester polymerization.
  • the slurry is prepared prior to the esterification step (EG/TPA mixture)
  • the esterification step the polycondensation step of the esterification reactant, or the slurry is prepared before the esterification step
  • the inorganic tin first compound catalyst is preferably added to the polycondensation step of the esterification reaction product.
  • the inorganic tin first compound catalyst of the present invention can be used for homopolyester or copolyester polymerization, particularly when used for homopolyester polymerization, can produce homopolyester with high melting point and very high molecular weight.
  • the inorganic tin first compound catalyst may be used in either a method in which the catalyst itself is added as a powder to the polyester process or in the form of a catalyst solution, and a method in which the catalyst is prepared and added to an ethylene glycol solution. However, when the catalyst is prepared and added to the ethylene glycol solution, preferably, the ethylene glycol solution and the inorganic tin first compound are reacted to prepare and add the first tin glycolic acid.
  • Antimony-based catalysts used as conventional polyester polymerization catalysts have low catalytic activity and use 50 ppm to 500 ppm (based on the amount of Sb element) based on polyester.
  • even a small amount of 10 ppm to 200 ppm, preferably 10 ppm to 100 ppm (based on the amount of Sn element) can sufficiently secure the equivalent polycondensation reactivity. Due to such a low catalyst content, the catalytic foreign matter of the polyester is improved, and the generation of foreign matter in the extrusion process (spinning and film formation) according to the catalytic reduction product is reduced, so that the effect of improving the foreign matter on the die can be obtained.
  • a catalyst is used at a high concentration, a grayish phenomenon of the polyester resin may occur.In the present invention, a remarkable effect of improving the color of the polyester polymer and product due to the low catalyst content can be obtained. have.
  • the heat resistance of the polyester is improved, so that the content of acetaldehyde generated as a polyester decomposition product can be reduced, and the content of the cyclic oligomer can be improved by conducting a polycondensation reaction at a low polymerization temperature.
  • the catalyst of the present invention has a relatively low toxicity of the metal itself, and thus has a low possibility of causing problems to humans and the environment, and exhibits high activity within a short reaction time even with a small amount.
  • the polyester produced by using the catalyst of the present invention has excellent physical properties such as viscosity and color. Therefore, it can be commercially usefully applied in mass production of polyester, especially in the production of polyethylene terephthalate.
  • polyester composition comprising, as a polymerization catalyst, an inorganic tin compound containing a tin metal having a +2 valency and a standard reduction potential of 0 V or less.
  • the polyester composition of the present invention is a homopolyester composition.
  • the polyester composition of the present invention has a high melting point, a very high molecular weight, and a low melt flow index, and can be advantageously used for polymerization of a homopolyester.
  • the composition may contain an inorganic stannous compound in an amount of 10 ppm to 200 ppm.
  • the polyester composition according to the present invention may further include an antioxidant, a sunscreen, an antistatic agent, a flame retardant, a surfactant, and the like, if necessary.
  • the method for preparing the polyester composition according to the present invention is not particularly limited, and may be prepared according to a method commonly used in the technical field to which the present invention pertains. For example, it may be carried out batchwise or continuously, and is not particularly limited.
  • the method for producing a polyester includes a step of polymerizing a dicarboxylic acid component and a glycol component in the presence of a catalyst composition containing an inorganic tin first compound.
  • polymerization refers to both homopolymerization and copolymerization, and the term copolymerization includes triple polymerization or copolymerization of three or more monomers.
  • the inorganic tin first compound catalyst of the present invention can be used for homopolyester or copolyester polymerization, particularly when used for homopolyester polymerization, can produce homopolyester with high melting point and very high molecular weight.
  • the inorganic tin first compound catalyst of the present invention has excellent catalyst activity and productivity.
  • the step of polymerizing the dicarboxylic acid component and the glycol component comprises esterification reaction of the dicarboxylic acid component and the glycol component, and polycondensation of the reaction product of the esterification reaction.
  • the esterification step after obtaining an oligomer by transesterification reaction, after adding organic polymer particles and various additives, a polycondensation reaction is performed by adding an inorganic tin first compound as a polycondensation catalyst, High molecular weight polyester can be obtained.
  • a dicarboxylic acid component and a glycol component are esterified.
  • the dicarboxylic acid component includes, for example, terephthalic acid, oxalic acid, malonic acid, azelaic acid, fumaric acid, pimelic acid, and suberic acid.
  • Isophthalic acid, dodecane dicarboxylic acid, naphthalene dicarboxylic acid, biphenyldicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,3-cyclohexane dicarboxylic acid, succinic acid, glutaric acid Acid, adipic acid, sebacic acid, 2,6-naphthalene dicarboxylic acid, 1,2-norbornane dicarboxylic acid, 1,3-cyclohexane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid Acid, 1,3-cyclobutane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, 5-lithium sulfoisophthalic acid, or 2-sodium sulfoterephthalic acid and the like may be
  • terephthalic acid may be preferably used as the dicarboxylic acid component.
  • glycol component for example, ethylene glycol, 1,2-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene Glycol, 1,4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-cyclohexane diol, 1,3-cyclohexane Diol, 1,4-cyclohexane diol, propane diol, 1,6-hexanediol, neopentyl glycol, tetramethylcyclobutane diol, 1,4-cyclohexane diethanol, 1,10-decamethylene glycol, 1,12 -Dodecane diol, polyoxyethylene glycol, polyoxymethylene glycol, polyoxytetramethylene glycol, glycerol, etc.
  • the step of esterifying the dicarboxylic acid component and the glycol component may be performed at a temperature of about 200°C to about 300°C, preferably about 230°C to about 280°C. It can be carried out by reacting for about 6 hours, preferably about 2 to about 5 hours.
  • the reaction product of the esterification reaction is polycondensed.
