WO2020203387A1 - インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法 - Google Patents

インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法 Download PDF

Info

Publication number
WO2020203387A1
WO2020203387A1 PCT/JP2020/012596 JP2020012596W WO2020203387A1 WO 2020203387 A1 WO2020203387 A1 WO 2020203387A1 JP 2020012596 W JP2020012596 W JP 2020012596W WO 2020203387 A1 WO2020203387 A1 WO 2020203387A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
forming
underlayer film
pattern
Prior art date
Application number
PCT/JP2020/012596
Other languages
English (en)
French (fr)
Inventor
旺弘 袴田
直也 下重
雄一郎 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020217030852A priority Critical patent/KR102575257B1/ko
Priority to JP2021511463A priority patent/JP7174835B2/ja
Publication of WO2020203387A1 publication Critical patent/WO2020203387A1/ja
Priority to US17/484,492 priority patent/US12109752B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F267/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
    • C08F267/06Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00 on to polymers of esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/126Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/2018Masking pattern obtained by selective application of an ink or a toner, e.g. ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/02Stable Free Radical Polymerisation [SFRP]; Nitroxide Mediated Polymerisation [NMP] for, e.g. using 2,2,6,6-tetramethylpiperidine-1-oxyl [TEMPO]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups

Definitions

  • the present invention relates to a composition for forming an underlayer film in an imprint method, and further relates to a kit, a pattern manufacturing method, a laminate, and a semiconductor device manufacturing method to which this composition is applied.
  • the imprint method is a technique for transferring a fine pattern to a plastic material by pressing a mold (generally also called a mold or stamper) on which a pattern is formed. Since it is possible to easily produce a precise fine pattern by using the imprint method, it is expected to be applied in various fields in recent years. In particular, nanoimprint technology for forming nano-order level fine patterns is drawing attention.
  • the imprint method is roughly classified into a thermal imprint method and an optical imprint method according to the transfer method.
  • a fine pattern is formed by pressing a mold against a thermoplastic resin heated to a glass transition temperature (hereinafter, sometimes referred to as “Tg”) or higher, and removing the mold after cooling.
  • Tg glass transition temperature
  • This method has advantages such as being able to select various materials, but also has problems such as requiring high pressure during pressing and the smaller the pattern size, the more likely the dimensional accuracy is lowered due to heat shrinkage or the like. ..
  • the mold is photo-cured while being pressed against the photo-curable pattern-forming composition, and then the mold is released. This method does not require high-pressure application or high-temperature heating, and has the advantage that fine patterns can be formed with high accuracy because dimensional fluctuations are small before and after curing.
  • a pattern-forming composition is applied onto a substrate, and then a mold made of a light-transmitting material such as quartz is pressed against the substrate (Patent Document 1).
  • the pattern-forming composition is cured by light irradiation in a state where the mold is pressed, and then the mold is released to prepare a cured product to which the target pattern is transferred.
  • a composition containing a cross-linking agent composed of a low molecular weight compound for example, methylolmelamine, etc., Patent Document 5
  • a polymer compound such as a resin
  • the film strength of the cured underlayer film is lowered. It turned out that there is. If the film strength of the lower layer film is low, when the mold is released from the pattern-forming composition on the lower layer film, the lower layer film is likely to coagulate and break, and the releasability may be lowered.
  • the present invention has been made in view of the above problems, and even when the composition for forming an underlayer film contains a cross-linking agent composed of a low molecular weight compound and a high molecular weight compound, it is possible to form an underlayer film having excellent film strength.
  • An object of the present invention is to provide a composition for forming a thin underlayer film.
  • Another object of the present invention is to provide a kit containing the composition for forming an underlayer film and a method for producing a pattern using the composition for forming an underlayer film. Furthermore, the present invention provides a laminate containing a layer formed from the composition for forming an underlayer film, and a method for manufacturing a semiconductor device for manufacturing a semiconductor device using the pattern obtained by the above pattern manufacturing method. With the goal.
  • the above problem was solved by using a compound having high compatibility with a polymer and capable of efficiently forming a crosslink as a monomer.
  • the above problem was solved by the following means ⁇ 1>, preferably by the means after ⁇ 2>.
  • ⁇ 1> It contains a polymer compound having a polymerizable functional group and a monomer having a plurality of crosslinkable functional groups that can be bonded to the polymerizable functional group.
  • the Hansen solubility parameter distance which is the difference between the Hansen solubility parameter of the polymer compound and the Hansen solubility parameter of the monomer, is 5.0 or less.
  • the number of atoms constituting the shortest atomic chain connecting the crosslink points in each crosslinkable functional group is 7 or more, which is the lower layer film in the imprint method.
  • Hansen solubility parameter distance is 3 or less
  • the number of atoms constituting the atomic chain is 20 or less.
  • At least one polymer compound and monomer contains a hydrogen bonding group.
  • the composition for forming an underlayer film according to any one of ⁇ 1> to ⁇ 7>. ⁇ 9> contains a solvent
  • the content of the solvent is 99% by mass or more with respect to the composition for forming the underlayer film.
  • the molecular weight of the monomer is 200-1000,
  • the polymeric compound comprises at least one of an acrylic resin, a novolak resin and a vinyl resin.
  • An imprint kit comprising a combination of the underlayer film forming composition according to any one of ⁇ 1> to ⁇ 11> and the pattern forming composition.
  • the underlayer film is formed on the substrate by using the composition for forming the underlayer film according to any one of ⁇ 1> to ⁇ 11>. Apply the pattern-forming composition onto the underlying membrane and With the molds in contact, the pattern-forming composition was cured and A method for producing a pattern, which comprises peeling a mold from a composition for forming a pattern.
  • the contact angle of the substrate with pure water is 60 degrees or more. The pattern manufacturing method according to ⁇ 13>.
  • the composition for forming the underlayer film is applied onto the substrate by a spin coating method.
  • the pattern-forming composition is applied onto the underlayer film by an inkjet method.
  • ⁇ 17> A laminate comprising a substrate and a layer formed from the underlayer film forming composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 18> A method for manufacturing a semiconductor element, wherein the semiconductor element is manufactured by using the pattern obtained by the manufacturing method according to any one of ⁇ 13> to ⁇ 16>.
  • the underlayer film forming composition of the present invention even when the underlayer film forming composition contains a cross-linking agent composed of a low molecular weight compound and a polymer compound, an underlayer film having excellent film strength can be obtained.
  • the composition for forming an underlayer film of the present invention makes it possible to provide the kit, the pattern manufacturing method, the laminate, and the semiconductor device manufacturing method of the present invention.
  • the numerical range represented by the symbol "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • process means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended action of the process can be achieved.
  • the notation that does not describe substitution or non-substitution means to include those having a substituent as well as those having no substituent.
  • alkyl group when simply described as “alkyl group”, this includes both an alkyl group having no substituent (unsubstituted alkyl group) and an alkyl group having a substituent (substituted alkyl group). Meaning.
  • alkyl group when simply described as “alkyl group”, this means that it may be chain-like or cyclic, and in the case of chain-like, it may be linear or branched.
  • exposure means not only drawing using light but also drawing using particle beams such as electron beam and ion beam, unless otherwise specified.
  • energy rays used for drawing include emission line spectra of mercury lamps, far ultraviolet rays typified by excimer lasers, active rays such as extreme ultraviolet rays (EUV light) and X-rays, and particle beams such as electron beams and ion beams. Be done.
  • light includes not only light having wavelengths in the ultraviolet, near-ultraviolet, far-ultraviolet, visible, and infrared regions, and electromagnetic waves, but also radiation. Radiation includes, for example, microwaves, electron beams, extreme ultraviolet rays (EUV), and X-rays. Further, laser light such as a 248 nm excimer laser, a 193 nm excimer laser, and a 172 nm excimer laser can also be used. As these lights, monochrome light (single wavelength light) that has passed through an optical filter may be used, or light containing a plurality of wavelengths (composite light) may be used.
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacrylic", or , Either
  • (meth) acryloyl means both “acryloyl” and “methacryloyl”, or either.
  • the solid content in the composition means other components excluding the solvent
  • the content (concentration) of the solid content in the composition is the other components excluding the solvent with respect to the total mass of the composition. It is represented by the mass percentage of the components.
  • the temperature is 23 ° C. and the atmospheric pressure is 101325 Pa (1 atm).
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are shown as polystyrene-equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise specified.
  • GPC measurement gel permeation chromatography
  • Mw and Mn for example, HLC-8220 (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel are used as columns. It can be obtained by using Super HZ3000 and TSKgel Super HZ2000 (manufactured by Tosoh Corporation).
  • the measurement is carried out using THF (tetrahydrofuran) as the eluent.
  • a UV ray (ultraviolet) wavelength 254 nm detector is used for detection in GPC measurement.
  • each layer constituting the laminated body when the positional relationship of each layer constituting the laminated body is described as "upper” or “lower", the other layer is above or below the reference layer among the plurality of layers of interest. All you need is. That is, a third layer or element may be further interposed between the reference layer and the other layer, and the reference layer and the other layer need not be in contact with each other.
  • the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a photosensitive layer, the direction from the base material to the photosensitive layer is referred to as "upper”.
  • the opposite direction is referred to as "down”. It should be noted that such a vertical setting is for convenience in the present specification, and in an actual embodiment, the "upward" direction in the present specification may be different from the vertical upward direction.
  • imprint preferably refers to a pattern transfer having a size of 1 nm to 10 mm, and more preferably refers to a pattern transfer (nanoimprint) having a size of about 10 nm to 100 ⁇ m.
  • composition for forming an underlayer film in the imprint method of the present invention comprises a polymer compound having a polymerizable functional group (hereinafter, also referred to as “polymerizable group”) and a crosslinkable functional group capable of binding to the above-mentioned polymerizable functional group. It includes a monomer having a plurality of groups (hereinafter, also referred to as “crosslinkable group”) (hereinafter, also referred to as “crosslinkable monomer”).
  • the Hansen solubility parameter distance which is the difference between the Hansen solubility parameter of the polymer compound and the Hansen solubility parameter of the crosslinkable monomer, is 5.0 or less.
  • the number of atoms constituting the shortest atomic chain connecting the cross-linking points in each cross-linking group with respect to two cross-linking groups among the plurality of cross-linking groups (hereinafter, also referred to as "distance between cross-linking points"). Is 7 or more.
  • the underlayer film forming composition of the present invention even when the underlayer film forming composition contains a cross-linking agent composed of a low molecular weight compound and a polymer compound, an underlayer film having excellent film strength can be obtained.
  • a cross-linking agent composed of a low molecular weight compound and a polymer compound
  • the composition for forming an underlayer film of the present invention contains a crosslinkable monomer having a ⁇ HSP of 5.0 or less and a distance between crosslink points of 7 or more. It is considered that when the ⁇ HSP is 5.0 or less, the compatibility between the polymer compound and the crosslinkable monomer in the composition is increased, and the bias (variation) in the distribution of the crosslinkable monomer in the underlayer film is suppressed. Be done. This allows the crosslinkable monomer to form crosslinks uniformly and efficiently in the underlying membrane. Then, it is presumed that the film strength of the lower layer film as a whole is improved by making it difficult to generate a place where the film strength is relatively low, which is the starting point of aggregation failure of the lower layer film. Further, when the crosslinkable monomer has a sufficient distance between the crosslinking points of 7 or more, the crosslinkable monomer can efficiently form a crosslink between the polymers, and the film strength itself at each point is improved. Presumed.
  • the composition for forming a lower layer film of the present invention when used, the action of suppressing the generation of a portion having a relatively low film strength and improving the film strength (macroscopic strength) as a whole. It is considered that a lower layer film having excellent film strength can be obtained by a synergistic action with the action of improving the film strength (microscopic strength) at each point. Since the underlayer film having excellent film strength can be formed, sufficient adhesion between the substrate and the pattern forming composition can be ensured when the mold is peeled off from the pattern forming composition, and the releasability in the imprint method is improved. To do. As a result, even a fine pattern can be efficiently formed.
  • the polymer compound having a polymerizable group is usually the component having the highest content in the solid text, and the type as the polymer compound is not particularly limited and is known. Polymer compounds can be widely used.
  • polymer compound examples include (meth) acrylic resin, vinyl resin, novolak resin, epoxy resin, polyurethane resin, phenol resin, polyester resin and melamine resin, and at least one of (meth) acrylic resin, vinyl resin and novolak resin. Is preferable.
  • the weight average molecular weight of the polymer compound is preferably 2000 or more, more preferably 4000 or more, further preferably 6000 or more, and particularly preferably 10000 or more.
  • the upper limit is preferably 70,000 or less, and may be 50,000 or less.
  • the method for measuring the molecular weight is as described above.
  • the weight average molecular weight is 4000 or more, the film stability at the time of heat treatment is improved, which leads to the improvement of the surface shape at the time of forming the lower layer film.
  • the weight average molecular weight is 70,000 or less, the solubility in a solvent is improved, and spin coating and the like can be easily applied.
  • the polymerizable group contained in the polymer compound is not particularly limited, but preferably contains at least one selected from a group having an ethylenically unsaturated bond, a cyclic ether group and a methylol group, and has an ethylenically unsaturated bond. It is more preferable to contain at least one selected from a group having and a cyclic ether group, and it is further preferable to contain a group having an ethylenically unsaturated bond. Moreover, these groups may have a substituent.
  • the group having an ethylenically unsaturated bond is preferably a group having a vinyl group or an ethynyl group, and more preferably a group having a vinyl group.
  • These groups may have substituents.
  • the polymerizable group having a substituent include a methacryloyl group and a methacryloyloxy group.
  • the group having an ethylenically unsaturated bond is particularly preferably a (meth) acryloyloxy group.
  • the cyclic ether group is preferably a cyclic alkyleneoxy group having 2 to 6 carbon atoms, more preferably a cyclic alkyleneoxy group having 2 to 4 carbon atoms, and an epoxy group or an oxetane. It is more preferably a group, and particularly preferably an epoxy group. Therefore, the polymerizable group containing the cyclic ether group is preferably, for example, an epoxy group or an oxetane group itself, a glycidyl group or a glycidyl ether group, and more preferably an epoxy group.
  • polymerizable groups When there are a plurality of the above-mentioned polymerizable groups in the polymer compound, they may be functional groups of the same kind or different types of functional groups.
  • substituted in the present specification refers to a halogen atom, a cyano group, a nitro group, a hydrocarbon group, a heterocyclic group, -ORt 1 , -CORt 1 , -COORt 1 , -OCORt 1 , and so on.
  • Rt 1 and Rt 2 independently represent a hydrogen atom, a hydrocarbon group, or a heterocyclic group, respectively. When Rt 1 and Rt 2 are hydrocarbon groups, they may be bonded to each other to form a ring.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 2.
  • the alkyl group may be linear, branched or cyclic, preferably linear or branched.
  • the alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, and particularly preferably 2 or 3 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, preferably linear or branched.
  • the alkynyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 5 carbon atoms.
  • the alkynyl group may be linear or branched, preferably linear or branched.
  • the aryl group preferably has 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms, and even more preferably 6 to 7 carbon atoms.
  • the heterocyclic group may be monocyclic or polycyclic.
  • the heterocyclic group is preferably a single ring or a polycyclic ring having 2 to 4 rings.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heterocyclic group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms constituting the ring of the heterocyclic group is preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 5.
  • the hydrocarbon group and the heterocyclic group as the substituent T may have yet another substituent or may be unsubstituted.
  • the above-mentioned substituent T can be mentioned.
  • the polymer compound preferably has a hydrogen-bonding group (functional group having polarity) in order to strengthen the adhesion to the substrate.
  • the hydrogen-binding group includes a hydroxyl group, a carboxy group, an amide group, an imide group, a urea group, a urethane group, a cyano group, an ether group (preferably a polyalkyleneoxy group), a cyclic ether group, and a lactone group.
  • the hydrogen-binding group is preferably a sulfonyl group, a sulfo group, a sulfonic acid group, a sulfonic acid group, a sulfonimide group, a phosphoric acid group, a phosphoric acid ester group, and a nitrile group.
  • the hydrogen-binding group is preferably a sulfonyl group, a sulfo group, a sulfonic acid group, a sulfonic acid group, a sulfonimide group, a phosphoric acid group, a phosphoric acid ester group, a nitrile group, a carboxy group, an amino group and a hydroxyl group. Carboxy groups and hydroxyl groups are preferred.
  • the polymer compound preferably contains a polymer having at least one structural unit of the following formulas (1) to (4).
  • R 1 , R 2 and R 4 are independently hydrogen atoms or methyl groups, respectively.
  • R 21 and R 3 are the above-mentioned substituents T, respectively.
  • n2 is an integer from 0 to 4.
  • n3 is an integer from 0 to 3.
  • L 1 , L 2 , L 3 and L 4 are each independently a single bond or a linking group L described below.
  • L 1 , L 2 , L 3 and L 4 are each one selected from a single bond or an alkylene group, a carbonyl group, an arylene group and a (oligo) alkyleneoxy group defined by the linking group L, respectively.
  • a combination of two or more is preferable.
  • the presence or absence of the oxygen atom at the end of the (oligo) alkyleneoxy group may be adjusted by the structure of the group beyond it.
  • the "(oligo) alkyleneoxy group” means a divalent linking group having one or more "alkyleneoxy" as a constituent unit.
  • the carbon number of the alkylene chain in the structural unit may be the same or different for each structural unit.
  • Q 1 is a functional group of a polymer compound, and examples of the above-mentioned polymerizable group can be given independently as the functional group Q 1 .
  • R 21s When there are a plurality of R 21s , they may be connected to each other to form an annular structure.
  • linkage means not only a mode in which the atoms are bonded and continuous, but also a mode in which some atoms are lost and condensed (condensed). Further, unless otherwise specified, an oxygen atom, a sulfur atom, and a nitrogen atom (amino group) may be interposed in the connection.
  • the cyclic structure formed includes an aliphatic hydrocarbon ring (referred to as ring Cf) (for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cyclopropene ring, cyclobutene ring, cyclopentene ring, cyclohexene ring).
  • ring Cf an aliphatic hydrocarbon ring
  • aromatic hydrocarbon ring this is called ring Cr
  • ring Cn nitrogen-containing heterocycle
  • ring Cn nitrogen-containing heterocycle
  • ring Co oxygen-containing heterocycle
  • sulfur-containing heterocycle this is called ring Cs
  • ring Cs sulfur-containing heterocycle
  • R 3 When R 3 which are a plurality, they may form a cyclic structure via connection to each other.
  • Examples of the cyclic structure formed include ring Cf, ring Cr, ring Cn, ring Co, and ring Cs.
  • the ratio of the number of structural units having a polymerizable group to the total number of structural units in the polymer compound is , 20-100 mol% is preferable.
  • the lower limit of this numerical range is preferably 30 mol% or more, and more preferably 60 mol% or more.
  • the upper limit of this numerical range may be 100 mol% or less, or 80 mol% or less.
  • the total amount thereof is preferably within the above range.
  • R 6 independently represents a hydrogen atom or a methyl group.
  • the polymer compound may be a copolymer having a structural unit other than the structural units of the above formulas (1) to (4).
  • Examples of other structural units include the following (11), (21) and (31).
  • the structural unit (11) is preferably combined with the structural unit (1)
  • the structural unit (21) is preferably combined with the structural unit (2)
  • the structural unit (31) is the structural unit. It is preferable to combine with (3).
  • R 11 and R 22 are independently hydrogen atoms or methyl groups, respectively.
  • R 31 is the above-mentioned substituent T, and n 31 is an integer of 0 to 3.
  • R 31 When R 31 is in plurality, they may form a cyclic structure via connection to each other. Examples of the cyclic structure formed include ring Cf, ring Cr, ring Cn, ring Co, and ring Cs.
  • R 17 is an organic group or a hydrogen atom that forms an ester structure with the carbonyloxy group in the formula.
  • the organic group include an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms; further preferably 1 to 6 carbon atoms; chain or cyclic, linear or branched), aryl group (carbon). Numbers 6 to 22 are preferred, 6 to 18 are more preferred, 6 to 10 are even more preferred), arylalkyl groups (7 to 23 carbon atoms are preferred, 7 to 19 are more preferred, 7 to 11 are even more preferred; alkyl groups.
  • the moiety may be chain or cyclic, linear or branched), a group consisting of an aromatic heterocycle in which the oxygen atom in the formula is bonded to a carbon atom (in the cyclic structure, a pyrrole ring, an imidazole ring, A group consisting of a pyrazole ring, a pyridine ring, a furan ring, a thiophene ring, a thiazole ring, an oxazole ring, an indol ring, a carbazole ring, etc.) and an aliphatic heterocycle in which an oxygen atom in the formula is bonded to a carbon atom (in a cyclic structure).
  • pyrrolin ring When shown, pyrrolin ring, pyrrolidine ring, imidazolidine ring, pyrazolidine ring, piperidine ring, piperazine ring, morpholin ring, pyran ring, oxylan ring, oxetane ring, tetrahydrofuran ring, tetrahydropyran ring, dioxane ring, thiirane ring, thietan. Ring, tetrahydrothiophene ring, tetrahydrothiopyran ring).
  • R 17 may further have a substituent T as long as the effects of the present invention are exhibited.
  • R 27 is the above-mentioned substituent T, and n21 is an integer of 0 to 5.
  • R 27 When R 27 is in plurality, they may form a cyclic structure via connection to each other. Examples of the cyclic structure formed include ring Cf, ring Cr, ring Cn, ring Co, and ring Cs.
  • the alkyl and alkenyl moieties contained in each substituent may be chain or cyclic, and may be linear or branched.
  • the substituent T When the substituent T is a group capable of taking a substituent, it may further have a substituent T.
  • it may be a hydroxyalkyl group in which a hydroxyl group is substituted with an alkyl group.
  • an alkylene group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms
  • an alkenylene group preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms
  • (oligo) alkyleneoxy group the number of carbon atoms of the alkylene group in one structural unit is preferably 1 to 12, more preferably 1 to 6, further preferably 1 to 3; the number of repetitions is 1 to 50 is preferable, 1 to 40 is more preferable, 1 to 30 is more preferable
  • an arylene group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable
  • an oxygen atom preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms
  • an alkenylene group preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms
  • (oligo) alkyleneoxy group the number of carbon atoms of the alkylene
  • Examples thereof include a sulfur atom, a sulfonyl group, a carbonyl group, a thiocarbonyl group, -NR N- , and a linking group for a combination thereof.
  • RN is a hydrogen atom, an alkyl group of the substituent T, an alkenyl group of the substituent T, an aryl group of the substituent T, an arylalkyl group of the substituent T, or a heterocyclic group of the substituent T.
  • the alkylene group, alkenylene group and alkyleneoxy group may have the above-mentioned substituent T.
  • the alkylene group may have a hydroxyl group.
  • the linking chain length of the linking group L is preferably 1 to 24, more preferably 1 to 12, and even more preferably 1 to 6.
  • the alkylene group, alkenylene group, and (oligo) alkyleneoxy group as the linking group L may be chain-like or cyclic, and may be linear or branched.
  • the atom constituting the linking group L preferably contains a carbon atom, a hydrogen atom, and if necessary, a hetero atom (at least one selected from an oxygen atom, a nitrogen atom, and a sulfur atom).
  • the number of carbon atoms in the linking group is preferably 1 to 24, more preferably 1 to 12, and even more preferably 1 to 6.
  • the number of hydrogen atoms may be determined according to the number of carbon atoms and the like.
  • the number of heteroatoms is preferably 0 to 12, more preferably 0 to 6, and even more preferably 0 to 3 for each of the oxygen atom, nitrogen atom, and sulfur atom.
  • the synthesis of the polymer compound may be performed by a conventional method.
  • the polymer having the structural unit of the formula (1) can be appropriately synthesized by a known method related to addition polymerization of olefins.
  • the polymer having the structural unit of the formula (2) can be appropriately synthesized by a known method related to addition polymerization of styrene.
  • the polymer having the structural unit of the formula (3) can be appropriately synthesized by a known method for synthesizing a phenol resin.
  • the polymer having the structural unit of the formula (4) can be appropriately synthesized by a known method for synthesizing a vinyl ether resin.
  • the amount of the polymer compound to be blended is not particularly limited, but in the composition for forming an underlayer film, it is preferable that the composition occupies a majority in the solid content, more preferably 70% by mass or more in the solid content, and in the solid content. It is more preferably 80% by mass or more.
  • the upper limit is not particularly limited, but it is practically 99.0% by mass or less.
  • the content of the polymer compound in the composition for forming an underlayer film is not particularly limited, but is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. , 0.1% by mass or more is more preferable.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 1% by mass or less, and further preferably less than 1% by mass.
  • the above polymer may be used alone or in combination of two or more. When using a plurality of items, the total amount thereof is within the above range.
  • the composition for forming an underlayer film of the present invention contains a crosslinkable monomer having a plurality of crosslinkable groups. As a result, crosslinks are formed between the polymers, and it is presumed that the film strength of the underlayer film is improved.
  • the number of crosslinkable groups contained in one molecule of the crosslinkable monomer is preferably 6 or less, more preferably 5 or less, and may be 4 or 3.
  • the molecular weight of the crosslinkable monomer in the present invention is preferably less than 2000, more preferably 1500 or less, further preferably 1000 or less, and may be 800 or less.
  • the lower limit is preferably 100 or more.
  • the plurality of crosslinkable groups of the crosslinkable monomer are not particularly limited as long as they are functional groups capable of binding to the polymerizable group of the polymer compound, but the plurality of crosslinkable groups are independently ethylenically. It is preferable to contain at least one selected from a group having an unsaturated bond, a cyclic ether group, a carboxy group, an amino group, an isocyanate group and a phenolic hydroxyl group, and preferably selected from a group having an ethylenically unsaturated bond and a cyclic ether group. It is more preferable to contain at least one of the above groups, and it is further preferable to contain a group having an ethylenically unsaturated bond. Moreover, these groups may have a substituent.
  • the plurality of crosslinkable groups may be functional groups of the same type or different types of functional groups.
  • the group having an ethylenically unsaturated bond is preferably a group having a vinyl group or an ethynyl group, and more preferably a group having a vinyl group.
  • the group having a vinyl group include functional groups similar to those described for the polymerizable group of the polymer compound, and among them, a vinyloxy group, an acryloyl group, a vinylphenyl group, an acryloyloxy group or an acryloyl group. It is more preferably an amino group, and even more preferably a vinyloxy group or an acryloyloxy group. These groups may have substituents.
  • crosslinkable group having a substituent examples include a methacryloyl group and a methacryloyloxy group.
  • the group having an ethylenically unsaturated bond is particularly preferably a (meth) acryloyloxy group.
  • the cyclic ether group includes functional groups similar to those described for the polymerizable group of the polymer compound, and among them, an epoxy group or an oxetane group is preferable, and an epoxy group is used. It is more preferably a group. Therefore, the crosslinkable group containing the cyclic ether group is preferably, for example, an epoxy group or an oxetane group itself, a glycidyl group or a glycidyl ether group, and more preferably an epoxy group.
