WO2020203541A1 - GaN基板ウエハおよびGaN基板ウエハの製造方法 - Google Patents

GaN基板ウエハおよびGaN基板ウエハの製造方法 Download PDF

Info

Publication number
WO2020203541A1
WO2020203541A1 PCT/JP2020/013298 JP2020013298W WO2020203541A1 WO 2020203541 A1 WO2020203541 A1 WO 2020203541A1 JP 2020013298 W JP2020013298 W JP 2020013298W WO 2020203541 A1 WO2020203541 A1 WO 2020203541A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan
region
substrate wafer
gan substrate
less
Prior art date
Application number
PCT/JP2020/013298
Other languages
English (en)
French (fr)
Inventor
憲司 磯
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217031332A priority Critical patent/KR20210144729A/ko
Priority to JP2021511860A priority patent/JPWO2020203541A1/ja
Priority to EP20782703.1A priority patent/EP3951025A4/en
Priority to CN202080025770.5A priority patent/CN113692459A/zh
Publication of WO2020203541A1 publication Critical patent/WO2020203541A1/ja
Priority to US17/485,617 priority patent/US20220010455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Definitions

  • the present invention mainly relates to a GaN substrate wafer and a method for manufacturing the same.
  • the GaN substrate wafer is a substrate wafer made of GaN (gallium nitride).
  • a substrate wafer is a wafer mainly used as a substrate in a semiconductor device manufacturing process.
  • the substrate used for the InGaN-based laser diode (LD) currently commercially produced is a GaN substrate having a relatively high carrier concentration. Recently, research and development of vertical GaN power devices using such GaN substrates have been active.
  • GaN thick film When a GaN thick film is grown on a sapphire wafer by HVPE (Hydride Vapor Phase Epitaxy), if a region with a low impurity concentration is provided at the bottom of the GaN thick film and a region with a high impurity concentration is provided at the top, the GaN thick film is formed.
  • HVPE Hadride Vapor Phase Epitaxy
  • a GaN substrate wafer having a region having a low impurity concentration on the back surface side and a region having a high impurity concentration on the front surface side can be obtained (Patent Documents 1 and 2). ..
  • Patent Document 1 or Patent Document 2 When manufacturing a GaN substrate wafer having a region having a low impurity concentration on the back surface side and a region having a high impurity concentration on the front surface side by the method disclosed in Patent Document 1 or Patent Document 2, one wafer every time a GaN substrate wafer is made, it is necessary to grow a GaN thick film with HVPE on one sapphire wafer. Therefore, the method disclosed in Patent Document 1 or Patent Document 2 cannot be said to have high manufacturing efficiency.
  • the present inventor manufactures a GaN wafer having a low impurity concentration in advance, and then grows a GaN layer having a high impurity concentration on the wafer to a specific thickness, so that the region where the impurity concentration is increased is placed on the front surface side. It has been found that a GaN substrate wafer having only one can be produced more efficiently.
  • the present invention has been made based on such an idea, and its embodiments include the following.
  • a (0001) oriented GaN substrate wafer having a first region provided on the N-polar side and a second region provided on the Ga-polar side across the regrowth interface.
  • a GaN substrate wafer having a minimum thickness of 20 ⁇ m or more and 300 ⁇ m or less in two regions, and the second region includes a region having a higher total donor impurity concentration than the first region.
  • (1) It has a diameter of 50 mm or more and 55 mm or less and a thickness of 250 ⁇ m or more and 450 ⁇ m or less.
  • (2) It has a diameter of 100 mm or more and 105 mm or less and a thickness of 350 ⁇ m or more and 750 ⁇ m or less.
  • Si concentration is 5 ⁇ 10 16 atoms / cm 3 or more
  • O concentration is 3 ⁇ 10 16 atoms / cm 3 or less
  • H concentration is 1 ⁇ 10 17 atoms / cm 3 or less
  • a method for manufacturing a GaN substrate wafer having a first region provided on the N-polar side and a second region provided on the Ga-polar side across the regrowth interface (I) A first GaN thick film composed of (0001) oriented GaN that is not intentionally doped is grown on a seed wafer by HVPE, and then at least one first c-plane from the first GaN thick film. The first step to obtain a GaN wafer, (Ii) A second GaN thick film made of (0001) oriented GaN that is not intentionally doped is grown on the first c-plane GaN wafer with HVPE, and then the second GaN thick film is sliced.
  • the second step of obtaining the second c-plane GaN wafer and (Iii) (0001) It has a third step of growing an oriented GaN film having a thickness of 500 ⁇ m or less on the second c-plane GaN wafer with HVPE, and A method for manufacturing a GaN substrate wafer, wherein the GaN film has a region in which the total concentration of donor impurities is higher than that of the second c-plane GaN wafer.
  • GaN substrate wafer manufacturing method [23] The method for producing a GaN substrate wafer according to any one of [20] to [22], wherein the GaN substrate wafer satisfies any of the conditions selected from the following (1) to (3).
  • (1) Has a diameter of 50 mm or more and 55 mm or less and a thickness of 250 ⁇ m or more and 450 ⁇ m or less
  • (2) Has a diameter of 100 mm or more and 105 mm or less and a thickness of 350 ⁇ m or more and 750 ⁇ m or less
  • the GaN film having a thickness of 800 ⁇ m or less has a region length of 1 ⁇ m or more in the c-axis direction from the upper surface of the GaN film, and the total concentration of donor impurities in the region is 1 ⁇ 10 18 atoms /.
  • the present invention it is possible to provide a high-performance GaN substrate wafer having a high carrier concentration. Further, according to the present invention, it is possible to provide a method for efficiently producing a GaN substrate wafer having a high carrier concentration. Therefore, it can be preferably used for manufacturing a nitride semiconductor device in which a device structure is provided on a GaN substrate having a high carrier concentration.
  • FIG. 1 is a perspective view showing a GaN substrate wafer according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a GaN substrate wafer according to the embodiment.
  • FIG. 3 is a cross-sectional view showing a GaN substrate wafer according to the embodiment.
  • FIG. 4 is a process sectional view for explaining a manufacturing process of a nitride semiconductor device using the GaN substrate wafer according to the embodiment.
  • FIG. 5 is a process sectional view for explaining the GaN substrate wafer manufacturing method according to the embodiment.
  • FIG. 6 is a process sectional view for explaining the GaN substrate wafer manufacturing method according to the embodiment.
  • FIG. 7 is a process sectional view for explaining the GaN substrate wafer manufacturing method according to the embodiment.
  • FIG. 8 is a schematic view showing the basic configuration of the HVPE apparatus.
  • FIG. 9 is a diagram showing the carrier concentration of the GaN substrate wafer produced in the examples.
  • GaN Substrate Wafer An embodiment of the present invention relates to a GaN substrate wafer.
  • the GaN substrate wafer according to the embodiment is a (0001) oriented GaN wafer, and is composed of a first region provided on the N-polar side with the regrowth interface interposed therebetween and a second region provided on the Ga-polar side. ..
  • the minimum thickness of the second region is 20 ⁇ m or more and 300 ⁇ m or less.
  • the second region includes a region in which the total concentration of donor impurities is higher than that of the first region.
  • impurity means a component other than Ga element and N element contained in a GaN substrate.
  • the carrier concentration in at least a part of the region is 1 ⁇ 10 18 cm -3 or more, further 2 ⁇ 10 18 cm -3 or more, further 3 ⁇ 10 18 cm -3 or more, and further 4 ⁇ 10 18 cm ⁇ . It can be 3 or more, even 6 ⁇ 10 18 cm -3 or more, and even 8 ⁇ 10 18 cm -3 or more.
  • the carrier concentration is referred to in the present specification, it means the carrier concentration at room temperature unless otherwise specified.
  • the (0001) oriented GaN wafer is a GaN wafer having a (0001) crystal plane, that is, a main plane (large area plane) parallel to or substantially parallel to the c plane, and is also referred to as a c plane GaN wafer.
  • 1 and 2 show an example of the GaN substrate wafer according to the embodiment.
  • FIG. 1 is a perspective view and
  • FIG. 2 is a cross-sectional view.
  • the GaN substrate wafer 100 shown in FIGS. 1 and 2 is a self-supporting substrate wafer made of only GaN crystals, one of the two main surfaces being an N-polar surface 101 and the other being a Ga polar surface 102.
  • the N-polar surface 101 and the Ga polar surface 102 are parallel to each other.
  • the GaN substrate wafer 100 is oriented (0001), and the inclination of the Ga polar plane 102 from the (0001) crystal plane is 10 degrees or less (including 0 degrees).
  • the inclination may be 0.2 degrees or more.
  • the inclination is preferably 5 degrees or less, more preferably 2.5 degrees or less.
  • the inclination may be 1.5 degrees or less, or may be 1 degree or less.
  • the diameter of the GaN substrate wafer 100 is usually 45 mm or more, and may be 95 mm or more, or 145 mm or more. Typically, it is 50 to 55 mm (about 2 inches), 100 to 105 mm (about 4 inches), 150 to 155 mm (about 6 inches), and the like.
  • the preferred range of thickness of the GaN substrate wafer 100 varies with diameter. When the diameter of the GaN substrate wafer 100 is about 2 inches, the thickness is preferably 250 ⁇ m or more, more preferably 300 ⁇ m or more, further preferably 350 ⁇ m or more, and preferably 450 ⁇ m or less, more preferably 400 ⁇ m or less.
  • the thickness is preferably 350 ⁇ m or more, more preferably 400 ⁇ m or more, and preferably 750 ⁇ m or less, more preferably 650 ⁇ m or less, still more preferably 600 ⁇ m or less.
  • the thickness is preferably 450 ⁇ m or more, more preferably 550 ⁇ m or more, and preferably 800 ⁇ m or less, more preferably 700 ⁇ m or less.
  • the GaN substrate wafer 100 is usually disk-shaped, but in the modified example, the shape of the main surface may be square, rectangular, hexagonal, octagonal, elliptical, or irregular. Good.
  • the diameter can be read as "the shortest length as a straight line passing through the center of gravity on the main surface".
  • the N-polar surface 101 of the GaN substrate wafer 100 is a “back surface” and may be mirror-finished, rough-finished, or matte-finished.
  • the Ga polar surface 102 of the GaN substrate wafer 100 is a “front surface”, and when the GaN substrate wafer 100 is used for manufacturing a nitride semiconductor device, the nitride semiconductor layer is usually placed on the Ga polar surface 102. It is epitaxially grown.
  • the Ga polar surface 102 may be a surface as-grown as it is crystal-grown, but is preferably a surface flattened by processing such as polishing, CMP (Chemical Mechanical Polishing), and etching. (Flat surface).
  • the root mean square (RMS) roughness of the Ga polar plane 102 measured by an atomic force microscope (AFM) is preferably less than 5 nm, more preferably less than 2 nm, still more preferably less than 1 nm in the measurement range of 2 ⁇ m ⁇ 2 ⁇ m. , May be less than 0.5 nm.
  • the Ga polar surface 102 may be a surface formed by cutting, but it is preferably a surface that has been flattened by polishing, CMP, etching, or the like without cutting.
  • the GaN substrate wafer 100 has a regrowth interface 103 between its two main surfaces, and has a first region 110 on the N-polar side and a second region 120 on the Ga-polar side with the regrowth interface 103 interposed therebetween. are doing.
  • the "re-growth interface” means a boundary surface generated when a GaN crystal grows on an arbitrary substrate, and its existence means, for example, a scanning electron microscope cathode luminescence observation or a fluorescence microscope observation of a cross section of a GaN substrate wafer. Can be confirmed by.
  • the regrowth interface 103 is preferably, but not essential, parallel to the Ga polar plane 102.
  • the thickness of the second region 120 is usually minimal at one end in the tilt direction and maximal at the other end. It is preferable that the difference between the thickness of the second region 120 at one end and the thickness at the other end does not exceed 200 ⁇ m.
  • the first region 110 is finally removed. That is, it is assumed that the nitride semiconductor device chip manufactured by using the GaN substrate wafer 100 does not include a portion derived from the first region 110. In such a usage mode, there is no particular requirement for the electrical characteristics of the GaN crystal forming the first region 110.
  • HVPE Hydride Vapor Phase Epitaxy.
  • Si concentration is 5 ⁇ 10 16 atoms / cm 3 or more
  • O concentration is 3 ⁇ 10 16 atoms / cm 3 or less
  • H concentration is 1 ⁇ 10 17 atoms / cm 3 or less
  • Si concentration is less than 1 ⁇ 10 18 atoms / cm 3 .
  • the Si concentration is 5 ⁇ 10 17 atoms / cm 3 or less
  • the O concentration is 2 ⁇ 10 17 atoms / cm 3 or less
  • the H concentration is 5 ⁇ 10 16 atoms.
  • the concentration of each impurity other than / cm 3 or less and Si, O and H can be 5 ⁇ 10 15 atoms / cm 3 or less.
  • "intentional doping” means that a target element is added as a raw material in the process of growing a GaN crystal.
  • the second region 120 is usually grown on the first region 110 with HVPE.
  • the reason why the regrowth interface 103 exists between the first region 110 and the second region 120 is that the step of growing the first region 110 and the step of growing the second region 120 are not continuous.
  • the minimum thickness of the second region 120 is at least 20 ⁇ m, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and may be 100 ⁇ m or more. The reason is that in the process of manufacturing the nitride semiconductor device chip using the GaN substrate wafer 100, after the first region 110 is removed from the substrate wafer 100, the remaining second region 120 supports the structure of the semiconductor device chip. This is so that it can play a role as a substrate.
  • the minimum thickness means the thickness of the portion where the thickness is the minimum.
  • the upper limit of the minimum thickness of the second region 120 is 300 ⁇ m.
  • the thickness of the second region 120 is considered to be the minimum thickness at all points.
  • the main doping region 120 a region within a specific length L from the Ga polar surface 102 of the GaN substrate wafer 100 is defined as the main doping region 120a.
  • the second region 120 is doped so that the total concentration of donor impurities is at least 1 ⁇ 10 18 atoms / cm 3 or more in at least the main doping region 120a.
  • the total concentration of donor impurities is the sum of the concentrations of all types of donor impurities.
  • the specific length L is usually at least 1 ⁇ m, and may be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 50 ⁇ m or more, 75 ⁇ m or more, 100 ⁇ m or more, 150 ⁇ m or more, 200 ⁇ m or more, and the like.
  • the total concentration of donor impurities in at least a portion of the main dope region 120a is preferably 2 ⁇ 10 18 atoms / cm 3 or greater, more preferably 3 ⁇ 10 18 atoms / cm 3 or greater, and 4 ⁇ 10 18 atoms / cm.
  • main-doped region 120a has a higher carrier concentration than the first region 110.
  • the specific length L is determined so that the GaN substrate consisting of only the main doping region 120a can support the structure of the semiconductor device chip.
  • the specific length L is at least 20 ⁇ m, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and may be 100 ⁇ m or more.
  • the minimum thickness t120 of the second region 120 is preferably 1.2 times or less the specific length L.
  • the variation in the total concentration of donor impurities along the c-axis direction in the main doping region 120a is preferably within ⁇ 25%, more preferably within ⁇ 20%, still more preferably within ⁇ 15%, and more from the median. More preferably, it is within ⁇ 10%.
  • the total concentration of donor impurities in the second region 120, including the main doped region 120a is 5 ⁇ 10 19 atoms / cm 3 or less, and even 2 ⁇ 10 19 atoms, to avoid significant deterioration of crystal quality due to excessive doping. / Cm 3 or less.
  • Donor impurities that can be contained in the second region 120 include Group 14 elements such as Si (silicon) and Ge (germanium), and Group 16 elements such as O (oxygen) and S (sulfur).
  • the donor impurity contained at the highest concentration in the second region 120 or the main doped region 120a is preferably Si or Ge, mainly for the following two reasons.
  • Si and Ge are donor impurities that show a high activation rate along with O.