  • the polycondensation of the reaction product of the esterification reaction may be performed at a temperature of about 200°C to about 300°C, preferably about 260°C to about 290°C and a reduced pressure condition of about 0.1 to about 1 torr for about 1 to about 3 hours, Preferably, it can be carried out by reacting for about 1 hour 30 minutes to about 2 hours 30 minutes.
  • the inorganic tin first compound catalyst of the present invention may be added to the preparation of the slurry before the esterification reaction, or to the esterification reaction and before the polycondensation step after the esterification reaction.
  • the esterification reaction is improved, but the effect of improving the polycondensation time is small, and diethylene glycol (DEG )
  • DEG diethylene glycol
  • the content may be slightly increased, so in the present invention, it is preferable to add the reactant to the polycondensation step after the esterification reaction. By doing this, the polycondensation time can be significantly shortened and productivity can be improved compared to the case of using a conventional catalyst.
  • the inorganic tin first compound catalyst in the case of the inorganic tin first compound catalyst, about 200 ppm or less based on the content of tin element contained in the inorganic tin first compound catalyst with respect to the weight of the finally produced polyester, For example, about 10 to about 200 ppm, preferably about 10 ppm to about 100 ppm may be used.
  • the inorganic tin first compound catalyst of the present invention decreases the activity, resulting in a long reaction time and a low viscosity. There may be a problem that polyester is produced, and if it exceeds 200 ppm, it may cause foreign materialization due to insoluble precipitates or a decrease in color tone due to residual metal ions.
  • the polycondensation reaction can be carried out even when a small amount of the catalyst is used.
  • a high viscosity product can be obtained with a short reaction time.
  • the amount of catalyst used can be reduced, the color tone can be improved by reducing the grayish phenomenon of the polyester resin produced after polymerization, and the existing low viscosity can be increased, which is very advantageous industrially.
  • polyester has a high softening point
  • the polyester resin tends to be decomposed during high-temperature processing to generate acetaldehyde.
  • Acetaldehyde has a remarkable taste, and when used in food-related products, it adversely affects the flavor and aroma of food.
  • the polyester polymerization catalyst of the present invention is applied, the heat resistance of the polyester is improved, so that the production of acetaldehyde can be reduced during the polyester production.
  • the polyester may be formed by liquid phase polymerization, and the polyester formed at this time may have an intrinsic viscosity of about 0.50 to about 0.70 dl/g. Meanwhile, according to the method of manufacturing a polyester of the present invention, the polyester may be formed by solid-phase polymerization, and the polyester formed at this time may have an intrinsic viscosity of about 0.70 to about 1.3 dl/g.
  • polyester produced by the production method of the present invention using the polyester polymerization catalyst of the present invention.
  • polyester for example, polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylenedimethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate, polyethylene- 1,2-bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate, and the like.
  • the polyethylene terephthalate oligomer made in the esterification reactor was transferred to the polycondensation reactor, and 200 ppm based on the final obtained polyethylene terephthalate was added to the stannous oxide catalyst, and the reaction temperature reached 288° C. under high vacuum pressure over about 2 hours and 30 minutes. Condensation polymerization was performed until this time.
  • a polyester polymer was prepared in the same manner as in Example 1, except that 10 to 200 ppm of the inorganic tin first compound shown in Table 1 was used as a catalyst.
  • a polyester polymer was prepared in the same manner as in Example 1 except that a catalyst was not used.
  • a polyester polymer was prepared in the same manner as in Example 1, except that the antimony catalyst solution prepared in Comparative Preparation Example 1 was used as a catalyst.
  • a polyester polymer was prepared in the same manner as in Example 1, except that the antimony catalyst solution shown in Table 1 was used as a catalyst.
  • a polyester polymer was prepared in the same manner as in Example 1, except that the inorganic tin second compound (Tin(IV), Stannic Tin compound) shown in Table 1 was used as a catalyst.
  • a polyester polymer was prepared in the same manner as in Example 1, except that 1 ppm or 500 ppm of the inorganic tin first compound shown in Table 1 was used as a catalyst.
  • R.V. Number of seconds to fall of sample/number of seconds to fall of solvent
  • I.V. 1/4 ⁇ [(R.V.-1)/ C]+3/4 ⁇ (lnR.V./C)
  • C represents the concentration (g/100ml) of the sample in the solution.
  • the sample was dissolved using O-cresol and then analyzed using acid base neutralization titration. Specifically, a sample of around 0.2 g was taken, and 10 ml of benzyl alcohol was added thereto. After dissolving by heating for 10 minutes in a 200°C heating block, it was cooled in a water bath for 1 minute. Add 10 ml of chloroform and a few drops of phenol red and phenolphthalein indicators.
  • CEG carboxylman short group
  • A ml consumed in the sample
  • B blank
  • W sample weight
  • the frozen crushed polyester sample was put into a headspace sampler vial, sealed, and then thermally extracted at 160°C for 2 hours and analyzed by gas chromatography GC (Agilent 7890).
  • the color L value was measured under the condition of a D65 light source and 10°.
  • the L value measured by the spectrophotometer is a colorimetric value calculated from the CIE 1976 CIE Lab color difference equation after measuring the reflectance of the sample.
  • the physical properties (color color, CEG concentration, DEG concentration, heat resistance) of the polyethylene terephthalate produced in Examples 1 to 70 are equal or more than those of Comparative Examples 2 to 7 using an antimony catalyst. You can check the excellence.
  • Comparative Examples 8 to 43 using the inorganic tin second compound (Stannic) the polycondensation time was longer than that of the catalyst compositions of Examples 1 to 70 and contained a large amount of acetaldehyde. Therefore, it can be seen that the inorganic tin first compound catalyst of the present invention is highly active as a polyester polymerization catalyst, so that the polymerization time can be significantly shortened and exhibits a high intrinsic viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 폴리에스터 중합 촉매 및 이를 이용하는 폴리에스터의 제조방법에 관한 것으로, 본 발명의 무기 주석 제1 화합물(stannous tin compound)을 포함하는 폴리에스터 중합 촉매는 독성이 없어 안전하고, 안티몬 촉매와 대비하여 동등 또는 그 이상의 촉매 활성을 가지며, 중합 반응속도를 빠르게 하고 적은 함량으로도 높은 점도 수준을 확보할 수 있고 아세트알데하이드의 생성을 감소시키며, 종래 기술에 의한 폴리에스터에 비해서 폴리머의 열안정성 및 색상도 개선할 수 있다.