  • the plurality of crosslinkable groups of the crosslinkable monomer a functional group capable of binding to the polymerizable group of the polymer compound is appropriately adopted from the crosslinkable groups.
  • at least one of the polymerizable group and the crosslinkable group preferably contains a group having an ethylenically unsaturated bond, more preferably contains a (meth) acryloyl group, and contains a (meth) acryloyloxy group. Is even more preferable.
  • both the polymerizable group and the crosslinkable group preferably contain a group having an ethylenically unsaturated bond, more preferably contain a (meth) acryloyl group, and further preferably contain a (meth) acryloyloxy group. preferable.
  • Preferred combinations of polymerizable and crosslinkable groups are, for example: When there are a plurality of polymerizable groups and crosslinkable groups in one molecule, the mode of the polymerizable group and the crosslinkable group may correspond to a plurality of the following combinations.
  • the crosslinkable monomer has a crosslinkable group capable of binding to a polymerizable compound in the pattern-forming composition described later.
  • the crosslinkable monomer crosslinks the polymer compound in the underlayer film and the polymerizable compound in the pattern-forming composition. Therefore, the adhesion between the underlayer film and the pattern-forming composition is further improved.
  • the method for binding the polymerizable group and the crosslinkable group is not particularly limited, and a known method can be appropriately adopted depending on the type of the polymerizable group and the crosslinkable group, and at least of light energy and thermal energy. It is preferable to give one.
  • the timing at which the polymerizable group and the crosslinkable group are bonded is not particularly limited as long as it is between the application of the underlayer film forming composition on the substrate and the peeling of the mold from the pattern forming composition. ..
  • the composition for forming an underlayer film is applied on a substrate, and then before the composition for forming a pattern is applied on the composition for forming an underlayer film.
  • first method of accelerating the bonding reaction between the lower layer film forming composition by irradiating the composition with light, heating, or the like.
  • the composition for forming a lower layer film is applied onto a substrate, the composition for forming a lower layer film is dried if necessary, and then the composition for forming a pattern on the composition for forming a lower layer film is formed. Is applied, the mold is pressed against the pattern-forming composition, and then when the pattern-forming composition is cured, light irradiation and heating are performed together to promote the bonding reaction between the two (second method).
  • second method There is also a method).
  • the first aspect is preferable as the embodiment in which the polymerizable group and the crosslinkable group are bonded.
  • the Hansen solubility parameter distance which is the difference between the Hansen solubility parameter of the polymer compound and the Hansen solubility parameter of the crosslinkable monomer, is 5.0 or less.
  • ⁇ D The dispersion term component (d component 1) of the Hansen solubility parameter vector of the monomer unit constituting the polymer compound in the underlayer film forming composition and the Hansen solubility of the crosslinkable monomer contained in the underlayer film forming composition. Difference from the dispersion term component (d component 2) of the parameter vector (d component 1-d component 2).
  • ⁇ P The polar term component (p component 1) of the Hansen solubility parameter vector of the monomer unit constituting the polymer compound in the underlayer film forming composition and the Hansen solubility of the crosslinkable monomer contained in the underlayer film forming composition.
  • ⁇ H The hydrogen bond term component (h component 1) of the Hansen solubility parameter vector of the monomer unit constituting the polymer compound in the underlayer film forming composition and Hansen of the crosslinkable monomer contained in the underlayer film forming composition. Difference from the hydrogen bond term component (h component 2) of the solubility parameter vector (h component 1-h component 2).
  • the HSP component calculated for each monomer unit as each component value of the polymer compound.
  • the value obtained by weighted averaging the values by weight ratio and molar ratio is adopted.
  • the d component 1 is calculated based on the following formula (2). The same applies to the p component 1 and the h component 1.
  • the ⁇ HSP is 5.0 or less, the compatibility between the polymer and the crosslinkable monomer is increased, and the bias (variation) in the distribution of the crosslinkable monomer in the underlayer film is suppressed.
  • the ⁇ HSP is preferably 4 or less, and more preferably 3 or less.
  • the lower limit of ⁇ HSP is not particularly limited, but 0.5 or more is practical, and 1.0 or more may be used.
  • the polymer compound and the crosslinkable monomer has a ring structure, and it is more preferable that both of them have a ring structure.
  • the ring structure may be any of an aliphatic ring, an aromatic ring and a heterocycle (including aromatic and non-aromatic), and is preferably an aromatic ring.
  • the ring structure may be monocyclic or polycyclic. When the ring structure is polycyclic, the number of rings is preferably 10 or less, more preferably 5 or less, further preferably 4 or less, and may be 3 or 2.
  • the aliphatic ring as the ring structure is preferably cycloalkane or cycloalkene having 4 to 20 carbon atoms. At this time, the number of carbon atoms is more preferably 5 to 10, and even more preferably 5 to 7. Examples of the aliphatic ring include cyclopentane and cyclohexane. When the ring structure is an aromatic ring, the number of carbon atoms is preferably 6 to 20, more preferably 6 to 10, and even more preferably 6. Examples of aromatic rings include benzene and naphthalene.
  • the heterocycle preferably contains a nitrogen atom, more preferably has a skeleton such as a pyridine ring, a pyrazine ring, a pyrimidine ring, and a triazine ring, and further preferably has a triazine ring.
  • the distance between crosslinking points is 7 or more. It is considered that when the distance between the cross-linking points is sufficiently long as described above, the cross-linking monomer can efficiently form cross-links between the polymers, and the film strength itself at each point is also improved.
  • the upper limit of the distance between the cross-linking points is preferably 20 or less, more preferably 17 or less, and further preferably 15 or less.
  • the lower limit of the distance between the cross-linking points is preferably 8 or more, and more preferably 9 or more.
  • the distance between the cross-linking points is derived by identifying the cross-linking point from each of the two cross-linking groups of one cross-linking monomer and counting the number of atoms in the shortest atomic chain connecting the two cross-linking points.
  • the “crosslinking point” means an atomic group whose bonding state changes before and after the crosslinking reaction in which the crosslinking group is bonded to the polymerizable group among the crosslinking groups.
  • This "change in bond state” includes the change of unsaturated bond to saturated bond, opening of the ring, increase / decrease in the number of atoms of the bond partner, change of the atomic type of the bond partner, and some atoms. It includes being removed as small molecules (eg water).
  • small molecules eg water.
  • L-1 when it can be grasped that the crosslinkable monomer has an acryloyloxy group, the portion corresponding to the vinyl group whose bonding state changes before and after the crosslinking reaction is used as the crosslinking point.
  • the number of constituent atoms is counted for the shortest atomic chain between the two target cross-linking points A and B (the portion of the thick line from positions X to Y in the equation).
  • the distance between the cross-linking points is 11.
  • the following formula (L-2) shows the relationship between a typical crosslinkable group and a crosslink point.
  • the atomic group surrounded by the dotted line in the chemical formula is the cross-linking point.
  • R is a hydrogen atom or a substituent.
  • the distance between the crosslinkable points is derived for any combination of two crosslinkable groups, and for at least one combination, the distance between the crosslinkable points is 7 or more. Often, it is preferably 8 or more, and more preferably 9 or more.
  • the distance between the crosslinkable points is preferably 20 or less, more preferably 17 or less, and 15 or less for any combination of the crosslinkable groups. The following is more preferable.
  • the composition for forming an underlayer film of the present invention preferably contains a compound represented by the following formula (2) as the crosslinkable monomer.
  • a crosslinkable monomer By using such a crosslinkable monomer, the balance between adhesion, releasability and stability over time is improved in imprinting, and the composition for forming an underlayer film tends to be more excellent overall.
  • R 21 is a q-valent organic group
  • R 22 is a hydrogen atom or a methyl group
  • q is an integer of 2 or more.
  • q is preferably an integer of 2 or more and 7 or less, more preferably an integer of 2 or more and 4 or less, further preferably 2 or 3, and even more preferably 2.
  • R 21 is preferably a divalent to 7-valent organic group, more preferably a divalent to 4-valent organic group, further preferably a divalent or trivalent organic group, and a divalent organic group. Is more preferable.
  • R 21 is preferably a hydrocarbon group having at least one linear, branched and cyclic structure. The hydrocarbon group preferably has 2 to 20 carbon atoms, and more preferably 2 to 10 carbon atoms.
  • R 21 is a divalent organic group, it is preferable that R 21 is an organic group represented by the following formula (1-2).
  • Z 1 and Z 2 are preferably single bonds, -O-, -Alk-, or -Alk-O-, respectively.
  • Alk represents an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms), and may have a substituent as long as the effects of the present invention are not impaired. Examples of the substituent include the above-mentioned Substituent T. In the present specification, the asterisk in the chemical formula represents a bond.
  • R 9 is a single bond or divalent linking group.
  • the linking group is preferably a linking group selected from the following formulas (9-1) to (9-10) or a combination thereof. Of these, a linking group selected from the formulas (9-1) to (9-3), (9-7), and (9-8) is preferable.
  • R 101 to R 117 are arbitrary substituents. Among them, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and an arylalkyl group (preferably 7 to 21 carbon atoms, more preferably 7 to 15 carbon atoms, 7 to 11 carbon atoms).
  • an alkyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms
  • an arylalkyl group preferably 7 to 21 carbon atoms, more preferably 7 to 15 carbon atoms, 7 to 11 carbon atoms.
  • aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 10
  • thienyl group frill group
  • a (meth) acryloyloxyalkyl group (the alkyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms) is preferable.
  • Ar is an arylene group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 10 carbon atoms), and specifically, a phenylene group, a naphthalene diyl group, an anthracene diyl group, a phenanthrene diyl group, Examples include the full orange yl group.
  • HCy is a heterocyclic group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 2 to 5 carbon atoms), and a 5-membered ring or a 6-membered ring is more preferable.
  • heterocycles constituting hCy include a thiophene ring, a furan ring, a dibenzofuran ring, a carbazole ring, an indole ring, a tetrahydropyran ring, a tetrahydrofuran ring, a pyrrol ring, a pyridine ring, a triazine ring, a pyrazole ring, an imidazole ring, and a benzo ring.
  • Examples thereof include an imidazole ring, a triazole ring, a thiazole ring, an oxazole ring, a pyrrolidone ring and a morpholin ring, and among them, a thiophene ring, a furan ring and a dibenzofuran ring are preferable.
  • Z 3 is a single bond or linking group.
  • the linking group include an alkylene group in which an oxygen atom, a sulfur atom and a fluorine atom may be substituted (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms).
  • N and m are natural numbers of 100 or less, preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 3.
  • P is an integer of 0 or more and less than or equal to the maximum number that can be substituted for each ring.
  • the upper limit value is preferably half or less of the maximum number of substitutables, more preferably 4 or less, and further preferably 2 or less.
  • the crosslinkable monomer is preferably represented by the following formula (2-1).
  • RC is a hydrogen atom or a methyl group.
  • R 9 , Z 1 and Z 2 are synonymous with R 9 , Z 1 and Z 2 in the formula (1-2), respectively, and the preferable range is also the same.
  • the type of atom constituting the crosslinkable monomer used in the present invention is not particularly specified, but it is preferably composed of only atoms selected from carbon atom, oxygen atom, hydrogen atom and halogen atom, and carbon atom and oxygen atom. More preferably, it is composed only of atoms selected from atoms and hydrogen atoms.
  • crosslinkable monomer examples include the following compounds.
  • polymerizable compounds described in JP-A-2014-170949 are mentioned, and their contents are included in the present specification.
  • the content of the crosslinkable monomer in the underlayer film forming composition is not particularly limited, but is preferably 0.01% by mass or more, and is preferably 0.05% by mass or more. More preferably, it is more preferably 0.1% by mass or more. Further, the content is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 1% by mass or less, and further preferably less than 1% by mass.
  • the ratio of the crosslinkable monomer to the polymer compound is preferably 0.1 to 1.5 in terms of mass ratio. The upper limit of this numerical range is preferably 1.2 or less, more preferably 0.9 or less, and even more preferably 0.7 or less.
  • the lower limit of this numerical range is preferably 0.2 or more, and more preferably 0.3 or more.
  • the composition for forming an underlayer film may contain only one type of crosslinkable monomer, or may contain two or more types. When two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
  • the composition for forming an underlayer film contains a solvent (hereinafter, may be referred to as "solvent for underlayer film”).
  • the solvent is, for example, a compound that is liquid at 23 ° C. and has a boiling point of 250 ° C. or lower.
  • solids other than the solvent finally form the underlayer film.
  • the composition for forming the lower layer film preferably contains the solvent for the lower layer film in an amount of 99.0% by mass or more, more preferably 99.5% by mass or more, and may contain 99.6% by mass or more.
  • the solvent for forming the lower layer film may contain only one type or two or more types of the solvent. When two or more kinds are contained, it is preferable that the total amount thereof is within the above range.
  • the boiling point of the solvent for the underlayer film is preferably 230 ° C. or lower, more preferably 200 ° C. or lower, further preferably 180 ° C. or lower, further preferably 160 ° C. or lower, and 130 ° C. or lower. Is even more preferable. It is practical that the lower limit is 23 ° C, but it is more practical that it is 60 ° C or higher. By setting the boiling point in the above range, the solvent can be easily removed from the underlayer film, which is preferable.
  • the solvent for the underlayer film is preferably an organic solvent.
  • the solvent is preferably a solvent having any one or more of an alkylcarbonyl group, a carbonyl group, a hydroxyl group and an ether group. Of these, it is preferable to use an aprotic polar solvent.
  • alkoxy alcohols propylene glycol monoalkyl ether carboxylates, propylene glycol monoalkyl ethers, lactic acid esters, acetate esters, alkoxypropionic acid esters, chain ketones, cyclic ketones, lactones, and alkylene carbonates are selected.
  • alkoxy alcohol examples include methoxyethanol, ethoxyethanol, methoxypropanol (for example, 1-methoxy-2-propanol), ethoxypropanol (for example, 1-ethoxy-2-propanol), and propoxypropanol (for example, 1-propanol-2- (Propanol), methoxybutanol (eg 1-methoxy-2-butanol, 1-methoxy-3-butanol), ethoxybutanol (eg 1-ethoxy-2-butanol, 1-ethoxy-3-butanol), methylpentanol (For example, 4-methyl-2-pentanol) and the like.
  • methoxyethanol for example, 1-methoxy-2-propanol
  • ethoxypropanol for example, 1-ethoxy-2-propanol
  • propoxypropanol for example, 1-propanol-2- (Propanol)
  • methoxybutanol eg
  • propylene glycol monoalkyl ether carboxylate at least one selected from the group consisting of propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propionate, and propylene glycol monoethyl ether acetate is preferable, and propylene glycol monomethyl ether acetate (propylene glycol monomethyl ether acetate).
  • PGMEA propylene glycol monomethyl ether acetate
  • propylene glycol monoalkyl ether propylene glycol monomethyl ether (PGME) or propylene glycol monoethyl ether is preferable.
  • lactic acid ester ethyl lactate, butyl lactate, or propyl lactate is preferable.
  • acetic acid ester methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, isoamyl acetate, methyl formate, ethyl formate, butyl formate, propyl acetate, or 3-methoxybutyl acetate are preferable.
  • MMP methyl 3-methoxypropionate
  • EEP ethyl 3-ethoxypropionate
  • Chain ketones include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, phenylacetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, Acetoneacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methylnaphthyl ketone or methyl amyl ketone are preferred.
  • cyclic ketone methylcyclohexanone, isophorone or cyclohexanone is preferable.
  • ⁇ -butyrolactone ⁇ BL
  • propylene carbonate is preferable.
  • an ester solvent having 7 or more carbon atoms (preferably 7 to 14, more preferably 7 to 12 and even more preferably 7 to 10) and having a heteroatom number of 2 or less.
  • ester-based solvents having 7 or more carbon atoms and 2 or less heteroatomic atoms include amyl acetate, 2-methylbutyl acetate, 1-methylbutyl acetate, hexyl acetate, pentyl propionate, hexyl propionate, butyl propionate, and the like. Examples thereof include isobutyl isobutyrate, heptyl propionate, butyl butanoate, and the like, and isoamyl acetate is particularly preferable.
  • Alkoxy alcohols, propylene glycol monoalkyl ether carboxylates, propylene glycol monoalkyl ethers, lactic acid esters, acetate esters, alkoxypropionic acid esters, chain ketones, cyclic ketones, lactones, and alkylenes are the most preferred solvents for the underlayer membrane. Examples include carbonate.
  • composition for forming an underlayer film may contain one or more alkylene glycol compounds, polymerization initiators, polymerization inhibitors, antioxidants, leveling agents, thickeners, surfactants and the like. Good.
  • the composition for forming an underlayer film may contain an alkylene glycol compound.
  • the alkylene glycol compound preferably has 3 to 1000 alkylene glycol constituent units, more preferably 4 to 500, and even more preferably 5 to 100. It is more preferable to have 50 of them.
  • the weight average molecular weight (Mw) of the alkylene glycol compound is preferably 150 to 10000, more preferably 200 to 5000, further preferably 300 to 3000, and even more preferably 300 to 1000.
  • the alkylene glycol compounds are polyethylene glycol, polypropylene glycol, these mono or dimethyl ethers, mono or dioctyl ethers, mono or dinonyl ethers, mono or didecyl ethers, monostearate esters, monooleic acid esters, monoadiponic acid esters, monosuccinates. Acid esters are exemplified, and polyethylene glycol and polypropylene glycol are preferable.
  • the surface tension of the alkylene glycol compound at 23 ° C. is preferably 38.0 mN / m or more, and more preferably 40.0 mN / m or more.
  • the upper limit of the surface tension is not particularly defined, but is, for example, 48.0 mN / m or less.
  • the surface tension is measured at 23 ° C. using a surface tension meter SURFACE TENS-IOMETER CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. and a glass plate.
  • the unit is mN / m. Two samples are prepared for each level and measured three times each. The arithmetic mean value of a total of 6 times is adopted as the evaluation value.
  • the content of the alkylene glycol compound is 40% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 1 to 15% by mass, based on the total solid content. preferable. Only one kind of alkylene glycol compound may be used, or two or more kinds may be used. When two or more kinds are used, it is preferable that the total amount thereof is within the above range.
  • the composition for forming a lower layer film may contain a polymerization initiator, and preferably contains at least one of a thermal polymerization initiator and a photopolymerization initiator.
  • a polymerization initiator By including the polymerization initiator, the reaction of the polymerizable group contained in the composition for forming the underlayer film is promoted, and the adhesion tends to be improved.
  • a photopolymerization initiator is preferable from the viewpoint of improving the cross-linking reactivity with the pattern-forming composition.
  • the photopolymerization initiator a radical polymerization initiator and a cationic polymerization initiator are preferable, and a radical polymerization initiator is more preferable.
  • a plurality of types of photopolymerization initiators may be used in combination.
  • thermal polymerization initiator each component described in JP2013-036027A, JP2014-090133A, and JP2013-189537A can be used. Regarding the content and the like, the description in the above publication can be taken into consideration.
  • a known compound can be arbitrarily used.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives and the like.
  • Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketooxime ethers, aminoacetophenone compounds, hydroxyacetophenones, azo compounds, azide compounds, metallocene compounds, organic boron compounds, iron arene complexes, etc. Can be mentioned.
  • the description in paragraphs 0165 to 0182 of JP-A-2016-0273557 can be referred to, and the contents thereof are incorporated in the present specification.
  • acylphosphine compound examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Further, commercially available products such as IRGACURE-819, IRGACURE1173, and IRGACURE-TPO (trade names: all manufactured by BASF) can be used.
  • the content of the photopolymerization initiator used in the underlayer film forming composition is, for example, 0.0001 to 5% by mass, preferably 0.0005 to 3% by mass, based on the total solid content when blended. Yes, more preferably 0.01 to 1% by mass. When two or more kinds of photopolymerization initiators are used, the total amount thereof is within the above range.
  • the composition for forming an underlayer film of the present invention is prepared by blending raw materials in a predetermined ratio.
  • the raw material refers to a component that is positively blended in the composition for forming an underlayer film, and is intended to exclude components that are unintentionally contained such as impurities.
  • a curable component and a solvent are exemplified.
  • the raw material may be a commercially available product or a synthetic product. Both raw materials may contain impurities such as metal particles.
  • the method for producing a composition for forming an underlayer film of the present invention there is a production method including filtering at least one of the raw materials contained in the composition for forming an underlayer film by using a filter. Be done. It is also preferable that two or more kinds of raw materials are mixed, filtered using a filter, and mixed with other raw materials (which may or may not be filtered). As a more preferable embodiment, an embodiment in which raw materials (preferably all raw materials) contained in the underlayer film forming composition are mixed and then filtered using a filter is exemplified.
  • Filtration is effective even with a one-step filter, but filtration with a two-step or higher filter is more preferable.
  • Filtration by two or more stages of filters means filtering by arranging two or more filters in series.
  • filtration by a 1 to 5 step filter is preferable, filtration by a 1 to 4 step filter is more preferable, and filtration by a 2 to 4 step filter is further preferable.
  • the method for producing a composition for forming an underlayer film of the present invention includes mixing the raw materials of the composition for forming an underlayer film and then filtering using two or more types of filters, and at least two of the above two or more types of filters.
  • the seeds preferably have different pore diameters. With such a configuration, impurities can be removed more effectively. Further, it is preferable that at least two types of the above two or more types of filters are made of different materials. With such a configuration, it becomes possible to remove a wider variety of impurities. Further, among the above two or more types of filters, it is preferable to pass the composition for forming the underlayer film in order from the filter having the largest pore size to filter. That is, it is preferable to arrange the filter so that the pore diameter becomes smaller from the upstream side to the downstream side of the filtration device from the viewpoint of the impurity removing ability.
  • the first stage filtration uses a filter with a pore diameter of 0.5 to 15 nm (preferably a filter with a pore diameter of 1 to 10 nm), and the second stage filtration has a pore diameter.
  • a filter having a diameter of 3 to 100 nm preferably a filter having a pore diameter of 5 to 50 nm can be used.
  • the component (material component) constituting the material of the filter contains a resin.
  • the resin is not particularly limited, and a known material for the filter can be used. Specifically, 6-polyester, polyamide such as 6,6-polyester, polyethylene, and polyolefin such as polypropylene, polystyrene, polyimide, polyamideimide, poly (meth) acrylate, polytetrafluoroethylene, perfluoroalkoxyalkane, Perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyfluorocarbons such as polyvinyl fluoride, polyvinyl alcohol, polyester, cellulose, cellulose Examples thereof include acetate, polysulfone, and polyether sulfone.
  • polyethylene including ultra-high molecular weight ones and grafted ones
  • polyamides in that they have better solvent resistance and better defect suppression performance.
  • These polymers can be used alone or in combination of two or more.
  • the surface free energy of the underlayer film formed from the composition for forming the underlayer film of the present invention is preferably 30 mN / m or more, more preferably 40 mN / m or more, and further preferably 50 mN / m or more. preferable.
  • the upper limit is preferably 200 mN / m or more, more preferably 150 mN / m or more, and even more preferably 100 mN / m or more.
  • the surface free energy can be measured at 23 ° C. using a surface tension meter SURFACE TENS-IOMETER CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. and a glass plate.
  • the underlayer film forming composition of the present invention is usually used as a composition for forming an underlayer film for a pattern forming composition.
  • the composition of the pattern-forming composition and the like are not particularly specified, but preferably contain a polymerizable compound.
  • the pattern-forming composition preferably contains a polymerizable compound, and it is more preferable that the polymerizable compound constitutes the maximum amount of the component.
  • the polymerizable compound may have one polymerizable group in one molecule or may have two or more polymerizable groups. At least one of the polymerizable compounds contained in the pattern-forming composition preferably contains 2 to 5 polymerizable groups in one molecule, more preferably 2 to 4, and 2 or 3 polymerizable groups. Is more preferable, and it is more preferable to include three.
  • the polymerizable compound in the pattern-forming composition preferably has the same type of polymerizable group as the polymerizable group contained in the polymer compound in the underlayer film-forming composition. As a result, the crosslinkable monomer can be bonded to the polymerizable compound in the pattern-forming composition, and the effect of further improving the adhesion at the interface can be obtained by the bond across the interface between the compositions.
  • At least one of the polymerizable compounds contained in the pattern-forming composition has a cyclic structure.
  • this cyclic structure include an aliphatic hydrocarbon ring Cf and an aromatic hydrocarbon ring Cr.
  • the polymerizable compound preferably has an aromatic hydrocarbon ring Cr, and more preferably has a benzene ring.
  • the molecular weight of the polymerizable compound is preferably 100 to 900.
  • At least one of the above polymerizable compounds is preferably represented by the following formula (I-1).
  • L 20 is a 1 + q2 valent linking group, and examples thereof include a linking group having a cyclic structure.
  • the cyclic structure include ring Cf, ring Cr, ring Cn, ring Co, and ring Cs.
  • R 21 and R 22 independently represent a hydrogen atom or a methyl group, respectively.
  • L 21 and L 22 independently represent a single bond or the linking group L, respectively.
  • L 20 and L 21 or L 22 may be combined with or without the linking group L to form a ring.
  • L 20 , L 21 and L 22 may have the above-mentioned substituent T.
  • a plurality of substituents T may be bonded to form a ring. When there are a plurality of substituents T, they may be the same or different from each other.
  • q2 is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1.
  • Examples of the polymerizable compound include the compounds used in the following examples, paragraphs 0017 to 0024 of JP2014-090133A, and the compounds described in Examples, paragraphs 0024 to 0089 of JP2015-009171.
  • Examples of the compound, the compound described in paragraphs 0023 to 0037 of JP2015-070145A, and the compound described in paragraphs 0012 to 0039 of International Publication No. 2016/152597 can be mentioned, but the present invention is limited thereto. It is not interpreted.
  • the polymerizable compound is preferably contained in the pattern-forming composition in an amount of 30% by mass or more, more preferably 45% by mass or more, further preferably 50% by mass or more, further preferably 55% by mass or more, and 60% by mass or more. It may be 70% by mass or more. Further, the upper limit value is preferably less than 99% by mass, more preferably 98% by mass or less, and may be 97% by mass or less.
  • the boiling point of the polymerizable compound is set and designed in relation to the polymer compound contained in the above-mentioned composition for forming an underlayer film.
  • the boiling point of the polymerizable compound is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, and even more preferably 400 ° C. or lower.
  • the lower limit is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and even more preferably 240 ° C. or higher.
  • the pattern-forming composition may contain additives other than the polymerizable compound.
  • additives other additives, a polymerization initiator, a solvent, a surfactant, a sensitizer, a mold release agent, an antioxidant, a polymerization inhibitor and the like may be contained.
  • the content of the solvent in the pattern-forming composition is preferably 5% by mass or less, more preferably 3% by mass or less, and 1% by mass or less. Is even more preferable.
  • the pattern-forming composition may also be in a manner substantially free of a polymer (preferably having a weight average molecular weight of more than 1000, more preferably having a weight average molecular weight of more than 2000).
  • substantially free of polymer means, for example, that the content of the polymer is 0.01% by mass or less of the pattern-forming composition, preferably 0.005% by mass or less, and more preferably not contained at all. preferable.
