WO2020203995A1 - 潤滑油劣化判定システム及び潤滑油劣化判定方法 - Google Patents

潤滑油劣化判定システム及び潤滑油劣化判定方法 Download PDF

Info

Publication number
WO2020203995A1
WO2020203995A1 PCT/JP2020/014662 JP2020014662W WO2020203995A1 WO 2020203995 A1 WO2020203995 A1 WO 2020203995A1 JP 2020014662 W JP2020014662 W JP 2020014662W WO 2020203995 A1 WO2020203995 A1 WO 2020203995A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
lubricating oil
determination
deterioration
image analysis
Prior art date
Application number
PCT/JP2020/014662
Other languages
English (en)
French (fr)
Inventor
関口 浩紀
元気 奥山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2021512130A priority Critical patent/JPWO2020203995A1/ja
Priority to US17/598,393 priority patent/US20220156909A1/en
Priority to EP20783998.6A priority patent/EP3951357A4/en
Priority to CN202080026121.7A priority patent/CN113614513A/zh
Publication of WO2020203995A1 publication Critical patent/WO2020203995A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention relates to a lubricating oil deterioration determination system and a lubricating oil deterioration determination method.
  • an object of the present invention is to provide a lubricating oil deterioration determination system and a lubricating oil deterioration determination method capable of determining the deterioration and fouling state of the lubricating oil with high immediacy.
  • the present inventors have deteriorated and soiled the lubricating oil by using the photographing data photographed by a photographing device with a communication function owned by a general user. It was found that the immediacy can be judged with high immediacy. That is, the present invention provides the following [1] to [12].
  • the storage unit that stores the judgment standard data related to the judgment of the deterioration of the lubricating oil and the shooting data of the judgment lubricating oil that is the judgment target taken by the shooting device with a communication function are acquired, and the judgment lubricating oil is taken from the shooting data.
  • Lubricating oil deterioration including a creation unit for creating image analysis data relating to deterioration in the above and a determination unit for creating a determination result of the deterioration degree of the determination lubricating oil from the image analysis data based on the determination reference data.
  • Judgment system [2]
  • the determination criterion data is at least one selected from the group consisting of color difference data, brightness data, color data, oil type data, new oil data, wear debris contamination data, and moisture contamination data [1].
  • Lubricating oil deterioration judgment system. [3] The lubricating oil deterioration determination system according to [1] or [2], wherein the photographing apparatus includes a photographing auxiliary device for specifying a distance and an angle to an imaged object.
  • the imaging data is a photograph of a state in which the determination lubricating oil to be determined is stored in a colorless translucent container, and is a determination of deterioration of the lubricating oil according to any one of [1] to [3]. system.
  • the creating unit has correction data for correcting an erroneous determination factor from the shooting data, and creates the image analysis data from the shooting data corrected based on the correction data.
  • the lubricating oil deterioration determination system according to any one of 1] to [4].
  • [6] The lubricating oil deterioration determination system according to any one of [1] to [5], wherein the determination result includes a determination result of the remaining life of the determination lubricating oil.
  • the input variables extracted from the photographed data are derived from the photographed data and the input variables by deriving the correlation between the deterioration determination of the determination lubricating oil and the input variables by a machine learning algorithm.
  • a machine learning unit that creates a prediction model for determining data
  • the creation unit creates the image analysis data from the prediction model and the shooting data.
  • Lubricating oil deterioration judgment system [8] The lubricating oil deterioration determination system according to [7], wherein the input variable includes at least one selected from the group consisting of color difference data, brightness data, color data, oil type data, wear powder contamination data, and moisture contamination data. ..
  • the lubricating oil deterioration determination system according to [7] or [8], wherein the algorithm is at least one selected from a group of support vector machines, linear regression, random forests, neural networks and gradient boosting trees. [10] Each time the machine learning unit creates the prediction model, the created prediction model is stored in the storage unit, and when a new prediction model is created, the machine using the stored prediction model is used.
  • a lubricating oil deterioration determination system according to any one of [7] to [9], which performs learning.
  • the step of storing the judgment standard data related to the judgment of the deterioration of the lubricating oil in the storage unit and the shooting data of the judgment lubricating oil which is the judgment target taken by the shooting device with a communication function are acquired, and the judgment is made from the shooting data.
  • Lubricating oil deterioration determination method including.
  • the image analysis data can be obtained from the shooting data and the input variable.
  • a lubricating oil deterioration determination system and a lubricating oil deterioration determination method capable of determining the deterioration and fouling state of the lubricating oil with high immediacy.
  • the lubricating oil deterioration determination system and the lubricating oil deterioration determination method according to the embodiment of the present invention (hereinafter, may be simply referred to as “the present embodiment”) will be specifically described.
  • the numerical values relating to "below”, “greater than or equal to” and “-” regarding the description of a numerical range are numerical values which can be arbitrarily combined, and the numerical values of Examples are used as upper limit values or lower limit values. It is a numerical value to be obtained.
  • the lubricating oil deterioration determination system 1 includes a storage unit 10, a creation unit 20, and a determination unit 30.
  • the components of the lubricating oil deterioration determination system 1 are connected by the system bus 40, and data is exchanged via the system bus 40.
  • the storage unit 10 stores the determination standard data 100 regarding the determination of the deterioration of the lubricating oil.
  • a user interface of an information processing device can be used, and for example, a mouse, a keyboard, a touch panel, a voice input device, or the like can be used.
  • a storage medium such as a ROM, RAM, or a hard disk can be used.
  • the judgment standard data 100 is data used as a standard for judging deterioration of lubricating oil such as color difference data, brightness data, color data, oil type data, new oil data, wear powder contamination data, and moisture contamination data.
  • the color difference data is data related to the maximum color difference obtained by separating each color component (RGB value) from the shooting data and further separating the RGB value into 256 steps.
  • the maximum color difference is determined by the difference (MAX (R, G, B) -MIN (R, G, B)) between the maximum value and the minimum value among the RGB values (R value, G value, B value). This is the required data.
  • the color difference data has data on an oil deterioration threshold value at which the maximum color difference determines the deterioration of the lubricating oil, and the deterioration is determined by whether or not the determined lubricating oil reaches the oil deterioration threshold value.
  • the brightness data is data related to brightness obtained by separating each color component (RGB value) from the shooting data and further separating the RGB value into 256 steps.
  • the brightness data has data on an oil deterioration threshold value for determining the deterioration of the lubricating oil in terms of brightness ( ⁇ E), and the deterioration is determined based on whether or not the determined lubricating oil has reached the oil deterioration threshold value.
  • the color data is the data obtained by measuring the ASTM hue according to Reference 1 of JIS K 2580 (1993), the color test method (stimulation value conversion method) 7.2 of petroleum products.
  • the color data has data on an oil deterioration threshold value for determining the deterioration of the lubricating oil, and the deterioration is determined based on whether or not the color of the lubricating oil to be determined reaches the oil deterioration threshold value.
  • Oil type data is data related to the type of lubricating oil.
  • the oil type data is, for example, data on oil types such as automobile oil, industrial lubricating oil, and marine lubricating oil, and includes data narrowed down by product name, grade name, manufacturing time, manufacturing location, and the like. ..
  • By associating the oil type data with the oil deterioration threshold value of each oil type it is possible to determine whether or not the lubricating oil to be determined has reached the oil deterioration threshold level.
  • the data at the time of new oil is the data at the time of new oil of the lubricating oil.
  • the new oil data is image data of the lubricating oil at the time of new oil, and is preferably image data taken by putting the new oil in a transparent container (specific container).
  • the new oil data has data on the oil deterioration threshold for determining the deterioration of the lubricating oil from the color difference by comparing the image data of the lubricating oil to be determined with the image data at the time of new oil, and has data on the oil deterioration threshold to be determined. Deterioration is judged by whether or not the difference reaches the oil deterioration threshold.
  • the wear debris contamination data has data on the contamination threshold for determining whether the lubricating oil is contaminated by the wear debris, and the deterioration is determined based on whether the determined lubricating oil has reached the contamination threshold.
  • the wear debris contamination data is data that serves as a reference for the non-uniformity that occurs in the image data when the lubricating oil is contaminated by the contamination of the wear debris.
  • the contamination threshold value of the wear debris contamination data is, for example, 100 non-uniform components of the image data / 1 ml, and if the contamination threshold value is exceeded, it can be determined that contamination is caused by the presence of wear debris.
  • Moisture contamination data has data on a contamination threshold for determining whether the lubricating oil is contaminated by moisture exceeding the solubility, and determines deterioration based on whether the determined lubricating oil has reached the contamination threshold. ..
  • Moisture contamination data is data that serves as a reference for non-uniformity that occurs in image data when the lubricating oil is contaminated by mixing of moisture exceeding the solubility.
