WO2020203948A1 - Component transport processing device - Google Patents

Component transport processing device Download PDF

Info

Publication number
WO2020203948A1
WO2020203948A1 PCT/JP2020/014464 JP2020014464W WO2020203948A1 WO 2020203948 A1 WO2020203948 A1 WO 2020203948A1 JP 2020014464 W JP2020014464 W JP 2020014464W WO 2020203948 A1 WO2020203948 A1 WO 2020203948A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
parts
probe
mounting plate
processing apparatus
Prior art date
Application number
PCT/JP2020/014464
Other languages
French (fr)
Japanese (ja)
Inventor
今井 ▲しょう▼二郎
Original Assignee
アキム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019071756A external-priority patent/JP7282359B2/en
Priority claimed from JP2019071755A external-priority patent/JP7273399B2/en
Application filed by アキム株式会社 filed Critical アキム株式会社
Priority to CN202080026661.5A priority Critical patent/CN113677608B/en
Publication of WO2020203948A1 publication Critical patent/WO2020203948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/84Star-shaped wheels or devices having endless travelling belts or chains, the wheels or devices being equipped with article-engaging elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present invention relates to a parts transfer processing apparatus suitable for a process of processing various parts, for example, an inspection process of inspecting the temperature characteristics of electronic parts.
  • FIG. 20 shows a conventional component characteristic inspection device 301.
  • the component 315 is mounted on a component transport carrier (not shown).
  • the turret table 310 on which the carrier is placed is rotationally driven around the turret table rotation shaft 312.
  • the component 315 is supplied to the carrier from the component supply device 325.
  • the temperature of the component 315 stabilizes at a predetermined first temperature while the turret table 310 rotates and the component transport carrier holding the component 315 passes, for example, the first temperature control region 340.
  • the characteristics of the component at the first temperature for example, the value of the electric resistance are measured by the first measuring device in the first measuring region 335. Further, the temperature of the component 315 stabilizes at a predetermined second temperature while the turret table 310 rotates and the component transport carrier holding the component 315 passes through the second temperature control region 350. Then, the characteristics of the component at the second temperature, for example, the value of the electric resistance are measured by the second measuring device in the second measuring region 345. Finally, the parts 315 are collected in the storage box 330.
  • the conventional characteristic inspection device it is necessary to stabilize the temperature of both the transport carrier and the component while the transport carrier passes through each temperature control region. That is, since not only the heat capacity of the parts but also the heat capacity of the transport carrier is added, there is a problem that it takes time to reach the temperature. Further, especially when the output characteristics are measured at a plurality of measurement points (temperature control regions), that is, at two points, for example, a measurement point of 0 ° C. or lower and a measurement point of 80 ° C., the time required for stabilization to each temperature is different. , The transport speed of the transport device shall be adjusted to the slowest possible one. Therefore, there is a limit to the improvement of processing capacity.
  • the component when evaluating the temperature characteristics of a component processed in the processing apparatus, it is assumed that the component stabilizes at a predetermined temperature set during passage in each temperature control region (for example, first). While passing through the temperature control region 340, the temperature of the component 315 stabilizes at a predetermined first temperature), and the measured electrical resistance value of the component 315 is the resistance value at the set temperature (first temperature). Is getting as.
  • the temperature of the part 315 may deviate from the predetermined temperature to be stabilized.
  • the processing (measurement) accuracy may decrease, for example, the parts are more susceptible to the influence of the surrounding environment (for example, the influence of outside air temperature, humidity, dust and dirt) during measurement.
  • miniaturization of parts increases the difficulty of positioning the probe when measuring the part and the part holder when holding or releasing the part, which takes time to measure, hold or release, or makes a contact error. There is also a problem that (holding error) occurs.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a parts transfer processing apparatus having a high processing capacity per unit time and capable of improving processing (measurement) accuracy.
  • the present invention includes a turret type rotary transfer device that holds a plurality of parts by a plurality of component holding mechanisms and conveys the plurality of the parts along a part of an annular transfer path, and is arranged in the transfer path.
  • a processing device arranged in a component supply area for supplying the component to the component holding mechanism and a processing area located on the downstream side of the component supply area in the transport path, and performing a predetermined process on the component.
  • the moving mechanism includes a moving mechanism provided in the processing apparatus for moving the parts, and a component carrying area arranged on the downstream side of the processing area in the transport path to carry out the parts.
  • a mounting plate having a plurality of mounting portions on which the parts are individually mounted, a heat transfer member that transfers heat to the previously described mounting plate, and the heat transfer member and the previously described mounting plate are integrated into a plate rotation. It is a parts transfer processing apparatus characterized by having a rotation drive unit that rotates around a shaft.
  • the present invention comprises a turret type rotary transfer device for holding a plurality of parts by component holders of a plurality of component holding mechanisms and transporting the plurality of the components along a part of an annular transfer path.
  • the processing device includes a processing device that is arranged in a processing area in the transport path and performs a predetermined process on the component, and the process device is a mounting unit on which the component transported by the component holder is placed. The part is moved by rotating the mounting plate having the above, the heat transfer member for transferring heat to the previously described mounting plate, and the heat transfer member and the previously described mounting plate about the plate rotation axis.
  • It has a drive unit and a probe that performs the processing on the moving component, and has a relative position between the component holder of the component holding mechanism and the above-mentioned placing portion, and / or the probe of the processing device. It is a component transport processing apparatus characterized by having a positioning means for adjusting the relative position of the above-described mounting portion.
  • the parts transfer processing device of the present invention it is possible to obtain an excellent effect that it is possible to provide a parts transfer processing device having a high processing capacity per unit time and capable of improving the accuracy of processing (for example, measurement).
  • FIG. 1 It is a side schematic diagram explaining the transport operation of a part by a turret type rotary transport device. It is a top view of the mounting plate explaining embodiment of this invention. It is a top view of the modification of the mounting plate which explains embodiment of this invention. It is a figure explaining another embodiment of this invention, (A) the plan view of the mounting plate, (B) the graph which shows the temperature change of the moving part. It is a figure explaining another embodiment of this invention, (A) side view of the processing area, (B) plan view of the processing area, (C) a partially enlarged sectional view of FIG. .. It is a plane schematic view of the processing area explaining another embodiment of this invention.
  • FIG. 1 A) to (C) are front schematic views explaining the operation of the probe positioning mechanism of the embodiment of the present invention.
  • (A) to (E) are side schematic views showing the operation of the probe positioning mechanism.
  • (A) to (C) are partially enlarged views showing the centering operation of the probe positioning mechanism.
  • (A) to (C) are front schematic views showing the operation of the component holder positioning mechanism of the embodiment.
  • (A) to (E) are side schematic views showing the operation of the component holder positioning mechanism.
  • FIG. and (B) are plan views which show the mounting plate. It is a top view which shows the mounting plate which concerns on other embodiment of this invention. It is a top view of the conventional parts transfer processing apparatus.
  • FIG. 1 is a schematic plan view illustrating a component transfer processing device 1 according to an embodiment of the present invention.
  • the component transfer processing device 1 evaluates the characteristics and the like while transporting the components. Specifically, the component transfer processing device 1 is used to evaluate the temperature dependence of the output of an electronic component (for example, a thermistor element). Be done.
  • an electronic component for example, a thermistor element
  • the parts transfer processing device 1 of the present embodiment includes a disk-shaped turret type rotary transfer device 10, a parts supply area 51, a processing device 70, a moving mechanism 125, and a parts carry-out area 53.
  • the turret type rotary transport device 10 holds a plurality of parts by a plurality of component holding mechanisms 45, and transports the plurality of parts along a part of the annular transport path T (indicated by a broken line in the figure).
  • the component supply area 51 is an area arranged in the transfer path T to supply the component to the component holding mechanism 45, and the processing area 52 is located on the downstream side of the component supply area 51 in the transfer path T with respect to the component.
  • This is an area in which a processing device 70 for performing a predetermined process is arranged, and a component carry-out area 53 is an area arranged on the downstream side of the process area 52 in the transport path T to carry out the parts.
  • FIG. 2 is a side schematic view of the parts transport processing device 1.
  • the turret type rotary transfer device 10 is rotationally driven by the turret table drive device 20 around the turret table rotary shaft 15.
  • the turret type rotary transfer device 10 has a plurality of component holding mechanisms 45 fixedly arranged at equal intervals on the peripheral edge of its own turret table 12.
  • a plurality of elevating urging mechanisms 40 are provided on the gantry 35 provided independently of the turret type rotary transfer device 10.
  • the component holding mechanism 45 cooperates with the elevating urging mechanism 40 in the component supply area 51, the processing area 52, and the component unloading area 53 (see FIG. 1) to collect (hold) and / or release the parts. Do it.
  • the processing device 70 performs predetermined processing (for example, measurement of temperature characteristics) on the parts, and has a moving mechanism 125 and a measuring unit 95.
  • the moving mechanism 125 mounts the mounting plate 50 having a plurality of mounting portions 100 on which the parts are individually mounted, the heat transfer member 130 that transfers heat to the mounting plate 50, and the heat transfer member 130.
  • the plate 50 is integrated with a rotation drive unit (mounting plate rotation drive unit) 60 that rotates around a rotation shaft (mounting plate rotation shaft) 55.
  • the control device 25 is composed of a storage device such as a CPU, RAM, ROM, and a hard disk drive, and is composed of a turret type rotary transfer device 10 for component transfer control, a component holding mechanism 45 for component release / recovery control, and component processing ( Output measurement) Performs various controls such as control.
  • the CPU is a so-called central processing unit, and various programs are executed to realize various functions.
  • the RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and a program executed by the CPU.
  • the component transfer processing device 1 holds the components by a plurality of (12 pieces as an example) component holding mechanisms 45 arranged in the circumferential direction of the turret type rotary transfer device 10.
  • the turret type rotary transport device 10 moves these component holding mechanisms 45 in the circumferential direction (for example, in the counterclockwise direction in FIG. 1) in synchronization with each other, and simultaneously transports a plurality of components along the annular transport path T. To do.
  • parts are supplied by an automatic parts supply device 65 (for example, a parts feeder).
  • the turret type rotary transfer device 10 is rotationally driven in the direction of arrow R, and the parts held by the parts holding mechanism 45 in the parts supply area 51 are carried out in the parts carry-out area 53 via the processing area 52 counterclockwise. ..
  • the processing area 52 for example, a process of measuring the temperature characteristic of the electric resistance value of the component is performed. Since there are a plurality of processing areas 52 in the present embodiment, the parts pass through the plurality of processing areas 52.
  • a plurality of processing devices 70 are arranged in the processing area 52 along the circumferential direction of the turret type rotary transport device 10.
  • the processing devices 70 can independently perform different processing. Specifically, for example, each processing device 70 controls (heats or cools) the component so as to have a different set temperature (near) for each processing device 70, and measures the temperature characteristics of the component at the set temperature. To do.
  • the first processing device 70A to the seventh processing device 70G are arranged in the first processing area 52A to the seventh processing area 52G, respectively.
  • the parts are heated (or raised) to a set temperature (near) of 25 ° C. (Cooling) and the output characteristics of the electrical resistance value when the temperature of the component reaches 25 ° C (near) are measured.
  • the parts whose output characteristics have been measured by the first processing device 70A are collected by the part holding mechanism 45 and transported to the second processing region 52B located downstream of the transport path T.
  • the quality / defect of the component is also determined by the first processing device 70A (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the second processing area 52B. It is discharged to a collection box (not shown) arranged near the first processing device 70A.
  • the second processing apparatus 70B arranged in the second processing region 52B for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 40 ° C. and the component reaches 40 ° C. (near).
  • the output characteristics of the resistance value are measured.
  • the parts whose output characteristics have been measured by the second processing device 70B are collected by the part holding mechanism 45 and transported to the third processing region 52C located downstream of the transport path T.
  • the quality / defect of the component is also determined by the second processing device 70B (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the third processing area 52C. It is discharged to a collection box (not shown) arranged near the second processing device 70B.
  • the third processing apparatus 70C arranged in the third processing region 52C for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 65 ° C. and the component reaches 65 ° C. (near).
  • the output characteristics of the resistance value are measured.
  • the parts whose output characteristics have been measured by the third processing device 70C are collected by the part holding mechanism 45 and transported to the fourth processing region 52D located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the third processing device 70C (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the fourth processing area 52D. It is discharged to a collection box (not shown) arranged near the third processing device 70C.
  • the fourth processing apparatus 70D arranged in the fourth processing region 52D for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 80 ° C. and the component reaches 80 ° C. (near).
  • the output characteristics of the resistance value are measured.
  • the parts whose output characteristics have been measured by the fourth processing device 70D are collected by the part holding mechanism 45 and transported to the component carry-out area 53 located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the fourth processing device 70D (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the component carry-out area 53. 4 Discharged to a collection box (not shown) arranged near the processing device 70D.
  • the same processing can be performed by setting the predetermined temperature in the same manner.
  • An unused processing area 52 may exist, and the processing may not be performed continuously (adjacent processing area 52) as described above.
  • the processing devices 70A to 70G for continuously measuring the output characteristics (plurality of different temperature characteristics) at different set temperatures are arranged in the processing area 52 .
  • a processing device 70 that performs processing other than measurement of temperature characteristics may be arranged, or the processing device 70 is not arranged continuously (adjacent) along the circumferential direction, and in the figure, for example, the third processing.
  • the posture of the component held by the component holding mechanism 45 is detected as appropriate, for example, on the downstream side of the component supply area 51, between the processing devices 70, or on the upstream side of the component carry-out area 53.
  • a means for adjusting the parts, a means for cleaning the holding means of the part holding mechanism 45, and the like may be arranged.
  • the area between the component supply area 51 and the processing area 52 can be defined as the preprocessing area
  • the area between the processing area 52 and the component unloading area 53 can be defined as the post-processing area.
  • the preprocessing area and the post-processing area are broadly defined as processing. It is a category of area.
  • the pretreatment areas 52Sa and 52Sb are arranged in the immediate vicinity of the downstream side of the parts supply area 51.
  • the preprocessing region 52Sa is provided with an image pickup device 70Sa that captures the posture of the component held by the component holding mechanism 45 with a still image, a moving image, or the like (including detection by infrared rays, irradiation, or the like).
  • a posture adjusting device 70Sb is provided in the pretreatment area 52Sb closest to the downstream side of the imaging device 70Sa.
  • the orientation (angle in the circumferential direction with respect to the holding axis) of the component held by the component holding mechanism 45 is adjusted with high accuracy, and at the same time, the center position of the component coincides with a predetermined position (matching the holding axis). Positioned so as to be (position).
  • the posture adjusting device 70Sb analyzes the posture (state) of the component held by the component holding mechanism 45 based on, for example, an image taken by the imaging device 70Sa. If there is an abnormality in the posture (state), the posture adjusting device 70Sb temporarily releases and holds the component again, or controls the holding means of the component holding mechanism 45 to obtain the correct posture (state). adjust.
  • the processing devices 70A to 70G downstream of the parts can take out (hold) the parts from the mounting plate 50 and store (release) the parts with high accuracy. Can be done.
  • the post-treatment area is not particularly shown, for example, an appearance inspection device for visually inspecting parts may be arranged as the post-treatment area.
  • the preparation area 51P may be arranged between the parts carry-out area 53 and the parts supply area 51.
  • a cleaning device 65P for cleaning the holding means (for example, suction means) of the component holding mechanism 45 to prepare for the next suction is provided.
  • the location of the imaging device 70Sa, the posture adjusting device 70Sb, and the cleaning device 65P is arbitrary on the transport path T, and at least one of these may not be arranged.
  • a discharge area and a discharge means for discharging abnormal parts before reaching the parts carry-out area 53 may be appropriately provided on the transport path T.
  • the image pickup device 70Sa and the posture adjustment device 70Sb are included in the concept of the processing device 70 of the present embodiment in a broad sense.
  • the pre-processing areas 52Sa and 52Sb are also included in the concept of the processing area 52 in a broad sense.
  • the parts that have completed all output measurements in this way and are not defective pass through the parts carry-out area 53, and after the postures (circumferential orientation and horizontal position) are appropriately adjusted, they are wound on the supply reel 5.
  • the parts are packaged by being carried out to the resin tape for packing.
  • FIG. 3 is a schematic view showing an extracted main configuration of the processing device 70
  • FIG. 3A is a side view
  • FIG. 3B is a schematic diagram of the main configuration of the measuring unit 95.
  • FIG. 4 is a schematic view of the temperature stabilizer 125.
  • the processing device 70 has a temperature stabilizing device 125 that controls the temperature of the component and conveys the component in an annular shape, and a measuring unit 95 that measures the output characteristics of the component.
  • the temperature stabilizer 125 also serves as a moving mechanism for moving the parts and a temperature stabilizing mechanism for controlling the temperature of the parts while moving the parts with the moving mechanism. That is, the temperature stabilizer 125 also serves as a moving mechanism for transporting parts and a heat transfer mechanism for heating and cooling the parts.
  • the temperature stabilizer 125 includes a mounting plate 50 capable of accommodating parts.
  • the measuring unit 95 is an action unit that performs a predetermined action (here, an output measuring action) on the component, and the measuring unit 95 makes a measurement that electrically contacts the electrode 120 (see FIG. 3B) of the component 170. It includes a probe 110, a probe elevating unit 111 that raises and lowers the measurement probe 110, and a probe positioning mechanism 200 that adjusts the position of the measurement probe 110 in a plane direction with high accuracy.
  • the measurement probe 110 is held by the probe elevating part 111, and the position is adjusted in the plane direction by the probe positioning mechanism 200 via the probe elevating part 111.
  • the measurement probe 110 moves up and down in the vertical direction (vertical direction) with respect to the plane of the mounting plate 50 by the probe elevating portion 111, and moves in the plane direction of the mounting plate 50 by the probe positioning mechanism 200.
  • the rotation of the mounting plate 50 stops. After that, as shown in FIG. 3B, the pair of measurement probes 110 descend and come into contact with the pair of electrodes 120. After measuring the characteristics with the measuring device 105 via the measuring probe 110, the measuring probe 110 rises, the mounting plate 50 rotates again, and the next component 170 moves directly under the measuring probe 110.
  • the probe positioning mechanism 200 engages with the mounting plate 50 (or a member serving as a reference position for the mounting plate 50) and has a relative position with respect to the mounting plate 50.
  • the probe positioning engaging portion 210 to be adjusted, the engaging portion elevating mechanism 211 for raising and lowering the probe positioning engaging portion 210, and the engaging portion for slightly moving the probe positioning engaging portion 210 in the XY plane direction. It has a plane moving mechanism 201.
  • the movement by the engaging portion elevating mechanism 211 and the engaging portion plane moving mechanism 201 is performed in advance before the measuring probe 110 (probe elevating portion 111) comes into contact with the component. Specifically, the measuring probe 110 (probe elevating portion 111) comes into contact with the component after the engagement of the probe positioning engaging portion 210 with the probe positioning hole 103 is completed.
  • the engaging portion plane moving mechanism 201 can move in the horizontal linear direction (X direction and Y direction) with respect to the measuring portion support 99 which is fixedly placed on the floor surface.
  • the engaging portion horizontal movement mechanism 201 is arranged on the measuring portion support 99 via a slide component 202 (for example, a rollable ball-shaped member) arranged on the measuring portion support 99 and the slide component 202.
  • the planar moving body 203 is movable in the horizontal direction with respect to the measuring unit support 99.
  • the engaging portion elevating mechanism 211 is mounted so as to be movable in the vertical direction with respect to the plane moving body 203.
  • the probe elevating portion 111 is mounted on the engaging portion elevating mechanism 211 so as to be movable in the vertical direction.
  • the engaging portion elevating mechanism 211 lowers the probe positioning engaging portion 210 to a predetermined position (probe positioning hole 103 described later) to perform positioning, and then the probe elevating portion 111 only measures the measuring probe 110. To descend.
  • FIG. (A) is a top view of the mounting plate 50 provided in the temperature stabilizer 125
  • FIG. (B) is a cross-sectional schematic view of the temperature stabilizer 125.
  • the temperature stabilizer 125 is a moving mechanism for rotating and moving a plurality of parts at the same time, and has a plurality of mounting portions 100 which are recesses in which the parts are individually mounted.
  • a disk-shaped mounting plate 50 is provided.
  • the mounting plate 50 is integrally with the heat transfer member 130 described later, and rotates around the mounting plate rotation shaft 55 in a state where parts are mounted.
  • the mounting portions 100 are arranged at equal intervals along the circumferential direction of the mounting plate 50.
  • the annular locus in which the mounting portion 100 moves as the mounting plate 50 rotates becomes the movement path of the parts.
  • the inner dimensions of the mounting portion 100 substantially match the outer dimensions of the parts. In this way, the misalignment of the parts in the mounting portion 100 is suppressed. Further, when the component is mounted on the mounting portion 100, the component is required to have high position accuracy. Therefore, in order to improve the holding accuracy of the parts, it is desirable to adjust the posture by, for example, the posture adjusting device 70Sb (see FIG. 1).
  • the measurement area 54 is an area including a mounting unit 1001 arranged directly under the measurement unit 95 (measurement probe 110), and the entry / exit area 57 functions, for example, when the component holding mechanism 45 (holds or releases the component). It is an area for holding or opening a part by the part holding mechanism 45), and includes a mounting portion 1017 on which the part to be held or released is stopped. Specifically, as shown in FIG.
  • the area including the mounting portion 1017 existing at the position closest to (immediately below) the component holding mechanism 45 that performs the holding / releasing operation is the entry / exit area 57. .. Further, in this example, the entry / exit region 57 is a region arranged at a position of 180 degrees on the mounting plate 50 with respect to the measurement region 54.
  • the parts arranged in the mounting portion 100 for half a circumference from the entry / exit area 57 to the measurement area 54 are the parts before measurement, and they are measured when they are located in the measurement area 54.
  • the output characteristics are measured by the unit 95.
  • the parts arranged in the mounting portion 100 for half a circumference from the measurement area 54 to the entry / exit area 57 are already measured parts, and when they are located in the entry / exit area 57, the component holding mechanism 45 It is taken out from the mounting portion 100.
  • the positions of the entry / exit area 57 and the measurement area 54 are areas fixed to the rotating mounting plate 50, but for example, when the time (distance) from the acceptance of parts to the measurement is changed, the position is fixed.
  • the fixed positions (fixed phase difference in the circumferential direction) of the entry / exit area 57 and the measurement area 54 can be changed. For example, when the phase difference is less than 180, the time (distance) from the acceptance of the component to the measurement becomes short, and when the phase difference is larger than 180, the time (distance) from the acceptance of the component to the measurement becomes long.
  • the parts mounted on the mounting portion 100 (1017) of the mounting plate 50 are controlled to a predetermined temperature (for example, 25 ° C.) while rotating by the temperature stabilizer 125. Then, after measuring the output at the predetermined temperature in the measuring unit 95, it is moved to the entry / exit area 57 again and collected by the component holder of the component holding mechanism 45 (not shown here).
  • the mounting plate 50 rotates, for example, clockwise in the figure (A) about the mounting plate rotation shaft 55.
  • a plurality of probe positioning holes 103 are arranged in the circumferential direction on the outer periphery of the mounting portion 100.
  • the probe positioning holes 103 are individually (one-to-one) corresponding to each mounting portion 100 in the same number as the mounting portions 100.
  • the measuring unit 95 includes a probe positioning engaging unit 210 that can descend prior to the measuring probe 110.
  • the processing device 70 lowers the probe positioning engaging portion 210 prior to the contact of the measuring probe 110 with the component, and the component to be measured in the measurement area 54 is moved. It engages with the probe positioning hole 103 corresponding to the mounted mounting portion 100 (1001).
  • the probe positioning engaging portion 210 and the probe positioning hole 103 has a tapered shape (specifically, a conical shape).
  • the probe positioning engaging portion 210 is a conical protrusion
  • the probe positioning hole 103 is a perfect circular hole having a diameter smaller than the maximum outer diameter of the conical protrusion.
  • the probe positioning mechanism 200 may control the horizontal position of the measurement probe 110 by an imaging means, a sensor, or the like (not shown).
  • the number of probe positioning holes 103 is equal to or larger than the number of mounting portions 100.
  • the probe positioning hole 103F is fixedly arranged in the measurement area 54, and the position of the measurement probe 110 is adjusted (centering) with respect to all the mounting portions 100 stopped in the measurement area 54. ) May be performed by the common probe positioning hole 103F.
  • the temperature stabilizer 125 is arranged adjacent to the mounting plate 50 and the mounting plate 50 on the back surface (back surface) side, and transfers heat to the mounting plate 50.
  • the heat transfer member 130 is provided.
  • the shape of the heat transfer member 130 is preferably substantially the same as that of the mounting plate 50 (substantially disk-shaped), but it may be distributed in a plurality of shapes.
  • the heat transfer member 130 and the mounting plate 50 are integrally driven by the mounting plate rotation driving unit 60 around the mounting plate rotation shaft 55.
  • the mounting plate 50 and the heat transfer member 130 are preferably in contact with each other on flat surfaces, and a heat conductive sheet or the like may be interposed between them. Therefore, the temperature of the mounting plate 50 is controlled by the heat transfer member 130 so that the entire temperature is uniform (single).
  • the heat exchange portion 135 is provided on the plane opposite to the side adjacent to the mounting plate 50.
  • the heat transfer member 130 includes, for example, a heat transfer plate 130A and a Peltier element 130B.
  • the temperature of the heat transfer plate 130A in the heat transfer member 130 is monitored, and the output of the Peltier element 130B is controlled by using the monitoring result.
  • This structure facilitates the replacement of the mounting plate 50. For example, when it is desired to lower the temperature of the mounting plate 50 to control the parts to a temperature lower than room temperature, the mounting plate 50 side of the heat transfer member 130 becomes low temperature and the heat exchange portion 135 side becomes high temperature.
  • the heat exchange unit 135 should be air-cooled with a fan or cold water should be supplied from a chiller, which is an external heat exchanger, to cool the heat exchange unit 135 so that heat can be easily dissipated from the heat exchange unit 135. Is desirable.
  • a chiller which is an external heat exchanger
  • the mounting plate 50 side of the heat transfer member 130 becomes high temperature and the heat exchange unit 135 side becomes low temperature. In this case, it is conceivable to bring hot water into contact with the heat exchange unit 135 to heat it.
  • These temperature controls are performed by the temperature control device 137.
  • the temperature control device 137 is composed of a storage device such as a CPU, RAM, ROM, and a hard disk drive.
  • the CPU is a so-called central processing unit, and various programs are executed to realize various functions.
  • the RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and a program executed by the CPU.
  • the temperature control device 137 may be provided for each temperature stabilization device 125, or may be integrated with the control device 25 (see FIG. 1).
  • the temperature control by the temperature control device 137 is performed by, for example, PID control, but since it is a general well-known technique, detailed description thereof will be omitted.
  • the mounting plate 50 and the heat transfer member 130 are interchangeably configured. Therefore, for example, a plurality of types of mounting plates 50 having different sizes and arrangement numbers of the mounting portions 100 are prepared, and a plurality of types of heat transfer members 130 having different characteristics (specifications) are prepared and placed. Therefore, it can be replaced as appropriate according to the processing.
  • the temperature of the component is stabilized at a predetermined temperature rather than the moving time required from when the component is carried into the inlet / output region 57 to when it reaches the measuring unit 95 (measurement region 54 / acting unit).
  • the temperature control time which is the time until, is short. That is, the temperature of the component is stable at the target value before the component reaches the measurement region 54.
  • the size (diameter) of the mounting plate 50 is the same in all the processing devices 70, and the measurement area 54 is set at a position of 180 degrees with respect to the entry / exit area 57. That is, even in a plurality of processing devices 70 (processing areas 52) set at a plurality of different temperatures, the distance between the entry / exit area 57 and the measurement area 54 is the same. With such a configuration, as described above, the temperature of the component is stabilized at the target value before the component reaches the measurement region 54 in all the processing regions 52.
  • the mounting plates 50 have the same size and the number of mounting portions 100 is the same among the plurality of processing devices 70, and the mounting portions 100 rotate at a constant speed.
  • the distance of the movement path of the parts from the entry / exit area 57 to the measurement area 54 becomes the same, and the parts received in the entry / exit area 57 (mounting portion 100) of each mounting plate 50 among the plurality of processing devices 70.
  • the time related to the measurement is substantially constant regardless of the set temperature, and after the measurement, the time is transferred to the downstream processing device 70, so that the time is moved to the entry / exit area 57 again at the same timing.
  • the processing devices 70A to 70G arranged in the processing areas 52A to 52G all have the same arrangement relationship with the radial direction of each phase (phase every 30 degrees) of the turret type rotary transfer device 10 as a reference line. It becomes. Specifically, the mounting portion 100 existing in the inlet / output region 57 of each processing device 70 exists directly under the nozzle of the corresponding component holding mechanism 45, and is a turret type rotary transfer device based on the mounting portion 100. On the extension line in the radial direction of 10, the mounting portion 100 on the measurement region 54 side of the processing device 80 exists. By doing so, the assembly work of the parts transfer processing device 1 and the pre-setting work (position adjustment work) can be made the same work in the plurality of processing areas 52A to 52G, and the assembly efficiency and maintenance can be performed. Efficiency is dramatically increased.
  • the mounting plate 50 and the heat transfer member 130 are interchangeable, the size (diameter) of the mounting plate 50 is different depending on the processing content, and the measurement is performed from the entry / exit area 57, not limited to this example.
  • the distance to the region 54 (measurement unit 95) may be different.
  • the mounting portion 100 has a plurality of shaped pockets that fit the outer shapes of a plurality of parts 172-1, 172-2 having different sizes. Is also preferable. In this way, it is possible to measure a plurality of types of parts 172-1, 172-2 without exchanging the mounting plate 50.
  • the turret type rotary transfer device 10 will be described with reference to the side schematic view of FIG.
  • the elevating urging mechanism 40 is fixed to a pedestal 35 independent of the turret type rotary transfer device 10. That is, the elevating urging mechanism 40 is fixedly arranged corresponding to each processing area 52 on the transport path T.
  • the component holding mechanism 45 is fixed to the turret table 12 and changes its position as the turret table 12 rotates.
  • the elevating urging mechanism 40 is installed at an appropriate position to engage with the component holding mechanism 45 that is temporarily stopped in each processing area 52.
  • 12 pedestals 35 correspond to each processing device 70 (70A to 70G, 70Sa, 70Sb), automatic parts supply device 65, supply reel 5, and cleaning device 65P.
  • Lifting and lifting mechanism 40 (40A to 40L) is fixedly installed.
  • the elevating urging mechanism 40 reciprocates up and down in the vertical direction (Z direction shown in FIG. 5), and when it descends, it urges the component holding mechanism 45 arranged below it.
  • the elevating and lowering urging mechanism 40 includes, for example, a motor that performs rotary motion, a swash plate cam structure that engages with the rotary shaft of the motor to convert the rotary motion into linear reciprocating motion, and a swash plate cam.
  • the structure includes a shaft portion 151 for transmitting linear reciprocating motion, an engaging portion 155 formed at the lower end of the shaft portion 151, and the like.
  • the shaft portion 151 is supported by an elastic body (not shown) upward in the vertical direction.
  • the shaft portion 151 and the engaging portion 155 are reciprocating in the vertical direction by the rotational power of the motor.
  • the lowered engaging portion 155 comes into contact with the component holding mechanism 45 and pushes it down.
  • the configuration of the elevating urging mechanism 40 is not limited to this, and the shaft portion 151 and the engaging portion 155 may be directly driven in the vertical direction by a linear power source such as an air cylinder, a hydraulic cylinder, or an electromagnetic solenoid. ..
  • the elevating and lowering urging mechanism 40 and the turret type rotary conveying device 10 are separately arranged, the elevating and lowering urging mechanism is added to the rotational weight of the turret type rotary conveying device 10. 40 is not included. As a result, the processing speed can be easily increased as a whole, and the power consumption can be reduced.
  • the component holding mechanism 45 includes a component holder 145, a holder elevating portion 147 that raises and lowers the component holder 145 in the vertical direction, and a component holder positioning mechanism 180 that adjusts the position of the component holder 145 in the plane direction with high accuracy. And have.
  • the component holder 145 sucks and holds the component from the mounting section 100, and releases (accommodates) the component to the mounting section 100.
  • the component holder 145 is, for example, a nozzle capable of sucking and holding the component, or releasing the suction to release the component.
  • the component holder 145 has a hollow tube shape (cylindrical shape), and each is connected to a diaphragm pump (not shown).
  • the diaphragm pump is controlled by the control device 25, and the internal space of the component holder 145 is depressurized when the component is sucked, and the internal space of the component holder 145 is returned to the atmospheric pressure when the component is released.
  • the component holder 145 is guided in the vertical direction by the holder elevating portion 147, but is urged upward in the vertical direction by an urging means (not shown) when the urging force of the elevating urging mechanism 40 is not applied. ing.
  • the holder elevating part 147 comes into contact with the lowered elevating urging mechanism 40 and is urged downward, the holder elevating part 147 guides the component holder 145 downward in the vertical direction.
  • the holder elevating part 147 guides the part holder 145 to be raised by the urging means (for example, a spring) built in by itself.
  • the component holder positioning mechanism 180 includes an engaging portion 182 for positioning the component holder that can be raised and lowered in the vertical direction (Z direction in the drawing), an engaging portion elevating mechanism 181 that raises and lowers the engaging portion 182 for positioning the component holder, and the like. It has an engaging portion plane moving mechanism 184 that slightly moves the component holder positioning engaging portion 182 in the XY plane direction.
  • the engaging portion plane moving mechanism 184 can move in the horizontal direction (X direction and / or Y direction) with respect to the turret table 12, which cannot move in the vertical direction.
  • the engaging portion horizontal movement mechanism 184 is placed on the turret table 12 via a slide component 222 (for example, a rollable ball-shaped member) provided on the surface (upper surface) of the turret table 12 and the slide component 222. It is composed of a plane moving body 183 or the like which is arranged and can move horizontally with respect to the turret table 12.
  • the engaging portion elevating mechanism 181 is mounted so as to be movable in the vertical direction with respect to the plane moving body 183. When the engaging portion elevating mechanism 181 is not urged by an external force, it is urged upward in the vertical direction by an urging means (not shown).
  • the holder elevating part 147 is mounted so as to be movable in the vertical direction with respect to the engaging part elevating mechanism 181. In a state where no external force is applied to the holder elevating part 147, the holder is urged upward in the vertical direction by an urging means (not shown).
  • the upward urging force of the engaging portion elevating mechanism 181 is smaller than that of the upward urging force of the holder elevating portion 147.
  • the engaging portion elevating mechanism 181 first descends preferentially and stops at the bottom dead center, and then the engaging portion stopped.
  • the holder elevating portion 147 descends independently of the elevating mechanism 181.
  • the component holder 145 can be raised and lowered independently of the engaging portion for positioning the component holder.
  • the mounting plate 50 and the support base 119 of the heat transfer member 130 are on the upper surface thereof and do not overlap with the mounting plate 50 (region exposed from the mounting plate 50). More specifically, one or more component holder positioning holes 104 are arranged in the vicinity of the entry / exit region 57.
  • the component holder positioning hole 104 corresponds to the mounting portion 100 of the entry / exit area 57, and one is provided on the outer periphery of the mounting portion 100.
  • the parts are transported between the processing devices 70 by repeatedly holding and releasing the parts by the part holding mechanism 45.
  • the component holder positioning mechanism 180 enables highly accurate positioning using the positioning means when the component is held / released.
  • the part holder positioning engaging portion 182 is lowered and engaged with the part holder positioning hole 104.
  • At this time, at least one of the component holder positioning engaging portion 182 and the component holder positioning hole 104 has a tapered shape (specifically, a conical shape).
  • the component holder positioning engaging portion 182 is a conical protrusion
  • the component holder positioning hole 104 is a perfect circular hole having a diameter smaller than the maximum outer diameter of the conical protrusion.
  • the engaging portion plane moving mechanism 184 moves in the horizontal direction (X direction and Y direction in the figure) and is positioned with high accuracy in the horizontal direction with reference to the component holder positioning hole 104. After that, the holder elevating portion 147 lowers the component holder 145 to approach the mounting portion 100 with reference to the engaging portion plane moving mechanism 184. By doing so, highly accurate positioning of the component holder 145 with respect to the mounting portion 100 is realized when the component is held or opened.
  • the component holder positioning mechanism 180 may control the horizontal position of the component holder 145 by an imaging means or a sensor (not shown).
  • the elevating and lowering urging mechanism 40 is configured so that the position and the pushing amount of the engaging portion of the elevating and lowering urging mechanism 40 can be appropriately changed according to the purpose and role, as in the case where the thickness of the component is changed. ing.
  • the turret type rotary transfer device 10 includes 12 component holding mechanisms 45 (45A to 45L) as an example. Further, in order to explain the overall operation, the imaging device 70Sa, the posture adjusting device 70Sb, and the processing devices 70A to 70G may be collectively referred to as the processing device 70.
  • the first elevating urging mechanism 40A is fixed on the first processing area 52A
  • the second elevating urging device 40B is fixed on the second processing area 52B
  • the third elevating urging device 40B is fixed.
  • the device 40C is fixed on the third processing area 52C
  • the fourth elevating urging device 40D is fixed on the fourth processing area 52D
  • the fifth elevating urging device 40E is fixed on the fifth processing area 52E.
  • the 6 elevating urging device 40F is fixed on the 6th processing area 52F
  • the 7th elevating urging device 40G is fixed on the 7th processing area 52G
  • the 8th elevating urging device 40H is fixed on the component unloading area 53.
  • the ninth elevating urging device 40I is fixed on the preparation area 51P
  • the tenth elevating urging device 40J is fixed on the parts supply area 51
  • the eleventh elevating urging device 40K is the first pretreatment area 52Sa, first. 12
  • the elevating urging device 40L is fixed on the second pretreatment area 52Sb.
  • FIG. 6A shows a state in which the turret type rotary transfer device 10 is temporarily stopped, the first component holding mechanism 45A is stopped on the first processing area 52A, and the second component holding mechanism 45B is second.
  • the third component holding mechanism 45C is stopped on the processing area 52B, the third component holding mechanism 45C is stopped on the third processing area 52C, the fourth component holding mechanism 45D is stopped on the fourth processing area 52D, and the fifth component holding mechanism 45E is stopped on the fourth processing area 52D.
  • the first component holding mechanism 45A is stopped on the second processing area 52B
  • the second component holding mechanism 45B is stopped on the third processing area 52C
  • the third component holding mechanism 45C is stopped on the fourth processing area 52D.
  • the fourth component holding mechanism 45D is stopped on the fifth processing area 52E
  • the fifth component holding mechanism 45E is stopped on the sixth processing area 52F
  • the sixth component holding mechanism 45F is stopped on the seventh processing area 52G.
  • the seventh component holding mechanism 45G is stopped on the component carry-out area 53
  • the eighth component holding mechanism 45H is stopped on the preparation area 51P
  • the ninth component holding mechanism 45I is stopped on the component supply area 51.
  • the tenth component holding mechanism 45J is stopped on the first pretreatment area 52Sa, the eleventh component holding mechanism 45K is stopped on the second preprocessing area 52Sb, and the twelfth component holding mechanism 45L is stopped on the first processing area 52A. Is stopped at.
  • parts are sequentially supplied from the part supply area 51, and all the parts are subjected to desired processing while sequentially moving in each processing area 52. It is applied and carried out from the parts carry-out area 53.
  • the figure shows the first mounting plate 50A to the third mounting plate 50C, the parts 172A to 172C, 173A to 173C, and the third mounting plate 50A to 173C arranged in each of the first processing region 52A to the third processing region 52C. It is a side view which shows the outline of 1 part holder 145A to 3rd part holder 145C.
  • the hatched parts 172A to 172C are parts to be moved (transported) (for example, already measured), and the parts 173A to 173C shown in white are (for example, the measurement is completed). ) Parts that are not subject to movement (transportation), and part 171 is a part that is newly arranged on the mounting plate 50 shown in the figure. Further, during the period shown in the figure, the first mounting plate 50A to the third mounting plate 50C have stopped rotating due to the loading and unloading of parts.
  • FIG. 7A shows a state in which the first component holder 145A of the first component holding mechanism 45A is in contact with the component 172A to be transported in the entry / exit area 57 on the first mounting plate 50A, and the second component holding.
  • the state in which the second component holder 145B of the mechanism 45B is in contact with the component 172B to be transported in the entry / exit region 57 on the second mounting plate 50B, and the third component holder 145C of the third component holding mechanism 45C are in contact with each other.
  • a state in which the component 172C to be transported is in contact with the entry / exit region 57 on the third mounting plate 50C is shown. These are done at the same timing.
  • the mounting portion 100A becomes a hole in the entry / exit region 57 of the first mounting plate 50A.
  • the mounting portion 100B becomes a hole in the entry / exit region 57 of the second mounting plate 50B.
  • the mounting portion 100C becomes a hole in the entry / exit region 57 of the third mounting plate 50C.
  • FIG. 3C shows a state in which the turret type rotary transfer device 10 is rotated (for example, rotated by 30 degrees).
  • the 12th component holding mechanism 45L moves onto the 1st mounting plate 50A.
  • the 12th component holder 145L sucks and holds the new component 171 from the component supply area 51 (see FIG. 6) and moves to the entry / exit area 57 of the first mounting plate 50A.
  • the mounting portion 100A of the first mounting plate 50A is a hole because the component 172A has been taken out in advance.
  • the first component holding mechanism 45A moves onto the second mounting plate 50B.
  • the first component holder 145A sucks and holds the component 172A and moves to the entry / exit region 57 of the second mounting plate 50B.
  • the mounting portion 100B of the second mounting plate 50B is a hole because the component 172B has been taken out in advance.
  • the second component holder 145B that attracts and holds the component 172B moves to the entry / exit area 57 of the third mounting plate 50C.
  • the mounting portion 100C of the third mounting plate 50C is a hole because the component 172C has been taken out in advance.
  • each component holding mechanism 45 releases the component to the mounting portion 100 which is a hole.
  • the 12th component holder 145L of the 12th component holding mechanism 45L releases a new component 171 to the mounting portion 100A in the entry / exit area 57 on the first mounting plate 50A, and the first component holding mechanism 45A.
  • the first component holder 145A releases the component 172A to the mounting portion 100B in the entry / exit area 57 on the second mounting plate 50B, and the second component holder 145B of the second component holding mechanism 45B mounts the third component.
  • the component 172B is released to the mounting portion 100C in the entry / exit region 57 on the mounting plate 50C.
  • the first mounting plate 50A, the second mounting plate 50B, and the third mounting plate 50C start (restart) rotation.
  • the temperature of the new component 171 housed in the mounting portion 100A of the first mounting plate 50A becomes the set temperature (for example, 25 ° C.) of the first mounting plate 50A as the first mounting plate 50A rotates. Be controlled.
  • the temperature of the component 172A housed in the mounting portion 100B of the second mounting plate 50B becomes the set temperature of the second mounting plate 50B (for example, 40 ° C.) as the second mounting plate 50B rotates. Is controlled by.
  • the temperature of the component 172B housed in the mounting portion 100C of the third mounting plate 50C becomes the set temperature of the third mounting plate 50C (for example, 65 ° C.) as the third mounting plate 50C rotates. Is controlled by.
  • the component holding mechanism 45 of the present embodiment releases the component on the mounting plate 50 and collects the component from the mounting plate 50 at substantially the same time.
  • the measurement is completed when the rotation of the first mounting plate 50A, the second mounting plate 50B, and the third mounting plate 50C at a predetermined angle is completed in the state of FIG. 7 (D).
  • the 12th part holder 145L and the first part holder 145A are positioned directly under the second part holder 145B, and the parts are carried out in the same state as in FIG. 7A. Repeated.
  • the parts being transferred are temporarily stopped by the turret type rotary transfer device, and each part is directly processed (predetermined action) while maintaining its posture. Therefore, the transfer speed of the turret type rotary transfer device 10 is controlled by the processing speed (speed of a predetermined action) of each processing area.
  • the processing device 70 further independently transfers the parts received from the component holding mechanism 45 of the turret type rotary transfer device 10, and performs a predetermined action (measurement of output characteristics). I do.
  • the processing time in the processing device 70 and the transfer speed of the turret type rotary transfer device 10 can be set independently.
  • the temperature of each component can be stabilized in a sufficient time. Nevertheless, the transfer speed of the entire parts transfer processing device 1 does not decrease. Further, in the conventional parts transport processing device, since the transport carrier for transporting the parts is moved between a plurality of temperature control regions, the overall heat capacity is large and it takes time for the temperature to stabilize.
  • the target temperature is reached in a short time (short path).
  • the temperature arrival time of the conventional transport carrier type In the present embodiment, the component reaches the target temperature in 5 seconds or less (for example, about 2 seconds to 5 seconds).
  • the temperature of the component reaches a predetermined temperature and stabilizes while the component moves from the input / output area 57 to the measurement area (acting unit) 54 in the processing device 70. It is possible to evaluate the characteristics of parts in the above, and as a result, it is possible to accurately evaluate the temperature characteristics of parts. Further, in the present embodiment, since the transport carrier for transporting the parts is not used, the loss and error of heat transfer between the mounting plate 50 and the parts are small. As a result, the error of the stabilization temperature of the component can be reduced, and the reliability of the measurement is improved.
  • FIG. 8 is a plan view of the mounting plate 50.
  • any mounting plate 50 is configured to be stable near the set temperature between the entry / exit area 57 and the measurement area 54 (at any set temperature). The size of the plate 50, the rotation speed (movement time), and the like are controlled).
  • the temperature of the mounting plate 50 itself is not uniform due to factors such as wall thickness. Further, the thermal contact between the mounting plate 50 and the heat transfer member 130 is not always completely uniform. Further, the temperature of the entire heat transfer member 130 itself, which is a Peltier element, is not uniform.
  • the actually obtained temperatures vary among the plurality of mounting portions 100 on the mounting plate 50.
  • the first mounting portion 1001 the seventh mounting portion 1007, and the 16th mounting portion 1016 shown in FIG. 8A
  • the respective mounting portions are mounted.
  • the placement is moved to the measurement area 54, not all placements are always exactly at 80 ° C.
  • the output characteristics of parts do not necessarily have to be measured exactly at 80 ° C. If the actual temperature of the parts varies, the actual temperature in the varied state is used as the measured value, and the actual measurement is performed. It suffices to grasp the output characteristics in the value. In other words, if the actual temperature of a part and the actual output of the part can be measured accurately at the same time, the correlation (temperature characteristics) between the "temperature (contrast information)" and "output” of the part can be inspected. Become.
  • temperature is illustrated here as comparison information, the present invention is not limited to this, and information linked to various external environments such as humidity, illuminance, pressure, and volume can be selected as comparison information.
  • reference parts 250 for performing processing in the processing device 70 in real time are arranged in a part of the plurality of mounting units 100.
  • the master component 250 uses its own electrical output to obtain comparison information (for example, "temperature information") required for measurement of the component 170 to be measured, which is accommodated in the mounting portion 100 adjacent thereto. It becomes a member provided to the measuring device 105 from the measuring probe 110.
  • the master component 250 is a component of the same type as the component 170 to be mounted, and its output temperature-dependent characteristics (correlation information between the output and the comparison information) are inspected with high accuracy in advance, and the correlation information is grasped. It is preferable that the parts are finished.
  • the measuring device 105 can back-calculate the temperature information (comparison information) from the output value by using the already grasped correlation information.
  • the measuring device 105 uses the master component 250 to measure the resistance value or frequency. Measure.
  • the measuring device 105 back-calculates the actual temperature by using the correlation information with the resistance value and frequency of the master component 250. Based on this actual temperature, the actual temperature of the adjacent component 170 to be measured is predicted with high accuracy.
  • the master part 250 is, for example, a part of the same type (a part having the same configuration) as the part 170 to be actually measured, and it is particularly desirable that the master part 250 is a part produced in the same lot.
  • the output mode of the master component 250 may differ from the output mode of the component 170 to be measured.
  • the measuring device 105 of the processing device 70 holds the arrangement information of the master component 250 on the mounting plate 50 in advance, so that the measuring probe 110 is required for the measurement of the component 170 by utilizing the dedicated output of the master component 250. Comparison information can be obtained.
  • the comparison information is "temperature information”
  • the temperature information (comparison information) of the master component 250 can be acquired, and the actual temperature of the component 170 can be estimated from this temperature information. It becomes.
  • a thermistor element or the like can be used.
  • both the master component 250 and the component 170 to be measured are measured by the measurement probe 110 is illustrated, but a dedicated probe for measuring the master component 250 is provided to measure the master component 250. And component 170 measurement can be made independent.
  • the master component 250 is arranged in the vicinity of the actual component 170 to be measured, preferably in a close position, and more preferably in the mounting section 100 adjacent to the mounting section 100 in which the component 170 to be measured is housed.
  • the comparison information for example, temperature information
  • the comparison information can be adopted as it is as the comparison information (actual temperature) of the actual component 170. That is, each master component 250 is set with a guess-corresponding area 250A, and an actual component 170 to which the comparison information of the master component 250 is applied is arranged in the guess-corresponding area 250A.
  • the estimation-corresponding areas 250A are arranged at equal intervals in the circumferential direction on the mounting plate 50.
  • the figure (A) shows a case where one mounting portion 100 is opened and the master component 250 is arranged.
  • the master component 250 and the actual component 170 to which the comparison information is applied are always adjacent to each other, the prediction accuracy of the comparison information is high. That is, the estimation corresponding area 250A on which the master component 250 is placed has a structure in which one component 170 to be measured is arranged so as to be adjacent to the master component 250 in the circumferential direction.
  • the temperature of the master component 250 is measured when the 29th mounting unit 1029 is located in the measurement area 54, and the measurement target is measured when the next 30th mounting unit 1030 is located in the measurement area 54.
  • the output characteristics of component 170 are measured.
  • the comparison information temperature information
  • the actual temperature of the component 170 is estimated and the temperature output characteristic is acquired.
  • FIG. B shows a case where the master component 250 is arranged by opening the three mounting portions 100.
  • one mounting portion adjacent to the upstream side of the master component 250 and two mounting portions connected to the downstream side are included in the estimation corresponding area 250A.
  • the output of the component 170 is measured when the second mounting unit 1002 is located in the measurement area 54, and then the temperature of the master component 250 when the third mounting unit 1003 is located in the measurement area 54. Is measured, and the output of the component 170 is measured when each of the subsequent fourth mounting portion 1004 and fifth mounting portion 1005 is located in the measurement area 54. Then, the temperature information (comparison information) back-calculated from the master component 250 is estimated to be the actual temperature of these three actual measurement target components 170, and the temperature output characteristics are calculated.
  • the master component 250 is arranged (carried in / out) on the mounting portion 100 of the mounting plate 50 (taken in / out by the component holding mechanism 45) each time the processing device 70 processes the master component 250, similarly to the component 170 to be measured. It is also preferable that the parts are always arranged in the mounting portion 100 of the mounting plate 50 and not carried in or out. When the master component 250 is always placed on the mounting section 100, it is also preferable to mechanically fix the master component 250 to the mounting section 250 so as not to accidentally carry it out.
  • a plurality of master parts 250 are arranged on one mounting plate 50, they may be different types of master parts (for the purpose of measuring different characteristics).
  • a resistance element and a thermistor element may be arranged as a master component 250 on one mounting plate 50.
  • a data table or the like in order to eliminate the measurement error due to the temperature variation in the circumferential direction of the mounting plate 50, it is conceivable to use a data table or the like. Specifically, for example, for each mounting portion, the relationship (temperature difference) between the target temperature and the value (measured value) obtained by measuring the temperature of each mounting portion after stabilizing the temperature of the mounting plate 50 as a whole. ), Etc. Then, this data table can be held in the control device 25 or the like and corrected by calculation.
  • the master component 250 uses the mounting portion 100 (for example, the adjacent mounting portion 100) in the vicinity of the mounting portion 100 on which the component to be measured is arranged, and the measurement target is measured. It is possible to acquire the temperature condition at almost the same place in almost the same time as the part 170. That is, as compared with the master component 250 whose temperature is stable by orbiting on the mounting plate 50 in advance, the component 170 to be measured is the master component before moving from the entry / exit area 57 to the measurement area 54. Considering that the temperature becomes substantially equal to the temperature of 250 and stabilizes, it was decided to measure the temperature of the master component 250 and estimate this as the temperature of the component 170 to be measured.
  • the dedicated component or the master component 250 which is the same type of component as the component to be measured, in the mounting unit 100. Therefore, for example, data for temperature correction or temperature prediction.
  • the comparison information required for processing the part to be measured is acquired in real time and with high accuracy with a simple configuration. be able to.
  • the temperature of the component to be measured can be predicted with high accuracy in real time.
  • FIG. 8 illustrates a case where the master component 250 and the component 170 to be measured are arranged in the circumferential direction in the estimation corresponding area 250A, but the present invention is not limited to this, and as shown in FIG. 9A, for example.
  • two rows (inner row and outer row) of mounting portions 100 are prepared in the circumferential direction, the master component 250 is arranged in one row (here, the outer row), and the other row (here, the inner row).
  • the component 170 to be measured may be arranged in the row). That is, in each estimation corresponding area 250A, the master component 250 and the component 170 to be measured can be adjacent to each other in the radial direction. In this case, it is preferable not to carry in / out the master component 250.
  • the master component 250 can also be fixed to the mounting plate 50.
  • the present invention is not limited to this.
  • a plurality of measurement areas 54A, 54B, 54C are provided in the circumferential direction, and simultaneous timing is provided in each measurement area 54A, 54B, 54C. It is also possible to measure the output for different purposes. This is effective when there are many measurement items of component 170. If there are many measurement items and a plurality of items are collectively measured in a single measurement area 54, the measurement time becomes long and the processing capacity decreases. It is also possible to independently arrange the measurement unit 95 described with reference to FIG.
  • a single measurement unit 95 is arranged so as to straddle a plurality of measurement areas 54A, 54B, 54C, and a measurement probe corresponding to each measurement area 54A, 54B, 54C is moved up and down by a common elevating mechanism. It is also preferable to let it.
  • the processing capacity can be significantly improved.
  • the loading / unloading of the parts 170 in the loading / unloading area 57 may be executed three times in succession.
  • FIG. 10A and 10B are views showing an example of another embodiment of the present invention, FIG. 10A is a top view of one mounting plate 50, and FIG. 10B is a measurement of FIG. 10A. It is a graph which shows an example of the result.
  • one measuring unit 95 is provided in one processing device 70 (mounting plate 50)
  • the present invention is not limited to this, and for example, a plurality of measuring units 95 on one mounting plate 50 are provided.
  • a plurality of measuring units 95 (measurement areas 54) capable of measuring the output characteristics of each component may be provided at positions corresponding to the mounting units 100.
  • the first measurement unit 95A, the second measurement unit 95B, the third measurement unit 95C, and the fourth measurement unit 95D are placed on one mounting plate 50.
  • the configurations of the measuring units 95A to 95D are all the same as those of the measuring unit 95 described above, and the other configurations are also the same as those of the above-described embodiment.
  • the set temperature of the mounting plate 50 is, for example, 80 ° C.
  • the component 170 is placed between the measurement region (the fourth measurement region (the position of the fourth measurement unit 95D)) located at the position of 180 degrees from the entry / exit region 57. It shall be stable at 80 ° C.
  • the same component 170 is measured by the first measuring unit 95A and the second measurement.
  • the output characteristics are measured by the unit 95B, the third measurement unit 95C, and the fourth measurement unit 95D.
  • the component 170 After the component 170 is arranged in the mounting portion 100 of the entry / exit region 57, its temperature gradually rises as it moves in the circumferential direction, and in this example, it reaches the fourth measuring unit 95D as in the above embodiment.
  • the set temperature (for example, 80 ° C.) has been sufficiently reached before.
  • the first measuring unit 95A is arranged at a predetermined position in the moving path of the component 170, for example, the timing t1 at which the temperature of the component 170 is predicted to reach 25 ° C., and the timing t2 is predicted to reach 50 ° C.
  • the second measuring unit 95B is arranged at the timing t3
  • the third measuring unit 95C is arranged at the timing t3 predicted to reach 65 ° C.
  • the fourth measuring unit 95D is arranged at the timing t4 that stabilizes at 80 ° C.
  • the master parts 250 are arranged adjacent to each other, and the actual temperature (comparison information) of the parts 170 to be measured in the first to fourth measurement units 95A to 95D is set. , It is preferable to estimate in real time at the temperature of the adjacent master component 250. For example, as shown by the chain line in FIG. 10B, even if the temperature rise curve of the component 170 changes due to the outside air temperature or the like, by arranging the master component 250, the temperature of the first measuring unit 95A is 18 ° C. The output characteristics, the output characteristics of 28 ° C.
  • the temperature characteristics of the component 170 can be calculated in any external environment.
  • the temperature slope inspection can be continuously performed on the plurality of parts 170.
  • FIG. 11A and 11B are views showing an example of another embodiment of the present invention
  • FIG. 11A is a side view of one processing device 70
  • FIG. 11B is a top view of the processing device 70
  • (C) is a partially enlarged sectional view of FIG. (A).
  • the component transport processing device 1 may include a cover member 500 that integrally covers one or a plurality of processing devices 70.
  • the cover member 500 is made of, for example, a transparent resin material, and integrally covers the temperature stabilizer 125 and the measuring unit 95 in one processing region 52 including the measuring unit support 99, but the rotation of the component holding mechanism 45 It is a substantially L-shaped box when viewed from the side so as not to interfere with movement. That is, the cover member 500 mainly has a temperature stabilizer 125, a lower region 500B that covers the lower side (measurement unit support 99) side of the measurement unit 95, and an upper region 500A that mainly covers the upper part of the measurement unit 95, and has a lower region.
  • the size (volume) of 500B is larger than that of the upper region 500A.
  • a desired gas is injected into the cover member 500 from a gas injection portion (not shown).
  • the types of gas are dry gas (for example, dry air and nitrogen) to prevent dew condensation, inert gas (for example, nitrogen gas, argon gas, etc.) to suppress unnecessary reactions, and static gas to prevent dust intrusion. Clean air with electrical measures, temperature-controlled gas to improve the accuracy of temperature control, etc. are injected.
  • the upper region 500A can be opened upward with respect to the lower region 500B by the hinge mechanism 501. When the upper region 500A is opened, the measuring unit 95 (particularly, the probe positioning mechanism 200 and the measuring probe 110 portion) is exposed, so that the measuring unit 95 can be easily maintained.
  • the entire processing device 70 which is one or a plurality of processing units, is covered with the cover member 500.
  • the inside of the cover member 500 is filled with a gas according to the purpose while being integrally covered with. In particular, it is preferable to inject a dry gas at the time of low temperature measurement because it is important to prevent dew condensation.
  • the main parts of the measuring unit 95 specifically, the probe positioning mechanism 200 and the measuring probe 110 parts (parts other than the temperature stabilizing device 125 and the measuring unit support base 99) are (compared to the temperature stabilizing device 125).
  • the drive mechanism is delicate and complicated, and it is a part that requires frequent maintenance such as replacement and cleaning. Therefore, in the present embodiment, the upper region 500A can be opened. As a result, manual adjustment and maintenance of the main part of the measuring unit 95 can be easily performed as appropriate.
  • the entire upper region 500A is centered on the hinge mechanism 501 provided on the back side (outer peripheral side of the component transport processing device 1) of the cover member 500 in the back side direction (in the direction of the arrow in the figure). It shows a configuration in which it is rotated and opened.
  • the present invention is not limited to this, and various opening mechanisms can be adopted, such as the upper surface portion of the upper region 500A sliding to open.
  • the lower region 500B may also be configured to be openable.
  • the upper surface 500U of the lower region 500B extends in the horizontal direction so as to vertically separate the component holding mechanism 45 and the moving mechanism (temperature stabilizer 125).
  • a first opening 503 and a second opening 504 are provided on a part of the upper surface 500U.
  • the first opening 503 is configured so that it can pass (insert) directly under the engaging portion 182 for positioning the component holder.
  • the second opening 504 is configured so that it can pass (insert) directly under the component holder 145.
  • the parts are supplied to the mounting portion 100 of the mounting plate 50 in the entry / exit region 57, and the mounting portion 100 Parts can be taken out from.
  • FIG. 3C is an enlarged cross-sectional view of the upper surface 500U portion. It is desirable that the processing device 70 minimizes contact with the surrounding environment (outside air) during the operation of the component transport processing device 1, for example, in order to prevent dew condensation. From that viewpoint, the cover member 500 Is preferably sealed. Therefore, it is preferable that the first opening 503 and the second opening 504 are provided with means for blocking from the outside air 507.
  • the blocking means 507 is, for example, an air curtain flowing in the horizontal direction.
  • an air (gas) flow path 508 is formed at least inside the upper surface 500U, and air (preferably a dry gas for preventing dew condensation) passes through the flow path 508. Let me.
  • the engagement portion 182 for positioning the component holder is always open to the first opening 503, and the component holder 145 can be inserted into the second opening 504, while the humid outside air is a cover member. It is possible to prevent the entry into the 500.
  • a physical shutter or the like may be provided so as to open only when the component holder positioning engaging portion 182 or the component holder 145 is inserted.
  • the configuration and the drive mechanism become complicated.
  • the air curtain does not require a physical opening / closing operation and configuration.
  • this example shows an example in which one processing device 70 is integrally covered with the cover member 500, for example, a plurality of processing devices 70 may be integrally covered with the cover member 500.
  • the cover member 500 in order to improve the accuracy of the stabilization temperature of the parts, it is preferable to fill the cover member 500 with a gas whose temperature is positively controlled so as to match the stabilization temperature of the parts (temperature-controlled gas).
  • FIG. 12 is a top view of the processing apparatus 70 showing an example of another embodiment of the present invention.
  • a probe calibration component 260 for forming the measurement probe 110 is arranged by utilizing a part of a plurality of mounting portions 100 or a dedicated area.
  • the measuring probe 110 may have a change in its own resistance value or the wiring resistance value up to the measuring device 105 due to foreign matter adhering to the tip or deterioration over time. Further, the measurement probe 110 needs to be replaced regularly, but the resistance value of the measurement probe 110 itself also fluctuates depending on the replacement work.
  • a plurality of probe calibration components 260 are arranged on the movement locus of the mounting plate 50, and the measurement probe 110 is brought into contact with the probe calibration component 260 at an arbitrary timing to perform an energization operation. ..
  • the probe calibration component 260 is a resistance circuit and has a structure having as little temperature-dependent characteristics as possible. Further, it is preferable that the resistance values of the plurality of probe calibration components 260 are different. As a result, by measuring the plurality of resistance values of the probe calibration component 260 with the measuring probe 110, it is possible to check the change in the resistance value of the measuring probe 110 and its internal wiring with high accuracy.
  • the processing operation can be stopped and an alarm for maintenance can be generated.
  • the probe calibration parts 260 are arranged at four locations in the circumferential direction of the mounting plate 50 is illustrated here, the number thereof is not particularly limited.
  • FIG. 13A is a view for explaining an example of the probe positioning mechanism 200, and is a view of the processing device 70 as viewed from the rotation center side (left direction in FIG. 1) of the turret type rotary transfer device 10.
  • FIG. 13 (A) shows a state in which the probe elevating portion 111 and the engaging portion elevating mechanism 211 are both at top dead center
  • FIG. 13 (B) shows a state in which the probe elevating portion 111 is at top dead center and the engaging portion elevating mechanism 211. Is the state of the bottom dead center
  • FIG. 13C shows the state of the bottom dead center of both the probe elevating part 111 and the engaging part elevating mechanism 211.
  • the engaging portion plane moving mechanism 201 in the probe positioning mechanism 200 has a measuring portion support base 99, a slide component 202, a plane moving body 203, and a holding frame 204.
  • the measuring unit support base 99 is a portion that is immovably fixed to the base (table), and a recess 212 is provided on the upper surface (top surface) thereof.
  • the recess 212 has a two-step outer diameter in the depth direction, and the upper portion has a stepped shape wider than the lower portion (bottom portion).
  • the slide component 202 is housed inside the recess 212.
  • the slide component 202 is formed by, for example, an annular upper layer portion 202A and a lower layer portion 202B laminated via a ball member 202C.
  • the upper layer portion 202A and the lower layer portion 202B can move relative to each other in the plane direction.
  • the lower layer portion 202B is in close contact with the bottom surface and the inner peripheral wall of the lower portion of the recess 212, and movement within the lower layer portion 202B is restricted.
  • the upper layer 202A having the same size as the lower layer 202B is arranged in the upper portion of the recess 212. Since the upper layer portion 202A is smaller than the upper portion of the recess 212, a gap G1 is formed around the upper layer portion 202A.
  • the upper layer portion 202A can move (slide) in the horizontal direction (X direction and / or Y direction) with the gap G1 as the upper limit. A part of the upper layer portion 202A finely protrudes from the upper surface of the measuring portion support base 99.
  • a plane moving body 203 is arranged on the upper surface of the measuring unit support base 99 so as to cover it.
  • the bottom surface of the flat moving body 203 is in contact with the upper layer portion 202A of the slide component 202, and as a result, a fine gap G2 is formed between the bottom surface of the flat moving body 203 and the upper surface of the measuring unit support base 99.
  • the plane moving body 203 can move in the horizontal direction (X direction and / or Y direction) with respect to the measuring unit support base 99 via the slide component 202.
  • the plane moving body 203 includes a shaft portion 205 projecting vertically downward from the bottom surface. The shaft portion 205 is inserted into the central hole of the upper layer portion 202A of the slide component 202 and engages in the radial direction.
  • the plane moving body 203 has an expansion portion 203K extending in the plane direction.
  • the second slide component 203S is arranged in the recess formed on the upper surface of the expansion portion 203K.
  • the structure of the second slide component 203S is the same as that of the slide component 202.
  • a holding frame 204 for vertically sandwiching the expansion portion 203K is fixed on the upper surface of the measuring portion support base 99. Therefore, the holding frame 204 covers a part of the upper surface of the expansion portion 203K.
  • An adjusting screw 204N for adjusting a vertical gap with respect to the upper surface of the expansion portion 203K is installed on the holding frame 204.
  • the lower end of the adjusting screw 204N comes into contact with the second slide component 203S.
  • a protrusion to be inserted into the annular upper layer portion of the second slide component 203S is formed.
  • the plane moving body 203 is allowed to move relative to the measuring unit support base 99 and the holding frame 204 in the horizontal direction by the slide component 202 and the second slide component 203S.
  • a gap G3 is formed between the side surface of the holding frame 204 and the side surface of the plane moving body 203, and the gap G3 can be used as an upper limit for sliding movement in the X direction and / or the Y direction.
  • the size of the gap G3 can be adjusted by, for example, the side adjusting screw 204M provided on the holding frame 204. Further, the gap G3 is set to be smaller than the gap G1. Although only the gap G3 in the X-axis direction is shown in FIG. 13, the gap in the Y direction has the same structure.
  • an engaging portion elevating mechanism 211 On the front side of the plane moving body 203, an engaging portion elevating mechanism 211 is provided so as to be movable in the vertical direction (Z direction) with respect to the plane moving body 203 (and the measuring unit support base 99).
  • the engaging portion elevating mechanism 211 holds the engaging portion 210 for probe positioning.
  • a probe elevating portion 111 is provided on the front surface side of the engaging portion elevating mechanism 211 so as to be movable in the vertical direction with respect to the engaging portion elevating mechanism 211.
  • the probe elevating unit 111 holds the measurement probe 110.
  • the elevating mechanism of the probe elevating part 111 and the engaging part elevating mechanism 211 has a known configuration using a motor, an air cylinder, a hydraulic cylinder, an electromagnetic solenoid, an urging means (spring), and the like, and thus detailed description thereof will be omitted. ..
  • the plane moving body 203 can adjust its position with respect to the measuring unit support base 99 in the horizontal direction (X direction and / or Y direction) by a gap G3 minutes.
  • the engaging portion elevating mechanism 211 can be moved up and down with respect to the plane moving body 203 (measuring portion support base 99), and the probe elevating portion 111 can be raised and lowered with respect to the engaging portion elevating mechanism 211.
  • the probe elevating part 111 can be moved up and down with respect to the plane moving body 203 (measurement unit support base 99) at a different timing independent of the elevating operation of the engaging part elevating mechanism 211.
  • the measuring probe 110 when measuring a component with the measuring probe 110, the measuring probe 110 can be lowered after the probe positioning engaging portion 210 is lowered to a predetermined position to perform positioning in the plane direction.
  • FIG. 14 is a side schematic view showing an extracted main part of the processing device 70 shown in FIG.
  • the engaging portion elevating mechanism 211 lowers, and as shown in FIG. 14 (B), the probe positioning engaging portion The 210 is engaged with the probe positioning hole 103 to perform centering in the plane direction.
  • FIG. 15 is an enlarged cross-sectional view showing a state in which the probe positioning engaging portion 210 is engaged with the probe positioning hole 103.
  • the probe positioning engaging portion 210 of the present embodiment has a tip portion 210T having a tapered or conical shape.
  • the probe positioning hole 103 has a cylindrical shape, and its diameter D1 is smaller than the maximum diameter D2 of the tip portion 210T and is set to be equivalent to the diameter D3 in the middle of the conical inclined surface.
  • the tip portion 210T can move in the radial direction inside the probe positioning hole 103 when both are engaged. , High-precision centering becomes difficult.
  • the tip portion 210T is configured to be closely engaged with the opening edge of the probe positioning hole 103 in the middle of the inclined surface, the accuracy of both is high. Centering is possible.
  • the plane moving body 203 moves in the horizontal direction (X direction and Y direction in the drawing) in conjunction with the centering operation by the probe positioning engaging portion 210 and the probe positioning hole 103.
  • the positioning of the measuring probe 110 in the plane direction is completed with the probe positioning hole 103 as the position reference.
  • the measuring probe 110 is separated from the engaging portion elevating mechanism 211. Only the probe elevating part 111 is lowered to bring the measurement probe 110 into contact with the component 172.
  • the probe elevating portion 111 and the measuring probe 110 are also lowered, so that the probe elevating portion 111 in FIG. 14 (C) is also lowered.
  • the single descending stroke of the chisel is designed to be short.
  • the measuring probe 110 When the measurement by the measuring probe 110 is completed, the measuring probe 110 is raised by the probe elevating part 111 ((D)), and the probe positioning engaging part 210 is also raised by the engaging part elevating mechanism 211 (the same). FIG. (E). The measurement probe 110 and the probe positioning engaging portion 210 may be raised at the same time after the measurement.
  • both the holder elevating part 147 and the engaging part elevating mechanism 181 are in the state of the top dead center, and in FIG. The mechanism 181 is in the bottom dead center state, and FIG. 16C shows the state in which both the holder elevating portion 147 and the engaging portion elevating mechanism 181 are in the bottom dead center state.
  • the engaging portion plane moving mechanism 184 has a pedestal 226, a slide component 222, a plane moving body 183, and a holding frame 224.
  • the pedestal 226 is part of the turret table 12.
  • the pedestal 226 may be fixed to the turret table 12 as a separate member.
  • the slide component 222 is the same as the slide component 202 of the probe positioning mechanism 200 shown in FIG. 14A, detailed description thereof will be omitted.
  • a recess 188 is provided on the upper surface of the turret table 12 (pedestal 226).
  • the recess 188 has a two-step outer diameter in the depth direction, and the upper portion has a stepped shape wider than the lower portion (bottom surface).
  • the slide component 222 is housed inside the recess 188. Since the mode of accommodating the slide component 222 in the recess 188 is the same as that of the slide component 202 of FIG. 13 (A), the description thereof will be omitted here.
  • a plane moving body 183 is arranged on the upper surface of the pedestal 226 so as to cover it.
  • the bottom surface of the plane moving body 183 is in contact with the upper layer portion of the slide component 222, and a fine gap G2 is formed between the bottom surface of the plane moving body 183 and the upper surface of the pedestal 226.
  • the plane moving body 183 can move in the horizontal direction (X direction and / or Y direction) with respect to the pedestal 226 via the slide component 222.
  • the plane moving body 183 includes a shaft portion 227 that projects vertically downward from the bottom surface. The shaft portion 227 is inserted into the central hole of the upper layer portion 222A of the slide component 222 and engages in the radial direction.
  • the plane moving body 183 has an expansion portion 183K extending in the plane direction.
  • the second slide component 183S is arranged in the recess formed on the upper surface of the expansion portion 183K.
  • the structure of the second slide component 183S is the same as that of the slide component 222.
  • a holding frame 224 for vertically sandwiching the expansion portion 183K is fixed to the upper surface of the pedestal 226. Therefore, the holding frame 224 covers a part of the upper surface of the expansion portion 183K.
  • An adjusting screw 224N for adjusting a vertical gap with respect to the upper surface of the expansion portion 183K is installed on the holding frame 224.
  • the lower end of the adjusting screw 224N comes into contact with the second slide component 183S.
  • a protrusion to be inserted into the annular upper layer portion of the second slide component 183S is formed.
  • the plane moving body 183 is in contact with both the pedestal 226 and the holding frame 224, so that the movement (disengagement) in the vertical direction (Z direction) is restricted.
  • the plane moving body 183 is allowed to move relative to the pedestal 226 and the holding frame 224 in the horizontal direction by the slide part 222 and the second slide part 183S.
  • a gap G3 is formed between the side surface of the holding frame 224 and the side surface of the planar moving body 183, and the gap G3 can be used as an upper limit for sliding movement in the X direction and / or the Y direction.
  • the size of the gap G3 can be adjusted by, for example, the side adjusting screw 224M provided on the holding frame 224. Further, the gap G3 is set to be smaller than the gap G1 formed in the slide component 222.
  • an engaging portion elevating mechanism 181 is provided so as to be movable in the vertical direction (Z direction) with respect to the plane moving body 183 (and the pedestal 226).
  • the engaging portion elevating mechanism 181 holds the engaging portion 182 for positioning the component holder.
  • a holder elevating portion 147 is provided on the front surface side of the engaging portion elevating mechanism 181 so as to be movable in the vertical direction with respect to the engaging portion elevating mechanism 181.
  • the holder elevating part 147 holds the component holder 145.
  • the component holder 145 is, for example, a suction nozzle.
  • the holder elevating portion 147 is urged vertically upward with respect to the engaging portion elevating mechanism 181 by an upward urging member (for example, a spring member) (not shown). Therefore, when no external force acts, the holder elevating portion 147 stands still at the top dead center with respect to the engaging portion elevating mechanism 181.
  • the engaging portion elevating mechanism 181 is urged vertically upward with respect to the planar moving body 183 by an upward urging member (for example, a spring member) (not particularly shown). Therefore, when no external force acts, the engaging portion elevating mechanism 181 rests at the top dead center with respect to the plane moving body 183.
  • the urging force of the upper urging member of the holder elevating portion 147 is set to be larger than the urging force of the upper urging member of the engaging portion elevating mechanism 181.
  • the upper surface of the holder elevating portion 147 is urged downward by abutting with the engaging portion 155 of the shaft portion 151 of the elevating mechanism 40.
  • the holder elevating part 147 tries to move downward, but the urging force of the upper urging member inside the holder elevating part 147 is larger than the urging force of the upper urging member inside the engaging part elevating mechanism 181. Since the size is also large, the engaging portion elevating mechanism 181 is preferentially lowered, and the engaging portion elevating mechanism 181 reaches the bottom dead center. After that, as shown in FIG. 16C, the holder elevating portion 147 is lowered relative to the engaging portion elevating mechanism 181.
  • the power of the elevating mechanism (retainer elevating part 147) of the component holder 145 (support 146) and the elevating mechanism (engagement part elevating mechanism 181) of the component holder positioning engaging portion 182 is provided with elevating.
  • the structure is not limited to the force mechanism 40 and elastic members such as springs that serve as drag (restoring force) thereof, and may have a known configuration using a motor, an air cylinder, a hydraulic cylinder, an electromagnetic solenoid, or the like.
  • FIG. 17 is a side schematic view showing the main part of the component holding mechanism 45 shown in FIG. 2 by extracting it, and here, the holding operation of the component 172 will be described as an example.
  • the plane moving body 183 moves in the horizontal direction (X direction and Y direction in the drawing) in conjunction with the centering operation by the component holder positioning engaging portion 182 and the component holder positioning hole 104.
  • the engaging portion elevating mechanism 181 reaches the bottom dead center at the same time as the preliminary positioning of the component holder 145 is completed with the component holder positioning hole 104 as the position reference.
  • the center of the component 172 is as shown in FIG. 17 (C). Can be adsorbed and held.
  • the component holder 145 rises (FIG. 17 (D))
  • the holder elevating part 147 reaches the top dead center, and then together with the engaging part elevating mechanism 181.
  • the engaging portion 182 for positioning the component holder is raised (FIG. 17 (E)).
  • FIGS. 18A, 14 and 17 there is one probe positioning engaging portion 210 and a component holder positioning engaging portion 182 (that is, the probe).
  • the centering accuracy can be further improved by using a plurality of these.
  • the positioning accuracy of the engaging portion plane moving mechanism 201 and the engaging portion plane moving mechanism 184 in the ⁇ direction can be improved.
  • FIG. 18B when the probe positioning engaging portions 210 are provided at two locations, the two probe positioning holes 103A and 103A are used to center one mounting portion 100. You may do so.
  • the probe positioning engaging portion 210 is centered on the mounting portion 100 in which the component 172 to be measured is housed, and the probe positioning holes are (omitted) equidistant from the mounting portion 100 and are closest to each other. 103A and 103A are used. As a result, the positioning accuracy can be further improved as compared with the case where the probe positioning engaging portion 210 is one. Further, if two rows are provided in the circumferential direction as in the probe positioning holes 103B and 103B, a pair of dedicated probe positioning holes 103B and 103B can be provided for each mounting portion 100. The same applies to the plurality of component holder positioning holes 104A and 104A.
  • the present invention is not limited thereto.
  • the component holder positioning holes 104B and 104B are provided corresponding to each mounting portion 100, and are rotated together with the mounting portion 100. You can also do it.
  • the probe positioning hole 103 and the component holder positioning hole 104 may be used in combination.
  • the measuring probe 110 When positioning the contact position of the measuring probe 110 in the measuring unit 95, the measuring probe 110 itself needs to be brought into contact with the electrode pad portion which is very thin and smaller than the size of the component. Moreover, if the contact condition is poor, accurate measurement cannot be performed. Therefore, it can be said that more accurate positioning is required on the measuring unit 95 side as compared with the component holding mechanism 45 side. Therefore, it is preferable to have a plurality of probe positioning engaging portions 210. Of course, on the component holding mechanism 45 side as well, positioning may be performed using a plurality of component holder positioning engaging portions 182.
  • the component holder positioning hole 104 is fixedly arranged independently from the mounting plate 50 or the mounting portion 100 is illustrated, but the present invention is not limited to this. Similar to the probe positioning hole 103, the component holder positioning hole 104 can be provided corresponding to each mounting portion 100, and can be rotated together with the mounting portion 100. Of course, the probe positioning hole 103 and the component holder positioning hole 104 may be used in combination.
  • the probe positioning hole 103 rotates integrally with the mounting plate 50 or the mounting portion 100 has been illustrated, but the present invention is not limited to this.
  • the probe positioning hole 103 may be fixedly arranged in the measurement region 54 independently of the mounting plate 50.
  • the structure of the processing device 70 is not limited to the illustrated one. Another structure can be adopted as long as the probe positioning engaging portion 210 and the probe positioning hole 103 are first engaged to perform the centering operation and then the measurement probe 110 is in contact with the component. Similarly, the structure of the component holding mechanism 45 is not limited to that shown in the figure. If the structure is such that the component holder positioning engaging portion 182 and the component holder positioning hole 104 engage first to perform a centering operation, and then the component holder 145 approaches the mounting portion 100, another structure is used. Can be adopted.
  • FIG. 19 is a plan view of the mounting plate 50.
  • a plurality of different types of parts 177, 178, and 179 are mixedly placed and conveyed on one mounting plate 50.
  • the measurement area 54 is the same as that of the above embodiment, and the output of a plurality of types of parts 177, 178, and 179 can be measured by one measurement unit 95 (same measurement probe 110).
  • the component transfer processing device 1 of the present embodiment replaces the measurement unit 95 and the mounting plate 50 in the same manner as the same mounting plate 50 and the same type of parts even if the parts are of different types. Since the processing can be performed (without), it can contribute to the improvement of the processing efficiency.
  • processing devices 70 arranged in the circumferential direction of the component transfer processing device 1 are not limited to devices that perform the same type of processing (for example, measurement processing of temperature output characteristics), and a plurality of different processing (for example, measurement processing of temperature output characteristics) is performed. Temperature output characteristic measurement processing and resistance measurement processing, etc.) may be mixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