  • facet growth is required to obtain GaN doped with O at a high concentration, whereas GaN doped with Si or Ge at a high concentration can be obtained by c-plane growth.
  • Facet growth is a technique for growing a (0001) oriented GaN film so that the growth surface is full of pits.
  • c-plane growth is the growth of such a GaN film so that the growth surface is flat. Since the through dislocations have the property of gathering at the bottom of the pit, when the second region 120 is formed by facet growth, the uniformity of the through dislocation density on the Ga polar surface 102 is lowered.
  • manufacturers of nitride semiconductor devices prefer GaN substrate wafers with high uniformity of through-dislocation density. Forming the second region 120 by facet growth is also disadvantageous in terms of the productivity of the substrate wafer 100. This is because the faceted-grown GaN film requires more processing time to flatten the surface than the c-plane grown GaN film.
  • the total concentration of donor impurities excluding Si is set to 10% or less, further 5% or less, and further 1% or less of the Si concentration, so that the carrier concentration in the region is the Si concentration. It can be controlled by adjustment.
  • the Si concentration in the region is preferably 4 ⁇ 10 17 atoms / cm 3 or more. is there.
  • the second region 120 is normally grown in HVPE, one or more conditions selected from the following (a') to (c') are satisfied with respect to the impurity concentration thereof.
  • the condition of the second region 120 may be independent of the condition of the first region 110 described above, that is, the conditions may be the same or different from each other.
  • (A') Si concentration is 5 ⁇ 10 16 atoms / cm 3 or more
  • (b') O concentration is 3 ⁇ 10 16 atoms / cm 3 or less
  • c') H concentration is 1 ⁇ 10 17 atoms / cm 3 or less
  • the regrowth interface 103 between the first region 110 and the second region 120 may be a rough surface.
  • the regrowth interface 103 can become a rough surface.
  • the direction from the first region 110 to the second region 120 perpendicular to the regrowth interface 103 is the height direction, and the height difference between the highest point and the lowest point at the regrowth interface is the roughness of the regrowth interface.
  • the roughness r can be, for example, 0.3 ⁇ m or more and 12 ⁇ m or less.
  • the dislocation density on the Ga polar surface 102 of the GaN substrate wafer 100 is 0.5 times or more and less than 2 times, or 2 times or more and less than 5 times, or 5 times or more and 10 times the dislocation density of the first region 110 in the vicinity of the regrowth interface 103. Can be less than.
  • a method for keeping the dislocation density of the Ga polar surface 102 within the above range a method of making the regrowth interface 103 a rough surface can be mentioned.
  • the “neighborhood of the regrowth interface 103” means a region up to 1 ⁇ m from the regrowth interface 103 to the Ga polar surface 102 side. When the regrowth interface 103 is a rough surface, the highest point at the regrowth interface is used as a reference.
  • the edge of the GaN substrate wafer 100 may be chamfered.
  • the substrate wafer 100 may be provided with various markings as necessary, such as an orientation flat or notch for displaying the crystal orientation, and an index flat for facilitating the identification of the front surface and the back surface. it can.
  • the semiconductor device manufactured by using the GaN substrate wafer 100 is basically a nitride semiconductor device.
  • a nitride semiconductor device is a semiconductor device in which the main part of the device structure is formed of a nitride semiconductor.
  • Nitride semiconductors are also called nitride-based III-V group compound semiconductors, group III nitride-based compound semiconductors, GaN-based semiconductors, etc., and include GaN and part or all of GaN gallium in other periodic tables. Includes compounds substituted with Group 13 elements (B, Al, In, etc.).
  • the types of nitride semiconductor devices that can be manufactured using the GaN substrate wafer 100 are not limited, and as an example, light emitting devices such as laser diodes (LD) and light emitting diodes (LEDs), rectifiers, bipolar transistors, and field effect transistors. , Electronic devices such as high electron mobility transistors (HEMTs).
  • a nitride semiconductor device is manufactured using the GaN substrate wafer 100, after the GaN substrate wafer 100 is prepared as shown in FIG. 4 (a), the Ga polar surface 102 thereof is shown in FIG. 4 (b).
  • the epitaxial film 300 including at least the n-type nitride semiconductor layer 310 and the p-type nitride semiconductor layer 320 is grown by the metalorganic vapor phase growth method (MOVPE) to form an epitaxial wafer.
  • MOVPE metalorganic vapor phase growth method
  • the epitaxial wafer is fragmented into a nitride semiconductor device chip, but to thin the epitaxial wafer before fragmentation.
  • the first region 110 of the GaN substrate wafer 100 is removed by a method such as grinding or etching. This thinning process may be performed so that a ring-shaped thick portion remains on the outer peripheral portion of the epitaxial wafer. That is, the first region 110 of the GaN substrate wafer 100 can be removed only in the portion excluding the outer peripheral portion of the epitaxial wafer.
  • the second region 120 is also partially removed from the GaN substrate wafer 100 so that the main doping region 120a is exposed on the N-polar surface side of the thinned epitaxial wafer, and only the main doping region 120a is exposed. Remaining.
  • the epitaxial wafer 300 may be divided after the electrodes are formed on the surface of the exposed main doping region 120a.
  • GaN substrate wafer Next, a method for manufacturing a GaN substrate wafer, which is another embodiment of the present invention, will be described.
  • the manufacturing method described below is a preferred embodiment for manufacturing the GaN substrate wafer according to the embodiment of the present invention described above.
  • the above-mentioned GaN substrate wafer is mentioned as a preferable embodiment of the GaN substrate wafer obtained by the method of manufacturing a GaN substrate wafer described below.
  • the above-mentioned GaN substrate wafer 100 according to the embodiment can be preferably manufactured by using the method described below. This method is applied to the production of a GaN substrate wafer having an N-polar side and a Ga-polar side across a regrowth interface, and has the following steps.
  • a region is provided in which the total concentration of donor impurities is higher than that of the GaN wafer.
  • the step of manufacturing the substrate in the second step it is preferable to perform the following steps in which the first step is added. Therefore, the following first step is optional.
  • a first GaN thick film composed of (0001) oriented GaN that is not intentionally doped is grown on a seed wafer by HVPE, and the first GaN thick film is processed to form at least one first GaN thick film.
  • a second GaN thick film made of (0001) oriented GaN that is not intentionally doped is grown on the first c-plane GaN wafer obtained in the first step by HVPE, and the second GaN thickness is formed.
  • the second step of slicing the second c-plane GaN wafer from the film (Iii) (0001) A third step of growing an oriented GaN film having a thickness of 500 ⁇ m or less on a second c-plane GaN wafer obtained in the second step with HVPE to obtain a laminated structure. However, at least a part of the GaN film is doped so that the total concentration of donor impurities is higher than that of the second c-plane GaN wafer. In the present specification, "on the wafer” is synonymous with "on the surface of the wafer”.
  • the seed wafer 1 shown in FIG. 5 (a) is prepared, and as shown in FIG. 5 (b), the seed wafer 1 is composed of (0001) unintentionally undoped GaN and oriented first.
  • the GaN thick film 2 is grown with HVPE.
  • FIG. 5 (c) at least one first c-plane GaN wafer 3 is obtained by processing the first GaN thick film 2.
  • An example of the seed wafer 1 is a c-plane sapphire wafer, and preferably, a release layer may be provided on the main surface.
  • a GaN layer having a thickness of several hundred nm is grown on a c-plane sapphire wafer with MOVPE via a low temperature buffer layer, and a Ti (titanium) layer having a thickness of several tens nm is further formed on the GaN layer by vacuum deposition.
  • a c-plane sapphire wafer with a release layer is formed by annealing in a mixed gas of 80% H 2 (hydrogen gas) and 20% NH 3 (ammonia) at, for example, 1060 ° C. for 30 minutes. Can be done.
  • the seed wafer 1 may be a c-plane GaN wafer manufactured in a separate process.
  • the first GaN thick film 2 is grown to a thickness sufficient to produce at least one self-supporting c-plane GaN wafer.
  • the first GaN thick film 2 is grown to a thickness of several mm or more, from which at least two first c-plane GaN wafers 3 are sliced.
  • FIG. 6A is a cross-sectional view showing one of the first c-plane GaN wafers 3 produced in the first step.
  • the first c-plane GaN wafer 3 is not limited to the one obtained by the first step.
  • the second step as shown in FIG.
  • the second GaN thick film 4 made of (0001) unintentionally doped GaN on the Ga polar plane of the first c-plane GaN wafer 3 is oriented. Is then grown on HVPE, and then the second c-plane GaN wafer 5 is sliced from the second GaN thick film 4 as shown in FIG. 6 (c).
  • the second GaN thick film 4 is grown to a thickness sufficient to produce at least one second c-plane GaN wafer 5 by processing the second GaN thick film 4.
  • the second GaN thick film 4 is grown to a thickness of several mm or more, from which at least two second c-plane GaN wafers 5 are sliced.
  • the second c-plane GaN wafer 5 has an N-polar plane and a Ga-polar plane parallel to each other as main planes.
  • the Ga polar plane in the second GaN wafer 5 The inclination angle (off-cut angle) and inclination direction (off-cut direction) from the crystal plane of (0001) are preferably the same as the off-cut angle and off-cut direction that the GaN substrate wafer 100 should have, but are essential. is not.
  • the off-cut orientation that the GaN substrate wafer 100 should have varies depending on the requirements of the manufacturer of the semiconductor device that uses the GaN substrate wafer 100, but the second c-plane GaN having various off-cut orientations accordingly. Preparing the wafer 5 may lead to a decrease in the production efficiency of the GaN substrate wafer 100. It should also be noted that the optimum conditions for growing the GaN film 6 with HVPE on the second c-plane GaN wafer 5 in the next third step may change depending on the off-cut orientation of the second c-plane GaN wafer 5. Is.
  • the initial thickness t5i of the second c-plane GaN wafer 5 may be thinner than the thickness normally possessed by the GaN substrate wafer used for manufacturing a nitride semiconductor device. This is because, unlike the GaN substrate wafer, which needs to withstand a semiconductor process including a large number of processes, the second c-plane GaN wafer 5 only needs to be damaged during the next third process. For example, when the diameter of the second c-plane GaN wafer 5 is about 2 inches, its initial thickness t5i is preferably 300 ⁇ m or less, 250 ⁇ m or less, and even 200 ⁇ m or less. By reducing the initial thickness t5i of the second c-plane GaN wafer 5, the number of second c-plane GaN wafers 5 that can be sliced from the second GaN thick film 4 can be increased.
  • a (0001) oriented GaN film 6 having a thickness of 500 ⁇ m or less is grown on the Ga polar surface of the second c-plane GaN wafer 5 with HVPE and laminated. Get the structure. At this time, a regrowth interface is formed between the second c-plane GaN wafer 5 and the GaN film 6.
  • the Ga polar surface of the second c-plane GaN wafer 5 is flattened by appropriately using techniques such as grinding, polishing, and CMP before growing the GaN film 6 (flattening step).
  • the Ga polar surface of the second c-plane GaN wafer 5 may be flattened and then further processed into a rough surface by etching (roughening step) to grow the GaN film 6.
  • etching roughening step
  • the dislocation density of the GaN film 6 is about the same as or higher than that of the second c-plane GaN wafer 5, specifically, 0.5 times or more and less than 2 times the dislocation density on the Ga polar plane of the second c-plane GaN wafer 5. Or it will be a higher value.
  • the advantage of roughening the Ga polar surface of the second c-plane GaN wafer 5 is that the laminated structure formed by the growth of the GaN film 6 is less likely to crack, and the crack occurrence frequency roughens the Ga polar surface. It can be less than 1/10 of the time when it does not turn into.
  • the Ga polar surface of GaN can be roughened without using an etching mask. If the HVPE apparatus used for growing the GaN film 6 is provided with an HCl supply line for etching, the Ga polar surface of the second c-plane GaN wafer 5 is roughened in the reactor of the HVPE apparatus immediately before the growth of the GaN film 6. Can be transformed into.
  • Preferred etching conditions when HCl is used as an etching gas are as follows.
  • the HCl partial pressure is, for example, 0.002-0.05 atm.
  • H 2 partial pressure is, for example, 0.2 ⁇ 0.8 atm.
  • the NH 3 partial pressure is, for example, 0.01 to 0.05 atm.
  • the etching temperature is, for example, 900 to 1050 ° C.
  • the etching time is, for example, 1 to 60 minutes.
  • the roughness of the Ga polar surface of the second c-plane GaN wafer after etching is defined as the height difference between the highest point and the lowest point, the roughness can be, for example, 0.3 to 12 ⁇ m.
  • the roughness of the Ga polar surface of the second c-plane GaN wafer tends to increase with the etching time.
  • the etching time when HCl is used as the etching gas is set so that the roughness of the Ga polar surface does not exceed 0.5 ⁇ m.
  • the second c-plane GaN under the conditions of HCl partial pressure 0.01 to 0.02 atm, H 2 partial pressure 0.05 to 0.08 atm, NH 3 partial pressure 0.01 to 0.03 atm, and temperature 970 to 1000 ° C.
  • the preferable etching time when etching the Ga polar surface of the wafer 5 is 5 minutes or less.
  • the Ga polar surface of the second c-plane GaN wafer 5 may be roughened by forming an etching mask patterned by a photolithography technique and then dry etching. Dot patterns and net patterns are typical examples of suitable patterns for etching masks.
  • the dry etching may be RIE (reactive ion etching) using Cl 2 (chlorine gas) or a chlorine-containing compound as the etching gas.
  • the GaN film 6 is provided with a portion doped so that the total concentration of donor impurities is higher than that of the second c-plane GaN wafer 5.
  • the carrier concentration in at least a part of the portion is 1 ⁇ 10 18 cm -3 or more, further 2 ⁇ 10 18 cm -3 or more, further 3 ⁇ 10 18 cm -3 or more, and further 4 ⁇ 10 18 cm ⁇ . It can be 3 or more, even 6 ⁇ 10 18 cm -3 or more, and even 8 ⁇ 10 18 cm -3 or more.
  • Preferred donor impurities are Si and Ge.
  • the GaN film 6 may be provided with the specific doping region 6a.
  • the upper end (end on the [0001] side) of the specific doped region 6a is preferably the upper surface of the GaN film 6, the region length in the c-axis direction is preferably 1 ⁇ m or more, and the total concentration of donor impurities in the region. Is a region of 1 ⁇ 10 18 atoms / cm 3 or more. In other words, this region length means the thickness (height in the thickness direction) of the region where the total concentration of donor impurities is 1 ⁇ 10 18 atoms / cm 3 or more.
  • the region length of the specific doped region 6a in the c-axis direction can be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 50 ⁇ m or more, 75 ⁇ m or more, 100 ⁇ m or more, 150 ⁇ m or more, 200 ⁇ m or more, and the like.
  • the total concentration of donor impurities in the specific doped region 6a is preferably 2 ⁇ 10 18 atoms / cm 3 or more, more preferably 3 ⁇ 10 18 atoms / cm 3 or more, and 4 ⁇ 10 18 atoms / cm 3 or more, 6 It may be ⁇ 10 18 atoms / cm 3 or more, 8 ⁇ 10 18 atoms / cm 3 or more, and the like.
  • the carrier concentration is higher than that of the second c-plane GaN wafer 5 in at least a part, preferably the whole, of the specific doping region 6a.
  • the GaN film 6 is specified so that a region having a sufficient carrier concentration can be provided on the Ga polar side of the GaN substrate wafer to be manufactured with a thickness of 20 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, and the like.
  • the region length of the dope region 6a in the c-axis direction can be 20 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, and the like. In the preferred embodiment, it is desirable that there is no change in carrier concentration along the c-axis direction within the specific doping region 6a.