  • the contamination threshold value of the moisture contamination data is determined, for example, that if there is a layer-separated portion in the image data, or if there is one or more white turbidity due to water droplets in the oil, the contamination due to moisture has occurred. can do.
  • the creating unit 20 acquires the photographing data 210 of the determination lubricating oil which is the determination target photographed by the photographing apparatus 21 with a communication function, and creates the image analysis data 200 regarding the deterioration in the determination lubricating oil from the photographing data 210. It is preferable that the image analysis data 200 has at least data corresponding to the determination reference data 100 used for determining the lubricating oil.
  • the photographing device 21 is a device capable of acquiring the photographing data 210 as the image data of the determination lubricating oil to be determined by the image sensor such as CCD and CMOS.
  • the shooting data 210 is preferably image data that has not been processed with respect to the color tone or the like, and is preferably raw raw data that is information as it is of the light captured by the image sensor.
  • the photographing device 21 can transmit the acquired photographing data 210 to the creating unit 20 of the lubricating oil deterioration determination system 1 via the communication network 22.
  • the communication network 22 is, for example, a wired or wireless LAN (Local Area Network), a WAN (Wide Area Network), the Internet, an intranet, a dedicated line, or the like. Examples of the photographing device 21 having a communication function include a digital camera, a mobile terminal, a smartphone, and the like.
  • the imaging device 21 is preferably provided with an imaging auxiliary device that specifies the distance and angle with the imaging target.
  • the photographing auxiliary device is an auxiliary device that enables the photographing data 210 to be photographed at the same angle of view by keeping the distance and angle between the photographing device 21 and the determination lubricating oil to be determined constant.
  • the photographing auxiliary device is an auxiliary device that enables shooting with the same amount of light by keeping the distance and angle between the photographing device 21 and the backlight such as an LED constant. It is preferable that the photographing auxiliary machine can be easily attached to and detached from the photographing device 21, and preferably includes an engaging portion capable of engaging with the photographing device 21.
  • the photographing data 210 photographed a state in which the determination lubricating oil to be determined was stored in a colorless translucent container (specific container) from the viewpoint of stably acquiring the image data of the determination lubricating oil to be determined. It is preferable that it is a thing.
  • the capacity of the translucent container (specific container) may be any as long as it can uniformly sample the judgment lubricating oil to be judged, for example, a constant value of 0.1 ml or more and 10 ml or less. It is preferably of a capacity.
  • the length (optical path length) through which the light passes through the determination lubricating oil to be determined when the image is taken using the translucent container (specific container) is preferably constant, for example, the optical path length. Is preferably 0.1 mm or more and 10 mm or less.
  • the material of the translucent container (specific container) is preferably one having a high transmittance, and for example, glass, polycarbonate resin (PC), acrylic resin (PMMA) and the like can be used.
  • the transmittance of the translucent container (specific container) at a wavelength of 300 nm is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more. It is preferable to use a new translucent container (specific container) every time a photograph is taken from the viewpoint of eliminating erroneous determination factors such as dirt.
  • the creation unit 20 has correction data 201 for correcting erroneous determination factors from the shooting data 210, and creates image analysis data 200 from the shooting data 210 corrected based on the correction data 201.
  • the correction data 201 is data for adjusting the white balance when photographing the determination lubricating oil, which is the determination target, and performing correction for deleting erroneous determination factors such as color tone depending on the imaging environment. Further, the correction data 201 is data for performing correction for deleting erroneous judgment factors based on stains on the lens, the shooting auxiliary machine, and the translucent container (specific container) that use the judgment lubricating oil to be judged for shooting. is there.
  • a correction is performed to remove the erroneous judgment factor by photographing a translucent container (specific container) in a state where there is no erroneous judgment factor such as new or dirty after cleaning.
  • a means of acquiring image data as a reference can be mentioned.
  • the correction data 201 when acquiring the photographing data 210 as the image data of the determination lubricating oil to be determined, the image data to be referred to (reference) is also acquired together with a part of the photographing data 210. Means to do.
  • the means for acquiring the correction data 201 when acquiring the photographing data 210 as the image data of the determination lubricating oil, at the same time, an image in which the new oil state of the determination lubricating oil is referred to (reference) is used.
  • a means of acquiring as data can be mentioned.
  • the determination unit 30 creates a determination result 300 of the degree of deterioration of the determination lubricating oil from the image analysis data 200 based on the determination reference data 100.
  • Judgment result 300 includes, for example, comprehensive judgment of deterioration of judgment lubricating oil (“pass” or “fail”), comprehensive judgment of contamination of judgment lubricating oil (“pass” or “fail”), degree of deterioration and contamination. Results such as degree are included.
  • the degree of deterioration of the determination result 300 preferably includes the determination result of the remaining life of the determination lubricating oil. By including the determination result of the remaining life in the determination result 300, it is possible to inform the timing of refueling.
  • the lubricating oil deterioration determination method according to the first embodiment of the present invention includes a storage step S10, an image analysis data creation step S11, and a determination result creation step S12.
  • the lubricating oil deterioration determination method according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the determination standard data 100 relating to the determination of the deterioration of the lubricating oil is stored in the storage unit 10.
  • Examples of the method of storing in the storage unit 10 include means for storing the determination reference data 100 by inputting the determination reference data 100 using an input unit (not shown) such as a user interface of the information processing device.
  • the imaging data 210 of the determination lubricating oil which is the determination target photographed by the imaging device 21 with a communication function, is acquired, and the image analysis data 200 relating to the deterioration in the determination lubricating oil is acquired from the imaging data 210.
  • the photographing device 21 photographs the photographing data 210 of the determination lubricating oil which is the determination target.
  • the photographing device 21 having a communication function transmits the acquired photographing data 210 to the lubricating oil deterioration determination system 1 via the communication network 22.
  • the creating unit 20 acquires the photographing data 210 of the determination lubricating oil which is the determination target photographed by the photographing device 21 with a communication function.
  • the creation unit 20 creates image analysis data 200 regarding deterioration in the determination lubricating oil from the acquired imaging data 210.
  • the created image analysis data 200 is stored in the storage unit 10.
  • the creation unit 20 acquires the correction data 201 for correcting the erroneous determination factor from the shooting data 210, and performs image analysis from the shooting data 210 corrected based on the correction data 201. It is preferable to create the data 200 for use.
  • the determination unit 30 creates a determination result 300 from the image analysis data 200 based on the determination reference data 100 to determine the degree of deterioration of the determination lubricating oil. Specifically, first, the determination unit 30 associates the determination reference data 100 and the image analysis data 200 stored in the storage unit 10 with the oil type and the like, and converts the image analysis data 200 into the determination reference data 100. By comparing with each other, a determination result 300 regarding the degree of deterioration of the determination lubricating oil is created. It is preferable that the determination result 300 includes the determination result of the remaining life of the determination lubricating oil. The determination unit 30 stores the produced determination result 300 in the storage unit 10. The determination result 300 can be output to an output unit (not shown) of a user terminal or the like via the communication network 22.
  • the lubricating oil deterioration determination system and the lubricating oil deterioration determination method according to the first embodiment of the present invention by using the photographing data photographed by the photographing apparatus with a communication function owned by a general user. , Deterioration of lubricating oil and fouling state can be judged with high immediacy.
  • the lubricating oil deterioration determination system 1 includes a storage unit 10, a creation unit 20, a determination unit 30, and further includes a machine learning unit 50. ..
  • the components of the lubricating oil deterioration determination system 1 are connected by the system bus 40, and data is exchanged via the system bus 40. The description of the components and the like overlapping with the lubricating oil deterioration determination system 1 according to the first embodiment will be omitted.
  • the machine learning unit 50 uses a machine learning algorithm to derive the correlation between the deterioration judgment of the judgment lubricating oil and the input variables from the input variables extracted from the shooting data 210, and thereby obtains image analysis data from the shooting data 210 and the input variables.
  • a prediction model 500 for determining 200 is created.
  • the machine learning unit 50 evaluates the importance of the extracted input variables with respect to the deterioration judgment of the judgment lubricating oil from the correlation between the deterioration judgment of the judgment lubricating oil and the input variables, and each of the input variables according to the importance.