  • the compositions described in are exemplified and their contents are incorporated herein by reference. Further, the description of the above-mentioned publication can be referred to with respect to the preparation of the composition for pattern formation and the method for producing the pattern, and these contents are incorporated in the present specification.
  • the viscosity of the pattern-forming composition is preferably 20.0 mPa ⁇ s or less, more preferably 15.0 mPa ⁇ s or less, further preferably 11.0 mPa ⁇ s or less, and 9.0 mPa ⁇ s or less. -It is more preferably s or less.
  • the lower limit of the viscosity is not particularly limited, but can be, for example, 5.0 mPa ⁇ s or more. Viscosity is measured according to the method below.
  • the viscosity is measured by adjusting the temperature of the sample cup to 23 ° C. using an E-type rotational viscometer RE85L manufactured by Toki Sangyo Co., Ltd. and a standard cone rotor (1 ° 34'x R24). The unit is mPa ⁇ s. Other details regarding the measurement are in accordance with JISZ8803: 2011. Two samples are prepared for each level and measured three times each. The arithmetic mean value of a total of 6 times is adopted as the evaluation value.
  • the surface tension ( ⁇ Resist) of the pattern-forming composition is preferably 28.0 mN / m or more, more preferably 30.0 mN / m or more, and may be 32.0 mN / m or more.
  • the upper limit of the surface tension is not particularly limited, but is preferably 40.0 mN / m or less, preferably 38.0 mN / m, from the viewpoint of imparting the relationship with the underlying film and the suitability for inkjet. It is more preferably 36.0 mN / m or less, and may be 36.0 mN / m or less.
  • the surface tension of the pattern-forming composition is measured according to the same method as that for the alkylene glycol compound described above.
  • the Onishi parameter of the pattern-forming composition is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.7 or less.
  • the lower limit of the Onishi parameter of the pattern-forming composition is not particularly defined, but may be, for example, 1.0 or more, or 2.0 or more.
  • the storage container for the underlayer film forming composition and the pattern forming composition used in the present invention.
  • the inner wall of the container is made of a multi-layer bottle composed of 6 types and 6 layers of resin, and 6 types of resin are formed into a 7-layer structure. It is also preferable to use a bottle of plastic. Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
  • the kit of the present invention includes a combination of the above-mentioned pattern-forming composition for forming a pattern (pattern-transferred cured film) by an imprint method and a lower-layer film-forming composition for forming a lower-layer film. ..
  • the pattern-forming composition and the underlayer film-forming composition are each housed in a separate container and combined.
  • the method for producing a pattern (pattern-transferred cured film) is a step of forming a lower layer film on a substrate surface using the lower layer film forming composition of the present invention (lower layer film forming step).
  • the process includes a step of bringing the mold into contact with the material layer, a step of exposing the pattern-forming composition layer in contact with the mold, and a step of peeling the mold from the exposed pattern-forming composition layer.
  • the composition for forming an underlayer film it is preferable to store the composition for forming an underlayer film at 10 to 40 ° C. before application on a substrate.
  • the upper limit of this numerical range is more preferably 35 ° C. or lower, and further preferably 33 ° C. or lower.
  • the lower limit of this numerical range is more preferably 15 ° C. or higher, and further preferably 18 ° C. or higher.
  • the atmosphere can be stored in the atmosphere of a replacement gas such as nitrogen, and is preferably stored in the atmosphere. Further, it can be stored in a storage cabinet with a light-shielding window, and may be stored in a state of being attached to a device such as an imprint device.
  • a replacement gas such as nitrogen
  • the lower layer film 2 is formed on the surface of the substrate 1.
  • the lower layer film is preferably formed by applying the lower layer film forming composition on the substrate in a layered manner.
  • the substrate 1 may have an undercoat layer or an adhesion layer as well as a single layer.
  • the method of applying the composition for forming an underlayer film to the surface of the substrate is not particularly specified, and a generally well-known application method can be adopted.
  • a dip coating method for example, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spin coating method, a slit scan method, or an inkjet method. Is exemplified, and the spin coating method is preferable.
  • the solvent is volatilized (dried) by heat to form an underlayer film which is a thin film.
  • the thickness of the underlayer film 2 is preferably 2 nm or more, more preferably 3 nm or more, and further preferably 4 nm or more.
  • the thickness of the underlayer film is preferably 20 nm or less, more preferably 10 nm or less, and further preferably 7 nm or less.
  • the material of the glass substrate include aluminosilicate glass, aluminoborosilicate glass, and bariumborosilicate glass.
  • a silicon substrate and a substrate coated with SOC spin-on carbon are preferable.
  • the silicon substrate As the silicon substrate, a surface-modified one can be used as appropriate, and the carbon content in the region from the surface of the substrate to a thickness of 10 nm (more preferably 100 nm) is 70% by mass or more (preferably 80 to 100). Mass%) may be used.
  • a substrate having an SOC (Spin on Carbon) film having a film thickness of 200 nm obtained by applying various spin-on carbon films to a silicon substrate by a spin coating method and baking at 240 ° C. for 60 seconds can be mentioned.
  • SOC Spin on Carbon
  • a substrate having an organic layer as the outermost layer.
  • the organic layer of the substrate include an amorphous carbon film formed by CVD (Chemical Vapor Deposition) and a spin-on carbon film formed by dissolving a high carbon material in an organic solvent and performing spin coating.
  • the spin-on carbon film include nortricyclene copolymer, hydrogenated naphthol novolac resin, naphthol dicyclopentadiene copolymer, phenoldicyclopentadiene copolymer, fluorenbisphenol novolac described in JP-A-2005-128509, and JP-A.
  • Asenaftylene copolymer inden copolymer described in Japanese Patent Application Laid-Open No. 2005-250434, fullerene having a phenol group, bisphenol compound and its novolac resin, dibisphenol compound and this novolak resin, adamantanphenol described in JP-A-2006-227391.
  • Examples thereof include a novolak resin, a hydroxyvinylnaphthalene copolymer, a bisnaphthol compound described in JP-A-2007-199653, and a resin compound shown in the novolak resin, ROMP, and tricyclopentadiene copolymer.
  • SOC the description in paragraph 0126 of JP2011-164345A can be referred to, the contents of which are incorporated herein by reference.
  • the contact angle of the substrate surface with water is preferably 20 ° or more, more preferably 40 ° or more, and even more preferably 60 ° or more. It is practical that the upper limit is 90 ° or less.
  • the contact angle is measured according to the method described in the examples described below.
  • a substrate having a basic layer as the outermost layer (hereinafter referred to as a basic substrate).
  • the basic substrate include a substrate containing a basic organic compound (for example, an amine compound, an ammonium compound, etc.) and an inorganic substrate containing a nitrogen atom.
  • composition layer forming step for pattern formation >> In this step, for example, as shown in FIG. 1 (3), the pattern forming composition 3 is applied to the surface of the underlayer film 2.
  • the method of applying the pattern-forming composition is not particularly specified, and the description in paragraph 0102 of JP-A-2010-109092 (the publication number of the corresponding US application is US2011 / 183127) can be referred to. Incorporated into the specification.
  • the pattern-forming composition is preferably applied to the surface of the underlayer film by an inkjet method. Further, the pattern-forming composition may be applied by multiple coating.
  • the amount of the droplets is preferably about 1 to 20 pL, and it is preferable to arrange the droplets on the surface of the lower layer film at intervals.
  • the droplet spacing is preferably 10 to 1000 ⁇ m. In the case of the inkjet method, the droplet interval is the arrangement interval of the inkjet nozzles.
  • the volume ratio of the lower layer film 2 and the film-like pattern forming composition 3 applied on the lower layer film is preferably 1: 1 to 500, more preferably 1:10 to 300. It is more preferably 1:50 to 200.
  • the method for producing the laminate is a method for producing the laminate using the above-mentioned kit of the present invention, in which the pattern-forming composition is applied to the surface of the underlayer film formed from the above-mentioned underlayer film-forming composition.
  • the method for producing the laminate includes a step of applying the underlayer film forming composition on the substrate in a layered manner, and the underlayer film forming composition applied in the layered form is preferably applied at 100 to 300 ° C. It is preferable to include heating (baking) at 130 to 260 ° C., more preferably 150 to 230 ° C. The heating time is preferably 30 seconds to 5 minutes.
  • a liquid film may be formed on the substrate.
  • the formation of the liquid film may be performed by a conventional method. For example, it may be formed by applying a composition containing a crosslinkable monomer (example of a polymerizable compound) that is liquid at 23 ° C. onto a substrate.
  • a crosslinkable monomer example of a polymerizable compound
  • Mold contact process For example, as shown in FIG. 1 (4), the pattern forming composition 3 is brought into contact with the mold 4 having a pattern for transferring the pattern shape. By going through such a process, a desired pattern (imprint pattern) can be obtained.
  • the mold 4 is pressed against the surface of the film-shaped pattern-forming composition 3.
  • the mold may be a light-transmitting mold or a light-impermeable mold.
  • a light-transmitting mold it is preferable to irradiate the pattern-forming composition 3 with light from the mold side.
  • the mold that can be used in the present invention is a mold having a pattern to be transferred.
  • the pattern possessed by the mold can be formed according to a desired processing accuracy by, for example, photolithography or an electron beam drawing method, but the method for forming the mold pattern is not particularly limited in the present invention. Further, the pattern formed by the method for producing a pattern according to a preferred embodiment of the present invention can also be used as a mold.
  • the material constituting the light-transmitting mold used in the present invention is not particularly limited, but is limited to glass, quartz, polymethylmethacrylate (PMMA), light-transmitting resin such as polycarbonate resin, transparent metal vapor-deposited film, polydimethylsiloxane, and the like. Examples thereof include a flexible film, a photocurable film, and a metal film, and quartz is preferable.
  • the non-light-transmitting mold material used when the light-transmitting substrate is used in the present invention is not particularly limited, but may be any material having a predetermined strength. Specific examples include ceramic materials, vapor-deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon. It is not particularly restricted.
  • the surface of the substrate may be appropriately treated by a conventional method. For example, by forming OH groups on the surface of the substrate by UV ozone treatment or the like to increase the polarity of the surface of the substrate, the adhesion is further improved. May be good.
  • the mold pressure is preferably 10 atm or less.
  • the mold pressure is preferably selected from a range in which the uniformity of mold transfer can be ensured while the residual film of the pattern forming composition corresponding to the convex portion of the mold is reduced. It is also preferable that the pattern-forming composition and the mold are brought into contact with each other in an atmosphere containing helium gas or condensable gas, or both helium gas and condensable gas.
  • the pattern-forming composition is exposed to light by irradiating it with light to form a cured product.
  • the irradiation amount of light irradiation in the light irradiation step may be sufficiently larger than the minimum irradiation amount required for curing.
  • the irradiation amount required for curing is appropriately determined by examining the consumption amount of unsaturated bonds of the pattern-forming composition.
  • the type of light to be irradiated is not particularly specified, but ultraviolet light is exemplified.
  • the substrate temperature at the time of light irradiation is usually room temperature, but light irradiation may be performed while heating in order to enhance the reactivity.
  • a vacuum state is used as a pre-stage of light irradiation, it is effective in preventing air bubbles from being mixed in, suppressing a decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the pattern-forming composition. Therefore, light irradiation is performed in a vacuum state. You may.
  • the preferable degree of vacuum at the time of light irradiation is in the range of 10 -1 Pa to normal pressure.
  • the exposure illuminance is preferably in the range of 1 to 500 mW / cm 2 , and more preferably in the range of 10 to 400 mW / cm 2 .
  • the exposure time is not particularly limited, but is preferably 0.01 to 10 seconds, more preferably 0.5 to 1 second.
  • Exposure amount is preferably in a range of 5 ⁇ 1000mJ / cm 2, and more preferably in the range of 10 ⁇ 500mJ / cm 2.
  • the method for producing the above pattern includes a step of curing the film-shaped pattern-forming composition (pattern-forming layer) by light irradiation and then, if necessary, applying heat to the cured pattern to further cure it. You may be.
  • the temperature for heat-curing the pattern-forming composition after light irradiation is preferably 150 to 280 ° C, more preferably 200 to 250 ° C.
  • the time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the composition for forming a lower layer film of the present invention When the composition for forming a lower layer film of the present invention is used, the polymerizable group contained in the polymer compound in the lower layer film and the crosslinkable group contained in the crosslinkable monomer due to the above-mentioned light irradiation and heating. Cross-linking reaction is promoted. In addition, some of the crosslinkable groups of the crosslinkable monomer may also undergo a crosslink reaction with the polymerizable compound in the pattern-forming composition on the underlayer film, and the present invention is said to improve the film strength of the underlayer film. In addition to the effect, the effect that the adhesion at the interface is further improved by the bond across the interface between the compositions can be obtained.
  • the substrate temperature at the time of light irradiation is usually room temperature, but light irradiation may be performed while heating in order to enhance reactivity. If a vacuum state is used as a pre-stage of light irradiation, it is effective in preventing air bubbles from being mixed in, suppressing a decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the pattern-forming composition. Therefore, light irradiation is performed in a vacuum state. You may. Further, in the method for producing the above pattern, the preferable degree of vacuum at the time of light irradiation is in the range of 10 -1 Pa to normal pressure.
  • the present invention discloses a laminate having a pattern formed from the pattern-forming composition on the surface of the underlayer film.
  • the film thickness of the pattern forming layer made of the pattern forming composition used in the present invention varies depending on the intended use, but is about 0.01 ⁇ m to 30 ⁇ m. Further, as described later, etching or the like can be performed.
  • the pattern formed by the above pattern manufacturing method can be used as a permanent film used in a liquid crystal display (LCD) or the like, or as an etching resist (lithography mask) for manufacturing a semiconductor element.
  • the present specification discloses a method for manufacturing a semiconductor device (circuit board), which includes a step of obtaining a pattern by the method for manufacturing a pattern according to a preferred embodiment of the present invention.
  • a step of etching or ion-implanting a substrate using the pattern obtained by the above pattern manufacturing method as a mask and a step of forming an electronic member are performed. You may have.
  • the semiconductor device is preferably a semiconductor element. That is, this specification discloses a method for manufacturing a semiconductor device including the above-mentioned pattern manufacturing method. Further, the present specification discloses a manufacturing method of an electronic device having a step of obtaining a semiconductor device by the manufacturing method of the semiconductor device and a step of connecting the semiconductor device and a control mechanism for controlling the semiconductor device. ..
  • a grid pattern is formed on the glass substrate of the liquid crystal display device by using the pattern formed by the above-mentioned pattern manufacturing method, and the reflection and absorption are small, and the large screen size (for example, 55 inches, 60 inches, (1 inch)). It is possible to inexpensively manufacture a polarizing plate of (2.54 cm))).
  • the polarizing plates described in JP-A-2015-132825 and International Publication No. 2011/132649 can be manufactured.
  • the pattern formed in the present invention is also useful as an etching resist (mask for lithography).
  • a fine pattern on the order of nano or micron is formed on the substrate by the method for producing the pattern.
  • the present invention is particularly advantageous in that a nano-order fine pattern can be formed, and a pattern having a size of 50 nm or less, particularly 30 nm or less can be formed.
  • the lower limit of the size of the pattern formed by the above pattern manufacturing method is not particularly specified, but can be, for example, 1 nm or more.
  • the pattern manufacturing method of the present invention can also be applied to a manufacturing method of an imprint mold.
  • the method for manufacturing the imprint mold includes, for example, a step of manufacturing a pattern on a substrate (for example, a substrate made of a transparent material such as quartz) which is a material of the mold by the above-mentioned pattern manufacturing method, and this pattern. It has a step of etching the substrate by using it.
  • a desired pattern is formed on the substrate by etching with an etching solution such as hydrogen fluoride when wet etching is used as the etching method and an etching gas such as CF 4 when dry etching is used. be able to.
  • the pattern has particularly good etching resistance to dry etching. That is, the pattern formed by the above pattern manufacturing method is preferably used as a mask for lithography.
  • the pattern formed in the present invention includes a recording medium such as a magnetic disk, a light receiving element such as a solid-state imaging element, a light emitting element such as an LED (light emission diode) or an organic EL (organic electroluminescence), and a liquid crystal display.
  • a recording medium such as a magnetic disk
  • a light receiving element such as a solid-state imaging element
  • a light emitting element such as an LED (light emission diode) or an organic EL (organic electroluminescence)
  • a liquid crystal display such as a liquid crystal display.
  • Optical devices such as liquid crystals (LCD), diffraction grids, relief holograms, optical waveguides, optical filters, optical components such as microlens arrays, thin film transistors, organic transistors, color filters, antireflection films, polarizing plates, polarizing elements, optical films, Flat panel display members such as pillars, nanobiodevices, immunoanalytical chips, deoxyribonucleic acid (DNA) separation chips, microreactors, photonic liquid crystals, and fine pattern formation (directed self-assembly) using self-assembly of block copolymers, It can be preferably used for producing a guide pattern or the like for DSA).
  • composition for forming underlayer film The compounds shown in the table below were blended in the blending ratio (parts by mass) shown in the table below and mixed. After mixing, it was dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a 0.3% by mass solution. This was filtered through a nylon filter having a pore size of 0.02 ⁇ m and an ultra-high molecular weight polyethylene (UPE) filter having a pore size of 0.001 ⁇ m to prepare a composition for forming an underlayer film shown in Examples and Comparative Examples.
  • PMEA propylene glycol monomethyl ether acetate
  • UPE ultra-high molecular weight polyethylene
  • the monomer B-1 has a combination of a plurality of polymerizable groups and cross-linking groups having a distance between the cross-linking points of 9 and 17, respectively.
  • ⁇ A-2 100 g of PGMEA was placed in a flask as a solvent, and the temperature of PGMEA was raised to 90 ° C. under a nitrogen atmosphere.
  • GMA glycol methacrylate, 28.4 g, 0.2 mol
  • azo-based polymerization initiator V-601, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 2.8 g, 12 mmol
  • PGMEA 50 g
  • ⁇ A-3 100 g of PGMEA was placed in a flask as a solvent, and the temperature of PGMEA was raised to 90 ° C. under a nitrogen atmosphere.
  • GMA glycol methacrylate, 28.4 g, 0.2 mol
  • azo-based polymerization initiator V-601, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 2.8 g, 12 mmol
  • PGMEA 50 g
  • ⁇ A-4 11 g of EPON Resin 164 and 100 mL of dimethyl ether (DME) were mixed at room temperature to prepare a first solution and cooled to ⁇ 20 ° C. Next, 50 mmol of ethylmagnesium bromide (EtMgBr) was dissolved in 50 mL of DME to prepare a second solution, the second solution was added to the first solution, and the mixture was stirred for 6 hours. The reaction was then stopped by adding 5 mL of water to the first solution. Then, the temperature of the first solution was returned to room temperature, water was removed, chloride chloride (450 mg, 5 mmol) and trimethylamine (10 mmol) were added to the first solution, and the reaction mixture was stirred for 2 hours.
  • EtMgBr ethylmagnesium bromide
  • A-8 2-Hydroxyethyl methacrylate was polymerized and synthesized according to the following synthesis method of the polymer compound A-9.
  • PGMEA 45.38 g
  • phthalic acid Tokyo Chemical Industry Co., Ltd., 16.61 g, 100.0 mmol
  • glycidyl acrylate Naichiyu Co., Ltd., 2.56 g,
  • N 2 flow 20.0 mmol
  • tetraethylammonium bromide manufactured by Tokyo Chemical Industry Co., Ltd., 0.21 g, 1.0 mmol
  • 4-OH-TEMPO manufactured by Tokyo Chemical Industry Co., Ltd., 1.72 mg, 0.01 mmol
  • aging was carried out at 90 ° C. for 8 hours.
  • PGMEA 45.38g
  • Intermediate G-1B Intermediate G-1C
  • tetraethylammonium bromide Tokyo Chemical Industry Co., Ltd., 0.21 g, 1.0 mmol
  • 4-OH-TEMPO manufactured by Tokyo Chemical Industry Co., Ltd., 1.72 mg, 0.01 mmol
  • B-1 A compound having the following structure (distance between cross-linking points: 9 or 17).
  • B-2 A compound having the following structure (ADCP, manufactured by Shin-Nakamura Chemical Co., Ltd. Distance between cross-linking points: 11).
  • B-3 A compound having the following structure (A-BPE-4, manufactured by Shin-Nakamura Chemical Co., Ltd. Distance between cross-linking points: 25).
  • B-4 A compound having the following structure (A-200, manufactured by Shin-Nakamura Chemical Co., Ltd. Distance between cross-linking points: 30).
  • B-5 A compound having the following structure (4-cyclohexene-1,2-diglycidyl dicarboxylic acid, manufactured by Tokyo Chemical Industry Co., Ltd., distance between cross-linking points: 8).
  • B-6 A compound having the following structure (distance between cross-linking points: 16).
  • B-7 A compound having the following structure (distance between cross-linking points: 6).
  • composition for pattern formation The compounds shown in Table 2 below are blended in the blending ratio (parts by mass) shown in the table below, and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxylfree radical (Tokyo) is further blended as a polymerization inhibitor.
  • a product manufactured by Kasei Co., Ltd. was added so as to be 200 mass ppm (0.02 mass%) with respect to the total amount of the polymerizable compounds (Nos. 1 to 3 in Table 2). This was filtered through a nylon filter having a pore size of 0.02 ⁇ m and an UPE filter having a pore size of 0.001 ⁇ m to prepare patterns V1 and V2 for pattern formation.
  • k + m + n 10.
  • ⁇ Calculation of Hansen solubility parameter distance ( ⁇ HSP)> The Hansen solubility parameter and boiling point of each of the polymer compound and the crosslinkable monomer compound according to the examples and comparative examples were calculated by the HSP calculation software HSPiP. Specifically, in the case of a polymer compound, by inputting the structural formula of the monomer unit constituting the polymer compound into the above software in the SMILES format, each component (d component, p) of the Hansen solubility parameter vector is input. Component, h component) was calculated. When the polymer compound was a copolymer having a plurality of monomer units, each component was calculated by the calculation method using the above formula (2).
  • each component of the Hansen solubility parameter vector was calculated by inputting the molecular formula of the crosslinkable monomer into the above software in the SMILES format.
  • ⁇ HSP Hansen solubility parameter distance
  • ⁇ D, ⁇ P, and ⁇ H are obtained from each component (d component, p component, and h component) of the Hansen solubility parameter of the corresponding component, and are applied to the above formula (1).
  • the temperature conditions for forming the underlayer film were set in consideration of the boiling point calculated by the software.
  • underlayer film forming compositions of each Example and Comparative Example were spin-coated on the silicon wafer and heated using a hot plate under the bake temperature conditions shown in Table 1 above to form the underlayer film on the silicon wafer. ..
  • the film thickness of the underlayer film was measured by an ellipsometer.
  • the film strength of the lower layer film was evaluated by the magnitude of the adhesion force when the lower layer film aggregated and fractured. Specifically, it is as follows.
  • a quartz wafer spin-coated with the composition for forming an adhesion layer shown in Example 6 of JP-A-2014-024322 is pressed against the pattern-forming layer under a He atmosphere (replacement rate of 90% or more) to form a pattern.
  • the composition for use was imprinted.
  • 10 seconds had passed after the stamping exposure was performed from the quartz wafer side using a high-pressure mercury lamp under the condition of 150 mJ / cm 2 .
  • the force required for the laminated body to be separated after exposure was measured and used as the adhesion force F of the underlayer film.
  • the separation at this time was all caused by the cohesive failure inside the underlayer film.
  • the value of F was evaluated according to the following criteria.
  • the evaluation of A to C is a level suitable for practical use.
  • a silicon wafer having a diameter of 300 mm was prepared, and particles having a diameter of 50 nm or more existing on the wafer were detected by a defect detection device (SP-5 manufactured by KLA Tencor) on the wafer surface. This is the initial value.
  • SP-5 manufactured by KLA Tencor
  • the underlayer film forming compositions of each Example and Comparative Example are spin-coated on the silicon wafer and heated using a hot plate under the temperature conditions shown in the above table to form the underlayer film on the silicon wafer. did.
  • the number of defects was measured by the same method. This is used as the measured value. Then, the difference between the initial value and the measured value (measured value-initial value) was calculated, and the result was evaluated based on the following criteria.
  • a to C is a level suitable for practical use.
  • -A The difference between the initial value and the measured value was 20 or less.
  • -B The difference between the initial value and the measured value was 21 to 100.
  • -C The difference between the initial value and the measured value was 101 to 500 pieces.
  • -D The difference between the initial value and the measured value was 501 or more.
  • the underlayer film was formed on the silicon wafer according to the method for forming the underlayer film described above.
  • the above-mentioned pattern-forming composition (V1 or V2) described in the above table whose temperature was adjusted to 25 ° C. according to each Example and Comparative Example, was applied to the FUJIFILM Dimatics inkjet printer DMP-.
  • a droplet amount of 6 pl per nozzle was ejected, and the droplets were applied onto the underlayer film in a square arrangement at intervals of about 100 ⁇ m to form a pattern forming layer.
  • the mold was pressed against the pattern forming layer under a He atmosphere (replacement rate of 90% or more), and the pattern forming composition was filled in the pattern of the mold.
  • the mold used is a quartz mold with a line / space pattern with a line width of 20 nm, a depth of 55 nm and a pitch of 60 nm.
  • the mold was exposed from the mold side using a high-pressure mercury lamp under the condition of 100 mJ / cm 2 , and then the mold was peeled off to transfer the pattern to the pattern forming layer.
  • release force F the force required for releasing the mold (release force F, unit: N) was measured.
  • the release force was measured according to the method of the comparative example described in paragraph Nos. 0102 to 0107 of JP2011-206977A, and the result was evaluated based on the following criteria.
  • the evaluation of A to C is a level suitable for practical use. ⁇ A: F ⁇ 15N ⁇ B: 15N ⁇ F ⁇ 18N ⁇ C: 18N ⁇ F ⁇ 20N ⁇ D: 20N ⁇ F
  • the underlayer film was formed on the silicon wafer according to the method for forming the underlayer film described above.
  • the above-mentioned pattern-forming composition (V1 or V2) described in the above table whose temperature was adjusted to 25 ° C. according to each Example and Comparative Example, was applied to the FUJIFILM Dimatics inkjet printer DMP-.
  • a droplet amount of 6 pl per nozzle was ejected, and the droplets were applied onto the underlayer film in a square arrangement at intervals of about 100 ⁇ m to form a pattern forming layer.
  • the mold was pressed against the pattern forming layer under a He atmosphere (replacement rate of 90% or more), and the pattern forming composition was filled in the pattern of the mold.
  • the mold used is a quartz mold with a line / space pattern with a line width of 28 nm, a depth of 60 nm and a pitch of 60 nm.
  • the mold was exposed from the mold side using a high-pressure mercury lamp under the condition of 150 mJ / cm 2 , and then the mold was peeled off to transfer the pattern to the pattern forming layer.
  • a to C The presence or absence of peeling of the transferred pattern was confirmed by optical microscope observation (macro observation) and scanning electron microscope observation (micro observation), and the results were evaluated based on the following criteria.
  • the evaluation of A to C is a level suitable for practical use. -A: No pattern peeling was confirmed. -B: No pattern peeling was confirmed by macro observation, but pattern peeling was confirmed by micro observation. -C: Peeling was confirmed in a part of the area (release end) by macro observation. -D: Not applicable to any of the above A to C.
  • a lower layer film is formed on a silicon wafer using the lower layer film forming composition according to each example, and a semiconductor is used on the silicon wafer with the lower layer film using the pattern forming composition according to each example.
  • a predetermined pattern corresponding to the circuit was formed. Then, using this pattern as an etching mask, each silicon wafer was etched, and each of the semiconductor elements was manufactured using the silicon wafer. There was no problem in performance of any of the semiconductor elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