Provided is a component transport processing device which has a high processing capacity per unit time and can improve processing (e.g. measurement) accuracy. A component transport processing device 1 comprises: a turret rotary transport device 10 that holds a plurality of components with a plurality of component holding mechanisms 45 and transports the plurality of components along a portion of an annular transport path T; a component supply area 51 for supplying the components to the component holding mechanisms 45, the component supply area 51 being disposed on the transport path T; a processing device 70 that is disposed in a processing area 52 located downstream of the component supply area 51 in the transport path T, and performs predetermined processing on the components; a movement mechanism 125 that is disposed on the processing device 70 and moves the components; and a component unloading area 53 for unloading the components, which is disposed downstream of the processing area in the transport path T. The movement mechanism 125 has: a mounting plate 50 that has a plurality of mounting sections 100 on which the components are individually mounted; a heat transfer member 130 that transfers heat to the mounting plate 50; and a rotary drive unit 60 that integrally rotates a heat exchange unit 135 and the mounting plate 50 about a mounting plate rotary shaft 55.

Description

部品搬送処理装置Parts transfer processing equipment
 本発明は、様々な部品を処理する工程、例えば電子部品の温度特性を検査する検査工程に好適な部品搬送処理装置に関する。 The present invention relates to a parts transfer processing apparatus suitable for a process of processing various parts, for example, an inspection process of inspecting the temperature characteristics of electronic parts.
 水晶振動子やサーミスタ素子は、温度に対してその物性を大きく変化させるため、部品として出荷する前に、温度特性の評価、検査をすることが必要である。これらの部品は、大量に使用され、且つ、極めて小さなパッケージに実装されているため、検査装置と呼ばれる自動で特性を測定、評価する装置で検査される。 Since the physical properties of crystal units and thermistor elements change significantly with temperature, it is necessary to evaluate and inspect the temperature characteristics before shipping as parts. Since these parts are used in large quantities and are mounted in an extremely small package, they are inspected by a device called an inspection device that automatically measures and evaluates characteristics.
 従来、電気的性質の温度特性評価のための検査装置は、ターレット型の回転搬送装置により部品を搬送して、その経路上に測定装置を配置して順次検査をおこなっていくものが知られている(例えば、特許文献1参照)。 Conventionally, as an inspection device for evaluating the temperature characteristics of electrical properties, it has been known that parts are transported by a turret type rotary transfer device, and a measuring device is arranged on the path to perform sequential inspection. (See, for example, Patent Document 1).
 この際、ターレット側の回転搬送装置によって電子部品が回転している最中に、各電子部品は所定の温度に温度制御される。例えば、図20に従来の部品の特性検査装置301を示す。部品315は、特に図示しない部品搬送キャリアに搭載さる。キャリアが載置されるターレットテーブル310は、ターレットテーブル回転軸312を中心として、回転駆動される。部品315は、部品供給装置325からキャリアに供給される。ターレットテーブル310が回転して、部品315を保持する部品搬送キャリアが例えば第一温度制御領域340を通過する間に、部品315の温度は所定の第一温度に安定する。そして第一温度における部品の特性、例えば電気抵抗の値が、第一測定領域335の第一測定装置によって測定される。更にターレットテーブル310が回転し、部品315を保持する部品搬送キャリアが第二温度制御領域350を通過する間に、部品315の温度は所定の第二温度に安定する。そして第二温度における部品の特性、例えば電気抵抗の値が、第二測定領域345の第二測定装置によって測定される。最後に部品315は収納ボックス330に回収される。 At this time, the temperature of each electronic component is controlled to a predetermined temperature while the electronic component is rotating by the rotary transfer device on the turret side. For example, FIG. 20 shows a conventional component characteristic inspection device 301. The component 315 is mounted on a component transport carrier (not shown). The turret table 310 on which the carrier is placed is rotationally driven around the turret table rotation shaft 312. The component 315 is supplied to the carrier from the component supply device 325. The temperature of the component 315 stabilizes at a predetermined first temperature while the turret table 310 rotates and the component transport carrier holding the component 315 passes, for example, the first temperature control region 340. Then, the characteristics of the component at the first temperature, for example, the value of the electric resistance are measured by the first measuring device in the first measuring region 335. Further, the temperature of the component 315 stabilizes at a predetermined second temperature while the turret table 310 rotates and the component transport carrier holding the component 315 passes through the second temperature control region 350. Then, the characteristics of the component at the second temperature, for example, the value of the electric resistance are measured by the second measuring device in the second measuring region 345. Finally, the parts 315 are collected in the storage box 330.
特許第3777395号Patent No. 3777395
 しかし、従来の特性検査装置は、搬送キャリアが、各温度制御領域を通過する間に、搬送キャリアと部品の双方の温度を安定化させる必要がある。即ち、部品の熱容量だけではなく、搬送キャリアの熱容量も加わるので、温度到達に時間がかかるという問題がある。また、特に複数の測定ポイント(温度制御領域)、すなわち例えば0℃以下の測定ポイントと、80℃測定ポイントという2点で出力特性を測る場合、それぞれの温度に安定させるまでの時間がそれぞれ異なるため、搬送装置の搬送速度は、できる限り遅い方に合わせなければならない。このため処理能力の向上には限界があった。 However, in the conventional characteristic inspection device, it is necessary to stabilize the temperature of both the transport carrier and the component while the transport carrier passes through each temperature control region. That is, since not only the heat capacity of the parts but also the heat capacity of the transport carrier is added, there is a problem that it takes time to reach the temperature. Further, especially when the output characteristics are measured at a plurality of measurement points (temperature control regions), that is, at two points, for example, a measurement point of 0 ° C. or lower and a measurement point of 80 ° C., the time required for stabilization to each temperature is different. , The transport speed of the transport device shall be adjusted to the slowest possible one. Therefore, there is a limit to the improvement of processing capacity.
 また、測定温度(測定ポイント)を増やそうとすると、ターレットテーブルを大きくする必要があり、装置全体が大型化するという問題もある。 Also, if you try to increase the measurement temperature (measurement point), you need to make the turret table larger, and there is also the problem that the entire device becomes larger.
 また、例えば、処理装置において処理される部品について温度特性の評価を行う場合、各温度制御領域では、通過中に部品が設定された所定の温度に安定するものと仮定して(例えば、第一温度制御領域340を通過する間に、部品315の温度は所定の第一温度に安定すると過程して)、部品315の実測した電気抵抗の値を、当該設定温度(第一温度)における抵抗値として取得している。 Further, for example, when evaluating the temperature characteristics of a component processed in the processing apparatus, it is assumed that the component stabilizes at a predetermined temperature set during passage in each temperature control region (for example, first). While passing through the temperature control region 340, the temperature of the component 315 stabilizes at a predetermined first temperature), and the measured electrical resistance value of the component 315 is the resistance value at the set temperature (first temperature). Is getting as.
 しかしながら、ターレットテーブルと部品315(部品搬送キャリア)の間の熱交換の状態によっては、部品315の温度が安定させたい所定の温度からずれてしまう場合もある。 However, depending on the state of heat exchange between the turret table and the part 315 (part transfer carrier), the temperature of the part 315 may deviate from the predetermined temperature to be stabilized.
 また、部品の小型化が進むほど、測定時に部品が周辺環境の影響(例えば、外気温、湿気、塵や埃の影響)を受け易くなるなど、処理(測定)精度が低下する恐れもある。 In addition, as the miniaturization of parts progresses, the processing (measurement) accuracy may decrease, for example, the parts are more susceptible to the influence of the surrounding environment (for example, the influence of outside air temperature, humidity, dust and dirt) during measurement.
 また、部品の小型化は、部品を測定する際のプローブや、部品を保持または解放する際の部品保持具の位置決めの難易度が高くなり、測定や保持または解放に時間がかかったり、接触ミス(保持ミス)が発生したりといった問題もある。 In addition, miniaturization of parts increases the difficulty of positioning the probe when measuring the part and the part holder when holding or releasing the part, which takes time to measure, hold or release, or makes a contact error. There is also a problem that (holding error) occurs.
 本発明は、上記課題を鑑みてなされたものであり、単位時間あたりの処理能力が高く、処理(測定)の精度の向上が可能な部品搬送処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a parts transfer processing apparatus having a high processing capacity per unit time and capable of improving processing (measurement) accuracy.
 本発明は、複数の部品保持機構によって複数の部品を保持して、環状の搬送経路の一部に沿って、複数の前記部品を搬送するターレット型回転搬送装置と、前記搬送経路に配置されて、前記部品を前記部品保持機構に供給する部品供給領域と、前記搬送経路における前記部品供給領域の下流側に位置する処理領域に配置されて、前記部品に対して所定の処理を施す処理装置と、前記処理装置に設けられて前記部品を移動させる移動機構と、前記搬送経路における前記処理領域の下流側に配置されて、前記部品を搬出する部品搬出領域と、を備え、前記移動機構は、前記部品がそれぞれ個別に載置される載置部を複数有する載置プレートと、前記載置プレートに熱を移送する熱移送部材と、前記熱移送部材と前記載置プレートを一体として、プレート回転軸を中心として回転させる回転駆動部と、を有する、ことを特徴とする部品搬送処理装置である。 The present invention includes a turret type rotary transfer device that holds a plurality of parts by a plurality of component holding mechanisms and conveys the plurality of the parts along a part of an annular transfer path, and is arranged in the transfer path. , A processing device arranged in a component supply area for supplying the component to the component holding mechanism and a processing area located on the downstream side of the component supply area in the transport path, and performing a predetermined process on the component. The moving mechanism includes a moving mechanism provided in the processing apparatus for moving the parts, and a component carrying area arranged on the downstream side of the processing area in the transport path to carry out the parts. A mounting plate having a plurality of mounting portions on which the parts are individually mounted, a heat transfer member that transfers heat to the previously described mounting plate, and the heat transfer member and the previously described mounting plate are integrated into a plate rotation. It is a parts transfer processing apparatus characterized by having a rotation drive unit that rotates around a shaft.
 また、本発明は、複数の部品保持機構の部品保持具によって複数の部品を保持して、環状の搬送経路の一部に沿って、複数の前記部品を搬送するターレット型回転搬送装置と、前記搬送経路における処理領域に配置されて、前記部品に対して所定の処理を施す処理装置と、を備え、前記処理装置は、前記部品保持具によって搬送される前記部品が載置される載置部を有する載置プレートと、前記載置プレートに熱を移送する熱移送部材と、前記熱移送部材と前記載置プレートを一体として、プレート回転軸を中心として回転させることで前記部品を移動させる回転駆動部と、移動中の前記部品に前記処理を施すプローブと、を有し、前記部品保持機構の前記部品保持具と前記載置部の相対位置、及び/又は、前記処理装置の前記プローブと前記載置部の相対位置を調整する位置決め手段を有する、ことを特徴とする部品搬送処理装置である。 Further, the present invention comprises a turret type rotary transfer device for holding a plurality of parts by component holders of a plurality of component holding mechanisms and transporting the plurality of the components along a part of an annular transfer path. The processing device includes a processing device that is arranged in a processing area in the transport path and performs a predetermined process on the component, and the process device is a mounting unit on which the component transported by the component holder is placed. The part is moved by rotating the mounting plate having the above, the heat transfer member for transferring heat to the previously described mounting plate, and the heat transfer member and the previously described mounting plate about the plate rotation axis. It has a drive unit and a probe that performs the processing on the moving component, and has a relative position between the component holder of the component holding mechanism and the above-mentioned placing portion, and / or the probe of the processing device. It is a component transport processing apparatus characterized by having a positioning means for adjusting the relative position of the above-described mounting portion.
 本発明の部品搬送処理装置によれば、単位時間あたりの処理能力が高く、処理(例えば、測定)の精度の向上が可能な部品搬送処理装置を提供できるという優れた効果を奏し得る。 According to the parts transfer processing device of the present invention, it is possible to obtain an excellent effect that it is possible to provide a parts transfer processing device having a high processing capacity per unit time and capable of improving the accuracy of processing (for example, measurement).
本発明の実施形態に係る部品搬送処理装置の平面図である。It is a top view of the parts transfer processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る部品搬送処理装置の側面図である。It is a side view of the parts transfer processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る(A)処理装置の側面図、(B)処理装置の概要図である。It is a side view of (A) processing apparatus which concerns on embodiment of this invention, (B) schematic diagram of processing apparatus. (A)処理領域に配置された温度安定化装置の平面図であり、(B)温度安定化装置の測定部の側面部分断面図であり、(C)は載置部の断面図である。(A) is a plan view of the temperature stabilizer arranged in the processing region, (B) is a side partial sectional view of the measuring portion of the temperature stabilizer, and (C) is a sectional view of the mounting portion. ターレット型回転搬送装置の側面概要図である。It is a side view of the turret type rotary conveyor. ターレット型回転搬送装置の全体動作を説明する平面概要図である。It is a plane schematic diagram explaining the whole operation of a turret type rotary transfer apparatus. ターレット型回転搬送装置による部品の搬送動作を説明する側面概要図である。It is a side schematic diagram explaining the transport operation of a part by a turret type rotary transport device. 本発明の実施形態を説明する載置プレートの平面図である。It is a top view of the mounting plate explaining embodiment of this invention. 本発明の実施形態を説明する載置プレートの変形例の平面図である。It is a top view of the modification of the mounting plate which explains embodiment of this invention. 本発明の他の実施形態を説明する図であり(A)載置プレートの平面図、(B)移動中の部品の温度変化を示すグラフである。It is a figure explaining another embodiment of this invention, (A) the plan view of the mounting plate, (B) the graph which shows the temperature change of the moving part. 本発明の他の実施形態を説明する図であり、(A)処理領域の側面概要図、(B)処理領域の平面概要図、(C)同図(B)の一部拡大断面図である。It is a figure explaining another embodiment of this invention, (A) side view of the processing area, (B) plan view of the processing area, (C) a partially enlarged sectional view of FIG. .. 本発明の他の実施形態を説明する処理領域の平面概要図である。It is a plane schematic view of the processing area explaining another embodiment of this invention. (A)~(C)は、本発明の実施形態のプローブ位置決め機構の動作を説明する正面概要図である。(A) to (C) are front schematic views explaining the operation of the probe positioning mechanism of the embodiment of the present invention. (A)~(E)は、同プローブ位置決め機構の動作を示す側面概要図である。(A) to (E) are side schematic views showing the operation of the probe positioning mechanism. (A)~(C)は、プローブ位置決め機構のセンタリング動作を示す部分拡大図である。(A) to (C) are partially enlarged views showing the centering operation of the probe positioning mechanism. (A)~(C)は、実施形態の部品保持具位置決め機構の動作を示す正面概要図である。(A) to (C) are front schematic views showing the operation of the component holder positioning mechanism of the embodiment. (A)~(E)は、同部品保持具位置決め機構の動作を示す側面概要図である。(A) to (E) are side schematic views showing the operation of the component holder positioning mechanism. (A)及び(B)は、載置プレートを示す平面図である。(A) and (B) are plan views which show the mounting plate. 本発明の他の実施形態に係る載置プレートを示す平面図である。It is a top view which shows the mounting plate which concerns on other embodiment of this invention. 従来の部品搬送処理装置の平面図である。It is a top view of the conventional parts transfer processing apparatus.
 以下、本発明の実施の形態について添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図面は本発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。なお、各図において一部の構成を適宜省略して、図面を簡略化する。そして、部の大きさ、形状、厚みなどを適宜誇張して表現する。 The drawing is an example of the embodiment of the present invention, and the parts with the same reference numerals represent the same objects in the drawings. In each drawing, some configurations will be omitted as appropriate to simplify the drawings. Then, the size, shape, thickness, etc. of the portion are exaggerated as appropriate.
 <全体構成>
 図1は、本発明の一実施形態に係る部品搬送処理装置1を説明する平面概要図である。本部品搬送処理装置1は、部品を搬送しつつその特性等を評価するものであり、具体的には、電子部品(例えばサーミスタ素子など)について、出力の温度依存性等を評価するために用いられる。
<Overall configuration>
FIG. 1 is a schematic plan view illustrating a component transfer processing device 1 according to an embodiment of the present invention. The component transfer processing device 1 evaluates the characteristics and the like while transporting the components. Specifically, the component transfer processing device 1 is used to evaluate the temperature dependence of the output of an electronic component (for example, a thermistor element). Be done.
 本実施形態の部品搬送処理装置1は、円盤状のターレット型回転搬送装置10と、部品供給領域51と、処理装置70と、移動機構125と、部品搬出領域53を有する。 The parts transfer processing device 1 of the present embodiment includes a disk-shaped turret type rotary transfer device 10, a parts supply area 51, a processing device 70, a moving mechanism 125, and a parts carry-out area 53.
 ターレット型回転搬送装置10は、複数の部品保持機構45によって複数の部品を保持して、環状の搬送経路T(同図に破線で示す)の一部に沿って、複数の部品を搬送する。 The turret type rotary transport device 10 holds a plurality of parts by a plurality of component holding mechanisms 45, and transports the plurality of parts along a part of the annular transport path T (indicated by a broken line in the figure).
 部品供給領域51は、搬送経路Tに配置されて部品を部品保持機構45に供給する領域であり、処理領域52は、搬送経路Tにおける部品供給領域51の下流側に位置して部品に対して所定の処理を施す処理装置70が配置される領域であり、部品搬出領域53は、搬送経路Tにおける処理領域52の下流側に配置されて、部品を搬出する領域である。 The component supply area 51 is an area arranged in the transfer path T to supply the component to the component holding mechanism 45, and the processing area 52 is located on the downstream side of the component supply area 51 in the transfer path T with respect to the component. This is an area in which a processing device 70 for performing a predetermined process is arranged, and a component carry-out area 53 is an area arranged on the downstream side of the process area 52 in the transport path T to carry out the parts.
 図2は、部品搬送処理装置1の側面概要図である。ターレット型回転搬送装置10は、ターレットテーブル回転軸15を中心にして、ターレットテーブル駆動装置20によって回転駆動される。ターレット型回転搬送装置10は、自身のターレットテーブル12の周縁において、等間隔に固定配置される複数の部品保持機構45を有する。ターレット型回転搬送装置10とは独立して設けられる架台35には、昇降付勢機構40が複数設けられる。部品保持機構45は、部品供給領域51、処理領域52、部品搬出領域53(図1参照)において、昇降付勢機構40と協働して、部品の回収(保持)、及び/又は、解放をおこなう。 FIG. 2 is a side schematic view of the parts transport processing device 1. The turret type rotary transfer device 10 is rotationally driven by the turret table drive device 20 around the turret table rotary shaft 15. The turret type rotary transfer device 10 has a plurality of component holding mechanisms 45 fixedly arranged at equal intervals on the peripheral edge of its own turret table 12. A plurality of elevating urging mechanisms 40 are provided on the gantry 35 provided independently of the turret type rotary transfer device 10. The component holding mechanism 45 cooperates with the elevating urging mechanism 40 in the component supply area 51, the processing area 52, and the component unloading area 53 (see FIG. 1) to collect (hold) and / or release the parts. Do it.
 処理装置70は、部品に対して所定の処理(例えば、温度特性の測定等)を行なうものであり、移動機構125と測定部95を有する。移動機構125は、部品がそれぞれ個別に載置される載置部100を複数有する載置プレート50と、当該載置プレート50に熱を移送する熱移送部材130と、熱移送部材130と載置プレート50を一体として、回転軸(載置プレート回転軸)55を中心として回転させる回転駆動部(載置プレート回転駆動部)60と、を有する。 The processing device 70 performs predetermined processing (for example, measurement of temperature characteristics) on the parts, and has a moving mechanism 125 and a measuring unit 95. The moving mechanism 125 mounts the mounting plate 50 having a plurality of mounting portions 100 on which the parts are individually mounted, the heat transfer member 130 that transfers heat to the mounting plate 50, and the heat transfer member 130. The plate 50 is integrated with a rotation drive unit (mounting plate rotation drive unit) 60 that rotates around a rotation shaft (mounting plate rotation shaft) 55.
 制御装置25は、CPU、RAM、ROM、ハードディスクドライブ等の記憶装置などから構成され、ターレット型回転搬送装置10による部品の搬送制御、部品保持機構45による部品の解放・回収制御、部品の処理(出力測定)制御など各種制御を実行する。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。RAMはCPUの作業領域、記憶領域として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。 The control device 25 is composed of a storage device such as a CPU, RAM, ROM, and a hard disk drive, and is composed of a turret type rotary transfer device 10 for component transfer control, a component holding mechanism 45 for component release / recovery control, and component processing ( Output measurement) Performs various controls such as control. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and a program executed by the CPU.
 再び図1を参照して、部品搬送処理装置1は、ターレット型回転搬送装置10の周方向に配置される複数(一例として12個)の部品保持機構45によって部品を保持する。ターレット型回転搬送装置10は、これら部品保持機構45を互いに同期させて周方向(例えば、図1において反時計回りの方向)に移動させ、環状の搬送経路Tに沿って複数の部品を同時搬送する。 With reference to FIG. 1 again, the component transfer processing device 1 holds the components by a plurality of (12 pieces as an example) component holding mechanisms 45 arranged in the circumferential direction of the turret type rotary transfer device 10. The turret type rotary transport device 10 moves these component holding mechanisms 45 in the circumferential direction (for example, in the counterclockwise direction in FIG. 1) in synchronization with each other, and simultaneously transports a plurality of components along the annular transport path T. To do.
 これにより搬送経路T上には、部品を部品保持機構45に供給する部品供給領域51と、部品供給領域51の下流側に配置されて、部品に対して所定の処理を施す処理領域52と、処理領域52のさらに下流側に配置されて、部品を搬出する部品搬出領域53が構成される。 As a result, on the transport path T, a component supply area 51 for supplying the component to the component holding mechanism 45, a processing area 52 arranged on the downstream side of the component supply area 51 and performing a predetermined process on the component, and A component unloading area 53 for unloading components is configured so as to be arranged further downstream of the processing area 52.
 部品供給領域51では、自動部品供給装置65(例えばパーツフィーダ)によって部品が供給される。ターレット型回転搬送装置10は、矢印R向きに回転駆動され、部品供給領域51で部品保持機構45に保持された部品は、反時計回りに処理領域52を経て、部品搬出領域53で搬出される。処理領域52では、例えば部品の電気抵抗値の温度特性を測定する処理などが行われる。なお、本実施形態では、複数の処理領域52が存在していることから、部品は、これらの複数の処理領域52を通過していく。 In the parts supply area 51, parts are supplied by an automatic parts supply device 65 (for example, a parts feeder). The turret type rotary transfer device 10 is rotationally driven in the direction of arrow R, and the parts held by the parts holding mechanism 45 in the parts supply area 51 are carried out in the parts carry-out area 53 via the processing area 52 counterclockwise. .. In the processing area 52, for example, a process of measuring the temperature characteristic of the electric resistance value of the component is performed. Since there are a plurality of processing areas 52 in the present embodiment, the parts pass through the plurality of processing areas 52.
 処理領域52には、ターレット型回転搬送装置10の周方向に沿って複数の処理装置70が配置される。この例では処理装置70はそれぞれ独立して異なる処理を行うことができる。具体的には例えば、それぞれの処理装置70は、部品を処理装置70毎に異なる設定温度(付近)になるように制御(昇温または冷却)するとともに、当該設定温度における部品の温度特性を測定する。 A plurality of processing devices 70 are arranged in the processing area 52 along the circumferential direction of the turret type rotary transport device 10. In this example, the processing devices 70 can independently perform different processing. Specifically, for example, each processing device 70 controls (heats or cools) the component so as to have a different set temperature (near) for each processing device 70, and measures the temperature characteristics of the component at the set temperature. To do.
 ここでは一例として、処理領域52に7台の処理装置70が配置される場合を示している。具体的には、第1処理領域52A~第7処理領域52Gにそれぞれ、第1処理装置70A~第7処理装置70Gが配置されている。 Here, as an example, a case where seven processing devices 70 are arranged in the processing area 52 is shown. Specifically, the first processing device 70A to the seventh processing device 70G are arranged in the first processing area 52A to the seventh processing area 52G, respectively.
 例えば、処理装置70のうち、搬送経路Tの上流側に位置する第1処理領域52Aに配置された第1処理装置70Aでは、例えば、部品を25℃の設定温度(付近)まで昇温(又は冷却)するとともに、部品が25℃(付近)となる場合の電気抵抗値の出力特性が測定される。第1処理装置70Aによって出力特性が測定された部品は、部品保持機構45によって回収されて、搬送経路Tの下流に位置する第2処理領域52Bに搬送される。また、例えば、第1処理装置70A(または別途設けられた不図示の判定装置)によって部品の良/不良も判定され、不良と判定された部品は、第2処理領域52Bに搬送することなく、第1処理装置70A近傍に配置された回収ボックス(不図示)に排出される。 For example, in the first processing device 70A arranged in the first processing area 52A located on the upstream side of the transport path T among the processing devices 70, for example, the parts are heated (or raised) to a set temperature (near) of 25 ° C. (Cooling) and the output characteristics of the electrical resistance value when the temperature of the component reaches 25 ° C (near) are measured. The parts whose output characteristics have been measured by the first processing device 70A are collected by the part holding mechanism 45 and transported to the second processing region 52B located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the first processing device 70A (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the second processing area 52B. It is discharged to a collection box (not shown) arranged near the first processing device 70A.
 第2処理領域52Bに配置された第2処理装置70Bでは、例えば、部品を40℃の設定温度(付近)まで昇温(又は冷却)するとともに、部品が40℃(付近)となる場合の電気抵抗値の出力特性が測定される。第2処理装置70Bによって出力特性が測定された部品は、部品保持機構45によって回収されて、搬送経路Tの下流に位置する第3処理領域52Cに搬送される。また、例えば、第2処理装置70B(または別途設けられた不図示の判定装置)によって部品の良/不良も判定され、不良と判定された部品は、第3処理領域52Cに搬送することなく、第2処理装置70B近傍に配置された回収ボックス(不図示)に排出される。 In the second processing apparatus 70B arranged in the second processing region 52B, for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 40 ° C. and the component reaches 40 ° C. (near). The output characteristics of the resistance value are measured. The parts whose output characteristics have been measured by the second processing device 70B are collected by the part holding mechanism 45 and transported to the third processing region 52C located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the second processing device 70B (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the third processing area 52C. It is discharged to a collection box (not shown) arranged near the second processing device 70B.
 第3処理領域52Cに配置された第3処理装置70Cでは、例えば、部品を65℃の設定温度(付近)まで昇温(又は冷却)するとともに、部品が65℃(付近)となる場合の電気抵抗値の出力特性が測定される。第3処理装置70Cによって出力特性が測定された部品は、部品保持機構45によって回収されて、搬送経路Tの下流に位置する第4処理領域52Dに搬送される。また、例えば、第3処理装置70C(または別途設けられた不図示の判定装置)によって部品の良/不良も判定され、不良と判定された部品は、第4処理領域52Dに搬送することなく、第3処理装置70C近傍に配置された回収ボックス(不図示)に排出される。 In the third processing apparatus 70C arranged in the third processing region 52C, for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 65 ° C. and the component reaches 65 ° C. (near). The output characteristics of the resistance value are measured. The parts whose output characteristics have been measured by the third processing device 70C are collected by the part holding mechanism 45 and transported to the fourth processing region 52D located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the third processing device 70C (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the fourth processing area 52D. It is discharged to a collection box (not shown) arranged near the third processing device 70C.
 第4処理領域52Dに配置された第4処理装置70Dでは、例えば、部品を80℃の設定温度(付近)まで昇温(又は冷却)するとともに、部品が80℃(付近)となる場合の電気抵抗値の出力特性が測定される。第4処理装置70Dによって出力特性が測定された部品は、部品保持機構45によって回収されて、搬送経路Tの下流に位置する部品搬出領域53に搬送される。また、例えば、第4処理装置70D(または別途設けられた不図示の判定装置)によって部品の良/不良も判定され、不良と判定された部品は、部品搬出領域53に搬送することなく、第4処理装置70D近傍に配置された回収ボックス(不図示)に排出される。 In the fourth processing apparatus 70D arranged in the fourth processing region 52D, for example, electricity is generated when the component is heated (or cooled) to a set temperature (near) of 80 ° C. and the component reaches 80 ° C. (near). The output characteristics of the resistance value are measured. The parts whose output characteristics have been measured by the fourth processing device 70D are collected by the part holding mechanism 45 and transported to the component carry-out area 53 located downstream of the transport path T. Further, for example, the quality / defect of the component is also determined by the fourth processing device 70D (or a determination device (not shown separately) provided separately), and the component determined to be defective is not transported to the component carry-out area 53. 4 Discharged to a collection box (not shown) arranged near the processing device 70D.
 以下、第5処理領域52E~第7処理領域52Gにおいても同様に所定の温度に設定し、同様の処理を行うことができる。なお、未使用の処理領域52(処理装置70)が存在してもよく、上述のように連続して(隣接した処理領域52)で処理を行なわなくてもよい。 Hereinafter, in the 5th processing area 52E to the 7th processing area 52G, the same processing can be performed by setting the predetermined temperature in the same manner. An unused processing area 52 (processing device 70) may exist, and the processing may not be performed continuously (adjacent processing area 52) as described above.
 また、この例では、処理領域52内に連続して、異なる設定温度における出力特性(複数の異なる温度特性)の測定を行う処理装置70A~70Gを配置する場合を示しているが、処理の内容に応じて、温度特性の測定以外の処理を行う処理装置70が配置されてもよいし、処理装置70を周方向に沿って連続(隣接)して配置せず、同図において例えば第三処理装置70Cを配置しないなど、処理装置70を配置しない領域が存在してもよい。 Further, in this example, the case where the processing devices 70A to 70G for continuously measuring the output characteristics (plurality of different temperature characteristics) at different set temperatures are arranged in the processing area 52 is shown. Depending on the situation, a processing device 70 that performs processing other than measurement of temperature characteristics may be arranged, or the processing device 70 is not arranged continuously (adjacent) along the circumferential direction, and in the figure, for example, the third processing. There may be an area where the processing device 70 is not arranged, such as when the device 70C is not arranged.
 また、搬送経路T上には、適宜、例えば、部品供給領域51の下流側、処理装置70間、あるいは部品搬出領域53の上流側などに、部品保持機構45で保持した部品の姿勢を検出して調整する手段や、部品保持機構45の保持手段のクリーニング手段等が配置されてもよい。例えば、部品供給領域51から処理領域52の間を前処理領域、処理領域52から部品搬出領域53の間を後処理領域と定義できるが、前処理領域や後処理領域は、広義には、処理領域の範疇となる。 Further, on the transport path T, the posture of the component held by the component holding mechanism 45 is detected as appropriate, for example, on the downstream side of the component supply area 51, between the processing devices 70, or on the upstream side of the component carry-out area 53. A means for adjusting the parts, a means for cleaning the holding means of the part holding mechanism 45, and the like may be arranged. For example, the area between the component supply area 51 and the processing area 52 can be defined as the preprocessing area, and the area between the processing area 52 and the component unloading area 53 can be defined as the post-processing area. However, the preprocessing area and the post-processing area are broadly defined as processing. It is a category of area.
 一例を挙げると、図1では部品供給領域51の下流側直近には、前処理領域52Sa、52Sbが配置される。前処理領域52Saには、部品保持機構45で保持した部品の姿勢を静止画又は動画等で撮影する(赤外線や照射等による検出も含む)撮像装置70Saが設けられる。また、撮像装置70Saの下流側直近の前処理領域52Sbには、姿勢調整装置70Sbが設けられる。姿勢調整装置70Sbでは、部品保持機構45によって保持される部品の向き(保持軸に対する周方向の角度)が高精度に調整されると同時に、部品の中心位置が所定の位置(保持軸と一致する位置)となるように位置決めされる。姿勢調整装置70Sbは、例えば、撮像装置70Saの撮影した画像等に基づき、部品保持機構45が保持する部品の姿勢(状態)を解析する。そして姿勢(状態)に異常がある場合には、姿勢調整装置70Sbによって一旦部品を解放して保持し直したり、部品保持機構45の保持手段を制御したりして正しい姿勢(状態)になるよう調整する。このように、部品の姿勢を移御することで、それより下流の処理装置70A~70Gにおいて、載置プレート50からの部品の取り出し(保持)や部品の収容(解放)を高精度に行なうことができる。後処理領域は特に図示しないが、例えば、部品の外観検査を行う外観検査装置等を後処理領域として配置してもよい。 As an example, in FIG. 1, the pretreatment areas 52Sa and 52Sb are arranged in the immediate vicinity of the downstream side of the parts supply area 51. The preprocessing region 52Sa is provided with an image pickup device 70Sa that captures the posture of the component held by the component holding mechanism 45 with a still image, a moving image, or the like (including detection by infrared rays, irradiation, or the like). Further, a posture adjusting device 70Sb is provided in the pretreatment area 52Sb closest to the downstream side of the imaging device 70Sa. In the posture adjusting device 70Sb, the orientation (angle in the circumferential direction with respect to the holding axis) of the component held by the component holding mechanism 45 is adjusted with high accuracy, and at the same time, the center position of the component coincides with a predetermined position (matching the holding axis). Positioned so as to be (position). The posture adjusting device 70Sb analyzes the posture (state) of the component held by the component holding mechanism 45 based on, for example, an image taken by the imaging device 70Sa. If there is an abnormality in the posture (state), the posture adjusting device 70Sb temporarily releases and holds the component again, or controls the holding means of the component holding mechanism 45 to obtain the correct posture (state). adjust. By shifting the posture of the parts in this way, the processing devices 70A to 70G downstream of the parts can take out (hold) the parts from the mounting plate 50 and store (release) the parts with high accuracy. Can be done. Although the post-treatment area is not particularly shown, for example, an appearance inspection device for visually inspecting parts may be arranged as the post-treatment area.
 また、部品搬出領域53と部品供給領域51の間には、準備領域51Pが配置されてもよい。本実施形態では、準備領域51Pにおいて、例えば、部品保持機構45の保持手段(例えば、吸着手段)などを清掃して、次の吸着準備を行うクリーニング装置65Pが設けられる。 Further, the preparation area 51P may be arranged between the parts carry-out area 53 and the parts supply area 51. In the present embodiment, in the preparation area 51P, for example, a cleaning device 65P for cleaning the holding means (for example, suction means) of the component holding mechanism 45 to prepare for the next suction is provided.
 なお、撮像装置70Sa、姿勢調整装置70Sbおよびクリーニング装置65Pの配置箇所は搬送経路T上で任意であるし、これらのうち少なくともいずれかが配置されなくてもよい。 The location of the imaging device 70Sa, the posture adjusting device 70Sb, and the cleaning device 65P is arbitrary on the transport path T, and at least one of these may not be arranged.
 また、図示は省略するが、搬送経路T上には、適宜、部品搬出領域53に達する以前に異常な部品を排出する排出領域および排出手段が設けられてもよい。 Further, although not shown, a discharge area and a discharge means for discharging abnormal parts before reaching the parts carry-out area 53 may be appropriately provided on the transport path T.
 また、撮像装置70Sa、姿勢調整装置70Sbは広義としての本実施形態の処理装置70の概念に含まれる。前処理領域52Sa,52Sbも広義としての処理領域52の概念に含まれる。 Further, the image pickup device 70Sa and the posture adjustment device 70Sb are included in the concept of the processing device 70 of the present embodiment in a broad sense. The pre-processing areas 52Sa and 52Sb are also included in the concept of the processing area 52 in a broad sense.
 このようにして全ての出力測定を終え、且つ不良でない部品は、部品搬出領域53を通過して、適宜姿勢(周方向の向きと水平方向位置)が調整された後、供給リール5に巻かれている梱包用の樹脂テープに搬出され、部品がパッケージングされる。 The parts that have completed all output measurements in this way and are not defective pass through the parts carry-out area 53, and after the postures (circumferential orientation and horizontal position) are appropriately adjusted, they are wound on the supply reel 5. The parts are packaged by being carried out to the resin tape for packing.
 <処理装置>
 次に図3及び図4を参照して、処理領域52に配置される処理装置70について説明する。図3は、処理装置70の主要構成を抜き出して示す概要図であり、同図(A)は側面図であり、同図(B)は測定部95の主要構成の概要図である。また、図4は、温度安定化装置125の概要図である。
<Processing device>
Next, the processing apparatus 70 arranged in the processing area 52 will be described with reference to FIGS. 3 and 4. FIG. 3 is a schematic view showing an extracted main configuration of the processing device 70, FIG. 3A is a side view, and FIG. 3B is a schematic diagram of the main configuration of the measuring unit 95. Further, FIG. 4 is a schematic view of the temperature stabilizer 125.
 図3(A)に示すように、処理装置70は、部品の温度を制御するとともに、部品を環状に搬送する温度安定化装置125と、部品の出力特性を測定する測定部95を有する。 As shown in FIG. 3A, the processing device 70 has a temperature stabilizing device 125 that controls the temperature of the component and conveys the component in an annular shape, and a measuring unit 95 that measures the output characteristics of the component.
 温度安定化装置125は、部品を移動させる移動機構と、移動機構で移動させながら部品の温度を制御する温度安定化機構を兼ねている。つまり、温度安定化装置125は、部品搬送を行う移動機構と、部品に対して加熱・冷却を行う熱移送機構とを兼ねる。温度安定化装置125は、部品を収容可能な載置プレート50を備える。 The temperature stabilizer 125 also serves as a moving mechanism for moving the parts and a temperature stabilizing mechanism for controlling the temperature of the parts while moving the parts with the moving mechanism. That is, the temperature stabilizer 125 also serves as a moving mechanism for transporting parts and a heat transfer mechanism for heating and cooling the parts. The temperature stabilizer 125 includes a mounting plate 50 capable of accommodating parts.