  • the prediction model 500 is the one in which the parameters related to are set. It is preferable that the machine learning unit 50 also derives the correlation between the individual difference of the photographing device 21 and the input variable generated from the photographing environment and the deterioration determination of the determination lubricating oil, and reflects it in the prediction model 500.
  • the same source as the above-mentioned judgment standard data 100 can be adopted, and color difference data, brightness data, color data, oil type data, new oil data, and wear debris contamination data can be adopted. And moisture contamination data and the like, and it is preferable to include at least one selected from these groups. It is more preferable that the input variable includes at least one selected from the group consisting of color difference data, lightness data, color data, oil type data, abrasion powder contamination data, and moisture contamination data.
  • Examples of the algorithm of the machine learning unit 50 include a support vector machine, a linear regression, a random forest, a neural network, and a gradient boosting tree, and it is preferable to include at least one selected from these groups.
  • the created prediction model 500 is stored in the storage unit 10, and when a new prediction model 500 is created, machine learning using the stored prediction model 500 is performed. Do.
  • the creating unit 20 of the lubricating oil deterioration determination system 1 creates image analysis data 200 from the prediction model 500 and the photographing data 210.
  • the lubricating oil deterioration determination method according to the second embodiment of the present invention includes a storage step S20, a prediction model creation step S21, an image analysis data creation step S21, and a determination result.
  • the production step S23 is included.
  • the lubricating oil deterioration determination method according to the second embodiment of the present invention will be described with reference to FIGS. 3 and 4.
  • the determination standard data 100 relating to the determination of the deterioration of the lubricating oil is stored in the storage unit 10.
  • Examples of the method of storing in the storage unit 10 include means for storing the determination reference data 100 by inputting the determination reference data 100 using an input unit (not shown) such as a user interface of the information processing device.
  • the input variable extracted from the photographed data 210 is used for image analysis from the photographed data 210 and the input variable by deriving the correlation between the deterioration judgment of the judgment lubricating oil and the input variable by the machine learning algorithm.
  • the machine learning unit 50 creates a prediction model 500 for determining the data 200. Specifically, first, the machine learning unit 50 refers to the photographing data 210 stored in the storage unit 10 and extracts an input variable from the photographing data 210. Next, the machine learning unit 50 derives the correlation between the deterioration determination of the determination lubricating oil and the input variable by using the extracted input variable by the machine learning algorithm.
  • the machine learning unit 50 derives an input variable having a high importance as a factor for determining deterioration of the determination lubricating oil by a machine learning algorithm. Then, the machine learning unit 50 creates a prediction model 500 in which parameters related to each of the input variables are set according to the importance. Each time the prediction model 500 is created, the machine learning unit 50 stores the created prediction model 500 in the storage unit 10, and when creating the prediction model 500, performs machine learning using the stored prediction model 500. Can be done.
  • the imaging data 210 of the determination lubricating oil which is the determination target captured by the imaging device 21 with a communication function
  • the prediction model 500 created by the machine learning unit 50 is acquired
  • the imaging is performed.
  • the image analysis data 200 regarding the deterioration in the judgment lubricating oil is created by the creating unit 20.
  • the photographing device 21 photographs the photographing data 210 of the determination lubricating oil which is the determination target.
  • the photographing device 21 having a communication function transmits the acquired photographing data 210 to the lubricating oil deterioration determination system 1 via the communication network 22.
  • the creating unit 20 acquires the photographing data 210 of the determination lubricating oil which is the determination target photographed by the photographing device 21 with a communication function.
  • the creating unit 20 acquires the prediction model 500 stored in the storage unit 10.
  • the creation unit 20 creates image analysis data 200 regarding deterioration in the determination lubricating oil from the acquired photographing data 210 and the prediction model 500.
  • the created image analysis data 200 is stored in the storage unit 10.
  • the creation unit 20 acquires the correction data 201 for correcting the erroneous determination factor from the shooting data 210, and performs image analysis from the shooting data 210 corrected based on the correction data 201. It is preferable to create the data 200 for use.
  • the determination unit 30 creates a determination result 300 from the image analysis data 200 based on the determination reference data 100 to determine the degree of deterioration of the determination lubricating oil. Specifically, first, the determination unit 30 associates the determination reference data 100 and the image analysis data 200 stored in the storage unit 10 with the oil type and the like, and converts the image analysis data 200 into the determination reference data 100. By comparing with each other, a determination result 300 regarding the degree of deterioration of the determination lubricating oil is created. It is preferable that the determination result 300 includes the determination result of the remaining life of the determination lubricating oil. The determination unit 30 stores the produced determination result 300 in the storage unit 10. The determination result 300 can be output to an output unit (not shown) of a user terminal or the like via the communication network 22.
  • the lubricating oil deterioration determination system and the lubricating oil deterioration determination method according to the second embodiment of the present invention by using the photographing data photographed by the photographing apparatus with a communication function owned by a general user. , Deterioration of lubricating oil and fouling state can be judged with high immediacy. Further, according to the lubricating oil deterioration determination system and the lubricating oil deterioration determination method according to the second embodiment of the present invention, it is possible to determine the deterioration and fouling state of the lubricating oil with a high system by performing machine learning. Can be done.
  • RBOT residual rate (%) [Rt / (Rn-R0)] ⁇ 100
  • the above image data, deterioration test conditions, RBOT residual rate, and remaining life of new oil were stored in the storage unit 10 in association with the oil type data.
  • the data of (2) and (3) above are summarized in Table 1.
  • the deterioration index in the table is, for example, obtained by adding the acid value increase amount, the water content, and the contaminant amount to the RBOT residual rate.
  • Example 1 Regarding the sample oil B, in a rotary compressor in which the sample oil was present in accordance with JIS K2514: 2013, air was continuously replenished at an average operating oil temperature of 80 ° C., an average operating pressure of 35 MPa, and 1.0 L / h. It was operated and a deterioration test equivalent to the actual machine was conducted. At this time, for each sample oil, after 100 hr, 200 hr, 300 hr, and 400 hr tests, image data (photographed data) is taken from the new oil using the same glass container and smartphone as described above, and these are separated into various components (RGB values). Then, it was sent to the lubricating oil deterioration judgment system. At this time, the oil type data of the sample oil B and the deterioration test conditions were also transmitted to the lubricating oil deterioration determination system.
  • image data photographed data
  • the creation unit 20 creates image analysis data 200 regarding deterioration in the determination sample oil from the acquired image data.
  • the created image analysis data 200 is stored in the storage unit 10.
  • the determination unit 30 the degree of deterioration of each sample oil is created as the determination result 300 from the image analysis data 200 based on the determination reference data 100.
  • the determination unit 30 associates the determination reference data 100 and the image analysis data 200 stored in the storage unit 10 with the oil type data.
  • the image analysis data 200 is compared with the judgment reference data 100, and the deterioration test conditions are further referred to to create a judgment result 300 regarding the degree of deterioration of the judgment sample oil.
  • the determination result 300 includes the RBOT residual rate (estimated life residual rate) of the determination sample oil.
  • the determination unit 30 stores the produced determination result 300 in the storage unit 10.
  • the determination result 300 is output to the user terminal via the communication network. The results are summarized in Table 2.
  • Example 2 Similar to Example 1, image data (photographed data) obtained when a deterioration test is performed on sample oil B under the same conditions is taken, separated into various components (RGB values), and transmitted to a lubricating oil deterioration determination system. did. At the same time, the remaining life (hr) of each new oil of the sample oil B was also transmitted to the lubricating oil deterioration determination system.
  • the determination unit 30 compares the image analysis data 200 stored in the storage unit 10 with the determination reference data 100, and further determines by referring to the remaining life of the new oil and the deterioration test conditions. Create a judgment result 300'about the degree of deterioration of the lubricating oil.
  • the determination unit 30 stores the produced determination result 300'in the storage unit 10.
  • the determination result 300' is output to the user terminal via the communication network. The results are summarized in Table 2.
  • the lubricating oil deterioration determination system and the lubricating oil deterioration determination method of the present embodiment determine the deterioration and fouling state of the lubricating oil by using the imaging data photographed by a photographing device with a communication function owned by a general user. Therefore, a general user can easily perform the deterioration determination of the lubricating oil.
  • Lubricating oil deterioration judgment system 10 Storage unit 20: Creation unit 21: Imaging device 22: Communication network 30: Judgment unit 40: System bus 50: Machine learning unit

