WO2020203227A1 - Method for manufacturing solar cell, in-process solar cell substrate, and solar cell - Google Patents

Method for manufacturing solar cell, in-process solar cell substrate, and solar cell Download PDF

Info

Publication number
WO2020203227A1
WO2020203227A1 PCT/JP2020/011484 JP2020011484W WO2020203227A1 WO 2020203227 A1 WO2020203227 A1 WO 2020203227A1 JP 2020011484 W JP2020011484 W JP 2020011484W WO 2020203227 A1 WO2020203227 A1 WO 2020203227A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lift
semiconductor layer
solar cell
semiconductor substrate
Prior art date
Application number
PCT/JP2020/011484
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 祐介
航 吉田
将志 日野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202080024664.5A priority Critical patent/CN113678265B/en
Priority to JP2021511381A priority patent/JPWO2020203227A1/ja
Publication of WO2020203227A1 publication Critical patent/WO2020203227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell, a work-in-process solar cell substrate, and a solar cell.
  • Patent Document 1 a back contact type solar cell in which an electrode layer is provided only on the back surface side of a semiconductor substrate has been developed.
  • Patent Document 1 a back contact type solar cell in which an electrode layer is provided only on the back surface side of a semiconductor substrate has been developed.
  • Patent Document 1 since a pair of electrode layers and different conductive type semiconductor layers are arranged at close positions, it is necessary to pattern the pair of electrode layers and different conductive type semiconductor layers with high accuracy. ..
  • Patent Document 1 discloses a method of patterning a semiconductor layer by using lift-off.
  • the present inventor referring to the lift-off method of Patent Document 1, simultaneously forms a lift-off layer with a silicon oxide layer on a plurality of substrates by a plasma CVD apparatus having a large area (length 1200 mm ⁇ width 1000 mm).
  • a back contact type solar cell was prototyped.
  • the prototype lift-off method although good quality solar cells can be obtained when forming a film in a small area, the film thickness distribution between substrates becomes large when forming a film in a large area, resulting in quality. There was a problem that the yield was poor due to the bias.
  • an object of the present invention is to provide a method for manufacturing a solar cell and a solar cell, which are easier to mass-produce than the conventional ones and have a good yield.
  • An object of the present invention is to provide a work-in-process solar cell substrate that can be lifted off more efficiently and the manufacturing efficiency can be improved as compared with the conventional case in manufacturing a solar cell.
  • One aspect of the present invention for solving the above-mentioned problems is provided with a monoconductive semiconductor layer, a reverse conductive semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate.
  • a method for manufacturing a solar cell in which the monoconductive semiconductor layer is interposed between the semiconductor substrate and the first electrode layer, and the reverse conductive semiconductor layer is interposed between the semiconductor substrate and the second electrode layer.
  • the lift-off step of removing the overlapping portion of the monoconductive semiconductor layer by dissolving the lift-off layer with a lift-off liquid is included, and in the lift-off layer forming step, the first reaction gas is applied at a film forming temperature of 150 ° C. or lower.
  • the "uniconductive type” here means an n-type or a p-type
  • the "reverse conductive type” is a conductive type opposite to the one-conductive type, that is, when the one-conductive type is an n-type. It refers to a p-type, and when the one-conductive type is a p-type, it refers to an n-type.
  • the "main component” here means a component that accounts for 50% or more of all components.
  • the monoconductive semiconductor layer can be patterned by dissolving the lift-off layer with the lift-off liquid, it can be manufactured at a lower cost than the conventional method of patterning with a photoresist.
  • a lift-off layer containing silicon oxide or silicon nitride as a main component is formed at a film forming temperature of 150 ° C. or less, the in-plane film thickness distribution is uniform even in a large-area film forming apparatus. Can form a coarse lift-off layer. Therefore, mass production is possible, and a lift-off layer having a high etching rate by the lift-off liquid can be easily formed.
  • a preferable aspect includes a protective layer forming step of forming a protective layer on the lift-off layer, and the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
  • Preferred aspects are a resist layer forming step of forming a resist layer having a predetermined shape on the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate, and etching for removing a part of the reverse conductive semiconductor layer with an etching solution.
  • the resist layer forming step which includes a step and a resist layer removing step of removing the resist layer, when the semiconductor substrate is viewed in a plan view, a non-overlapping portion that does not overlap with the resist layer is formed on the reverse conductive semiconductor layer. Yes, in the etching step, a part or all of the non-superimposed portion of the reverse conductive semiconductor layer is removed.
  • the silicon oxide layer is usually formed at a high temperature (for example, 180 ° C. or higher), when the raw material gas is diluted with hydrogen, the number of hydrogen atoms taken into the film increases. Therefore, the present inventor thought that a sparse film would be formed by diluting the raw material gas with hydrogen even when the film was formed at a low temperature (150 ° C. or lower). However, when the silicon oxide layer was actually formed at a low temperature with a hydrogen-diluted raw material gas, a dense film was unexpectedly formed.
  • a preferable aspect derived from this result includes a protective layer forming step of forming a protective layer containing silicon oxide as a main component on the lift-off layer, and in the protective layer forming step, a second reaction is carried out at a temperature of 150 ° C. or lower.
  • the protective layer is formed by spraying a gas, and the second reaction gas contains silane gas, carbon dioxide, and hydrogen gas.
  • the protective layer is formed at a low temperature using the second reaction gas diluted with hydrogen gas, a dense protective layer can be easily formed.
  • the preferred aspect is that the second reaction gas has a flow rate ratio of hydrogen gas to silane gas of 50 or more.
  • the film is formed by forming a film under high temperature conditions (for example, 180 ° C. or higher) and then under low temperature conditions (for example, 150 ° C. or lower). It needs to be cooled until the temperature of the membrane chamber reaches low temperature conditions.