  • the variation in the total concentration of donor impurities along the c-axis direction in the specific doped region 6a is preferably within ⁇ 25%, more preferably within ⁇ 20%, still more preferably within ⁇ 15% from the median. More preferably, it is within ⁇ 10%.
  • the GaN film 6 may have an intervening region 6b between the specific doping region 6a and the second c-plane GaN wafer 5.
  • the intervening region 6b is not subject to any restrictions regarding doping.
  • the intervening region 6b can only be partially intentionally doped.
  • the intervening region corresponds to a region of the GaN film 6 that does not correspond to the specific doping region 6a. That is, the total concentration of donor impurities in the intervening region is less than 1 ⁇ 10 18 atoms / cm 3 .
  • a dopant of the same type as the dopant added to the specific doping region 6a may be added to the intervening region 6b at least partially, and the concentration of the dopant approaches the specific doping region 6a within the intervening region 6b. It may increase continuously or gradually as it increases.
  • the thickness of the intervening region 6b may be determined so that the thickness of the GaN film 6 including the specific doped region 6a and the intervening region 6b does not exceed 500 ⁇ m, but is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less. More preferably, it is 20 ⁇ m or less, and may be 10 ⁇ m or less.
  • the total concentration of donor impurities excluding Si is set to 10% or less, further 5% or less, and further 1% or less of the Si concentration, so that the carrier concentration in the same region is the Si concentration. It can be controlled by adjustment.
  • the Si concentration in the region is preferably 4 ⁇ 10 17 atoms / cm 3 or more.
  • the maximum value of the total concentration of donor impurities in the GaN film 6 is 5 ⁇ 10 19 atoms / cm 3 or less, and further 2 ⁇ 10 19 atoms / cm 3 or less, in order to avoid a significant decrease in crystal quality due to excessive doping. Further, it may be 1 ⁇ 10 19 atoms / cm 3 or less.
  • the growth thickness t6g of the GaN film 6 is set between 20 ⁇ m and 500 ⁇ m in consideration of the design thickness of the second region 120 of the GaN substrate wafer. ..
  • the growth thickness t6g of the GaN film 6 may be the same as the design thickness of the second region 120 in the GaN substrate wafer to be manufactured, but is preferably larger than the design thickness. By doing so, the surface of the GaN film 6 can be flattened in the subsequent thinning step.
  • the growth thickness t6g of the GaN film 6 is preferably 50 ⁇ m or more larger than the design thickness of the second region 120, more preferably 100 ⁇ m or more, and preferably 200 ⁇ m or more not exceeding the design thickness.
  • the thickness difference of the GaN film 6 before and after the thinning step is preferably 200 ⁇ m or less.
  • the thickness of the GaN film 6 is reduced by 50 ⁇ m or more in the subsequent thinning step.
  • the thickness difference of the GaN film 6 before and after the thinning step is 50 ⁇ m or more.
  • the GaN film 6 can be formed in a relatively short time, and therefore the by-product NH 4 Cl (ammonium chloride) blocks the exhaust system of the HVPE apparatus. It is possible to grow the GaN film 6 on a large number of second c-plane GaN wafers 5 at a time without worrying about the above. Therefore, the throughput in the third step can be extremely high. Further, the short time required to form the GaN film 6 can also contribute to the reduction of costs associated with cleaning and maintenance of the HVPE reactor. This is because the HVPE reactor deteriorates more slowly and has a longer service life when the time required for one growth step is shorter.
  • NH 4 Cl ammonium chloride
  • a thinning step of thinning the laminated structure obtained in the third step is performed.
  • the thickness of the second c-plane GaN wafer 5 is reduced from the initial thickness t5i to the final thickness t5f
  • the thickness of the GaN film 6 is reduced from the growth thickness t6g to the final thickness t6f.
  • the thinning step only one of the second c-plane GaN wafer 5 and the GaN film 6 may be processed.
  • the thickness of the second c-plane GaN wafer 5 and the GaN film 6 is the first region 110 and the second in the GaN substrate wafer. It is reduced until it matches the design thickness of each region 120.
  • the technique used for processing the second c-plane GaN wafer 5 and / or the GaN film 6 in the thinning step can be appropriately selected from grinding, wrapping, CMP, dry etching, wet etching and the like.
  • the off-cut orientation of the GaN substrate wafer 100 to be manufactured and the off-cut orientation of the second c-plane GaN wafer 5 are the same, the N-polar plane of the laminated structure to be processed, that is, the second c-plane, is used as a reference for the plane orientation.
  • the back surface of the two-c-plane GaN wafer 5 can be used.
  • the off-cut orientation of the GaN substrate wafer 100 to be manufactured is different from that of the second c-plane GaN wafer 5, that is, when at least one of the off-cut angle and the off-cut direction is different, the crystal of the laminated structure to be processed The orientation is confirmed by an X-ray diffractometer.
  • the GaN substrate wafer 100 according to the embodiment can be produced with a high yield.
  • the reason is that there is no step of growing the intentionally doped GaN thick film with HVPE to a thickness on the order of mm, and a step of slicing the grown GaN thick film.
  • the GaN thick film may be grown to a thickness on the order of mm by HVPE, but the first GaN thick film 2 and the second GaN thick film 4 to be grown in these steps are intended. Since it is not specifically doped, morphology abnormalities and cracks are less likely to occur during growth, and the frequency of cracking during slicing is low.
  • the GaN film 6 grown in the third step is intentionally doped, but since the growth thickness of the GaN film 6 is only 500 ⁇ m or less, morphology abnormalities and cracks are unlikely to occur during the growth. Moreover, the GaN film 6 does not need to be sliced. That is, it is not necessary to perform slicing in the thinning step described above. In particular, it is preferable that the GaN film 6 formed in the third section undergoes a thinning step without slicing.
  • the manufacturing method described above it is possible to reduce the variation in the off-cut angle in the main surface of the GaN substrate wafer 100.
  • the reason is that the warpage of the second GaN thick film 4 that is homoepitaxially grown on the first c-plane GaN wafer 3 that has not been intentionally doped can be extremely small.
  • the variation in the off-cut angle can be extremely small.
  • the change in warpage due to stacking the GaN film 6 on the second c-plane GaN wafer 5 in the third step is small, because the growth thickness of the GaN film 6 is as small as 500 ⁇ m or less.
  • the HVPE apparatus 10 shown in FIG. 8 includes a hot wall type reactor 11, a gallium reservoir 12 and a susceptor 13 arranged in the reactor, and a first heater 14 and a second heater 15 arranged outside the reactor. I have.
  • the first heater 14 and the second heater 15 respectively surround the reactor 11 in an annular shape.
  • the reactor 11 is a quartz tube chamber.
  • the reactor 11 there is a first zone Z1 that is mainly heated by the first heater 14, and a second zone Z2 that is mainly heated by the second heater 15.
  • the exhaust pipe PE is connected to the reactor end on the second zone Z2 side.
  • the gallium reservoir 12 arranged in the first zone Z1 is a quartz container having a gas inlet and a gas outlet.
  • the susceptor 13 arranged in the second zone Z2 is formed of, for example, graphite. A mechanism for rotating the susceptor 13 can be arbitrarily provided.
  • NH 3 reacts with GaCl in the second zone Z2, and the resulting GaN crystallizes on the seed placed on the susceptor 13.
  • the doping gas diluted with the carrier gas is led to the second zone Z2 in the reactor 11 through the dopant introduction tube P4.
  • Ammonia introduction pipe P1, hydrogen chloride introduction pipe P2, gallium chloride introduction pipe P3 and dopant introduction pipe P4 are formed of quartz at a portion arranged in the reactor 11.
  • H 2 hydrogen gas
  • N 2 nitrogen gas
  • a mixed gas of H 2 and N 2 is preferably used as the carrier gas for diluting each of NH 3 , HCl and the doping gas.
  • the preferred conditions for growing GaN using the HVPE apparatus 10 are as follows.
  • the temperature of the gallium reservoir is, for example, 500 to 1000 ° C, preferably 700 ° C or higher, and preferably 900 ° C or lower.
  • the susceptor temperature is, for example, 900 to 1100 ° C., preferably 930 ° C. or higher, more preferably 950 ° C. or higher, and preferably 1050 ° C. or lower, more preferably 1020 ° C. or lower.
  • the V / III ratio which is the ratio of the NH 3 partial pressure to the GaCl partial pressure in the reactor, is, for example, 1 to 20, preferably 2 or more, more preferably 3 or more, and preferably 10 or less. .. If the V / III ratio is too large or too small, it causes deterioration of the morphology of the growth surface of GaN. Deterioration of morphology on the growth surface can cause deterioration of crystal quality.
  • the efficiency of incorporation into the GaN crystal is strongly dependent on the crystal orientation of the growth surface.
  • O oxygen
  • Ge germanium
  • the use of a V / III ratio that is too low increases the nitrogen vacancy concentration of the growing GaN crystal.
  • the effect of nitrogen vacancies on a GaN crystal, a GaN substrate using it, or a nitride semiconductor device formed on the GaN substrate is not clear at present, but the concentration is as low as possible because it is a point defect. I think it should be done.
  • GaN growth rate can control the product of the NH 3 partial pressure and GaCl partial pressure in the reactor as a parameter.
  • the rate is, for example, 20 to 200 ⁇ m / h, and particularly when the GaN film 6 is grown in the third step, it is preferably 120 ⁇ m / h or less, more preferably 100 ⁇ m / h or less, and further preferably 80 ⁇ m / h or less. .. This is because a growth rate that is too high deteriorates the surface morphology of the growing GaN.
  • the supply rate of the doping gas is gradually increased to a predetermined value over several minutes to several tens of minutes from the start of supply in order to prevent deterioration of the morphology of the growth surface. Is preferable.
  • the supply of the doping gas is preferably started when the GaN film 6 is grown by at least several ⁇ m.
  • SiH 4 silane
  • SiH 3 Cl monoochlorosilane
  • SiH 2 Cls diichlorosilane
  • SiHCl 3 trichlorosilane
  • SiCl 4 tetrachlorosilane
  • GeH 4 German), GeH 3 Cl (monochrome Rogerman), GeH 2 Cls (dichlorogerman), GeHCl 3 (trichlorogerman) or GeCl 4 (tetrachlorogerman) can be preferably used as the doping gas for Ge doping. ..
  • the molar ratio of H 2 in the carrier gas can affect the impurity concentration of the growing GaN.
  • the molar ratio of H 2 in the carrier gas referred to here is calculated based on the flow rate of each gas type supplied as a carrier gas from outside the reactor into the reactor. Impurities of Si or Ge-doped GaN grown by HVPE on the Ga polar plane of a c-plane GaN wafer cut out from a GaN crystal grown by HVPE on a sapphire substrate at substantially the same growth rate using the same V / III ratio. Table 1 below shows the results of investigating how the concentration changes depending on the molar ratio of H 2 in the carrier gas.
  • the O concentration of Si-doped GaN is 10% or less of the Si concentration when the carrier gas is only N 2 . Since the only donor other than Si is substantially O, this is equivalent to the total concentration of donors excluding Si being 10% or less of the Si concentration. Increasing the molar ratio of H 2 in the carrier gas further lowers the O concentration of Si-doped GaN, which is less than 1% of the Si concentration when the molar ratio is 0.7.
  • the molar ratio of H 2 in the carrier gas when the molar ratio of H 2 in the carrier gas is 0 (zero), the Ge concentration is 10 times or more higher than when the molar ratio is 0.7, and Ge with respect to the Si concentration. The concentration ratio is also higher. Therefore, at first glance, the molar ratio of H 2 carrier gas is lower is preferred going. However, when the molar ratio of H 2 in the carrier gas is 0 and 0.7, as can be seen from the fact that the O concentration is also an order of magnitude higher in the former, the former condition is used. The present inventors have confirmed that the growth surface morphology of GaN is poor and that this is the reason for the high Ge concentration. Under the condition that the molar ratio of H 2 in the carrier gas is too low, a GaN crystal having low Ge concentration uniformity grows.
  • the molar ratio of H 2 in the carrier gas is preferably about 0.3 to 0.7, and the Ge-doped GaN grown in this way has a Ge concentration of 1.
  • the Si concentration is 4 ⁇ 10 17 atoms / cm 3 or more.
  • O concentration of the GaN grown by HVPE tend to decrease with increasing the molar ratio of H 2 carrier gas, 2 ⁇ 10 16 atoms / cm 3 or less, Furthermore, it can be 1 ⁇ 10 16 atoms / cm 3 or less. This is because the growing surface morphology is improved.
  • the GaN grown using the HVPE apparatus 10 may contain O and Si in SIMS detectable concentrations, even when not intentionally doped.
  • the Si source is quartz (SiO 2 ) used in the reactor and piping in the reactor, and the O source is either or both of such quartz and moisture remaining or invading the reactor.
  • the parts arranged in the reactor 11, including the parts not shown in FIG. 8, include SiC (silicon carbide), SiNx (silicon nitride), BN (boron nitride), and alumina. , W (tungsten), Mo (molybdenum) and the like can be used. By doing so, the concentration of each impurity other than Si, O and H in the GaN grown using the HVPE apparatus 10 can be 5 ⁇ 10 15 atoms / cm 3 or less unless intentional doping is performed.
  • the GaN seed was set on the susceptor of the HVPE apparatus.
  • a GaN template substrate on sapphire prepared by MOCVD Metalorganic Vapor Deposition Growth Method
  • MOCVD Metalorganic Vapor Deposition Growth Method
  • the c-plane side was used as the growth plane.
  • the inside of the reactor is filled with a heater installed outside the reactor. It was heated. After the susceptor temperature reached 1000 ° C., the susceptor temperature was kept constant and GaN was grown.
  • the temperature of the gallium reservoir was set to 900 ° C. 69 mol% of the carrier gas supplied into the reactor during growth was H 2 , and the rest was N 2 .
  • GaCl and NH 3 are supplied into the reactor so that the partial pressures are 7.9 ⁇ 10 -3 atm and 0.024 atm, respectively, and a second GaN thick film containing no donor impurities is about 2.5 mm. Grow to thickness. The growth rate of the second GaN thick film calculated from the thickness and the growth time was about 40 ⁇ m / h. Next, this GaN thick film was sliced parallel to the c-plane to obtain a wafer, and then the Ga polar plane of the wafer was flattened by grinding and subsequently subjected to CMP finishing.
  • a second c-plane GaN wafer having a thickness of 350 ⁇ m and containing no donor impurities was prepared. If the thickness of the second GaN thick film is increased by lengthening the growth time, two or more second c-plane GaN wafers can be obtained.
  • the partial pressures of GaCl, NH 3 and SiH 2 Cl 2 are 7.9 ⁇ 10 -3 atm, 0.024 atm and 1.9 ⁇ 10, respectively. It was supplied into the reactor so as to be -8 atm, and a GaN film doped with Si as a donor impurity was grown to a thickness of about 0.4 mm. The surface of the GaN film was finished by polishing without slicing to obtain a Si-doped GaN substrate wafer having a diameter of about 60 mm. The growth rate of the Si-doped GaN film calculated from the thickness and the growth time was about 40 ⁇ m / h.
  • the GaN substrate wafer obtained by the above manufacturing method is a two-layer substrate having a regrowth interface, a first region on the N-polar side and a second region on the Ga-polar side, and is a Ga-polar side, that is, a GaN film.
  • the carrier concentration was 4.0 ⁇ 10 18 cm -3 .
  • the carrier concentration on the Ga polar side was 1.0 ⁇ 10 18 cm -3 or more over the entire surface, and was stable at approximately 4.0 ⁇ 10 18 cm -3 except for the end. .. In addition, no cracks or surface roughness were observed.
  • the growth time of the Si-doped GaN film was extended about 6 times to make the thickness of the GaN film about 2.5 mm.
  • the obtained GaN substrate wafer two-layer substrate
  • an abnormal growth portion was generated.
  • the abnormal growth portion referred to here deep dents due to SiNx were scattered in some parts in the surface of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