Description

폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법
본 발명은 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법에 관한 것으로, 더욱 상세하게는 폴리에스터의 제조 시에 안티몬과 같은 환경 문제를 야기하는 촉매 대신에 친환경적이고 적은 함량으로도 중합을 진행할 수 있는 신규 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법에 관한 것이다.
폴리에스터 수지는 기계적 특성 및 화학적 특성이 우수하여 종래로부터 음료 용기, 의료용품, 포장재, 시트, 필름, 타이어 코드, 자동차 성형품 등의 다양한 분야에서 광범위하게 활용되고 있다.
이러한 폴리에스터 수지의 제조에는 수지의 품질이나 생산 효율을 향상시키기 위하여 촉매를 사용한다. 폴리에스터 수지의 중합 촉매는 수지의 품질 및 생산 효율을 좌우하는 물질로서 폴리에스터 수지의 제조 기술 중 치열한 개발 경쟁이 진행되고 있는 분야이다. 현재 가격과 효율성을 고려했을 때, 폴리에스터 중합 촉매로서 상업적으로 가장 성공한 촉매는 안티몬계 촉매이다.
그러나 안티몬계 촉매로 만든 제품의 경우 중합 과정에서 많은 양의 안티몬을 사용하여야 하고, 금속 자체의 독성이 있어 오랜 기간 사용 시 안티몬이 유출되어 생체 내 유입될 경우 태아성장 저해, 발암성 등과 같은 질병 유발과 환경 문제를 야기하고 있다(Anal. Bioanal. Chem. 2006, 385, 821). 최근 연구 결과에 의하면, 안티몬 촉매를 사용하여 제조한 음용수 병, 식품 포장재에서도 생체내 독성을 일으키는 안티몬이 다량으로 검출되는 것으로 알려졌다(Environ. Sci. Technol., 2007, 41, 1560). 또한 안티몬 촉매는 중합이 실용적인 수준으로 나타나도록 하는 양으로 사용되면, 안티몬 금속이 침전하여 투입량 대비 약 10~15% 수준으로 촉매환원물이 발생하거나 회색으로 변색되는 것과 같은 문제를 야기하여 제품의 컬러의 L 치를 낮게 하며 구금 오염, 여압 상승, 사절 등의 공정상의 문제를 초래하기도 한다. 이에 따라서 선진국에서는 안티몬계 촉매의 사용에 대한 규제 또는 금지를 점차적으로 추진하고 있으며, 안티몬과 같은 독성을 유발하는 금속을 대체할 수 있는 친환경적인 폴리에스터 중합 촉매의 개발을 서두르고 있다.
이에 독성이 강한 안티몬계 촉매를 대체할 수 있는, 생체내 독성이 적으며 친환경 물질로 알려진 티타늄 금속화합물과 게르마늄 화합물을 폴리에스터 중합 촉매로 이용하는 방법들이 제안되었다. 예를 들어 미국공개특허 제2010-0184916호에서는 대표적인 친환경 금속인 티타늄을 사용하여 폴리에스터를 제조하는 것에 관한 내용이 개시되어 있다. 그러나 티타늄 촉매는 수지의 황변화 정도가 커서 수지의 색조가 우수하지 않고, 열안정성이 우수하지 않으며, 올리고머 함량이 많다는 문제점이 있었다. 이러한 단점 때문에, 티타늄 촉매는 금속 자체의 활성이 우수한 편임에도 불구하고 폴리에스터 제조에 상업적으로 적용하기 어려운 한계가 있다.
한편, 미국등록특허 제6,365,659호에서는 친환경 금속인 게르마늄, 알루미늄, 지르코늄을 혼합 사용하여 폴리에스터를 제조하는 것에 관한 내용이 개시되어 있다. 그러나 게르마늄 화합물 촉매 자체는 높은 활성을 가지고 있으나, 게르마늄 촉매는 중합에 사용되는 양이 많을 경우 촉매의 높은 가격으로 인하여 상업화 적용에 어려운 문제점이 있다.
본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 하나의 목적은 인체 및 환경에 유해한 안티몬과 같은 중금속 촉매를 대체할 수 있는 친환경 촉매이고, 높은 촉매 활성을 가져서 소량만으로도 충분한 중합 활성을 나타내어, 적은 함량으로도 높은 점도 수준을 확보할 수 있는 폴리에스터 중합 촉매를 제공하는 것이다.
본 발명의 다른 목적은 본 발명의 촉매를 이용하여 폴리에스터를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 실질적으로 안티몬계 화합물을 중축합 촉매로서 사용하지 않고 실용에 제공할 수 있고, 이물이 적고 내열성 및 색상(Color L)이 우수한 폴리에스터를 제공하는 것이다.
상술한 기술적 과제를 해결하기 위한 본 발명의 하나의 양상은 무기 주석 제1 화합물(stannous tin compound)을 포함하는 폴리에스터 중합 촉매에 관한 것이다.
본 발명의 다른 양상은 디카르복실산 성분과 글리콜 성분의 에스테르화물로 이루어지는 중합 출발 원료를 중축합해서 폴리에스터를 제조함에 있어서, 중축합 촉매로서 무기 주석 제1 화합물(stannous tin compound)을 포함하는 폴리에스터 중합 촉매를 사용하는 것을 특징으로 하는 폴리에스터의 제조방법에 관한 것이다.
본 발명의 또 다른 양상은 본 발명의 폴리에스터 중합 촉매를 이용하여 제조된 폴리에스터에 관한 것이다.
본 발명에 의하면 인체 및 환경에 유해한 중금속을 포함하지 않는 촉매를 사용함으로써 환경오염 및 인체에 유해한 성분을 포함하지 않는 폴리에스터 수지를 제조할 수 있다.
본 발명의 무기 주석 제1 화합물(stannous tin compound)로 구성되는 폴리에스터 중합 촉매는 무기 주석 제1 화합물로 구성되어, 친환경적일 뿐만 아니라 촉매 활성이 높아서 기존 안티몬 촉매 대비 촉매 투입량을 1/5 수준 이하로 낮출 수 있고 폴리에스터의 열분해물을 50% 이상 개선할 수 있다.
본 발명의 폴리에스터 중합 촉매 적용 시, 폴리에스터의 내열성이 개선되어 폴리에스터 분해물로 발생되는 아세트알데하이드의 함량을 낮출 수 있고 낮은 중합온도로 중축합 반응을 진행하여 환형 올리고머의 함량도 개선할 수 있다.
본 발명의 신규한 폴리에스터 중합 촉매가 적용된 제품의 경우, 안티몬 촉매 적용하는 제품과 동일한 압출 공정으로도 제품화가 가능하며 촉매 이물이 적고 내열성이 개선된 물성을 보인다.
또한, 본 발명의 폴리에스터 중합 촉매의 존재 하에서 중축합시켜서 얻어지는 폴리에스터는 종래품에 비해서 비약적으로 폴리머의 열안정성 및 색상(Color L)이 향상되고, 공정성도 개선되는 효과를 제공할 수 있다.
이하, 본 발명의 폴리에스터 중합 촉매 조성물 및 폴리에스터의 제조방법을 보다 상세하게 설명한다.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 본원 명세서에서 어떤 부분이 어떤 구성요소(성분)를 "포함한다"고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소(성분)를 배제하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
폴리에스터 중합 촉매
본 발명에 따른 폴리에스터 중합 촉매는 무기 주석 제1 화합물(Tin(II), stannous tin compound)을 포함한다. 무기 주석 제1 화합물은 Sn-C 결합을 갖지 않는 2가의 무기 주석 화합물로서 염 타입(salt type)으로 구성된 금속염 형태가 바람직하다. 이러한 무기 주석 제1 화합물은 단독으로 사용할 수도 있고 또는 2종 이상을 조합하여 사용할 수 있다.