重合性官能基を有する高分子化合物と、重合性官能基と結合可能な架橋性官能基を複数有するモノマーとを含み、高分子化合物のハンセン溶解度パラメータと、上記モノマーのハンセン溶解度パラメータとの差であるハンセン溶解度パラメータ距離が5.0以下であり、複数の架橋性官能基のうち2つの架橋性官能基について、各架橋性官能基中の架橋点を互いに連結する最短の原子鎖を構成する原子数が7以上である、インプリント法における下層膜形成用組成物、上記下層膜形成用組成物から形成された層を含む積層体、および、上記パターン製造方法により得られたパターンを利用して半導体素子を製造する半導体素子の製造方法。

Description

インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法
 本発明は、インプリント法における下層膜形成用組成物に関し、さらに、この組成物を応用したキット、パターン製造方法、積層体および半導体素子の製造方法に関する。
 インプリント法とは、パターンが形成された金型(一般的にモールドまたはスタンパとも呼ばれる。)を押し当てることにより、可塑性材料に微細パターンを転写する技術である。インプリント法を用いることで簡易に精密な微細パターンの作製が可能なことから、近年さまざまな分野での応用が期待されている。特に、ナノオーダーレベルの微細パターンを形成するナノインプリント技術が注目されている。
 インプリント法は、その転写方法から熱インプリント法および光インプリント法に大別される。熱インプリント法では、ガラス転移温度(以下、「Tg」ということがある。)以上に加熱した熱可塑性樹脂にモールドを押し当て、冷却後にモールドを離型することにより微細パターンを形成する。この方法では、多様な材料を選択できること等の利点があるが、プレス時に高圧を要すること、および、パターンサイズが微細になるほど、熱収縮等により寸法精度が低下しやすいこと等の問題点もある。一方、光インプリント法では、光硬化性のパターン形成用組成物にモールドを押し当てた状態で光硬化させた後、モールドを離型する。この方法では、高圧付加や高温加熱の必要はなく、硬化前後で寸法変動が小さいため、微細なパターンを精度よく形成できるという利点がある。
 最近では、熱インプリント法および光インプリント法の両者の長所を組み合わせたナノキャスティング法や、3次元積層構造を作製するリバーサルインプリント法などの新しい展開も報告されている。
 光インプリント法では、基板上にパターン形成用組成物を塗布後、石英等の光透過性素材で作製されたモールドを押し当てる(特許文献1)。モールドを押し当てた状態で光照射によりそのパターン形成用組成物を硬化し、その後モールドを離型することで、目的のパターンが転写された硬化物が作製される。
 このようなインプリント法においては、モールドをパターン形成用組成物から離型することから、基板とパターン形成用組成物の充分な密着性が必要とされる。そこで、例えば特許文献2~5に示されるように、基板とパターン形成用組成物の間に、これらの密着性を向上させる下層膜を設ける技術が提案されている。
特表2005-533393号公報 特開2013-093552号公報 特開2014-093385号公報 特開2016-146468号公報 特開2017-206695号公報
 上記下層膜の密着性を向上させるため、樹脂等の高分子化合物に加えて、低分子化合物からなる架橋剤(例えば、メチロールメラミンなど。特許文献5)を含む組成物を用いて、下層膜を形成することが知られている。
 しかしながら、下層膜を形成するに際し、上記のように低分子化合物からなる架橋剤と高分子化合物とを含む下層膜形成用組成物を塗布したときに、硬化した下層膜の膜強度が低下する場合があることが分かった。下層膜の膜強度が低いと、下層膜上のパターン形成用組成物からモールドを離型する際、下層膜が凝集破壊しやすくなり、離型性が低下する場合もある。
 本発明は上記課題に鑑みてなされたものであり、下層膜形成用組成物が、低分子化合物からなる架橋剤と高分子化合物とを含む場合でも、膜強度に優れた下層膜の形成が可能な下層膜形成用組成物の提供を目的とする。
 また、本発明は、上記下層膜形成用組成物を含むキット、および上記下層膜形成用組成物を用いたパターン製造方法の提供を目的とする。さらに、本発明は、上記下層膜形成用組成物から形成された層を含む積層体、および、上記パターン製造方法により得られたパターンを利用して半導体素子を製造する半導体素子の製造方法の提供を目的とする。
 上記課題は、モノマーとして、高分子との相溶性が高くかつ架橋を効率よく形成できる化合物を使用することにより、解決できた。具体的には、以下の手段<1>により、好ましくは<2>以降の手段により、上記課題は解決された。
<1>
 重合性官能基を有する高分子化合物と、重合性官能基と結合可能な架橋性官能基を複数有するモノマーとを含み、
 高分子化合物のハンセン溶解度パラメータと、モノマーのハンセン溶解度パラメータとの差であるハンセン溶解度パラメータ距離が5.0以下であり、
 複数の架橋性官能基のうち2つの架橋性官能基について、各架橋性官能基中の架橋点を互いに連結する最短の原子鎖を構成する原子数が7以上である、インプリント法における下層膜形成用組成物。
<2>
 高分子化合物およびモノマーの少なくとも1種が、環構造を有する、
 <1>に記載の下層膜形成用組成物。
<3>
 高分子化合物およびモノマーの両方が、環構造を有する、
 <2>に記載の下層膜形成用組成物。
<4>
 環構造が、芳香環を含む、
 <2>または<3>に記載の下層膜形成用組成物。
<5>
 ハンセン溶解度パラメータ距離が3以下である、
 <1>~<4>のいずれか1つに記載の下層膜形成用組成物。
<6>
 上記原子鎖を構成する原子数が20以下である、
 <1>~<5>のいずれか1つに記載の下層膜形成用組成物。
<7>
 重合性官能基および架橋性官能基の少なくとも1種が、エチレン性不飽和結合を有する基を含む、<1>~<6>のいずれか1つに記載の下層膜形成用組成物。
<8>
 高分子化合物およびモノマーの少なくとも1種が、水素結合性基を含む、
 <1>~<7>のいずれか1つに記載の下層膜形成用組成物。
<9>
 さらに、溶剤を含み、
 溶剤の含有量が、下層膜形成用組成物に対し99質量%以上である、
 <1>~<8>のいずれか1つに記載の下層膜形成用組成物。
<10>
 モノマーの分子量が200~1000である、
 <1>~<9>のいずれか1つに記載の下層膜形成用組成物。
<11>
 高分子化合物が、アクリル樹脂、ノボラック樹脂およびビニル樹脂の少なくとも1種を含む、
 <1>~<10>のいずれか1つに記載の下層膜形成用組成物。
<12>
 <1>~<11>のいずれか1つに記載の下層膜形成用組成物と、パターン形成用組成物との組み合わせを含む、インプリント用キット。
<13>
 <1>~<11>のいずれか1つに記載の下層膜形成用組成物を用いて、下層膜を基板上に形成し、
 パターン形成用組成物を下層膜上に適用し、
 モールドを接触させた状態で、パターン形成用組成物を硬化させ、
 パターン形成用組成物からモールドを剥離することを含む、パターン製造方法。
<14>
 基板の純水に対する接触角が、60度以上である、
 <13>に記載のパターン製造方法。
<15>
 下層膜を形成する際に、下層膜形成用組成物をスピンコート法で基板上に適用することを含む、
 <13>または<14>に記載のパターン製造方法。
<16>
 パターン形成用組成物の下層膜上への適用をインクジェット法により行う、
 <13>~<15>のいずれか1つに記載のパターン製造方法。
<17>
 基板と、<1>~<11>のいずれか1つに記載の下層膜形成用組成物から形成された層とを含む、積層体。
<18>
 <13>~<16>のいずれか1つに記載の製造方法により得られたパターンを利用して、半導体素子を製造する、半導体素子の製造方法。
 本発明の下層膜形成用組成物により、下層膜形成用組成物が、低分子化合物からなる架橋剤と高分子化合物とを含む場合でも、膜強度に優れた下層膜が得られる。そして、本発明の下層膜形成用組成物により、本発明のキット、パターン製造方法、積層体および半導体素子の製造方法の提供が可能となる。
インプリントの工程を示す概略断面図である。
 以下、本発明の代表的な実施形態について説明する。各構成要素は、便宜上、この代表的な実施形態に基づいて説明されるが、本発明は、そのような実施形態に限定されるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値および上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記について、置換および無置換を記していない表記は、置換基を有さないものと共に、置換基を有するものをも包含する意味である。例えば、単に「アルキル基」と記載した場合には、これは、置換基を有さないアルキル基(無置換アルキル基)、および、置換基を有するアルキル基(置換アルキル基)の両方を包含する意味である。また、単に「アルキル基」と記載した場合には、これは、鎖状でも環状でもよく、鎖状の場合には、直鎖でも分岐でもよい意味である。
 本明細書において「露光」とは、特に断らない限り、光を用いた描画のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む意味である。描画に用いられるエネルギー線としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)およびX線などの活性光線、ならびに、電子線およびイオン線などの粒子線が挙げられる。
 本明細書において、「光」には、紫外、近紫外、遠紫外、可視、赤外等の領域の波長の光や、電磁波だけでなく、放射線も含まれる。放射線には、例えばマイクロ波、電子線、極端紫外線(EUV)、X線が含まれる。また248nmエキシマレーザー、193nmエキシマレーザー、172nmエキシマレーザーなどのレーザー光も用いることができる。これらの光は、光学フィルターを通したモノクロ光(単一波長光)を用いてもよいし、複数の波長を含む光(複合光)でもよい。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の両方、または、いずれかを意味し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の両方、または、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の両方、または、いずれかを意味する。
 本明細書において、組成物中の固形分は、溶剤を除く他の成分を意味し、組成物中の固形分の含有量(濃度)は、その組成物の総質量に対する、溶剤を除く他の成分の質量百分率によって表される。
 本明細書において、特に述べない限り、温度は23℃、気圧は101325Pa(1気圧)である。
 本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC測定)に従い、ポリスチレン換算値として示される。この重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。また、特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。また、特に述べない限り、GPC測定における検出には、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」または「下」と記載したときには、注目している複数の層のうち基準となる層の上側または下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、さらに第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。また、特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、または、感光層がある場合には、基材から感光層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、「インプリント」は、好ましくは、1nm~10mmのサイズのパターン転写をいい、より好ましくは、およそ10nm~100μmのサイズのパターン転写(ナノインプリント)をいう。
<下層膜形成用組成物>
 本発明のインプリント法における下層膜形成用組成物は、重合性官能基(以下、「重合性基」ともいう。)を有する高分子化合物と、上記重合性官能基と結合可能な架橋性官能基(以下、「架橋性基」ともいう。)を複数有するモノマー(以下、「架橋性モノマー」ともいう。)とを含む。そして、本発明の下層膜形成用組成物において、上記高分子化合物のハンセン溶解度パラメータと、上記架橋性モノマーのハンセン溶解度パラメータとの差であるハンセン溶解度パラメータ距離(ΔHSP)は5.0以下であり、上記複数の架橋性基のうち2つの架橋性基について、各架橋性基中の架橋点を互いに連結する最短の原子鎖を構成する原子数(以下、「架橋点間距離」ともいう。)は7以上である。
 本発明の下層膜形成用組成物により、下層膜形成用組成物が、低分子化合物からなる架橋剤と高分子化合物とを含む場合でも、膜強度に優れた下層膜が得られる。この理由は定かではないが、次のとおりと推定される。
 本発明の下層膜形成用組成物は、上記ΔHSPが5.0以下でありかつ上記架橋点間距離が7以上である架橋性モノマーを含んでいる。上記ΔHSPが5.0以下であることにより、上記組成物中の高分子化合物と架橋性モノマーの相溶性が増し、下層膜中における架橋性モノマーの分布の偏り(バラツキ)が抑制されると考えられる。これにより、架橋性モノマーが下層膜中で均一かつ効率よく架橋を形成するようになる。そして、下層膜の凝集破壊の起点になるような膜強度が相対的に低い場所が発生しにくくなることで、下層膜全体としての膜強度が向上すると推定される。また、架橋性モノマーが、7以上という充分な長さの架橋点間距離を有することにより、架橋性モノマーが高分子間で効率よく架橋を形成でき、個々の地点での膜強度自体も向上すると推定される。
 上記のように、本発明の下層膜形成用組成物を使用した場合には、膜強度が相対的に低い部分の発生が抑制されて全体としての膜強度(巨視的な強度)が向上する作用と、個々の地点での膜強度(微視的な強度)が向上する作用との相乗作用によって、膜強度に優れた下層膜が得られると考えられる。そして、膜強度に優れた下層膜を形成できることによりパターン形成用組成物からモールドを剥離する際、基板とパターン形成用組成物の充分な密着性を確保でき、インプリント法における離型性が向上する。その結果、微細なパターンでも効率よく形成することが可能となる。
 以下、本発明の下層膜形成用組成物の各成分について、詳しく説明する。
<<重合性基を有する高分子化合物>>
 本発明の下層膜形成用組成物において、重合性基を有する高分子化合物は、通常、固形文中で最も含有量が多い成分であり、高分子化合物としての種類は、特段制限されず、公知の高分子化合物を広く用いることができる。
 高分子化合物は、(メタ)アクリル樹脂、ビニル樹脂、ノボラック樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂およびメラミン樹脂が例示され、(メタ)アクリル樹脂、ビニル樹脂およびノボラック樹脂の少なくとも1種であることが好ましい。
 本発明において、高分子化合物の重量平均分子量は2000以上であることが好ましく、4000以上であることがより好ましく、6000以上であることがさらに好ましく、10000以上であることが特に好ましい。上限としては、70000以下であることが好ましく、50000以下であってもよい。分子量の測定方法は、上述したとおりである。この重量平均分子量が4000以上であると、加熱処理時の膜安定性が向上し、下層膜形成時の面状の改善につながる。また、重量平均分子量が70000以下であると、溶剤への溶解性が向上し、スピンコート塗布等が容易となる。
 上記高分子化合物が有する重合性基は、特段制限されないが、エチレン性不飽和結合を有する基、環状エーテル基およびメチロール基から選択される少なくとも1種を含むことが好ましく、エチレン性不飽和結合を有する基および環状エーテル基から選択される少なくとも1種を含むことがより好ましく、エチレン性不飽和結合を有する基を含むことがさらに好ましい。また、これらの基は置換基を有していてもよい。
 上記高分子化合物が有する重合性基に関して、エチレン性不飽和結合を有する基は、ビニル基またはエチニル基を有する基であることが好ましく、ビニル基を有する基であることがより好ましい。ビニル基を有する基としては、例えば、ビニルオキシ基(-O-CH=CH)、ビニルカルボニル基(アクリロイル基)(-CO-CH=CH)、ビニルアミノ基(-NR-CH=CH)、ビニルスルフィド基(-S-CH=CH)、ビニルスルホニル基(-SO-CH=CH)、ビニルフェニル(Ph)基(-Ph-CH=CH)、アクリロイルオキシ基(-O-CO-CH=CH)またはアクリロイルアミノ基(-NR-CO-CH=CH)などが挙げられ、ビニルオキシ基、アクリロイル基、ビニルフェニル基、アクリロイルオキシ基またはアクリロイルアミノ基であることがより好ましく、ビニルオキシ基またはアクリロイルオキシ基であることがさらに好ましい。上記「-NR-」において、Rは水素原子または置換基を表す。これらの基は、置換基を有していてもよい。置換基を有する上記重合性基の例としては、メタクリロイル基やメタクリロイルオキシ基が挙げられる。エチレン性不飽和結合を有する基は、特に、(メタ)アクリロイルオキシ基であることが好ましい。
 上記重合性基に関して、環状エーテル基は、炭素数2~6で環状のアルキレンオキシ基であることが好ましく、炭素数2~4で環状のアルキレンオキシ基であることがより好ましく、エポキシ基またはオキセタン基であることがさらに好ましく、エポキシ基であることが特に好ましい。したがって、環状エーテル基を含む上記重合性基は、例えば、エポキシ基またはオキセタン基そのものや、グリシジル基またはグリシジルエーテル基などであることが好ましく、エポキシ基であることがより好ましい。
 高分子化合物中に上記重合性基が複数ある場合には、それらは互いに同種の官能基であってもよく、異種の官能基であってもよい。
 なお、本明細書において「置換基」は、特に述べない限り、ハロゲン原子、シアノ基、ニトロ基、炭化水素基、複素環基、-ORt、-CORt、-COORt、-OCORt、-NRtRt、-NHCORt、-CONRtRt、-NHCONRtRt、-NHCOORt、-SRt、-SORt、-SOORt、-NHSORtおよび-SONRtRtから選択される1種の置換基Tを含む。ここで、RtおよびRtは、それぞれ独立して水素原子、炭化水素基または複素環基を表す。RtとRtが炭化水素基である場合には、これらが互いに結合して環を形成してもよい。
 上記置換基Tについて、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アリール基が挙げられる。アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~2がさらに好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。アルケニル基の炭素数は、2~10が好ましく、2~5がより好ましく、2または3が特に好ましい。アルケニル基は直鎖、分岐、環状のいずれでもよく、直鎖または分岐が好ましい。アルキニル基の炭素数は、2~10が好ましく、2~5がより好ましい。アルキニル基は直鎖および分岐のいずれでもよく、直鎖または分岐が好ましい。アリール基の炭素数は、6~10が好ましく、6~8がより好ましく、6~7がさらに好ましい。複素環基は、単環であってもよく、多環であってもよい。複素環基は、単環または環数が2~4の多環が好ましい。複素環基の環を構成するヘテロ原子の数は1~3が好ましい。複素環基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。複素環基の環を構成する炭素原子の数は3~10が好ましく、3~8がより好ましく、3~5がより好ましい。
 置換基Tとしての炭化水素基および複素環基は、さらに別の置換基を有していてもよく、無置換であってもよい。ここでの更なる置換基としては、上述した置換基Tが挙げられる。
 高分子化合物は、基板との密着性を強固にするため、水素結合性基(極性を持つ官能基)を有することが好ましい。具体的には、水素結合性基としては、水酸基、カルボキシ基、アミド基、イミド基、ウレア基、ウレタン基、シアノ基、エーテル基(好ましくはポリアルキレンオキシ基)、環状エーテル基、ラクトン基、スルホニル基、スルホ基、スルホン酸基、スルホンアミド基、スルホンイミド基、リン酸基、リン酸エステル基、ニトリル基などが挙げられる。この中でも特に、水素結合性基は、スルホニル基、スルホ基、スルホン酸基、スルホンアミド基、スルホンイミド基、リン酸基、リン酸エステル基、ニトリル基、カルボキシ基、アミノ基および水酸基が好ましく、カルボキシ基および水酸基が好ましい。
 高分子化合物は、下記の式(1)~(4)の少なくとも1つの構成単位を有する重合体を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、R、RおよびRは、それぞれ独立に、水素原子またはメチル基である。R21およびRはそれぞれ独立に上述した置換基Tである。n2は0~4の整数である。n3は0~3の整数である。
 L、L、LおよびLはそれぞれ独立に、単結合または後述する連結基Lである。中でも、L、L、LおよびLはそれぞれ、単結合、または、連結基Lで規定されるアルキレン基、カルボニル基、アリーレン基および(オリゴ)アルキレンオキシ基から選択される1種もしくは2種以上の組み合わせであることが好ましい。ただし、(オリゴ)アルキレンオキシ基の末端の酸素原子はその先の基の構造により、その有無が調整されればよい。本明細書において、「(オリゴ)アルキレンオキシ基」は、構成単位である「アルキレンオキシ」を1以上有する2価の連結基を意味する。構成単位中のアルキレン鎖の炭素数は、構成単位ごとに同一であっても異なっていてもよい。
 Qは高分子化合物の官能基であり、官能基Qとしては、それぞれ独立して上記重合性基の例が挙げられる。
 R21が複数あるとき、互いに連結して環状構造を形成してもよい。本明細書において連結とは結合して連続する態様のほか、一部の原子を失って縮合(縮環)する態様も含む意味である。また特に断らない限り、連結に際しては、酸素原子、硫黄原子、窒素原子(アミノ基)を介在していてもよい。形成される環状構造としては、脂肪族炭化水素環(これを環Cfと称する)(例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロプロペン環、シクロブテン環、シクロペンテン環、シクロヘキセン環等)、芳香族炭化水素環(これを環Crと称する)(ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環等)、含窒素複素環(これを環Cnと称する)(例えば、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピロリン環、ピロリジン環、イミダゾリジン環、ピラゾリジン環、ピぺリジン環、ピペラジン環、モルホリン環等)、含酸素複素環(これを環Coと称する)(フラン環、ピラン環、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環等)、含硫黄複素環(これを環Csと称する)(チオフェン環、チイラン環、チエタン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環等)などが挙げられる。
 Rが複数あるとき、それらは、互いに連結して環状構造を形成してもよい。形成される環状構造としては、環Cf、環Cr、環Cn、環Co、環Csなどが挙げられる。
 本発明の下層膜形成用組成物において、重合性基を有する高分子化合物が重合体である場合には、高分子化合物中の全構成単位数に対する、重合性基を有する構成単位数の割合は、20~100モル%であることが好ましい。この数値範囲の下限は、30モル%以上であることが好ましく、60モル%以上であることがより好ましい。この数値範囲の上限は、100モル%以下でもよく、80モル%以下でもよい。重合性基を有する構成単位が複数種ある場合には、それらの合計量が上記範囲内となることが好ましい。
 好ましい重合性基を含む繰り返し単位の具体例としては、以下の構造が挙げられる。しかしながら、本発明はこれらに限定されるものではない。下記例示の化学式中、Rは、各々独立に水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 高分子化合物は、上記式(1)~(4)の構成単位以外の他の構成単位を有する共重合体であってもよい。他の構成単位としては、下記の(11)、(21)および(31)が挙げられる。高分子化合物中で、構成単位(11)が構成単位(1)と組み合わせられることが好ましく、構成単位(21)が構成単位(2)と組み合わせられることが好ましく、構成単位(31)が構成単位(3)と組み合わせられることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式中、R11およびR22は、それぞれ独立に、水素原子またはメチル基である。R31は上述した置換基Tであり、n31は0~3の整数である。R31が複数あるとき、互いに連結して環状構造を形成してもよい。形成される環状構造としては、環Cf、環Cr、環Cn、環Co、環Csの例が挙げられる。
 R17は式中のカルボニルオキシ基とエステル構造を形成する有機基または水素原子である。この有機基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましい;鎖状でも環状でもよく、直鎖でも分岐でもよい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい;アルキル基部分は鎖状でも環状でもよく、直鎖でも分岐でもよい)、式中の酸素原子が炭素原子に結合している芳香族複素環からなる基(環状構造で示すと、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、フラン環、チオフェン環、チアゾール環、オキサゾール環、インドール環、カルバゾール環等)、式中の酸素原子が炭素原子に結合している脂肪族複素環からなる基(環状構造で示すと、ピロリン環、ピロリジン環、イミダゾリジン環、ピラゾリジン環、ピぺリジン環、ピペラジン環、モルホリン環、ピラン環、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、チイラン環、チエタン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環)である。