 測定部95は、部品に所定の行為(ここでは出力測定行為)を行う行為部であり、測定部95は、部品170の電極120(図3(B)参照)に電気的な接触を行う測定プローブ110と、測定プローブ110を昇降させるプローブ昇降部111と、測定プローブ110の平面方向の位置を高精度に位置調整するプローブ位置決め機構200を有する。測定プローブ110はプローブ昇降部111によって保持されており、このプローブ昇降部111を介して、プローブ位置決め機構200によって平面方向に位置調整される。結果、測定プローブ110は、プローブ昇降部111によって載置プレート50の平面に対して垂直方向(鉛直方向)昇降したり、プローブ位置決め機構200によって載置プレート50の平面方向に移動したりする。 The measuring unit 95 is an action unit that performs a predetermined action (here, an output measuring action) on the component, and the measuring unit 95 makes a measurement that electrically contacts the electrode 120 (see FIG. 3B) of the component 170. It includes a probe 110, a probe elevating unit 111 that raises and lowers the measurement probe 110, and a probe positioning mechanism 200 that adjusts the position of the measurement probe 110 in a plane direction with high accuracy. The measurement probe 110 is held by the probe elevating part 111, and the position is adjusted in the plane direction by the probe positioning mechanism 200 via the probe elevating part 111. As a result, the measurement probe 110 moves up and down in the vertical direction (vertical direction) with respect to the plane of the mounting plate 50 by the probe elevating portion 111, and moves in the plane direction of the mounting plate 50 by the probe positioning mechanism 200.
 被測定対象の部品170が、測定領域54において、測定部95における測定プローブ110の直下まで来ると、載置プレート50の回転が止まる。その後、図3(B)に示すように一対の測定プローブ110が降下して一対の電極120と接触する。この測定プローブ110を介して測定装置105で特性を測定した後、測定プローブ110が上昇し、載置プレート50が再び回転して、次の部品170が測定プローブ110の直下に移動する。 When the component 170 to be measured reaches directly below the measurement probe 110 in the measurement unit 95 in the measurement area 54, the rotation of the mounting plate 50 stops. After that, as shown in FIG. 3B, the pair of measurement probes 110 descend and come into contact with the pair of electrodes 120. After measuring the characteristics with the measuring device 105 via the measuring probe 110, the measuring probe 110 rises, the mounting plate 50 rotates again, and the next component 170 moves directly under the measuring probe 110.
 図3(A)に示すように、プローブ位置決め機構200は、載置プレート50(又は載置プレート50の基準位置となる部材)と係合して、載置プレート50を基準とした相対位置と調整するプローブ位置決め用係合部210と、プローブ位置決め用係合部210を昇降させる係合部昇降機構211と、プローブ位置決め用係合部210をX-Y平面方向に微小に移動させる係合部平面移動機構201を有する。なお、係合部昇降機構211や係合部平面移動機構201による移動は、測定プローブ110(プローブ昇降部111)が部品と接触する前に、先行して行われる。具体的には、プローブ位置決め用係合部210によるプローブ位置決め孔103との係合が完了してから、測定プローブ110(プローブ昇降部111)が部品と接触する。 As shown in FIG. 3A, the probe positioning mechanism 200 engages with the mounting plate 50 (or a member serving as a reference position for the mounting plate 50) and has a relative position with respect to the mounting plate 50. The probe positioning engaging portion 210 to be adjusted, the engaging portion elevating mechanism 211 for raising and lowering the probe positioning engaging portion 210, and the engaging portion for slightly moving the probe positioning engaging portion 210 in the XY plane direction. It has a plane moving mechanism 201. The movement by the engaging portion elevating mechanism 211 and the engaging portion plane moving mechanism 201 is performed in advance before the measuring probe 110 (probe elevating portion 111) comes into contact with the component. Specifically, the measuring probe 110 (probe elevating portion 111) comes into contact with the component after the engagement of the probe positioning engaging portion 210 with the probe positioning hole 103 is completed.
 係合部平面移動機構201は、床面に固定載置される測定部支持台99に対して、水平直線方向(X方向およびY方向)に移動可能となる。例えば、係合部平面移動機構201は、測定部支持台99に配置されるスライド部品202(例えば転動自在のボール状部材)と、このスライド部品202を介して測定部支持台99上に配置されて測定部支持台99に対して水平方向に移動自在な平面移動体203を有する。 The engaging portion plane moving mechanism 201 can move in the horizontal linear direction (X direction and Y direction) with respect to the measuring portion support 99 which is fixedly placed on the floor surface. For example, the engaging portion horizontal movement mechanism 201 is arranged on the measuring portion support 99 via a slide component 202 (for example, a rollable ball-shaped member) arranged on the measuring portion support 99 and the slide component 202. The planar moving body 203 is movable in the horizontal direction with respect to the measuring unit support 99.
 係合部昇降機構211は、平面移動体203に対して、鉛直方向に移動自在に搭載される。プローブ昇降部111は、係合部昇降機構211に対して、鉛直方向に移動自在に搭載される。測定時は、まず係合部昇降機構211によって、プローブ位置決め用係合部210を所定位置(後述するプローブ位置決め孔103)に降下させて位置決めを行なった後に、プローブ昇降部111が測定プローブ110のみを降下させる。 The engaging portion elevating mechanism 211 is mounted so as to be movable in the vertical direction with respect to the plane moving body 203. The probe elevating portion 111 is mounted on the engaging portion elevating mechanism 211 so as to be movable in the vertical direction. At the time of measurement, first, the engaging portion elevating mechanism 211 lowers the probe positioning engaging portion 210 to a predetermined position (probe positioning hole 103 described later) to perform positioning, and then the probe elevating portion 111 only measures the measuring probe 110. To descend.
 図4を参照して、温度安定化装置125について説明する。同図(A)は、温度安定化装置125に備えられる載置プレート50の上面図であり、同図(B)は温度安定化装置125の断面概要図である。 The temperature stabilizer 125 will be described with reference to FIG. FIG. (A) is a top view of the mounting plate 50 provided in the temperature stabilizer 125, and FIG. (B) is a cross-sectional schematic view of the temperature stabilizer 125.
 図4(A)に示すように、温度安定化装置125は、複数の部品を同時に回転移動させる移動機構であり、部品がそれぞれ個別に載置される凹部である載置部100を複数有する略円盤状の載置プレート50を備える。この載置プレート50は、後述する熱移送部材130と一体となって、載置プレート回転軸55を中心として、部品を載置した状態で回転移動する。 As shown in FIG. 4A, the temperature stabilizer 125 is a moving mechanism for rotating and moving a plurality of parts at the same time, and has a plurality of mounting portions 100 which are recesses in which the parts are individually mounted. A disk-shaped mounting plate 50 is provided. The mounting plate 50 is integrally with the heat transfer member 130 described later, and rotates around the mounting plate rotation shaft 55 in a state where parts are mounted.
 載置部100は、載置プレート50の周方向に沿って、均等間隔で配置される。載置プレート50が回転することによって、載置部100が移動する環状の軌跡が、部品の移動経路となる。 The mounting portions 100 are arranged at equal intervals along the circumferential direction of the mounting plate 50. The annular locus in which the mounting portion 100 moves as the mounting plate 50 rotates becomes the movement path of the parts.
 なお、載置部100(凹部)の内寸は、部品の外寸と略一致することが好ましい。このようにすると、載置部100内での部品の位置ずれが抑制される。また、載置部100に対して部品を搭載する時に、部品に高い位置精度が要求される。従って、部品の保持精度を高めるために、例えば、姿勢調整装置70Sb(図1参照)などにより姿勢調整を行うことが望ましい。 It is preferable that the inner dimensions of the mounting portion 100 (recess) substantially match the outer dimensions of the parts. In this way, the misalignment of the parts in the mounting portion 100 is suppressed. Further, when the component is mounted on the mounting portion 100, the component is required to have high position accuracy. Therefore, in order to improve the holding accuracy of the parts, it is desirable to adjust the posture by, for example, the posture adjusting device 70Sb (see FIG. 1).
 載置プレート50の上面に形成される部品の移動経路上には、処理装置70の測定部95が配置される測定領域54と、部品保持機構45による部品の保持または解放が行われる入出領域57が設けられる。測定領域54は、測定部95(測定プローブ110)の直下に配置される載置部1001を含む領域であり、入出領域57は例えば、部品保持機構45(部品を保持または解放する際に機能する部品保持機構45)によって部品の保持または開放を行う領域であり、保持または解放の対象となる部品が停止する載置部1017を含む。具体的に、図4(A)に示すように、保持/解放動作を行なう部品保持機構45と最も近接する位置(その直下)に存在する載置部1017を含む領域が、入出領域57となる。また、この例では、入出領域57は測定領域54に対して載置プレート50上で180度の位置に配置される領域である。 On the movement path of the parts formed on the upper surface of the mounting plate 50, the measurement area 54 in which the measurement unit 95 of the processing device 70 is arranged and the entry / exit area 57 in which the parts are held or released by the parts holding mechanism 45. Is provided. The measurement area 54 is an area including a mounting unit 1001 arranged directly under the measurement unit 95 (measurement probe 110), and the entry / exit area 57 functions, for example, when the component holding mechanism 45 (holds or releases the component). It is an area for holding or opening a part by the part holding mechanism 45), and includes a mounting portion 1017 on which the part to be held or released is stopped. Specifically, as shown in FIG. 4A, the area including the mounting portion 1017 existing at the position closest to (immediately below) the component holding mechanism 45 that performs the holding / releasing operation is the entry / exit area 57. .. Further, in this example, the entry / exit region 57 is a region arranged at a position of 180 degrees on the mounting plate 50 with respect to the measurement region 54.
 つまり本実施形態では、例えば時計回りに、入出領域57から測定領域54までの半周分の載置部100に配置されている部品は測定前の部品であり、これらは測定領域54に位置すると測定部95によって出力特性が測定される。一方、時計回りに、測定領域54から入出領域57までの半周分の載置部100に配置されている部品は測定済みの部品であり、これらは入出領域57に位置すると、部品保持機構45によって載置部100から取り出される。 That is, in the present embodiment, for example, in the clockwise direction, the parts arranged in the mounting portion 100 for half a circumference from the entry / exit area 57 to the measurement area 54 are the parts before measurement, and they are measured when they are located in the measurement area 54. The output characteristics are measured by the unit 95. On the other hand, in the clockwise direction, the parts arranged in the mounting portion 100 for half a circumference from the measurement area 54 to the entry / exit area 57 are already measured parts, and when they are located in the entry / exit area 57, the component holding mechanism 45 It is taken out from the mounting portion 100.
 なお、入出領域57と測定領域54の位置は、回転移動する載置プレート50に対して固定された領域であるが、例えば部品の受け入れから測定までの時間(距離)を変更する場合などにおいて、入出領域57と測定領域54の固定位置(周方向の固定位相差)を変更可能である。例えば、位相差を180未満にすると、部品の受け入れから測定までの時間(距離)が短くなり、位相差を180より大きくすると、部品の受け入れから測定までの時間(距離)が長くなる。 The positions of the entry / exit area 57 and the measurement area 54 are areas fixed to the rotating mounting plate 50, but for example, when the time (distance) from the acceptance of parts to the measurement is changed, the position is fixed. The fixed positions (fixed phase difference in the circumferential direction) of the entry / exit area 57 and the measurement area 54 can be changed. For example, when the phase difference is less than 180, the time (distance) from the acceptance of the component to the measurement becomes short, and when the phase difference is larger than 180, the time (distance) from the acceptance of the component to the measurement becomes long.
 入出領域57において、載置プレート50の載置部100(1017)に載置された部品は、温度安定化装置125で回転移動している間に、所定の温度(例えば、25℃)まで制御され、測定部95において、その所定の温度における出力を測定した後、再び入出領域57に移動され、部品保持機構45(ここでは不図示)の部品保持具により回収される。載置プレート50は載置プレート回転軸55を中心として、同図(A)の例えば、時計回りに回転する。 In the entry / exit region 57, the parts mounted on the mounting portion 100 (1017) of the mounting plate 50 are controlled to a predetermined temperature (for example, 25 ° C.) while rotating by the temperature stabilizer 125. Then, after measuring the output at the predetermined temperature in the measuring unit 95, it is moved to the entry / exit area 57 again and collected by the component holder of the component holding mechanism 45 (not shown here). The mounting plate 50 rotates, for example, clockwise in the figure (A) about the mounting plate rotation shaft 55.
 また、載置部100の外周には、周方向に複数のプローブ位置決め孔103が配置される。プローブ位置決め孔103は、この例では各載置部100に個々に(1対1で)対応して載置部100と同数設けられる。 Further, a plurality of probe positioning holes 103 are arranged in the circumferential direction on the outer periphery of the mounting portion 100. In this example, the probe positioning holes 103 are individually (one-to-one) corresponding to each mounting portion 100 in the same number as the mounting portions 100.
 それぞれの処理装置70において、測定プローブ110を用いて部品の測定を行う場合、特に部品の小型化が進むと、測定プローブ110で接触する際に高い位置決め精度が要求される。このため、本実施形態では、図3に示すように、測定部95は、測定プローブ110に先行して降下可能なプローブ位置決め用係合部210を備える。 When measuring a part using the measuring probe 110 in each processing device 70, high positioning accuracy is required when the measuring probe 110 comes into contact with the measuring probe 110, especially as the miniaturization of the part progresses. Therefore, in the present embodiment, as shown in FIG. 3, the measuring unit 95 includes a probe positioning engaging unit 210 that can descend prior to the measuring probe 110.
 図3(A)の点線に示すように、処理装置70は、測定プローブ110の部品への接触に先立ってプローブ位置決め用係合部210を降下させ、測定領域54の、被測定対象の部品が載置された載置部100(1001)に対応するプローブ位置決め孔103に係合させる。 As shown by the dotted line in FIG. 3A, the processing device 70 lowers the probe positioning engaging portion 210 prior to the contact of the measuring probe 110 with the component, and the component to be measured in the measurement area 54 is moved. It engages with the probe positioning hole 103 corresponding to the mounted mounting portion 100 (1001).
 このとき、プローブ位置決め用係合部210及びプローブ位置決め孔103の少なくとも一方は、テーパ形状(具体的には円錐形状)となっている。本実施形態では、プローブ位置決め用係合部210が円錐形状突起となり、プローブ位置決め孔103が、この円錐形状突起の最大外径よりも小径の正円穴となる。結果、両者が係合すると、プローブ位置決め孔103を基準として、プローブ位置決め用係合部210が同軸状態となって、自律的にセンタリング(位置調整)される。このセンタリング効果によって、係合部平面移動機構201が、水平方向(図示のX方向およびY方向)に移動して、プローブ位置決め孔103を基準として水平方向に高精度に位置決めされる。その後、係合部平面移動機構201を基準として、プローブ昇降部111が測定プローブ110を下降させて部品に接触させる。このようにすることで、測定時の高精度の位置決めが可能となる。 At this time, at least one of the probe positioning engaging portion 210 and the probe positioning hole 103 has a tapered shape (specifically, a conical shape). In the present embodiment, the probe positioning engaging portion 210 is a conical protrusion, and the probe positioning hole 103 is a perfect circular hole having a diameter smaller than the maximum outer diameter of the conical protrusion. As a result, when both are engaged, the probe positioning engaging portion 210 is in a coaxial state with reference to the probe positioning hole 103, and is autonomously centered (position adjusted). Due to this centering effect, the engaging portion plane moving mechanism 201 moves in the horizontal direction (X direction and Y direction in the figure) and is positioned with high accuracy in the horizontal direction with reference to the probe positioning hole 103. After that, the probe elevating unit 111 lowers the measuring probe 110 and brings it into contact with the component with reference to the engaging portion plane moving mechanism 201. By doing so, highly accurate positioning at the time of measurement becomes possible.
 なお、ここではプローブ位置決め孔103とプローブ位置決め用係合部210との係合によって水平方向に機械的に位置調整する場合を例示したが、本発明はこれに限定されない。例えば、プローブ位置決め機構200が、不図示の撮像手段やセンサなどにより、測定プローブ110の水平方向の位置を制御してもよい。 Although the case where the position is mechanically adjusted in the horizontal direction by engaging the probe positioning hole 103 and the probe positioning engaging portion 210 is illustrated here, the present invention is not limited to this. For example, the probe positioning mechanism 200 may control the horizontal position of the measurement probe 110 by an imaging means, a sensor, or the like (not shown).
 なお、本実施形態では、プローブ位置決め孔103の数は、載置部100の数と等しいか、それよりも多い。各々の載置部100に対応してプローブ位置決め孔103を設けることで、すべての載置部100に対して、測定プローブ110を正しく位置調整できる。 In the present embodiment, the number of probe positioning holes 103 is equal to or larger than the number of mounting portions 100. By providing the probe positioning holes 103 corresponding to each mounting portion 100, the measurement probe 110 can be correctly positioned with respect to all the mounting portions 100.
 しかし、図4(A)の点線に示すように、プローブ位置決め孔103Fを測定領域54に固定配置しておき、測定領域54に停止する全ての載置部100に対する測定プローブ110の位置調整(センタリング)を、共通のプローブ位置決め孔103Fによって行うようにしてもよい。 However, as shown by the dotted line in FIG. 4A, the probe positioning hole 103F is fixedly arranged in the measurement area 54, and the position of the measurement probe 110 is adjusted (centering) with respect to all the mounting portions 100 stopped in the measurement area 54. ) May be performed by the common probe positioning hole 103F.
 図4(B)を参照して、温度安定化装置125は、載置プレート50と、載置プレート50に対して背面(裏面)側に隣接して配置され、載置プレート50に熱を移送する熱移送部材130を備える。熱移送部材130の形状は、載置プレート50と略同型(略円盤状)であることが望ましいが、複数に分散配置されていても良い。熱移送部材130と載置プレート50は一体となって、載置プレート回転軸55を中心として、載置プレート回転駆動部60により回転駆動される。なお、熱伝達効率を向上させるため、載置プレート50と熱移送部材130は、平面同士で接触していることが好ましく、間に熱伝導性シートなどを介在させても良い。従って、載置プレート50は、全体が均一(単一)の温度となるように、熱移送部材130によって温度制御される。 With reference to FIG. 4B, the temperature stabilizer 125 is arranged adjacent to the mounting plate 50 and the mounting plate 50 on the back surface (back surface) side, and transfers heat to the mounting plate 50. The heat transfer member 130 is provided. The shape of the heat transfer member 130 is preferably substantially the same as that of the mounting plate 50 (substantially disk-shaped), but it may be distributed in a plurality of shapes. The heat transfer member 130 and the mounting plate 50 are integrally driven by the mounting plate rotation driving unit 60 around the mounting plate rotation shaft 55. In order to improve the heat transfer efficiency, the mounting plate 50 and the heat transfer member 130 are preferably in contact with each other on flat surfaces, and a heat conductive sheet or the like may be interposed between them. Therefore, the temperature of the mounting plate 50 is controlled by the heat transfer member 130 so that the entire temperature is uniform (single).
 熱移送部材130において、載置プレート50が隣接する側と逆側平面には、熱交換部135が設けられる。熱移送部材130は、例えば、熱伝達プレート130Aとペルチェ素子130Bを備える。なお、この熱移送部材130における熱伝達プレート130Aを温度監視し、その監視結果を利用してペルチェ素子130Bの出力を制御する。この構造によって、載置プレート50の交換を容易にする。例えば載置プレート50の温度を降下させて、常温よりも低い温度に部品を制御したい場合には、熱移送部材130の載置プレート50側が低温となり、熱交換部135側が高温になる。その場合は、熱交換部135から熱が放熱されやすいように、熱交換部135をファンで空冷したり、外部に設けられた熱交換器であるチラーから冷水を供給して水冷したりすることが望ましい。逆に載置プレート50の温度を上昇させて、部品を常温よりも高い温度に制御したい場合には、熱移送部材130の載置プレート50側が高温に、熱交換部135側が低温になる。この場合には、熱交換部135に熱水を接触させて温めることも考えられる。これらの温度制御は、温度制御装置137によって行なわれる。 In the heat transfer member 130, the heat exchange portion 135 is provided on the plane opposite to the side adjacent to the mounting plate 50. The heat transfer member 130 includes, for example, a heat transfer plate 130A and a Peltier element 130B. The temperature of the heat transfer plate 130A in the heat transfer member 130 is monitored, and the output of the Peltier element 130B is controlled by using the monitoring result. This structure facilitates the replacement of the mounting plate 50. For example, when it is desired to lower the temperature of the mounting plate 50 to control the parts to a temperature lower than room temperature, the mounting plate 50 side of the heat transfer member 130 becomes low temperature and the heat exchange portion 135 side becomes high temperature. In that case, the heat exchange unit 135 should be air-cooled with a fan or cold water should be supplied from a chiller, which is an external heat exchanger, to cool the heat exchange unit 135 so that heat can be easily dissipated from the heat exchange unit 135. Is desirable. On the contrary, when it is desired to raise the temperature of the mounting plate 50 to control the temperature of the component to be higher than the room temperature, the mounting plate 50 side of the heat transfer member 130 becomes high temperature and the heat exchange unit 135 side becomes low temperature. In this case, it is conceivable to bring hot water into contact with the heat exchange unit 135 to heat it. These temperature controls are performed by the temperature control device 137.
 温度制御装置137は、CPU、RAM、ROM、ハードディスクドライブ等の記憶装置などから構成され。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。RAMはCPUの作業領域、記憶領域として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。温度制御装置137は温度安定化装置125ごとに設けられても良く、制御装置25(図1参照)と一体であっても良い。温度制御装置137による温度制御は、例えばPID制御によっておこなわれるが、一般的な周知技術なので詳細説明は省略する。 The temperature control device 137 is composed of a storage device such as a CPU, RAM, ROM, and a hard disk drive. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and a program executed by the CPU. The temperature control device 137 may be provided for each temperature stabilization device 125, or may be integrated with the control device 25 (see FIG. 1). The temperature control by the temperature control device 137 is performed by, for example, PID control, but since it is a general well-known technique, detailed description thereof will be omitted.
 なお、載置プレート50および熱移送部材130は交換可能に構成される。従って例えば、載置プレート50は載置部100のサイズや配置数が異なるものなどを複数種類用意し、また、熱移送部材130もその特性(仕様)が異なるものなどを複数種類用意して置くことで、処理に応じて適宜交換することができる。 The mounting plate 50 and the heat transfer member 130 are interchangeably configured. Therefore, for example, a plurality of types of mounting plates 50 having different sizes and arrangement numbers of the mounting portions 100 are prepared, and a plurality of types of heat transfer members 130 having different characteristics (specifications) are prepared and placed. Therefore, it can be replaced as appropriate according to the processing.
 温度安定化装置125は、部品が入出領域57に搬入されてから測定部95(測定領域54/行為部)に到達するまでに必要な移動時間よりも、部品の温度が所定の温度に安定するまでの時間である温度制御時間が短い。即ち、部品が測定領域54に到達する前に、部品の温度は目標値で安定している。 In the temperature stabilizer 125, the temperature of the component is stabilized at a predetermined temperature rather than the moving time required from when the component is carried into the inlet / output region 57 to when it reaches the measuring unit 95 (measurement region 54 / acting unit). The temperature control time, which is the time until, is short. That is, the temperature of the component is stable at the target value before the component reaches the measurement region 54.
 本実施形態では、一例として、全ての処理装置70において、載置プレート50のサイズ(直径)は同等であり、入出領域57に対して測定領域54が180度の位置に設定されている。つまり、複数の異なる温度に設定される複数の処理装置70(処理領域52)であっても、入出領域57と測定領域54の距離は同一となっている。このような構成であって、上述のとおり全ての処理領域52において部品が測定領域54に到達する前に、部品の温度は目標値で安定するように構成されている。 In the present embodiment, as an example, the size (diameter) of the mounting plate 50 is the same in all the processing devices 70, and the measurement area 54 is set at a position of 180 degrees with respect to the entry / exit area 57. That is, even in a plurality of processing devices 70 (processing areas 52) set at a plurality of different temperatures, the distance between the entry / exit area 57 and the measurement area 54 is the same. With such a configuration, as described above, the temperature of the component is stabilized at the target value before the component reaches the measurement region 54 in all the processing regions 52.
 一例として、本実施形態では、複数の処理装置70間においてそれぞれの載置プレート50は、同サイズで載置部100の数も同数且つ等速で回転する。これにより、入出領域57から測定領域54までの部品の移動経路の距離は同一となり、複数の処理装置70間においてそれぞれの載置プレート50の入出領域57(載置部100)に受け入れられた部品は、同じタイミングで測定領域54に移動する。また測定に係る時間は設定温度に寄らず略一定であり、測定後は下流の処理装置70に搬送されるために同じタイミングで再び入出領域57に移動する。 As an example, in the present embodiment, the mounting plates 50 have the same size and the number of mounting portions 100 is the same among the plurality of processing devices 70, and the mounting portions 100 rotate at a constant speed. As a result, the distance of the movement path of the parts from the entry / exit area 57 to the measurement area 54 becomes the same, and the parts received in the entry / exit area 57 (mounting portion 100) of each mounting plate 50 among the plurality of processing devices 70. Moves to the measurement area 54 at the same timing. Further, the time related to the measurement is substantially constant regardless of the set temperature, and after the measurement, the time is transferred to the downstream processing device 70, so that the time is moved to the entry / exit area 57 again at the same timing.
 このため、各処理領域52A~52Gに配置される各処理装置70A~70Gは、ターレット型回転搬送装置10の各々の位相(30度毎の位相)の半径方向を基準線として、すべて同じ配置関係となる。具体的には、各処理装置70の入出領域57に存在する載置部100は、対応する部品保持機構45のノズルの真下に存在し、この載置部100を基準としたターレット型回転搬送装置10の半径方向の延長線上に、処理装置80の測定領域54側の載置部100が存在する。このようにしておくと、部品搬送処理装置1の組み立て作業や、事前のセッティング作業(位置調整作業)が、複数の処理領域52A~52Gの間で同一作業とすることができ、組み立て効率やメンテナンス効率が飛躍的に高められる。 Therefore, the processing devices 70A to 70G arranged in the processing areas 52A to 52G all have the same arrangement relationship with the radial direction of each phase (phase every 30 degrees) of the turret type rotary transfer device 10 as a reference line. It becomes. Specifically, the mounting portion 100 existing in the inlet / output region 57 of each processing device 70 exists directly under the nozzle of the corresponding component holding mechanism 45, and is a turret type rotary transfer device based on the mounting portion 100. On the extension line in the radial direction of 10, the mounting portion 100 on the measurement region 54 side of the processing device 80 exists. By doing so, the assembly work of the parts transfer processing device 1 and the pre-setting work (position adjustment work) can be made the same work in the plurality of processing areas 52A to 52G, and the assembly efficiency and maintenance can be performed. Efficiency is dramatically increased.
 なお、載置プレート50および熱移送部材130はそれぞれ交換可能であるため、この例に限らず、処理の内容に応じて載置プレート50のサイズ(直径)を異ならせたり、入出領域57から測定領域54(測定部95)までの距離を異ならせたりしても良い。また、図4(C)の載置部100の断面に示すように、この載置部100が、サイズの異なる複数の部品172-1,172-2の外形に合う複数形状のポケットを有することも好ましい。このようにすると、複数種類の部品172-1,172-2について、載置プレート50を交換することなく、測定することが可能となる。 Since the mounting plate 50 and the heat transfer member 130 are interchangeable, the size (diameter) of the mounting plate 50 is different depending on the processing content, and the measurement is performed from the entry / exit area 57, not limited to this example. The distance to the region 54 (measurement unit 95) may be different. Further, as shown in the cross section of the mounting portion 100 of FIG. 4C, the mounting portion 100 has a plurality of shaped pockets that fit the outer shapes of a plurality of parts 172-1, 172-2 having different sizes. Is also preferable. In this way, it is possible to measure a plurality of types of parts 172-1, 172-2 without exchanging the mounting plate 50.
 <ターレット型回転搬送装置>
 図5の側面概要図を参照して、ターレット型回転搬送装置10について説明する。ターレット型回転搬送装置10から独立した架台35に昇降付勢機構40が固定される。つまり、昇降付勢機構40は搬送経路T上の各処理領域52に対応して固定配置される。部品保持機構45はターレットテーブル12に固定され、ターレットテーブル12の回転運動に伴って、その位置を変える。昇降付勢機構40は、各処理領域52で一時停止する部品保持機構45と係合するのに適切な位置に設置される。本実施形態では、図6に示すように、架台35に、各処理装置70(70A~70G,70Sa,70Sb)、自動部品供給装置65、供給リール5、クリーニング装置65Pに対応させて、12個の昇降付勢機構40(40A~40L)が固定設置される。
<Turret type rotary transfer device>
The turret type rotary transfer device 10 will be described with reference to the side schematic view of FIG. The elevating urging mechanism 40 is fixed to a pedestal 35 independent of the turret type rotary transfer device 10. That is, the elevating urging mechanism 40 is fixedly arranged corresponding to each processing area 52 on the transport path T. The component holding mechanism 45 is fixed to the turret table 12 and changes its position as the turret table 12 rotates. The elevating urging mechanism 40 is installed at an appropriate position to engage with the component holding mechanism 45 that is temporarily stopped in each processing area 52. In this embodiment, as shown in FIG. 6, 12 pedestals 35 correspond to each processing device 70 (70A to 70G, 70Sa, 70Sb), automatic parts supply device 65, supply reel 5, and cleaning device 65P. Lifting and lifting mechanism 40 (40A to 40L) is fixedly installed.
 具体的には昇降付勢機構40は、鉛直方向(図5に示すZ方向)上下に往復運動し、下降した場合には、その下方に配置される部品保持機構45を付勢する。詳細な図示は省略するが、昇降付勢機構40は例えば、回転運動を行うモーターと、モーターの回転軸に係合して回転運動を直線往復運動に変換する斜板カム構造と、斜板カム構造において直線往復運動を伝達する軸部151と、軸部151の下端に形成される係合部155などを備える。軸部151は、鉛直方向上向きに弾性体(図示省略)で支持されている。これにより、モーターの回転動力によって、軸部151および係合部155が鉛直方向に往復運動自在となっている。そして、下降した係合部155が、部品保持機構45と当接して、これを押し下げる。 Specifically, the elevating urging mechanism 40 reciprocates up and down in the vertical direction (Z direction shown in FIG. 5), and when it descends, it urges the component holding mechanism 45 arranged below it. Although detailed illustration is omitted, the elevating and lowering urging mechanism 40 includes, for example, a motor that performs rotary motion, a swash plate cam structure that engages with the rotary shaft of the motor to convert the rotary motion into linear reciprocating motion, and a swash plate cam. The structure includes a shaft portion 151 for transmitting linear reciprocating motion, an engaging portion 155 formed at the lower end of the shaft portion 151, and the like. The shaft portion 151 is supported by an elastic body (not shown) upward in the vertical direction. As a result, the shaft portion 151 and the engaging portion 155 are reciprocating in the vertical direction by the rotational power of the motor. Then, the lowered engaging portion 155 comes into contact with the component holding mechanism 45 and pushes it down.
 なお、昇降付勢機構40の構成はこれに限らず、エアシリンダや油圧シリンダ、電磁ソレノイド等の直動動力源によって、直接、軸部151および係合部155を上下方向に駆動しても良い。 The configuration of the elevating urging mechanism 40 is not limited to this, and the shaft portion 151 and the engaging portion 155 may be directly driven in the vertical direction by a linear power source such as an air cylinder, a hydraulic cylinder, or an electromagnetic solenoid. ..
 部品を搬送するターレット型回転搬送装置10の重量的負荷は少ないほうが処理速度も上げやすく、また消費電力も少なくすむ。本実施形態の部品搬送処理装置1は、固定配置される昇降付勢機構40と、ターレット型回転搬送装置10が分割されているので、ターレット型回転搬送装置10の回転重量に、昇降付勢機構40が含まれない。結果、全体として処理速度も上げやすく、また消費電力も少なくすむ。 The smaller the weight load of the turret type rotary transfer device 10 for transporting parts, the easier it is to increase the processing speed and the less power consumption. In the component transfer processing device 1 of the present embodiment, since the elevating and lowering urging mechanism 40 and the turret type rotary conveying device 10 are separately arranged, the elevating and lowering urging mechanism is added to the rotational weight of the turret type rotary conveying device 10. 40 is not included. As a result, the processing speed can be easily increased as a whole, and the power consumption can be reduced.
 部品保持機構45は、部品保持具145と、部品保持具145を鉛直方向に昇降させる保持具昇降部147と、部品保持具145の平面方向の位置を高精度に調整する部品保持具位置決め機構180とを有する。部品保持具145は、部品を載置部100から吸着保持し、また、部品を載置部100へ解放(収容)する。 The component holding mechanism 45 includes a component holder 145, a holder elevating portion 147 that raises and lowers the component holder 145 in the vertical direction, and a component holder positioning mechanism 180 that adjusts the position of the component holder 145 in the plane direction with high accuracy. And have. The component holder 145 sucks and holds the component from the mounting section 100, and releases (accommodates) the component to the mounting section 100.
 部品保持具145は、例えば、部品を吸着して保持し、あるいは吸着を解除して部品を解放可能なノズルである。具体的には、部品保持具145は中空のチューブ状(円筒状)であり、それぞれがダイヤフラムポンプ(図示省略)に接続されている。ダイヤフラムポンプは制御装置25によって制御され、部品を吸着する場合には部品保持具145内部空間を減圧し、部品を解放する場合には部品保持具145の内部空間を大気圧に戻す。 The component holder 145 is, for example, a nozzle capable of sucking and holding the component, or releasing the suction to release the component. Specifically, the component holder 145 has a hollow tube shape (cylindrical shape), and each is connected to a diaphragm pump (not shown). The diaphragm pump is controlled by the control device 25, and the internal space of the component holder 145 is depressurized when the component is sucked, and the internal space of the component holder 145 is returned to the atmospheric pressure when the component is released.
 部品保持具145は、保持具昇降部147によって鉛直方向に案内されるが、昇降付勢機構40の付勢力が付与されていない状態では、不図示の付勢手段により鉛直方向上向きに付勢されている。保持具昇降部147が、下降した昇降付勢機構40と当接して下方に付勢されると、保持具昇降部147が、部品保持具145を鉛直方向下向きに案内する。昇降付勢機構40が上昇すると、保持具昇降部147は、自ら内蔵する付勢手段(例えばバネ)によって、部品保持具145を上昇するように案内する。 The component holder 145 is guided in the vertical direction by the holder elevating portion 147, but is urged upward in the vertical direction by an urging means (not shown) when the urging force of the elevating urging mechanism 40 is not applied. ing. When the holder elevating part 147 comes into contact with the lowered elevating urging mechanism 40 and is urged downward, the holder elevating part 147 guides the component holder 145 downward in the vertical direction. When the elevating and lowering urging mechanism 40 is raised, the holder elevating part 147 guides the part holder 145 to be raised by the urging means (for example, a spring) built in by itself.
 部品保持具位置決め機構180は、鉛直方向(図示Z方向)に昇降可能な部品保持具位置決め用係合部182と、部品保持具位置決め用係合部182を昇降させる係合部昇降機構181と、部品保持具位置決め用係合部182をX-Y平面方向に微小に移動させる係合部平面移動機構184を有する。 The component holder positioning mechanism 180 includes an engaging portion 182 for positioning the component holder that can be raised and lowered in the vertical direction (Z direction in the drawing), an engaging portion elevating mechanism 181 that raises and lowers the engaging portion 182 for positioning the component holder, and the like. It has an engaging portion plane moving mechanism 184 that slightly moves the component holder positioning engaging portion 182 in the XY plane direction.
 係合部平面移動機構184は、鉛直方向においては移動不可となるターレットテーブル12に対して、水平方向(X方向および/またはY方向)に移動可能となる。例えば、係合部平面移動機構184は、ターレットテーブル12の表面(上面)に設けられたスライド部品222(例えば転動自在のボール状部材)と、このスライド部品222を介してターレットテーブル12上に配置されてターレットテーブル12に対して水平方向に移動自在な平面移動体183などにより構成される。 The engaging portion plane moving mechanism 184 can move in the horizontal direction (X direction and / or Y direction) with respect to the turret table 12, which cannot move in the vertical direction. For example, the engaging portion horizontal movement mechanism 184 is placed on the turret table 12 via a slide component 222 (for example, a rollable ball-shaped member) provided on the surface (upper surface) of the turret table 12 and the slide component 222. It is composed of a plane moving body 183 or the like which is arranged and can move horizontally with respect to the turret table 12.
 係合部昇降機構181は、平面移動体183に対して鉛直方向に移動自在に搭載される。係合部昇降機構181に外力が付勢されない状態では、不図示の付勢手段により鉛直方向上向きに付勢されている。保持具昇降部147は、係合部昇降機構181に対して鉛直方向に移動自在に搭載される。保持具昇降部147に外力が付与されていない状態では、不図示の付勢手段により鉛直方向上向きに付勢されている。係合部昇降機構181における上向きの付勢力は、保持具昇降部147における上向きの付勢力と比較して小さい。従って、昇降付勢機構40によって、保持具昇降部147を下方に付勢すると、まず、係合部昇降機構181が優先的に下降して下死点で停止し、その後、停止した係合部昇降機構181に対して、保持具昇降部147が単独で下降するようになっている。 The engaging portion elevating mechanism 181 is mounted so as to be movable in the vertical direction with respect to the plane moving body 183. When the engaging portion elevating mechanism 181 is not urged by an external force, it is urged upward in the vertical direction by an urging means (not shown). The holder elevating part 147 is mounted so as to be movable in the vertical direction with respect to the engaging part elevating mechanism 181. In a state where no external force is applied to the holder elevating part 147, the holder is urged upward in the vertical direction by an urging means (not shown). The upward urging force of the engaging portion elevating mechanism 181 is smaller than that of the upward urging force of the holder elevating portion 147. Therefore, when the holder elevating portion 147 is urged downward by the elevating mechanism 40, the engaging portion elevating mechanism 181 first descends preferentially and stops at the bottom dead center, and then the engaging portion stopped. The holder elevating portion 147 descends independently of the elevating mechanism 181.
 これにより、部品保持具145は、部品保持具位置決め用係合部とは別のタイミングで独立して昇降自在となっている。 As a result, the component holder 145 can be raised and lowered independently of the engaging portion for positioning the component holder.
 図3(A)に示すように、載置プレート50および熱移送部材130の支持台119は、その上面であって載置プレート50とは重ならない領域(載置プレート50から露出した領域)、より詳細には、入出領域57の近傍領域に、1または複数の部品保持具位置決め孔104が配置される。この例では、部品保持具位置決め孔104は、入出領域57の載置部100に対応しており、当該載置部100の外周に1個設けられる。 As shown in FIG. 3A, the mounting plate 50 and the support base 119 of the heat transfer member 130 are on the upper surface thereof and do not overlap with the mounting plate 50 (region exposed from the mounting plate 50). More specifically, one or more component holder positioning holes 104 are arranged in the vicinity of the entry / exit region 57. In this example, the component holder positioning hole 104 corresponds to the mounting portion 100 of the entry / exit area 57, and one is provided on the outer periphery of the mounting portion 100.