Abstract

潤滑油劣化の判定に関する判定基準データ100を記憶する記憶部10と、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得し、撮影データ210から判定潤滑油における劣化に関する画像解析用データ200を作成する作成部20と、判定基準データ100に基づいて、画像解析用データ200から判定潤滑油の劣化度の判定結果300を作成する判定部30とを備えることにより、潤滑油の劣化、汚損状態を即時性が高く判定することが可能な潤滑油劣化判定システム及び潤滑油劣化判定方法を提供する。

Description

潤滑油劣化判定システム及び潤滑油劣化判定方法
 本発明は、潤滑油劣化判定システム及び潤滑油劣化判定方法に関する。
 潤滑油管理を的確に行うには、潤滑油の劣化、汚損状態を正確にかつ迅速に判定することが重要である。従来、潤滑油の劣化、汚損状態の判定にあたっては、現場で使用中の潤滑油を採取し、この試料潤滑油を分析評価できる試験室等に持ち運び、各種の分析評価を行った後、これらの評価項目から潤滑油の劣化、汚損状態を判定するようにしていた。
 上述のような判定方法では、多くの人手と時間を要し、かつ、即時性がないという欠点があった。そこで、光の透過を利用して潤滑油の劣化度合いを測定する方法が提案されている(例えば、特許文献1参照)。
特開2018-48842号公報
 特許文献1等で提案されている光の透過を利用して潤滑油の劣化度合いを測定する方法では、スペクトルの分布に基づく劣化度合いを評価するために、光を波長ごとに分光して撮影するハイパースペクトルカメラ等の特殊な撮影装置が必要となる。しかし、ハイパースペクトルカメラ等の特殊な撮影装置は、高価なものであり、一般的なユーザが所有することは現実的ではない。つまり、特許文献1等で提案されている光の透過を利用して潤滑油の劣化度合いを測定する方法を利用するためには、ハイパースペクトルカメラ等の特殊な撮影装置を備える試験室等に対象となる潤滑油を持ち込んで撮影しなければならず、潤滑油の劣化、汚損状態を即時性が高く判定するという問題は未だに解決されていない。
 そこで、本発明は、上記問題に鑑み、潤滑油の劣化、汚損状態を即時性が高く判定することが可能な潤滑油劣化判定システム及び潤滑油劣化判定方法を提供することを目的とする。
 上記課題を解決するために、本発明者らは鋭意研究した結果、一般的なユーザが所有している通信機能付き撮影装置により撮影された撮影データを用いることによって、潤滑油の劣化、汚損状態を即時性が高く判定することができることを見出した。すなわち、本発明は、以下の[1]~[12]を提供する。
[1]潤滑油劣化の判定に関する判定基準データを記憶する記憶部と、通信機能付き撮影装置により撮影された判定対象である判定潤滑油の撮影データを取得し、前記撮影データから前記判定潤滑油における劣化に関する画像解析用データを作成する作成部と、前記判定基準データに基づいて、前記画像解析用データから前記判定潤滑油の劣化度の判定結果を作成する判定部と、を備える潤滑油劣化判定システム。
[2]前記判定基準データは、色差データ、明度データ、色データ、油種類データ、新油時データ、摩耗粉コンタミデータ及び水分コンタミデータからなる群から選ばれる少なくとも1つである、[1]の潤滑油劣化判定システム。
[3]前記撮影装置は、撮影対象との距離及び角度を特定する撮影補助機を備える、[1]又は[2]の潤滑油劣化判定システム。
[4]前記撮影データは、判定対象である前記判定潤滑油を無色の透光性容器内に保存した状態を撮影したものである、[1]~[3]のいずれかの潤滑油劣化判定システム。
[5]前記作成部は、前記撮影データから誤判定要因を補正するための補正用データを有し、前記補正用データに基づいて補正した前記撮影データから前記画像解析用データを作成する、[1]~[4]のいずれかの潤滑油劣化判定システム。
[6]前記判定結果は、前記判定潤滑油の余寿命の判定結果を含む、[1]~[5]のいずれかの潤滑油劣化判定システム。
[7]前記撮影データから抽出した入力変数を機械学習のアルゴリズムにより、前記判定潤滑油の劣化判定と前記入力変数との相関関係を導き出すことにより、前記撮影データ及び前記入力変数から前記画像解析用データを決定するための予測モデルを作成する機械学習部をさらに備え、前記作成部は、前記予測モデル及び前記撮影データから前記画像解析用データを作成する、[1]~[6]のいずれかの潤滑油劣化判定システム。
[8]前記入力変数は、色差データ、明度データ、色データ、油種類データ、摩耗粉コンタミデータ及び水分コンタミデータからなる群から選ばれる少なくとも1つを含む、[7]の潤滑油劣化判定システム。
[9]前記アルゴリズムは、サポートベクターマシン、線形回帰、ランダムフォレスト、ニューラルネットワーク及び勾配ブースティング木の群から選ばれる少なくとも1つである、[7]又は[8]の潤滑油劣化判定システム。
[10]前記機械学習部は、前記予測モデルを作成する毎に、作成した前記予測モデルを前記記憶部に記憶させ、新たな予測モデルを作成する際に、記憶した前記予測モデルを用いた機械学習を行う、[7]~[9]のいずれかの潤滑油劣化判定システム。
[11]潤滑油劣化の判定に関する判定基準データを記憶部に記憶する工程と、通信機能付き撮影装置により撮影された判定対象である判定潤滑油の撮影データを取得し、前記撮影データから前記判定潤滑油における劣化に関する画像解析用データを作成部で作成する工程と、前記判定基準データに基づいて、前記画像解析用データから前記判定潤滑油の劣化度を判定部で判定結果を作成する工程と、を含む潤滑油劣化判定方法。
[12]前記撮影データから抽出した入力変数を機械学習のアルゴリズムにより、判定潤滑油の劣化判定と入力変数との相関関係を導き出すことにより、前記撮影データ及び前記入力変数から前記画像解析用データを決定するための予測モデルを機械学習部で作成する工程をさらに含む、[11]に記載の潤滑油劣化判定方法。
 本発明によれば、潤滑油の劣化、汚損状態を即時性が高く判定することが可能な潤滑油劣化判定システム及び潤滑油劣化判定方法を提供することができる。
本発明の第1の実施の形態に係る潤滑油劣化判定システムの模式図である。 本発明の第1の実施の形態に係る潤滑油劣化判定方法を示すフローチャートである。 本発明の第2の実施の形態に係る潤滑油劣化判定システムの模式図である。 本発明の第2の実施の形態に係る潤滑油劣化判定方法を示すフローチャートである。
 以下、本発明の実施形態(以後、単に「本実施形態」と称する場合がある。)に係る潤滑油劣化判定システム及び潤滑油劣化判定方法について具体的に説明する。なお、本明細書中において、数値範囲の記載に関する「以下」、「以上」及び「~」に係る数値は任意に組み合わせできる数値であり、また実施例の数値は上限値又は下限値として用いられ得る数値である。
(第1の実施の形態)
〔潤滑油劣化判定システム〕
 本発明の第1の実施の形態に係る潤滑油劣化判定システム1は、図1に示すように、記憶部10と、作成部20と、判定部30とを備える。潤滑油劣化判定システム1の構成要素は、システムバス40で接続され、システムバス40を介してデータのやり取りが行われる。
<記憶部>
 記憶部10は、潤滑油劣化の判定に関する判定基準データ100を記憶する。記憶部10に判定基準データ100を記憶させる手段としては、情報処理装置のユーザインタフェースを用いることができ、例えばマウス、キーボード、タッチパネル及び音声入力装置等を用いることができる。
 記憶部10としては、例えば、ROM、RAM及びハードディスク等の記憶媒体を用いることができる。
 判定基準データ100は、例えば、色差データ、明度データ、色データ、油種類データ、新油時データ、摩耗粉コンタミデータ及び水分コンタミデータ等の潤滑油劣化の判定に基準として用いるデータである。
 色差データは、撮影データから各色成分(RGB値)に分離し、さらにRGB値を256段階に分離して得た最大色差に関するデータである。最大色差は、RGB値の各値(R値、G値、B値)のうち、最大値と最小値との差分(MAX(R、G、B)-MIN(R、G、B))によって求められるデータである。色差データは、最大色差が潤滑油の劣化を判定する油劣化閾値に関するデータを有し、判定する潤滑油が油劣化閾値に達しているか否かによって劣化を判定する。
 明度データは、撮影データから各色成分(RGB値)に分離し、さらにRGB値を256段階に分離して得た明度に関するデータである。明度(ΔE)は、RGB値の各値からΔE=(R+G+B1/2によって求められるデータである。明度データは、明度(ΔE)が潤滑油の劣化を判定する油劣化閾値に関するデータを有し、判定する潤滑油が油劣化閾値に達しているか否かによって劣化を判定する。
 色データは、JIS K 2580(1993)の参考1・石油製品の色試験方法(刺激値換算法)7.2に従って、ASTM色相を測定したデータである。色データは、潤滑油の劣化を判定する油劣化閾値に関するデータを有し、判定する潤滑油の色が油劣化閾値に達しているか否かによって劣化を判定する。
 油種類データは、潤滑油の種類に関するデータである。油種類データは、例えば、自動車用油、工業用潤滑油及び船舶用潤滑油等の油種類に関するデータであり、製品名、グレード名、製造時期及び製造場所等で油種類を絞り込んだデータを含む。油種類データは、各油種類の油劣化閾値と紐付けすることで、判定する潤滑油が油劣化閾値レベルに達しているか否かを判定することが可能となる。
 新油時データは、潤滑油の新油時におけるデータである。新油時データは、潤滑油の新油時における画像データであり、新油を透明性容器(特定容器)に入れて撮影した画像データであることが好ましい。新油時データは、判定する潤滑油の画像データを新油時の画像データと対比による色の差から潤滑油の劣化を判定する油劣化閾値に関するデータを有し、判定する潤滑油の色の差が油劣化閾値に達しているか否かによって劣化を判定する。
 摩耗粉コンタミデータは、潤滑油が摩耗粉によって汚染(コンタミネーション)しているか判定する汚染閾値に関するデータを有し、判定する潤滑油が汚染閾値に達しているか否かによって劣化を判定する。摩耗粉コンタミデータは、潤滑油が摩耗粉の混入によって汚染している場合に画像データに生じる不均一性の基準となるデータである。摩耗粉コンタミデータの汚染閾値は、例えば、画像データの不均一成分が100個/1mlとし、この汚染閾値を超えれば摩耗粉有りで汚染が生じていると判定することができる。