유기 주석 화합물은 본 발명에서 사용하고 있는 무기 주석 화합물 대비, 강력한 환경 규제 대상 물질이므로 본 발명에서는 제외한다. 또한, 무기 주석 화합물 가운데 무기 주석 제2 화합물 (stannic compound)의 경우 안정성은 높으나 촉매로서 활성이 낮은 한계가 있다.
본 발명에서 사용하는 무기 주석 제1화합물의 경우, 종래에 사용되는 안티몬(Sb) 촉매 또는 무기 주석 제2 화합물 촉매(stannic compound)와 비교하여 표준환원 전위(redox potential energy)의 값이 낮아 폴리에스터 중합 반응 및 압출(방사, 제막) 공정 시 쉽게 환원되지 않는 현저한 이점이 있다. 본 발명에서 사용된 무기 주석 제1 화합물 촉매는 중합 반응 중 쉽게 환원되어 활성이 저하되거나 환원물로 인해 중합 반응기 내 촉매 잔사물이 발생되는 문제가 없으며, 압출(방사, 제막) 공정 시의 방사 팩 및 노즐 이물 등의 발생이 적어 공정성이 향상되는 결과를 얻을 수 있다.
Figure PCTKR2020004498-appb-img-000001
표준 환원 전위는 그 값이 클수록 환원성이 크고, 작을수록 환원성이 낮아지는 것을 의미한다. 종래에 폴리에스터 중합에서 주로 사용되었던 안티몬(Sb)은 촉매활성을 가지고 있는 산화수 3 또는 5의 상태에서 표준환원 전위가 양(+)의 값으로 환원력을 가지고 있다. 이에 비해서 본 발명에서 사용하는 무기 주석 제1화합물(stannous tin compound)은 산화수 2 상태에서 표준 환원전위가 O V 미만의 값을 갖기 때문에, 환원되는 것이 비자발적인 상태로 되어 촉매 활성을 유지하며, 폴리에스터 중합 및 압출 공정 시, 발생되는 환원물(촉매 잔사물)을 줄일 수 있다.
상기 무기 주석 제1 화합물은 2가의 산화주석, 2가의 주석의 카르복실산염, 2가의 주석의 알콕시드일 수 있다. 상기 무기 주석 제1 화합물의 비제한적인 예들은 산화 제1 주석, 피로인산 제1 주석, 인산 제1 주석, 타르타르산 제1 주석, 아세트산 제1 주석, 옥살산 제1 주석, 스테아르산 제1 주석, 올레산 제1 주석, 글루콘산 제1 주석, 구연산 제1 주석, 2-에틸헥사논산 제1 주석(tin(II) 2-ethylhexanoate), 에톡시드 제1 주석, 아세틸아세토네이트 제1 주석 및 글리콜산 제1 주석을 포함한다. 특히, 옥살산 제1 주석, 아세트산 제1 주석 또는 글리콜산 제1 주석이 바람직하다.
본 발명의 폴리에스터 중합 촉매는 폴리에스터 중합 시 어느 단계에서나 투입 가능하다. 예를 들어, 에스테르화 반응 단계 전 슬러리 조제 시(EG/TPA 혼합물)에만 투입하거나, 에스테르화 반응 단계에만 투입하거나, 에스테르화 반응물의 중축합 단계에만 투입하거나, 에스테르화 반응 단계 전 슬러리 조제 시, 에스테르화 반응 단계 및 중축합 단계에 모두 투입하는 것이 가능하다. 다만, 디카르복실산 성분 및 글리콜 성분을 에스테르화 반응시킨 후 반응물을 중축합시켜 폴리에스터를 제조할 경우 상기 무기 주석 제1 화합물 촉매는 에스테르화 반응물의 중축합 단계에 첨가되는 것이 바람직하다.
본 발명의 무기 주석 제1 화합물 촉매는 호모 폴리에스터 또는 코폴리에스터 중합에 사용될 수 있는데, 특히 호모폴리에스터 중합에 사용될 때, 높은 융점, 매우 높은 분자량의 호모 폴리에스터를 생성할 수 있다.
상기 무기 주석 제1 화합물 촉매는 촉매 자체를 폴리에스터 공정에 분말로 첨가하거나 또는 촉매 용액의 상태로 투입하는 방식과 촉매를 에틸렌글리콜 용액에 조제하여 투입하는 방식 모두 사용 가능하다. 다만, 촉매를 에틸렌글리콜 용액에 조제하여 투입 시, 바람직하게는 에틸렌글리콜 용액과 상기 무기 주석 제1 화합물을 반응시켜 글리콜산 제1주석의 형태로 조제하여 투입할 수 있다.
통상의 폴리에스터 중합 촉매로 사용되는 안티몬계 촉매는 촉매 활성이 낮아 폴리에스터 기준 50 ppm에서 500 ppm(Sb 원소량 기준)을 사용하고 있다. 이에 비해서 본 발명에서 신규 적용된 무기 주석 제1 화합물 촉매의 경우 10 ppm 내지 200 ppm, 바람직하게는 10 ppm에서 100 ppm(Sn 원소량 기준)의 소량으로도 동등한 중축합 반응성을 충분히 확보할 수 있다. 이와 같은 낮은 촉매 함량으로 인해 폴리에스터의 촉매 이물이 개선되며, 촉매 환원물에 따른 압출공정(방사 및 제막)에서의 이물 발생이 낮아져 다이 이물이 개선되는 효과를 수득할 수 있다. 또한 촉매를 고농도로 사용하는 경우에 폴리에스터 수지의 흑화(greyish) 현상이 나타날 수 있는데, 본 발명에서는 낮은 촉매 함량으로 인해 폴리에스터 중합물 및 제품의 색상(Color L)이 개선되는 현저한 효과를 얻을 수 있다.
또한, 본 발명의 촉매를 적용할 시, 폴리에스터의 내열성이 개선되어 폴리에스터 분해물로 발생되는 아세트알데하이드 함량을 낮출 수 있고, 낮은 중합온도로 중축합 반응을 진행하여 환형 올리고머의 함량도 개선할 수 있다.
본 발명의 촉매는 안티몬계 촉매와는 달리 금속 자체의 독성이 상대적으로 적어 인간과 환경에 문제를 야기할 가능성이 낮고, 적은 양으로도 짧은 반응 시간 내에 높은 활성을 나타낸다. 또한, 본 발명의 촉매를 이용하여 제조되는 폴리에스터는 점도, 색상과 같은 물리적 성질이 우수하다. 따라서 폴리에스터의 대량 생산, 특히 폴리에틸렌 테레프탈레이트의 제조 시에 상업적으로 유용하게 적용할 수 있다.
본 발명의 다른 양상은, 상술한 +2 원자가를 갖고, 표준 환원전위 0 V 이하의 주석 금속을 포함하는 무기 주석 제1 화합물(stannous tin compound)을 중합 촉매로 포함하는 폴리에스터 조성물에 관한 것이다. 바람직하게 본 발명의 폴리에스터 조성물은 호모폴리에스터 조성물이다. 본 발명의 폴리에스터 조성물은 융점이 높고 분자량이 매우 높으며, 용융흐름지수가 낮은 호모폴리에스터 중합에 유리하게 이용될 수 있다.
상기 조성물은 무기 제1 주석 화합물을 10 ppm 내지 200 ppm의 함량으로 포함할 수 있다.
본 발명에 따른 폴리에스터 조성물은 필요에 따라 산화방지제, 자외선 차단제, 대전방지제, 난연제, 계면활성제 등을 추가 포함할 수 있다.
본 발명에 따른 폴리에스터 조성물의 제조방법은 특별히 제한되지 않고, 본 발명이 속하는 기술분야에서 통상적으로 이용되는 방법에 따라서 제조할 수 있다. 예를 들어, 배치식 또는 연속식으로 수행될 수도 있으며 특별히 제한되는 것은 아니다.
폴리에스터의 제조방법
본 발명의 다른 양상은 폴리에스터의 제조방법에 관한 것이다. 폴리에스터의 제조방법은, 무기 주석 제1 화합물을 포함하는 촉매 조성물의 존재 하에서 디카르복실산 성분 및 글리콜 성분을 중합하는 단계를 포함한다. 본 발명에서 중합이라는 용어는 호모중합과 공중합을 모두 의미하며, 공중합이라는 용어는 세 개 이상의 단량체의 삼중합 또는 공중합을 포함한다.
본 발명의 무기 주석 제1 화합물 촉매는 호모 폴리에스터 또는 코폴리에스터 중합에 사용될 수 있는데, 특히 호모폴리에스터 중합에 사용될 때, 높은 융점, 매우 높은 분자량의 호모 폴리에스터를 생성할 수 있다. 또한, 본 발명의 무기 주석 제1 화합물 촉매는 촉매의 활성 및 생산성이 매우 우수하다.
본 발명의 일 실시예에 따르면, 디카르복실산 성분 및 글리콜 성분을 중합시키는 단계는, 상기 디카르복실산 성분과 글리콜 성분을 에스테르화 반응시키는 단계 및 상기 에스테르화 반응의 반응물을 중축합하는 단계를 포함할 수 있다. 상기 에스테르화 반응 단계에서는, 에스테르 교환 반응에 의해 저중합체를 얻은 후에, 유기 고분자 입자, 또 각종의 첨가물을 첨가한 후, 중축합 촉매로서 무기 주석 제1 화합물을 첨가해서 중축합 반응을 실시하고, 고분자량의 폴리에스터를 얻을 수 있다.