ドーピングにより増加されたキャリア濃度を有するGaN基板上にデバイス構造が設けられた窒化物半導体デバイスの製造に好ましく使用され得る、改善された生産性を有するGaN基板ウエハおよびその製造方法を提供すること。(0001)配向したGaNウエハであって、再成長界面を挟んでN極性側に設けられた第一領域と、Ga極性側に設けられた第二領域とを有し、該第二領域の最小厚さが20μm以上300μm以下であり、該第二領域には、該第一領域よりドナー不純物総濃度の高い領域が含まれる、GaN基板ウエハ。第二領域のうち、当該GaN基板ウエハのGa極性側の主面から特定長以内にある領域を主ドープ領域と定め、少なくとも該主ドープ領域においてドナー不純物の総濃度が1×1018atoms/cm以上であるように該第二領域をドーピングしてもよい。

Description

GaN基板ウエハおよびGaN基板ウエハの製造方法
 本発明は、主として、GaN基板ウエハとその製造方法に関する。GaN基板ウエハとは、GaN(窒化ガリウム)からなる基板ウエハである。基板ウエハとは、主に半導体デバイスの製造プロセスにおいて基板として使用されるウエハである。
 現在商業的に生産されているInGaN系のレーザーダイオード(LD)に用いられている基板は、比較的高いキャリア濃度を有するGaN基板である。最近では、かかるGaN基板を用いた縦型GaNパワーデバイスの研究開発が盛んである。
 サファイアウエハ上にGaN厚膜をHVPE(Hydride Vapor Phase Epitaxy)で成長させるときに、該GaN厚膜の下部に不純物濃度の低い領域、上部に不純物濃度の高い領域を設けると、該GaN厚膜を該サファイアウエハから剥離させたときに、裏面側に不純物濃度が低い領域を有し、おもて面側に不純物濃度が高い領域を有するGaN基板ウエハが得られる(特許文献1、特許文献2)。
特開2007-70154号公報 特開2007-251178号公報
 特許文献1または特許文献2に開示された方法で、裏面側に不純物濃度が低い領域を有し、おもて面側に不純物濃度が高い領域を有するGaN基板ウエハを製造する場合、1枚のGaN基板ウエハを作る毎に、1枚のサファイアウエハ上にHVPEでGaN厚膜を成長させる必要がある。そのため、特許文献1または特許文献2に開示された方法は製造効率が高いものとは言えない。
 本発明者は、低不純物濃度のGaNウエハを予め製造したうえで、その上に高不純物濃度のGaN層を特定の厚みで成長させれば、不純物濃度を高めた領域をおもて面側にのみ有するGaN基板ウエハを、より効率良く生産できることを見出した。
 本発明はかかる着想に基づきなされたものであり、その実施形態には以下が含まれる。
[1](0001)配向したGaN基板ウエハであって、再成長界面を挟んでN極性側に設けられた第一領域と、Ga極性側に設けられた第二領域とを有し、該第二領域の最小厚さが20μm以上300μm以下であり、該第二領域には、該第一領域よりドナー不純物総濃度の高い領域が含まれる、GaN基板ウエハ。
[2]前記第一領域よりドナー不純物総濃度の高い領域の少なくとも一部のキャリア濃度が、1×1018cm-3以上である、前記[1]に記載のGaN基板ウエハ。
[3]前記GaN基板ウエハが、以下の(1)~(3)から選ばれる何れかの条件を充たす、前記[1]または[2]に記載のGaN基板ウエハ。
(1)50mm以上55mm以下の直径と250μm以上450μm以下の厚さを有する。
(2)100mm以上105mm以下の直径と350μm以上750μm以下の厚さを有する。
(3)150mm以上155mm以下の直径と450μm以上800μm以下の厚さを有する。
[4]前記第二領域は、ドナー不純物総濃度が1×1018atoms/cm以上である主ドープ領域を有する、前記[1]~[3]のいずれかに記載のGaN基板ウエハ。
[5]前記第二領域において、GaN極性側の主面から特定長以内の領域が前記主ドープ領域であり、かつ、該特定長が1μm以上である、前記[4]に記載のGaN基板ウエハ。
[6]前記第二領域の最小厚さが前記特定長の1.2倍以下である、前記[5]に記載のGaN基板ウエハ。
[7]前記主ドープ領域において、c軸方向に沿ったドナー不純物総濃度の変動が、中央値から±25%の範囲内である、前記[4]~[6]のいずれかに記載のGaN基板ウエハ。
[8]前記第二領域に最も高い濃度で含有される不純物がSiまたはGeである、前記[1]~[7]のいずれかに記載のGaN基板ウエハ。
[9]前記主ドープ領域に最も高い濃度で含有される不純物がSiまたはGeである、[4]~[7]のいずれかに記載のGaN基板ウエハ。
[10]前記主ドープ領域において、Siを除くドナー不純物の総濃度がSi濃度の10%以下である、前記[4]~[9]のいずれかに記載のGaN基板ウエハ。
[11]前記主ドープ領域において、Ge濃度が1×1018atoms/cm以上であり、かつSi濃度が4×1017atoms/cm以上である、前記[4]~[10]のいずれかに記載のGaN基板ウエハ。
[12]前記第一領域および第二領域の少なくとも何れか一方の不純物濃度が、下記の(a)~(c)から選ばれる一以上の条件を充たす、前記[1]~[11]のいずれかに記載のGaN基板ウエハ。
(a)Si濃度が5×1016atoms/cm以上
(b)O濃度が3×1016atoms/cm以下
(c)H濃度が1×1017atoms/cm以下
[13]前記第一領域において、Si濃度が1×1018atoms/cm未満である、前記[1]~[12]のいずれかに記載のGaN基板ウエハ。
[14]前記再成長界面が粗面である、前記[1]~[13]のいずれかに記載のGaN基板ウエハ。
[15]Ga極性側の主面における転位密度が、前記再成長界面の近傍における前記第一領域の転位密度の0.5倍以上2倍未満である、前記[1]~[14]のいずれかに記載のGaN基板ウエハ。
[16]Ga極性側の主面が平坦面である、前記[1]~[15]のいずれかに記載のGaN基板ウエハ。
[17]前記[1]~[16]のいずれかに記載のGaN基板ウエハと、該GaN基板ウエハのGa極性面上にエピタキシャル成長した窒化物半導体層と、を有するエピタキシャルウエハ。
[18]前記[1]~[16]のいずれかに記載のGaN基板ウエハを準備する工程と、該GaN基板ウエハのGa極性面上に窒化物半導体層を成長させてエピタキシャルウエハを得る工程と、を有するエピタキシャルウエハの製造方法。
[19]前記[1]~[16]のいずれかに記載のGaN基板ウエハを準備する工程と、該GaN基板ウエハのGa極性面上に窒化物半導体層を成長させてエピタキシャルウエハを得る工程と、前記GaN基板ウエハの前記第一領域の少なくとも一部を除去する工程と、を有する半導体デバイスの製造方法。
[20]基板上に、(0001)配向した第二GaN厚膜をHVPEにより成長させた後、該第二GaN厚膜をスライスすることにより第二c面GaNウエハを得る第二工程と、該第二c面GaNウエハ上に、(0001)配向した厚さ500μm以下のGaN膜をHVPEにより成長させる第三工程とを有し、かつ、該GaN膜は、該第二c面GaNウエハよりもドナー不純物の総濃度が高い領域を有する、GaN基板ウエハの製造方法。
[21]再成長界面を挟んでN極性側に設けられた第一領域とGa極性側に設けられた第二領域とを有するGaN基板ウエハを製造する方法であって、
 (i)意図的にドーピングされていないGaNからなり(0001)配向した第一GaN厚膜を、シードウエハ上にHVPEで成長させた後、該第一GaN厚膜から少なくとも1枚の第一c面GaNウエハを得る第一工程と、
 (ii)意図的にドーピングされていないGaNからなり(0001)配向した第二GaN厚膜を、該第一c面GaNウエハ上にHVPEで成長させた後、該第二GaN厚膜をスライスすることにより、第二c面GaNウエハを得る第二工程と、
 (iii)(0001)配向した厚さ500μm以下のGaN膜を、該第二c面GaNウエハ上にHVPEで成長させる第三工程とを有し、かつ、
 該GaN膜は、該第二c面GaNウエハよりもドナー不純物の総濃度が高い領域を有する、GaN基板ウエハ製造方法。
[22]前記第二c面GaNウエハよりもドナー不純物の総濃度が高い領域の少なくとも一部のキャリア濃度が、1×1018cm-3以上である、前記[20]または[21]に記載のGaN基板ウエハの製造方法。
[23]前記GaN基板ウエハが、以下の(1)~(3)から選ばれる何れかの条件を充たす、前記[20]~[22]のいずれかに記載のGaN基板ウエハの製造方法。
(1)50mm以上55mm以下の直径と250μm以上450μm以下の厚さを有する
(2)100mm以上105mm以下の直径と350μm以上750μm以下の厚さを有する
(3)150mm以上155mm以下の直径と450μm以上800μm以下の厚さを有する
[24]前記GaN膜が、該GaN膜の上面からc軸方向の領域長が1μm以上であり、かつ、領域内のドナー不純物の総濃度が1×1018atoms/cm以上である、特定ドープ領域を有する、前記[20]~[23]のいずれかに記載のGaN基板ウエハの製造方法。
[25]前記特定ドープ領域のc軸方向の領域長が、20μm以上である、前記[24]に記載のGaN基板ウエハの製造方法。
[26]前記特定ドープ領域内において、c軸方向に沿ったドナー不純物の総濃度の変動が中央値±25%以内である、前記[24]または[25]に記載のGaN基板ウエハの製造方法。
[27]前記GaN膜が、前記特定ドープ領域と前記第二c面GaNウエハとの間に厚さ50μm以下の介在領域を有する、前記[24]~[26]のいずれかに記載のGaN基板ウエハの製造方法。
[28]前記特定ドープ領域が最も高い濃度で含有する不純物がSiまたはGeである、前記[24]~[27]のいずれかに記載のGaN基板ウエハの製造方法。
[29]前記特定ドープ領域において、Siを除くドナーの総濃度がSi濃度の10%以下である、前記[24]~[28]のいずれかに記載のGaN基板ウエハの製造方法。
[30]前記特定ドープ領域において、Ge濃度が1×1018atoms/cm以上であり、かつSi濃度が4×1017atoms/cm以上である、前記[24]~[29]のいずれかに記載のGaN基板ウエハの製造方法。
[31]前記第三工程の後に前記GaN膜を薄化する薄化工程を有する、前記[20]~[30]のいずれかに記載のGaN基板ウエハの製造方法。
[32]前記薄化工程の前後における前記GaN膜の厚さ差が200μm以下である、前記[31]に記載のGaN基板ウエハの製造方法。
[33]前記GaN基板ウエハと前記第二c面GaNウエハのオフカット方位が異なる、前記[20]~[32]のいずれかに記載のGaN基板ウエハの製造方法。
[34]前記第二工程と前記第三工程との間に、該第二工程で得られた前記第二c面GaNウエハのGa極性面を平坦化する平坦化工程、更にエッチングにより粗化する粗化工程を有する、前記[20]~[33]のいずれかに記載のGaN基板ウエハの製造方法。
[35]
 前記薄化工程において、スライス加工することなく前記GaN膜を薄化する、[31]~[34]のいずれかに記載のGaN基板ウエハの製造方法。
 本発明によれば、高いキャリア濃度を有し、高性能なGaN基板ウエハを提供することができる。また、本発明によれば、高いキャリア濃度を有するGaN基板ウエハを効率よく製造する方法を提供することができる。そのため、高いキャリア濃度を有するGaN基板上にデバイス構造が設けられた窒化物半導体デバイスの製造に好ましく使用され得る。
図1は、実施形態に係るGaN基板ウエハを示す斜視図である。 図2は、実施形態に係るGaN基板ウエハを示す断面図である。 図3は、実施形態に係るGaN基板ウエハを示す断面図である。 図4は、実施形態に係るGaN基板ウエハを用いた窒化物半導体デバイスの製造工程を説明するための工程断面図である。 図5は、実施形態に係るGaN基板ウエハ製造方法を説明するための工程断面図である。 図6は、実施形態に係るGaN基板ウエハ製造方法を説明するための工程断面図である。 図7は、実施形態に係るGaN基板ウエハ製造方法を説明するための工程断面図である。 図8は、HVPE装置の基本構成を示す模式図である。 図9は、実施例で作成したGaN基板ウエハのキャリア濃度を示す図である。
 以下に本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。
 本発明において「X~Y」(X,Yは任意の数字)と表現した場合、特記しない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含する。
1.GaN基板ウエハ
 本発明の一実施形態はGaN基板ウエハに関する。
 実施形態に係るGaN基板ウエハは、(0001)配向したGaNウエハであり、再成長界面を挟んでN極性側に設けられた第一領域と、Ga極性側に設けられた第二領域とからなる。該第二領域は、最小厚さが20μm以上300μm以下である。該第二領域には、ドナー不純物の総濃度が該第一領域よりも高い領域が含まれる。なお、本明細書において「不純物」とは、GaN基板に含有されるGa元素及びN元素以外の成分を意味する。
 該領域の少なくとも一部におけるキャリア濃度は、1×1018cm-3以上、更には2×1018cm-3以上、更には3×1018cm-3以上、更には4×1018cm-3以上、更には6×1018cm-3以上、更には8×1018cm-3以上であり得る。なお、本明細書でキャリア濃度に言及するときは、特に断らない限り、室温でのキャリア濃度を意味する。
 (0001)配向したGaNウエハとは、(0001)結晶面すなわちc面と平行または略平行な主面(大面積面)を有するGaNウエハであり、c面GaNウエハともいう。
 図1および図2に、実施形態に係るGaN基板ウエハの一例を示す。図1は斜視図であり、図2は断面図である。
 図1および図2に示すGaN基板ウエハ100は、GaN結晶のみからなる、自立した基板ウエハであり、その2つの主面の一方はN極性面101、他方はGa極性面102である。
 N極性面101とGa極性面102は互いに平行である。
 GaN基板ウエハ100は(0001)配向しており、Ga極性面102の(0001)結晶面からの傾斜は10度以下(0度を含む)である。該傾斜は、0.2度以上であってもよい。また、該傾斜は、好ましくは5度以下、より好ましくは2.5度以下である。該傾斜は、1.5度以下であってもよく、1度以下であってもよい。
 GaN基板ウエハ100の直径は、通常45mm以上であり、95mm以上、あるいは145mm以上であってもよい。典型的には50~55mm(約2インチ)、100~105mm(約4インチ)、150~155mm(約6インチ)等である。
 GaN基板ウエハ100の厚さの好ましい範囲は、直径に応じて変わる。
 GaN基板ウエハ100の直径が約2インチのとき、厚さは好ましくは250μm以上、より好ましくは300μm以上、更に好ましくは350μm以上であり、また、好ましくは450μm以下、より好ましくは400μm以下である。
 GaN基板ウエハ100の直径が約4インチのとき、厚さは好ましくは350μm以上、より好ましくは400μm以上であり、また、好ましくは750μm以下、より好ましくは650μm以下、更に好ましくは600μm以下である。