 水分コンタミデータは、潤滑油が溶解度を超えた水分によって汚染(コンタミネーション)しているか判定する汚染閾値に関するデータを有し、判定する潤滑油が汚染閾値に達しているか否かによって劣化を判定する。水分コンタミデータは、潤滑油が溶解度を超えた水分の混入によって汚染している場合に画像データに生じる不均一性の基準となるデータである。水分コンタミデータの汚染閾値は、例えば、画像データの中で層分離している部分がある、又は、油中に水滴による白濁が1箇所以上ある場合には、水分による汚染が生じていると判定することができる。
<作成部>
 作成部20は、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得し、撮影データ210から判定潤滑油における劣化に関する画像解析用データ200を作成する。
 画像解析用データ200は、潤滑油の判定に採用する判定基準データ100に応じたデータを少なくとも有することが好ましい。
 撮影装置21は、CCD及びCMOS等のイメージセンサにより、判定する判定潤滑油の画像データとしての撮影データ210を取得することができる装置である。撮影データ210は、色調等に対して加工されていない画像データであることが好ましく、イメージセンサが捉えた光のそのまま情報である未加工のロウ(Raw)データであることが好ましい。
 撮影装置21は、通信機能を有することで、通信ネットワーク22を介して潤滑油劣化判定システム1の作成部20へ取得した撮影データ210を送信することができる。通信ネットワーク22は、例えば、有線又は無線のLAN(Local Area Network)、WAN(Wide Area Network)、インターネット、イントラネット及び専用線等である。通信機能を有する撮影装置21としては、例えば、デジタルカメラ、携帯端末及びスマートフォン等が挙げられる。
 撮影装置21は、判定対象である判定潤滑油の撮影データ210を安定して取得する観点から、撮影対象との距離及び角度を特定する撮影補助機を備えることが好ましい。撮影補助機は、撮影装置21と判定対象である判定潤滑油との距離、角度を一定にして同じ画角で撮影データ210を撮影することを可能とする補助装置である。また、撮影補助機は、撮影装置21とLED等のバックライトとの距離、角度を一定にして同じ光量で撮影することを可能とする補助装置である。撮影補助機は、撮影装置21への着脱が簡易に行えることが好ましく、撮影装置21と係合可能な係合部を備えることが好ましい。
 撮影データ210は、判定対象である判定潤滑油の画像データを安定して取得する観点から、判定対象である判定潤滑油を無色の透光性容器(特定容器)内に保存した状態を撮影したものであることが好ましい。
 透光性容器(特定容器)の容量は、上記観点から、判定対象である判定潤滑油を均一に標本抽出することが可能なものであればよく、例えば、0.1ml以上10ml以下の一定の容量のものであることが好ましい。
 透光性容器(特定容器)を用いて撮影した際に光が判定対象である判定潤滑油を透過する長さ(光路長)は、上記観点から、一定であることが好ましく、例えば、光路長が0.1mm以上10mm以下であることが好ましい。
 透光性容器(特定容器)の材質は、上記観点から、透過率が高いものであることが好ましく、例えば、ガラス、ポリカーボネート樹脂(PC)及びアクリル樹脂(PMMA)等を用いることができる。透光性容器(特定容器)の波長300nmでの透過率は、70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましい。
 透光性容器(特定容器)は、汚れ等の誤判定要因を排除する観点から、撮影する度に新品を用いることが好ましい。
 作成部20は、撮影データ210から誤判定要因を補正するための補正用データ201を有し、補正用データ201に基づいて補正した撮影データ210から画像解析用データ200を作成することが好ましい。
 補正用データ201は、判定対象である判定潤滑油を撮影する際のホワイトバランスを調整し、撮影環境に依存する色調等の誤判定要因を削除する補正を行うためのデータである。また、補正用データ201は、判定対象である判定潤滑油を撮影に用いるレンズ、撮影補助機及び透光性容器(特定容器)の汚れに基づく誤判定要因を削除する補正を行うためのデータである。
 補正用データ201の取得手段としては、新品又は清掃後の汚れ等の誤判定要因のない状態の透光性容器(特定容器)を撮影することで、誤判定要因を削除する補正を行うための参照(レファレンス)となる画像データを取得する手段が挙げられる。また、補正用データ201の取得手段としては、判定する判定潤滑油の画像データとしての撮影データ210を取得する際に、撮影データ210の一部に参照(レファレンス)となる画像データを併せて取得する手段が挙げられる。また、補正用データ201の取得手段としては、判定する判定潤滑油の画像データとしての撮影データ210を取得する際に、同時に、判定潤滑油の新油状態のものを参照(レファレンス)となる画像データとして取得する手段が挙げられる。
<判定部>
 判定部30は、判定基準データ100に基づいて、画像解析用データ200から判定潤滑油の劣化度の判定結果300を作成する。
 判定結果300としては、例えば、判定潤滑油の劣化の総合判定(「合格」又は「不合格」)、判定潤滑油の汚染の総合判定(「合格」又は「不合格」)、劣化度及び汚染度等の結果が含まれる。
 判定結果300の劣化度には、判定潤滑油の余寿命の判定結果を含むことが好ましい。判定結果300に余寿命の判定結果が含まれることで、更油の時期を知らせることが可能となる。
〔潤滑油劣化判定方法〕
 本発明の第1の実施の形態に係る潤滑油劣化判定方法は、図2に示すように、記憶工程S10と、画像解析用データの作成工程S11と、判定結果の作成工程S12とを含む。以下に、本発明の第1の実施の形態に係る潤滑油劣化判定方法を図1及び図2を参照して説明する。
<記憶工程>
 記憶工程S10において、潤滑油劣化の判定に関する判定基準データ100を記憶部10に記憶する。記憶部10に記憶する方法としては、例えば、情報処理装置のユーザインタフェース等の入力部(図示せず)を利用して、判定基準データ100を入力することで記憶させる手段が挙げられる。
<画像解析用データの作成工程>
 画像解析用データの作成工程S11において、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得し、撮影データ210から判定潤滑油における劣化に関する画像解析用データ200を作成部20で作成する。
 具体的には、まず、撮影装置21は、判定対象である判定潤滑油の撮影データ210を撮影する。そして、通信機能付きである撮影装置21は、通信ネットワーク22を介して、潤滑油劣化判定システム1へ取得した撮影データ210を送信する。
 次いで、作成部20は、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得する。
 次いで、作成部20は、取得した撮影データ210から判定潤滑油における劣化に関する画像解析用データ200を作成する。作成した画像解析用データ200は、記憶部10に記憶させる。画像解析用データ200を作成するにあたって、作成部20は、撮影データ210から誤判定要因を補正するための補正用データ201を取得し、補正用データ201に基づいて補正した撮影データ210から画像解析用データ200を作成することが好ましい。
<判定結果の作成工程>
 判定結果の作成工程S12において、判定基準データ100に基づいて、画像解析用データ200から判定潤滑油の劣化度を判定部30で判定結果300を作成する。
 具体的には、まず、判定部30は、記憶部10に記憶されている判定基準データ100及び画像解析用データ200を油種類等により紐付けし、画像解析用データ200を判定基準データ100に照らし合わせることで、判定潤滑油の劣化度に関する判定結果300を作成する。判定結果300には、判定潤滑油の余寿命の判定結果が含まれていることが好ましい。
 判定部30は、作製した判定結果300を記憶部10に記憶させる。判定結果300は、通信ネットワーク22を介してユーザ端末等の出力部(図示せず)に出力することができる。
 本発明の第1の実施の形態に係る潤滑油劣化判定システム及び潤滑油劣化判定方法によれば、一般的なユーザが所有している通信機能付き撮影装置により撮影された撮影データを用いることによって、潤滑油の劣化、汚損状態を即時性が高く判定することができる。
(第2の実施の形態)
〔潤滑油劣化判定システム〕
 本発明の第2の実施の形態に係る潤滑油劣化判定システム1は、図3に示すように、記憶部10と、作成部20と、判定部30とを備え、機械学習部50をさらに備える。潤滑油劣化判定システム1の構成要素は、システムバス40で接続され、システムバス40を介してデータのやり取りが行われる。
 第1の実施の形態に係る潤滑油劣化判定システム1と重複する構成要素等については記載を省略する。
<機械学習部>
 機械学習部50は、撮影データ210から抽出した入力変数を機械学習のアルゴリズムにより、判定潤滑油の劣化判定と入力変数との相関関係を導き出すことにより、撮影データ210及び入力変数から画像解析用データ200を決定するための予測モデル500を作成する。機械学習部50は、判定潤滑油の劣化判定と入力変数との相関関係より、判定潤滑油の劣化判定に関して、抽出した入力変数の重要度をそれぞれ評価し、重要度に応じて入力変数のそれぞれに関するパラメータを設定したものが予測モデル500である。
 機械学習部50は、撮影装置21の個体差及び撮影環境から生じる入力変数と判定潤滑油の劣化判定との相関関係についても導き出し、予測モデル500に反映させることが好ましい。
 機械学習部50で取り扱う入力変数としては、上記判定基準データ100と同様のもとを採用することができ、色差データ、明度データ、色データ、油種類データ、新油時データ、摩耗粉コンタミデータ及び水分コンタミデータ等が挙げられ、これらの群から選ばれる少なくとも1つを含むことが好ましい。入力変数としては、なかでも、色差データ、明度データ、色データ、油種類データ、摩耗粉コンタミデータ及び水分コンタミデータからなる群から選ばれる少なくとも1つを含むことがより好ましい。
 機械学習部50のアルゴリズムとしては、サポートベクターマシン、線形回帰、ランダムフォレスト、ニューラルネットワーク及び勾配ブースティング木が挙げられ、これらの群から選ばれる少なくとも1つを含むことが好ましい。
 機械学習部50は、予測モデル500を作成する毎に、作成した予測モデル500を記憶部10に記憶させ、新たな予測モデル500を作成する際に、記憶した予測モデル500を用いた機械学習を行う。
<作成部>