보다 구체적으로, 먼저 디카르복실산 성분 및 글리콜 성분을 에스테르 반응시킨다. 본 발명의 일 실시예에 따르면, 상기 디카르복실산 성분으로는 예를 들면 테레프탈산, 옥살산, 말론산, 아젤라인산(Azelaic acid), 푸마르산, 피멜산(Pimelic acid), 수베르산(Suberic acid), 이소프탈산, 도데칸 디카르복실산, 나프탈렌 디카르복실산, 비페닐디카르복실산, 1,4-사이클로헥산 디카르복실산, 1,3-사이클로헥산 디카르복실산, 호박산, 글루타르산, 아디프산, 세바스산, 2,6-나프탈렌 디카르복실산, 1,2-노르보르난 디카르복실산, 1,3-시클로헥산 디카르복실산, 1,4-시클로헥산 디카르복실산, 1,3-시클로부탄 디카르복실산, 1,4-시클로헥산 디카르복실산, 5-나트륨 술포이소프탈산, 5-칼륨 술포이소프탈산, 5-리튬 술포이소프탈산, 또는 2-나트륨 술포테레프탈산 등을 예로 들 수 있으나 반드시 이에 한정되는 것은 아니다. 상술한 디카르복실산 이외에 본 발명의 목적을 저해하지 않는 범위에서 상기에서 예시하지 않은 다른 디카르복실산도 사용할 수 있다. 본 발명의 일 실시예에 따르면, 바람직하게 상기 디카르복실산 성분으로 테레프탈산을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 글리콜 성분으로는 예를 들면, 에틸렌 글리콜, 1,2-프로필렌 글리콜, 1,2-부틸렌 글리콜, 1,3-부틸렌 글리콜, 2,3-부틸렌 글리콜, 1,4-부틸렌 글리콜, 1,5-펜탄디올, 네오펜틸 글리콜, 1,3-프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 1,2-사이클로헥산 디올, 1,3-사이클로헥산 디올, 1,4-사이클로헥산 디올, 프로판 디올, 1,6-헥산디올, 네오펜틸 글리콜, 테트라메틸사이클로부탄 디올, 1,4-사이클로헥산 디에탄올, 1,10-데카메틸렌 글리콜, 1,12-도데칸 디올, 폴리옥시에틸렌 글리콜, 폴리옥시메틸렌 글리콜, 폴리옥시테트라메틸렌 글리콜, 또는 글리세롤 등을 예로 들 수 있으나 반드시 이에 한정되는 것은 아니며, 이외에 본 발명의 목적을 저해하지 않는 범위에서 다른 글리콜을 사용할 수 있다. 바람직하게는, 상기 글리콜 성분으로써 에틸렌글리콜을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 디카르복실산 성분 및 글리콜 성분을 에스테르화 반응시키는 단계는, 약 200℃ 내지 약 300℃, 바람직하게는 약 230℃ 내지 약 280℃의 온도에서 약 1 내지 약 6시간 동안, 바람직하게는 약 2 내지 약 5시간 동안 반응시킴으로써 수행할 수 있다.
이어서 상기 에스테르화 반응의 반응물을 중축합한다. 상기 에스테르화 반응의 반응물을 중축합하는 단계는 약 200℃ 내지 약 300 ℃, 바람직하게는 약 260℃ 내지 약 290℃의 온도 및 약 0.1 내지 약 1 torr의 감압 조건에서 약 1 내지 약 3시간 동안, 바람직하게는 약 1시간 30분 내지 약 2시간 30 분 동안 반응시킴으로써 수행할 수 있다.
본 발명의 무기 주석 제1 화합물 촉매는 에스테르화 반응 전 슬러리 조제 시, 또는 에스테르화 반응에 그리고 에스테르화 반응 후 중축합 단계 이전에 투입할 수 있다. 다만, 본 발명의 무기 주석 제1 화합물 촉매를 에스테르화 반응에 투입할 경우에, 에스테르화 반응이 개선되는 효과가 있으나 중축합 시간의 개선 효과가 적고 에스테르화 반응 중 부반응물인 디에틸렌글리콜(DEG) 함량이 다소 증가하는 문제가 발생할 수 있어서, 본 발명에서는 상기 에스테르화 반응 후 반응물을 중축합하는 단계에 투입하는 것이 바람직하다. 이렇게 함으로서 종래의 촉매를 사용한 경우 보다, 중축합 시간을 대폭 단축시켜 생산성을 향상시킬 수 있다.
본 발명의 폴리에스터의 제조방법에서, 상기 무기 주석 제1 화합물 촉매의 경우 최종적으로 생산되는 폴리에스터의 중량에 대하여 상기 무기 주석 제1 화합물 촉매에 포함된 주석 원소 함량을 기준으로 약 200 ppm 이하, 예를 들어 약 10 내지 약 200 ppm, 바람직하게는 약 10 ppm 내지 약 100 ppm을 사용할 수 있다.
본 발명의 무기 주석 제1 화합물 촉매는 최종 폴리에스터를 기준으로 한 주석 원소 함량을 기준으로 10 ppm 미만을 사용하여 중축합을 시도할 경우에, 활성이 저하되어 반응시간이 길어지고 낮은 점도를 가진 폴리에스터가 만들어지는 문제가 발생할 수 있고, 200 ppm을 초과하는 경우에는 불용 침전물에 의한 이물화나, 금속 이온의 잔존에 의한 색조 저하를 일으킬 수 있다.
본 발명에 따르면 무기 주석 제1 화합물을 사용함으로써 촉매를 소량 사용하여도 중축합 반응을 수행할 수 있다. 또한, 짧은 반응시간으로 높은 점도의 생성물을 수득할 수 있다. 이와 같이 촉매의 사용량을 줄일 수 있기 때문에 중합 후 생성되는 폴리에스터 수지의 흑화(greyish) 현상을 줄여서 색조를 개선하고, 기존에 낮은 점도를 높일 수 있어 산업적으로 매우 유리하다.
일반적으로 폴리에스터는 연화점(softening point)이 높기 때문에, 폴리에스터 수지를 이용한 가공품의 제조 시에, 고온의 가공 과정에서 폴리에스터 수지가 분해되어 아세트알데하이드를 생성하는 경향이 있다. 아세트알데하이드는 두드러지는 맛을 가지고 있어, 식품 관련 제품에 사용 시에 식품의 풍미와 향에 악영향을 미친다. 본 발명의 폴리에스터 중합 촉매 적용 시, 폴리에스터의 내열성이 개선되어 폴리에스터 제조 시에 아세트알데하이드의 생성을 감소시킬 수 있다.
본 발명의 폴리에스터의 제조방법에 따르면, 상기 폴리에스터는 액상 중합에 의해 형성될 수 있으며 이때 형성된 폴리에스터는 고유점도가 약 0.50 내지 약 0.70 dl/g인 범위를 가질 수 있다. 한편, 본 발명의 폴리에스터의 제조방법에 따르면, 상기 폴리에스터는 고상 중합에 의해 형성될 수 있으며 이때 형성된 폴리에스터는 고유점도가 약 0.70 내지 약 1.3 dl/g 인 범위를 가질 수 있다.
폴리에스터 제품
본 발명의 또 다른 양상은 본 발명의 폴리에스터 중합 촉매를 이용하여 본 발명의 제조방법에 의해서 제조된 폴리에스터이다. 이와 같은 폴리에스터로서 구체적으로는 예를 들면 폴리에틸렌테레프탈레이트, 폴리트리메틸렌테레프탈레이트, 폴리테트라메틸렌테레프탈레이트, 폴리시클로헥실렌디메틸렌테레프탈레이트, 폴리에틸렌-2,6-나프탈렌디카르복실레이트, 폴리에틸렌-1,2-비스 (2-클로로페녹시)에탄-4,4'-디카르복실레이트 등이 열거된다.
이하에서, 본 발명에 따른 실시예를 참조하여 본 발명을 더욱 상세히 설명하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 본 발명의 권리범위가 한정되는 것은 아니다.
실시예
제조예 1
무기 주석 제1화합물(Tin(II), stannous tin compound) 촉매 5g을 총중량이 2 kg이 되도록 에틸렌글리콜에 희석시키고 교반속도 400 rpm으로 교반하여, 무기 주석 제1화합물 촉매를 에틸렌글리콜에 0.25% 농도로 조제하였다. 이어서 환류가능한 반응기에서 반응온도 160~180℃에서 2시간 반응시켜 무기 주석 제1화합물 촉매 용액을 생성하였다.