 GaN基板ウエハ100の直径が約6インチのとき、厚さは好ましくは450μm以上、より好ましくは550μm以上であり、また、好ましくは800μm以下、より好ましくは700μm以下である。
 上記の通り、GaN基板ウエハ100は通常円盤形であるが、変形例では、主面の形状が正方形、長方形、六角形、八角形、楕円形などであってもよく、不定形であってもよい。このような変形例の場合は、前記の直径を「主面において重心を通る直線として最も短い長さ」と読み替えることができる。
 GaN基板ウエハ100のN極性面101は「裏面」であり、鏡面仕上げされていてもよいし、粗面或いは艶消し仕上げされていてもよい。
 GaN基板ウエハ100のGa極性面102は「おもて面」であり、GaN基板ウエハ100が窒化物半導体デバイスの製造に使用されるときは、通常、Ga極性面102上に窒化物半導体層がエピタキシャル成長される。
 Ga極性面102は結晶成長させたままの状態(as-grown)の表面であってもよいが、好ましくは、研磨、CMP(Chemical Mechanical Polishing)、エッチング等の加工を受けて平坦化された表面(平坦面)である。原子間力顕微鏡(AFM)で測定されるGa極性面102の根二乗平均(RMS)粗さは、測定範囲2μm×2μmにおいて好ましくは5nm未満、より好ましくは2nm未満、更に好ましくは1nm未満であり、0.5nm未満であってもよい。Ga極性面102は切削によって形成された面であってもよいが、切削せずに研磨、CMP、エッチング等の平坦化のみを施された面であることが好ましい。
 GaN基板ウエハ100は、その2つの主面の間に再成長界面103を有しており、再成長界面103を挟んでN極性側に第一領域110、Ga極性側に第二領域120を有している。「再成長界面」とは、任意の基板上にGaN結晶が成長した際に生じる境界面を意味し、その存在は、例えばGaN基板ウエハの断面を走査電子顕微鏡カソードルミネッセンス観察または蛍光顕微鏡観察することによって確認することができる。
 再成長界面103は、Ga極性面102と平行であることが好ましいが、必須ではない。再成長界面103がGa極性面102から傾斜しているとき、通常、第二領域120の厚さは傾斜方向の一方端で最小となり、他方端で最大となる。第二領域120の該一方端における厚さと該他方端における厚さの差が200μmを超えないことが好ましい。
 GaN基板ウエハ100を用いた窒化物半導体デバイスの製造過程では、最終的に第一領域110が除去されることが想定される。つまり、GaN基板ウエハ100を用いて製造される窒化物半導体デバイスチップには、第一領域110に由来する部分が含まれないことが想定される。このような使用態様であれば、第一領域110をなすGaN結晶の電気特性に特段の要求事項はない。
 第一領域110をなすGaN結晶は通常、HVPEで成長されるので、その不純物濃度に関し、次の(a)~(c)から選ばれる一以上の条件を充たす。本明細書においてHVPEとは、ハイドライド気相成長法(Hydride Vapor Phase Epitaxy)を意味する。
(a)Si濃度が5×1016atoms/cm以上
(b)O濃度が3×1016atoms/cm以下
(c)H濃度が1×1017atoms/cm以下
 好ましくは、第一領域110をなすGaN結晶は意図的ドープされないので、そのSi濃度は1×1018atoms/cm未満である。
 HVPEで成長される、意図的ドープされていないGaNにおいては、Si濃度が5×1017atoms/cm以下、O濃度が2×1017atoms/cm以下、H濃度が5×1016atoms/cm以下、Si、OおよびH以外の各不純物の濃度が5×1015atoms/cm以下であり得る。なお「意図的なドープ」とは、GaN結晶を成長させる過程で、対象とする元素を原料として添加することを意味する。
 第二領域120は通常、第一領域110の上にHVPEで成長される。第一領域110と第二領域120の間に再成長界面103が存在するのは、第一領域110を成長させる工程と第二領域120を成長させる工程とが連続していないからである。
 第二領域120の最小厚さは、少なくとも20μm、好ましくは40μm以上、より好ましくは50μm以上であり、100μm以上であってもよい。その理由は、GaN基板ウエハ100を用いた窒化物半導体デバイスチップの製造過程で、基板ウエハ100から第一領域110が除去された後、残った第二領域120が該半導体デバイスチップの構造を支える基板としての役割を担い得るようにするためである。最小厚さとは、厚さが最小である箇所の厚さを意味する。
 第二領域120の最小厚さの上限は、300μmである。
 Ga極性面102と再成長界面103が平行で、第二領域120の厚さが一様であるときは、第二領域120の厚さは全ての箇所で最小厚さであるとみなされる。
 第二領域120においては、GaN基板ウエハ100のGa極性面102から特定長L以内にある領域が主ドープ領域120aと定められる。第二領域120は、少なくとも主ドープ領域120aでドナー不純物の総濃度が1×1018atoms/cm以上となるようにドーピングされる。ドナー不純物の総濃度とは、全ての種類のドナー不純物の濃度を足し合わせた濃度である。
 特定長Lは、通常少なくとも1μmであり、5μm以上、10μm以上、20μm以上、25μm以上、50μm以上、75μm以上、100μm以上、150μm以上、200μm以上などであり得る。
 主ドープ領域120aの少なくとも一部におけるドナー不純物の総濃度は、好ましくは2×1018atoms/cm以上、より好ましくは3×1018atoms/cm以上であり、4×1018atoms/cm以上、6×1018atoms/cm以上、8×1018atoms/cm以上などであってもよい。
 主ドープ領域120aの少なくとも一部、好ましくは全体で、キャリア濃度が第一領域110よりも高い。
 好ましい実施形態においては、GaN基板ウエハ100を用いた半導体デバイスチップの製造過程で、GaN基板ウエハ100から第一領域110に加えて第二領域120も一部除去し、主ドープ領域120aを露出させたときでも、主ドープ領域120aのみからなるGaN基板が該半導体デバイスチップの構造を支え得るように、特定長Lが定められる。この実施形態では、特定長Lは少なくとも20μm、好ましくは40μm以上、より好ましくは50μm以上であり、100μm以上であってもよい。
 該好ましい実施形態では、第二領域120の最小厚さt120が、特定長Lの1.2倍以下であることが好ましい。
 該好ましい実施形態では、主ドープ領域120a内において、c軸方向に沿ったキャリア濃度の変動が小さいことが望ましい。従って、主ドープ領域120a内におけるc軸方向に沿ったドナー不純物の総濃度の変動は、中央値から好ましくは±25%以内、より好ましくは±20%以内、更に好ましくは±15%以内、より更に好ましくは±10%以内である。
 主ドープ領域120aを含め、第二領域120におけるドナー不純物の総濃度は、過剰なドーピングによる結晶品質の著しい低下を避けるために、5×1019atoms/cm以下、更には2×1019atoms/cm以下とされ得る。
 キャリア濃度を高めるために第二領域120に添加されるドーパントがドナー不純物である理由は、GaNにおいてはドナーの方が一般にアクセプターより高い活性化率を示すからである。活性化率とは、ドープされたGaNにおける、ドーパントの濃度に対するキャリア濃度の比率のことである。
 第二領域120が含有し得るドナー不純物には、Si(ケイ素)、Ge(ゲルマニウム)等の14族元素と、O(酸素)、S(硫黄)等の16族元素がある。
 第二領域120または主ドープ領域120aに最も高い濃度で含有されるドナー不純物は、好ましくはSiまたはGeであり、それは主に次の2つの理由による。
 第一に、SiとGeは、Oと並んで高い活性化率を示すドナー不純物である。
 第二に、Oを高濃度でドープしたGaNを得るためにはファセット成長が必要であるのに対し、SiまたはGeを高濃度でドープしたGaNはc面成長により得ることができる。
 ファセット成長とは、(0001)配向したGaN膜を、成長表面がピットだらけとなるように成長させる技法である。対照的に、かかるGaN膜を成長表面が平らになるように成長させるのが、c面成長である。
 貫通転位はピットの底に集まる性質を持つため、第二領域120をファセット成長で形成した場合、Ga極性面102における貫通転位密度の均一性が低下する。しかしながら、窒化物半導体デバイスの製造者が好むのは、貫通転位密度の均一性が高いGaN基板ウエハである。
 第二領域120をファセット成長で形成することは、基板ウエハ100の生産性の点でも不利である。なぜなら、ファセット成長させたGaN膜は、c面成長させたGaN膜に比べ、表面を平坦化するためにより多くの加工時間を要するからである。
 一例では、主ドープ領域120aにおいて、Siを除くドナー不純物の総濃度をSi濃度の10%以下、更には5%以下、更には1%以下とすることで、同領域におけるキャリア濃度をSi濃度の調節により制御可能とし得る。
 好ましい態様としては、主ドープ領域120aがGeでドープされ、その濃度が1×1018atoms/cm以上であるとき、同領域におけるSi濃度は、好ましくは4×1017atoms/cm以上である。
 第二領域120は通常、HVPEで成長されるので、その不純物濃度に関し、次の(a’)~(c’)から選ばれる一以上の条件を充たす。なお、第二領域120の条件は、上述の第一領域110の条件から独立したものであってよい、つまり、互いに同じ条件であっても、異なる条件であってもよい。
(a’)Si濃度が5×1016atoms/cm以上
(b’)O濃度が3×1016atoms/cm以下
(c’)H濃度が1×1017atoms/cm以下
 一例では、図3に示すように、第一領域110と第二領域120との間の再成長界面103が粗面であってもよい。例えば、第二領域120を成長させる前に、第一領域110の表面をエッチングにより粗面化したとき、再成長界面103は粗面となり得る。再成長界面103に垂直に第一領域110から第二領域120に向かう方向を高さ方向とし、該再成長界面における最も高い点と最も低い点の間の高低差を該再成長界面の粗さrとしたとき、該粗さrは例えば0.3μm以上12μm以下であり得る。
 GaN基板ウエハ100のGa極性面102における転位密度は、再成長界面103の近傍における第一領域110の転位密度の0.5倍以上2倍未満、2倍以上5倍未満または5倍以上10倍未満であり得る。Ga極性面102の転位密度を上記範囲内とするための方法としては、再成長界面103を粗面とする方法が挙げられる。「再成長界面103の近傍」とは、再成長界面103からGa極性面102側へ1μm迄の領域を意味する。再成長界面103が粗面である場合は、該再成長界面における最も高い点を基準とする。
 その他、図1~3には示されていないが、GaN基板ウエハ100のエッジは面取りされていてもよい。また、基板ウエハ100には、結晶の方位を表示するオリエンテーション・フラットまたはノッチ、おもて面と裏面の識別を容易にするためのインデックス・フラット等、必要に応じて様々なマーキングを施すことができる。
 GaN基板ウエハ100を用いて製造される半導体デバイスは、基本的に窒化物半導体デバイスである。窒化物半導体デバイスとは、デバイス構造の主要部を窒化物半導体で形成した半導体デバイスである。
 窒化物半導体は、窒化物系III-V族化合物半導体、III族窒化物系化合物半導体、GaN系半導体などとも呼ばれ、GaNを含む他、GaNのガリウムの一部または全部を他の周期表第13族元素(B、Al、In等)で置換した化合物を含む。
 GaN基板ウエハ100を用いて製造し得る窒化物半導体デバイスの種類に限定はなく、一例として、レーザーダイオード(LD)、発光ダイオード(LED)などの発光デバイス、および、整流器、バイポーラトランジスタ、電界効果トランジスタ、高電子移動度トランジスタ(HEMT)などの電子デバイスが挙げられる。
 GaN基板ウエハ100を用いて窒化物半導体デバイスを製造するときは、図4(a)に示すようにGaN基板ウエハ100が準備された後、そのGa極性面102上に、図4(b)に示すように、例えばn型窒化物半導体層310とp型窒化物半導体層320を少なくとも含むエピタキシャル膜300が有機金属気相成長法(MOVPE)で成長されることにより、エピタキシャルウエハが形成される。
 エッチング加工、イオン注入、電極形成、保護膜形成等を含み得る半導体プロセスが実行された後、エピタキシャルウエハは分断されて窒化物半導体デバイスチップとなるが、分断の前にエピタキシャルウエハを薄化するために、通常、図4(c)に示すように、GaN基板ウエハ100の第一領域110が研削、エッチング等の方法で除去される。
 この薄化加工は、エピタキシャルウエハの外周部にリング状の厚肉部が残るように行われてもよい。つまり、エピタキシャルウエハの外周部を除いた部分においてのみ、GaN基板ウエハ100の第一領域110が除去され得る。
 図4(c)では、薄化後のエピタキシャルウエハのN極性面側に主ドープ領域120aが露出するよう、GaN基板ウエハ100から第二領域120も部分的に除去され、主ドープ領域120aのみが残っている。露出した主ドープ領域120aの表面に電極が形成された後、エピタキシャルウエハ300が分断されてもよい。
2.GaN基板ウエハの製造方法
 次に、本発明の別の実施形態であるGaN基板ウエハの製造方法について説明する。以下に記載する製造方法は、前記した本発明の一実施形態であるGaN基板ウエハを製造する好ましい一形態である。また、以下に記載するGaN基板ウエハの製造方法によって得られるGaN基板ウエハの好ましい態様は、前記したGaN基板ウエハが挙げられる。
 実施形態に係る前述のGaN基板ウエハ100は、好ましくは、以下に説明する方法を用いて製造し得る。この方法は、再成長界面を挟んでN極性側とGa極性側を有するGaN基板ウエハの製造に適用されるものであって、次の工程を有する。
(ii’)基板上に、(0001)配向した第二GaN厚膜をHVPEにより成長させた後、該第二GaN厚膜をスライスすることにより第二c面GaNウエハを得る第二工程と、
(iii’)該第二c面GaNウエハ上に、(0001)配向した厚さ500μm以下のGaN膜をHVPEにより成長させる第三工程とを有し、該GaN膜には、該第二c面GaNウエハよりもドナー不純物の総濃度が高い領域が設けられる。
 更に、上記第二工程における基板を製造する工程として第一工程を加えた以下の工程とすることが好ましい。従って下記の第一工程は任意である。
(i)意図的にドーピングされていないGaNからなり(0001)配向した第一GaN厚膜を、シードウエハ上にHVPEで成長させるとともに、該第一GaN厚膜を加工して少なくとも1枚の第一c面GaNウエハを得る第一工程。
(ii)意図的にドーピングされていないGaNからなり(0001)配向した第二GaN厚膜を、第一工程で得た第一c面GaNウエハ上にHVPEで成長させるとともに、該第二GaN厚膜から第二c面GaNウエハをスライスする第二工程。