 R17は本発明の効果を奏する範囲でさらに置換基Tを有していてもよい。
 R27は上述した置換基Tであり、n21は0~5の整数である。R27が複数あるとき、それらは、互いに連結して環状構造を形成していてもよい。形成される環状構造としては、環Cf、環Cr、環Cn、環Co、環Csの例が挙げられる。
 各置換基に含まれるアルキル部位およびアルケニル部位は鎖状でも環状でもよく、直鎖でも分岐でもよい。上記置換基Tが置換基を取りうる基である場合にはさらに置換基Tを有してもよい。例えば、アルキル基に水酸基が置換したヒドロキシアルキル基になっていてもよい。
 連結基Lとしては、アルキレン基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましい)、アルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、(オリゴ)アルキレンオキシ基(1つの構成単位中のアルキレン基の炭素数は1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい;繰り返し数は1~50が好ましく、1~40がより好ましく、1~30がさらに好ましい)、アリーレン基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、酸素原子、硫黄原子、スルホニル基、カルボニル基、チオカルボニル基、-NR-、およびそれらの組み合わせにかかる連結基が挙げられる。Rは水素原子、置換基Tのアルキル基、置換基Tのアルケニル基、置換基Tのアリール基、置換基Tのアリールアルキル基、または置換基Tの複素環基である。アルキレン基、アルケニレン基、アルキレンオキシ基は上記置換基Tを有していてもよい。例えば、アルキレン基が水酸基を有していてもよい。
 連結基Lの連結鎖長は、1~24が好ましく、1~12がより好ましく、1~6がさらに好ましい。連結鎖長は連結に関与する原子団のうち最短の道程に位置する原子数を意味する。例えば、-CH-C(=O)-O-であると3となる。
 なお、連結基Lとしてのアルキレン基、アルケニレン基、(オリゴ)アルキレンオキシ基は、鎖状でも環状でもよく、直鎖でも分岐でもよい。
 連結基Lを構成する原子としては、炭素原子と水素原子、必要によりヘテロ原子(酸素原子、窒素原子、硫黄原子から選ばれる少なくとも1種等)を含むものであることが好ましい。連結基中の炭素原子の数は1~24個が好ましく、1~12個がより好ましく、1~6個がさらに好ましい。水素原子の数は炭素原子等の数に応じて定められればよい。ヘテロ原子の数は、酸素原子、窒素原子、硫黄原子のそれぞれについて、0~12個が好ましく、0~6個がより好ましく、0~3個がさらに好ましい。
 高分子化合物の合成は常法によればよい。例えば、式(1)の構成単位を有する重合体は、オレフィンの付加重合に係る公知の方法によって適宜合成することができる。例えば、式(2)の構成単位を有する重合体は、スチレンの付加重合に係る公知の方法によって適宜合成することができる。例えば、式(3)の構成単位を有する重合体は、フェノール樹脂の合成に係る公知の方法によって適宜合成することができる。例えば、式(4)の構成単位を有する重合体は、ビニルエーテル樹脂の合成に係る公知の方法によって適宜合成することができる。
 高分子化合物の配合量は特に限定されないが、下層膜形成用組成物において、固形分中では過半を占めることが好ましく、固形分中で70質量%以上であることがより好ましく、固形分中で80質量%以上であることがさらに好ましい。上限は特に制限されないが、99.0質量%以下であることが実際的である。
 高分子化合物の下層膜形成用組成物中(溶剤を含む)における含有量は、特に限定されないが、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。上限としては、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、1質量%未満であることが一層好ましい。
 上記の重合体は1種を用いても複数のものを用いてもよい。複数のものを用いる場合はそれらの合計量が上記の範囲となる。
<<架橋性モノマー>>
 本発明の下層膜形成用組成物は、架橋性基を複数有する架橋性モノマーを含む。これにより、高分子間に架橋が形成され、下層膜の膜強度が向上すると推定される。架橋性モノマーが1分子中に有する架橋性基の数は、6つ以下であることが好ましく、5つ以下であることがより好ましく、4つでも3つでもよい。
 本発明における架橋性モノマーの分子量は、2000未満であることが好ましく、1500以下であることがより好ましく、1000以下であることが一層好ましく、800以下であってもよい。下限値は、100以上であることが好ましい。
 架橋性モノマーが有する複数の架橋性基は、上記高分子化合物が有する重合性基と結合可能な官能基であれば、特段制限されないが、複数の架橋性基は、それぞれ独立して、エチレン性不飽和結合を有する基、環状エーテル基、カルボキシ基、アミノ基、イソシアネート基およびフェノール性水酸基から選択される少なくとも1種を含むことが好ましく、エチレン性不飽和結合を有する基および環状エーテル基から選択される少なくとも1種を含むことがより好ましく、エチレン性不飽和結合を有する基を含むことがさらに好ましい。また、これらの基は置換基を有していてもよい。上記複数の架橋性基は、互いに同種の官能基であってもよく、異種の官能基であってもよい。
 上記架橋性モノマーが有する複数の架橋性基に関して、エチレン性不飽和結合を有する基は、ビニル基またはエチニル基を有する基であることが好ましく、ビニル基を有する基であることがより好ましい。ビニル基を有する基としては、上記高分子化合物が有する重合性基について説明したものと同様の官能基が挙げられ、それらのなかでも、ビニルオキシ基、アクリロイル基、ビニルフェニル基、アクリロイルオキシ基またはアクリロイルアミノ基であることがより好ましく、ビニルオキシ基またはアクリロイルオキシ基であることがさらに好ましい。これらの基は、置換基を有していてもよい。置換基を有する上記架橋性基の例としては、メタクリロイル基やメタクリロイルオキシ基が挙げられる。エチレン性不飽和結合を有する基は、特に、(メタ)アクリロイルオキシ基であることが好ましい。
 上記架橋性基に関して、環状エーテル基は、上記高分子化合物が有する重合性基について説明したものと同様の官能基が挙げられ、それらのなかでも、エポキシ基またはオキセタン基であることが好ましく、エポキシ基であることがさらに好ましい。したがって、環状エーテル基を含む上記架橋性基は、例えば、エポキシ基またはオキセタン基そのものや、グリシジル基またはグリシジルエーテル基などであることが好ましく、エポキシ基であることがより好ましい。
 そして、上記架橋性モノマーが有する複数の架橋性基としては、上記架橋性基の中から、上記高分子化合物が有する重合性基と結合可能な官能基が適宜採用される。特に、重合性基および架橋性基の少なくとも1種が、エチレン性不飽和結合を有する基を含むことが好ましく、(メタ)アクリロイル基を含むことがより好ましく、(メタ)アクリロイルオキシ基を含むことがさらに好ましい。特に、重合性基および架橋性基の両方が、エチレン性不飽和結合を有する基を含むことが好ましく、(メタ)アクリロイル基を含むことがより好ましく、(メタ)アクリロイルオキシ基を含むことがさらに好ましい。
 重合性基および架橋性基の好ましい組み合わせは、例えば、下記のとおりである。1分子中に重合性基および架橋性基がそれぞれ複数ある等の場合には、重合性基および架橋性基の態様は、下記の組み合わせの複数に該当してもよい。
・重合性基および架橋性基の両方とも(メタ)アクリロイル基である組み合わせ。
・その一方が(メタ)アクリロイル基であり、他方が(メタ)アクリロイルオキシ基である組み合わせ。
・その両方とも(メタ)アクリロイルオキシ基である組み合わせ。
・その一方が(メタ)アクリロイル基を含み、他方がエポキシ基を含む組み合わせ。
・その両方ともエポキシ基を含む組み合わせ。
・その一方がエポキシ基を含み、他方がカルボキシ基、アミノ基、イソシアネート基またはフェノール性水酸基を含む組み合わせ。
 また、本発明において、架橋性モノマーは、後述するパターン形成用組成物中の重合性化合物とも結合可能な架橋性基を有することも好ましい。これにより、下層膜とその上に塗布したパターン形成用組成物との界面においては、架橋性モノマーが、下層膜中の高分子化合物とパターン形成用組成物中の重合性化合物とを架橋する場合もあり、下層膜と上記パターン形成用組成物の間の密着性がより向上する。
 上記重合性基および上記架橋性基を結合させる方法は、特段制限されず、上記重合性基および上記架橋性基の種類に応じて、適宜公知の方法を採用でき、光エネルギーおよび熱エネルギーの少なくとも1つを付与することが好ましい。上記重合性基および上記架橋性基を結合させるタイミングは、下層膜形成用組成物を基板上に適用してから、パターン形成用組成物からモールドを剥離するまでの間であれば、特段制限されない。上記重合性基および上記架橋性基を結合させる態様の例としては、下層膜形成用組成物を基板上に適用し、その後、下層膜形成用組成物上にパターン形成用組成物を適用する前に、下層膜形成用組成物に光照射および加熱などによって両者の結合反応を促進する方法(第1の方法)がある。また、別の態様としては、下層膜形成用組成物を基板上に適用し、必要に応じて下層膜形成用組成物を乾燥させてから、下層膜形成用組成物上にパターン形成用組成物を適用し、モールドをパターン形成用組成物に押し当て、その後、パターン形成用組成物を硬化する際に、一緒に光照射および加熱などを行って両者の結合反応を促進する方法(第2の方法)もある。上記重合性基および上記架橋性基を結合させる態様としては、上記第1の態様が好ましい。
 本発明の下層膜形成用組成物に含まれる上記架橋性モノマーについて、上記高分子化合物のハンセン溶解度パラメータと、上記架橋性モノマーのハンセン溶解度パラメータとの差であるハンセン溶解度パラメータ距離は5.0以下である。ハンセン溶解度パラメータ距離(ΔHSP)は下記数式(1)により導かれる。
 ΔHSP=[4.0×(ΔD+ΔP+ΔH)]0.5  数式(1)
 数式(1)において、ΔD、ΔPおよびΔHはそれぞれ次のとおりである。
 ΔD:下層膜形成用組成物中の高分子化合物を構成するモノマー単位のハンセン溶解度パラメータベクトルの分散項成分(d成分1)と、下層膜形成用組成物中に含まれる架橋性モノマーのハンセン溶解度パラメータベクトルの分散項成分(d成分2)との差(d成分1-d成分2)。
 ΔP:下層膜形成用組成物中の高分子化合物を構成するモノマー単位のハンセン溶解度パラメータベクトルの極性項成分(p成分1)と、下層膜形成用組成物中に含まれる架橋性モノマーのハンセン溶解度パラメータベクトルの極性項成分(p成分2)との差(p成分1-p成分2)。
 ΔH:下層膜形成用組成物中の高分子化合物を構成するモノマー単位のハンセン溶解度パラメータベクトルの水素結合項成分(h成分1)と、下層膜形成用組成物中に含まれる架橋性モノマーのハンセン溶解度パラメータベクトルの水素結合項成分(h成分2)との差(h成分1-h成分2)。
 ここで、下層膜形成用組成物中の高分子化合物が複数種のモノマー単位から構成される共重合体である場合には、高分子化合物の各成分値として、モノマー単位ごとに算出したHSP成分値を重量比とモル比で加重平均した値を採用する。例えば、HSPのd成分の成分値がda、式量がAかつ高分子化合物中のモル比(モノマー単位の存在比)がaであるモノマー単位と、成分値がdb、式量がBかつモル比がbであるモノマー単位と、成分値がdc、式量がCかつモル比がcであるモノマー単位とから構成される高分子化合物(a+b+c=1)の場合には、高分子化合物の上記d成分1は、下記数式(2)に基づいて算出される。上記p成分1およびh成分1についても同様である。
数式(2):
Figure JPOXMLDOC01-appb-M000006
 本発明において、上記ΔHSPが5.0以下であることにより、高分子と架橋性モノマーの相溶性が増し、下層膜中における架橋性モノマーの分布の偏り(バラツキ)が抑制されると考えられる。上記ΔHSPは、4以下であることが好ましく、3以下であることがより好ましい。上記ΔHSPの下限は、特段制限されないが、0.5以上が実際的であり、1.0以上でもよい。
 本発明において、上記高分子化合物および上記架橋性モノマーの少なくとも1種が環構造を有することが好ましく、これらの両方が環構造を有することがより好ましい。これにより、上記高分子化合物および上記架橋性モノマーの相溶性がより向上する。環構造は、脂肪族環、芳香族環および複素環(芳香族性および非芳香族性を含む。)のいずれでもよく、芳香族環であることが好ましい。環構造は、単環であっても多環であってもよい。環構造が多環である場合には、環の数は、10以下であることが好ましく、5以下であることがより好ましく、4以下であることがさらに好ましく、3でも2でもよい。
 上記環構造としての脂肪族環は、炭素数4~20のシクロアルカンまたはシクロアルケンであることが好ましい。このとき、炭素数は、5~10がより好ましく、5~7がさらに好ましい。脂肪族環の例としては、シクロペンタンおよびシクロヘキサンなどが挙げられる。環構造が芳香族環である場合には、炭素数は、6~20であることが好ましく、6~10であることがより好ましく、6であることがさらに好ましい。芳香族環の例としては、ベンゼンおよびナフタレンなどが挙げられる。一方、複素環は、窒素原子を含むことが好ましく、ピリジン環、ピラジン環、ピリミジン環およびトリアジン環などの骨格を有することがより好ましく、トリアジン環を有することがさらに好ましい。
 本発明の下層膜形成用組成物に含まれる上記架橋性モノマーにおいて、架橋点間距離は7以上である。このように架橋点間距離が充分に長いことにより、架橋性モノマーが高分子間で効率よく架橋を形成でき、個々の地点での膜強度自体も向上すると考えられる。架橋点間距離の上限は20以下であることが好ましく、17以下であることがより好ましく、15以下であることがさらに好ましい。架橋点間距離の下限は8以上であることが好ましく、9以上であることがより好ましい。
 ここで、架橋点間距離の導出方法について説明する。架橋点間距離は、1つの架橋性モノマーが有する2つの架橋性基のそれぞれから架橋点を認定し、この2つの架橋点を連結する最短の原子鎖の原子数を計数することにより導出する。ここで、「架橋点」は、架橋性基のうち、上記架橋性基が上記重合性基に結合する架橋反応の前後において、結合状態が変化する原子団を意味する。この「結合状態の変化」には、不飽和結合が飽和結合に変化すること、開環すること、結合相手の原子数が増減すること、結合相手の原子種が変わること、一部の原子が小分子(例えば水)となって取り除かれることなどを含む。例えば、下記式(L-1)に示すように、架橋性モノマーがアクリロイルオキシ基を有すると把握できる場合においては、架橋反応の前後において結合状態が変化するビニル基に相当する部分を架橋点として認定する。そして、同式に示すように、対象としている2つの架橋点AおよびBの間の最短の原子鎖(式中、位置XからYまでの太線の部分)について、構成原子数を計数する。式(L-1)の場合には、架橋点間距離は11である。
式(L-1):
Figure JPOXMLDOC01-appb-C000007
 下記式(L-2)に、代表的な架橋性基と架橋点の関係を示す。化学式中の点線で囲んだ原子団が架橋点である。なお、アミノ基中、Rは水素原子または置換基である。
式(L-2):
Figure JPOXMLDOC01-appb-C000008
 架橋性モノマーが3以上の架橋性基を有する場合には、任意の2つの架橋性基の組み合わせについて架橋点間距離を導出し、少なくとも1つの組み合わせについて、架橋点間距離が7以上であればよく、8以上であることが好ましく、9以上であることがより好ましい。また、架橋性モノマーが3以上の架橋性基を有する場合には、任意の架橋性基の組み合わせについて、架橋点間距離が20以下であることが好ましく、17以下であることがより好ましく、15以下であることがさらに好ましい。架橋性モノマーが上記要件を満たすことにより、下層膜の膜強度がより向上する。
 本発明の下層膜形成用組成物は、上記架橋性モノマーとして、下記式(2)で表される化合物を含むことが好ましい。このような架橋性モノマーを用いることにより、インプリントにおいて密着性、離型性および経時安定性のバランスがよくなり、下層膜形成用組成物が総合的により優れる傾向にある。
Figure JPOXMLDOC01-appb-C000009
 式中、R21はq価の有機基であり、R22は水素原子またはメチル基であり、qは2以上の整数である。qは2以上7以下の整数が好ましく、2以上4以下の整数がより好ましく、2または3がさらに好ましく、2が一層好ましい。
 R21は、2~7価の有機基であることが好ましく、2~4価の有機基であることがより好ましく、2または3価の有機基であることがさらに好ましく、2価の有機基であることが一層好ましい。R21は直鎖、分岐および環状の少なくとも1つの構造を有する炭化水素基であることが好ましい。炭化水素基の炭素数は、2~20が好ましく、2~10がより好ましい。
 R21が2価の有機基であるとき、R21は下記式(1-2)で表される有機基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式中、ZおよびZはそれぞれ独立に、単結合、-O-、-Alk-、または-Alk-O-であることが好ましい。Alkはアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)を表し、本発明の効果を損ねない範囲で、置換基を有していてもよい。置換基としては、例えば前述した置換基Tが挙げられる。本明細書において、化学式中のアスタリスクは結合手を表す。
 Rは、単結合または2価の連結基である。この連結基は、下記の式(9-1)~(9-10)から選ばれる連結基またはその組み合わせが好ましい。中でも、式(9-1)~(9-3)、(9-7)、および(9-8)から選ばれる連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 R101~R117は任意の置換基である。中でも、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アリールアルキル基(炭素数7~21が好ましく、7~15がより好ましく、7~11がさらに好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、チエニル基、フリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキル基(アルキル基は炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましい)が好ましい。R101とR102、R103とR104、R105とR106、R107とR108、R109とR110、複数あるときのR111、複数あるときのR112、複数あるときのR113、複数あるときのR114、複数あるときのR115、複数あるときのR116、複数あるときのR117は、互いに結合して環を形成していてもよい。
 Arはアリーレン基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)であり、具体的には、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、フルオレンジイル基が挙げられる。
 hCyはヘテロ環基(炭素数1~12が好ましく、1~6がより好ましく、2~5がさらに好ましい)であり、5員環または6員環がより好ましい。hCyを構成するヘテロ環の具体例としては、チオフェン環、フラン環、ジベンゾフラン環、カルバゾール環、インドール環、テトラヒドロピラン環、テトラヒドロフラン環、ピロール環、ピリジン環、トリアジン環、ピラゾール環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、ピロリドン環、モルホリン環が挙げられ、中でも、チオフェン環、フラン環、ジベンゾフラン環が好ましい。
 Zは単結合または連結基である。連結基としては、酸素原子、硫黄原子、フッ素原子が置換してもよいアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)が挙げられる。
 nおよびmは100以下の自然数であり、1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい。
 pは0以上で、各環に置換可能な最大数以下の整数である。上限値は、それぞれの場合で独立に、置換可能最大数の半分以下であることが好ましく、4以下であることがより好ましく、2以下であることがさらに好ましい。
 架橋性モノマーは、下記式(2-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(2-1)中、Rは水素原子またはメチル基である。また、R、ZおよびZは、それぞれ、式(1-2)におけるR、ZおよびZと同義であり、好ましい範囲も同様である。
 本発明で用いる架橋性モノマーを構成する原子の種類は特に定めるものでは無いが、炭素原子、酸素原子、水素原子およびハロゲン原子から選択される原子のみで構成されることが好ましく、炭素原子、酸素原子および水素原子から選択される原子のみで構成されることがより好ましい。
 本発明で好ましく用いられる架橋性モノマーとしては、下記化合物が挙げられる。また、特開2014-170949号公報に記載の重合性化合物が挙げられ、これらの内容は本明細書に含まれる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 本発明において、架橋性モノマーの下層膜形成用組成物中(溶剤を含む)における含有量は、特に限定されないが、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、上記含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、1質量%未満であることが一層好ましい。本発明の下層膜形成用組成物において、架橋性モノマーの高分子化合物に対する割合は、質量比で、0.1~1.5であることが好ましい。この数値範囲の上限は、1.2以下であることが好ましく、0.9以下であることがより好ましく、0.7以下であることがさらに好ましい。また、この数値範囲の下限は、0.2以上であることが好ましく、0.3以上であることがより好ましい。下層膜形成用組成物は、架橋性モノマーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<溶剤>>
 下層膜形成用組成物は、溶剤(以下、「下層膜用溶剤」ということがある)を含む。溶剤は例えば、23℃で液体であって沸点が250℃以下の化合物が好ましい。通常、溶剤以外の固形分が最終的に下層膜を形成する。下層膜形成用組成物は、下層膜用溶剤を99.0質量%以上含むことが好ましく、99.5質量%以上含むことがより好ましく、99.6質量%以上であってもよい。溶剤の割合を上記の範囲とすることで、膜形成時の膜厚を薄く保ち、エッチング加工時のパターン形成性向上につながる。
 溶剤は、下層膜形成用組成物に、1種のみ含まれていてもよいし、2種以上含まれていてもよい。2種以上含む場合、それらの合計量が上記範囲となることが好ましい。
 下層膜用溶剤の沸点は、230℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることがさらに好ましく、160℃以下であることが一層好ましく、130℃以下であることがより一層好ましい。下限値は23℃であることが実際的であるが、60℃以上であることがより実際的である。沸点を上記の範囲とすることにより、下層膜から溶剤を容易に除去でき好ましい。
 下層膜用溶剤は、有機溶剤が好ましい。溶剤は、好ましくはアルキルカルボニル基、カルボニル基、水酸基およびエーテル基のいずれか1つ以上を有する溶剤である。なかでも、非プロトン性極性溶剤を用いることが好ましい。
 具体例としては、アルコキシアルコール、プロピレングリコールモノアルキルエーテルカルボキシレート、プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、およびアルキレンカーボネートが選択される。
 アルコキシアルコールとしては、メトキシエタノール、エトキシエタノール、メトキシプロパノール(例えば、1-メトキシ-2-プロパノール)、エトキシプロパノール(例えば、1-エトキシ-2-プロパノール)、プロポキシプロパノール(例えば、1-プロポキシ-2-プロパノール)、メトキシブタノール(例えば、1-メトキシ-2-ブタノール、1-メトキシ-3-ブタノール)、エトキシブタノール(例えば、1-エトキシ-2-ブタノール、1-エトキシ-3-ブタノール)、メチルペンタノール(例えば、4-メチル-2-ペンタノール)などが挙げられる。
 プロピレングリコールモノアルキルエーテルカルボキシレートとしては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、および、プロピレングリコールモノエチルエーテルアセテートからなる群より選択される少なくとも1つが好ましく、プロピレングリコールモノメチルエーテルアセテート(PGMEA)であることが特に好ましい。
 また、プロピレングリコールモノアルキルエーテルとしては、プロピレングリコールモノメチルエーテル(PGME)またはプロピレングリコールモノエチルエーテルが好ましい。
 乳酸エステルとしては、乳酸エチル、乳酸ブチル、または乳酸プロピルが好ましい。
 酢酸エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソアミル、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、または酢酸3-メトキシブチルが好ましい。
 アルコキシプロピオン酸エステルとしては、3-メトキシプロピオン酸メチル(MMP)、または、3-エトキシプロピオン酸エチル(EEP)が好ましい。
 鎖状ケトンとしては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトンまたはメチルアミルケトンが好ましい。
 環状ケトンとしては、メチルシクロヘキサノン、イソホロンまたはシクロヘキサノンが好ましい。
 ラクトンとしては、γ-ブチロラクトン(γBL)が好ましい。
 アルキレンカーボネートとしては、プロピレンカーボネートが好ましい。