비교제조예 1
안티몬 40 g을 총중량이 2 kg이 되도록 에틸렌글리콜에 용해하여 400 rpm으로 교반하여 촉매 용액을 제조하였다. 환류가능한 반응기에서 반응온도 180~190℃에서 2시간 반응시켜 안티몬 글리콜레이트 용액을 생성하였다.
실시예 1
테레프탈산(TPA) 7.8 kg과 에틸렌글리콜(EG) 3.3 kg을 슬러리 조제(EG/TPA 몰 비율=1.13)하여 에스테르화 반응기에 세미-배치 방식으로 투입하여 질소 위기의 상압 반응에서 반응온도가 265℃가 될 때까지 반응시켜 폴리에스터 올리고머를 제조하였다. 이때 에스테르화 반응온도는 슬러리 투입온도 253℃, 최종 에스테르화 반응 종료온도는 265℃이며 반응시간은 3시간30분 정도이다.
에스테르화 반응기에서 만들어진 폴리에틸렌테레프탈레이트 올리고머를 중축합 반응기로 이송하여, 산화 제1 주석 촉매를 최종 수득되는 폴리에틸렌테레프탈레이트 기준 200 ppm 넣고, 약 2시간 30분에 걸쳐서 고진공 감압 하에서 반응온도가 288℃에 이를 때까지 축중합을 실시하였다.
중축합 반응 종료후 냉각수를 이용해서 고체화시켜 고유점도(IV) 0.60~0.65 dl/g 수준의 폴리에틸렌테레프탈레이트 중합물을 수득하였다.
실시예 2~70
촉매로서 하기 표 1에 나타낸 무기 주석 제1 화합물을 10~200 ppm 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
비교예 1
촉매를 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
비교예 2
촉매로서 비교제조예 1에서 제조된 안티몬 촉매 용액을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
비교예 3~7
촉매로서 하기 표 1에 나타낸 안티몬 촉매 용액을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
비교예 8~43
촉매로서 하기 표 1에 나타낸 무기 주석 제2 화합물(Tin(IV), Stannic Tin compound)을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
비교예 44~85
촉매로서 하기 표 1에 나타낸 무기 주석 제1 화합물을 1 ppm 또는 500 ppm 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 폴리에스터 중합물을 제조하였다.
실험예
상기 실시예 1~70 및 비교예 44~85에 따라 제조된 폴리에스터 중합물에 대한 물성을 아래의 방법으로 평가하여, 그 결과를 아래 표 1에 나타내었다. 비교예 1~43에 따라 제조된 폴리에스터 중합물에 대한 물성을 동일한 방법으로 평가하여, 그 결과를 아래 표 1에 나타내었다. 하기 표에서 촉매의 함량은 금속 기준으로 나타낸 것이다.
(1) 고유점도
ASTM D 4603에 따라서 페놀과 1,1,2,2-테트라클로로에탄을 6:4의 무게비로 혼합한 시약(Raw Chip 90℃, SSP 130℃)에 시료 0.1 g을 농도가 0.4 g/100ml 되도록 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨 담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 수학식 1 및 2에 의해 R.V.(상대 점도)값 및 I.V.(고유 점도)값을 계산하였다.
<수학식 1>
R.V. = 시료의 낙하 초수/용매의 낙하 초수
<수학식 2>
I.V. = 1/4Х[(R.V.-1)/ C]+3/4Х(lnR.V./C)
상기 식에서, C는 용액 중의 시료의 농도(g/100ml)를 나타낸다.
(2) 카르복실말단기(CEG) 농도
ASTM D 7409에 따라서 시료를 O-cresol을 이용하여 용해 후 산 염기 중화적정을 이용하여 분석하였다. 구체적으로, 0.2 g 내외의 시료를 취하고 여기에 벤질알콜 10 ml를 가하였다. 200℃ 히팅 블럭(heating block)에서 10분간 가열하여 용해 후, 워터 배쓰에서 1분간 냉각하였다. 여기에 클로로포름 10 ml와 페놀레드, 페놀프탈레인 지시약을 몇 방울을 적가하고
0.02 N KOH(or NaOH)을 이용하여 적정하였다. 적정량을 수학식 3에 의하여 카르복실만단기(CEG) 농도를 계산한다. 카르복실기의 수는 카르복실기 밀리당량/중합체 kg(meq/kg)으로서 표시된다.
<수학식 3>
CEG = (A-B)x0.02x1000/W
A: 시료에 소비된 ㎖, B : 블랭크, W : 시료 무게
(3) 디에틸렌글리콜(DEG) 농도
모노에탄올 아민을 이용하여 아민 분해(aminolysis)시킨 후 가스크로마토그래피로 분석하였다. 구체적으로, PET 시료 1 g을 취하고, 여기에 모노에탄올 아민 3 ml를 가하고, 냉각기를 장착한 후 핫 플레이트에서 완전히 가열 분해시켰다. 냉각 후 내부표준(1,6-헥산디올)을 함유하는 MeOH 20 ml, 테레프탈산(TPA) 10 g을 가한 후, 가스크로마토그래피를 이용하여 분석하였다. DEG 표준 정량곡선은 동일한 내부표준을 함유하고 DEG 함량이 각각 0, 0.5, 1.0, 1.5%인 MeOH 용액을 이용하여 작성하였다.
(4) 폴리머의 아세트알데하이드 함유량
ASTM F 2013에 따라서 냉동파쇄된 폴리에스터 시료를 헤드스페이스 샘플러 바이알에 넣고 밀봉한 뒤 160℃에서 2시간 열추출하여 가스 크로마토그래피 GC(Agilent 7890)로 분석하였다.
(5) 색상 측정(Color L)
색차계(BYK Gardner 제품 Color view-9000)를 이용하여 D65 광원, 10° 조건에서의 Color L 값을 측정하였다. 분광광도계에서 측정되는 L 값은 시료의 반사율을 측정한 후 CIE 1976 CIE Lab 색차식으로부터 계산되어지는 측색값이다.
Figure PCTKR2020004498-appb-img-000002
Figure PCTKR2020004498-appb-img-000003
Figure PCTKR2020004498-appb-img-000004
Figure PCTKR2020004498-appb-img-000005
상기 표 1을 참조하면, 실시예 1~70의 경우에 생성된 폴리에틸렌 테레프탈레이트의 물리적 성질(Color 색, CEG 농도, DEG 농도, 내열성)이 안티몬 촉매를 사용한 비교예 2~7과 비교하여 동등 이상으로 우수함을 확인할 수 있다. 또한, 무기 주석 제2 화합물(Stannic)을 사용한 비교예 8~43의 경우 실시예 1~70의 촉매 조성물에 비하여 중축합 시간이 오래 소요되며, 아세트알데하이드를 많이 함유하고 있었다. 따라서 본 발명의 무기 주석 제1 화합물 촉매는 폴리에스터 중합 촉매로서 고활성이어서 중합 시간을 대폭 단축할 수 있고, 높은 고유점도를 나타내는 것을 알 수 있다.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이에 의해 한정되지 않으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 다양한 수정 및 변형이 가능함은 물론이다. 따라서 본 발명의 진정한 보호범위는 아래에 기재된 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다.