 既に述べているように、各処理装置70間では部品保持機構45による部品の保持および解放を繰り返して部品を搬送する。この場合、特に部品が小型であると、部品の保持または解放の際に高い位置決め精度が要求される。また、部品をパッケージングする際にも、同様に高い位置決め精度が要求される。本実施形態では、部品保持具位置決め機構180により、部品の保持/解放時に位置決め手段を用いて高精度の位置決めを行なうことができる。 As already described, the parts are transported between the processing devices 70 by repeatedly holding and releasing the parts by the part holding mechanism 45. In this case, especially when the component is small, high positioning accuracy is required when holding or releasing the component. Also, when packaging parts, high positioning accuracy is also required. In the present embodiment, the component holder positioning mechanism 180 enables highly accurate positioning using the positioning means when the component is held / released.
 具体的に、部品保持具145による部品の保持または解放に先立って、部品保持具位置決め用係合部182を降下させて、部品保持具位置決め孔104に係合させる。 Specifically, prior to holding or releasing the part by the part holder 145, the part holder positioning engaging portion 182 is lowered and engaged with the part holder positioning hole 104.
 このとき、部品保持具位置決め用係合部182及び部品保持具位置決め孔104の少なくとも一方は、テーパ形状(具体的には円錐形状)となっている。本実施形態では、部品保持具位置決め用係合部182が円錐形状突起となり、部品保持具位置決め孔104が、この円錐形状突起の最大外径よりも小径の正円穴となる。結果、両者が係合すると、部品保持具位置決め孔104を基準として、部品保持具位置決め用係合部182が同軸状態となって、自律的にセンタリング(位置調整)される。このセンタリング効果によって、係合部平面移動機構184が、水平方向(図示のX方向およびY方向)に移動して、部品保持具位置決め孔104を基準として水平方向に高精度に位置決めされる。その後、係合部平面移動機構184を基準として、保持具昇降部147が部品保持具145を下降させて載置部100に接近させる。このようにすることで、部品の保持又は開放において、載置部100に対する部品保持具145の高精度な位置決めが実現される。 At this time, at least one of the component holder positioning engaging portion 182 and the component holder positioning hole 104 has a tapered shape (specifically, a conical shape). In the present embodiment, the component holder positioning engaging portion 182 is a conical protrusion, and the component holder positioning hole 104 is a perfect circular hole having a diameter smaller than the maximum outer diameter of the conical protrusion. As a result, when both are engaged, the component holder positioning engaging portion 182 is in a coaxial state with reference to the component holder positioning hole 104, and is autonomously centered (position adjusted). Due to this centering effect, the engaging portion plane moving mechanism 184 moves in the horizontal direction (X direction and Y direction in the figure) and is positioned with high accuracy in the horizontal direction with reference to the component holder positioning hole 104. After that, the holder elevating portion 147 lowers the component holder 145 to approach the mounting portion 100 with reference to the engaging portion plane moving mechanism 184. By doing so, highly accurate positioning of the component holder 145 with respect to the mounting portion 100 is realized when the component is held or opened.
 ここでは部品保持具位置決め用係合部182と部品保持具位置決め孔104の係合によって機械的に位置調整する場合を例示したが、本発明はこれに限定されない。例えば、部品保持具位置決め機構180が、不図示の撮像手段やセンサなどにより、部品保持具145の水平方向の位置を制御しても良い。 Here, a case where the position is mechanically adjusted by engaging the component holder positioning engaging portion 182 and the component holder positioning hole 104 has been illustrated, but the present invention is not limited to this. For example, the component holder positioning mechanism 180 may control the horizontal position of the component holder 145 by an imaging means or a sensor (not shown).
 また、昇降付勢機構40では、部品の厚みが変更された場合のように、その目的や役割に応じて、昇降付勢機構40の係合部の位置や押し込み量を適宜変更可能に構成されている。 Further, the elevating and lowering urging mechanism 40 is configured so that the position and the pushing amount of the engaging portion of the elevating and lowering urging mechanism 40 can be appropriately changed according to the purpose and role, as in the case where the thickness of the component is changed. ing.
 <全体動作>
 図6を参照して、ターレット型回転搬送装置10の全体動作を説明する。図6において、ターレット型回転搬送装置10は、一例として12個の部品保持機構45(45A~45L)を備える。また、ここでは全体動作を説明するため、撮像装置70Sa、姿勢調整装置70Sb、処理装置70A~70Gを、まとめて処理装置70と称する場合が有る。
<Overall operation>
The overall operation of the turret type rotary transfer device 10 will be described with reference to FIG. In FIG. 6, the turret type rotary transfer device 10 includes 12 component holding mechanisms 45 (45A to 45L) as an example. Further, in order to explain the overall operation, the imaging device 70Sa, the posture adjusting device 70Sb, and the processing devices 70A to 70G may be collectively referred to as the processing device 70.
 例えば、図6(A)では、第1昇降付勢機構40Aは第1処理領域52A上に固定され、第2昇降付勢装置40Bは第2処理領域52B上に固定され、第3昇降付勢装置40Cは第3処理領域52C上に固定され、第4昇降付勢装置40Dは第4処理領域52D上に固定され、第5昇降付勢装置40Eは第5処理領域52E上に固定され、第6昇降付勢装置40Fは第6処理領域52F上に固定され、第7昇降付勢装置40Gは第7処理領域52Gに固定され、第8昇降付勢装置40Hは部品搬出領域53上に固定され、第9昇降付勢装置40Iは準備領域51P上に固定され、第10昇降付勢装置40Jは部品供給領域51上に固定され、第11昇降付勢装置40Kは第1前処理領域52Sa、第12昇降付勢装置40Lは第2前処理領域52Sb上に固定される。 For example, in FIG. 6A, the first elevating urging mechanism 40A is fixed on the first processing area 52A, the second elevating urging device 40B is fixed on the second processing area 52B, and the third elevating urging device 40B is fixed. The device 40C is fixed on the third processing area 52C, the fourth elevating urging device 40D is fixed on the fourth processing area 52D, and the fifth elevating urging device 40E is fixed on the fifth processing area 52E. The 6 elevating urging device 40F is fixed on the 6th processing area 52F, the 7th elevating urging device 40G is fixed on the 7th processing area 52G, and the 8th elevating urging device 40H is fixed on the component unloading area 53. The ninth elevating urging device 40I is fixed on the preparation area 51P, the tenth elevating urging device 40J is fixed on the parts supply area 51, and the eleventh elevating urging device 40K is the first pretreatment area 52Sa, first. 12 The elevating urging device 40L is fixed on the second pretreatment area 52Sb.
 また図6(A)は、ターレット型回転搬送装置10が一時停止した状態を示しており、第1部品保持機構45Aが第1処理領域52A上に停止され、第2部品保持機構45Bが第2処理領域52B上に停止され、第3部品保持機構45Cが第3処理領域52C上に停止され、第4部品保持機構45Dが第4処理領域52D上に停止され、第5部品保持機構45Eが第5処理領域52E上に停止され、第6部品保持機構45Fが第6処理領域52F上に停止され、第7部品保持機構45Gが第7処理領域52G上に停止され、第8部品保持機構45Hが部品搬出領域53上に停止され、第9部品保持機構45Iが準備領域51P上に停止され、第10部品保持機構45Jが部品供給領域51上に停止され、第11部品保持機構45Kが第1前処理領域52Sa上に停止され、第12部品保持機構45Lが第2前処理領域52Sb上に停止される。 Further, FIG. 6A shows a state in which the turret type rotary transfer device 10 is temporarily stopped, the first component holding mechanism 45A is stopped on the first processing area 52A, and the second component holding mechanism 45B is second. The third component holding mechanism 45C is stopped on the processing area 52B, the third component holding mechanism 45C is stopped on the third processing area 52C, the fourth component holding mechanism 45D is stopped on the fourth processing area 52D, and the fifth component holding mechanism 45E is stopped on the fourth processing area 52D. 5 Stopped on processing area 52E, 6th component holding mechanism 45F stopped on 6th processing area 52F, 7th component holding mechanism 45G stopped on 7th processing area 52G, 8th component holding mechanism 45H The ninth component holding mechanism 45I is stopped on the preparation area 51P, the tenth component holding mechanism 45J is stopped on the component supply area 51, and the eleventh component holding mechanism 45K is stopped on the component supply area 51. It is stopped on the processing area 52Sa, and the 12th component holding mechanism 45L is stopped on the second preprocessing area 52Sb.
 この状態で、昇降付勢機構40A~40Lが稼働し、部品保持機構45を付勢することで、部品を上下動させながら、その目的に応じた各種動作が同時並行で実行される。 In this state, the elevating and lowering urging mechanisms 40A to 40L operate, and by urging the component holding mechanism 45, various operations according to the purpose are executed in parallel while moving the components up and down.
 図6(A)の状態において、各領域での動作(処理)が完了すると、ターレット型回転搬送装置10が例えば反時計回りに30度回転しながら部品を搬送し、図6(B)に示す状態で停止する。この回転角度は、部品保持機構45A~45Lの配置角度の周方向位相差(30度)と一致する。 In the state of FIG. 6 (A), when the operation (processing) in each region is completed, the turret type rotary transfer device 10 transfers the parts while rotating 30 degrees counterclockwise, for example, and is shown in FIG. 6 (B). Stop in the state. This rotation angle coincides with the circumferential phase difference (30 degrees) of the arrangement angles of the component holding mechanisms 45A to 45L.
 その結果、第1部品保持機構45Aが第2処理領域52B上に停止され、第2部品保持機構45Bが第3処理領域52C上に停止され、第3部品保持機構45Cが第4処理領域52D上に停止され、第4部品保持機構45Dが第5処理領域52E上に停止され、第5部品保持機構45Eが第6処理領域52F上に停止され、第6部品保持機構45Fが第7処理領域52G上に停止され、第7部品保持機構45Gが部品搬出領域53上に停止され、第8部品保持機構45Hが準備領域51P上に停止され、第9部品保持機構45Iが部品供給領域51上に停止され、第10部品保持機構45Jが第1前処理領域52Sa上に停止され、第11部品保持機構45Kが第2前処理領域52Sbに停止され、第12部品保持機構45Lが第1処理領域52A上に停止される。 As a result, the first component holding mechanism 45A is stopped on the second processing area 52B, the second component holding mechanism 45B is stopped on the third processing area 52C, and the third component holding mechanism 45C is stopped on the fourth processing area 52D. The fourth component holding mechanism 45D is stopped on the fifth processing area 52E, the fifth component holding mechanism 45E is stopped on the sixth processing area 52F, and the sixth component holding mechanism 45F is stopped on the seventh processing area 52G. The seventh component holding mechanism 45G is stopped on the component carry-out area 53, the eighth component holding mechanism 45H is stopped on the preparation area 51P, and the ninth component holding mechanism 45I is stopped on the component supply area 51. The tenth component holding mechanism 45J is stopped on the first pretreatment area 52Sa, the eleventh component holding mechanism 45K is stopped on the second preprocessing area 52Sb, and the twelfth component holding mechanism 45L is stopped on the first processing area 52A. Is stopped at.
 そして同様にこれらの各領域で、昇降付勢機構40A~40Iが稼働することで、部品を上下動させながら、その目的に応じた各種動作が同時並行で実行される。 Similarly, by operating the elevating urging mechanisms 40A to 40I in each of these areas, various operations according to the purpose are executed in parallel while moving the parts up and down.
 図6(B)の状態において、各領域での動作(処理)が完了したら、ターレット型回転搬送装置10が更に反時計回りに30度回転しながら部品を搬送し、図6(C)に示す状態で停止する。 In the state of FIG. 6B, when the operation (processing) in each region is completed, the turret type rotary transfer device 10 further rotates the parts counterclockwise by 30 degrees to convey the parts, and is shown in FIG. 6C. Stop in the state.
 上記図6(A)~図6(C)の動作が繰り返されることで、部品供給領域51から部品が順次供給され、全ての部品は、各処理領域52を順番に移動しながら所望の処理が施されて、部品搬出領域53から搬出される。 By repeating the operations of FIGS. 6 (A) to 6 (C), parts are sequentially supplied from the part supply area 51, and all the parts are subjected to desired processing while sequentially moving in each processing area 52. It is applied and carried out from the parts carry-out area 53.
 次に図7を参照して部品保持機構45による部品の回収動作及び部品の解放動作を説明する。同図は、第1処理領域52A~第3処理領域52Cのそれぞれにおける、第1載置プレート50A~第3載置プレート50Cと、それらに配置される部品172A~172C、173A~173Cおよび、第1部品保持具145A~第3部品保持具145Cの概要を示す側面図である。 Next, the component collection operation and the component release operation by the component holding mechanism 45 will be described with reference to FIG. 7. The figure shows the first mounting plate 50A to the third mounting plate 50C, the parts 172A to 172C, 173A to 173C, and the third mounting plate 50A to 173C arranged in each of the first processing region 52A to the third processing region 52C. It is a side view which shows the outline of 1 part holder 145A to 3rd part holder 145C.
 同図において、ハッチングを付した部品172A~172Cはそれぞれ、(例えば測定済みで)移動(搬送)対象の部品であり、白抜きで示す部品173A~173Cは(例えば、測定は完了しているが)移動(搬送)対象外の部品であり、部品171は図示の載置プレート50に新たに配置される部品である。また、同図に示す期間、第1載置プレート50A~第3載置プレート50Cは部品の入出のためにその回転を停止している。 In the figure, the hatched parts 172A to 172C are parts to be moved (transported) (for example, already measured), and the parts 173A to 173C shown in white are (for example, the measurement is completed). ) Parts that are not subject to movement (transportation), and part 171 is a part that is newly arranged on the mounting plate 50 shown in the figure. Further, during the period shown in the figure, the first mounting plate 50A to the third mounting plate 50C have stopped rotating due to the loading and unloading of parts.
 図7(A)は、第1部品保持機構45Aの第1部品保持具145Aが、第1載置プレート50A上の入出領域57において搬送対象の部品172Aに当接した状態と、第2部品保持機構45Bの第2部品保持具145Bが、第2載置プレート50B上の入出領域57において搬送対象の部品172Bに当接した状態と、第3部品保持機構45Cの第3部品保持具145Cが、第3載置プレート50C上の入出領域57において搬送対象の部品172Cに当接した状態を示す。これらは同じタイミングで行なわれる。 FIG. 7A shows a state in which the first component holder 145A of the first component holding mechanism 45A is in contact with the component 172A to be transported in the entry / exit area 57 on the first mounting plate 50A, and the second component holding. The state in which the second component holder 145B of the mechanism 45B is in contact with the component 172B to be transported in the entry / exit region 57 on the second mounting plate 50B, and the third component holder 145C of the third component holding mechanism 45C are in contact with each other. A state in which the component 172C to be transported is in contact with the entry / exit region 57 on the third mounting plate 50C is shown. These are done at the same timing.
 その後同図(B)に示すように、第1部品保持具145Aが部品172Aを吸着保持して上昇すると、第1載置プレート50Aの入出領域57において載置部100Aが空孔となる。 After that, as shown in FIG. 6B, when the first component holder 145A sucks and holds the component 172A and rises, the mounting portion 100A becomes a hole in the entry / exit region 57 of the first mounting plate 50A.
 この第1部品保持具145Aの動作と同期して第2部品保持具145Bが部品172Bを吸着保持して上昇すると、第2載置プレート50Bの入出領域57において載置部100Bが空孔となり、第1部品保持具145Aの動作と同期して第3部品保持具145Cが部品172Cを吸着保持して上昇すると、第3載置プレート50Cの入出領域57において載置部100Cが空孔となる。 When the second component holder 145B sucks and holds the component 172B and rises in synchronization with the operation of the first component holder 145A, the mounting portion 100B becomes a hole in the entry / exit region 57 of the second mounting plate 50B. When the third component holder 145C sucks and holds the component 172C and rises in synchronization with the operation of the first component holder 145A, the mounting portion 100C becomes a hole in the entry / exit region 57 of the third mounting plate 50C.
 同図(C)は、ターレット型回転搬送装置10が回転(例えば、30度の回転)した状態を示す。 第1載置プレート50A上には、第12部品保持機構45Lが移動してくる。この場合、第12部品保持具145Lは、部品供給領域51(図6参照)から新たな部品171を吸着保持して第1載置プレート50Aの入出領域57まで移動する。第1載置プレート50Aの載置部100Aは、予め、部品172Aが取り出されているので空孔となっている。 FIG. 3C shows a state in which the turret type rotary transfer device 10 is rotated (for example, rotated by 30 degrees). The 12th component holding mechanism 45L moves onto the 1st mounting plate 50A. In this case, the 12th component holder 145L sucks and holds the new component 171 from the component supply area 51 (see FIG. 6) and moves to the entry / exit area 57 of the first mounting plate 50A. The mounting portion 100A of the first mounting plate 50A is a hole because the component 172A has been taken out in advance.
 第2載置プレート50B上には第1部品保持機構45Aが移動してくる。この場合、第1部品保持具145Aは、部品172Aを吸着保持して第2載置プレート50Bの入出領域57に移動する。第2載置プレート50Bの載置部100Bは、予め、部品172Bが取り出されているので、空孔となっている。 The first component holding mechanism 45A moves onto the second mounting plate 50B. In this case, the first component holder 145A sucks and holds the component 172A and moves to the entry / exit region 57 of the second mounting plate 50B. The mounting portion 100B of the second mounting plate 50B is a hole because the component 172B has been taken out in advance.
 第3載置プレート50Cの入出領域57には、部品172Bを吸着保持した第2部品保持具145Bが移動する。第3載置プレート50Cの載置部100Cは、予め、部品172Cが取り出されているので空孔となっている。 The second component holder 145B that attracts and holds the component 172B moves to the entry / exit area 57 of the third mounting plate 50C. The mounting portion 100C of the third mounting plate 50C is a hole because the component 172C has been taken out in advance.
 その後、図(D)に示すように、各部品保持機構45は、空孔となっている載置部100に部品を解放する。具体的に、第12部品保持機構45Lの第12部品保持具145Lが、第1載置プレート50A上の入出領域57において新たな部品171を載置部100Aに解放し、第1部品保持機構45Aの第1部品保持具145Aが、第2載置プレート50B上の入出領域57において部品172Aを載置部100Bに解放し、第2部品保持機構45Bの第2部品保持具145Bが、第3載置プレート50C上の入出領域57において部品172Bを載置部100Cに解放する。 After that, as shown in FIG. (D), each component holding mechanism 45 releases the component to the mounting portion 100 which is a hole. Specifically, the 12th component holder 145L of the 12th component holding mechanism 45L releases a new component 171 to the mounting portion 100A in the entry / exit area 57 on the first mounting plate 50A, and the first component holding mechanism 45A. The first component holder 145A releases the component 172A to the mounting portion 100B in the entry / exit area 57 on the second mounting plate 50B, and the second component holder 145B of the second component holding mechanism 45B mounts the third component. The component 172B is released to the mounting portion 100C in the entry / exit region 57 on the mounting plate 50C.
 なお、部品172(172A,172B等)を吸着保持(回収)する場合は、部品保持具145の下端と部品172を密着させる。一方、部品172(172A,172B等)を解放する場合は、部品保持具145の下端と部品172の間に静電気を発生させないことが重要であり、部品保持具145の下端によって部品172を載置部100に押し付けないことが、静電気の抑制に効果的である。 When the parts 172 (172A, 172B, etc.) are sucked and held (recovered), the lower end of the parts holder 145 and the parts 172 are brought into close contact with each other. On the other hand, when releasing the parts 172 (172A, 172B, etc.), it is important not to generate static electricity between the lower end of the part holder 145 and the part 172, and the part 172 is placed by the lower end of the part holder 145. Not pressing against the unit 100 is effective in suppressing static electricity.
 つまり、昇降付勢機構40の下降ストロークを制御することで、載置部100の部品を吸着(回収)する場合と、載置部100に部品を解放する場合とで、部品保持具145の下端部(保持端)の下死点位置を異ならせるように制御している。 That is, by controlling the descending stroke of the elevating urging mechanism 40, there are cases where the parts of the mounting portion 100 are attracted (recovered) and cases where the parts are released to the mounting portion 100, and the lower end of the component holder 145. The position of the bottom dead center of the part (holding end) is controlled to be different.
 図7(D)の後、第1載置プレート50A,第2載置プレート50Bおよび第3載置プレート50Cは回転を開始(再開)する。第1載置プレート50Aの載置部100Aに収容された新たな部品171は、第1載置プレート50Aの回転に伴い、その温度が第1載置プレート50Aの設定温度(例えば25℃)に制御される。 After FIG. 7 (D), the first mounting plate 50A, the second mounting plate 50B, and the third mounting plate 50C start (restart) rotation. The temperature of the new component 171 housed in the mounting portion 100A of the first mounting plate 50A becomes the set temperature (for example, 25 ° C.) of the first mounting plate 50A as the first mounting plate 50A rotates. Be controlled.
 同様に、第2載置プレート50Bの載置部100Bに収容された部品172Aは、第2載置プレート50Bの回転に伴い、その温度が第2載置プレート50Bの設定温度(例えば40℃)に制御される。 Similarly, the temperature of the component 172A housed in the mounting portion 100B of the second mounting plate 50B becomes the set temperature of the second mounting plate 50B (for example, 40 ° C.) as the second mounting plate 50B rotates. Is controlled by.
 同様に、第3載置プレート50Cの載置部100Cに収容された部品172Bは、第3載置プレート50Cの回転に伴い、その温度が第3載置プレート50Cの設定温度(例えば65℃)に制御される。 Similarly, the temperature of the component 172B housed in the mounting portion 100C of the third mounting plate 50C becomes the set temperature of the third mounting plate 50C (for example, 65 ° C.) as the third mounting plate 50C rotates. Is controlled by.
 このように、本実施形態の部品保持機構45は、載置プレート50上への部品の解放と、載置プレート50上からの部品の回収を略同時に行う。なお、特に図示しないが、図7(D)の状態において、第1載置プレート50A,第2載置プレート50Bおよび第3載置プレート50Cの所定角度の回転を完了すると、測定(処理)完了済みの部品が、第12部品保持具145Lが、第1部品保持具145Aが、第2部品保持具145Bの直下に位置決めされ、図7(A)と同様の状態となって、部品の搬出が繰り返される。 As described above, the component holding mechanism 45 of the present embodiment releases the component on the mounting plate 50 and collects the component from the mounting plate 50 at substantially the same time. Although not particularly shown, the measurement (processing) is completed when the rotation of the first mounting plate 50A, the second mounting plate 50B, and the third mounting plate 50C at a predetermined angle is completed in the state of FIG. 7 (D). The 12th part holder 145L and the first part holder 145A are positioned directly under the second part holder 145B, and the parts are carried out in the same state as in FIG. 7A. Repeated.
 従来の部品搬送処理装置では、ターレット型回転搬送装置によって搬送中の部品を一時停止させ、その姿勢状態まま、各部品に直接的に処理(所定行為)をおこなっていた。そのため、ターレット型回転搬送装置10による搬送速度が、各処理領域の処理速度(所定行為の速度)に律速されていた。一方、本部品搬送処理装置1によれば、ターレット型回転搬送装置10の部品保持機構45から受け取った部品を、処理装置70が更に独立して移送して、所定の行為(出力特性の測定)を行う。結果、処理装置70における処理時間と、ターレット型回転搬送装置10の搬送速度を独立して設定できる。具体的には、載置部100に置かれた部品について温度特性の評価を行う場合、部品の熱容量のために所定の温度で安定するまで時間がかかるが、処理装置70内の入出領域57から測定領域(行為部)54までの移動経路を十分に確保することで、十分な時間によって各部品の温度の安定を図ることができる。それにも拘わらず、部品搬送処理装置1全体の搬送速度の低下は招かないで済む。更に、従来の部品搬送処理装置では、部品を搬送する搬送キャリアを、複数の温度調整領域の間で移動させていたので、全体の熱容量が大きく、温度が安定するために時間を要していたが、本実施形態では、予め、目標温度に温度制御されている載置プレート50に対して、部品を直接載置するので、短い時間(短い経路)で目標温度に到達する。例えば、体積が8cm以下小型部品の場合、特に、1cm以下の小型部品や、27mm以下の小型部品、更には4mm以下の超小型部品の場合、従来の搬送キャリアタイプでは温度到達時間が40秒~60秒必要となるのに対し、本実施形態では、5秒以下(例えば2秒~5秒程度)で部品が目標温度に到達する。 In the conventional parts transfer processing device, the parts being transferred are temporarily stopped by the turret type rotary transfer device, and each part is directly processed (predetermined action) while maintaining its posture. Therefore, the transfer speed of the turret type rotary transfer device 10 is controlled by the processing speed (speed of a predetermined action) of each processing area. On the other hand, according to the component transfer processing device 1, the processing device 70 further independently transfers the parts received from the component holding mechanism 45 of the turret type rotary transfer device 10, and performs a predetermined action (measurement of output characteristics). I do. As a result, the processing time in the processing device 70 and the transfer speed of the turret type rotary transfer device 10 can be set independently. Specifically, when evaluating the temperature characteristics of a component placed on the mounting portion 100, it takes time to stabilize at a predetermined temperature due to the heat capacity of the component, but from the entry / exit area 57 in the processing device 70. By sufficiently securing the movement path to the measurement area (acting part) 54, the temperature of each component can be stabilized in a sufficient time. Nevertheless, the transfer speed of the entire parts transfer processing device 1 does not decrease. Further, in the conventional parts transport processing device, since the transport carrier for transporting the parts is moved between a plurality of temperature control regions, the overall heat capacity is large and it takes time for the temperature to stabilize. However, in the present embodiment, since the parts are directly mounted on the mounting plate 50 whose temperature is controlled to the target temperature in advance, the target temperature is reached in a short time (short path). For example, in the case of a small part having a volume of 8 cm 3 or less, particularly in the case of a small part of 1 cm 3 or less, a small part of 27 mm 3 or less, and an ultra-small part of 4 mm 3 or less, the temperature arrival time of the conventional transport carrier type However, in the present embodiment, the component reaches the target temperature in 5 seconds or less (for example, about 2 seconds to 5 seconds).
 更に部品搬送処理装置1によれば、処理装置70において部品が入出領域57から測定領域(行為部)54まで移動する間に、部品の温度が所定の温度に達して安定するので、所定の温度における部品の特性評価が可能になり、結果として部品についての正確な温度特性評価が可能になる。また、本実施形態では、部品を搬送する搬送キャリアを用いないので、載置プレート50と部品の間の熱伝達のロスや誤差が小さい。結果、部品の安定化温度の誤差を小さくでき、測定の信頼度が高まる。従来の部品搬送処理装置の場合、温度調整プレートの上を搬送キャリアが滑りながら移動するので、両者の間に熱伝達ロスが生じたり、摩耗やゴミによって熱伝達トラブルが生じたりする。結果、搬送キャリア上の部品の温度の信頼性が低下しやすい。 Further, according to the component transfer processing device 1, the temperature of the component reaches a predetermined temperature and stabilizes while the component moves from the input / output area 57 to the measurement area (acting unit) 54 in the processing device 70. It is possible to evaluate the characteristics of parts in the above, and as a result, it is possible to accurately evaluate the temperature characteristics of parts. Further, in the present embodiment, since the transport carrier for transporting the parts is not used, the loss and error of heat transfer between the mounting plate 50 and the parts are small. As a result, the error of the stabilization temperature of the component can be reduced, and the reliability of the measurement is improved. In the case of a conventional parts transfer processing device, since the transfer carrier slides and moves on the temperature control plate, heat transfer loss occurs between the two, and heat transfer troubles occur due to wear and dirt. As a result, the reliability of the temperature of the parts on the transport carrier tends to decrease.
 <マスタ部品>
 図8を参照して、本実施形態の部品搬送処理装置1における部品の測定について更に説明する。図8は、載置プレート50の平面図である。
<Master parts>
With reference to FIG. 8, the measurement of parts in the parts transfer processing device 1 of the present embodiment will be further described. FIG. 8 is a plan view of the mounting plate 50.
 既に述べているように、処理装置70において処理される部品について温度特性の評価を行う場合、所定の温度に設定された熱移送部材130の熱(温熱・冷熱)が、載置プレート50を介して載置部100(1001~1032)に載置された部品に伝達される。これにより部品は、載置プレート50の回転移動中に当該所定の温度に制御(昇温、冷却)される。そして本実施形態ではいずれの載置プレート50においても(いずれの設定温度であっても)入出領域57から測定領域54までの間に当該設定温度付近に安定するように構成されている(載置プレート50のサイズや、回転速度(移動時間)などが制御されている)。 As already described, when the temperature characteristics of the parts processed by the processing apparatus 70 are evaluated, the heat (heat / cold heat) of the heat transfer member 130 set to a predetermined temperature is transferred through the mounting plate 50. It is transmitted to the parts mounted on the mounting portions 100 (1001 to 1032). As a result, the parts are controlled (heated and cooled) to the predetermined temperature during the rotational movement of the mounting plate 50. In the present embodiment, any mounting plate 50 is configured to be stable near the set temperature between the entry / exit area 57 and the measurement area 54 (at any set temperature). The size of the plate 50, the rotation speed (movement time), and the like are controlled).
 しかしながら、載置プレート50自体も、肉厚等の要因で全体の温度が均一となる訳ではない。また、載置プレート50と熱移送部材130の間における熱接触も完全に均一とは限らない。更に、ペルチェ素子となる熱移送部材130自体の全体の温度が均一となる訳ではない。 However, the temperature of the mounting plate 50 itself is not uniform due to factors such as wall thickness. Further, the thermal contact between the mounting plate 50 and the heat transfer member 130 is not always completely uniform. Further, the temperature of the entire heat transfer member 130 itself, which is a Peltier element, is not uniform.
 したがって、部品を所定の温度にするべく温度制御装置137(図4参照)によって制御しようとしても、載置プレート50上の複数の載置部100の間で、実際に得られる温度は互いにばらつく。例えば、図8(A)に示す第1載置部1001と、第7載置部1007と、第16載置部1016では、載置プレート50を仮に80℃に制御しようとしても、それぞれの載置部が測定領域54に移動した場合に、いずれの載置部も常に正確に80℃になっているとは限らない。 Therefore, even if an attempt is made to control the parts to a predetermined temperature by the temperature control device 137 (see FIG. 4), the actually obtained temperatures vary among the plurality of mounting portions 100 on the mounting plate 50. For example, in the first mounting portion 1001, the seventh mounting portion 1007, and the 16th mounting portion 1016 shown in FIG. 8A, even if the mounting plate 50 is to be controlled to 80 ° C., the respective mounting portions are mounted. When the placement is moved to the measurement area 54, not all placements are always exactly at 80 ° C.
 一方、部品の出力特性は、必ずしも厳密に80℃の場合を測定する必要はなく、部品の実際の温度にばらつきがある場合には、そのばらついた状態の実際の温度を実測値とし、当該実測値における出力特性を把握すればよい。つまり、部品の実温度と部品の実出力を同時期に正確に測定できれば、実質的には、その部品の「温度(対比情報)」と「出力」の相関関係(温度特性)を検査できることになる。なお、ここでは「温度」を対比情報として例示したが、本発明はこれに限定されず、例えば、湿度、照度、圧力、音量等、様々な外部環境に連動する情報を対比情報に選定できる。 On the other hand, the output characteristics of parts do not necessarily have to be measured exactly at 80 ° C. If the actual temperature of the parts varies, the actual temperature in the varied state is used as the measured value, and the actual measurement is performed. It suffices to grasp the output characteristics in the value. In other words, if the actual temperature of a part and the actual output of the part can be measured accurately at the same time, the correlation (temperature characteristics) between the "temperature (contrast information)" and "output" of the part can be inspected. Become. Although "temperature" is illustrated here as comparison information, the present invention is not limited to this, and information linked to various external environments such as humidity, illuminance, pressure, and volume can be selected as comparison information.
 そこで、本実施形態では、複数の載置部100の一部に、処理装置70における処理をリアルタイムに行なうための基準部品(以下、これを「マスタ部品250」という。)を配置する。 Therefore, in the present embodiment, reference parts (hereinafter, referred to as "master parts 250") for performing processing in the processing device 70 in real time are arranged in a part of the plurality of mounting units 100.
 マスタ部品250は、これに隣接する載置部100に収容される実測対象の部品170の測定で必要となる対比情報(例えば「温度情報」)を、自身の電気的な出力を利用して、測定プローブ110から、測定装置105に提供する部材となる。例えばマスタ部品250は、実装対象の部品170と同一種類の部品であって、予め、その出力の温度依存特性(出力と対比情報の相関情報)が高精度に検査されて、その相関情報を把握済みとなる部品とすることが好ましい。このマスタ部品250を用いれば、把握済みの相関情報を利用して、測定装置105が、その出力値から温度情報(対比情報)を逆算出できる。具体的には例えば、測定装置105が、部品170の抵抗値や周波数を、その電気的な出力を利用して測定する場合、測定装置105は、マスタ部品250を利用して抵抗値や周波数を測定する。測定装置105は、マスタ部品250の抵抗値や周波数と、相関情報を利用して、実温度を逆算出する。この実温度によって、隣接する実測対象の部品170の実温度を高精度で予測する。この場合、マスタ部品250は、例えば実測対象の部品170と同種の部品(同じ構成の部品)であり、特に、同じロットで生産された部品であると望ましい。 The master component 250 uses its own electrical output to obtain comparison information (for example, "temperature information") required for measurement of the component 170 to be measured, which is accommodated in the mounting portion 100 adjacent thereto. It becomes a member provided to the measuring device 105 from the measuring probe 110. For example, the master component 250 is a component of the same type as the component 170 to be mounted, and its output temperature-dependent characteristics (correlation information between the output and the comparison information) are inspected with high accuracy in advance, and the correlation information is grasped. It is preferable that the parts are finished. By using this master component 250, the measuring device 105 can back-calculate the temperature information (comparison information) from the output value by using the already grasped correlation information. Specifically, for example, when the measuring device 105 measures the resistance value or frequency of the component 170 by using its electrical output, the measuring device 105 uses the master component 250 to measure the resistance value or frequency. Measure. The measuring device 105 back-calculates the actual temperature by using the correlation information with the resistance value and frequency of the master component 250. Based on this actual temperature, the actual temperature of the adjacent component 170 to be measured is predicted with high accuracy. In this case, the master part 250 is, for example, a part of the same type (a part having the same configuration) as the part 170 to be actually measured, and it is particularly desirable that the master part 250 is a part produced in the same lot.
 一方、マスタ部品250の出力態様は、実測対象の部品170の出力態様と異なる場合も含む。処理装置70の測定装置105が、載置プレート50におけるマスタ部品250の配置情報を予め保持することで、測定プローブ110は、マスタ部品250の専用出力を利用して、部品170の測定で必要となる対比情報を取得できる。例えば、対比情報が「温度情報」となる場合において、マスタ部品250を、自分自身の実温度をデジタル情報として端子から出力可能な温度測定用の専用部品であることが好ましい。このマスタ部品250の出力情報を、測定プローブ110を介して測定装置105で読み取ることで、マスタ部品250の温度情報(対比情報)を取得し、この温度情報から、部品170の実温度を推定可能となる。例えば、対比情報が温度情報となる場合には、サーミスタ素子などが利用できる。 On the other hand, the output mode of the master component 250 may differ from the output mode of the component 170 to be measured. The measuring device 105 of the processing device 70 holds the arrangement information of the master component 250 on the mounting plate 50 in advance, so that the measuring probe 110 is required for the measurement of the component 170 by utilizing the dedicated output of the master component 250. Comparison information can be obtained. For example, when the comparison information is "temperature information", it is preferable that the master component 250 is a dedicated component for temperature measurement that can output its own actual temperature as digital information from the terminal. By reading the output information of the master component 250 with the measuring device 105 via the measuring probe 110, the temperature information (comparison information) of the master component 250 can be acquired, and the actual temperature of the component 170 can be estimated from this temperature information. It becomes. For example, when the comparison information becomes temperature information, a thermistor element or the like can be used.
 なお、ここでは、測定プローブ110によって、マスタ部品250と測定対象の部品170の双方を測定する場合を例示するが、マスタ部品250を測定する為の専用プローブを設けるようにし、マスタ部品250の計測と部品170計測を独立させることもできる。 Here, a case where both the master component 250 and the component 170 to be measured are measured by the measurement probe 110 is illustrated, but a dedicated probe for measuring the master component 250 is provided to measure the master component 250. And component 170 measurement can be made independent.
 マスタ部品250は、実測対象の実際の部品170の近傍、好適には近接位置、より好適には実測対象の部品170が収容される載置部100に隣接した載置部100に配置すると望ましい。この結果、マスタ部品250から得られる対比情報(例えば温度情報)を、そのまま、実際の部品170の対比情報(実温度)として採用できる。つまり、各マスタ部品250には、推測対応エリア250Aが設定されており、この推測対応エリア250A内に、このマスタ部品250の対比情報を適用する実際の部品170を配置する。推測対応エリア250Aは、載置プレート50において、周方向に等間隔で配置されることになる。 It is desirable that the master component 250 is arranged in the vicinity of the actual component 170 to be measured, preferably in a close position, and more preferably in the mounting section 100 adjacent to the mounting section 100 in which the component 170 to be measured is housed. As a result, the comparison information (for example, temperature information) obtained from the master component 250 can be adopted as it is as the comparison information (actual temperature) of the actual component 170. That is, each master component 250 is set with a guess-corresponding area 250A, and an actual component 170 to which the comparison information of the master component 250 is applied is arranged in the guess-corresponding area 250A. The estimation-corresponding areas 250A are arranged at equal intervals in the circumferential direction on the mounting plate 50.
 同図(A)では、1個の載置部100を開けてマスタ部品250を配置する場合を示す。結果、マスタ部品250と、その対比情報を適用する実際の部品170が常に隣り合うので、対比情報の予測精度が高い。つまり、マスタ部品250が載置される推測対応エリア250Aは、このマスタ部品250に対して周方向に隣り合うように、一つの実測対象となる部品170が配置される構造となる。 The figure (A) shows a case where one mounting portion 100 is opened and the master component 250 is arranged. As a result, since the master component 250 and the actual component 170 to which the comparison information is applied are always adjacent to each other, the prediction accuracy of the comparison information is high. That is, the estimation corresponding area 250A on which the master component 250 is placed has a structure in which one component 170 to be measured is arranged so as to be adjacent to the master component 250 in the circumferential direction.
 この場合、例えば、第29載置部1029が測定領域54に位置した場合にマスタ部品250の温度を測定し、その次の第30載置部1030が測定領域54に位置した場合に測定対象の部品170の出力特性を測定する。そして直前のマスタ部品250から得られる対比情報(温度情報)を参照することで、この部品170の実温度と推測し、温度出力特性を取得する。この際、測定プローブ110の数を増やすことで、推測対応エリア250Aにおいて、隣接するマスタ部品250と実際の部品170の出力を同時測定することも好ましい。このようにすると、処理能力の低下も招かないで済む。 In this case, for example, the temperature of the master component 250 is measured when the 29th mounting unit 1029 is located in the measurement area 54, and the measurement target is measured when the next 30th mounting unit 1030 is located in the measurement area 54. The output characteristics of component 170 are measured. Then, by referring to the comparison information (temperature information) obtained from the master component 250 immediately before, the actual temperature of the component 170 is estimated and the temperature output characteristic is acquired. At this time, it is also preferable to simultaneously measure the outputs of the adjacent master component 250 and the actual component 170 in the estimation corresponding area 250A by increasing the number of measurement probes 110. By doing so, it is possible to prevent a decrease in processing capacity.