(iii)(0001)配向した厚さ500μm以下のGaN膜を、第二工程で得た第二c面GaNウエハ上にHVPEで成長させて積層構造体を得る第三工程。但し、該GaN膜の少なくとも一部は、第二c面GaNウエハよりもドナー不純物の総濃度が高くなるようにドーピングされる。
 本明細書において「ウエハ上に」は「ウエハの表面に」と同義である。
 以下、上記の第一工程から第三工程を更に詳しく説明する。
 第一工程では、図5(a)に示すシードウエハ1を準備のうえ、その上に、図5(b)に示すように、意図的にドーピングされていないGaNからなり(0001)配向した第一GaN厚膜2をHVPEで成長させる。更に、図5(c)に示すように、第一GaN厚膜2を加工することにより、少なくとも1枚の第一c面GaNウエハ3を得る。
 シードウエハ1の一例はc面サファイアウエハであり、好ましくは、主面に剥離層を設けたものであってもよい。例えば、c面サファイアウエハ上にMOVPEで低温バッファ層を介して厚さ数百nmのGaN層を成長させ、更に、該GaN層上に真空蒸着で厚さ数十nmのTi(チタン)層を形成した後、80%のH(水素ガス)と20%のNH(アンモニア)の混合ガス中、例えば1060℃で30分間アニールすることにより、剥離層付きのc面サファイアウエハを形成することができる。
 シードウエハ1は、別途工程で製造したc面GaNウエハであってもよい。
 第一GaN厚膜2は、当該第一GaN厚膜2を加工することにより、自立したc面GaNウエハを少なくとも1枚作製できるだけの厚さに成長させる。好ましい例では、第一GaN厚膜2を数mm以上の厚さに成長させて、そこから少なくとも2枚の第一c面GaNウエハ3をスライスする。
 図6(a)は、第一工程で作製された第一c面GaNウエハ3の一枚を示す断面図である。但し第一c面GaNウエハ3は、第一工程により得られたものに限定されない。
 第二工程では、図6(b)に示すように、第一c面GaNウエハ3のGa極性面上に、意図的にドーピングされていないGaNからなり(0001)配向した第二GaN厚膜4を、HVPEで成長させ、次いで、図6(c)に示すように、該第二GaN厚膜4から第二c面GaNウエハ5をスライスする。第二GaN厚膜4は、当該第二GaN厚膜4を加工することにより、少なくとも1枚の第二c面GaNウエハ5を作製できるだけの厚さに成長させる。好ましい例では、第二GaN厚膜4を数mm以上の厚さに成長させて、そこから少なくとも2枚の第二c面GaNウエハ5をスライスする。
 第二c面GaNウエハ5は、図7(a)に断面図を示すように、互いに平行なN極性面およびGa極性面を主面として有する。
 実施形態に係る前述のGaN基板ウエハ100を製造する場合には、第二工程で第二GaN厚膜4から第二c面GaNウエハ5をスライスする際に、第二GaNウエハ5におけるGa極性面の(0001)結晶面からの傾斜角度(オフカット角)および傾斜方向(オフカット方向)を、GaN基板ウエハ100が有すべきオフカット角およびオフカット方向と同じとすることが好ましいが、必須ではない。
 GaN基板ウエハ100が有すべきオフカット方位は、GaN基板ウエハ100を使用する半導体デバイスの製造者の要求に応じて様々であるが、それに応じて様々なオフカット方位を有する第二c面GaNウエハ5を準備することは、GaN基板ウエハ100の生産効率の低下につながり得る。第二c面GaNウエハ5のオフカット方位によって、次の第三工程で第二c面GaNウエハ5上にHVPEでGaN膜6を成長させるときの最適条件が変わり得ることにも、注意が必要である。
 第二c面GaNウエハ5の初期厚t5iは、窒化物半導体デバイスの製造に用いられるGaN基板ウエハが通常有する厚さより薄くてもよい。なぜなら、多数の工程からなる半導体プロセスに耐える必要があるGaN基板ウエハと異なり、第二c面GaNウエハ5は次の第三工程までの間に破損しなければよいだけからである。
 例えば、第二c面GaNウエハ5の直径が約2インチであるとき、その初期厚t5iは好ましくは300μm以下であり、250μm以下、更には200μm以下であってもよい。
 第二c面GaNウエハ5の初期厚t5iを小さくすることで、第二GaN厚膜4からスライスし得る第二c面GaNウエハ5の枚数を増やし得る。
 第三工程では、図7(b)に示すように、第二c面GaNウエハ5のGa極性面上に、(0001)配向した厚さ500μm以下のGaN膜6をHVPEで成長させて、積層構造体を得る。このとき、第二c面GaNウエハ5とGaN膜6の間には再成長界面が形成される。
 通常、第二c面GaNウエハ5のGa極性面は、GaN膜6を成長させる前に研削、研磨、CMP等の技法を適宜用いて平坦に加工される(平坦化工程)。
 一例では、第二c面GaNウエハ5のGa極性面を平坦化した後に、更にエッチングで粗面に加工したうえで(粗化工程)、GaN膜6を成長させてもよい。
 第二c面GaNウエハ5の転位密度が10cm-2前半以下であるとき、そのGa極性面を粗化しても、その上に成長するGaN膜6の転位密度が顕著に減少することはない。むしろGaN膜6の転位密度は、第二c面GaNウエハ5と同程度以上、具体的には、第二c面GaNウエハ5のGa極性面における転位密度の0.5倍以上2倍未満、あるいはそれよりも高い値となる。
 第二c面GaNウエハ5のGa極性面を粗化したときの利点は、GaN膜6の成長により形成される積層構造体が割れ難くなることであり、クラック発生頻度は該Ga極性面を粗化しないときの10分の1を下回り得る。
 HCl(塩化水素)をエッチングガスに用いると、GaNのGa極性面はエッチングマスクを用いることなく粗化することが可能である。GaN膜6の成長に用いるHVPE装置にエッチング用のHCl供給ラインを設ければ、該HVPE装置のリアクター内で、GaN膜6の成長直前に、第二c面GaNウエハ5のGa極性面を粗化することができる。
 HClをエッチングガスに用いるときの好ましいエッチング条件は次の通りである。
 HCl分圧は、例えば0.002~0.05atmである。
 H分圧は、例えば0.2~0.8atmである。
 NH分圧は、例えば0.01~0.05atmである。NHを流すことで、GaNのGa極性面はより均一に粗化される。
 エッチング温度は、例えば900~1050℃である。
 エッチング時間は、例えば1~60分である。
 エッチング後の第二c面GaNウエハのGa極性面の粗さを、最も高い点と最も低い点の間の高低差と定義したとき、該粗さは例えば0.3~12μmとし得る。
 HClを用いたエッチングでは、エッチング時間以外の条件を固定したとき、エッチング時間とともに、第二c面GaNウエハのGa極性面の粗さは大きくなる傾向がある。
 奇妙なことに、Ga極性面を粗さが0.6~12μmとなるようHClでエッチングしたとき、その上に成長させたGaN膜6の転位密度は第二c面GaNウエハ5のそれより数倍から最大で10倍程度まで高くなる。従って、製造効率も考慮すると、HClをエッチングガスに用いるときのエッチング時間は、Ga極性面の粗さが0.5μmを超えないように定めることが好ましい。
 例えば、HCl分圧0.01~0.02atm、H分圧0.05~0.08atm、NH分圧0.01~0.03atm、温度970~1000℃という条件で第二c面GaNウエハ5のGa極性面をエッチングするときの好ましいエッチング時間は5分以下である。
 一例では、第二c面GaNウエハ5のGa極性面を、フォトリソグラフィ技法によりパターニングしたエッチングマスクを形成したうえで、ドライエッチングすることにより粗面としてもよい。ドットパターンとネットパターンが、エッチングマスクの好適なパターンの典型例である。ドライエッチングは、Cl(塩素ガス)または含塩素化合物をエッチングガスに用いたRIE(反応性イオンエッチング)であってもよい。
 GaN膜6には、ドナー不純物の総濃度が第二c面GaNウエハ5よりも高くなるようにドーピングした部分が設けられる。該部分の少なくとも一部におけるキャリア濃度は、1×1018cm-3以上、更には2×1018cm-3以上、更には3×1018cm-3以上、更には4×1018cm-3以上、更には6×1018cm-3以上、更には8×1018cm-3以上であり得る。好ましく用いられるドナー不純物はSiおよびGeである。
 好適例では、GaN膜6に特定ドープ領域6aを設けてもよい。特定ドープ領域6aは、その上端([0001]側の端)がGaN膜6の上面であり、c軸方向の領域長が1μm以上であることが好ましく、かつ、領域内においてドナー不純物の総濃度が1×1018atoms/cm以上の領域である。換言すれば、この領域長は、ドナー不純物の総濃度が1×1018atoms/cm以上である領域の厚さ(厚み方向の高さ)を意味する。
 特定ドープ領域6aの、c軸方向の領域長は、5μm以上、10μm以上、20μm以上、25μm以上、50μm以上、75μm以上、100μm以上、150μm以上、200μm以上などであり得る。
 特定ドープ領域6aにおけるドナー不純物の総濃度は、好ましくは2×1018atoms/cm以上、より好ましくは3×1018atoms/cm以上であり、4×1018atoms/cm以上、6×1018atoms/cm以上、8×1018atoms/cm以上などであってもよい。
 特定ドープ領域6aの少なくとも一部、好ましくは全体で、キャリア濃度が第二c面GaNウエハ5よりも高い。
 好ましい実施形態においては、製造すべきGaN基板ウエハのGa極性側に、十分なキャリア濃度を有する領域を20μm以上、50μm以上、100μm以上などの厚さで設け得るように、GaN膜6に設ける特定ドープ領域6aのc軸方向の領域長を20μm以上、50μm以上、100μm以上などとすることができる。
 該好ましい実施形態では、特定ドープ領域6a内において、c軸方向に沿ったキャリア濃度の変動が無いことが望ましい。従って、特定ドープ領域6a内におけるc軸方向に沿ったドナー不純物の総濃度の変動は、中央値から好ましくは±25%以内、より好ましくは±20%以内、更に好ましくは±15%以内、より更に好ましくは±10%以内である。
 GaN膜6は、特定ドープ領域6aと第二c面GaNウエハ5との間に介在領域6bを有し得る。介在領域6bはドーピングに関して何の制約も受けない。例えば、介在領域6bは、一部のみが意図的にドーピングされ得る。ここで介在領域とは、GaN膜6において特定ドープ領域6aに該当しない領域に相当する。すなわち介在領域のドナー不純物の総濃度は1×1018atoms/cm未満である。
 一例では、特定ドープ領域6aに添加するドーパントと同種のドーパントを、介在領域6bに少なくとも部分的に添加してもよく、更に、該ドーパントの濃度は、介在領域6b内で特定ドープ領域6aに近付くにつれて連続的または段階的に増加していてもよい。
 介在領域6bの厚さは、特定ドープ領域6aと介在領域6bを合わせたGaN膜6の厚さが500μmを超えないように定めればよいが、好ましくは50μm以下であり、より好ましくは40μm以下、更に好ましくは20μm以下であり、10μm以下であってもよい。
 一例では、特定ドープ領域6aにおいて、Siを除くドナー不純物の総濃度をSi濃度の10%以下、更には5%以下、更には1%以下とすることで、同領域におけるキャリア濃度をSi濃度の調節により制御可能とし得る。
 特定ドープ領域6aがGeでドープされ、その濃度が1×1018atoms/cm以上であるとき、同領域におけるSi濃度は、好ましくは4×1017atoms/cm以上である。
 GaN膜6におけるドナー不純物の総濃度の最大値は、過剰なドーピングによる結晶品質の著しい低下を避けるために、5×1019atoms/cm以下、更には2×1019atoms/cm以下、更には1×1019atoms/cm以下とされ得る。
 実施形態に係る前述のGaN基板ウエハ100を製造する場合、GaN膜6の成長厚みt6gは、該GaN基板ウエハの第二領域120の設計厚みを考慮して、20μmから500μmの間で設定される。
 GaN膜6の成長厚t6gは、製造すべきGaN基板ウエハにおける第二領域120の設計厚と同じでもよいが、好ましくは該設計厚より大きくする。そうすることで、後の薄化工程においてGaN膜6の表面の平坦化加工が可能となるからである。この場合、GaN膜6の成長厚t6gは、該第二領域120の設計厚より50μm以上大きいことが好ましく、100μm以上大きいことがより好ましく、また、該設計厚を200μm以上超えないことが好ましい。換言すれば、薄化工程の前後におけるGaN膜6の厚さ差が200μm以下であることが好ましい。
 GaN膜6の成長厚t6gが、第二領域120の設計厚より50μm以上大きいとき、後の薄化工程ではGaN膜6の厚さが50μm以上減じられる。換言すれば、薄化工程の前後におけるGaN膜6の厚さ差が50μm以上となる。
 成長厚t6gが500μmを超えないことから、GaN膜6は比較的短時間で形成することができ、それ故に、副生物であるNHCl(塩化アンモニウム)がHVPE装置の排気システムを閉塞させることを心配することなく、一度に多数の第二c面GaNウエハ5上にGaN膜6を成長させることが可能である。よって、第三工程におけるスループットは極めて高いものとなり得る。
 更に、GaN膜6の形成に要する時間が短いことは、HVPEリアクターの洗浄とメンテナンスに関連するコストの削減にも寄与し得る。なぜなら、HVPEリアクターは、1回の成長工程の所要時間が短いときの方が劣化の進行が遅く、使用寿命が長くなるからである。
 第三工程の後、必要に応じて、図7(c)に示すように、第三工程で得た積層構造体を薄化する薄化工程が行なわれる。
 図7(c)では、第二c面GaNウエハ5の厚さが初期厚t5iから最終厚t5fに減じられるとともに、GaN膜6の厚さが成長厚t6gから最終厚t6fに減じられているが、薄化工程では第二c面GaNウエハ5とGaN膜6のいずれか一方のみが加工されてもよい。
 実施形態に係る前述のGaN基板ウエハ100を製造する場合には、薄化工程において、第二c面GaNウエハ5とGaN膜6の厚さが、該GaN基板ウエハにおける第一領域110および第二領域120の設計厚とそれぞれ一致するまで減じられる。
 薄化工程において第二c面GaNウエハ5および/またはGaN膜6の加工に用いる技法は、研削、ラッピング、CMP、ドライエッチング、ウェットエッチング等から適宜選択することができる。
 製造すべきGaN基板ウエハ100のオフカット方位と、第二c面GaNウエハ5のオフカット方位とが同じであるときは、面方位の基準として、加工すべき積層構造体のN極性面すなわち第二c面GaNウエハ5の裏面が用いられ得る。
 製造すべきGaN基板ウエハ100のオフカット方位が、第二c面GaNウエハ5のそれと異なるとき、すなわちオフカット角とオフカット方向の少なくともいずれかが異なるときは、加工すべき積層構造体の結晶方位がX線回折装置で確認される。
 以上に説明した製造方法を用いることにより、実施形態に係るGaN基板ウエハ100を歩留りよく生産することができる。
 その理由は、意図的にドーピングしたGaN厚膜をHVPEでmmオーダーの厚さに成長させる工程、および、そのように成長させたGaN厚膜をスライス加工する工程が、存在しないことによる。