  • high temperature conditions for example, 180 ° C. or higher
  • low temperature conditions for example, 150 ° C. or lower
  • the film is formed under the high temperature condition after the film is formed under the low temperature condition, it is necessary to heat the film until the temperature of the film forming chamber reaches the high temperature condition.
  • the time for raising the temperature from the low temperature condition to the high temperature condition is generally shorter than the time for lowering the temperature from the high temperature condition to the low temperature condition.
  • the preferred aspect is that the film forming temperature of the protective layer in the protective layer forming step is substantially equal to or higher than the film forming temperature of the lift-off layer in the lift-off layer forming step, and the film forming temperature of the protective layer is substantially higher than that in the lift-off layer forming step.
  • the temperature difference from the film forming temperature of the lift-off layer is 50 ° C. or less.
  • the film forming temperature of the protective layer is substantially equal to or higher than the film forming temperature of the lift-off layer
  • the film forming temperature of the protective layer means a slight temperature fluctuation of the film forming temperature during film forming due to the outside air, the performance of the device, etc. (for example, 3). °C) is allowed.
  • the film forming temperature of the protective layer becomes (the film forming temperature of the lift-off layer -3 ° C) or higher.
  • film formation can be performed efficiently and continuously.
  • One aspect of the present invention includes a one-conductive semiconductor layer, a reverse conductivity type semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate, and the semiconductor substrate and the first electrode layer are provided.
  • a method for manufacturing a solar cell in which the one conductive semiconductor layer is interposed between the electrode layers and the reverse conductive semiconductor layer is interposed between the semiconductor substrate and the second electrode layer.
  • the lift-off step includes a step, and the lift-off step is performed after the protective layer forming step.
  • a second reaction gas is sprayed at a temperature of 150 ° C. or lower to form the protective layer.
  • the second reaction gas is a method for producing a solar cell, which comprises silane gas, carbon dioxide, and hydrogen gas, and has a flow rate ratio of hydrogen gas to silane gas of 50 or more.
  • the manufacturing process can be simplified and the cost is low as compared with the conventional method of patterning with a photoresist.
  • the protective layer forming step the protective layer is formed with the second reaction gas at 150 ° C. or lower and the silane gas is diluted with hydrogen gas, so that a dense protective layer can be formed.
  • the manufacturing process of solar cells in recent years it may be manufactured not only at one base but at multiple bases. That is, there is a case where a work-in-process solar cell substrate, which is a work-in-process product of a solar cell, is manufactured at one base, and a solar cell is manufactured using the work-in-process solar cell board at another base. Therefore, not only the structure of the finished product but also the structure of the work-in-process solar cell substrate, which is a work-in-process, is important for mass production of solar cells.
  • One aspect of the present invention is a work-in-progress solar cell substrate provided with a monoconductive semiconductor layer and a reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate, and the reverse of the semiconductor substrate is used as a reference.
  • the lift-off layer has a lift-off layer on the outside of the conductive semiconductor layer, and the one-conductive semiconductor layer is laminated on the outside of the lift-off layer with the semiconductor substrate as a reference, and the one-conductive semiconductor layer is the semiconductor substrate.
  • This is a work-in-process solar cell substrate containing silicon oxide as a main component and having an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid.
  • the protective layer has a protective layer on the lift-off layer, and the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
  • the refractive index of silicon oxide tends to increase as the density increases, and the refractive index tends to decrease as the density decreases.
  • the etching rate of silicon oxide tends to increase as the density increases, and the etching rate of hydrofluoric acid tends to decrease as the density decreases. Therefore, when the present inventor examined the correlation between the refractive index and the etching rate of hydrofluoric acid in silicon oxide, a certain correlation was found between the refractive index and the etching rate of hydrofluoric acid. It was discovered that by setting the refractive index in the range, it is etched well and can be lifted off efficiently.
  • the protective layer has a protective layer on the lift-off layer, and the protective layer contains silicon oxide as a main component and has a refractive index higher than that of the lift-off layer.
  • the etching rate of the protective layer can be made slower than the etching rate of the lift-off layer.
  • One aspect of the present invention is a working solar cell substrate provided with a conductive semiconductor layer on the first main surface side of the semiconductor substrate, and a lift-off layer outside the conductive semiconductor layer with the semiconductor substrate as a reference.
  • the protective layer is laminated in this order, and the lift-off layer contains silicon oxide as a main component and has an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid. , Silicon oxide or silicon nitride as a main component, and has a higher density than the lift-off layer.
  • a preferred aspect is that the outermost surface of the semiconductor substrate on the second main surface side is coated with a second protective layer having a slower etching rate when immersed in 2% by weight of hydrofluoric acid than the lift-off layer. is there.
  • the outermost surface of the semiconductor substrate on the second main surface side may be coated with a second protective layer having more resistance to the lift-off liquid than the lift-off layer.
  • One aspect of the present invention includes a one-conductive semiconductor layer, a reverse-conductivity semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate, and the semiconductor substrate and the first electrode layer are provided.
  • a solar cell in which the one-conducting semiconductor layer is interposed between the electrode layers and the reverse-conducting semiconductor layer is interposed between the semiconductor substrate and the second electrode layer, and has an intrinsic semiconductor layer.
  • the intrinsic semiconductor layer is interposed between the semiconductor substrate, the monoconductive semiconductor layer and the reverse conductive semiconductor layer, respectively, and further, in the spreading direction of the first main surface of the semiconductor substrate, the one.
  • the intrinsic semiconductor layer is formed in a direction orthogonal to the first main surface from between the monoconductive semiconductor layer and the reverse conductive semiconductor layer. It is a solar cell that is exposed to.
  • the intrinsic semiconductor layer can prevent the contact between the electrode layers and the semiconductor layers having different conductive types, so that the solar cell has excellent safety. According to this aspect, mass production is easy because it can be formed by the manufacturing method of the above-mentioned aspect.