 また、同図(B)では、3個の載置部100を開けてマスタ部品250を配置する場合を示す。ここでは、マスタ部品250の上流側に隣接する1個の載置部と、下流側に連なる2個の載置部を、推測対応エリア250Aに含めている。 Further, the figure (B) shows a case where the master component 250 is arranged by opening the three mounting portions 100. Here, one mounting portion adjacent to the upstream side of the master component 250 and two mounting portions connected to the downstream side are included in the estimation corresponding area 250A.
 この場合、例えば、第2載置部1002が測定領域54に位置した場合に部品170の出力を測定し、その後、第3載置部1003が測定領域54に位置した場合にマスタ部品250の温度を測定し、その後に続く第4載置部1004及び第5載置部1005の各々が測定領域54に位置した場合に部品170の出力を測定する。そして、マスタ部品250から逆算出される温度情報(対比情報)を、これらの3つの実測対象の部品170の実温度と推測して、温度出力特性を算出する。 In this case, for example, the output of the component 170 is measured when the second mounting unit 1002 is located in the measurement area 54, and then the temperature of the master component 250 when the third mounting unit 1003 is located in the measurement area 54. Is measured, and the output of the component 170 is measured when each of the subsequent fourth mounting portion 1004 and fifth mounting portion 1005 is located in the measurement area 54. Then, the temperature information (comparison information) back-calculated from the master component 250 is estimated to be the actual temperature of these three actual measurement target components 170, and the temperature output characteristics are calculated.
 なお、マスタ部品250は、実測対象の部品170と同様に、処理装置70による処理の都度、載置プレート50の載置部100に配置(搬入・搬出)される(部品保持機構45により出し入れされる部品)であってもよいし、載置プレート50の載置部100に常に配置しておき、搬入・搬出しないことも好ましい。載置部100に常にマスタ部品250を配置しておく場合、誤って搬出しないように、マスタ部品250を機械的に載置部250に固定することも好ましい。 The master component 250 is arranged (carried in / out) on the mounting portion 100 of the mounting plate 50 (taken in / out by the component holding mechanism 45) each time the processing device 70 processes the master component 250, similarly to the component 170 to be measured. It is also preferable that the parts are always arranged in the mounting portion 100 of the mounting plate 50 and not carried in or out. When the master component 250 is always placed on the mounting section 100, it is also preferable to mechanically fix the master component 250 to the mounting section 250 so as not to accidentally carry it out.
 さらに1つの載置プレート50に複数のマスタ部品250を配置する場合、異なる種類(異なる特性を測定する目的の)のマスタ部品であってもよい。例えば1つの載置プレート50に対して、マスタ部品250として抵抗素子とサーミスタ素子を配置してもよい。 Further, when a plurality of master parts 250 are arranged on one mounting plate 50, they may be different types of master parts (for the purpose of measuring different characteristics). For example, a resistance element and a thermistor element may be arranged as a master component 250 on one mounting plate 50.
 ちなみに、載置プレート50の周方向の温度ばらつきに基づく測定誤差を解消するために、データテーブル等を用いることも考えられる。具体的には例えば、各載置部について、目標温度と、載置プレート50の温度を全体的に安定させてから各載置部の温度を測定した値(実測値)との関係(温度差)を示すテーブルなどである。そしてこのデータテーブルを制御装置25等に保持させて演算により補正することができる。 Incidentally, in order to eliminate the measurement error due to the temperature variation in the circumferential direction of the mounting plate 50, it is conceivable to use a data table or the like. Specifically, for example, for each mounting portion, the relationship (temperature difference) between the target temperature and the value (measured value) obtained by measuring the temperature of each mounting portion after stabilizing the temperature of the mounting plate 50 as a whole. ), Etc. Then, this data table can be held in the control device 25 or the like and corrected by calculation.
 しかしながら、この場合、載置プレート50ごとにデータテーブルの取得が必要となり、また、載置プレート50を交換した場合には、対象のデータテーブルも変更するなど処理が複雑となる。さらに、経時変化・経年変化によって載置プレート50(または熱移送部材130)の特性が変化した場合などには、データテーブルを再取得する必要がある。 However, in this case, it is necessary to acquire a data table for each mounting plate 50, and when the mounting plate 50 is replaced, the processing becomes complicated, such as changing the target data table. Further, when the characteristics of the mounting plate 50 (or the heat transfer member 130) change due to aging or aging, it is necessary to reacquire the data table.
 そこで本実施形態によれば、実測対象の部品が配置される載置部100の近傍の載置部100(例えば、隣接する載置部100)を利用して、マスタ部品250によって、実測対象の部品170と殆ど同じ時間で、殆ど同じ場所の温度状況を取得できる。つまり、予め、載置プレート50上で周回させることで温度が安定しているマスタ部品250と比較して、実測対象の部品170は、入出領域57から測定領域54に移動するまでに、マスタ部品250の温度と略同等になって安定化することに鑑み、マスタ部品250の温度を測定してこれを実測対象の部品170の温度と推定することとした。 Therefore, according to the present embodiment, the master component 250 uses the mounting portion 100 (for example, the adjacent mounting portion 100) in the vicinity of the mounting portion 100 on which the component to be measured is arranged, and the measurement target is measured. It is possible to acquire the temperature condition at almost the same place in almost the same time as the part 170. That is, as compared with the master component 250 whose temperature is stable by orbiting on the mounting plate 50 in advance, the component 170 to be measured is the master component before moving from the entry / exit area 57 to the measurement area 54. Considering that the temperature becomes substantially equal to the temperature of 250 and stabilizes, it was decided to measure the temperature of the master component 250 and estimate this as the temperature of the component 170 to be measured.
 つまり、本実施形態によれば、専用部品あるいは、実測対象の部品と同種の部品となるマスタ部品250を、載置部100に配置するだけでよいので、例えば温度補正あるいは温度予測のためのデータテーブルやそれを用いた演算を行なって、実測対象の部品の温度を予測する方法と比較して、簡素な構成でありながらリアルタイム且つ高精度に実測対象の部品処理で必要な対比情報を取得することができる。具体的には、出力の温度依存特性の測定において、実測対象の部品の温度をリアルタイムで高精度に予測することができる。 That is, according to the present embodiment, it is only necessary to arrange the dedicated component or the master component 250, which is the same type of component as the component to be measured, in the mounting unit 100. Therefore, for example, data for temperature correction or temperature prediction. Compared with the method of predicting the temperature of the part to be measured by performing a table or calculation using it, the comparison information required for processing the part to be measured is acquired in real time and with high accuracy with a simple configuration. be able to. Specifically, in the measurement of the temperature-dependent characteristics of the output, the temperature of the component to be measured can be predicted with high accuracy in real time.
 なお、図8では、推測対応エリア250Aにおいて、マスタ部品250と実測対象の部品170が周方向に並ぶ場合を例示したが、本発明はこれに限定されず、例えば図9(A)に示すように、周方向に二列(内側列と外側列)となる載置部100を用意しておき、一方の列(ここでは外側列)にマスタ部品250を配置し、他方の列(ここでは内側列)に実測対象の部品170を配置してもよい。つまり、各推測対応エリア250Aにおいて、マスタ部品250と実測対象の部品170が半径方向に隣り合うこともできる。この場合は、マスタ部品250については、搬入・搬出を行わないことが好ましい。マスタ部品250を、載置プレート50に固定することもできる。 Note that FIG. 8 illustrates a case where the master component 250 and the component 170 to be measured are arranged in the circumferential direction in the estimation corresponding area 250A, but the present invention is not limited to this, and as shown in FIG. 9A, for example. In addition, two rows (inner row and outer row) of mounting portions 100 are prepared in the circumferential direction, the master component 250 is arranged in one row (here, the outer row), and the other row (here, the inner row). The component 170 to be measured may be arranged in the row). That is, in each estimation corresponding area 250A, the master component 250 and the component 170 to be measured can be adjacent to each other in the radial direction. In this case, it is preferable not to carry in / out the master component 250. The master component 250 can also be fixed to the mounting plate 50.
 また、本実施形態では、実測対象の部品が目標温度に到達した後、単一の測定領域54において、出力測定を行う場合を例示したが、本発明はこれに限定されない。例えば図9(B)に示すように、目標温度に到達した後の範囲において、周方向に複数の測定領域54A、54B、54Cを設けるようにし、各測定領域54A、54B、54Cにおいて、同時タイミングで、異なる目的の出力測定を行うこともできる。部品170の測定項目が多い場合に有効である。なお、測定項目が多い場合に、単一の測定領域54で複数項目をまとめて測定しようとすると、測定時間が長くなって処理能力が低下する。図9(B)の各測定領域54A、54B、54Cに、図3で説明する測定部95を独立して配置することも可能である。一方で、単一の測定部95を、複数の測定領域54A、54B、54Cに跨るように配置して、各測定領域54A、54B、54Cに対応する測定プローブを、共通の昇降機構で上下動させることも好ましい。 Further, in the present embodiment, the case where the output measurement is performed in the single measurement area 54 after the component to be measured reaches the target temperature has been illustrated, but the present invention is not limited to this. For example, as shown in FIG. 9B, in the range after reaching the target temperature, a plurality of measurement areas 54A, 54B, 54C are provided in the circumferential direction, and simultaneous timing is provided in each measurement area 54A, 54B, 54C. It is also possible to measure the output for different purposes. This is effective when there are many measurement items of component 170. If there are many measurement items and a plurality of items are collectively measured in a single measurement area 54, the measurement time becomes long and the processing capacity decreases. It is also possible to independently arrange the measurement unit 95 described with reference to FIG. 3 in each of the measurement areas 54A, 54B, 54C of FIG. 9B. On the other hand, a single measurement unit 95 is arranged so as to straddle a plurality of measurement areas 54A, 54B, 54C, and a measurement probe corresponding to each measurement area 54A, 54B, 54C is moved up and down by a common elevating mechanism. It is also preferable to let it.
 更に、この各測定領域54A、54B、54Cにおいて、同一目的(同一項目)の測定を行うことも可能である。即ち、これらを統合した測定領域54Xに示すように、周方向に複数に並ぶ部品170に対して、同一目的の測定を同時に行うようにすれば、処理能力を大幅に向上させることができる。ここでは、測定領域54Xにおいて3個の部品170の測定をまとめて行う場合を例示しているので、入出領域57における部品170の搬入・搬出は、3個連続で実行すればよい。 Furthermore, it is also possible to perform measurements for the same purpose (same item) in each of the measurement areas 54A, 54B, and 54C. That is, as shown in the measurement area 54X in which these are integrated, if the same purpose measurement is simultaneously performed on the plurality of parts 170 arranged in the circumferential direction, the processing capacity can be significantly improved. Here, since the case where the measurement of the three parts 170 is collectively performed in the measurement area 54X is illustrated, the loading / unloading of the parts 170 in the loading / unloading area 57 may be executed three times in succession.
 <温度スロープ検査>
 図10は、本発明の他の実施形態の一例を示す図であり、同図(A)は1つの載置プレート50の上面図であり、同図(B)は同図(A)の測定結果の一例を図示するグラフである。
<Temperature slope inspection>
10A and 10B are views showing an example of another embodiment of the present invention, FIG. 10A is a top view of one mounting plate 50, and FIG. 10B is a measurement of FIG. 10A. It is a graph which shows an example of the result.
 これまでの実施形態では、1つの処理装置70(載置プレート50)において、1つの測定部95を設ける例を説明したが、これに限らず、例えば、1つの載置プレート50上の複数の載置部100に対応する位置においてそれぞれ部品の出力特性を測定可能な測定部95(測定領域54)を複数設けてもよい。 In the embodiments so far, an example in which one measuring unit 95 is provided in one processing device 70 (mounting plate 50) has been described, but the present invention is not limited to this, and for example, a plurality of measuring units 95 on one mounting plate 50 are provided. A plurality of measuring units 95 (measurement areas 54) capable of measuring the output characteristics of each component may be provided at positions corresponding to the mounting units 100.
 具体的には、同図(A)に示すように、1つの載置プレート50上に、例えば、第1測定部95A,第2測定部95B,第3測定部95Cおよび第4測定部95Dを配置する。各測定部95A~95Dの構成はいずれも上述の測定部95と同様であり、これ以外の構成も、上記の実施形態と同様である。また載置プレート50の設定温度は、例えば80℃であり、入出領域57から180度の位置にある測定領域(第4測定領域(第4測定部95Dの位置)までの間に、部品170が80℃に安定するものとする。 Specifically, as shown in FIG. 5A, for example, the first measurement unit 95A, the second measurement unit 95B, the third measurement unit 95C, and the fourth measurement unit 95D are placed on one mounting plate 50. Deploy. The configurations of the measuring units 95A to 95D are all the same as those of the measuring unit 95 described above, and the other configurations are also the same as those of the above-described embodiment. Further, the set temperature of the mounting plate 50 is, for example, 80 ° C., and the component 170 is placed between the measurement region (the fourth measurement region (the position of the fourth measurement unit 95D)) located at the position of 180 degrees from the entry / exit region 57. It shall be stable at 80 ° C.
 そして、部品保持機構45によって入出領域57の載置部100に配置された或る部品170が載置プレート50上で移動する間に、同一の部品170について、第1測定部95A,第2測定部95B,第3測定部95Cおよび第4測定部95Dで出力特性を測定する。 Then, while a certain part 170 arranged in the mounting portion 100 of the entry / exit region 57 by the component holding mechanism 45 moves on the mounting plate 50, the same component 170 is measured by the first measuring unit 95A and the second measurement. The output characteristics are measured by the unit 95B, the third measurement unit 95C, and the fourth measurement unit 95D.
 部品170は、入出領域57の載置部100に配置されて以降、周方向へ移動するに伴い、徐々にその温度が上昇し、この例では上記実施形態と同様に第4測定部95Dに達する以前に十分に設定温度(例えば80℃)に達している。 After the component 170 is arranged in the mounting portion 100 of the entry / exit region 57, its temperature gradually rises as it moves in the circumferential direction, and in this example, it reaches the fourth measuring unit 95D as in the above embodiment. The set temperature (for example, 80 ° C.) has been sufficiently reached before.
 つまり、例えば、部品170の移動経路途中の所定の位置、例えば、部品170の温度が25℃になると予測されるタイミングt1に第1測定部95Aを配置し、50℃になると予測されるタイミングt2に第2測定部95Bを配置し、65℃になると予測されるタイミングt3に第3測定部95Cを配置し、80℃で安定するタイミングt4に第4測定部95Dを配置する。結果、図10(B)に示すような温度スロープにおいて、載置プレート50に部品170を載せてから4種類の経過時刻t1、t2、t3、t4の出力を測定ができる。この四か所の実温度と出力の相関関係から、この部品170の温度特性を算出できる。 That is, for example, the first measuring unit 95A is arranged at a predetermined position in the moving path of the component 170, for example, the timing t1 at which the temperature of the component 170 is predicted to reach 25 ° C., and the timing t2 is predicted to reach 50 ° C. The second measuring unit 95B is arranged at the timing t3, the third measuring unit 95C is arranged at the timing t3 predicted to reach 65 ° C., and the fourth measuring unit 95D is arranged at the timing t4 that stabilizes at 80 ° C. As a result, on the temperature slope as shown in FIG. 10B, it is possible to measure the outputs of four types of elapsed times t1, t2, t3, and t4 after the component 170 is placed on the mounting plate 50. The temperature characteristics of this component 170 can be calculated from the correlation between the actual temperature and the output at these four locations.
 なお、第1~第3測定部95A~95Cでは、温度上昇中の部品の出力を測定するので、測定時の温度にばらつきが生じやすい。従って、図8(A)等で述べたように、隣接してマスタ部品250を配置しておき、第1~第4測定部95A~95Dにおける測定対象の部品170の実温度(対比情報)を、隣接するマスタ部品250の温度でリアルタイムに推定することが好ましい。例えば、図10(B)の鎖線のように、外気温等によって、部品170の温度上昇カーブが変化したとしても、マスタ部品250を配置しておくことで、第1測定部95Aでは18℃の出力特性、第2測定部95Bでは28℃の出力特性、第3測定部95Cでは53℃の出力特性、第4測定部95Dでは80℃の出力特性が得られる。即ち、マスタ部品250によって温度上昇中の部品170の温度を推定することで、どのような外部環境となっても、この部品170の温度特性を算出できる。 Since the first to third measurement units 95A to 95C measure the output of the component whose temperature is rising, the temperature at the time of measurement tends to vary. Therefore, as described in FIG. 8A and the like, the master parts 250 are arranged adjacent to each other, and the actual temperature (comparison information) of the parts 170 to be measured in the first to fourth measurement units 95A to 95D is set. , It is preferable to estimate in real time at the temperature of the adjacent master component 250. For example, as shown by the chain line in FIG. 10B, even if the temperature rise curve of the component 170 changes due to the outside air temperature or the like, by arranging the master component 250, the temperature of the first measuring unit 95A is 18 ° C. The output characteristics, the output characteristics of 28 ° C. are obtained by the second measuring unit 95B, the output characteristics of 53 ° C. are obtained by the third measuring unit 95C, and the output characteristics of 80 ° C. are obtained by the fourth measuring unit 95D. That is, by estimating the temperature of the component 170 whose temperature is rising by the master component 250, the temperature characteristics of the component 170 can be calculated in any external environment.
 図6等に示したような1つの処理領域52に1つの測定部95を備える構成の場合、例えば4種の温度帯域で出力を取得するには、部品保持機構45によって、4つの処理領域52を移動させる必要がある。その4か所のデータを統合して、出力の温度依存特性のデータが得られる。一方、図10に示した構成によれば、複数の測定部95の配置領域を確保する必要はあるものの、1つの処理領域52で複数温度の出力検査が完了し、これらを統合すれば出力の温度依存特性のデータが得られるので、処理の高速化が図れる場合がある。また、温度上昇中又は温度下降中の部品170の出力特性(温度スロープ特性)を検査できるという利点もある。 In the case of a configuration in which one measuring unit 95 is provided in one processing area 52 as shown in FIG. Need to be moved. The data of the temperature-dependent characteristics of the output can be obtained by integrating the data of the four locations. On the other hand, according to the configuration shown in FIG. 10, although it is necessary to secure the arrangement areas of the plurality of measuring units 95, the output inspection of a plurality of temperatures is completed in one processing area 52, and if these are integrated, the output can be output. Since data on temperature-dependent characteristics can be obtained, processing may be speeded up. Another advantage is that the output characteristics (temperature slope characteristics) of the component 170 during temperature rise or temperature fall can be inspected.
 なお、この場合、第1測定部95A~第4測定部95Dは同時に部品の測定が可能であるので、複数の部品170について連続的に温度スロープ検査を行なうことができる。 In this case, since the first measuring unit 95A to the fourth measuring unit 95D can measure the parts at the same time, the temperature slope inspection can be continuously performed on the plurality of parts 170.
 <処理装置のカバー部材>
 図11は、本発明の他の実施形態の一例を示す図であり、同図(A)は1つの処理装置70の側面図であり、同図(B)は処理装置70の上面図であり、同図(C)は同図(A)の一部拡大断面図である。
<Cover member of processing device>
11A and 11B are views showing an example of another embodiment of the present invention, FIG. 11A is a side view of one processing device 70, and FIG. 11B is a top view of the processing device 70. , (C) is a partially enlarged sectional view of FIG. (A).
 同図(A)、同図(B)に示すように、部品搬送処理装置1は、1つ又は複数の処理装置70を一体的に覆うカバー部材500を備えてもよい。カバー部材500は例えば透明な樹脂材料により構成され、1つの処理領域52において温度安定化装置125と測定部95を、測定部支持台99も含めて一体的に覆うが、部品保持機構45の回転移動と干渉しないように、側面視において略L字状の箱体である。つまりカバー部材500は主に温度安定化装置125と測定部95の下方(測定部支持台99)側を覆う下部領域500Bと、主に測定部95上方を覆う上部領域500Aを有し、下部領域500Bの方が上部領域500Aよりも大きいサイズ(体積)となっている。また、カバー部材500の内部には不図示のガス注入部より、所望のガスを注入する。ガスの種類としては、結露を防止するための乾燥ガス(例えばドライエアーや窒素)、不要な反応を抑制する不活性ガス(例えば、窒素ガス、アルゴンガスなど)、塵埃侵入を抑止するための静電対策を施したクリーンエアー、温度制御を高精度化するための温度制御済みガス等が注入される。また、上部領域500Aは、点線に示すように、ヒンジ機構501によって、下部領域500Bに対して上方側に開放可能となっている。上部領域500Aを開放すると、測定部95(特に、プローブ位置決め機構200や、測定プローブ110部分)が露出するので、測定部95を容易にメンテナンスできる。 As shown in FIGS. (A) and (B), the component transport processing device 1 may include a cover member 500 that integrally covers one or a plurality of processing devices 70. The cover member 500 is made of, for example, a transparent resin material, and integrally covers the temperature stabilizer 125 and the measuring unit 95 in one processing region 52 including the measuring unit support 99, but the rotation of the component holding mechanism 45 It is a substantially L-shaped box when viewed from the side so as not to interfere with movement. That is, the cover member 500 mainly has a temperature stabilizer 125, a lower region 500B that covers the lower side (measurement unit support 99) side of the measurement unit 95, and an upper region 500A that mainly covers the upper part of the measurement unit 95, and has a lower region. The size (volume) of 500B is larger than that of the upper region 500A. Further, a desired gas is injected into the cover member 500 from a gas injection portion (not shown). The types of gas are dry gas (for example, dry air and nitrogen) to prevent dew condensation, inert gas (for example, nitrogen gas, argon gas, etc.) to suppress unnecessary reactions, and static gas to prevent dust intrusion. Clean air with electrical measures, temperature-controlled gas to improve the accuracy of temperature control, etc. are injected. Further, as shown by the dotted line, the upper region 500A can be opened upward with respect to the lower region 500B by the hinge mechanism 501. When the upper region 500A is opened, the measuring unit 95 (particularly, the probe positioning mechanism 200 and the measuring probe 110 portion) is exposed, so that the measuring unit 95 can be easily maintained.
 部品の測定に際しては、結露を防止したり、大気中の埃や塵などの汚染物質との接触をできる限り少なくしたり、また、周辺環境の温度(変化)の影響も避けたりする必要がある。このため、部品や載置プレート50および測定部95(特に測定プローブ110など)が、周辺環境に曝されないようにするために、1つ又は複数の処理単位である処理装置70全体をカバー部材500で一体的に覆うとともに、カバー部材500の内部を目的に沿ったガスで充填する。特に、低温測定の際には、結露防止が重要であることから、乾燥ガスを注入することが好ましい。 When measuring parts, it is necessary to prevent dew condensation, minimize contact with pollutants such as dust and dirt in the atmosphere, and avoid the influence of the temperature (change) of the surrounding environment. .. Therefore, in order to prevent the parts, the mounting plate 50, and the measuring unit 95 (particularly the measuring probe 110) from being exposed to the surrounding environment, the entire processing device 70, which is one or a plurality of processing units, is covered with the cover member 500. The inside of the cover member 500 is filled with a gas according to the purpose while being integrally covered with. In particular, it is preferable to inject a dry gas at the time of low temperature measurement because it is important to prevent dew condensation.
 一方で、測定部95の主要部位、具体的にはプローブ位置決め機構200や、測定プローブ110部分(温度安定化装置125と測定部支持台99以外の部分)は、(温度安定化装置125に比べて)駆動の機構が繊細且つ複雑であり、また、交換や清掃などの頻繁なメンテナンスが必要な部位である。このため、本実施形態では上部領域500Aを開放可能とした。これにより測定部95の主要部位について手作業などによる調整やメンテナンスを適宜、容易に行なうことができる。 On the other hand, the main parts of the measuring unit 95, specifically, the probe positioning mechanism 200 and the measuring probe 110 parts (parts other than the temperature stabilizing device 125 and the measuring unit support base 99) are (compared to the temperature stabilizing device 125). The drive mechanism is delicate and complicated, and it is a part that requires frequent maintenance such as replacement and cleaning. Therefore, in the present embodiment, the upper region 500A can be opened. As a result, manual adjustment and maintenance of the main part of the measuring unit 95 can be easily performed as appropriate.
 同図(A)では一例として、カバー部材500の背面側(部品搬送処理装置1の外周側)に設けられたヒンジ機構501を中心として上部領域500A全体を背面側方向(図示の矢印方向に)回動して開放される構成を示している。しかし、これに限らず、上部領域500Aの上面部分がスライドして開放するなど、様々な開放機構を採用できる。また、この例に限らず、下部領域500Bも開放可能に構成してもよい。 In the figure (A), as an example, the entire upper region 500A is centered on the hinge mechanism 501 provided on the back side (outer peripheral side of the component transport processing device 1) of the cover member 500 in the back side direction (in the direction of the arrow in the figure). It shows a configuration in which it is rotated and opened. However, the present invention is not limited to this, and various opening mechanisms can be adopted, such as the upper surface portion of the upper region 500A sliding to open. Further, not limited to this example, the lower region 500B may also be configured to be openable.
 また、下部領域500Bの上面500Uは、部品保持機構45と移動機構(温度安定化装置125)とを上下に隔てるように水平方向に延在する。この上面500Uの一部には、第1開口部503と第2開口部504が設けられる。第1開口部503は、部品保持具位置決め用係合部182の直下でこれが通過(挿通)可能に構成される。また、第2開口部504は、部品保持具145の直下でこれが通過(挿通)可能に構成される。 Further, the upper surface 500U of the lower region 500B extends in the horizontal direction so as to vertically separate the component holding mechanism 45 and the moving mechanism (temperature stabilizer 125). A first opening 503 and a second opening 504 are provided on a part of the upper surface 500U. The first opening 503 is configured so that it can pass (insert) directly under the engaging portion 182 for positioning the component holder. Further, the second opening 504 is configured so that it can pass (insert) directly under the component holder 145.
 このような構成により、カバー部材500で処理装置70を一体的に覆った状態を維持しつつ、入出領域57において、載置プレート50の載置部100への部品の供給、および載置部100からの部品の取り出しを行なうことができる。 With such a configuration, while maintaining the state in which the processing device 70 is integrally covered with the cover member 500, the parts are supplied to the mounting portion 100 of the mounting plate 50 in the entry / exit region 57, and the mounting portion 100 Parts can be taken out from.
 同図(C)は、上面500U部分の拡大断面図である。処理装置70は、部品搬送処理装置1の動作中においては、例えば結露防止のためにも、周辺環境(外気)との接触は必要最小限にすることが望ましく、その観点からすると、カバー部材500は密閉状態となることが好適である。そこで、第1開口部503および第2開口部504には、外気からの遮断手段507を設けるとよい。遮断手段507は、例えば水平方向に流れるエアカーテンなどである。この場合、同図(C)に示すように、少なくとも上面500Uの内側にエア(ガス)の流路508を形成し、この流路508にエア(好ましくは、結露防止用の乾燥ガス)を通過させる。これにより、常時、第1開口部503には部品保持具位置決め用係合部182を、第2開口部504には部品保持具145を挿通可能に開放しつつも、湿気の多い外気がカバー部材500内に進入することを阻止できる。 FIG. 3C is an enlarged cross-sectional view of the upper surface 500U portion. It is desirable that the processing device 70 minimizes contact with the surrounding environment (outside air) during the operation of the component transport processing device 1, for example, in order to prevent dew condensation. From that viewpoint, the cover member 500 Is preferably sealed. Therefore, it is preferable that the first opening 503 and the second opening 504 are provided with means for blocking from the outside air 507. The blocking means 507 is, for example, an air curtain flowing in the horizontal direction. In this case, as shown in FIG. 6C, an air (gas) flow path 508 is formed at least inside the upper surface 500U, and air (preferably a dry gas for preventing dew condensation) passes through the flow path 508. Let me. As a result, the engagement portion 182 for positioning the component holder is always open to the first opening 503, and the component holder 145 can be inserted into the second opening 504, while the humid outside air is a cover member. It is possible to prevent the entry into the 500.
 なお、遮断手段507として、物理的なシャッター等を設けて、部品保持具位置決め用係合部182や部品保持具145の挿通時のみ開放するように構成してもよい。しかしながらこの場合構成や駆動機構が複雑になる。これに対しエアカーテンであれば、物理的な開閉の動作および構成が不要である。 Note that, as the blocking means 507, a physical shutter or the like may be provided so as to open only when the component holder positioning engaging portion 182 or the component holder 145 is inserted. However, in this case, the configuration and the drive mechanism become complicated. On the other hand, the air curtain does not require a physical opening / closing operation and configuration.
 なお、この例では1台の処理装置70を一体的にカバー部材500で覆う例を示しているが、例えば、複数台の処理装置70を一体的にカバー部材500で覆うようにしてもよい。 Although this example shows an example in which one processing device 70 is integrally covered with the cover member 500, for example, a plurality of processing devices 70 may be integrally covered with the cover member 500.
 さらに、部品の安定化温度の精度を高めるためには、部品の安定化温度に合わせるように積極的に温度制御されたガス(温度制御済みガス)を、カバー部材500に充填することが好ましい。 Further, in order to improve the accuracy of the stabilization temperature of the parts, it is preferable to fill the cover member 500 with a gas whose temperature is positively controlled so as to match the stabilization temperature of the parts (temperature-controlled gas).
 <測定プローブの校正装置>
 図12は、本発明の他の実施形態の一例を示す、処理装置70の上面図である。載置プレート50には、複数の載置部100の一部又は専用領域を利用して、測定プローブ110を構成する為のプローブ校正部品260が配置される。
<Measuring probe calibration device>
FIG. 12 is a top view of the processing apparatus 70 showing an example of another embodiment of the present invention. On the mounting plate 50, a probe calibration component 260 for forming the measurement probe 110 is arranged by utilizing a part of a plurality of mounting portions 100 or a dedicated area.
 測定プローブ110は、先端に異物が付着したり、経時劣化したりすることよって、自身の抵抗値又は測定装置105までの配線抵抗値に変化が生じる場合が有る。また、測定プローブ110は、定期的に交換する必要があるが、交換作業によって、測定プローブ110自体の抵抗値も変動する。 The measuring probe 110 may have a change in its own resistance value or the wiring resistance value up to the measuring device 105 due to foreign matter adhering to the tip or deterioration over time. Further, the measurement probe 110 needs to be replaced regularly, but the resistance value of the measurement probe 110 itself also fluctuates depending on the replacement work.
 そこで本実施形態では、載置プレート50における移動軌跡上に、複数のプローブ校正部品260を配置しておき、任意にタイミングで、測定プローブ110をプローブ校正部品260に当接させて通電動作を行う。なお、このプローブ校正部品260は、抵抗回路となり、できる限り温度依存特性を有しない構造が好ましい。また、複数のプローブ校正部品260で抵抗値を異ならせることが好ましい。結果、測定プローブ110によって、プローブ校正部品260の複数の抵抗値を測定することで、測定プローブ110及びその内部配線の抵抗値の変化を高精度にチェックできる。ちなみに、測定プローブ110の抵抗値に変動が生じた場合であっても、測定装置105側においてデータを補正すれば部品170の出力測定に影響は無い。また、抵抗値の変動量が許容範囲を超えた場合、処理動作を停止させて、メンテナンス用のアラームを発生させることもできる。 Therefore, in the present embodiment, a plurality of probe calibration components 260 are arranged on the movement locus of the mounting plate 50, and the measurement probe 110 is brought into contact with the probe calibration component 260 at an arbitrary timing to perform an energization operation. .. It is preferable that the probe calibration component 260 is a resistance circuit and has a structure having as little temperature-dependent characteristics as possible. Further, it is preferable that the resistance values of the plurality of probe calibration components 260 are different. As a result, by measuring the plurality of resistance values of the probe calibration component 260 with the measuring probe 110, it is possible to check the change in the resistance value of the measuring probe 110 and its internal wiring with high accuracy. By the way, even if the resistance value of the measuring probe 110 fluctuates, the output measurement of the component 170 is not affected if the data is corrected on the measuring device 105 side. Further, when the fluctuation amount of the resistance value exceeds the permissible range, the processing operation can be stopped and an alarm for maintenance can be generated.
 なお、ここでは載置プレート50の周方向の4か所にプローブ校正部品260を配置する場合を例示したが、その数は特に限定されない。 Although the case where the probe calibration parts 260 are arranged at four locations in the circumferential direction of the mounting plate 50 is illustrated here, the number thereof is not particularly limited.
 <位置決め機構の詳細構造>
 図13以降を参照して、部品搬送処理装置1の位置決め機構について更に説明する。図13(A)は、プローブ位置決め機構200の一例について説明する図であって、処理装置70を、ターレット型回転搬送装置10の回転中心側(図1の左方向)から見た図である。なお、図13(A)は、プローブ昇降部111と係合部昇降機構211が共に上死点の状態、図13(B)は、プローブ昇降部111が上死点で係合部昇降機構211が下死点の状態、図13(C)は、プローブ昇降部111と係合部昇降機構211が共に下死点の状態を示している。
<Detailed structure of positioning mechanism>
The positioning mechanism of the component transfer processing device 1 will be further described with reference to FIGS. FIG. 13A is a view for explaining an example of the probe positioning mechanism 200, and is a view of the processing device 70 as viewed from the rotation center side (left direction in FIG. 1) of the turret type rotary transfer device 10. Note that FIG. 13 (A) shows a state in which the probe elevating portion 111 and the engaging portion elevating mechanism 211 are both at top dead center, and FIG. 13 (B) shows a state in which the probe elevating portion 111 is at top dead center and the engaging portion elevating mechanism 211. Is the state of the bottom dead center, and FIG. 13C shows the state of the bottom dead center of both the probe elevating part 111 and the engaging part elevating mechanism 211.
 プローブ位置決め機構200における係合部平面移動機構201は、測定部支持台99と、スライド部品202と、平面移動体203と、挟持枠204を有する。 The engaging portion plane moving mechanism 201 in the probe positioning mechanism 200 has a measuring portion support base 99, a slide component 202, a plane moving body 203, and a holding frame 204.
 測定部支持台99は、基台(テーブル)に対して移動不可に固定される部位であり、その上面(天面)に凹部212が設けられている。凹部212は深さ方向に二段階の外径となっており、上段部が下段部(底面部)より広い階段状となる。凹部212の内部にスライド部品202が収容される。 The measuring unit support base 99 is a portion that is immovably fixed to the base (table), and a recess 212 is provided on the upper surface (top surface) thereof. The recess 212 has a two-step outer diameter in the depth direction, and the upper portion has a stepped shape wider than the lower portion (bottom portion). The slide component 202 is housed inside the recess 212.
 スライド部品202は例えば、環状の上層部202Aと下層部202Bが、ボール部材202Cを介して積層されてなる。ボール部材202Cが転動することで、上層部202Aと下層部202Bが面方向に相対移動できる。下層部202Bは、凹部212の下段部の底面及び内周壁に密着してその内部での移動が規制される。下層部202Bと同サイズの上層部202Aは、凹部212の上段部に配置される。上層部202Aは、凹部212の上段部よりも小さくなるので、その周囲にはギャップG1が生じる。結果、上層部202AはギャップG1を上限として水平方向(X方向及び/またはY方向)に移動(摺動)可能となっている。上層部202Aの一部は、測定部支持台99の上面から微細に突出している。 The slide component 202 is formed by, for example, an annular upper layer portion 202A and a lower layer portion 202B laminated via a ball member 202C. By rolling the ball member 202C, the upper layer portion 202A and the lower layer portion 202B can move relative to each other in the plane direction. The lower layer portion 202B is in close contact with the bottom surface and the inner peripheral wall of the lower portion of the recess 212, and movement within the lower layer portion 202B is restricted. The upper layer 202A having the same size as the lower layer 202B is arranged in the upper portion of the recess 212. Since the upper layer portion 202A is smaller than the upper portion of the recess 212, a gap G1 is formed around the upper layer portion 202A. As a result, the upper layer portion 202A can move (slide) in the horizontal direction (X direction and / or Y direction) with the gap G1 as the upper limit. A part of the upper layer portion 202A finely protrudes from the upper surface of the measuring portion support base 99.
 測定部支持台99の上面には、これを覆うように平面移動体203が配置される。平面移動体203の底面は、スライド部品202の上層部202Aと当接しており、結果、平面移動体203の底面と測定部支持台99の上面の間に微細な隙間G2が形成される。平面移動体203は、スライド部品202を介在して、測定部支持台99に対して水平方向(X方向及び/またはY方向)に移動可能となる。平面移動体203は、底面から鉛直下方に突出する軸部205を備える。この軸部205は、スライド部品202の上層部202Aの中心孔に挿入されて、径方向に係合する。 A plane moving body 203 is arranged on the upper surface of the measuring unit support base 99 so as to cover it. The bottom surface of the flat moving body 203 is in contact with the upper layer portion 202A of the slide component 202, and as a result, a fine gap G2 is formed between the bottom surface of the flat moving body 203 and the upper surface of the measuring unit support base 99. The plane moving body 203 can move in the horizontal direction (X direction and / or Y direction) with respect to the measuring unit support base 99 via the slide component 202. The plane moving body 203 includes a shaft portion 205 projecting vertically downward from the bottom surface. The shaft portion 205 is inserted into the central hole of the upper layer portion 202A of the slide component 202 and engages in the radial direction.
 また、平面移動体203は、平面方向に広がる拡張部203Kを有する。拡張部203Kの上面に形成される凹部には、第二スライド部品203Sが配置される。この第二スライド部品203Sの構造は、スライド部品202と同じである。測定部支持台99の上面には、拡張部203Kを鉛直方向に挟み込むための挟持枠204が固定される。従って、挟持枠204は、拡張部203Kの上面の一部を覆うようになっている。 Further, the plane moving body 203 has an expansion portion 203K extending in the plane direction. The second slide component 203S is arranged in the recess formed on the upper surface of the expansion portion 203K. The structure of the second slide component 203S is the same as that of the slide component 202. A holding frame 204 for vertically sandwiching the expansion portion 203K is fixed on the upper surface of the measuring portion support base 99. Therefore, the holding frame 204 covers a part of the upper surface of the expansion portion 203K.
 挟持枠204には、拡張部203Kの上面に対する鉛直方向の隙間を調整するための調整ねじ204Nが設置される。調整ねじ204Nの下端は、第二スライド部品203Sと当接する。さらに、調整ねじ204Nの下端には、第二スライド部品203Sの環状の上層部内に挿入される突起が形成される。結果、平面移動体203は、測定部支持台99と挟持枠204の双方に当接することから、鉛直方向(同図(A)のZ方向)への移動(離脱)が規制される。 An adjusting screw 204N for adjusting a vertical gap with respect to the upper surface of the expansion portion 203K is installed on the holding frame 204. The lower end of the adjusting screw 204N comes into contact with the second slide component 203S. Further, at the lower end of the adjusting screw 204N, a protrusion to be inserted into the annular upper layer portion of the second slide component 203S is formed. As a result, since the plane moving body 203 comes into contact with both the measuring unit support base 99 and the holding frame 204, movement (disengagement) in the vertical direction (Z direction in FIG. 3A) is restricted.