 第一工程および第二工程では、GaN厚膜をHVPEでmmオーダーの厚さに成長させてもよいが、これらの工程で成長させる第一GaN厚膜2および第二GaN厚膜4は、意図的にドーピングされないので、成長中にモホロジー異常やクラックが発生し難く、また、スライス中に割れる頻度も低い。
 一方、第三工程で成長させるGaN膜6は意図的にドーピングされるが、GaN膜6の成長厚は500μm以下に過ぎないので、成長中にモホロジー異常やクラックが発生し難い。しかも、GaN膜6はスライス加工する必要がない。すなわち、前記した薄化工程においてスライス加工を施す必要がない。特に、第三で形成されたGaN膜6はスライス加工することなく薄化工程を経ることが好ましい。
 更に、以上に説明した製造方法によれば、GaN基板ウエハ100の主面内におけるオフカット角のバラツキを小さくすることが可能である。
 理由は、意図的にドーピングしていない第一c面GaNウエハ3上に、意図的にドーピングせずホモエピタキシャル成長される第二GaN厚膜4の反りは、極めて小さいものとなり得ること、それゆえに、その第二GaN厚膜4からスライスされる第二c面GaNウエハ5において、オフカット角のバラツキが極めて小さくなり得ることにある。第三工程で第二c面GaNウエハ5上にGaN膜6を積層することによる反りの変化は小さく、これは、GaN膜6の成長厚が500μm以下と小さいことによる。
 上述の方法でGaN基板ウエハ100を製造するにあたり、第一工程~第三工程で使用し得るHVPE装置について、図8を参照しつつ以下に説明する。
 図8に示すHVPE装置10は、ホットウォール型のリアクター11と、該リアクター内に配置されるガリウム溜め12およびサセプター13と、該リアクターの外部に配置される第一ヒーター14および第二ヒーター15を備えている。第一ヒーター14および第二ヒーター15は、それぞれ、リアクター11を環状に取り囲んでいる。
 リアクター11は石英管チャンバーである。リアクター11内には、主に第一ヒーター14で加熱される第一ゾーンZ1と、主に第二ヒーター15で加熱される第二ゾーンZ2がある。排気管PEは第二ゾーンZ2側のリアクター端に接続される。
 第一ゾーンZ1に配置されるガリウム溜め12は、ガス入口とガス出口を有する石英容器である。
 第二ゾーンZ2に配置されるサセプター13は、例えばグラファイトで形成される。サセプター13を回転させる機構は任意に設けることができる。
 HVPE装置10でGaNを成長させるには、サセプター13上にシードを置いたうえで、第一ヒーター14および第二ヒーター15でリアクター11内を加熱するとともに、キャリアガスで希釈されたNH(アンモニア)をアンモニア導入管P1を通して第二ゾーンZ2に供給し、また、キャリアガスで希釈されたHCl(塩化水素)を塩化水素導入管P2を通してガリウム溜め12に供給する。このHClはガリウム溜め12の中の金属ガリウムと反応し、生じたGaCl(塩化ガリウム)が塩化ガリウム導入管P3を通して第二ゾーンZ2に運ばれる。
 第二ゾーンZ2でNHとGaClが反応し、生じるGaNがサセプター13上に置かれたシード上で結晶化する。
 成長するGaNをドープするときは、キャリアガスで希釈されたドーピングガスをドーパント導入管P4を通してリアクター11内の第二ゾーンZ2に導く。
 アンモニア導入管P1、塩化水素導入管P2、塩化ガリウム導入管P3およびドーパント導入管P4は、リアクター11内に配置される部分が石英で形成される。
 NH、HClおよびドーピングガスのそれぞれを希釈するキャリアガスには、H(水素ガス)、N(窒素ガス)またはHとNの混合ガスが好ましく用いられる。
 HVPE装置10を用いてGaNを成長させるときの好ましい条件は、次の通りである。
 ガリウム溜めの温度は、例えば500~1000℃であり、好ましくは700℃以上、また、好ましくは900℃以下である。
 サセプター温度は、例えば900~1100℃であり、好ましくは930℃以上、より好ましくは950℃以上であり、また、好ましくは1050℃以下、より好ましくは1020℃以下である。
 リアクター内のNH分圧とGaCl分圧との比であるV/III比は、例えば1~20であり、好ましくは2以上、より好ましくは3以上であり、また、好ましくは10以下である。
 V/III比は大き過ぎても小さ過ぎても、GaNの成長表面のモホロジーが悪化する原因となる。成長表面のモホロジー悪化は、結晶品質の低下の原因となり得る。
 ある種の不純物では、GaN結晶への取り込み効率が、成長表面の結晶方位に強く依存する。成長表面のモホロジーが良好でない条件で成長させたGaN結晶の内部では、かかる不純物の濃度の均一性が低下する。これは、モホロジーの悪い成長表面には、様々な方位のファセットが存在することによる。
 GaN結晶への取り込み効率が成長表面の結晶方位により異なる不純物の典型例はO(酸素)であるが、Ge(ゲルマニウム)も同様の傾向があることを本発明者等は見出している。後述するように、第三工程でGaN膜6をGeドープするとき、キャリアガス中のHのモル比を下げ過ぎない方がよいのは、このことに関係している。
 その他として、低過ぎるV/III比の使用は、成長するGaN結晶の窒素空孔濃度を増加させる。窒素空孔がGaN結晶やそれを用いたGaN基板、あるいはそのGaN基板上に形成される窒化物半導体デバイスに与える影響は今のところ明らかではないが、点欠陥であることから、濃度はできるだけ低くすべきと考えられる。
 GaNの成長レートは、リアクター内のNH分圧とGaCl分圧の積をパラメータとして制御できる。該レートは例えば20~200μm/hであり、特に第三工程でGaN膜6を成長させるときは、好ましくは120μm/h以下、より好ましくは100μm/h以下、更に好ましくは80μm/h以下である。高過ぎる成長レートは成長するGaNの表面モホロジーを悪化させるからである。
 第三工程でGaN膜6を意図的にドーピングするとき、成長表面のモホロジー悪化を防ぐために、ドーピングガスの供給レートは、供給開始から数分ないし数十分かけて徐々に所定値まで増加させることが好ましい。
 同じ理由から、ドーピングガスの供給は、GaN膜6を少なくとも数μm成長させた時点で開始することが好ましい。
 SiドーピングのためのドーピングガスにはSiH(シラン)、SiHCl(モノクロロシラン)、SiHCls(ジクロロシラン)、SiHCl(トリクロロシラン)またはSiCl(テトラクロロシラン)を好ましく使用し得る。
 GeドーピングのためのドーピングガスにはGeH(ゲルマン)、GeHCl(モノクロロゲルマン)、GeHCls(ジクロロゲルマン)、GeHCl(トリクロロゲルマン)またはGeCl(テトラクロロゲルマン)を好ましく使用し得る。
 キャリアガス中のHのモル比は、成長するGaNの不純物濃度に影響し得る。ここでいうキャリアガス中のHのモル比は、リアクター外からリアクター内にキャリアガスとして供給される各ガス種の流量に基づいて算出される。
 サファイア基板上にHVPEで成長させたGaN結晶から切り出したc面GaNウエハのGa極性面上に、同じV/III比を用いて略同じ成長レートでHVPEにより成長させたSiまたはGeドープGaNの不純物濃度が、キャリアガス中のHのモル比によりどのように変化するかを調べた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、SiドープGaNのO濃度は、キャリアガスがNのみのときSi濃度の10%以下である。Si以外のドナーは実質的にOのみなので、これはSiを除くドナーの総濃度がSi濃度の10%以下であることに等しい。キャリアガス中のHのモル比を上げると、SiドープGaNのO濃度は更に低くなり、該モル比が0.7のときでSi濃度の1%未満となる。
 一方、GeドープGaNでは、キャリアガス中のHのモル比が0(ゼロ)のとき、該モル比が0.7のときに比べ、Ge濃度が10倍以上高く、また、Si濃度に対するGe濃度の比もより高い。従って、一見すると、キャリアガス中のHのモル比は低い方が好ましそうである。
 しかし、キャリアガス中のHのモル比が0のときと0.7のときとでは、前者の方がO濃度も1桁高いことから分かるように、前者の条件を用いたときの方がGaNの成長表面モホロジーは悪く、Ge濃度が高いのもそのせいであることを本発明者等は確認している。キャリアガス中のHのモル比が低過ぎる条件では、Ge濃度の均一性が低いGaN結晶が成長する。
 従って、GeドープGaNを成長させるときは、キャリアガス中のHのモル比を0.3~0.7程度とすることが好ましく、そうして成長させたGeドープGaNでは、Ge濃度が1×1018atoms/cm以上のとき、Si濃度が4×1017atoms/cm以上である。
 SiとGeのいずれでドープしたときも、HVPEで成長されるGaNのO濃度は、キャリアガス中のHのモル比を上げると低下する傾向があり、2×1016atoms/cm以下、更には1×1016atoms/cm以下となり得る。これは、成長中の表面モホロジーが改善されるためである。
 HVPE装置10を用いて成長されるGaNは、意図的にドーピングしないときであっても、OおよびSiをSIMSで検出可能な濃度で含有し得る。Si源は、リアクターおよびリアクター内の配管に用いられる石英(SiO)であり、O源は、かかる石英と、リアクター内に残留または侵入した水分の、いずれかまたは両方である。
 図8では図示が省略されている部品を含め、リアクター11内に配置される部品には、石英とカーボンの他に、SiC(炭化珪素)、SiNx(窒化ケイ素)、BN(窒化ホウ素)、アルミナ、W(タングステン)、Mo(モリブデン)などで形成されたものを用いることができる。そうすることで、HVPE装置10を用いて成長されるGaNにおける、Si、OおよびHを除く各不純物の濃度は、意図的なドーピングをしない限り、5×1015atoms/cm以下とし得る。
 以下に実施例を示し、本発明を更に具体的に説明する。但し、本発明はこれらの実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の応用が可能である。
[実施例]
<第二c面GaNウエハの作成(第二工程)>
 まずGaNシードをHVPE装置のサセプター上にセットした。GaNシードとしては、MOCVD(有機金属化学気相成長法)により作成したサファイア上のGaNテンプレート基板を用い、c面側を成長面とした。
 次いで、N、HおよびNHを、それぞれの分圧が0.67atm、0.31atmおよび0.02atmとなるようにリアクター内に供給しながら、リアクターの外側に設置したヒーターによってリアクター内を加熱した。
 サセプター温度が1000℃に到達した後は、サセプター温度を一定に保持し、GaNを成長させた。ガリウム溜めの温度は900℃に設定した。成長時にリアクター内に供給するキャリアガスは69モル%をHとし、残りをNとした。
 GaClおよびNHをそれぞれの分圧が7.9×10-3atmおよび0.024atmとなるようにリアクター内に供給し、ドナー不純物を含有していない第二GaN厚膜を約2.5mmの厚さに成長させた。厚さと成長時間から算出した第二GaN厚膜の成長レートは約40μm/hであった。
 次いで、このGaN厚膜をc面に平行にスライスしてウエハを得た後、該ウエハのGa極性面に、研削による平坦化とそれに続くCMP仕上げを施した。該ウエハのN極性面側のスライスダメージは、エッチングにより除去した。更に、ウエハをカットすることにより、厚さ350μmのドナー不純物を含有していない第二c面GaNウエハを作成した。
 なお、成長時間を長くすることにより第二GaN厚膜の厚さを厚くすれば、第二c面GaNウエハを2枚以上得ることができる。
<GaN基板ウエハの作製(第三工程)>
 前記第二c面GaNウエハをシードとして、c面側を成長面としてHVPE装置のサセプター上にセットした。
 次いで、N、HおよびNHを、それぞれの分圧が0.25atm、0.73atmおよび0.02atmとなるようにリアクター内に供給しながら、リアクターの外側に設置したヒーターによってリアクター内を加熱した。
 サセプター温度が1000℃に到達した後は、サセプター温度を一定に保持し、GaNを成長させた。ガリウム溜めの温度は900℃に設定した。成長時にリアクター内に供給するキャリアガスは、73モル%をHとし、残りをNとした。
 成長開始直後から1分間は、粗面化として、HClおよびNHをそれぞれの分圧が1.7×10-2atmおよび0.024atmとなるようにリアクター内に供給し、意図的なドーピングガスの供給は行わなかった。
 粗面化の後60分間は、GaClおよびNHをそれぞれの分圧が7.9×10-3atmおよび0.024atmとなるようにリアクター内に供給し、意図的なドーピングガスの供給は行わなかった。
 成長開始から61分後、リアクター内へのSiHClの供給を開始した。SiHClの供給レートは5分間かけて徐々に増加させた。
 SiHClの供給レートが所定値に達した後は、GaCl、NHおよびSiHClを、それぞれの分圧が7.9×10-3atm、0.024atmおよび1.9×10-8atmとなるようにリアクター内に供給し、ドナー不純物としてSiをドープしたGaN膜を約0.4mmの厚さに成長させた。GaN膜の面はスライスすることなく、研磨することによって仕上げ、直径約60mmのSiドープGaN基板ウエハを得た。
 厚さと成長時間から算出したSiドープGaN膜の成長レートは約40μm/hであった。
 上記の製造方法により得られたGaN基板ウエハは、再成長界面を有し、N極性側に第一領域、Ga極性側に第二領域を有する2層基板であり、Ga極性側すなわちGaN膜のキャリア濃度は4.0×1018cm-3であった。図9に示す通り、Ga極性側は全面に亘ってキャリア濃度は1.0×1018cm-3以上であり、端部を除けば概ね4.0×1018cm-3で安定していた。また、クラックの発生や、表面荒れは見られなかった。
[参考例]
 上記実施例において、SiをドープしたGaN膜の成長時間を約6倍に延長することにより、GaN膜の厚さを約2.5mmとした。得られたGaN基板ウエハ(2層基板)は、異常成長部の発生が確認された。ここで言う異常成長部とは、基板面内のいくつかの部分において、SiNxを起因とする深い窪みが散見された。
 以上、本発明を具体的な実施形態に即して説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。本明細書に記載された各実施形態は、発明の趣旨を逸脱しない範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。
1 シードウエハ
2 第一GaN厚膜
3 第一c面GaNウエハ
4 第二GaN厚膜
5 第二c面GaNウエハ
6 GaN膜
6a 特定ドープ領域
6b 介在領域
10 HVPE装置
11 リアクター
12 ガリウム溜め
13 サセプター
14 第一ヒーター
15 第二ヒーター
100 GaN基板ウエハ
101 N極性面
102 Ga極性面
103 再成長界面
110 第一領域
120 第二領域
120a 主ドープ領域
200 エピタキシャル膜
210 n型窒化物半導体層
220 p型窒化物半導体層
L 特定長