  • the intrinsic semiconductor layer is composed of a first intrinsic layer and a second intrinsic layer, and the first intrinsic layer is interposed between the semiconductor substrate and the reverse conductive semiconductor layer.
  • the second intrinsic layer is interposed between the semiconductor substrate and the monoconductive semiconductor layer, and the second intrinsic layer covers the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate. That is not the case.
  • a more preferable aspect is that the second intrinsic layer is located flush with the outer surface of the reverse conductive semiconductor layer or inside the outer surface with respect to the semiconductor substrate.
  • the method for manufacturing a solar cell and the solar cell of the present invention mass production is easier and the yield is better than before.
  • the in-process solar cell substrate of the present invention in manufacturing a solar cell, it is possible to lift off more efficiently and improve the manufacturing efficiency as compared with the conventional case.
  • FIG. 1 It is a perspective view which shows typically the solar cell of 1st Embodiment of this invention. It is the AA sectional view of the solar cell of FIG. 1, and the hatching is omitted for easy understanding. It is explanatory drawing of the solar cell of FIG. 1, and is the exploded perspective view which disassembled the 1st electrode layer and the 2nd electrode layer from the solar cell. It is explanatory drawing of the manufacturing method of the solar cell of FIG. 1, (a) shows the cross-sectional view in the 1st intrinsic semiconductor layer forming step, and (b) shows the cross-sectional view in the 1st semiconductor layer forming step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted.
  • c) represents a cross-sectional view in the resist layer removing step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. It is explanatory drawing of the process which follows each process of FIG. 6 of the manufacturing method of the solar cell of FIG. 1, (a) shows the sectional view in the 2nd intrinsic semiconductor layer forming process, (b) is the 2nd semiconductor layer forming process. (C) represents a cross-sectional view in the lift-off process. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. It is explanatory drawing of the process which follows each process of FIG. 7 of the manufacturing method of the solar cell of FIG.
  • the light receiving surface side is the front side and the opposite side is the back side.
  • the solar cell 1 of the first embodiment of the present invention is a back contact type solar cell, and as shown in FIG. 1, a pair on the back side main surface 26 (first main surface) side of the semiconductor substrate 5 serving as a support substrate.
  • the electrode layers 2 and 3 are formed, and the electrode layers 2 and 3 are not formed on the front main surface 25 (second main surface) side.
  • the solar cell 1 of the present embodiment is also a heterojunction type solar cell.
  • the first intrinsic semiconductor layer 6 and the antireflection layer 7 are laminated in this order on the front main surface 25 side of the semiconductor substrate 5.
  • a second intrinsic semiconductor layer 10 (second intrinsic layer), a monoconductive semiconductor layer 11, and a first electrode layer 2 are laminated on a part of the back side main surface 26 side of the semiconductor substrate 5, and the semiconductor is a semiconductor.
  • the third intrinsic semiconductor layer 15 (first intrinsic layer), the reverse conductive semiconductor layer 16, and the second electrode layer 3 are laminated on the other portion on the back side main surface 26 side of the substrate 5.
  • the second intrinsic semiconductor layer 10 is interposed between the monoconductive semiconductor layer 11 and the inverse conductive semiconductor layer 16 in the vertical direction Y.
  • the solar cell 1 has a substantially square shape and has four sides orthogonal to each other. That is, the solar cell 1 has a horizontal side extending in the horizontal direction X and a vertical side extending in the vertical direction Y.
  • the electrode layers 2 and 3 are collector electrodes that extract electricity from the semiconductor layers 11 and 16, and both have a comb shape when viewed from the back surface and have an intricate shape. That is, the first electrode layer 2 includes a first bus bar electrode portion 40 and a first finger electrode portion 41, and the first finger electrode portion 41 with respect to the first bus bar electrode portion 40 to the first bus bar electrode portion 40. Extends in the direction orthogonal to each other. Similarly, the second electrode layer 3 includes a second bus bar electrode portion 45 and a second finger electrode portion 46, and the second finger electrode portion 46 relates to the second bus bar electrode portion 45 to the second bus bar electrode portion 45. Extends in the direction orthogonal to each other.
  • the bus bar electrode portions 40 and 45 extend in the vertical direction Y along the vertical side and are parallel to each other in the horizontal direction X when viewed from the back surface.
  • the finger electrode portions 41 and 46 extend intricately with each other in the lateral direction X. That is, the first finger electrode portion 41 extends linearly in the lateral direction X from the first bus bar electrode portion 40 toward the second bus bar electrode portion 45, and the second finger electrode portion 46 extends from the second bus bar electrode portion 45. It extends linearly in the lateral direction X toward the first bus bar electrode portion 40.
  • the finger electrode portions 41 and 46 are alternately arranged in the vertical direction Y.
  • the electrode layers 2 and 3 have a multilayer structure in which transparent electrode layers 20 and 21 and metal electrode layers 22 and 23 are laminated in this order from the semiconductor substrate 5 side.
  • the electrode layers 2 and 3 may have a single layer structure consisting of only the metal electrode layers 22 and 23, or may have a single layer structure containing only the transparent electrode layers 20 and 21.
  • the semiconductor layers 11 and 16 form a base for the electrode layers 2 and 3, and when viewed from the back surface, they are both comb-shaped and have an intricate shape like the electrode layers 2 and 3. ing.
  • a meandering separation groove 35 is formed between the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16, and a second intrinsic semiconductor layer serving as a base for the monoconductive semiconductor layer 11 is formed. 10 is filled in the separation groove 35. That is, the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 are electrically insulated by the second intrinsic semiconductor layer 10 in the spreading direction of the semiconductor substrate 5.
  • the second intrinsic semiconductor layer 10 is exposed from between the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 in the thickness direction (orthogonal direction with respect to the back side main surface 26 of the semiconductor substrate 5). That is, the monoconductive semiconductor layer 11 does not overlap with the reverse conductive semiconductor layer 16 in the thickness direction of the semiconductor substrate 5, and the reverse conductive semiconductor layer 16 also does not overlap with the monoconductive semiconductor layer 11.