Claims (13)

  1. 무기 주석 제1 화합물(stannous tin compound)을 포함하는 폴리에스터 중합 촉매.
  2. 제1항에 있어서, 상기 무기 주석 제1 화합물은, 산화 제1 주석, 피로인산 제1 주석, 인산 제1 주석, 타르타르산 제1 주석, 아세트산 제1 주석, 옥살산 제1 주석, 스테아르산 제1 주석, 올레산 제1 주석, 글루콘산 제1 주석, 구연산 제1 주석, 2-에틸헥사논산 제1 주석, 에톡시드 제1 주석, 아세틸아세토네이트 제1 주석 및 글리콜산 제1 주석으로 구성되는 군에서 선택되는 것임을 특징으로 하는 폴리에스터 중합 촉매.
  3. 제1항에 있어서, 상기 폴리에스터 중합 촉매는 호모 폴리에스터 중합용 촉매인 것을 특징으로 하는 폴리에스터 중합 촉매.
  4. 제1항 또는 제2항의 촉매를 포함하는 폴리에스터 조성물.
  5. 제4항에 있어서, 상기 조성물은 무기 제1 주석 화합물을 10 ppm 내지 200 ppm 포함하는 것을 특징으로 하는 폴리에스터 조성물.
  6. 제4항에 있어서, 상기 폴리에스터 조성물은 호모 폴리에스터 조성물인 것을 특징으로 하는 폴리에스터 조성물.
  7. 디카르복실산 성분과 글리콜 성분의 에스테르화물로 이루어지는 중합 출발 원료를 중축합해서 폴리에스터를 제조함에 있어서, 중축합 촉매로서 제1항 또는 제2항에 기재된 폴리에스터 중합 촉매를 사용하는 것을 특징으로 하는 폴리에스터의 제조방법.
  8. 제7항에 있어서, 상기 폴리에스터는 호모 폴리에스터인 것을 특징으로 하는 폴리에스터의 제조방법.
  9. 제7항에 있어서, 상기 폴리에스터 중합 촉매를 에스테르화 반응 전 슬러리 조제 시에 투입하거나, 에스테르화 반응에 투입하거나 또는 에스테르화 반응 후 중축합 단계에 투입하는 것을 특징으로 하는 폴리에스터의 제조방법.
  10. 제7항에 있어서, 상기 방법은 제1항 또는 제2항의 무기 주석 제1 화합물을 포함하는 폴리에스터 중합 촉매를 폴리에스터 공정에 분말 상태로 첨가하거나 또는 촉매 용액의 상태로 투입하는 것을 특징으로 하는 폴리에스터의 제조방법.
  11. 제7항에 있어서, 상기 방법은 제1항 또는 제2항의 무기 주석 제1 화합물을 포함하는 폴리에스터 중합 촉매를 에틸렌글리콜 용액에 조제하여 투입하는 단계를 포함하고, 이 단계는 에틸렌글리콜 용액과 상기 무기 주석 제1 화합물을 반응시켜 글리콜산 제1 주석의 형태로 조제하여 투입하는 단계임을 특징으로 하는 폴리에스터의 제조방법.
  12. 제7항에 있어서, 수득되는 폴리에스터에 대해서, 제1항 또는 제2항의 중합 촉매를 10 ppm~200 ppm 첨가하는 것을 특징으로 하는 폴리에스터의 제조방법.
  13. 제7항의 폴리에스터 제조방법에 의해서 제조되는 폴리에스터.
PCT/KR2020/004498 2019-04-05 2020-04-02 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법 WO2020204620A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20785227.8A EP3950768A4 (en) 2019-04-05 2020-04-02 POLYESTER POLYMERIZATION CATALYST AND PROCESS FOR MAKING POLYESTER WITH IT
CN202080025243.4A CN113677733A (zh) 2019-04-05 2020-04-02 制造聚酯用聚合催化剂和使用该聚合催化剂制造聚酯的方法
US17/440,509 US20220169784A1 (en) 2019-04-05 2020-04-02 Polymerization catalyst for the production of polyester and method of producing polyester using the same
JP2021559219A JP7475364B2 (ja) 2019-04-05 2020-04-02 ポリエステル重合触媒及びこれを用いたポリエステルの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190040024 2019-04-05
KR10-2019-0040024 2019-04-05
KR20190088118 2019-07-22
KR10-2019-0088118 2019-07-22
KR10-2020-0036752 2020-03-26
KR1020200036752A KR102225086B1 (ko) 2019-04-05 2020-03-26 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법