 上記成分の他、炭素数が7以上(7~14が好ましく、7~12がより好ましく、7~10がさらに好ましい)、かつ、ヘテロ原子数が2以下のエステル系溶剤を用いることが好ましい。
 炭素数が7以上かつヘテロ原子数が2以下のエステル系溶剤の好ましい例としては、酢酸アミル、酢酸2-メチルブチル、酢酸1-メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ブチル、イソ酪酸イソブチル、プロピオン酸ヘプチル、ブタン酸ブチルなどが挙げられ、酢酸イソアミルを用いることが特に好ましい。
 下層膜用溶剤として中でも好ましい溶剤としては、アルコキシアルコール、プロピレングリコールモノアルキルエーテルカルボキシレート、プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、およびアルキレンカーボネートが挙げられる。
<<その他の成分>>
 下層膜形成用組成物は、上記の他、アルキレングリコール化合物、重合開始剤、重合禁止剤、酸化防止剤、レベリング剤、増粘剤、界面活性剤等を1種または2種以上含んでいてもよい。
<<<アルキレングリコール化合物>>>
 下層膜形成用組成物は、アルキレングリコール化合物を含んでいてもよい。アルキレングリコール化合物は、アルキレングリコール構成単位を3~1000個有していることが好ましく、4~500個有していることがより好ましく、5~100個有していることがさらに好ましく、5~50個有していることが一層好ましい。アルキレングリコール化合物の重量平均分子量(Mw)は150~10000が好ましく、200~5000がより好ましく、300~3000がさらに好ましく、300~1000が一層好ましい。
 アルキレングリコール化合物は、ポリエチレングリコール、ポリプロピレングリコール、これらのモノまたはジメチルエーテル、モノまたはジオクチルエーテル、モノまたはジノニルエーテル、モノまたはジデシルエーテル、モノステアリン酸エステル、モノオレイン酸エステル、モノアジピン酸エステル、モノコハク酸エステルが例示され、ポリエチレングリコール、ポリプロピレングリコールが好ましい。
 アルキレングリコール化合物の23℃における表面張力は、38.0mN/m以上であることが好ましく、40.0mN/m以上であることがより好ましい。表面張力の上限は特に定めるものではないが、例えば48.0mN/m以下である。このような化合物を配合することにより、下層膜の直上に設けるパターン形成用組成物の濡れ性をより向上させることができる。
 表面張力は、協和界面科学(株)製、表面張力計 SURFACE TENS-IOMETER CBVP-A3を用い、ガラスプレートを用いて23℃で測定する。単位は、mN/mで示す。1水準につき2つの試料を作製し、それぞれ3回測定する。合計6回の算術平均値を評価値として採用する。
 アルキレングリコール化合物の含有量は、全固形分量の40質量%以下であり、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、1~15質量%であることがさらに好ましい。アルキレングリコール化合物は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合には、それらの合計量が上記範囲となることが好ましい。
<<<重合開始剤>>>
 下層膜形成用組成物は、重合開始剤を含んでいてもよく、熱重合開始剤および光重合開始剤の少なくとも1種を含むことが好ましい。重合開始剤を含むことにより、下層膜形成用組成物に含まれる重合性基の反応が促進し、密着性が向上する傾向にある。パターン形成用組成物との架橋反応性を向上させる観点から光重合開始剤が好ましい。光重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤が好ましく、ラジカル重合開始剤がより好ましい。また、本発明において、光重合開始剤は複数種を併用してもよい。
 熱重合開始剤については、特開2013-036027号公報、特開2014-090133号公報、特開2013-189537号公報に記載の各成分を用いることができる。含有量等についても、上記公報の記載を参酌できる。
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182の記載を参酌でき、この内容は本明細書に組み込まれる。
 アシルホスフィン化合物としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE1173、IRGACURE-TPO(商品名:いずれもBASF製)を用いることができる。
 上記下層膜形成用組成物に用いられる光重合開始剤の含有量は、配合する場合、全固形分中、例えば、0.0001~5質量%であり、好ましくは0.0005~3質量%であり、さらに好ましくは0.01~1質量%である。2種以上の光重合開始剤を用いる場合は、それらの合計量が上記範囲となる。
<下層膜形成用組成物の製造方法>
 本発明の下層膜形成用組成物は、原料を所定の割合となるように配合して調製される。原料とは、下層膜形成用組成物に積極的に配合される成分をいい、不純物等の意図せずに含まれる成分は除く趣旨である。具体的には、硬化性成分や溶剤が例示される。ここで、原料は市販品であっても、合成品であってもよい。いずれの原料も、金属粒子などの不純物を含むことがある。
 本発明の下層膜形成用組成物の製造方法の好ましい一実施形態として、下層膜形成用組成物に含まれる原料の少なくとも1種を、フィルターを用いて濾過処理を行うことを含む製造方法が挙げられる。また、2種以上の原料を混合した後、フィルターを用いて濾過し、他の原料(濾過していてもよいし、濾過していなくてもよい)と混合することも好ましい。より好ましい一実施形態としては、下層膜形成用組成物に含まれる原料(好ましくはすべての原料)を混合した後、フィルターを用いて濾過処理を行う実施形態が例示される。
 濾過は1段階のフィルターによる濾過でも効果を発揮するが、2段階以上のフィルターによる濾過がより好ましい。2段階以上のフィルターによる濾過とは、2つ以上のフィルターを直列に配置して濾過することをいう。本発明では、1~5段階のフィルターによる濾過が好ましく、1~4段階のフィルターによる濾過がより好ましく、2~4段階のフィルターによる濾過がさらに好ましい。
 本発明の下層膜形成用組成物の製造方法は、下層膜形成用組成物の原料を混合した後、2種以上のフィルターを用いて濾過することを含み、上記2種以上のフィルターの少なくとも2種は、孔径が互いに異なることが好ましい。このような構成とすることにより、より効果的に不純物の除去を行うことが可能になる。また、上記2種以上のフィルターの少なくとも2種は、材質が互いに異なることが好ましい。このような構成とすることにより、より多種類の不純物の除去を行うことが可能になる。さらに、上記2種以上のフィルターのうち、フィルターの孔径の大きいものから順に、下層膜形成用組成物を通過させて濾過することが好ましい。すなわち、濾過装置の上流から下流に向かい、孔径が小さくなるようにフィルターを配置することが、不純物除去能の観点で好ましい。
 2種の孔径の異なるフィルターを用いる場合、1段階目の濾過は、孔径が0.5~15nmのフィルター(好ましくは孔径が1~10nmのフィルター)を用い、2段階目の濾過は、孔径が3~100nmのフィルター(好ましくは孔径が5~50nmのフィルター)を用いることができる。
 フィルターの材料を構成する成分(材料成分)は、樹脂を含むことが好ましい。樹脂としては特に制限されず、フィルターの材料として公知のものが使用できる。具体的には、6-ポリアミド、6,6-ポリアミド等のポリアミド、ポリエチレン、および、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン・テトラフルオロエチレンコポリマー、エチレン-クロロトリフロオロエチレンコポリマー、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、および、ポリフッ化ビニル等のポリフルオロカーボン、ポリビニルアルコール、ポリエステル、セルロース、セルロースアセテート、ポリスルホン、ポリエーテルスルホン等が挙げられる。なかでも、より優れた耐溶剤性を有し、より優れた欠陥抑制性能を有する点で、ポリエチレン(超高分子量のもの、グラフト化されたものを含む)およびポリアミドからなる群より選択される少なくとも1種が一層好ましく、ポリアミドからなるものがより一層好ましい。これらの重合体は単独でまたは2種以上を組み合わせて使用できる。
<下層膜の表面自由エネルギー>
 本発明の下層膜形成用組成物から形成された下層膜の表面自由エネルギーが30mN/m以上であることが好ましく、40mN/m以上であることがより好ましく、50mN/m以上であることがさらに好ましい。上限としては、200mN/m以上であることが好ましく、150mN/m以上であることがより好ましく、100mN/m以上であることがさらに好ましい。表面自由エネルギーの測定は、協和界面科学(株)製、表面張力計 SURFACE TENS-IOMETER CBVP-A3を用い、ガラスプレートを用いて23℃で行うことができる。
<パターン形成用組成物>
 本発明の下層膜形成用組成物は、通常、パターン形成用組成物用の下層膜を形成するための組成物として用いられる。パターン形成用組成物の組成等は、特に定めるものではないが、重合性化合物を含むことが好ましい。
<<重合性化合物>>
 パターン形成用組成物は重合性化合物を含むことが好ましく、この重合性化合物が最大量成分を構成することがより好ましい。重合性化合物は、一分子中に重合性基を1つ有していても、2つ以上有していてもよい。パターン形成用組成物に含まれる重合性化合物の少なくとも1種は、重合性基を一分子中に2~5つ含むことが好ましく、2~4つ含むことがより好ましく、2または3つ含むことがさらに好ましく、3つ含むことが一層好ましい。パターン形成用組成物中の重合性化合物は、下層膜形成用組成物中の高分子化合物が有する重合性基と同種の重合性基を有することが好ましい。これにより、架橋性モノマーがパターン形成用組成物中の重合性化合物と結合可能となり、組成物間の界面をまたがる結合により上記界面での密着性がより向上するという効果が得られる。
 パターン形成用組成物に含まれる重合性化合物の少なくとも1種は、環状構造を有することが好ましい。この環状構造の例としては脂肪族炭化水素環Cfおよび芳香族炭化水素環Crが挙げられる。なかでも、重合性化合物は芳香族炭化水素環Crを有することが好ましく、ベンゼン環を有することがより好ましい。
 重合性化合物の分子量は100~900が好ましい。
 上記重合性化合物の少なくとも1種は、下記式(I-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 L20は、1+q2価の連結基であり、例えば環状構造の連結基が挙げられる。環状構造としては、上記環Cf、環Cr、環Cn、環Co、環Csの例が挙げられる。
 R21およびR22はそれぞれ独立に水素原子またはメチル基を表す。
 L21およびL22はそれぞれ独立に単結合または上記連結基Lを表す。L20とL21またはL22は連結基Lを介してまたは介さずに結合して環を形成していてもよい。L20、L21およびL22は上記置換基Tを有していてもよい。置換基Tは複数が結合して環を形成してもよい。置換基Tが複数あるとき互いに同じでも異なっていてもよい。
 q2は0~5の整数であり、0~3の整数が好ましく、0~2の整数がより好ましく、0または1がさらに好ましい。
 重合性化合物の例としては下記実施例で用いた化合物、特開2014-090133号公報の段落0017~0024および実施例に記載の化合物、特開2015-009171号公報の段落0024~0089に記載の化合物、特開2015-070145号公報の段落0023~0037に記載の化合物、国際公開第2016/152597号の段落0012~0039に記載の化合物を挙げることができるが、本発明がこれにより限定して解釈されるものではない。
 重合性化合物は、パターン形成用組成物中、30質量%以上含有することが好ましく、45質量%以上がより好ましく、50質量%以上がさらに好ましく、55質量%以上が一層好ましく、60質量%以上であってもよく、さらに70質量%以上であってもよい。また、上限値は、99質量%未満であることが好ましく、98質量%以下であることがさらに好ましく、97質量%以下とすることもできる。
 重合性化合物の沸点は、上述した下層膜形成用組成物に含まれる高分子化合物との関係で設定され配合設計されることが好ましい。重合性化合物の沸点は、500℃以下であることが好ましく、450℃以下であることがより好ましく、400℃以下であることがさらに好ましい。下限値としては200℃以上であることが好ましく、220℃以上であることがより好ましく、240℃以上であることがさらに好ましい。
<<その他の成分>>
 パターン形成用組成物は、重合性化合物以外の添加剤を含有してもよい。他の添加剤として、重合開始剤、溶剤、界面活性剤、増感剤、離型剤、酸化防止剤、重合禁止剤等を含んでいてもよい。
 本発明では、パターン形成用組成物における溶剤の含有量は、パターン形成用組成物の5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 パターン形成用組成物は、ポリマー(好ましくは、重量平均分子量が1000を超える、より好ましくは重量平均分子量が2000を超える)を実質的に含有しない態様とすることもできる。ポリマーを実質的に含有しないとは、例えば、ポリマーの含有量がパターン形成用組成物の0.01質量%以下であることをいい、0.005質量%以下が好ましく、全く含有しないことがより好ましい。
 その他、本発明の下層膜形成用組成物と共に用いることができるパターン形成用組成物の具体例としては、特開2013-036027号公報、特開2014-090133号公報、特開2013-189537号公報に記載の組成物が例示され、これらの内容は本明細書に組み込まれる。また、パターン形成用組成物の調製、パターンの製造方法についても、上記公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<物性値等>
 パターン形成用組成物の粘度は、20.0mPa・s以下であることが好ましく、15.0mPa・s以下であることがより好ましく、11.0mPa・s以下であることがさらに好ましく、9.0mPa・s以下であることが一層好ましい。上記粘度の下限値としては、特に限定されるものではないが、例えば、5.0mPa・s以上とすることができる。粘度は、下記の方法に従って測定される。
 粘度は、東機産業(株)製のE型回転粘度計RE85L、標準コーン・ロータ(1°34’×R24)を用い、サンプルカップを23℃に温度調節して測定する。単位は、mPa・sで示す。測定に関するその他の詳細はJISZ8803:2011に準拠する。1水準につき2つの試料を作製し、それぞれ3回測定する。合計6回の算術平均値を評価値として採用する。
 パターン形成用組成物の表面張力(γResist)は28.0mN/m以上であることが好ましく、30.0mN/m以上であることがより好ましく、32.0mN/m以上であってもよい。表面張力の高いパターン形成用組成物を用いることで毛細管力が上昇し、モールドパターンへのパターン形成用組成物の高速な充填が可能となる。上記表面張力の上限値としては、特に限定されるものではないが、下層膜との関係およびインクジェット適性を付与するという観点では、40.0mN/m以下であることが好ましく、38.0mN/m以下であることがより好ましく、36.0mN/m以下であってもよい。
 パターン形成用組成物の表面張力は、上記アルキレングリコール化合物における測定方法と同じ方法に従って測定される。
 パターン形成用組成物の大西パラメータは、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.7以下であることがさらに好ましい。パターン形成用組成物の大西パラメータの下限値は、特に定めるものではないが、例えば、1.0以上、さらには、2.0以上であってもよい。パターン形成用組成物の大西パラメータは、パターン形成用組成物中の固形分について、全構成成分の炭素原子、水素原子および酸素原子の数を下記式に代入して求めることができる。
 大西パラメータ=炭素原子、水素原子および酸素原子の数の和/(炭素原子の数-酸素原子の数)
<収容容器>
 本発明で用いる下層膜形成用組成物およびパターン形成用組成物の収容容器としては従来公知の収容容器を用いることができる。また、収容容器としては、原材料や組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
<インプリント用キット>
 本発明のキットは、インプリント法によりパターン(パターン転写された硬化膜)を形成するための上記パターン形成用組成物と、下層膜を形成するための下層膜形成用組成物との組み合わせを含む。例えば、パターン形成用組成物および下層膜形成用組成物は、それぞれ別個の収容容器に収容され、組み合わされる。本発明のキットを使用することにより、膜強度に優れた下層膜を形成でき、その結果として、モールドの損傷を抑制できるインプリントを実施することが可能となる。
<パターン製造方法>
 本発明の好ましい実施形態にかかるパターン(パターン転写された硬化膜)の製造方法は、基板表面に、本発明の下層膜形成用組成物を用いて下層膜を形成する工程(下層膜形成工程)、上記下層膜上(好ましくは、下層膜の表面)にパターン形成用組成物を適用してパターン形成用組成物層を形成する工程(パターン形成用組成物層形成工程)、上記パターン形成用組成物層にモールドを接触させる工程、上記モールドを接触させた状態で上記パターン形成用組成物層を露光する工程、および上記モールドを、上記露光したパターン形成用組成物層から剥離する工程を含む。
 本発明のパターン製造方法において、下層膜形成用組成物を、基板上への適用の前に、10~40℃で保存することが好ましい。この数値範囲の上限は、35℃以下であることがより好ましく、33℃以下であることがさらに好ましい。さらに、この数値範囲の下限は、15℃以上であることがより好ましく、18℃以上であることがさらに好ましい。これにより、キレート剤の活性を充分に発揮させることができる。
 温度以外の具体的な保存方法は、特段制限されない。例えば、大気下で保存することもでき、窒素等の置換ガス雰囲気下で保存することもでき、大気下で保存することが好ましい。また、遮光窓付きの保管庫内で保存することもでき、インプリント装置等の機器に装着した状態で保存してもよい。
 以下、パターン製造方法について、図1に従って説明する。本発明の構成が図面により限定されるものではないことは言うまでもない。
<<下層膜形成工程>>
 下層膜形成工程では、図1(1)(2)に示す様に、基板1の表面に、下層膜2を形成する。下層膜は、下層膜形成用組成物を基板上に層状に適用して形成することが好ましい。基板1は、単層からなる場合の他、下塗り層や密着層を有していてもよい。
 基板の表面への下層膜形成用組成物の適用方法としては、特に定めるものではなく、一般によく知られた適用方法を採用できる。具体的には、適用方法としては、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート法、スリットスキャン法、あるいはインクジェット法が例示され、スピンコート法が好ましい。
 また、基板上に下層膜形成用組成物を層状に適用した後、好ましくは、熱によって溶剤を揮発(乾燥)させて、薄膜である下層膜を形成する。
 下層膜2の厚さは、2nm以上であることが好ましく、3nm以上であることがより好ましく、4nm以上であることがさらに好ましい。また、下層膜の厚さは、20nm以下であることが好ましく、10nm以下であることがより好ましく、7nm以下であることがさらに好ましい。膜厚を上記下限値以上とすることにより、パターン形成用組成物の下層膜上での拡張性(濡れ性)が向上し、インプリント後の均一な残膜形成が可能となる。膜厚を上記上限値以下とすることにより、インプリント後の残膜が薄くなり、膜厚ムラが発生しにくくなり、残膜均一性が向上する傾向にある。
 基板の材質としては、特に定めるものでは無く、特開2010-109092号公報の段落0103の記載を参酌でき、これらの内容は本明細書に組み込まれる。本発明では、シリコン基板、ガラス基板、石英基板、サファイア基板、シリコンカーバイド(炭化ケイ素)基板、窒化ガリウム基板、アルミニウム基板、アモルファス酸化アルミニウム基板、多結晶酸化アルミニウム基板、SOC(スピンオンカーボン)、SOG(スピンオングラス)、窒化ケイ素、酸窒化ケイ素、ならびに、GaAsP、GaP、AlGaAs、InGaN、GaN、AlGaN、ZnSe、AlGa、InP、または、ZnOから構成される基板が挙げられる。なお、ガラス基板の具体的な材料例としては、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスが挙げられる。本発明では、シリコン基板およびSOC(スピンオンカーボン)を塗布した基板が好ましい。
 シリコン基板は適宜表面修飾したものを用いることができ、基板の表面から10nmの厚さ(より好ましくは100nmの厚さ)までの領域の炭素含有量を70質量%以上(好ましくは、80~100質量%)としたものを用いてもよい。例えば、シリコン基板に各種のスピンオンカーボン膜をスピンコート法で塗布し、240℃で60秒間ベークを行って得られる膜厚200nmのSOC(Spin on Carbon)膜を有する基板が挙げられる。近年はこうした多様なSOC基板表面であっても安定したモールドパターニングが求められており、本発明によれば、このような基板とパターン形成用組成物から形成される層との良好な密着性を確保することができ、基板剥がれの生じない安定したモールドパターニングが実現される。
 本発明においては、有機層を最表層として有する基板を用いることが好ましい。
 基板の有機層としてはCVD(Chemical Vapor Deposition)で形成されるアモルファスカーボン膜や、高炭素材料を有機溶剤に溶解させ、スピンコートで形成されるスピンオンカーボン膜が挙げられる。スピンオンカーボン膜としては、ノルトリシクレン共重合体、水素添加ナフトールノボラック樹脂、ナフトールジシクロペンタジエン共重合体、フェノールジシクロペンタジエン共重合体、特開2005-128509号公報に記載されるフルオレンビスフェノールノボラック、特開2005-250434号公報に記載のアセナフチレン共重合、インデン共重合体、特開2006-227391号公報に記載のフェノール基を有するフラーレン、ビスフェノール化合物およびこのノボラック樹脂、ジビスフェノール化合物およびこのノボラック樹脂、アダマンタンフェノール化合物のノボラック樹脂、ヒドロキシビニルナフタレン共重合体、特開2007-199653号公報に記載のビスナフトール化合物およびこのノボラック樹脂、ROMP、トリシクロペンタジエン共重合物に示される樹脂化合物が挙げられる。
 SOCの例としては特開2011-164345号公報の段落0126の記載を参照することができ、その内容は本明細書に組み込まれる。
 基板表面の水に対する接触角としては、20°以上であることが好ましく、40°以上であることがより好ましく、60°以上であることがさらに好ましい。上限としては、90°以下であることが実際的である。接触角は、後述する実施例で記載の方法に従って測定される。
 本発明においては、塩基性の層を最表層として有する基板(以下、塩基性基板という)を用いることが好ましい。塩基性基板の例としては、塩基性有機化合物(例えば、アミン系化合物やアンモニウム系化合物など)を含む基板や窒素原子を含有する無機基板が挙げられる。
<<パターン形成用組成物層形成工程>>
 この工程では、例えば、図1(3)に示すように、上記下層膜2の表面に、パターン形成用組成物3を適用する。
 パターン形成用組成物の適用方法としては、特に定めるものでは無く、特開2010-109092号公報(対応US出願の公開番号は、US2011/183127)の段落0102の記載を参酌でき、この内容は本明細書に組み込まれる。上記パターン形成用組成物は、インクジェット法により、上記下層膜の表面に適用することが好ましい。また、パターン形成用組成物を、多重塗布により塗布してもよい。インクジェット法などにより下層膜の表面に液滴を配置する方法において、液滴の量は1~20pL程度が好ましく、液滴間隔をあけて下層膜表面に配置することが好ましい。液滴間隔としては、10~1000μmの間隔が好ましい。液滴間隔は、インクジェット法の場合は、インクジェットのノズルの配置間隔とする。
 さらに、下層膜2と、下層膜上に適用した膜状のパターン形成用組成物3の体積比は、1:1~500であることが好ましく、1:10~300であることがより好ましく、1:50~200であることがさらに好ましい。
 また、積層体の製造方法は、本発明の上記キットを用いて製造する方法であって、上記下層膜形成用組成物から形成された下層膜の表面に、パターン形成用組成物を適用することを含む。さらに、積層体の製造方法は、上記下層膜形成用組成物を基板上に層状に適用する工程を含み、上記層状に適用した下層膜形成用組成物を、好ましくは100~300℃で、より好ましくは130~260℃で、さらに好ましくは150~230℃で、加熱(ベーク)することを含むことが好ましい。加熱時間は、好ましくは30秒~5分である。
 パターン形成用組成物を下層膜に適用するに当たり、基板上に液膜を形成する形態としてもよい。液膜の形成は常法によればよい。例えば、23℃で液体の架橋性モノマー(重合性化合物の例が挙げられる)などを含有する組成物を基板上に適用することにより形成してもよい。
<<モールド接触工程>>
 モールド接触工程では、例えば、図1(4)に示すように、上記パターン形成用組成物3とパターン形状を転写するためのパターンを有するモールド4とを接触させる。このような工程を経ることにより、所望のパターン(インプリントパターン)が得られる。
 具体的には、膜状のパターン形成用組成物に所望のパターンを転写するために、膜状のパターン形成用組成物3の表面にモールド4を押接する。
 モールドは、光透過性のモールドであってもよいし、光非透過性のモールドであってもよい。光透過性のモールドを用いる場合は、モールド側からパターン形成用組成物3に光を照射することが好ましい。本発明では、光透過性モールドを用い、モールド側から光を照射することがより好ましい。
 本発明で用いることのできるモールドは、転写されるべきパターンを有するモールドである。上記モールドが有するパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じて形成できるが、本発明では、モールドパターンの形成方法は特に制限されない。また、本発明の好ましい実施形態に係るパターンの製造方法によって形成したパターンをモールドとして用いることもできる。