  • the solar cell 1 of the present embodiment is manufactured at one or more manufacturing bases.
  • the solar cell 1 of the present embodiment is manufactured via the first work-in-process solar cell substrate 99 and the second work-in-process solar cell substrate 100.
  • the first intrinsic semiconductor layer 6 is formed on the front side main surface 25 of the semiconductor substrate 5 by the plasma CVD apparatus, and the third intrinsic semiconductor layer 15 is formed on the back side main surface 26.
  • Film formation first intrinsic semiconductor forming step.
  • the reverse conductive semiconductor layer 16 is formed on the third intrinsic semiconductor layer 15 by the same or different plasma CVD apparatus as the above step (first semiconductor layer forming step).
  • the lift-off layer 50 is formed by spraying the first reaction gas onto the reverse conductive semiconductor layer 16 by the same or different plasma CVD apparatus as in the above step (lift-off layer forming step). ).
  • the film thickness of the lift-off layer 50 formed in the lift-off layer forming step is preferably 10 nm or more and 150 nm or less. Within this range, the lifting-off etching solution described later is likely to be impregnated and lift-off is likely to occur. Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
  • the substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower.
  • the pressure is preferably 180 Pa or more and 220 Pa or less. Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
  • Components of the first reaction gas, silane gas and (SiH 4), carbon dioxide (CO 2) comprises, (flow ratio of CO 2 when the flow rate of SiH 4 and 1) flow rate ratio of CO 2 with respect to SiH 4 is It is preferably 10 or more and 400 or less.
  • the lift-off layer 50 is preferably formed so as to overlap the entire reverse conductive semiconductor layer 16 when the semiconductor substrate 5 is viewed in a plan view.
  • the lift-off layer 50 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
  • the second reaction gas is sprayed onto the lift-off layer 50 to form the first protective layer 51 in the film-forming chamber of the same plasma CVD apparatus continuously from the lift-off layer forming step. (First protective layer forming step).
  • the film thickness of the first protective layer 51 formed in the first protective layer forming step is thicker than the film thickness of the lift-off layer 50, and is preferably 200 nm or more and 400 nm or less. Within this range, it is possible to prevent the lift-off layer 50 from being dissolved in the resist removing solution described later. Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
  • the substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower. It is preferable that the film-forming temperature of the first protective layer 51 at the time of film-forming is substantially equal to or higher than the film-forming temperature of the lift-off layer 50.
  • the film forming temperature of the first protective layer 51 at the time of film formation preferably has a temperature difference of 50 ° C. or less from the film formation temperature of the lift-off layer 50 at the time of film formation, and more preferably 20 ° C. or less. It is preferably 5 ° C. or lower, and particularly preferably 5 ° C. or lower. Within this range, the temperature can be raised quickly, so that film can be continuously formed in the film forming chamber of the same plasma CVD apparatus.
  • the pressure is preferably 180 Pa or more and 220 Pa or less. Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
  • the second reaction gas a silane gas (SiH 4), and carbon dioxide (CO 2), and includes a hydrogen gas (H 2), flow ratio of CO 2 with respect to SiH 4 (SiH 4 to 1 and the of CO 2 when flow ratio) is 100 or less 1 or more, the flow rate ratio of H 2 to SiH 4 (flow ratio of H 2 when the SiH 4 to 1) is preferable 50 to 300.
  • a dense first protective layer 51 can be formed.
  • the first protective layer 51 is preferably formed so as to overlap the entire lift-off layer 50 when the semiconductor substrate 5 is viewed in a plan view.
  • the first protective layer 51 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
  • the third reaction gas is sprayed onto the first intrinsic semiconductor layer 6 in the film forming chamber of the same plasma CVD apparatus continuously from the lift-off layer forming step, and the second protective layer 52 (2nd protective layer forming step). That is, in the second protective layer forming step, the second protective layer 52 is formed on the outermost surface on the front side, and the first work-in-process solar cell substrate 99 is formed.
  • the film thickness of the second protective layer 52 formed in the second protective layer forming step is thicker than the film thickness of the lift-off layer 50, and is preferably 10 nm or more and 200 nm or less. Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
  • the substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower. It is preferable that the film-forming temperature of the second protective layer 52 at the time of film-forming is substantially equal to or higher than the film-forming temperature of the lift-off layer 50.
  • the temperature difference between the film forming temperature of the second protective layer 52 and the film forming temperature of the first protective layer 51 at the time of film forming is preferably 50 ° C. or less, and more preferably 20 ° C. or less. It is preferably 5 ° C. or lower, and particularly preferably 5 ° C. or lower. Within this range, the temperature can be adjusted quickly, so that the film can be continuously formed in the film forming chamber of the same plasma CVD apparatus.
  • the pressure is preferably 180 Pa or more and 220 Pa or less. Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
  • the third reaction gas a silane gas (SiH 4), and carbon dioxide (CO 2), and includes a hydrogen gas (H 2), flow ratio of CO 2 with respect to SiH 4 (SiH 4 to 1 and the of CO 2 when flow ratio) is 1 or more 400 or less, preferably the flow rate ratio of H 2 to SiH 4 (flow ratio of H 2 when the SiH 4 1) is more than 0 and 300 or less.
  • the second protective layer 52 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
  • the first in-process solar cell substrate 99 is moved to another base (for example, another building or another room), and as shown in FIG. 6A, the first in-process solar cell is printed by screen printing or the like.
  • a comb-patterned liquid resist material was applied onto the first protective layer 51 of the substrate 99, a liquid resist material was further applied onto the second protective layer 52, and the resist material was applied to both sides.
  • the substrate is heat-treated and dried to form resist layers 55 and 56 (resist layer forming step).