 一方、平面移動体203は、スライド部品202と第二スライド部品203Sによって、測定部支持台99及び挟持枠204に対する水平方向の相対移動が許容される。挟持枠204の側面と平面移動体203の側面の間には、ギャップG3が生じており、このギャップG3を上限として、X方向および/またはY方向にスライド移動可能となっている。なお、このギャップG3の大きさは、例えば、挟持枠204に設けられる側面調整ねじ204Mによって、調整自在となっている。また、ギャップG3は、ギャップG1よりも小さくなるように設定される。なお、図13では、X軸方向のギャップG3のみ示すが、Y方向のギャップも同様の構造となっている。 On the other hand, the plane moving body 203 is allowed to move relative to the measuring unit support base 99 and the holding frame 204 in the horizontal direction by the slide component 202 and the second slide component 203S. A gap G3 is formed between the side surface of the holding frame 204 and the side surface of the plane moving body 203, and the gap G3 can be used as an upper limit for sliding movement in the X direction and / or the Y direction. The size of the gap G3 can be adjusted by, for example, the side adjusting screw 204M provided on the holding frame 204. Further, the gap G3 is set to be smaller than the gap G1. Although only the gap G3 in the X-axis direction is shown in FIG. 13, the gap in the Y direction has the same structure.
 平面移動体203の前面側には、係合部昇降機構211が、平面移動体203(及び測定部支持台99)に対して鉛直方向(Z方向)に移動可能に設けられる。係合部昇降機構211は、プローブ位置決め用係合部210を保持する。また、係合部昇降機構211の前面側には、プローブ昇降部111が、係合部昇降機構211に対して鉛直方向に移動可能に設けられる。プローブ昇降部111は、測定プローブ110を保持する。 On the front side of the plane moving body 203, an engaging portion elevating mechanism 211 is provided so as to be movable in the vertical direction (Z direction) with respect to the plane moving body 203 (and the measuring unit support base 99). The engaging portion elevating mechanism 211 holds the engaging portion 210 for probe positioning. Further, a probe elevating portion 111 is provided on the front surface side of the engaging portion elevating mechanism 211 so as to be movable in the vertical direction with respect to the engaging portion elevating mechanism 211. The probe elevating unit 111 holds the measurement probe 110.
 プローブ昇降部111および係合部昇降機構211の昇降機構については、モータ、エアアシリンダ、油圧シリンダ、電磁ソレノイド、付勢手段(バネ)等を用いた既知の構成であるので、詳細な説明は省略する。 The elevating mechanism of the probe elevating part 111 and the engaging part elevating mechanism 211 has a known configuration using a motor, an air cylinder, a hydraulic cylinder, an electromagnetic solenoid, an urging means (spring), and the like, and thus detailed description thereof will be omitted. ..
 このような構成により、平面移動体203は、測定部支持台99に対して水平方向(X方向および/またはY方向)にギャップG3分、その位置を調整することができる。 With such a configuration, the plane moving body 203 can adjust its position with respect to the measuring unit support base 99 in the horizontal direction (X direction and / or Y direction) by a gap G3 minutes.
 そして、係合部昇降機構211は、平面移動体203(測定部支持台99)に対して昇降自在であり、プローブ昇降部111は、係合部昇降機構211に対して昇降自在となる。プローブ昇降部111は、係合部昇降機構211の昇降動作とは独立した異なるタイミングで、平面移動体203(測定部支持台99)に対して昇降自在となる。 Then, the engaging portion elevating mechanism 211 can be moved up and down with respect to the plane moving body 203 (measuring portion support base 99), and the probe elevating portion 111 can be raised and lowered with respect to the engaging portion elevating mechanism 211. The probe elevating part 111 can be moved up and down with respect to the plane moving body 203 (measurement unit support base 99) at a different timing independent of the elevating operation of the engaging part elevating mechanism 211.
 これにより、測定プローブ110による部品の測定時には、プローブ位置決め用係合部210を所定位置に降下させて平面方向の位置決めを行なった後に、測定プローブ110を降下させることができる。 As a result, when measuring a component with the measuring probe 110, the measuring probe 110 can be lowered after the probe positioning engaging portion 210 is lowered to a predetermined position to perform positioning in the plane direction.
 次に、図14及び図15を参照して、処理装置70における測定プローブ110の位置決め動作について説明する。図14は、図2に示す処理装置70の主要部を抜き出して示す側面概要図である。 Next, the positioning operation of the measurement probe 110 in the processing device 70 will be described with reference to FIGS. 14 and 15. FIG. 14 is a side schematic view showing an extracted main part of the processing device 70 shown in FIG.
 図14(A)に示すように、測定領域54に測定対象の部品172が停止すると、係合部昇降機構211が下降して、図14(B)に示すように、プローブ位置決め用係合部210をプローブ位置決め孔103に係合させて、平面方向のセンタリングを行う。 As shown in FIG. 14 (A), when the component 172 to be measured stops in the measurement area 54, the engaging portion elevating mechanism 211 lowers, and as shown in FIG. 14 (B), the probe positioning engaging portion The 210 is engaged with the probe positioning hole 103 to perform centering in the plane direction.
 ちなみに、図15は、プローブ位置決め用係合部210をプローブ位置決め孔103に係合させる状態を示す拡大断面図である。本実施形態のプローブ位置決め用係合部210は、同図に示すように先端部210Tがテーパ状又は円錐状に構成される。また、プローブ位置決め孔103は円筒形状となっており、その直径D1は、先端部210Tの最大径D2より小さく、円錐状の傾斜面の途中の直径D3と同等に設定されている。 By the way, FIG. 15 is an enlarged cross-sectional view showing a state in which the probe positioning engaging portion 210 is engaged with the probe positioning hole 103. As shown in the figure, the probe positioning engaging portion 210 of the present embodiment has a tip portion 210T having a tapered or conical shape. Further, the probe positioning hole 103 has a cylindrical shape, and its diameter D1 is smaller than the maximum diameter D2 of the tip portion 210T and is set to be equivalent to the diameter D3 in the middle of the conical inclined surface.
 これにより、プローブ位置決め用係合部210とプローブ位置決め孔103の係合状態が進展すると、先端部210Tが、プローブ位置決め孔103の径方向内側に案内されて、次第に、先端部210Tの中心軸が、プローブ位置決め孔103の中心軸に対して同軸状態に近づく(図15(B)の矢印参照)。プローブ位置決め用係合部210が下死点に到達して、先端部210Tの外周面がプローブ位置決め孔103の開口縁と完全に係合(密着)すると、図15(C)に示すように、プローブ位置決め用係合部210とプローブ位置決め孔103が同軸状態となり、いわゆるセンタリングが完了する。 As a result, when the engagement state between the probe positioning engaging portion 210 and the probe positioning hole 103 progresses, the tip portion 210T is guided inward in the radial direction of the probe positioning hole 103, and the central axis of the tip portion 210T is gradually moved. , Approaching the coaxial state with respect to the central axis of the probe positioning hole 103 (see the arrow in FIG. 15B). When the probe positioning engaging portion 210 reaches the bottom dead center and the outer peripheral surface of the tip portion 210T completely engages (closes) with the opening edge of the probe positioning hole 103, as shown in FIG. 15C, The probe positioning engaging portion 210 and the probe positioning hole 103 are in a coaxial state, and so-called centering is completed.
 ちなみに、例えば、先端部210Tの最大径D2よりプローブ位置決め孔103の直径D1が大きい場合、両者が係合した場合にプローブ位置決め孔103の内部で先端部210Tが径方向に移動可能となってしまい、高精度のセンタリングが困難となる。 By the way, for example, when the diameter D1 of the probe positioning hole 103 is larger than the maximum diameter D2 of the tip portion 210T, the tip portion 210T can move in the radial direction inside the probe positioning hole 103 when both are engaged. , High-precision centering becomes difficult.
 本実施形態では、図15(C)に示すように、先端部210Tの傾斜面の途中においてプローブ位置決め孔103の開口縁に密着して係合するように構成されているため、両者の高精度なセンタリングが可能となる。 In the present embodiment, as shown in FIG. 15C, since the tip portion 210T is configured to be closely engaged with the opening edge of the probe positioning hole 103 in the middle of the inclined surface, the accuracy of both is high. Centering is possible.
 図14(B)に戻って、プローブ位置決め用係合部210とプローブ位置決め孔103によるセンタリング動作に連動して、平面移動体203が、水平方向(図示X方向およびY方向)に移動する。 Returning to FIG. 14B, the plane moving body 203 moves in the horizontal direction (X direction and Y direction in the drawing) in conjunction with the centering operation by the probe positioning engaging portion 210 and the probe positioning hole 103.
 これにより、プローブ位置決め孔103を位置基準として、測定プローブ110の事前の平面方向の位置決めが完了するので、その後、図14(C)に示すように、係合部昇降機構211から独立して、プローブ昇降部111のみを下降させて、測定プローブ110を部品172に接触させる。ちなみに、図14(B)の段階で、プローブ位置決め用係合部210の下降に伴い、プローブ昇降部111及び測定プローブ110も一緒に下降しているので、図14(C)におけるプローブ昇降部111のみの単独の下降ストロークは、短くて済むようになっている。 As a result, the positioning of the measuring probe 110 in the plane direction is completed with the probe positioning hole 103 as the position reference. After that, as shown in FIG. 14C, the measuring probe 110 is separated from the engaging portion elevating mechanism 211. Only the probe elevating part 111 is lowered to bring the measurement probe 110 into contact with the component 172. Incidentally, at the stage of FIG. 14 (B), as the probe positioning engaging portion 210 is lowered, the probe elevating portion 111 and the measuring probe 110 are also lowered, so that the probe elevating portion 111 in FIG. 14 (C) is also lowered. The single descending stroke of the chisel is designed to be short.
 測定プローブ110による測定が終了した場合、プローブ昇降部111によって測定プローブ110を上昇させ(同図(D))、さらに、係合部昇降機構211によってプローブ位置決め用係合部210も上昇させる(同図(E))。なお、測定後の測定プローブ110の上昇とプローブ位置決め用係合部210の上昇は、同時に行なってもよい。 When the measurement by the measuring probe 110 is completed, the measuring probe 110 is raised by the probe elevating part 111 ((D)), and the probe positioning engaging part 210 is also raised by the engaging part elevating mechanism 211 (the same). FIG. (E). The measurement probe 110 and the probe positioning engaging portion 210 may be raised at the same time after the measurement.
 次に、図16を参照して、部品保持具位置決め機構180について説明する。なお、この部品保持具位置決め機構180の構造は、プローブ位置決め機構200と近似しているので、同一又は類似する構造については、説明を省略する場合がある。なお、図16(A)は、保持具昇降部147と係合部昇降機構181が共に上死点の状態、図16(B)は、保持具昇降部147が上死点で係合部昇降機構181が下死点の状態、図16(C)は、保持具昇降部147と係合部昇降機構181が共に下死点の状態を示している。 Next, the component holder positioning mechanism 180 will be described with reference to FIG. Since the structure of the component holder positioning mechanism 180 is similar to that of the probe positioning mechanism 200, the description of the same or similar structure may be omitted. In addition, in FIG. 16A, both the holder elevating part 147 and the engaging part elevating mechanism 181 are in the state of the top dead center, and in FIG. The mechanism 181 is in the bottom dead center state, and FIG. 16C shows the state in which both the holder elevating portion 147 and the engaging portion elevating mechanism 181 are in the bottom dead center state.
 係合部平面移動機構184は、台座226と、スライド部品222と、平面移動体183と、挟持枠224を有する。台座226はターレットテーブル12の一部である。なお、台座226はターレットテーブル12に対して別部材として固定されていてもよい。またスライド部品222は、図14(A)で示すプローブ位置決め機構200のスライド部品202と同様であることから、詳細な説明を省略する。 The engaging portion plane moving mechanism 184 has a pedestal 226, a slide component 222, a plane moving body 183, and a holding frame 224. The pedestal 226 is part of the turret table 12. The pedestal 226 may be fixed to the turret table 12 as a separate member. Further, since the slide component 222 is the same as the slide component 202 of the probe positioning mechanism 200 shown in FIG. 14A, detailed description thereof will be omitted.
 ターレットテーブル12(台座226)の上面には凹部188が設けられている。凹部188は深さ方向に二段階の外径となっており、上段部が下段部(底面部)より広い階段状となる。凹部188の内部にスライド部品222が収容される。スライド部品222の凹部188への収容態様は、図13(A)のスライド部品202と同様であることから、ここでの説明を省略する。 A recess 188 is provided on the upper surface of the turret table 12 (pedestal 226). The recess 188 has a two-step outer diameter in the depth direction, and the upper portion has a stepped shape wider than the lower portion (bottom surface). The slide component 222 is housed inside the recess 188. Since the mode of accommodating the slide component 222 in the recess 188 is the same as that of the slide component 202 of FIG. 13 (A), the description thereof will be omitted here.
 台座226の上面には、これを覆うように平面移動体183が配置される。平面移動体183の底面は、スライド部品222の上層部と当接しており、平面移動体183の底面と台座226の上面の間に微細な隙間G2が形成される。平面移動体183は、スライド部品222を介在して、台座226に対して水平方向(X方向及び/またはY方向)に移動可能となる。平面移動体183は、底面から鉛直下方に突出する軸部227を備える。この軸部227は、、スライド部品222の上層部222Aの中心孔に挿入されて、径方向に係合する。 A plane moving body 183 is arranged on the upper surface of the pedestal 226 so as to cover it. The bottom surface of the plane moving body 183 is in contact with the upper layer portion of the slide component 222, and a fine gap G2 is formed between the bottom surface of the plane moving body 183 and the upper surface of the pedestal 226. The plane moving body 183 can move in the horizontal direction (X direction and / or Y direction) with respect to the pedestal 226 via the slide component 222. The plane moving body 183 includes a shaft portion 227 that projects vertically downward from the bottom surface. The shaft portion 227 is inserted into the central hole of the upper layer portion 222A of the slide component 222 and engages in the radial direction.
 また、平面移動体183は、平面方向に広がる拡張部183Kを有する。拡張部183Kの上面に形成される凹部には、第二スライド部品183Sが配置される。この第二スライド部品183Sの構造は、スライド部品222と同じである。台座226の上面には、拡張部183Kを鉛直方向に挟み込むための挟持枠224が固定される。従って、挟持枠224は、拡張部183Kの上面の一部を覆うようになっている。 Further, the plane moving body 183 has an expansion portion 183K extending in the plane direction. The second slide component 183S is arranged in the recess formed on the upper surface of the expansion portion 183K. The structure of the second slide component 183S is the same as that of the slide component 222. A holding frame 224 for vertically sandwiching the expansion portion 183K is fixed to the upper surface of the pedestal 226. Therefore, the holding frame 224 covers a part of the upper surface of the expansion portion 183K.
 挟持枠224には、拡張部183Kの上面に対する鉛直方向の隙間を調整するための調整ねじ224Nが設置される。調整ねじ224Nの下端は、第二スライド部品183Sと当接する。さらに、調整ねじ224Nの下端には、第二スライド部品183Sの環状の上層部内に挿入される突起が形成される。結果、平面移動体183は、台座226と挟持枠224の双方に当接することで、鉛直方向(Z方向)への移動(離脱)が規制される。 An adjusting screw 224N for adjusting a vertical gap with respect to the upper surface of the expansion portion 183K is installed on the holding frame 224. The lower end of the adjusting screw 224N comes into contact with the second slide component 183S. Further, at the lower end of the adjusting screw 224N, a protrusion to be inserted into the annular upper layer portion of the second slide component 183S is formed. As a result, the plane moving body 183 is in contact with both the pedestal 226 and the holding frame 224, so that the movement (disengagement) in the vertical direction (Z direction) is restricted.
 一方、平面移動体183は、スライド部品222及び第二スライド部品183Sによって、台座226及び挟持枠224に対する水平方向の相対移動が許容される。挟持枠224の側面と平面移動体183の側面の間には、ギャップG3が生じており、このギャップG3を上限として、X方向および/またはY方向にスライド移動可能となっている。なお、このギャップG3の大きさは、例えば、挟持枠224に設けられる側面調整ねじ224Mによって、調整自在となっている。また、ギャップG3は、スライド部品222に形成されるギャップG1よりも小さくなるように設定される。 On the other hand, the plane moving body 183 is allowed to move relative to the pedestal 226 and the holding frame 224 in the horizontal direction by the slide part 222 and the second slide part 183S. A gap G3 is formed between the side surface of the holding frame 224 and the side surface of the planar moving body 183, and the gap G3 can be used as an upper limit for sliding movement in the X direction and / or the Y direction. The size of the gap G3 can be adjusted by, for example, the side adjusting screw 224M provided on the holding frame 224. Further, the gap G3 is set to be smaller than the gap G1 formed in the slide component 222.
 平面移動体183の前面側には、係合部昇降機構181が、平面移動体183(及び台座226)に対して鉛直方向(Z方向)に移動可能に設けられる。係合部昇降機構181は、部品保持具位置決め用係合部182を保持する。また、係合部昇降機構181の前面側には、保持具昇降部147が、係合部昇降機構181に対して鉛直方向に移動可能に設けられる。保持具昇降部147は、部品保持具145を保持する。部品保持具145は例えば吸引ノズルである。 On the front side of the plane moving body 183, an engaging portion elevating mechanism 181 is provided so as to be movable in the vertical direction (Z direction) with respect to the plane moving body 183 (and the pedestal 226). The engaging portion elevating mechanism 181 holds the engaging portion 182 for positioning the component holder. Further, a holder elevating portion 147 is provided on the front surface side of the engaging portion elevating mechanism 181 so as to be movable in the vertical direction with respect to the engaging portion elevating mechanism 181. The holder elevating part 147 holds the component holder 145. The component holder 145 is, for example, a suction nozzle.
 なお、保持具昇降部147は、特に図示しない上方付勢部材(例えば、ばね部材)によって、係合部昇降機構181に対して鉛直上方に付勢される。従って、外力が作用しない場合、保持具昇降部147は、係合部昇降機構181に対して上死点で静止する。同様に、係合部昇降機構181は、特に図示しない上方付勢部材(例えば、ばね部材)によって、平面移動体183に対して鉛直上方に付勢される。従って、外力が作用しない場合、係合部昇降機構181は、平面移動体183に対して上死点で静止する。なお、保持具昇降部147の上方付勢部材の付勢力は、係合部昇降機構181の上方付勢部材の付勢力よりも大きくなるように設定される。 The holder elevating portion 147 is urged vertically upward with respect to the engaging portion elevating mechanism 181 by an upward urging member (for example, a spring member) (not shown). Therefore, when no external force acts, the holder elevating portion 147 stands still at the top dead center with respect to the engaging portion elevating mechanism 181. Similarly, the engaging portion elevating mechanism 181 is urged vertically upward with respect to the planar moving body 183 by an upward urging member (for example, a spring member) (not particularly shown). Therefore, when no external force acts, the engaging portion elevating mechanism 181 rests at the top dead center with respect to the plane moving body 183. The urging force of the upper urging member of the holder elevating portion 147 is set to be larger than the urging force of the upper urging member of the engaging portion elevating mechanism 181.
 図16(B)に示すように、保持具昇降部147の上面は、昇降付勢機構40の軸部151の係合部155と当接することで、下方に付勢される。これにより保持具昇降部147が下方に移動しようとするが、保持具昇降部147の内部の上方付勢部材の付勢力は、係合部昇降機構181の内部の上方付勢部材の付勢力よりも大きいので、優先的に、係合部昇降機構181が下降し、係合部昇降機構181が下死点に到達する。その後、図16(C)に示すように、係合部昇降機構181に対して保持具昇降部147が相対的に下降する。 As shown in FIG. 16B, the upper surface of the holder elevating portion 147 is urged downward by abutting with the engaging portion 155 of the shaft portion 151 of the elevating mechanism 40. As a result, the holder elevating part 147 tries to move downward, but the urging force of the upper urging member inside the holder elevating part 147 is larger than the urging force of the upper urging member inside the engaging part elevating mechanism 181. Since the size is also large, the engaging portion elevating mechanism 181 is preferentially lowered, and the engaging portion elevating mechanism 181 reaches the bottom dead center. After that, as shown in FIG. 16C, the holder elevating portion 147 is lowered relative to the engaging portion elevating mechanism 181.
 なお、部品保持具145(支持体146)の昇降機構(保持具昇降部147)、および部品保持具位置決め用係合部182の昇降機構(係合部昇降機構181)の動力については、昇降付勢機構40や、その抗力(復元力)となるばね等の弾性部材に限られず、モータ、エアアシリンダ、油圧シリンダ、電磁ソレノイド等を用いた既知の構成であっても良い。 The power of the elevating mechanism (retainer elevating part 147) of the component holder 145 (support 146) and the elevating mechanism (engagement part elevating mechanism 181) of the component holder positioning engaging portion 182 is provided with elevating. The structure is not limited to the force mechanism 40 and elastic members such as springs that serve as drag (restoring force) thereof, and may have a known configuration using a motor, an air cylinder, a hydraulic cylinder, an electromagnetic solenoid, or the like.
 図17を参照して、部品保持機構45における部品保持具145の位置決め動作について説明する。図17は、図2に示す部品保持機構45の主要部を抜き出して示す側面概要図であり、ここでは一例として部品172の保持動作について説明する。 The positioning operation of the component holder 145 in the component holding mechanism 45 will be described with reference to FIG. FIG. 17 is a side schematic view showing the main part of the component holding mechanism 45 shown in FIG. 2 by extracting it, and here, the holding operation of the component 172 will be described as an example.
 図17(A)に示すように、入出領域57に保持対象の部品172(測定が完了した部品172)が停止すると、昇降付勢機構40の係合部155が、保持具昇降部147の上面部と係合し、これを下方に付勢する(図17(B))。この付勢力は、係合部昇降機構181に伝達されて、部品保持具位置決め用係合部182が下降する。結果、部品保持具位置決め用係合部182と部品保持具位置決め孔104が係合してセンタリングを行う。なお、部品保持具位置決め用係合部182の先端部の形状と部品保持具位置決め孔104の形状、及び両者によるセンタリング態様は、図15で示すプローブ位置決め用係合部210及びプローブ位置決め孔103と同様であるので、ここでの説明を省略する。 As shown in FIG. 17A, when the part 172 to be held (the part 172 whose measurement is completed) stops in the entry / exit area 57, the engaging portion 155 of the elevating urging mechanism 40 is moved to the upper surface of the holder elevating portion 147. Engage with the portion and urge it downward (FIG. 17 (B)). This urging force is transmitted to the engaging portion elevating mechanism 181 to lower the component holder positioning engaging portion 182. As a result, the component holder positioning engaging portion 182 and the component holder positioning hole 104 engage with each other to perform centering. The shape of the tip of the component holder positioning engaging portion 182, the shape of the component holder positioning hole 104, and the centering mode by both are described with the probe positioning engaging portion 210 and the probe positioning hole 103 shown in FIG. Since it is the same, the description here will be omitted.
 部品保持具位置決め用係合部182と部品保持具位置決め孔104によるセンタリング動作に連動して、平面移動体183が、水平方向(図示X方向およびY方向)に移動する。これにより、部品保持具位置決め孔104を位置基準として、部品保持具145の事前の位置決めが完了すると同時に、係合部昇降機構181が下死点に至る。 The plane moving body 183 moves in the horizontal direction (X direction and Y direction in the drawing) in conjunction with the centering operation by the component holder positioning engaging portion 182 and the component holder positioning hole 104. As a result, the engaging portion elevating mechanism 181 reaches the bottom dead center at the same time as the preliminary positioning of the component holder 145 is completed with the component holder positioning hole 104 as the position reference.
 その後、昇降付勢機構40の係合部155が保持具昇降部147を更に押し下げると、図17(C)に示すように、係合部昇降機構181から独立して、保持具昇降部147のみが下降し、部品172に当接する。ちなみに、図17(B)における部品保持具位置決め用係合部182の下降に伴い、保持具昇降部147も一緒に下降しているので、図17(C)における保持具昇降部147のみの単独の下降ストロークは、短くて済むようになっている。 After that, when the engaging portion 155 of the elevating urging mechanism 40 further pushes down the holder elevating portion 147, as shown in FIG. 17C, only the holder elevating portion 147 is independent of the engaging portion elevating mechanism 181. Descends and comes into contact with component 172. Incidentally, as the component holder positioning engaging portion 182 is lowered in FIG. 17B, the holder elevating part 147 is also lowered, so that only the holder elevating part 147 in FIG. 17C is independent. The descending stroke of is short.
 また、部品保持具145は、図17(B)において、載置部100(部品172)に対する平面方向の相対位置決めが完了しているので、図17(C)に示すように、部品172の中心を吸着保持できる。その後、昇降付勢機構40の付勢を解除すると、部品保持具145が上昇し(図17(D))、保持具昇降部147が上死点に達した後、係合部昇降機構181と共に部品保持具位置決め用係合部182が上昇する(図17(E))。なお、ここでは部品172の吸着動作を紹介するが、部品172の解放動作の場合も同様である。 Further, since the component holder 145 has been positioned relative to the mounting portion 100 (component 172) in the plane direction in FIG. 17 (B), the center of the component 172 is as shown in FIG. 17 (C). Can be adsorbed and held. After that, when the urging of the elevating mechanism 40 is released, the component holder 145 rises (FIG. 17 (D)), the holder elevating part 147 reaches the top dead center, and then together with the engaging part elevating mechanism 181. The engaging portion 182 for positioning the component holder is raised (FIG. 17 (E)). Although the suction operation of the component 172 is introduced here, the same applies to the release operation of the component 172.
 以上の通り、上記実施形態では、図18(A)、図14、図17に示すように、プローブ位置決め用係合部210や部品保持具位置決め用係合部182が1つの場合(即ち、プローブ位置決め孔103や部品保持具位置決め孔104が1つの場合)を例示したが、これらを複数にすると、センタリング精度を一層高めることが出来る。特に、係合部平面移動機構201や係合部平面移動機構184のθ方向(図示のX-Y平面における回転方向)の位置決め精度を高めることができる。例えば、図18(B)に示すように、プローブ位置決め用係合部210を2か所に設ける場合は、二つのプローブ位置決め孔103A,103Aを利用して1つの載置部100についてセンタリングを行うようにしても良い。この場合、例えばプローブ位置決め用係合部210は、測定対象の部品172が収容されている載置部100を中心とし、そこから(略)等距離で、且つ、最も近い2箇所のプローブ位置決め孔103A,103Aを利用する。これにより、プローブ位置決め用係合部210が1本の場合と比較して、更に位置決めの精度を高めることができる。また、プローブ位置決め孔103B,103Bのように、周方向に2列を設けるようにすると、各載置部100に対して、一対の専用のプローブ位置決め孔103B,103Bとすることができる。複数の部品保持具位置決め孔104A、104Aについても同様である。また、本実施形態では、部品保持具位置決め孔104が、載置プレート50又は載置部100から独立して固定配置される場合を例示したが、本発明はこれに限定されない。図18(B)に示すように、プローブ位置決め孔103と同様に、各載置部100に対応させて、部品保持具位置決め孔104B,104Bを設けるようにし、載置部100と一緒に回転させることもできる。勿論、プローブ位置決め孔103と部品保持具位置決め孔104を兼用しても良い。 As described above, in the above embodiment, as shown in FIGS. 18A, 14 and 17, there is one probe positioning engaging portion 210 and a component holder positioning engaging portion 182 (that is, the probe). Although the case where the positioning hole 103 and the component holder positioning hole 104 are one) is illustrated, the centering accuracy can be further improved by using a plurality of these. In particular, the positioning accuracy of the engaging portion plane moving mechanism 201 and the engaging portion plane moving mechanism 184 in the θ direction (rotational direction in the illustrated XY plane) can be improved. For example, as shown in FIG. 18B, when the probe positioning engaging portions 210 are provided at two locations, the two probe positioning holes 103A and 103A are used to center one mounting portion 100. You may do so. In this case, for example, the probe positioning engaging portion 210 is centered on the mounting portion 100 in which the component 172 to be measured is housed, and the probe positioning holes are (omitted) equidistant from the mounting portion 100 and are closest to each other. 103A and 103A are used. As a result, the positioning accuracy can be further improved as compared with the case where the probe positioning engaging portion 210 is one. Further, if two rows are provided in the circumferential direction as in the probe positioning holes 103B and 103B, a pair of dedicated probe positioning holes 103B and 103B can be provided for each mounting portion 100. The same applies to the plurality of component holder positioning holes 104A and 104A. Further, in the present embodiment, the case where the component holder positioning hole 104 is fixedly arranged independently of the mounting plate 50 or the mounting portion 100 has been illustrated, but the present invention is not limited thereto. As shown in FIG. 18B, similarly to the probe positioning hole 103, the component holder positioning holes 104B and 104B are provided corresponding to each mounting portion 100, and are rotated together with the mounting portion 100. You can also do it. Of course, the probe positioning hole 103 and the component holder positioning hole 104 may be used in combination.
 なお、測定部95において測定プローブ110の接触位置を位置決めする場合、測定プローブ110自身が非常に細く、また、部品のサイズより更に微小な電極パッド部に接触させる必要がある。また、接触の状態が悪いと正確な測定もできない。このため部品保持機構45側と比較して、測定部95側の方がより高精度な位置決めが要求されるといえる。このため、プローブ位置決め用係合部210を複数化すると好適である。もちろん、部品保持機構45側においても、複数の部品保持具位置決め用係合部182を用いて位置決めを行なってもよい。 When positioning the contact position of the measuring probe 110 in the measuring unit 95, the measuring probe 110 itself needs to be brought into contact with the electrode pad portion which is very thin and smaller than the size of the component. Moreover, if the contact condition is poor, accurate measurement cannot be performed. Therefore, it can be said that more accurate positioning is required on the measuring unit 95 side as compared with the component holding mechanism 45 side. Therefore, it is preferable to have a plurality of probe positioning engaging portions 210. Of course, on the component holding mechanism 45 side as well, positioning may be performed using a plurality of component holder positioning engaging portions 182.
 また、プローブ位置決め用係合部210(プローブ位置決め孔103)と測定プローブ110(測定対象の載置部100)の距離、及び、部品保持具位置決め用係合部182(部品保持具位置決め孔104)と部品保持具145(部品保持対象の載置部100)の距離は、可能な限りの近い方が位置決め精度が高くなる。従って、プローブ位置決め孔103や部品保持具位置決め孔104は、対象となる載置部100に接近している方が良い。 Further, the distance between the probe positioning engaging portion 210 (probe positioning hole 103) and the measuring probe 110 (mounting portion 100 to be measured) and the component holder positioning engaging portion 182 (part holder positioning hole 104). Positioning accuracy is higher when the distance between the component holder 145 and the component holder 145 (mounting portion 100 for component holding target) is as close as possible. Therefore, it is preferable that the probe positioning hole 103 and the component holder positioning hole 104 are close to the target mounting portion 100.
 更に、本実施形態では、部品保持具位置決め孔104が、載置プレート50又は載置部100から独立して固定配置される場合を例示したが、本発明はこれに限定されない。プローブ位置決め孔103と同様に、各載置部100に対応させて、部品保持具位置決め孔104を設けるようにし、載置部100と一緒に回転させることもできる。勿論、プローブ位置決め孔103と部品保持具位置決め孔104を兼用しても良い。 Further, in the present embodiment, the case where the component holder positioning hole 104 is fixedly arranged independently from the mounting plate 50 or the mounting portion 100 is illustrated, but the present invention is not limited to this. Similar to the probe positioning hole 103, the component holder positioning hole 104 can be provided corresponding to each mounting portion 100, and can be rotated together with the mounting portion 100. Of course, the probe positioning hole 103 and the component holder positioning hole 104 may be used in combination.
 同様に、本実施形態では、プローブ位置決め孔103が、載置プレート50又は載置部100と一体的に回転する場合を例示したが、本発明はこれに限定されない。プローブ位置決め孔103が、載置プレート50から独立して、測定領域54に固定配置されていても良い。 Similarly, in the present embodiment, the case where the probe positioning hole 103 rotates integrally with the mounting plate 50 or the mounting portion 100 has been illustrated, but the present invention is not limited to this. The probe positioning hole 103 may be fixedly arranged in the measurement region 54 independently of the mounting plate 50.
 しかし、センタリング精度を高めるためには、各載置部100に対応させて、プローブ位置決め孔103や部品保持具位置決め孔104を設けておき、一緒に回転させることが好ましい。 However, in order to improve the centering accuracy, it is preferable to provide a probe positioning hole 103 and a component holder positioning hole 104 corresponding to each mounting portion 100 and rotate them together.
 このように、本実施形態によれば、測定プローブ110を用いて部品の測定を行う場合、および部品保持具145によって部品を保持/解放する場合において、高精度な位置決めが可能となり、ひいては測定時のエラーや、保持/解放ミスを防ぐことができる。 As described above, according to the present embodiment, highly accurate positioning is possible when measuring a part using the measuring probe 110 and when holding / releasing the part by the part holder 145, and by extension, at the time of measurement. Error and hold / release error can be prevented.
 なお、本実施形態において、処理装置70の構造は、図示したものに限られない。プローブ位置決め用係合部210とプローブ位置決め孔103が先に係合してセンタリング動作を行い、その後、測定プローブ110が部品に当接する構造であれば、他の構造を採用できる。同様に、部品保持機構45の構造は、図示したものに限られない。部品保持具位置決め用係合部182と部品保持具位置決め孔104が先に係合してセンタリング動作を行い、その後、部品保持具145が載置部100に接近する構造であれば、他の構造を採用できる。 In the present embodiment, the structure of the processing device 70 is not limited to the illustrated one. Another structure can be adopted as long as the probe positioning engaging portion 210 and the probe positioning hole 103 are first engaged to perform the centering operation and then the measurement probe 110 is in contact with the component. Similarly, the structure of the component holding mechanism 45 is not limited to that shown in the figure. If the structure is such that the component holder positioning engaging portion 182 and the component holder positioning hole 104 engage first to perform a centering operation, and then the component holder 145 approaches the mounting portion 100, another structure is used. Can be adopted.
 <多品種測定>
 次に、図19を参照して、更に別の実施形態について説明する。図19は、載置プレート50の平面図である。
<Multi-product measurement>
Next, still another embodiment will be described with reference to FIG. FIG. 19 is a plan view of the mounting plate 50.
 上記の実施形態では、一つの処理装置70において同種の部品の出力測定を行なう例を説明したが、一つの処理装置70において複数種の部品の出力測定を行なうようにしてもよい。 In the above embodiment, an example in which the output measurement of the same type of parts is performed by one processing device 70 has been described, but the output measurement of a plurality of types of parts may be performed by one processing device 70.
 すなわち、同図に示すように、1つの載置プレート50上に、異なる種類の複数の部品177、178、179を混合載置して搬送する。一方、測定領域54は、上記の実施形態と同様であり、1つの測定部95(同一の測定プローブ110)によって、複数種類の部品177、178、179の出力を測定することもできる。勿論、複数の部品177、178、179に対応させて、複数の測定領域を用意しておくことも可能である。 That is, as shown in the figure, a plurality of different types of parts 177, 178, and 179 are mixedly placed and conveyed on one mounting plate 50. On the other hand, the measurement area 54 is the same as that of the above embodiment, and the output of a plurality of types of parts 177, 178, and 179 can be measured by one measurement unit 95 (same measurement probe 110). Of course, it is also possible to prepare a plurality of measurement areas corresponding to a plurality of parts 177, 178, and 179.
 このように、本実施形態の部品搬送処理装置1は、異なる種類の部品であっても、同一の載置プレート50同種の部品と同様に(測定部95や載置プレート50の交換等を行なうことなく)処理が行えるので、処理効率の向上に寄与できる。 As described above, the component transfer processing device 1 of the present embodiment replaces the measurement unit 95 and the mounting plate 50 in the same manner as the same mounting plate 50 and the same type of parts even if the parts are of different types. Since the processing can be performed (without), it can contribute to the improvement of the processing efficiency.
 また、部品搬送処理装置1の周方向に複数配置される処理装置70の間についても、同種の処理(例えば、温度出力特性の測定処理)を行なう装置に限らず、複数の異なる処理(例えば、温度出力特性の測定処理と抵抗測定処理など)を混在させてもよい。 Further, the processing devices 70 arranged in the circumferential direction of the component transfer processing device 1 are not limited to devices that perform the same type of processing (for example, measurement processing of temperature output characteristics), and a plurality of different processing (for example, measurement processing of temperature output characteristics) is performed. Temperature output characteristic measurement processing and resistance measurement processing, etc.) may be mixed.
 尚、本発明の部品搬送処理装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the parts transport processing apparatus of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
1  部品搬送処理装置
10  ターレット型回転搬送装置
12  ターレットテーブル
15  ターレットテーブル回転軸
20  ターレットテーブル駆動装置
25  制御装置
35  架台
40  昇降付勢機構
45  部品保持機構
50  載置プレート
51  部品供給領域
52  処理領域
53  部品搬出領域
54  測定領域
55  載置プレート回転軸
57  入出領域
60  載置プレート回転駆動部
65  自動部品供給装置
70  処理装置
95  測定部
99  測定部支持台
100  載置部
105  測定装置
110  測定プローブ
111  プローブ昇降部
119  支持台
120  電極
125  移動機構(温度安定化装置)
130  熱移送部材
135  熱交換部
137  温度制御装置
145  部品保持具
170、172、172A-172C、173、173A-173C、171、177、178、179  部品
180  部品保持具位置決め機構
182  部品保持具位置決め用係合部
184  係合部平面移動機構
188  凹部
189  昇降機構
200  プローブ位置決め機構
201  係合部平面移動機構
210  プローブ位置決め用係合部
211  係合部昇降機構
226  台座
250  マスタ部品
301  特性検査装置
310  ターレットテーブル
312  ターレットテーブル回転軸
315  部品
325  部品供給装置
330  収納ボックス
335  第一測定領域
340  第一温度制御領域
345  第二測定領域
350  第二温度制御領域
500  カバー部材
501  回動軸
507  遮断手段
508  流路
210T  先端部
T  搬送経路
1 Parts transfer processing device 10 Turret type rotary transfer device 12 Turret table 15 Turret table Rotating shaft 20 Turret table drive device 25 Control device 35 Stand 40 Lifting urging mechanism 45 Parts holding mechanism 50 Mounting plate 51 Parts supply area 52 Processing area 53 Parts carry-out area 54 Measurement area 55 Mounting plate rotating shaft 57 Loading / unloading area 60 Mounting plate rotation drive unit 65 Automatic parts supply device 70 Processing device 95 Measuring unit 99 Measuring unit Support base 100 Mounting unit 105 Measuring device 110 Measuring probe 111 Probe Elevating part 119 Support base 120 Electrode 125 Moving mechanism (temperature stabilizer)
130 Heat transfer member 135 Heat exchange unit 137 Temperature control device 145 Parts holder 170, 172, 172A-172C, 173, 173A-173C, 171, 177, 178, 179 Parts 180 Parts holder Positioning mechanism 182 For parts holder positioning Engagement part 184 Engagement part plane movement mechanism 188 Recess 189 Elevating mechanism 200 Probe positioning mechanism 201 Engagement part plane movement mechanism 210 Probe positioning engagement part 211 Engagement part elevating mechanism 226 Pedestal 250 Master part 301 Characteristic inspection device 310 Turret Table 312 Turret table Rotating shaft 315 Parts 325 Parts supply device 330 Storage box 335 First measurement area 340 First temperature control area 345 Second measurement area 350 Second temperature control area 500 Cover member 501 Rotating shaft 507 Blocking means 508 Flow path 210T Tip T Transport path