Claims (35)

  1.  (0001)配向したGaN基板ウエハであって、再成長界面を挟んでN極性側に設けられた第一領域と、Ga極性側に設けられた第二領域とを有し、該第二領域の最小厚さが20μm以上300μm以下であり、該第二領域には、該第一領域よりドナー不純物総濃度の高い領域が含まれる、GaN基板ウエハ。
  2.  前記第一領域よりドナー不純物総濃度の高い領域の少なくとも一部のキャリア濃度が、1×1018cm-3以上である、請求項1に記載のGaN基板ウエハ。
  3.  前記GaN基板ウエハが、以下の(1)~(3)から選ばれる何れかの条件を充たす、請求項1または2に記載のGaN基板ウエハ。
    (1)50mm以上55mm以下の直径と250μm以上450μm以下の厚さを有する。
    (2)100mm以上105mm以下の直径と350μm以上750μm以下の厚さを有する。
    (3)150mm以上155mm以下の直径と450μm以上800μm以下の厚さを有する。
  4.  前記第二領域は、ドナー不純物総濃度が1×1018atoms/cm以上である主ドープ領域を有する、請求項1~3のいずれか一項に記載のGaN基板ウエハ。
  5.  前記第二領域において、GaN極性側の主面から特定長以内の領域が前記主ドープ領域であり、かつ、該特定長が1μm以上である、請求項4に記載のGaN基板ウエハ。
  6.  前記第二領域の最小厚さが前記特定長の1.2倍以下である、請求項5に記載のGaN基板ウエハ。
  7.  前記主ドープ領域において、c軸方向に沿ったドナー不純物総濃度の変動が、中央値から±25%の範囲内である、請求項4~6のいずれか一項に記載のGaN基板ウエハ。
  8.  前記第二領域に最も高い濃度で含有される不純物がSiまたはGeである、請求項1~7のいずれか一項に記載のGaN基板ウエハ。
  9.  前記主ドープ領域に最も高い濃度で含有される不純物がSiまたはGeである、請求項4~7のいずれか一項に記載のGaN基板ウエハ。
  10.  前記主ドープ領域において、Siを除くドナー不純物の総濃度がSi濃度の10%以下である、請求項4~9のいずれか一項に記載のGaN基板ウエハ。
  11.  前記主ドープ領域において、Ge濃度が1×1018atoms/cm以上であり、かつSi濃度が4×1017atoms/cm以上である、請求項4~10のいずれか一項に記載のGaN基板ウエハ。
  12.  前記第一領域および第二領域の少なくとも何れか一方の不純物濃度が、下記の(a)~(c)から選ばれる一以上の条件を充たす、請求項1~11のいずれか一項に記載のGaN基板ウエハ。
    (a)Si濃度が5×1016atoms/cm以上
    (b)O濃度が3×1016atoms/cm以下
    (c)H濃度が1×1017atoms/cm以下
  13.  前記第一領域において、Si濃度が1×1018atoms/cm未満である、請求項1~12のいずれか一項に記載のGaN基板ウエハ。
  14.  前記再成長界面が粗面である、請求項1~13のいずれか一項に記載のGaN基板ウエハ。
  15.  Ga極性側の主面における転位密度が、前記再成長界面の近傍における前記第一領域の転位密度の0.5倍以上2倍未満である、請求項1~14のいずれか一項に記載のGaN基板ウエハ。
  16.  Ga極性側の主面が平坦面である、請求項1~15のいずれか一項に記載のGaN基板ウエハ。
  17.  請求項1~16のいずれか一項に記載のGaN基板ウエハと、該GaN基板ウエハのGa極性面上にエピタキシャル成長した窒化物半導体層と、を有するエピタキシャルウエハ。
  18.  請求項1~16のいずれか一項に記載のGaN基板ウエハを準備する工程と、該GaN基板ウエハのGa極性面上に窒化物半導体層を成長させてエピタキシャルウエハを得る工程と、を有するエピタキシャルウエハの製造方法。
  19.  請求項1~16のいずれか一項に記載のGaN基板ウエハを準備する工程と、該GaN基板ウエハのGa極性面上に窒化物半導体層を成長させてエピタキシャルウエハを得る工程と、前記GaN基板ウエハの前記第一領域の少なくとも一部を除去する工程と、を有する半導体デバイスの製造方法。
  20.  基板上に、(0001)配向した第二GaN厚膜をHVPEにより成長させた後、該第二GaN厚膜をスライスすることにより第二c面GaNウエハを得る第二工程と、
     該第二c面GaNウエハ上に、(0001)配向した厚さ500μm以下のGaN膜をHVPEにより成長させる第三工程とを有し、かつ、
     該GaN膜は、該第二c面GaNウエハよりもドナー不純物の総濃度が高い領域を有する、GaN基板ウエハの製造方法。
  21.  再成長界面を挟んでN極性側に設けられた第一領域とGa極性側に設けられた第二領域とを有するGaN基板ウエハを製造する方法であって、
     (i)意図的にドーピングされていないGaNからなり(0001)配向した第一GaN厚膜を、シードウエハ上にHVPEで成長させた後、該第一GaN厚膜から少なくとも1枚の第一c面GaNウエハを得る第一工程と、
     (ii)意図的にドーピングされていないGaNからなり(0001)配向した第二GaN厚膜を、該第一c面GaNウエハ上にHVPEで成長させた後、該第二GaN厚膜をスライスすることにより、第二c面GaNウエハを得る第二工程と、
     (iii)(0001)配向した厚さ500μm以下のGaN膜を、該第二c面GaNウエハ上にHVPEで成長させる第三工程とを有し、かつ、
     該GaN膜は、該第二c面GaNウエハよりもドナー不純物の総濃度が高い領域を有する、GaN基板ウエハ製造方法。
  22.  前記第二c面GaNウエハよりもドナー不純物の総濃度が高い領域の少なくとも一部のキャリア濃度が、1×1018cm-3以上である、請求項20または21に記載のGaN基板ウエハの製造方法。
  23.  前記GaN基板ウエハが、以下の(1)~(3)から選ばれる何れかの条件を充たす、請求項20~22のいずれか一項に記載のGaN基板ウエハの製造方法。
    (1)50mm以上55mm以下の直径と250μm以上450μm以下の厚さを有する。
    (2)100mm以上105mm以下の直径と350μm以上750μm以下の厚さを有する。
    (3)150mm以上155mm以下の直径と450μm以上800μm以下の厚さを有する。
  24.  前記GaN膜が、該GaN膜の上面からc軸方向の領域長が1μm以上であり、かつ、領域内のドナー不純物の総濃度が1×1018atoms/cm以上である、特定ドープ領域を有する、請求項20~23のいずれか一項に記載のGaN基板ウエハの製造方法。
  25.  前記特定ドープ領域のc軸方向の領域長が、20μm以上である、請求項24に記載のGaN基板ウエハの製造方法。
  26.  前記特定ドープ領域内において、c軸方向に沿ったドナー不純物の総濃度の変動が中央値±25%以内である、請求項24または25に記載のGaN基板ウエハの製造方法。
  27.  前記GaN膜が、前記特定ドープ領域と前記第二c面GaNウエハとの間に厚さ50μm以下の介在領域を有する、請求項24~26のいずれか一項に記載のGaN基板ウエハの製造方法。
  28.  前記特定ドープ領域が最も高い濃度で含有する不純物がSiまたはGeである、請求項24~27のいずれか一項に記載のGaN基板ウエハの製造方法。
  29.  前記特定ドープ領域において、Siを除くドナーの総濃度がSi濃度の10%以下である、請求項24~28のいずれか一項に記載のGaN基板ウエハの製造方法。
  30.  前記特定ドープ領域において、Ge濃度が1×1018atoms/cm以上であり、かつSi濃度が4×1017atoms/cm以上である、請求項24~29のいずれか一項に記載のGaN基板ウエハの製造方法。
  31.  前記第三工程の後に前記GaN膜を薄化する薄化工程を有する、請求項20~30のいずれか一項に記載のGaN基板ウエハの製造方法。
  32.  前記薄化工程の前後における前記GaN膜の厚さ差が200μm以下である、請求項31に記載のGaN基板ウエハの製造方法。
  33.  前記GaN基板ウエハと前記第二c面GaNウエハのオフカット方位が異なる、請求項20~32のいずれか一項に記載のGaN基板ウエハの製造方法。
  34.  前記第二工程と前記第三工程との間に、該第二工程で得られた前記第二c面GaNウエハのGa極性面を平坦化する平坦化工程、更にエッチングにより粗化する粗化工程を有する、請求項20~33のいずれか一項に記載のGaN基板ウエハの製造方法。
  35.  前記薄化において、スライス加工することなく前記GaN膜を薄化する、請求項31~34のいずれか一項に記載のGaN基板ウエハの製造方法。
PCT/JP2020/013298 2019-03-29 2020-03-25 GaN基板ウエハおよびGaN基板ウエハの製造方法 WO2020203541A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217031332A KR20210144729A (ko) 2019-03-29 2020-03-25 GaN 기판 웨이퍼 및 GaN 기판 웨이퍼의 제조 방법
JP2021511860A JPWO2020203541A1 (ja) 2019-03-29 2020-03-25
EP20782703.1A EP3951025A4 (en) 2019-03-29 2020-03-25 GALLIUM NITRIDE SUBSTRATE WAFER AND METHOD OF MAKING GALLIUM NITRIDE SUBSTRATE WAFER
CN202080025770.5A CN113692459A (zh) 2019-03-29 2020-03-25 GaN基板晶片和GaN基板晶片的制造方法
US17/485,617 US20220010455A1 (en) 2019-03-29 2021-09-27 GaN SUBSTRATE WAFER AND METHOD FOR MANUFACTURING GaN SUBSTRATE WAFER

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019066016 2019-03-29
JP2019-066016 2019-03-29
JP2019095873 2019-05-22
JP2019-095873 2019-05-22
JP2019-109206 2019-06-12
JP2019109206 2019-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,617 Continuation US20220010455A1 (en) 2019-03-29 2021-09-27 GaN SUBSTRATE WAFER AND METHOD FOR MANUFACTURING GaN SUBSTRATE WAFER

Publications (1)

Publication Number Publication Date
WO2020203541A1 true WO2020203541A1 (ja) 2020-10-08

Family

ID=72667670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013298 WO2020203541A1 (ja) 2019-03-29 2020-03-25 GaN基板ウエハおよびGaN基板ウエハの製造方法

Country Status (7)

Country Link
US (1) US20220010455A1 (ja)
EP (1) EP3951025A4 (ja)
JP (1) JPWO2020203541A1 (ja)
KR (1) KR20210144729A (ja)
CN (1) CN113692459A (ja)
TW (1) TW202104685A (ja)
WO (1) WO2020203541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210696A1 (ja) * 2022-04-27 2023-11-02 三菱ケミカル株式会社 n型GaN基板及びn型GaN結晶

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128710A (ja) * 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2007070154A (ja) 2005-09-06 2007-03-22 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法
JP2007251178A (ja) 2006-03-17 2007-09-27 Samsung Electro Mech Co Ltd 窒化物半導体単結晶基板、その製造方法、及び、これを用いた垂直構造窒化物発光素子の製造方法
JP2009167053A (ja) * 2008-01-16 2009-07-30 Sumitomo Electric Ind Ltd Iii族窒化物結晶の成長方法
JP2011530173A (ja) * 2008-08-01 2011-12-15 イルミテックス, インコーポレイテッド 光子通過発光ダイオードおよび方法
JP2013155085A (ja) * 2012-01-30 2013-08-15 Jx Nippon Mining & Metals Corp 窒化ガリウム系化合物半導体層の製造方法、発光デバイスの製造方法
JP2015214441A (ja) * 2014-05-09 2015-12-03 古河機械金属株式会社 自立基板の製造方法および自立基板
JP2018154523A (ja) * 2017-03-17 2018-10-04 古河機械金属株式会社 Iii族窒化物半導体基板
JP2019004047A (ja) * 2017-06-15 2019-01-10 株式会社サイオクス 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (ja) * 1998-09-30 2000-12-15 Nec Corp GaN結晶膜、III族元素窒化物半導体ウェーハ及びその製造方法
JP4442093B2 (ja) * 2002-12-24 2010-03-31 日亜化学工業株式会社 窒化物半導体積層用基板の製造方法
CN100453712C (zh) * 2003-08-28 2009-01-21 日立电线株式会社 Ⅲ-ⅴ族氮化物系半导体衬底及其制造方法
JP2014072397A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 化合物半導体装置及びその製造方法
US8669168B1 (en) * 2013-01-09 2014-03-11 The United States Of America, As Represented By The Secretary Of The Navy Method for reducing the concentration of oxygen, carbon, and silicon impurities on nitrogen-polar surfaces of gallium nitride
US9653554B2 (en) * 2014-07-21 2017-05-16 Soraa, Inc. Reusable nitride wafer, method of making, and use thereof
JP2017024927A (ja) * 2015-07-17 2017-02-02 古河機械金属株式会社 Iii族窒化物半導体基板の製造方法
WO2018039236A1 (en) * 2016-08-22 2018-03-01 The Regents Of The University Of California Semiconductor heterostructure with reduced unintentional calcium impurity incorporation
US10283358B2 (en) * 2017-05-18 2019-05-07 Hrl Laboratories, Llc Lateral GaN PN junction diode enabled by sidewall regrowth

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128710A (ja) * 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2007070154A (ja) 2005-09-06 2007-03-22 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法
JP2007251178A (ja) 2006-03-17 2007-09-27 Samsung Electro Mech Co Ltd 窒化物半導体単結晶基板、その製造方法、及び、これを用いた垂直構造窒化物発光素子の製造方法
JP2009167053A (ja) * 2008-01-16 2009-07-30 Sumitomo Electric Ind Ltd Iii族窒化物結晶の成長方法
JP2011530173A (ja) * 2008-08-01 2011-12-15 イルミテックス, インコーポレイテッド 光子通過発光ダイオードおよび方法
JP2013155085A (ja) * 2012-01-30 2013-08-15 Jx Nippon Mining & Metals Corp 窒化ガリウム系化合物半導体層の製造方法、発光デバイスの製造方法
JP2015214441A (ja) * 2014-05-09 2015-12-03 古河機械金属株式会社 自立基板の製造方法および自立基板
JP2018154523A (ja) * 2017-03-17 2018-10-04 古河機械金属株式会社 Iii族窒化物半導体基板
JP2019004047A (ja) * 2017-06-15 2019-01-10 株式会社サイオクス 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951025A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210696A1 (ja) * 2022-04-27 2023-11-02 三菱ケミカル株式会社 n型GaN基板及びn型GaN結晶

Also Published As

Publication number Publication date
EP3951025A4 (en) 2022-06-01
EP3951025A1 (en) 2022-02-09
CN113692459A (zh) 2021-11-23
KR20210144729A (ko) 2021-11-30
US20220010455A1 (en) 2022-01-13
TW202104685A (zh) 2021-02-01
JPWO2020203541A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
EP2064730B1 (en) Nitride semiconductor structures with interlayer structures and methods of fabricating nitride semiconductor structures with interlayer structures
EP2064729B1 (en) Thick nitride semiconductor structures with interlayer structures and methods of fabricating thick nitride semiconductor structures
JP5018423B2 (ja) Iii族窒化物半導体結晶基板および半導体デバイス
US9343525B2 (en) Aluminum nitride substrate and group-III nitride laminate
US8574364B2 (en) GaN-crystal free-standing substrate and method for producing the same
JP2009126723A (ja) Iii族窒化物半導体結晶の成長方法、iii族窒化物半導体結晶基板の製造方法およびiii族窒化物半導体結晶基板
WO2011135744A1 (ja) GaN基板および発光デバイス
JP5045388B2 (ja) Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶基板の製造方法
JP2009032963A (ja) 窒化ガリウム結晶の成長方法、窒化ガリウム結晶基板、エピウエハの製造方法およびエピウエハ
JP4915282B2 (ja) Iii族窒化物半導体成長用の下地基板およびiii族窒化物半導体の成長方法
JP6669157B2 (ja) C面GaN基板
WO2020203541A1 (ja) GaN基板ウエハおよびGaN基板ウエハの製造方法
JP5045955B2 (ja) Iii族窒化物半導体自立基板
WO2020241761A1 (ja) GaN基板ウエハおよびその製造方法
WO2020241760A1 (ja) GaN基板ウエハおよびその製造方法
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
JP2012232884A (ja) 窒化物半導体基板及びその製造方法並びにそれを用いた素子
JP2012006830A (ja) Iii族窒化物半導体成長用の下地基板およびiii族窒化物半導体の成長方法
JP2012012292A (ja) Iii族窒化物結晶の製造方法、および該製造方法により得られるiii族窒化物結晶、iii族窒化物結晶基板
JP5765033B2 (ja) 第13族窒化物結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782703

Country of ref document: EP

Effective date: 20211029