  • a portion where the resist material is applied and the resist layer 55 is formed (resist forming region 60) and a portion where the resist material is not applied and the resist layer 55 is not formed (resist).
  • a non-forming region 61 That is, on the substrate after the resist layer forming step, in the thickness direction, the superposed portion (resist forming region 60) in which the resist layer 55 is superposed on the reverse conductive semiconductor layer 16 and the non-superimposed portion in which the resist layer 55 is not superposed are not superposed.
  • the substrate on which the resist layers 55 and 56 are formed is immersed in a resist etching solution (etching solution), and the non-overlapping portion (resist non-forming region 61) in which the resist layer 55 is not formed is immersed.
  • etching solution resist etching solution
  • the third intrinsic semiconductor layer 15, the reverse conductive semiconductor layer 16, the lift-off layer 50, and the first protective layer 51 are removed in part or all (etching step).
  • etching solution for resist for example, a mixed solution of hydrofluoric acid and nitric acid (fluoric acid) or a solution containing ozone and hydrofluoric acid can be used.
  • a peeled region 62 in which the layer on the back side main surface 26 side is peeled off is formed in the resist non-formed region 61.
  • the resist layers 55 and 56 are removed with a resist removing solution, and the substrate is washed with hydrofluoric acid if necessary (resist layer removing step).
  • the lift-off layer 50 is protected by the first protective layer 51, it is substantially not dissolved, and only the resist layers 55 and 56 are peeled off. Further, even if the base material is washed with hydrofluoric acid, the lift-off layer 50 is not substantially dissolved.
  • the second intrinsic semiconductor layer 10 is formed on the entire back surface of the main surface by the plasma CVD apparatus (second intrinsic semiconductor layer forming step). That is, in the second intrinsic semiconductor layer forming step, the second intrinsic semiconductor layer is formed so as to be outside the lift-off layer 50 with reference to the semiconductor substrate 5 and to have a portion overlapping the lift-off layer 50 when the semiconductor substrate 5 is viewed in a plan view.
  • the intrinsic semiconductor layer 10 is formed.
  • a part of the second intrinsic semiconductor layer 10 is formed over the first protective layer 51a (51) over the peeling region 62a (62) of the adjacent semiconductor substrate 5. It is formed so as to extend from the peeled region 62a over the adjacent first protective layer 51b.
  • the monoconductive semiconductor layer 11 is formed on the second intrinsic semiconductor layer 10 by the same or different plasma CVD apparatus to form the second in-process solar cell substrate 100 (second semiconductor layer). Formation process). That is, in the second semiconductor layer forming step, it is outside the second intrinsic semiconductor layer 10 with reference to the semiconductor substrate 5, and when the semiconductor substrate 5 is viewed in a plan view, it has a portion overlapping with the lift-off layer 50. A conductive semiconductor layer 11 is formed.
  • the second work-in-process solar cell substrate 100 is moved to another base (for example, another building or another room), the second work-in-process solar cell substrate 100 is immersed in a lift-off etching solution (lift-off solution), and FIG. As in (c), the lift-off layer 50 is melted and lifted off, and the layer on the lift-off layer 50 is removed (lift-off step).
  • lift-off solution a lift-off etching solution
  • the lift-off etching solution used in the lift-off step for example, hydrofluoric acid or the like can be used.
  • the second in-process solar cell substrate 100 all the layers in contact with the lift-off layer 50 are melted or peeled off on the back side main surface 26 side of the semiconductor substrate 5, and the second protective layer is on the front side main surface 25 side of the semiconductor substrate 5. 52 is also melted or peeled from the first intrinsic semiconductor layer 6. Further, at this time, only the inner portion of the second intrinsic semiconductor layer 10 remains from the covering portion of the lift-off layer 50, and does not cover the outer side of the reverse conductive semiconductor layer 16 with reference to the semiconductor substrate 5.
  • the second intrinsic semiconductor layer 10 is located flush with the outer surface of the reverse conductive semiconductor layer 16 or inside the outer surface with reference to the semiconductor substrate 5. At this time, the etching rate of the lift-off layer 50 by the lift-off etching solution is faster than the etching rate of the monoconductive semiconductor layer 11. Further, the etching rate of the second protective layer 52 is faster than the etching rate of the first intrinsic semiconductor layer 6.
  • the antireflection layer 7 is formed on the first intrinsic semiconductor layer 6 by the plasma CVD apparatus (antireflection layer forming step).
  • the reaction gas used in the antireflection layer forming step preferably contains silane gas (SiH 4 ) and ammonia (NH 3 ).
  • the electrode layers 2 and 3 are formed on the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16.
  • the transparent electrode layers 20 and 21 are formed on the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 (transparent electrode layer forming step).
  • the transparent electrode layers 20 and 21 are patterned by a photoresist method, a mask method, or the like, and the transparent electrode layer 20 is formed only on the one-conductive semiconductor layer 11 and is a transparent electrode layer.
  • 21 is formed only on the reverse conductive semiconductor layer 16. That is, the transparent electrode layer 20 does not straddle the reverse conductive semiconductor layer 16, and the transparent electrode layer 21 does not straddle the monoconductive semiconductor layer 11.
  • the metal electrode layers 22 and 23 are formed on the transparent electrode layers 20 and 21 by screen printing or the like (metal electrode layer forming step).
  • the metal electrode layer 22 is formed only on the transparent electrode layer 20 by a photoresist method, a mask method, or the like, and the metal electrode layer 23 is formed only on the transparent electrode layer 21.
  • the transparent electrode layer 21 and the metal electrode layer 22 may be patterned at the same time.
  • wiring members such as interconnectors are attached to the electrode layers 2 and 3, and the solar cell 1 is completed.
  • the semiconductor substrate 5 is a semiconductor substrate having either an n-type or a p-type conductive type.