Claims (23)

  1.  複数の部品保持機構によって複数の部品を保持して、環状の搬送経路の一部に沿って、複数の前記部品を搬送するターレット型回転搬送装置と、
     前記搬送経路に配置されて、前記部品を前記部品保持機構に供給する部品供給領域と、
     前記搬送経路における前記部品供給領域の下流側に位置する処理領域に配置されて、前記部品に対して所定の処理を施す処理装置と、
     前記処理装置に設けられて前記部品を移動させる移動機構と、
     前記搬送経路における前記処理領域の下流側に配置されて、前記部品を搬出する部品搬出領域と、を備え、
     前記移動機構は、
     前記部品が載置される載置部を有する載置プレートと、
     前記載置プレートに熱を移送する熱移送部材と、
     前記熱移送部材と前記載置プレートを一体として、プレート回転軸を中心として回転させる回転駆動部と、を有する、
    ことを特徴とする部品搬送処理装置。
    A turret type rotary transfer device that holds a plurality of parts by a plurality of component holding mechanisms and conveys the plurality of the components along a part of an annular transfer path.
    A component supply area arranged in the transport path to supply the component to the component holding mechanism,
    A processing device arranged in a processing area located on the downstream side of the component supply area in the transport path and performing a predetermined process on the component.
    A moving mechanism provided in the processing device for moving the parts, and
    A component unloading area, which is arranged on the downstream side of the processing area in the transport path and unloads the component, is provided.
    The moving mechanism
    A mounting plate having a mounting portion on which the parts are mounted,
    A heat transfer member that transfers heat to the above-mentioned mounting plate, and
    It has a rotation drive unit that integrally rotates the heat transfer member and the above-mentioned mounting plate and rotates the plate rotation axis.
    A parts transfer processing device characterized by this.
  2.  前記載置プレートは、全体が単一温度となるように前記熱移送部材によって温度制御されることを特徴とする、
     請求項1に記載の部品搬送処理装置。
    The above-mentioned mounting plate is characterized in that the temperature is controlled by the heat transfer member so that the entire plate has a single temperature.
    The parts transport processing apparatus according to claim 1.
  3.  前記載置部は複数設けられ、該載置部の一部に前記処理の基準部品を配置する、
    ことを特徴とする請求項1又は2に記載の部品搬送処理装置。
    A plurality of the above-mentioned mounting portions are provided, and the reference parts for the processing are arranged in a part of the mounting portions.
    The parts transport processing apparatus according to claim 1 or 2.
  4.  複数の前記基準部品が、周方向に等間隔で載置される、
    ことを特徴とする請求項3に記載の部品搬送処理装置。
    A plurality of the reference parts are placed at equal intervals in the circumferential direction.
    The parts transport processing apparatus according to claim 3.
  5.  前記処理の対象となる前記部品の近接位置に前記基準部品を配置する、
    ことを特徴とする請求項3または請求項4に記載の部品搬送処理装置。
    The reference component is placed at a position close to the component to be processed.
    The parts transport processing apparatus according to claim 3 or 4.
  6.  前記基準部品は、専用部品である、
    ことを特徴とする請求項3乃至請求項5のいずれかに記載の部品搬送処理装置。
    The reference part is a dedicated part.
    The parts transport processing apparatus according to any one of claims 3 to 5, wherein the parts transfer processing apparatus is characterized in that.
  7.  前記基準部品は、前記部品と同種の部品である、
    ことを特徴とする請求項3乃至請求項5のいずれかに記載の部品搬送処理装置。
    The reference component is a component of the same type as the component.
    The parts transport processing apparatus according to any one of claims 3 to 5, wherein the parts transfer processing apparatus is characterized in that.
  8.  前記処理装置は、前記移動機構による前記部品の移動経路上の測定領域に配置され、前記部品の対比情報と相関関係を有する出力を測定する測定部を備え、
     前記測定部は、
     前記基準部品の出力の測定値から逆算される前記対比情報を、該基準部品に接近して前記移動機構によって移動される前記部品の前記対比情報として参照することを特徴とする、
     請求項3乃至7のいずれかに記載の部品搬送処理装置。
    The processing device is arranged in a measurement area on the movement path of the component by the moving mechanism, and includes a measuring unit that measures an output having a correlation with the comparison information of the component.
    The measuring unit
    The comparison information calculated back from the measured value of the output of the reference component is referred to as the comparison information of the component moved by the moving mechanism in close proximity to the reference component.
    The parts transport processing apparatus according to any one of claims 3 to 7.
  9.  前記載置プレートには、前記処理装置の測定プローブと当接して該測定プローブを校正するための校正専用部品が配置される、
    ことを特徴とする請求項1乃至請求項8のいずれかに記載の部品搬送処理装置。
    A calibration-dedicated component for calibrating the measurement probe in contact with the measurement probe of the processing apparatus is arranged on the above-mentioned mounting plate.
    The parts transport processing apparatus according to any one of claims 1 to 8, wherein the parts transfer processing apparatus is characterized in that.
  10.  前記処理装置は、一つの前記載置プレート上の複数の前記載置部に対応する位置においてそれぞれ前記部品の出力特性を測定可能な測定手段を有する、
    ことを特徴とする請求項1乃至請求項9のいずれかに記載の部品搬送処理装置。
    The processing apparatus has a measuring means capable of measuring the output characteristics of the component at positions corresponding to a plurality of pre-described portions on one pre-described plate.
    The parts transport processing apparatus according to any one of claims 1 to 9, wherein the parts transfer processing apparatus is characterized in that.
  11.  前記測定手段は、一つの前記載置プレートについて複数設けられ、前記複数の載置部において同時に複数の前記部品の特性を測定する、
    ことを特徴とする請求項10に記載の部品搬送処理装置。
    A plurality of the measuring means are provided for one pre-described plate, and the characteristics of the plurality of the parts are measured at the same time in the plurality of mounting portions.
    The parts transport processing apparatus according to claim 10.
  12.  前記処理装置を一体的に覆うカバー部材を有する、
    ことを特徴とする請求項1乃至請求項11のいずれかに記載の部品搬送処理装置。
    A cover member that integrally covers the processing device.
    The parts transport processing apparatus according to any one of claims 1 to 11.
  13.  前記カバー部材の一部は、前記部品保持機構と前記移動機構を隔てるように設けられ、
     前記部品保持機構の一部が通過可能な開口を有する、
    ことを特徴とする請求項12に記載の部品搬送処理装置。
    A part of the cover member is provided so as to separate the component holding mechanism and the moving mechanism.
    A part of the component holding mechanism has an opening through which the component holding mechanism can pass.
    The parts transport processing apparatus according to claim 12.
  14.  前記カバー部材の一部は、前記処理装置の一部が露出するように開放可能に構成される、
    ことを特徴とする請求項12または請求項13に記載の部品搬送処理装置。
    A part of the cover member is configured to be openable so that a part of the processing device is exposed.
    The parts transport processing apparatus according to claim 12 or 13.
  15.  前記カバー部材の内部に乾燥ガスが注入される、
    ことを特徴とする請求項12乃至請求項14のいずれかに記載の部品搬送処理装置。
    Dry gas is injected into the cover member.
    The parts transport processing apparatus according to any one of claims 12 to 14, wherein the component transport processing device is characterized.
  16.  前記ターレット型回転搬送装置は、前記複数の部品保持機構を互いに同期して移動させる、
    ことを特徴とする請求項1乃至請求項15のいずれかに記載の部品搬送処理装置。
    The turret type rotary transfer device moves the plurality of component holding mechanisms in synchronization with each other.
    The parts transport processing apparatus according to any one of claims 1 to 15, wherein the parts transfer processing apparatus is characterized in that.
  17.  複数の部品保持機構の部品保持具によって複数の部品を保持して、環状の搬送経路の一部に沿って、複数の前記部品を搬送するターレット型回転搬送装置と、
     前記搬送経路における処理領域に配置されて、前記部品に対して所定の処理を施す処理装置と、
     を備え、
     前記処理装置は、
     前記部品保持具によって搬送される前記部品が載置される載置部を有する載置プレートと、
     前記載置プレートに熱を移送する熱移送部材と、
     前記熱移送部材と前記載置プレートを一体として、プレート回転軸を中心として回転させることで前記部品を移動させる回転駆動部と、
     移動中の前記部品に前記処理を施すプローブと、を有し、
     前記部品保持機構の前記部品保持具と前記載置部の相対位置、及び/又は、前記処理装置の前記プローブと前記載置部の相対位置を調整する位置決め手段を有する、
    ことを特徴とする部品搬送処理装置。
    A turret-type rotary transfer device that holds a plurality of parts by component holders of a plurality of component holding mechanisms and conveys the plurality of the components along a part of an annular transfer path.
    A processing device arranged in a processing area in the transport path and performing a predetermined process on the component,
    With
    The processing device is
    A mounting plate having a mounting portion on which the component transported by the component holder is mounted,
    A heat transfer member that transfers heat to the above-mentioned mounting plate, and
    A rotation drive unit that moves the parts by rotating the heat transfer member and the above-mentioned mounting plate together about a plate rotation axis.
    It has a probe that performs the treatment on the moving part.
    The component holding mechanism has a positioning means for adjusting the relative position of the component holder and the previously described placement portion and / or the relative position of the probe and the previously described placement portion of the processing device.
    A parts transfer processing device characterized by this.
  18.  前記位置決め手段は、前記プローブと前記載置部の相対位置を調整するプローブ位置決め手段を有しており、
     前記プローブ位置決め手段は、
     前記プローブを、前記載置プレートの平面方向に案内する係合部平面移動機構と、
     前記係合部平面移動機構側に設けられるプローブ位置決め用係合部と、
     処理対象となる前記載置部に対応した位置に設けられるプローブ位置決め孔と、を有し、
     前記処理装置は、前記プローブが前記部品に当接する処理に先立って、前記プローブ位置決め用係合部を前記プローブ位置決め孔に係合させることで、前記プローブと前記載置部の相対位置を調整する
    ことを特徴とする請求項17に記載の部品搬送処理装置。
    The positioning means has a probe positioning means for adjusting the relative position between the probe and the above-mentioned mounting portion.
    The probe positioning means
    An engaging part plane moving mechanism that guides the probe in the plane direction of the above-mentioned mounting plate,
    The probe positioning engaging portion provided on the engaging portion plane moving mechanism side and the engaging portion
    It has a probe positioning hole provided at a position corresponding to the previously described mounting portion to be processed.
    The processing device adjusts the relative position of the probe and the above-described prepositioning portion by engaging the probe positioning engaging portion with the probe positioning hole prior to the process of contacting the probe with the component. The parts transport processing apparatus according to claim 17.
  19.  前記プローブ位置決め孔は、前記載置部と共に回転する
    ことを特徴とする請求項18に記載の部品搬送処理装置。
    The component transfer processing device according to claim 18, wherein the probe positioning hole rotates together with the above-described mounting portion.
  20.  前記プローブ位置決め手段は、
     複数の前記プローブ位置決め用係合部と、複数の前記プローブ位置決め用係合部に対応する複数の前記プローブ位置決め孔と、を有し、
     前記処理装置は、前記複数のプローブ位置決め孔に対して前記複数のプローブ位置決め用係合部を同時に係合させる、
    ことを特徴とする請求項18又は19に記載の部品搬送処理装置。
    The probe positioning means
    It has a plurality of the probe positioning engaging portions and a plurality of the probe positioning holes corresponding to the plurality of the probe positioning engaging portions.
    The processing device simultaneously engages the plurality of probe positioning engaging portions with the plurality of probe positioning holes.
    The parts transport processing apparatus according to claim 18 or 19.
  21.  前記部品保持機構は、前記部品保持具と前記載置部の相対位置を調整する部品保持具位置決め手段を有しており、
     前記部品保持具位置決め手段は、
     前記部品保持具を、前記載置プレートの平面方向に案内する保持具側係合部平面移動機構と、
     前記保持具側係合部平面移動機構側に設けられる部品保持具位置決め用係合部と、
     保持対象となる前記載置部に対応した位置に設けられる部品保持具位置決め孔と、を有し、
     前記部品保持機構は、前記部品保持具による前記部品の保持または開放の動作に先立って、前記部品保持具位置決め用係合部を前記部品保持具位置決め孔に係合させることで、前記部品保持具と前記載置部の相対位置を調整する
    ことを特徴とする請求項17乃至請求項19のいずれかに記載の部品搬送処理装置。
    The component holding mechanism has a component holder positioning means for adjusting the relative position between the component holder and the above-mentioned placing portion.
    The component holder positioning means
    A holder-side engaging portion plane moving mechanism that guides the component holder in the plane direction of the above-mentioned mounting plate,
    The engaging portion for positioning the component holder provided on the plane moving mechanism side of the engaging portion on the holder side,
    It has a component holder positioning hole provided at a position corresponding to the previously described mounting portion to be held.
    The component holding mechanism engages the component holder positioning engaging portion with the component holder positioning hole prior to the operation of holding or opening the component by the component holder, thereby engaging the component holder with the component holder positioning hole. The component transfer processing apparatus according to any one of claims 17 to 19, wherein the relative position of the above-mentioned placing portion is adjusted.
  22.  一つの前記載置プレートに異なる種類の複数の前記部品を載置する、
    ことを特徴とする請求項17乃至請求項21のいずれかに記載の部品搬送処理装置。
    Place a plurality of different types of the above-mentioned parts on one pre-described plate.
    The parts transport processing apparatus according to any one of claims 17 to 21, wherein the parts transfer processing apparatus is characterized in that.
  23.  前記複数の部品に対して同一の前記プローブによって前記処理を施す、
    ことを特徴とする請求項22に記載の部品搬送処理装置。
    The processing is performed on the plurality of parts by the same probe.
    The parts transport processing apparatus according to claim 22.
PCT/JP2020/014464 2019-04-04 2020-03-30 Component transport processing device WO2020203948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080026661.5A CN113677608B (en) 2019-04-04 2020-03-30 Component conveying and processing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019071756A JP7282359B2 (en) 2019-04-04 2019-04-04 Parts transfer processing equipment
JP2019-071755 2019-04-04
JP2019-071756 2019-04-04
JP2019071755A JP7273399B2 (en) 2019-04-04 2019-04-04 Parts transfer processing equipment