Publications (1)

Publication Number Publication Date
WO2020204620A1 true WO2020204620A1 (ko) 2020-10-08

Family

ID=72667606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004498 WO2020204620A1 (ko) 2019-04-05 2020-04-02 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법

Country Status (4)

Country Link
US (1) US20220169784A1 (ko)
EP (1) EP3950768A4 (ko)
JP (1) JP7475364B2 (ko)
WO (1) WO2020204620A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706774A (en) * 1971-02-02 1972-12-19 M & T Chemicals Inc Stannous glycoloxides
US6365659B1 (en) 1998-10-26 2002-04-02 Toray Industries, Inc. Polyester composition and film, and production method
JP2004217799A (ja) * 2003-01-15 2004-08-05 Japan Composite Co Ltd 不飽和ポリエステルの製造方法および不飽和ポリエステル樹脂
US20100184916A1 (en) 2009-01-22 2010-07-22 Nan Ya Plastics Corporation Antimony-free pet resin and pet polyester fiber made therefrom
JP2011116834A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 液晶性ポリエステル、その樹脂組成物およびそれらからなる成形品
JP2017097307A (ja) * 2015-11-28 2017-06-01 キヤノン株式会社 トナー
JP2018090673A (ja) * 2016-11-30 2018-06-14 花王株式会社 トナー用縮重合樹脂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057824A (en) * 1959-03-31 1962-10-09 Pittsburgh Plate Glass Co Tin salts as catalysts in forming polyesters
US3162616A (en) * 1959-06-10 1964-12-22 Nopco Chem Co Esterification process
US3194791A (en) * 1962-02-23 1965-07-13 Eastman Kodak Co Tin salts catalysts for polyesterification process
US3245959A (en) * 1962-04-04 1966-04-12 Socony Mobil Oil Co Inc Catalytic copolyesterification
DE1570841A1 (de) * 1965-01-22 1970-04-09 Kalle Ag Verfahren zur Herstellung eines linearen Polyesters
US3839297A (en) * 1971-11-22 1974-10-01 Ethicon Inc Use of stannous octoate catalyst in the manufacture of l(-)lactide-glycolide copolymer sutures
USRE30481E (en) * 1979-09-10 1981-01-13 Koppers Company, Inc. Process for reducing the processing time in the production of polyesters
JPS62297318A (ja) * 1986-06-18 1987-12-24 Toyobo Co Ltd 超高分子量ポリエステルの製造法
US5166310A (en) * 1991-08-27 1992-11-24 The Dow Chemical Company Preparation of polyesters with tin catalyst
JP2004514764A (ja) * 2000-11-21 2004-05-20 インペリアル・ケミカル・インダストリーズ・ピーエルシー エステル化触媒、ポリエステルプロセス、およびポリエステル製品
US20060069175A1 (en) * 2003-07-15 2006-03-30 E. I. Du Pont De Nemours And Company Aromatic polyester polyols
EP2547712B1 (en) * 2010-03-17 2018-03-21 Reliance Industries Limited Catalyst system and process for preparing of polyester resins, fibre, filaments and yarn using said catalyst system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706774A (en) * 1971-02-02 1972-12-19 M & T Chemicals Inc Stannous glycoloxides
US6365659B1 (en) 1998-10-26 2002-04-02 Toray Industries, Inc. Polyester composition and film, and production method
JP2004217799A (ja) * 2003-01-15 2004-08-05 Japan Composite Co Ltd 不飽和ポリエステルの製造方法および不飽和ポリエステル樹脂
US20100184916A1 (en) 2009-01-22 2010-07-22 Nan Ya Plastics Corporation Antimony-free pet resin and pet polyester fiber made therefrom
JP2011116834A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 液晶性ポリエステル、その樹脂組成物およびそれらからなる成形品
JP2017097307A (ja) * 2015-11-28 2017-06-01 キヤノン株式会社 トナー
JP2018090673A (ja) * 2016-11-30 2018-06-14 花王株式会社 トナー用縮重合樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950768A4

Also Published As

Publication number Publication date
JP2022528134A (ja) 2022-06-08
EP3950768A4 (en) 2023-01-11
EP3950768A1 (en) 2022-02-09
US20220169784A1 (en) 2022-06-02
JP7475364B2 (ja) 2024-04-26

Similar Documents

Publication Publication Date Title
TWI225868B (en) The polyester polymerization catalysts and utilized for producing polyester and process thereof
AU2007236595B2 (en) Process for production of polyethylene terephthalate
KR102225086B1 (ko) 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법
AU2004218085A1 (en) Polyester polymerization catalyst, process for producing the same and process for producing polyester therewith
CN111479847B (zh) 用于制备聚酯的缩聚催化剂和使用其的聚酯的制备
TWI672326B (zh) 降低聚酯中二甘醇含量的聚酯製備方法
JP2004059735A (ja) ポリエステル、それからなるポリエステル組成物およびその製造方法
WO2022065686A1 (ko) 코폴리에스테르의 제조방법
WO2020204620A1 (ko) 폴리에스터 중합 촉매 및 이를 이용한 폴리에스터의 제조방법
KR100525705B1 (ko) 폴리부틸렌 테레프탈레이트 제조방법
KR20010108463A (ko) 산화 티타늄을 이용한 촉매 작용
CN109666147B (zh) 一种线性无规可生物降解共聚酯以及制备方法
WO2020032399A1 (ko) 폴리에스테르 수지 및 이의 제조방법
WO2023203975A1 (ja) 共重合ポリエステル樹脂
JPS6159335B2 (ko)
WO2022039484A1 (ko) 폴리에스터 성형체 및 그의 제조방법
CN109666132B (zh) 一种线性无规可生物降解共聚酯以及制备方法
CN109666133B (zh) 一种线性无规可生物降解共聚酯以及制备方法
WO2017111261A1 (ko) 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지
WO2024070037A1 (ja) 共重合ポリエステル樹脂
JPS6136777B2 (ko)
WO2024070038A1 (ja) 共重合ポリエステル樹脂
JP2006096791A (ja) ポリエステルならびにポリエステルの製造方法
CN117362606A (zh) 聚对苯二甲酸丁二酯组合物及其制备方法
TW202415712A (zh) 共聚聚酯樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785227

Country of ref document: EP

Effective date: 20211105