  • the semiconductor substrate 5 of the present embodiment is a monoconductive semiconductor substrate having a conductive type similar to that of the monoconductive semiconductor layer 11, and is specifically an n-type single crystal silicon substrate.
  • the average thickness of the semiconductor substrate 5 is preferably 120 ⁇ m or more and 250 ⁇ m or less, and more preferably 160 ⁇ m or more and 200 ⁇ m or less.
  • the semiconductor substrate 5 may have a texture structure on the front side main surface 25 and / or the back side main surface 26, if necessary.
  • the intrinsic semiconductor layers 6, 10 and 15 are layers that suppress the diffusion of impurities to the semiconductor substrate 5 and passivate the surface.
  • Intrinsic semiconductor layers 6, 10 and 15 are i-type semiconductor layers and are substantially free of conductive impurities.
  • the term "substantially free of conductive impurities" as used herein means not only those that do not completely contain conductive impurities such as n-type impurities and p-type impurities, but also those that can maintain their functions as an intrinsic layer. It also includes those containing a trace amount of conductive impurities.
  • the intrinsic semiconductor layers 6, 10 and 15 are not particularly limited as long as they have a function of suppressing the diffusion of impurities to the semiconductor substrate 5 and performing a surface passivation treatment.
  • the intrinsic semiconductor layers 6, 10 and 15 may be, for example, an amorphous silicon-based semiconductor layer or a hydrogenated amorphous silicon-based semiconductor layer.
  • the average thickness of the intrinsic semiconductor layers 6, 10 and 15 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 10 nm or less. Within this range, the resistance can be suppressed low while functioning well as a passivation layer for the semiconductor substrate 5.
  • the conductive semiconductor layer 11 is a semiconductor layer having an n-type or p-type conductive type, and is a semiconductor layer having the same conductive type as the semiconductor substrate 5.
  • the one conductive semiconductor layer 11 of the present embodiment is an n-type semiconductor layer in which an n-type dopant (phosphorus or the like) is added to the same semiconductor as the intrinsic semiconductor layers 6, 10 and 15, and specifically, n. It is a type amorphous silicon layer.
  • the average thickness of the one-conductive semiconductor layer 11 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 15 nm or less.
  • the reverse conductive semiconductor layer 16 is a semiconductor layer having an n-type or p-type conductive type, and is a conductive type semiconductor layer different from the semiconductor substrate 5 and the monoconductive semiconductor layer 11.
  • the reverse conductive semiconductor layer 16 of the present embodiment is a p-type semiconductor layer in which a p-type dopant (boron or the like) is added to the same semiconductor as the intrinsic semiconductor layers 6, 10 and 15, and specifically, the p-type semiconductor layer. It is an amorphous silicon layer.
  • the average thickness of the reverse conductive semiconductor layer 16 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 15 nm or less.
  • the antireflection layer 7 is a low reflection layer having translucency and suppressing light reflection.
  • the antireflection layer 7 can be formed of, for example, a metal oxide such as silicon oxide, zinc oxide, or titanium oxide, or a metal nitride such as silicon nitride.
  • the antireflection layer 7 is preferably made of silicon nitride from the viewpoint of the light confinement effect of incident light.
  • the transparent electrode layers 20 and 21 can be formed of, for example, a transparent conductive oxide such as zinc oxide, indium tin oxide (ITO), titanium oxide, tin oxide, tungsten oxide, and molybdenum oxide.
  • the average thickness of the transparent electrode layers 20 and 21 is preferably 20 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less.
  • the metal electrode layers 22 and 23 are layers whose resistivity is smaller than that of the transparent electrode layers 20 and 21 and functions as an auxiliary electrode layer of the transparent electrode layers 20 and 21.
  • the metal electrode layers 22 and 23 can be formed of, for example, a metal such as gold, silver, copper, platinum, aluminum, nickel, or palladium, or an alloy containing these metals.
  • the average thickness of the metal electrode layers 22 and 23 is preferably 1 ⁇ m or more and 80 ⁇ m or less.
  • the lift-off layer 50 is a layer that dissolves in the lift-off etching solution.
  • the lift-off layer 50 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components.
  • the lift-off layer 50 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component.
  • the refractive index is preferably 1.42 or more and 1.50 or less.
  • the "refractive index” here means the refractive index when irradiated with light of 550 nm. Within this range, the etching rate with the lift-off etching solution is high, and lift-off is easy.
  • the etching rate when immersed in 2% by weight of hydrofluoric acid is preferably 3 nm / s or more, more preferably 5 nm / s or more. It is more preferably 7 nm / s or more.
  • the first protective layer 51 is a layer that protects the lift-off layer 50 from hydrofluoric acid used for cleaning before the process of forming the resist etching solution and the second intrinsic semiconductor layer.
  • the first protective layer 51 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components.
  • the first protective layer 51 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component.
  • the refractive index is higher than that of the lift-off layer 50, and is preferably more than 1.50. Within this range, the etching rate with the resist etching solution and hydrofluoric acid is low, and it is difficult to dissolve.
  • the second protective layer 52 is more resistant to the resist etching solution and the lift-off etching solution than the lift-off layer 50, and protects the first intrinsic semiconductor layer 6 from the resist etching solution and the lift-off etching solution. ..
  • the second protective layer 52 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components.
  • the second protective layer 52 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component, like the lift-off layer 50 and the first protective layer 51. When the silicon oxide layer is used as the second protective layer 52, the refractive index is higher than that of the lift-off layer 50, and is preferably more than 1.50.
  • the monoconductive semiconductor layer 11 is formed so that a part of the solar cell 1 overlaps with the lift-off layer 50, and the lift-off layer 50 is dissolved by the lift-off liquid to be formed on the lift-off layer 50.
  • the monoconductive semiconductor layer 11 can be removed, and the monoconductive semiconductor layer 11 can be patterned. Therefore, it can be manufactured at a lower cost than the conventional method of patterning with a photoresist.