 本発明において用いられる光透過性モールドを構成する材料は、特に限定されないが、ガラス、石英、ポリメチルメタクリレート(PMMA)、ポリカーボネート樹脂などの光透過性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示され、石英が好ましい。
 本発明において光透過性の基板を用いた場合に使われる非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの基板などが例示され、特に制約されない。
 基板の表面は適宜常法により処理してもよく、例えば、UVオゾン処理等により基板の表面にOH基を形成して、基板表面の極性を高めることで、より密着性が向上する態様してもよい。
 上記パターンの製造方法では、パターン形成用組成物を用いてインプリントリソグラフィを行うに際し、モールド圧力を10気圧以下とするのが好ましい。モールド圧力を10気圧以下とすることにより、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、圧力が小さいため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部にあたるパターン形成用組成物の残膜が少なくなる一方で、モールド転写の均一性が確保できる範囲から選択することが好ましい。
 また、パターン形成用組成物とモールドとの接触を、ヘリウムガスまたは凝縮性ガス、あるいはヘリウムガスと凝縮性ガスの両方を含む雰囲気下で行うことも好ましい。
<<光照射工程>>
 光照射工程では、上記パターン形成用組成物に光を照射することにより露光を実施して、硬化物を形成する。光照射工程における光照射の照射量は、硬化に必要な最小限の照射量よりも十分大きければよい。硬化に必要な照射量は、パターン形成用組成物の不飽和結合の消費量などを調べて適宜決定される。照射する光の種類は特に定めるものではないが、紫外光が例示される。
 また、本発明に適用されるインプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温とするが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドとパターン形成用組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、上記パターンの製造方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
 露光に際しては、露光照度を1~500mW/cmの範囲にすることが好ましく、10~400mW/cmの範囲にすることがより好ましい。露光の時間は特に限定されないが、0.01~10秒であることが好ましく、0.5~1秒であることがより好ましい。露光量は、5~1000mJ/cmの範囲にすることが好ましく、10~500mJ/cmの範囲にすることがより好ましい。
 上記パターンの製造方法においては、光照射により膜状のパターン形成用組成物(パターン形成層)を硬化させた後、必要に応じて、硬化させたパターンに熱を加えてさらに硬化させる工程を含んでいてもよい。光照射後にパターン形成用組成物を加熱硬化させるための温度としては、150~280℃が好ましく、200~250℃がより好ましい。また、熱を付与する時間としては、5~60分間が好ましく、15~45分間がさらに好ましい。
 本発明の下層膜形成用組成物を使用した場合には、上述した光照射や加熱に起因して、下層膜中の高分子化合物が有する重合性基と、架橋性モノマーが有する架橋性基との架橋反応が促進される。また、架橋性モノマーが有する架橋性基の一部は、下層膜上にあるパターン形成用組成物中の重合性化合物とも架橋反応を行う場合もあり、本発明は下層膜の膜強度の向上という効果に加えて、組成物間の界面をまたがる結合により上記界面での密着性がより向上するという効果も得られる。インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温とするが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドとパターン形成用組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、上記パターンの製造方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
<<離型工程>>
 離型工程では、上記硬化物と上記モールドとを引き離す(図1(5))。得られたパターンは後述する通り各種用途に利用できる。すなわち、本発明では、上記下層膜の表面に、さらに、パターン形成用組成物から形成されるパターンを有する、積層体が開示される。また、本発明で用いるパターン形成用組成物からなるパターン形成層の膜厚は、使用する用途によって異なるが、0.01μm~30μm程度である。さらに、後述するとおり、エッチング等を行うこともできる。
<パターンとその応用>
 上記パターンの製造方法によって形成されたパターンは、液晶表示装置(LCD)などに用いられる永久膜や、半導体素子製造用のエッチングレジスト(リソグラフィ用マスク)として使用することができる。特に、本明細書では、本発明の好ましい実施形態に係るパターンの製造方法によりパターンを得る工程を含む、半導体デバイス(回路基板)の製造方法を開示する。さらに、本発明の好ましい実施形態に係る半導体デバイスの製造方法では、上記パターンの製造方法により得られたパターンをマスクとして基板にエッチングまたはイオン注入を行う工程と、電子部材を形成する工程と、を有していてもよい。上記半導体デバイスは、半導体素子であることが好ましい。すなわち、本明細書では、上記パターン製造方法を含む半導体デバイスの製造方法を開示する。さらに、本明細書では、上記半導体デバイスの製造方法により半導体デバイスを得る工程と、上記半導体デバイスと上記半導体デバイスを制御する制御機構とを接続する工程と、を有する電子機器の製造方法を開示する。
 また、上記パターンの製造方法によって形成されたパターンを利用して液晶表示装置のガラス基板にグリッドパターンを形成し、反射や吸収が少なく、大画面サイズ(例えば55インチ、60インチ、(1インチは2.54センチメートルである))の偏光板を安価に製造することが可能である。例えば、特開2015-132825号公報や国際公開第2011/132649号に記載の偏光板が製造できる。
 本発明で形成されたパターンは、図1(6)(7)に示す通り、エッチングレジスト(リソグラフィ用マスク)としても有用である。パターンをエッチングレジストとして利用する場合には、まず、基板上に上記パターンの製造方法によって、例えば、ナノまたはミクロンオーダーの微細なパターンを形成する。本発明では特にナノオーダーの微細パターンを形成でき、さらにはサイズが50nm以下、特には30nm以下のパターンも形成できる点で有益である。上記パターンの製造方法で形成するパターンのサイズの下限値については特に定めるものでは無いが、例えば、1nm以上とすることができる。
 また、本発明のパターン製造方法は、インプリント用モールドの製造方法に応用することもできる。このインプリント用モールドの製造方法は、例えば、モールドの素材となる基板(例えば、石英などの透明材料からなる基板)上に、上述したパターンの製造方法によりパターンを製造する工程と、このパターンを用いて上記基板にエッチングを行う工程とを有する。
 エッチング法としてウェットエッチングを使用する場合にはフッ化水素等のエッチング液、ドライエッチングを使用する場合にはCF等のエッチングガスを用いてエッチングすることにより、基板上に所望のパターンを形成することができる。パターンは、特にドライエッチングに対するエッチング耐性が良好である。すなわち、上記パターンの製造方法によって形成されたパターンは、リソグラフィ用マスクとして好ましく用いられる。
 本発明で形成されたパターンは、具体的には、磁気ディスク等の記録媒体、固体撮像素子等の受光素子、LED(light emitting diode)や有機EL(有機エレクトロルミネッセンス)等の発光素子、液晶表示装置(LCD)等の光デバイス、回折格子、レリーフホログラム、光導波路、光学フィルタ、マイクロレンズアレイ等の光学部品、薄膜トランジスタ、有機トランジスタ、カラーフィルタ、反射防止膜、偏光板、偏光素子、光学フィルム、柱材等のフラットパネルディスプレイ用部材、ナノバイオデバイス、免疫分析チップ、デオキシリボ核酸(DNA)分離チップ、マイクロリアクター、フォトニック液晶、ブロックコポリマーの自己組織化を用いた微細パターン形成(directed self-assembly、DSA)のためのガイドパターン等の作製に好ましく用いることができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。実施例において、特に述べない限り、「部」および「%」は質量基準であり、各工程の環境温度(室温)は23℃である。
<下層膜形成用組成物の調製>
 下記表に示す化合物を、下記表に示す配合割合(質量部)で配合し、混合した。混合後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させ、0.3質量%の溶液を作製した。これを孔径0.02μmのナイロンフィルタおよび孔径0.001μmの超高分子量ポリエチレン(UPE)フィルタで濾過して、実施例および比較例に示す下層膜形成用組成物を調製した。
 そして、カールフィッシャー法を用いて、実施例および比較例の各下層膜形成用組成物の含水率を測定した。いずれの組成物についても、含水率は組成物の全量に対して0.1質量%未満であった。
Figure JPOXMLDOC01-appb-T000019
 上記表1中の架橋点間距離の欄について、モノマーB-1では、架橋点間距離がそれぞれ9および17となる複数の重合性基および架橋性基の組み合わせが存在することを示す。
 各原料の具体的な仕様は、下記のとおりである。
<下層膜形成用組成物の原料>
<<高分子化合物>>
A-1:下記構造を有する化合物(Mw=20000)。
A-2:下記構造を有する化合物(Mw=20000、Mw/Mn=1.9)。
A-3:下記構造を有する化合物(Mw=20000、Mw/Mn=1.8)。
A-4:下記構造を有する化合物(Mw=3000)。
A-5:下記構造を有する化合物(EBECRYL3605、ダイセルオルネクス社製、Mw=20,000)。
A-6:下記構造を有する化合物(PVEEA、日本触媒社製、Mw=21000、Mw/Mn=2.2)。
A-7:下記構造を有する化合物(EAオリゴ7420、新中村化学社製、Mw=3500)。
A-8:下記構造を有する化合物(Mw=21000、Mw/Mn=2.0)。
A-9:下記構造を有する化合物(Mw=21000、Mw/Mn=2.0)。各繰り返し単位に付した数値は、繰り返し単位のモル比を表す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
<<<高分子化合物の合成方法>>>
・A-1:
 高分子化合物A-9の下記合成方法にならって合成した。得られた高分子化合物A-1について、Mw=20000であった。
・A-2:
 フラスコに、溶剤として100gのPGMEAを入れ、窒素雰囲気下でPGMEAを90℃に昇温した。その溶剤に、GMA(メタクリル酸グリシジル、28.4g、0.2モル)、アゾ系重合開始剤(V-601、富士フイルム和光純薬社製、2.8g、12ミリモル)およびPGMEA(50g)の混合液を、2時間かけて滴下した。滴下終了後、上記混合液を90℃で4時間撹拌した。その後、上記容器に、アクリル酸(19.0g、0.26モル、GMAに対して1.1当量、富士フイルム和光純薬社製)、テトラブチルアンモニウムブロミド(TBAB、2.1g)、および、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(4-HO-TEMPO、50mg)を順に加え、90℃で8時間撹拌しながら反応させた。グリシジル基が反応で消失したことはH-NMR測定により確認した。以上の手順により、高分子化合物A-2のPGMEA溶液を得た。得られた高分子化合物A-2について、Mw=20000、分散度(Mw/Mn)=1.9であった。
・A-3:
 フラスコに、溶剤として100gのPGMEAを入れ、窒素雰囲気下でPGMEAを90℃に昇温した。その溶剤に、GMA(メタクリル酸グリシジル、28.4g、0.2モル)、アゾ系重合開始剤(V-601、富士フイルム和光純薬社製、2.8g、12ミリモル)およびPGMEA(50g)の混合液を、2時間かけて滴下した。滴下終了後、上記混合液を90℃で4時間撹拌した。以上の手順により、高分子化合物A-3のPGMEA溶液を得た。得られた高分子化合物A-3について、Mw=20000、分散度(Mw/Mn)=1.8であった。
・A-4:
 11gのEPON Resin 164と、100mLのジメチルエーテル(DME)とを室温で混合して第1の溶液を調製し、-20℃まで冷却した。次に、50mmolのエチルマグネシウムブロマイド(EtMgBr)を50mLのDMEに溶解して第2の溶液を調製し、第2の溶液を第1の溶液に添加した後、6時間撹拌した。その後、5mLの水を第1の溶液に添加することによって反応を停止させた。そして、第1の溶液の温度を室温に戻し、水を除去した後、アクリル酸クロライド(450mg、5mmol)及びトリメチルアミン(10mmol)を第1の溶液に添加し、反応混合物を2時間撹拌した。固形物を濾過により取り除いた後、濾液を真空乾燥した。生成物を200mlのジエチルエーテルに再溶解させ、炭酸カリウム固体(10g)をこの溶液に添加して、4時間撹拌しながら、残る酸を吸収させた。その後、固形物を濾過により取り除き、濾液を真空乾燥することによって、高分子化合物A-4が得られた。得られた高分子化合物A-4について、Mw=3000であった。
・A-8:
 高分子化合物A-9の下記合成方法にならって、2-ヒドロキシエチルメタクリレートを重合させて合成した。得られた高分子化合物A-8について、Mw=21000、Mw/Mn=2.0であった。
・A-9:
 Nフローしている三口フラスコにPGME(45.38g)を加え、90℃に加温した。2-ヒドロキシエチルメタクリレート(東京化成工業(株)製、13.01g、100.0mmol)、グリシジルメタクリレート(日油(株)製、14.22g、100.0mmol)、および光ラジカル重合開始剤(富士フイルム和光純薬(株)製、V-601、0.92g、4.0mmol)を別途PGME(45.38g)に溶解し、得られた混合物を、上記フラスコの内温が95℃を超えない温度で2時間かけて上記フラスコ内に滴下し、さらに90℃で4時間熟成を行った。その後、上記フラスコを25℃まで冷却して、反応液を得た。別の三口フラスコにジイソプロピルエーテル(435.5g)とヘキサン(186.6g)を加えて混合し、この混合溶液を0℃に冷却し撹拌した。そして、上記反応液を、5℃を超えない温度で30分間かけてこの混合溶液に滴下し、さらに1時間撹拌した。その後、この混合溶液を1時間静置し、減圧濾過を行った。得られた濾過物を減圧乾燥することで、目的の化合物(中間体G-1A)を得た。
 Nフローしている三口フラスコにPGME(45.38g)、上記中間体G-1A(13.61g、100.0mmol)、およびトリエチルアミン(東京化成工業(株)製、7.59g、75.0mmol)を加え、これを0℃に冷却した。PGME(45.38g)とアクリロイルクロライド(5.43g、60.0mmol)を混合した溶液を、上記フラスコの内温が10℃を超えない温度で2時間かけて上記フラスコ内に滴下し、さらに20℃で4時間熟成を行った。その後、上記フラスコを0℃まで冷却して、反応液を得た。別の三口フラスコにジイソプロピルエーテル(435.5g)とヘキサン(186.6g)を加えて混合し、この混合溶液を0℃に冷却し撹拌した。そして、上記反応液を、5℃を超えない温度で30分間かけてこの混合溶液に滴下し、さらに1時間撹拌した。その後、この混合溶液を1時間静置し、減圧濾過を行った。得られた濾過物を水洗し、減圧乾燥することで、目的の化合物(中間体G-1B)を得た。
 Nフローしている三口フラスコにPGMEA(45.38g)、フタル酸(東京化成工業(株)製、16.61g、100.0mmol)、グリシジルアクリレート(日油(株)製、2.56g、20.0mmol)、テトラエチルアンモニウムブロミド(東京化成工業(株)製、0.21g、1.0mmol)、および4-OH-TEMPO(東京化成工業(株)製、1.72mg、0.01mmol)を加え、90℃で8時間熟成を行った。その後、酢酸エチル(800mL)および蒸留水(500mL)を上記フラスコに加え、分液を行った。この分液後の水層を除去し、1%NaHCO水溶液(500mL)を加え、さらに分液を行った。また、この分液後の水層を除去し、蒸留水500mLを加え、さらに分液を行った。次いで、この分液後の有機層を濃縮し、シリカゲルクロマトグラフィによる精製を行って、目的の化合物(中間体G-1C)を得た。
 Nフローしている三口フラスコにPGMEA(45.38g)、中間体G-1B、中間体G-1C、テトラエチルアンモニウムブロミド(東京化成工業(株)製、0.21g、1.0mmol)、および4-OH-TEMPO(東京化成工業(株)製、1.72mg、0.01mmol)を加え、90℃で8時間熟成を行った。その後、これを25℃まで冷却して、反応液を得た。別の三口フラスコにジイソプロピルエーテル(435.5g)とヘキサン(186.6g)を加えて混合し、この混合溶液を0℃に冷却し撹拌した。そして、上記反応液を、5℃を超えない温度で30分間かけてこの混合溶液に滴下し、さらに1時間撹拌した。その後、この混合溶液を1時間静置し、減圧濾過を行った。得られた濾過物を減圧乾燥することで、最終生成物の高分子化合物A-9を得た。得られた高分子化合物A-9について、Mw=21000、Mw/Mn=2.0であった。
<<架橋性モノマー>>
B-1:下記構造を有する化合物(架橋点間距離:9または17)。
B-2:下記構造を有する化合物(ADCP、新中村化学社製。架橋点間距離:11)。
B-3:下記構造を有する化合物(A-BPE-4、新中村化学社製。架橋点間距離:25)。
B-4:下記構造を有する化合物(A-200、新中村化学社製。架橋点間距離:30)。
B-5:下記構造を有する化合物(4-シクロヘキセン-1,2-ジカルボン酸ジグリシジル、東京化成工業社製。架橋点間距離:8)。
B-6:下記構造を有する化合物(架橋点間距離:16)。
B-7:下記構造を有する化合物(架橋点間距離:6)。
Figure JPOXMLDOC01-appb-C000022
<<溶剤>>
PGMEA:プロピレングリコールモノメチルエーテルアセテート
<パターン形成用組成物の調製>
 下記表2に示す化合物を、下記表に示す配合割合(質量部)で配合し、さらに重合禁止剤として4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル(東京化成社製)を重合性化合物(表2中のNo.1~3)の合計量に対して200質量ppm(0.02質量%)となるように加えて調製した。これを孔径0.02μmのナイロンフィルタおよび孔径0.001μmのUPEフィルタで濾過して、パターン形成用組成物V1およびV2を調製した。表中、k+m+n=10である。
Figure JPOXMLDOC01-appb-T000023
<ハンセン溶解度パラメータ距離(ΔHSP)の算出>
 実施例および比較例に係る高分子化合物および架橋性モノマーの各化合物について、ハンセン溶解度パラメータおよび沸点をHSP計算ソフトHSPiPにて計算した。具体的には、高分子化合物の場合には、その高分子化合物を構成するモノマー単位の構造式をSMILES形式にて上記ソフトに入力することで、ハンセン溶解度パラメータベクトルの各成分(d成分、p成分、h成分)を算出した。高分子化合物が複数のモノマー単位を有する共重合体である場合には、上記数式(2)を用いた算出方法により各成分を算出した。一方、架橋性モノマーの場合には、その架橋性モノマーの分子式をSMILES形式にて上記ソフトに入力することで、ハンセン溶解度パラメータベクトルの各成分を算出した。ハンセン溶解度パラメータ距離(ΔHSP)については、該当する成分のハンセン溶解度パラメータの各成分(d成分、p成分、h成分)からそれぞれΔD、ΔP、ΔHを求め、上記した数式(1)にあてはめることで算出した。また、同ソフトにより計算した沸点を考慮して、下層膜形成の際の温度条件を設定した。
<下層膜の形成および膜厚の測定>
 シリコンウェハ上に、各実施例および比較例の下層膜形成用組成物をスピンコートし、上記表1に記載のベーク温度条件でホットプレートを用いて加熱し、シリコンウェハ上に下層膜を形成した。下層膜の膜厚はエリプソメータにより測定した。
<評価>
 上記で得た実施例および比較例の各下層膜形成用組成物について、下記項目の評価を行った。
<<膜強度の評価>>
 下層膜が凝集破壊する際の密着力の大きさで、下層膜の膜強度を評価した。具体的には次のとおりである。上記で得られた下層膜表面に、各実施例および比較例に応じて、25℃に温度調整した上記表に記載のパターン形成用組成物(V1またはV2)を、富士フイルムダイマティックス製インクジェットプリンターDMP-2831を用いて、ノズルあたり6plの液滴量で吐出して、下層膜上に液滴が約100μm間隔の正方配列となるように塗布し、パターン形成層とした。次に、パターン形成層に、特開2014-024322号公報の実施例6に示す密着層形成用組成物をスピンコートした石英ウェハをHe雰囲気下(置換率90%以上)で押し当て、パターン形成用組成物を押印した。押印後10秒が経過した時点で、石英ウェハ側から高圧水銀ランプを用い、150mJ/cmの条件で露光した。そして、露光後の積層体が分離する際に必要な力を測定し、下層膜の密着力Fとした。なお、このときの分離は、いずれも、下層膜の内部での凝集破壊に起因するものであった。そして、このFの値を下記の基準で評価した。A~Cの評価が実用に適したレベルである。
・A:30N≦F
・B:25N≦F<30N
・C:20N≦F<25N
・D:F<20N
<<塗布欠陥の評価>>
 直径300mmのシリコンウェハを準備し、ウェハ表面上欠陥検出装置(KLA Tencor社製SP-5)で上記ウェハ上に存在する直径50nm以上のパーティクルを検出した。これを初期値とする。次に、上記シリコンウェハ上に各実施例および比較例の下層膜形成用組成物をスピンコートし、上記表に記載の温度条件でホットプレートを用いて加熱し、シリコンウェハ上に下層膜を形成した。次に、同様の方法で欠陥数を計測した。これを計測値とする。そして、初期値と計測値の差(計測値-初期値)を計算し、その結果を下記の基準に基づいて評価した。A~Cの評価が実用に適したレベルである。
・A:初期値と計測値の差が20個以下だった。
・B:初期値と計測値の差が21~100個だった。
・C:初期値と計測値の差が101~500個だった。
・D:初期値と計測値の差が501個以上だった。
<<離型性の評価>>
 前述した下層膜の形成方法に従って、シリコンウェハ上に下層膜を形成した。この下層膜表面に、各実施例および比較例に応じて、25℃に温度調整した上記表に記載の上記パターン形成用組成物(V1またはV2)を、富士フイルムダイマティックス製インクジェットプリンターDMP-2831を用いて、ノズルあたり6plの液滴量で吐出して、下層膜上に液滴が約100μm間隔の正方配列となるように塗布し、パターン形成層とした。次に、He雰囲気下(置換率90%以上)で、パターン形成層にモールドを押し当て、パターン形成用組成物をモールドのパターンに充填した。使用したモールドは、線幅20nm、深さ55nmおよびピッチ60nmのライン/スペースパターンを有する石英モールドである。押印後10秒が経過した時点で、モールド側から高圧水銀ランプを用い、100mJ/cmの条件で露光した後、モールドを剥離することでパターン形成層にパターンを転写した。
 このパターン転写において、モールドを離型する際に必要な力(離型力F、単位:N)を測定した。離型力は、特開2011-206977号公報の段落番号0102~0107に記載の比較例の方法に準じて測定を行い、その結果を下記の基準に基づき評価した。A~Cの評価が実用に適したレベルである。
・A:F≦15N
・B:15N<F≦18N
・C:18N<F≦20N
・D:20N<F
<<剥れ欠陥の評価>>
 前述した下層膜の形成方法に従って、シリコンウェハ上に下層膜を形成した。この下層膜表面に、各実施例および比較例に応じて、25℃に温度調整した上記表に記載の上記パターン形成用組成物(V1またはV2)を、富士フイルムダイマティックス製インクジェットプリンターDMP-2831を用いて、ノズルあたり6plの液滴量で吐出して、下層膜上に液滴が約100μm間隔の正方配列となるように塗布し、パターン形成層とした。次に、He雰囲気下(置換率90%以上)で、パターン形成層にモールドを押し当て、パターン形成用組成物をモールドのパターンに充填した。使用したモールドは、線幅28nm、深さ60nmおよびピッチ60nmのライン/スペースパターンを有する石英モールドである。押印後10秒が経過した時点で、モールド側から高圧水銀ランプを用い、150mJ/cmの条件で露光した後、モールドを剥離することでパターン形成層にパターンを転写した。
 転写したパターンの剥れ有無を光学顕微鏡観察(マクロ観察)および走査型電子顕微鏡観察(ミクロ観察)にて確認し、その結果を下記の基準に基づき評価した。A~Cの評価が実用に適したレベルである。
・A:パターン剥れが確認されなかった。
・B:マクロ観察ではパターンの剥れは確認されなかったが、ミクロ観察にてパターンの剥れが確認された。
・C:マクロ観察にて一部領域(離型終端部)に剥れが確認された。
・D:上記A~Cのいずれにも該当しなかった。
<評価結果>
 各実施例および比較例の評価結果を上記表1に示す。この結果から、本発明の下層膜形成用組成物を用いることにより、高分子成分とモノマー成分とが混合された場合でも、膜強度に優れた下層膜を形成できることがわかった。さらに、本発明によれば、下層膜形成用組成物の塗布後のパーティクルの低減および塗布面状の向上に寄与することも分かった。
 また、各実施例に係る下層膜形成用組成物を用いて下層膜をシリコンウェハ上に形成し、この下層膜付シリコンウェハ上に、各実施例に係るパターン形成用組成物を用いて、半導体回路に対応する所定のパターンを形成した。そして、このパターンをエッチングマスクとして、シリコンウェハをそれぞれエッチングし、そのシリコンウェハを用いて半導体素子をそれぞれ作製した。いずれの半導体素子も、性能に問題はなかった。
1  基板
2  下層膜
3  パターン形成用組成物
4  モールド