Publications (1)

Publication Number Publication Date
WO2020203948A1 true WO2020203948A1 (en) 2020-10-08

Family

ID=72668889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014464 WO2020203948A1 (en) 2019-04-04 2020-03-30 Component transport processing device

Country Status (2)

Country Link
CN (1) CN113677608B (en)
WO (1) WO2020203948A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302948A (en) * 1992-04-27 1993-11-16 Anritsu Corp Setting device of component for calibration use
JP2002243784A (en) * 2001-02-15 2002-08-28 Tdk Corp Measuring instrument for electrical characteristics of electronic component in normal and high temperature
JP2003161750A (en) * 2001-09-17 2003-06-06 Akim Kk Method and apparatus for test of temperature characteristic of electronic component
JP2006162363A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Positioning device and frequency temperature characteristic inspection device
JP2008145259A (en) * 2006-12-08 2008-06-26 Epson Toyocom Corp Method for bringing probe pin into contact in characteristics test, probe head, and characteristics inspection device
JP2010014736A (en) * 2009-10-20 2010-01-21 Murata Mfg Co Ltd Electronic component characteristic measuring device and electronic component sorting apparatus
JP2010202392A (en) * 2009-03-05 2010-09-16 Elpida Memory Inc Ic automatic handler
US20100254788A1 (en) * 2007-12-24 2010-10-07 Ismeca Semiconductor Holdings Sa Method and device for aligning components
JP2011190114A (en) * 2005-03-30 2011-09-29 Ueno Seiki Kk Processing device for electronic part and method of processing the electronic part
JP2013032940A (en) * 2011-08-01 2013-02-14 Akim Kk Temperature characteristics measuring device
JP2013152094A (en) * 2012-01-24 2013-08-08 Shibuya Kogyo Co Ltd Article inspection device and article classification apparatus including the same
JP2013217749A (en) * 2012-04-09 2013-10-24 Akim Kk Temperature characteristic measuring apparatus and temperature characteristic measuring method
US20160081198A1 (en) * 2014-09-17 2016-03-17 Yu Sze Cheung Method and apparatus for aligning electronic components
JP2018049003A (en) * 2016-09-14 2018-03-29 株式会社村田製作所 Method for measuring electrical characteristics of electronic component device, method for selecting electronic component device and electrical characteristics measurement device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778046B2 (en) * 2001-10-09 2006-05-24 株式会社大真空 Temperature characteristic measuring jig for crystal vibrating device, temperature characteristic measuring apparatus equipped with the measuring jig, and temperature characteristic measuring method for crystal vibrating device
JP4999002B2 (en) * 2007-05-25 2012-08-15 上野精機株式会社 High temperature reduction device and test handler equipped with high temperature reduction device
JP5525477B2 (en) * 2011-03-31 2014-06-18 シャープ株式会社 Sample inspection equipment

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302948A (en) * 1992-04-27 1993-11-16 Anritsu Corp Setting device of component for calibration use
JP2002243784A (en) * 2001-02-15 2002-08-28 Tdk Corp Measuring instrument for electrical characteristics of electronic component in normal and high temperature
JP2003161750A (en) * 2001-09-17 2003-06-06 Akim Kk Method and apparatus for test of temperature characteristic of electronic component
JP2006162363A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Positioning device and frequency temperature characteristic inspection device
JP2011190114A (en) * 2005-03-30 2011-09-29 Ueno Seiki Kk Processing device for electronic part and method of processing the electronic part
JP2008145259A (en) * 2006-12-08 2008-06-26 Epson Toyocom Corp Method for bringing probe pin into contact in characteristics test, probe head, and characteristics inspection device
US20100254788A1 (en) * 2007-12-24 2010-10-07 Ismeca Semiconductor Holdings Sa Method and device for aligning components
JP2010202392A (en) * 2009-03-05 2010-09-16 Elpida Memory Inc Ic automatic handler
JP2010014736A (en) * 2009-10-20 2010-01-21 Murata Mfg Co Ltd Electronic component characteristic measuring device and electronic component sorting apparatus
JP2013032940A (en) * 2011-08-01 2013-02-14 Akim Kk Temperature characteristics measuring device
JP2013152094A (en) * 2012-01-24 2013-08-08 Shibuya Kogyo Co Ltd Article inspection device and article classification apparatus including the same
JP2013217749A (en) * 2012-04-09 2013-10-24 Akim Kk Temperature characteristic measuring apparatus and temperature characteristic measuring method
US20160081198A1 (en) * 2014-09-17 2016-03-17 Yu Sze Cheung Method and apparatus for aligning electronic components
JP2018049003A (en) * 2016-09-14 2018-03-29 株式会社村田製作所 Method for measuring electrical characteristics of electronic component device, method for selecting electronic component device and electrical characteristics measurement device

Also Published As

Publication number Publication date
CN113677608B (en) 2024-01-12
CN113677608A (en) 2021-11-19

Similar Documents

Publication Publication Date Title
KR101421102B1 (en) Electronic component testing apparatus
KR101402631B1 (en) Electronic component transfer apparatus, electronic component handling apparatus and electronic component test apparatus
TWI465724B (en) A pitch changing device, an electronic component processing device, and an electronic component testing device
JP6681565B2 (en) Prober
JP7413647B2 (en) transport unit
WO2020203948A1 (en) Component transport processing device
JP6425027B2 (en) Prober and wafer chuck temperature measurement method
TWI574329B (en) Assembly machine and method for assembling a carrier with bare chips
JP7282359B2 (en) Parts transfer processing equipment
JP2020169908A (en) Component part conveyance processing device
JP6519780B2 (en) Probe card type temperature sensor
JP5961286B2 (en) Electronic component transfer device, electronic component handling device, and electronic component testing device
JP4054465B2 (en) Electronic component testing equipment
JP2010175287A (en) Apparatus and method for inspecting electronic device
JPH11352183A (en) Electronic parts test equipment
JP6982774B2 (en) Prober
TWI647466B (en) Electronic component conveying device and electronic component inspection device
KR102121057B1 (en) Sealing member exchange type gate valve system, sealing plate and magazine for sealing plate
JP2022028823A (en) Prober
WO2006075391A1 (en) Electronic component testing apparatus
CN115458435A (en) Measuring jig and processing method
JP2000088916A (en) Component conveyor in and out of chamber and component tester
WO2016157710A1 (en) Electronic component conveyance device and electronic component inspection device
CN111765984A (en) Component handling system
JP2010205880A (en) Substrate transfer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781761

Country of ref document: EP

Kind code of ref document: A1