  • the lift-off layer 50 is formed at a film forming temperature of 150 ° C. or lower, so that the in-plane film thickness distribution is uniform even in a large area film forming apparatus. Lift-off layer 50 can be formed. Therefore, mass production is possible.
  • the first protective layer 51 has a higher density than the lift-off layer 50, and has high resistance to the etching solution for resist. Therefore, when the lift-off layer 50 is immersed in the resist etching solution in the etching step, the lift-off layer 50 is less likely to dissolve than when the lift-off layer 50 is directly immersed in the resist etching solution, and the lift-off layer 50 is formed by the resist etching solution. It dissolves, and it is possible to prevent the layer outside the lift-off layer 50 from peeling off due to the dissolution.
  • the reverse conductive semiconductor layer 16 is formed.
  • the portion where the resist layer 55 does not overlap is dissolved with a resist etching solution, removed, and patterned. Therefore, the reverse conductive semiconductor layer 16 can be patterned without providing a mask or the like when the reverse conductive semiconductor layer 16 is formed.
  • a second reaction gas containing silane gas, carbon dioxide and hydrogen gas is sprayed at a temperature of 150 ° C. or lower to contain silicon oxide as a main component.
  • the first protective layer 51 is formed. That is, since a low-concentration second reaction gas diluted with hydrogen is sprayed to form a film at a low temperature, a dense first protective layer 51 can be formed.
  • the film forming temperature of the lift-off layer 50 in the lift-off layer forming step and the film forming temperature of the first protective layer 51 in the first protective layer forming step are different in temperature. Is 50 ° C. or lower. Therefore, the temperature can be adjusted quickly, and the lift-off layer 50 and the first protective layer 51 can be continuously formed. Further, since the temperature difference between the film forming temperature of the first protective layer 51 in the first protective layer forming step and the film forming temperature of the second protective layer 52 in the second protective layer forming step is 50 ° C. or less, The temperature can be adjusted quickly, and the first protective layer 51 and the second protective layer 52 can be continuously formed.
  • the lift-off layer 50 contains silicon oxide as a main component and has an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid. , The lift-off layer 50 can be quickly peeled off.
  • the lift-off layer 50 is dissolved by being immersed in the lift-off removing solution, and when the semiconductor substrate 5 is viewed in a plan view, the lift-off layer 50 and the lift-off layer 50 of the one-conductive semiconductor layer 11 The overlapping portion can be removed, the lift-off layer 50 contains silicon oxide as a main component, and the refractive index is 1.42 or more and 1.50 or less. Therefore, when the lift is off, the etching rate can be increased, and the monoconductive semiconductor layer 11 can be easily patterned.
  • the outermost surface of the semiconductor substrate 5 on the front side main surface 25 side is coated with a second protective layer 52 having more resistance to the lift-off liquid than the lift-off layer 50. Therefore, damage to each layer on the second main surface side of the semiconductor substrate 5 due to the lift-off liquid can be suppressed in the etching step.
  • the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 do not overlap in the thickness direction, and the contact between the electrode layers 2 and 3 and the semiconductor layers 11 and 16 having different conductive types This can be prevented by the intrinsic semiconductor layers 10 and 15, so that the solar cell has excellent safety.
  • the reverse conductive semiconductor layer 16 is a p-type semiconductor layer and the monoconductive semiconductor layer 11 is an n-type semiconductor layer, but the present invention is not limited thereto.
  • the reverse conductive semiconductor layer 16 may be an n-type semiconductor layer, and the one conductive semiconductor layer 11 may be a p-type semiconductor layer.
  • the semiconductor substrate 5 is an n-type semiconductor substrate, but the present invention is not limited thereto.
  • the semiconductor substrate 5 may be a p-type semiconductor substrate.
  • the lift-off layer 50, the first protective layer 51, and the second protective layer 52 are formed in a film forming chamber of the same plasma CVD apparatus, but the present invention is not limited thereto. ..
  • the film may be formed in a different film forming chamber.
  • the first protective layer 51 and the second protective layer 52 are formed by a separate process, but the present invention is not limited to this.
  • the first protective layer 51 and the second protective layer 52 may be formed at the same time.
  • the lift-off layer 50 and the first protective layer 51 are made of the same material, but the present invention is not limited to this.
  • the lift-off layer 50 and the first protective layer 51 may be made of different materials.
  • the lift-off layer 50, the first protective layer 51, and the second protective layer 52 are all formed of a silicon oxide layer, but the present invention is not limited thereto.
  • the lift-off layer 50, the first protective layer 51, and the second protective layer 52 may be formed of a silicon nitride layer containing silicon nitride as a main component.
  • the lift-off layer 50 is formed by one layer, but the present invention is not limited to this.
  • the lift-off layer 50 may be formed of a laminated body composed of a plurality of layers.
  • the first protective layer 51 and the second protective layer 52 are formed by one layer, but the present invention is not limited to this.
  • the first protective layer 51 and the second protective layer 52 may be formed of a laminated body composed of a plurality of layers.
  • Example 1 First, as shown in FIG. 9, a total of 30 wafers (Nos. 1 to 30 shown in FIG. 9), 5 in length and 6 in width, are mirror-polished silicon wafers (156 in length and width) on a square tray having a length of 998 mm and a width of 1200 mm. .75 mm) was arranged in a vertical and horizontal checkerboard shape, and a silicon oxide layer was formed on these silicon wafers by a plasma CVD apparatus. This was designated as Example 1.
  • the film forming conditions of the silicon oxide layer of Example 1 were a substrate temperature of 100 ° C., a distance of 10 mm from the electrode to the substrate, a pressure of 200 Pa, a gas flow rate ratio of SiH 4 : CO 2 of 25: 4900, and a power density of 0.22 W /. It was set to cm 2 .