 本発明の第2の実施の形態に係る潤滑油劣化判定システム1の作成部20は、予測モデル500及び撮影データ210から画像解析用データ200を作成することが好ましい。
〔潤滑油劣化判定方法〕
 本発明の第2の実施の形態に係る潤滑油劣化判定方法は、図4に示すように、記憶工程S20と、予測モデル作成工程S21と、画像解析用データの作成工程S21と、判定結果の作成工程S23とを含む。以下に、本発明の第2の実施の形態に係る潤滑油劣化判定方法を図3及び図4を参照して説明する。
<記憶工程>
 記憶工程S20において、潤滑油劣化の判定に関する判定基準データ100を記憶部10に記憶する。記憶部10に記憶する方法としては、例えば、情報処理装置のユーザインタフェース等の入力部(図示せず)を利用して、判定基準データ100を入力することで記憶させる手段が挙げられる。
<予測モデル作成工程>
 予測モデル作成工程S21において、撮影データ210から抽出した入力変数を機械学習のアルゴリズムにより、判定潤滑油の劣化判定と入力変数との相関関係を導き出すことにより、撮影データ210及び入力変数から画像解析用データ200を決定するための予測モデル500を機械学習部50で作成する。
 具体的には、まず、機械学習部50は、記憶部10に記憶されている撮影データ210を参照し、撮影データ210から入力変数を抽出する。
 次いで、機械学習部50は、抽出した入力変数を機械学習のアルゴリズムにより、判定潤滑油の劣化判定と入力変数との相関関係を導き出す。即ち、機械学習部50は、判定潤滑油の劣化判定の要因として重要度の高い入力変数を機械学習のアルゴリズムにより導き出す。そして、機械学習部50は、重要度に応じて入力変数のそれぞれに関するパラメータを設定した予測モデル500を作成する。
 機械学習部50は、予測モデル500を作成する毎に、作成した予測モデル500を記憶部10に記憶させ、予測モデル500を作成する際に、記憶した予測モデル500を用いた機械学習を行うことができる。
<画像解析用データの作成工程>
 画像解析用データの作成工程S22において、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得し、機械学習部50で作成した予測モデル500を取得し、撮影データ210及び予測モデル500から判定潤滑油における劣化に関する画像解析用データ200を作成部20で作成する。
 具体的には、まず、撮影装置21は、判定対象である判定潤滑油の撮影データ210を撮影する。そして、通信機能付きである撮影装置21は、通信ネットワーク22を介して、潤滑油劣化判定システム1へ取得した撮影データ210を送信する。
 次いで、作成部20は、通信機能付き撮影装置21により撮影された判定対象である判定潤滑油の撮影データ210を取得する。
 次いで、作成部20は、記憶部10に記憶されている予測モデル500を取得する。
 次いで、作成部20は、取得した撮影データ210及び予測モデル500から判定潤滑油における劣化に関する画像解析用データ200を作成する。作成した画像解析用データ200は、記憶部10に記憶させる。画像解析用データ200を作成するにあたって、作成部20は、撮影データ210から誤判定要因を補正するための補正用データ201を取得し、補正用データ201に基づいて補正した撮影データ210から画像解析用データ200を作成することが好ましい。
<判定結果の作成工程>
 判定結果の作成工程S23において、判定基準データ100に基づいて、画像解析用データ200から判定潤滑油の劣化度を判定部30で判定結果300を作成する。
 具体的には、まず、判定部30は、記憶部10に記憶されている判定基準データ100及び画像解析用データ200を油種類等により紐付けし、画像解析用データ200を判定基準データ100に照らし合わせることで、判定潤滑油の劣化度に関する判定結果300を作成する。判定結果300には、判定潤滑油の余寿命の判定結果が含まれていることが好ましい。
 判定部30は、作製した判定結果300を記憶部10に記憶させる。判定結果300は、通信ネットワーク22を介してユーザ端末等の出力部(図示せず)に出力することができる。
 本発明の第2の実施の形態に係る潤滑油劣化判定システム及び潤滑油劣化判定方法によれば、一般的なユーザが所有している通信機能付き撮影装置により撮影された撮影データを用いることによって、潤滑油の劣化、汚損状態を即時性が高く判定することができる。
 また、本発明の第2の実施の形態に係る潤滑油劣化判定システム及び潤滑油劣化判定方法によれば、機械学習を行うことによって、潤滑油の劣化、汚損状態について制度の高い判定を行うことができる。
 次に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。
(判定基準データの取得)
 以下の試験を行うことにより、潤滑油の劣化状態判定の基準となる判定基準データを取得した。
(1)試験油
 以下の試料油A~Cを判定基準データ用のモデル処理油とした。
a)試料油A
 ・基油(150N鉱油(62.54質量%)+500N鉱油(36.00質量%):40℃動粘度=47.61mm/s、100℃動粘度=7.156mm/s、粘度指数=109)
 ・添加剤:酸化防止剤、防錆剤、流動点降下剤、清浄分散剤、極圧剤、抗乳化剤及び消泡剤を試料油全量基準で合計1.46質量%含有
b)試料油B
 ・基油(150N鉱油(64.95質量%)+500N鉱油(33.85質量%):40℃動粘度=44.39mm/s、100℃動粘度=6.855mm/s、粘度指数=110)
 ・添加剤:酸化防止剤、防錆剤、流動点降下剤、清浄分散剤、極圧剤、抗乳化剤及び消泡剤を試料油全量基準で合計1.20質量%含有
c)試料油C
 ・基油(150N鉱油(63.57質量%)+500N鉱油(31.92質量%):40℃動粘度=44.90mm/s、100℃動粘度=6.882mm/s、粘度指数=109)
 ・添加剤:酸化防止剤、防錆剤、流動点降下剤、清浄分散剤、極圧剤、抗乳化剤及び消泡剤を試料油全量基準で合計4.51質量%含有
 上記データを油種類データとして、図1における記憶部10に記憶させた。
(2)撮影データ
 各試料油を内容積5mlのガラス容器(透過率:90%)に投入し、有効画素数1200万画素のカメラ内蔵のスマートフォンを用いて、上記ガラス容器の側面から撮影された画像データ(撮影データ)を各種成分(RGB値)に分離し、これらのデータを上記油種類データと紐づけして、新油データとして記憶部10に記憶させた。
(3)劣化試験(ISOT試験)
 JIS K 2514-1:2013に準拠し、各試料油に銅・鉄触媒を存在させて、試験温度130℃、試験時間168時間まで試料油を劣化させた。このとき、各試料油について、新油から48hr、96hr、168hr後に前記と同様のガラス容器及びスマートフォンを用いて画像データ(撮影データ)を取り、これらを各種成分(RGB値)に分離して記憶部10に記憶させた。
 また、上記各時間まで劣化させた試料油について、JIS K 2514-3:2013の回転ボンベ式酸化安定度試験に準拠し、試験温度150℃、圧力620kPaで行い、圧力が最高圧力から175kPa低下するまでの時間(RBOT値、Rt)を測定した。さらに、各試料油の余寿命が0hrとなるまで劣化させたときのRBOT値(R0)も測定し、新油のRBOT値(Rn)とから、下記式によりRBOT残存率を求めた。
  RBOT残存率(%)=[Rt/(Rn-R0)]×100
 以上の画像データ、劣化試験条件、RBOT残存率及び新油の余寿命を、前記油種類データと各々紐づけして記憶部10に記憶させた。
 上記(2)及び(3)のデータをまとめて表1に示す。なお表中における劣化指数は、一例として上記RBOT残存率に酸価増加量、水分量及び夾雑物量を加味して求めたものである。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 試料油Bについて、JIS K2514:2013に準拠して該試料油を存在させた回転式圧縮機において、平均運転油温80℃、平均運転圧力35MPa、1.0L/hで空気を補給して連続運転し、実機相当劣化試験を行った。このとき、各試料油について、新油から100hr、200hr、300hr、400hr試験後に前記と同様のガラス容器及びスマートフォンを用いて画像データ(撮影データ)を取り、これらを各種成分(RGB値)に分離し、潤滑油劣化判定システムに送信した。
 なおこの時、試料油Bの油種類データ及び劣化試験条件も併せて潤滑油劣化判定システムに送信した。
 図1における潤滑油劣化判定システム1においては、まず作成部20において、取得した画像データから判定試料油における劣化に関する画像解析用データ200が作成される。作成された画像解析用データ200は記憶部10に記憶される。次に、判定部30において、判定基準データ100に基づいて、画像解析用データ200から各々の試料油の劣化度が判定結果300として作成される。
 具体的には、まず、判定部30は、記憶部10に記憶されている判定基準データ100及び画像解析用データ200を油種類データにより紐づけする。そして画像解析用データ200を判定基準データ100に照らし合わせ、さらに劣化試験条件を参照して、判定試料油の劣化度に関する判定結果300が作成される。判定結果300には、判定試料油のRBOT残存率(推定寿命残存率)が含まれている。
 判定部30は、作製した判定結果300を記憶部10に記憶させる。判定結果300は、通信ネットワークを介してユーザ端末に出力される。結果を表2にまとめて示す。
(実施例2)
 実施例1と同様に、試料油Bについて同様の条件で劣化試験を行った時の画像データ(撮影データ)を取り、これらを各種成分(RGB値)に分離し、潤滑油劣化判定システムに送信した。また併せて、試料油Bの各々の新油の余寿命(hr)も潤滑油劣化判定システムに送信した。
 潤滑油劣化判定システム1においては、判定部30において、実施例1と同様にして判定基準データ100に基づいて、画像解析用データ200から各々の試料油の劣化度を判定結果300’として作成される。
 具体的には、まず、判定部30は、記憶部10に記憶されている画像解析用データ200を判定基準データ100に照らし合わせ、さらに新油の余寿命及び劣化試験条件を参照して、判定潤滑油の劣化度に関する判定結果300’を作成する。判定結果300’には、判定試料油の余寿命が含まれている。
 判定部30は、作製した判定結果300’を記憶部10に記憶させる。判定結果300’は、通信ネットワークを介してユーザ端末に出力される。結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002