Claims (18)

  1.  重合性官能基を有する高分子化合物と、前記重合性官能基と結合可能な架橋性官能基を複数有するモノマーとを含み、
     前記高分子化合物のハンセン溶解度パラメータと、前記モノマーのハンセン溶解度パラメータとの差であるハンセン溶解度パラメータ距離が5.0以下であり、
     前記複数の架橋性官能基のうち2つの前記架橋性官能基について、各架橋性官能基中の架橋点を互いに連結する最短の原子鎖を構成する原子数が7以上である、インプリント法における下層膜形成用組成物。
  2.  前記高分子化合物および前記モノマーの少なくとも1種が、環構造を有する、
     請求項1に記載の下層膜形成用組成物。
  3.  前記高分子化合物および前記モノマーの両方が、環構造を有する、
     請求項2に記載の下層膜形成用組成物。
  4.  前記環構造が、芳香環を含む、
     請求項2または3に記載の下層膜形成用組成物。
  5.  前記ハンセン溶解度パラメータ距離が3以下である、
     請求項1~4のいずれか1項に記載の下層膜形成用組成物。
  6.  前記原子鎖を構成する原子数が20以下である、
     請求項1~5のいずれか1項に記載の下層膜形成用組成物。
  7.  前記重合性官能基および前記架橋性官能基の少なくとも1種が、エチレン性不飽和結合を有する基を含む、請求項1~6のいずれか1項に記載の下層膜形成用組成物。
  8.  前記高分子化合物および前記モノマーの少なくとも1種が、水素結合性基を含む、
     請求項1~7のいずれか1項に記載の下層膜形成用組成物。
  9.  さらに、溶剤を含み、
     溶剤の含有量が、前記下層膜形成用組成物に対し99質量%以上である、
     請求項1~8のいずれか1項に記載の下層膜形成用組成物。
  10.  前記モノマーの分子量が200~1000である、
     請求項1~9のいずれか1項に記載の下層膜形成用組成物。
  11.  前記高分子化合物が、アクリル樹脂、ノボラック樹脂およびビニル樹脂の少なくとも1種を含む、
     請求項1~10のいずれか1項に記載の下層膜形成用組成物。
  12.  請求項1~11のいずれか1項に記載の下層膜形成用組成物と、パターン形成用組成物との組み合わせを含む、インプリント用キット。
  13.  請求項1~11のいずれか1項に記載の下層膜形成用組成物を用いて、下層膜を基板上に形成し、
     パターン形成用組成物を前記下層膜上に適用し、
     モールドを接触させた状態で、前記パターン形成用組成物を硬化させ、
     前記パターン形成用組成物から前記モールドを剥離することを含む、パターン製造方法。
  14.  前記基板の純水に対する接触角が、60度以上である、
     請求項13に記載のパターン製造方法。
  15.  前記下層膜を形成する際に、前記下層膜形成用組成物をスピンコート法で前記基板上に適用することを含む、
     請求項13または14に記載のパターン製造方法。
  16.  前記パターン形成用組成物の前記下層膜上への適用をインクジェット法により行う、
     請求項13~15のいずれか1項に記載のパターン製造方法。
  17.  基板と、請求項1~11のいずれか1項に記載の下層膜形成用組成物から形成された層とを含む、積層体。
  18.  請求項13~16のいずれか1項に記載の製造方法により得られたパターンを利用して、半導体素子を製造する、半導体素子の製造方法。
PCT/JP2020/012596 2019-03-29 2020-03-23 インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法 WO2020203387A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217030852A KR102575257B1 (ko) 2019-03-29 2020-03-23 임프린트법에 있어서의 하층막 형성용 조성물, 키트, 패턴 제조 방법, 적층체 및 반도체 소자의 제조 방법
JP2021511463A JP7174835B2 (ja) 2019-03-29 2020-03-23 インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法
US17/484,492 US12109752B2 (en) 2019-03-29 2021-09-24 Composition for forming underlayer film in imprinting method, kit, pattern producing method, laminate, and method for manufacturing semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067816 2019-03-29
JP2019067816 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/484,492 Continuation US12109752B2 (en) 2019-03-29 2021-09-24 Composition for forming underlayer film in imprinting method, kit, pattern producing method, laminate, and method for manufacturing semiconductor element

Publications (1)

Publication Number Publication Date
WO2020203387A1 true WO2020203387A1 (ja) 2020-10-08

Family

ID=72667644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012596 WO2020203387A1 (ja) 2019-03-29 2020-03-23 インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法

Country Status (4)

Country Link
US (1) US12109752B2 (ja)
JP (1) JP7174835B2 (ja)
KR (1) KR102575257B1 (ja)
WO (1) WO2020203387A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191118A1 (ja) * 2012-06-18 2013-12-27 富士フイルム株式会社 インプリント用硬化性組成物と基板の密着用組成物およびこれを用いた半導体デバイス
WO2017170697A1 (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
WO2018230488A1 (ja) * 2017-06-14 2018-12-20 富士フイルム株式会社 キット、積層体、積層体の製造方法、硬化物パターンの製造方法および回路基板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY164487A (en) 2002-07-11 2017-12-29 Molecular Imprints Inc Step and repeat imprint lithography processes
JP5767615B2 (ja) 2011-10-07 2015-08-19 富士フイルム株式会社 インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP2014093385A (ja) 2012-11-02 2014-05-19 Fujifilm Corp インプリント用密着膜の製造方法およびパターン形成方法
JP6632340B2 (ja) 2015-01-30 2020-01-22 キヤノン株式会社 密着層形成組成物、硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法、インプリント用モールドの製造方法、およびデバイス部品
US10189188B2 (en) 2016-05-20 2019-01-29 Canon Kabushiki Kaisha Nanoimprint lithography adhesion layer
TW201817582A (zh) * 2016-09-16 2018-05-16 日商富士軟片股份有限公司 圖案形成方法及半導體元件的製造方法
TWI797243B (zh) * 2018-02-09 2023-04-01 日商富士軟片股份有限公司 試劑盒、壓印用下層膜形成組成物、積層體、使用該等之製造方法
CN111936665B (zh) * 2018-03-26 2022-10-21 富士胶片株式会社 前体薄膜、基板、导电性薄膜及其制造方法、触摸面板及其传感器、被镀覆层形成用组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191118A1 (ja) * 2012-06-18 2013-12-27 富士フイルム株式会社 インプリント用硬化性組成物と基板の密着用組成物およびこれを用いた半導体デバイス
WO2017170697A1 (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
WO2018230488A1 (ja) * 2017-06-14 2018-12-20 富士フイルム株式会社 キット、積層体、積層体の製造方法、硬化物パターンの製造方法および回路基板の製造方法

Also Published As

Publication number Publication date
JP7174835B2 (ja) 2022-11-17
KR20210133262A (ko) 2021-11-05
US12109752B2 (en) 2024-10-08
US20220009152A1 (en) 2022-01-13
JPWO2020203387A1 (ja) 2020-10-08
KR102575257B1 (ko) 2023-09-06

Similar Documents

Publication Publication Date Title
KR102339571B1 (ko) 키트, 임프린트용 하층막 형성 조성물, 적층체, 이들을 이용한 제조 방법
WO2020059603A1 (ja) インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
JP7470806B2 (ja) インプリントパターン形成用組成物の製造方法、硬化物の製造方法、インプリントパターンの製造方法及びデバイスの製造方法
KR102420767B1 (ko) 키트, 임프린트용 하층막 형성 조성물, 패턴 형성 방법, 반도체 디바이스의 제조 방법
JP7076569B2 (ja) インプリント用下層膜形成用組成物、下層膜、パターン形成方法および半導体素子の製造方法
JP6887563B2 (ja) インプリント用下層膜形成組成物およびその応用
JP6982623B2 (ja) インプリント用下層膜形成用組成物、キット、インプリント用硬化性組成物、積層体、積層体の製造方法、硬化物パターンの製造方法および回路基板の製造方法
WO2020184497A1 (ja) インプリント用の下層膜形成用組成物、下層膜形成用組成物の製造方法、キット、パターン製造方法、および半導体素子の製造方法
WO2020203387A1 (ja) インプリント法における下層膜形成用組成物、キット、パターン製造方法、積層体および半導体素子の製造方法
JP7518911B2 (ja) ナノインプリント用中間層形成用組成物の製造方法、積層体の製造方法、インプリントパターンの製造方法及びデバイスの製造方法
TWI819083B (zh) 壓印用硬化性組成物、圖案的製造方法、半導體元件的製造方法及硬化物
JP6754344B2 (ja) インプリント用下層膜形成用組成物、キット、積層体、積層体の製造方法、硬化物パターンの製造方法、回路基板の製造方法
WO2021060283A1 (ja) 下層膜形成用組成物、積層体、パターンの製造方法および半導体素子の製造方法
JP7096898B2 (ja) インプリント用下層膜形成用組成物、インプリント用下層膜形成用組成物の製造方法、パターン製造方法、半導体素子の製造方法、硬化物およびキット
JP7467591B2 (ja) 硬化性組成物、キット、中間層、積層体、インプリントパターンの製造方法及びデバイスの製造方法
WO2021060339A1 (ja) 密着膜形成用組成物、密着膜、積層体、積層体の製造方法、パターンの製造方法および半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511463

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217030852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784863

Country of ref document: EP

Kind code of ref document: A1