 
 本実施形態の潤滑油劣化判定システム及び潤滑油劣化判定方法は、一般的なユーザが所有している通信機能付き撮影装置により撮影された撮影データを用いて、潤滑油の劣化、汚損状態について判定を行うことができるので、一般的なユーザが潤滑油の劣化判定を簡便に実行することができるものである。
1:潤滑油劣化判定システム
10:記憶部
20:作成部
21:撮影装置
22:通信ネットワーク
30:判定部
40:システムバス
50:機械学習部

Claims (12)

  1.  潤滑油劣化の判定に関する判定基準データを記憶する記憶部と、
     通信機能付き撮影装置により撮影された判定対象である判定潤滑油の撮影データを取得し、前記撮影データから前記判定潤滑油における劣化に関する画像解析用データを作成する作成部と、
     前記判定基準データに基づいて、前記画像解析用データから前記判定潤滑油の劣化度の判定結果を作成する判定部と、を備える潤滑油劣化判定システム。
  2.  前記判定基準データは、色差データ、明度データ、色データ、油種類データ、新油時データ、摩耗粉コンタミデータ及び水分コンタミデータからなる群から選ばれる少なくとも1つである、請求項1に記載の潤滑油劣化判定システム。
  3.  前記撮影装置は、撮影対象との距離及び角度を特定する撮影補助機を備える、請求項1又は2に記載の潤滑油劣化判定システム。
  4.  前記撮影データは、判定対象である前記判定潤滑油を無色の透光性容器内に保存した状態を撮影したものである、請求項1~3のいずれか1項に記載の潤滑油劣化判定システム。
  5.  前記作成部は、前記撮影データから誤判定要因を補正するための補正用データを有し、前記補正用データに基づいて補正した前記撮影データから前記画像解析用データを作成する、請求項1~4のいずれか1項に記載の潤滑油劣化判定システム。
  6.  前記判定結果は、前記判定潤滑油の余寿命の判定結果を含む、請求項1~5のいずれか1項に記載の潤滑油劣化判定システム。
  7.  前記撮影データから抽出した入力変数を機械学習のアルゴリズムにより、前記判定潤滑油の劣化判定と前記入力変数との相関関係を導き出すことにより、前記撮影データ及び前記入力変数から前記画像解析用データを決定するための予測モデルを作成する機械学習部をさらに備え、
     前記作成部は、前記予測モデル及び前記撮影データから前記画像解析用データを作成する、請求項1~6のいずれか1項に記載の潤滑油劣化判定システム。
  8.  前記入力変数は、色差データ、明度データ、色データ、油種類データ、摩耗粉コンタミデータ及び水分コンタミデータからなる群から選ばれる少なくとも1つを含む、請求項7に記載の潤滑油劣化判定システム。
  9.  前記アルゴリズムは、サポートベクターマシン、線形回帰、ランダムフォレスト、ニューラルネットワーク及び勾配ブースティング木の群から選ばれる少なくとも1つである、請求項7又は8に記載の潤滑油劣化判定システム。
  10.  前記機械学習部は、前記予測モデルを作成する毎に、作成した前記予測モデルを前記記憶部に記憶させ、新たな予測モデルを作成する際に、記憶した前記予測モデルを用いた機械学習を行う、請求項7~9のいずれか1項に記載の潤滑油劣化判定システム。
  11.  潤滑油劣化の判定に関する判定基準データを記憶部に記憶する工程と、
     通信機能付き撮影装置により撮影された判定対象である判定潤滑油の撮影データを取得し、前記撮影データから前記判定潤滑油における劣化に関する画像解析用データを作成部で作成する工程と、
     前記判定基準データに基づいて、前記画像解析用データから前記判定潤滑油の劣化度を判定部で判定結果を作成する工程と、を含む潤滑油劣化判定方法。
  12.  前記撮影データから抽出した入力変数を機械学習のアルゴリズムにより、判定潤滑油の劣化判定と入力変数との相関関係を導き出すことにより、前記撮影データ及び前記入力変数から前記画像解析用データを決定するための予測モデルを機械学習部で作成する工程をさらに含む、請求項11に記載の潤滑油劣化判定方法。
PCT/JP2020/014662 2019-03-29 2020-03-30 潤滑油劣化判定システム及び潤滑油劣化判定方法 WO2020203995A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021512130A JPWO2020203995A1 (ja) 2019-03-29 2020-03-30
US17/598,393 US20220156909A1 (en) 2019-03-29 2020-03-30 Lubricating oil degradation evaluation system and lubricating oil degradation evaluation method
EP20783998.6A EP3951357A4 (en) 2019-03-29 2020-03-30 SYSTEM AND METHOD FOR EVALUATION OF LUBRICATION OIL DEGRADATION
CN202080026121.7A CN113614513A (zh) 2019-03-29 2020-03-30 润滑油劣化判定系统和润滑油劣化判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068998 2019-03-29
JP2019068998 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203995A1 true WO2020203995A1 (ja) 2020-10-08

Family

ID=72669108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014662 WO2020203995A1 (ja) 2019-03-29 2020-03-30 潤滑油劣化判定システム及び潤滑油劣化判定方法

Country Status (5)

Country Link
US (1) US20220156909A1 (ja)
EP (1) EP3951357A4 (ja)
JP (1) JPWO2020203995A1 (ja)
CN (1) CN113614513A (ja)
WO (1) WO2020203995A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088927A (zh) * 2021-12-02 2022-02-25 绍兴淼汇能源科技有限公司 一种润滑油在线健康监测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140074A (ja) * 1993-11-18 1995-06-02 Hitachi Ltd 機器の劣化監視システム
JPH0862207A (ja) * 1994-08-22 1996-03-08 Japan Energy Corp 潤滑油の劣化検知方法
JP2012013675A (ja) * 2010-05-31 2012-01-19 Tohoku Electric Power Co Inc 鋼管内部腐食解析装置及び腐食解析方法
WO2013191273A1 (ja) * 2012-06-22 2013-12-27 ナブテスコ株式会社 状態判定方法、状態通知システムおよび状態判定プログラム
JP2015099116A (ja) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 成分分析装置
US20160069856A1 (en) * 2013-03-27 2016-03-10 Atten2 Advanced Monitoring Technologies S.L.U. System and method for monitoring a fluid
US20160223469A1 (en) * 2013-09-12 2016-08-04 Gert Horstmeyer Method and device for the analysis of oils and technical service fluids and for the qualified evaluation of the operating states of units
JP2017167047A (ja) * 2016-03-17 2017-09-21 株式会社東芝 欠陥検査装置、欠陥検査プログラム、欠陥検査方法
JP2018048842A (ja) * 2016-09-20 2018-03-29 株式会社東芝 劣化情報取得装置、劣化情報取得システム、劣化情報取得方法及び劣化情報取得プログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517575A (en) * 1991-10-04 1996-05-14 Ladewski; Theodore B. Methods of correcting optically generated errors in an electro-optical gauging system
JP2004084498A (ja) * 2002-08-23 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd エンジン評価装置及び方法
US7542138B2 (en) * 2003-07-18 2009-06-02 Chemimage Corporation Sample container and system for a handheld spectrometer and method for using therefor
CA2592951C (en) * 2004-12-08 2013-11-19 Gert Horstmeyer Test medium for the rapid analysis of engine oils in internal combustion engines
JP5706830B2 (ja) * 2009-11-25 2015-04-22 出光興産株式会社 潤滑油の劣化・変質度測定方法及びその測定装置
US9087274B2 (en) * 2010-12-07 2015-07-21 Prosper Creative Co., Ltd. Color information processing method, color information processing apparatus, and color information processing system
WO2013104954A1 (en) * 2012-01-09 2013-07-18 Total Sa Method and system for testing oil spill dispersant effectiveness
JP2015127682A (ja) * 2013-12-27 2015-07-09 スリーエム イノベイティブ プロパティズ カンパニー 分析装置、システムおよびプログラム
US10591388B2 (en) * 2015-04-27 2020-03-17 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy
JP6687348B2 (ja) * 2015-08-31 2020-04-22 スリーエム イノベイティブ プロパティズ カンパニー 食用油の劣化度を測定する装置、システム、プログラムおよび方法
JP6544195B2 (ja) * 2015-10-23 2019-07-17 株式会社村田製作所 電極箔の搬送装置および積層型電池の製造装置
CN105758862A (zh) * 2016-01-26 2016-07-13 西安交通大学 一种基于磨粒图像颜色提取的在线氧化磨损状态监测方法
WO2017201055A1 (en) * 2016-05-17 2017-11-23 Castrol Limited Oil analysis
CN106908452A (zh) * 2017-04-24 2017-06-30 武汉理工大学 基于机器视觉的发动机润滑油质量监测装置
WO2018212364A1 (ja) * 2017-05-19 2018-11-22 株式会社 荏原製作所 潤滑油汚染診断法
CN108959769A (zh) * 2018-06-29 2018-12-07 国网北京市电力公司 一种绝缘油的状态评估方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140074A (ja) * 1993-11-18 1995-06-02 Hitachi Ltd 機器の劣化監視システム
JPH0862207A (ja) * 1994-08-22 1996-03-08 Japan Energy Corp 潤滑油の劣化検知方法
JP2012013675A (ja) * 2010-05-31 2012-01-19 Tohoku Electric Power Co Inc 鋼管内部腐食解析装置及び腐食解析方法
WO2013191273A1 (ja) * 2012-06-22 2013-12-27 ナブテスコ株式会社 状態判定方法、状態通知システムおよび状態判定プログラム
US20160069856A1 (en) * 2013-03-27 2016-03-10 Atten2 Advanced Monitoring Technologies S.L.U. System and method for monitoring a fluid
US20160223469A1 (en) * 2013-09-12 2016-08-04 Gert Horstmeyer Method and device for the analysis of oils and technical service fluids and for the qualified evaluation of the operating states of units
JP2015099116A (ja) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 成分分析装置
JP2017167047A (ja) * 2016-03-17 2017-09-21 株式会社東芝 欠陥検査装置、欠陥検査プログラム、欠陥検査方法
JP2018048842A (ja) * 2016-09-20 2018-03-29 株式会社東芝 劣化情報取得装置、劣化情報取得システム、劣化情報取得方法及び劣化情報取得プログラム

Also Published As

Publication number Publication date
CN113614513A (zh) 2021-11-05
JPWO2020203995A1 (ja) 2020-10-08
US20220156909A1 (en) 2022-05-19
EP3951357A4 (en) 2022-12-28
EP3951357A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020203995A1 (ja) 潤滑油劣化判定システム及び潤滑油劣化判定方法
CN1920539A (zh) 缺陷检测方法与缺陷检测装置
JP2020042044A5 (ja) 外観検査装置
CN104256882B (zh) 基于计算机视觉的烟丝中再造烟叶比例测定方法
EP2989499A1 (en) Auto-focus methods and systems for multi-spectral imaging
JP2005516188A5 (ja)
CN105491271B (zh) 图像采集中进行辅助光源调节的方法及装置
CN108090890B (zh) 检查装置以及检查方法
JP2021510226A (ja) 金属粉末の状態を判定するための方法及び装置
JPWO2011004568A1 (ja) 受精卵観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに受精卵の製造方法
KR20120127670A (ko) 곡립 외관 품위 판별장치에서의 품위별 중량 비율의 산출방법
CN106886779B (zh) 一种荧光显微图像二值化的自适应阈值方法
CN107481213A (zh) 显微镜下图像多层聚焦融合方法
KR101045393B1 (ko) 철강공정 내부 크랙 및 중심편석 판정 방법
TW200805198A (en) Measuring method and measuring device using color image
CN106093051A (zh) 基于机器视觉的纸卷切面毛刺检测方法及装置
WO2020101539A3 (ru) Криминалистический многофункциональный видеомикроскопический спектральный комплекс
TW201608484A (zh) 鏈齒之檢查條件設定方法及鏈齒檢查方法
CA2830344C (en) Corrosion assessment apparatus and method
CN109035225A (zh) 一种汽车刹车片外观质量检验照明系统设计质量评价方法
JP6824748B2 (ja) 顕微鏡パラメータの設定方法および観察方法
KR101562988B1 (ko) 열간소재의 표면결함 검출 장치 및 표면 검출 방법
US7812862B2 (en) White balance adjustment method for a digital image capturing device
WINATA et al. Prediction of microalgae total solid concentration by using image pattern technique
CN115100102A (zh) 镀膜镜片的缺陷检测方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783998

Country of ref document: EP

Effective date: 20211029