  • Example 2 The same applies except that the substrate temperature was set to 140 ° C. in Example 1, and this was designated as Example 2.
  • Comparative Example 1 In Example 1, the same was true except that the substrate temperature was set to 180 ° C., and this was designated as Comparative Example 1.
  • Example 3 A silicon oxide layer was formed on a mirror-polished silicon wafer installed on the same tray as in Example 1 by a plasma CVD apparatus, and this was designated as Example 3.
  • the film forming conditions of the silicon oxide layer of Example 3 are a substrate temperature of 140 ° C., a distance of 10 mm from the electrode to the substrate, a pressure of 200 Pa, a gas flow rate ratio of SiH 4 : CO 2 : H 2 of 150: 4900: 9800, and a power density. was 0.37 W / cm 2 . That is, the film was formed by diluting with hydrogen gas.
  • Comparative Example 2 The same was applied in Example 3 except that it was not diluted with hydrogen, and this was designated as Comparative Example 2. That is, in Comparative Example 2, the film was formed with a gas flow rate ratio of SiH 4 : CO 2 of 150: 4900.
  • the refractive index of silicon oxide on a silicon wafer when irradiated with 550 nm light was measured with an ellipson meter manufactured by JA Woollam for Examples 1 to 3 and Comparative Examples 1 and 2. .. Then, the silicon oxide layer was dissolved with 2% by weight of hydrofluoric acid, the refractive index when irradiated with light of 550 nm was measured again with an ellipson meter, and the etching rate was calculated. Further, in each of the 1st to 30th silicon wafers installed on the tray, the difference between the thickest film thickness (maximum film thickness Max) and the thinnest film thickness (minimum film thickness Min) of the silicon oxide layer on the silicon wafer. Therefore, the in-plane distribution was calculated using the following formula (1). ⁇ (Max-Min) / Min ⁇ x 100 ... (1)
  • the degree of peeling of the silicon oxide layer when immersed in an etching solution for 15 minutes and rinsed with a rinsing solution was evaluated. Specifically, the degree of peeling was B for peeling of 50% or more and less than 90% by visual observation, and A for peeling of 90% or more.
  • Example 1 As shown in Table 1, when the silicon oxide layers of Examples 1 and 2 formed at a low temperature and Comparative Example 1 formed at a high temperature were compared, it was found that the etching rate increased as the temperature decreased. At this time, the silicon oxide layers of Examples 1 and 2 could form a layer having a uniform film thickness even when the film was formed with a tray having a large in-plane distribution of 10% or less in the tray. Further, it was found that the lift-off characteristics of Examples 1 and 2 were good at 50% or more, and the lift-off characteristics of Example 1 were particularly good as compared with Example 2.
  • the etching rate of the silicon oxide layer of Example 1 is about 9 times the etching rate of the silicon oxide layer of Example 3, and the etching rate of the silicon oxide layer of Example 2 is It was about 6 times the etching rate of the silicon oxide layer of Example 3. From this, it was found that the etching rate of the silicon oxide layers of Examples 1 and 2 was extremely easy to dissolve by hydrofluoric acid as compared with the silicon oxide layer of Example 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a method for manufacturing a solar cell in which mass production is facilitated and yield is improved compared to the past, an in-process solar cell substrate, and a solar cell. The method includes: a first semiconductor layer formation step for forming a reverse conductivity-type semiconductor layer 16 on the first main surface side of a semiconductor substrate 5; a liftoff layer formation step for forming a liftoff layer 50 having silicon oxide or silicon nitride as the main component on the reverse conductivity-type semiconductor layer 16; a second semiconductor layer formation step for forming a first conductivity-type semiconductor layer 11 so as to have a portion overlapping with the liftoff layer 50 when the semiconductor substrate 5 is viewed in plan view; and a liftoff step for dissolving the liftoff layer 50 with a liftoff liquid and thereby removing the overlapping portion of the first conductivity-type semiconductor layer 11. In the liftoff layer formation step, a first reaction gas is blown at a film formation temperature of 150°C or below and the gas refrigerant introduction pipe 50 is formed.

Description

太陽電池の製造方法、仕掛太陽電池基板、及び太陽電池Solar cell manufacturing method, in-process solar cell substrate, and solar cell
 本発明は、太陽電池の製造方法、仕掛太陽電池基板、及び太陽電池に関する。 The present invention relates to a method for manufacturing a solar cell, a work-in-process solar cell substrate, and a solar cell.
 近年、半導体基板の裏面側にのみ電極層を設けたバックコンタクト型の太陽電池が開発されている(特許文献1)。
 このバックコンタクト型の太陽電池は、一対の電極層間や異なる導電型の半導体層同士が近い位置に配されるため、高精度で一対の電極層や異なる導電型の半導体層をパターニングしなければならない。
In recent years, a back contact type solar cell in which an electrode layer is provided only on the back surface side of a semiconductor substrate has been developed (Patent Document 1).
In this back contact type solar cell, since a pair of electrode layers and different conductive type semiconductor layers are arranged at close positions, it is necessary to pattern the pair of electrode layers and different conductive type semiconductor layers with high accuracy. ..
 そこで、高精度にパターニングする方法として、特許文献1には、リフトオフを利用して半導体層をパターニングする方法が開示されている。 Therefore, as a method of patterning with high accuracy, Patent Document 1 discloses a method of patterning a semiconductor layer by using lift-off.
特開2013-120863号公報Japanese Unexamined Patent Publication No. 2013-128063
 ところで、太陽電池の製造コストを下げるためには、大量の太陽電池を同時に形成する必要がある。そこで、本発明者は、特許文献1のリフトオフの方法を参考に、大面積(縦1200mm×横1000mm)のプラズマCVD装置で複数の基板に対して同時に酸化シリコン層でリフトオフ層を製膜し、バックコンタクト型の太陽電池を試作した。
 しかしながら、試作したリフトオフの方法では、小面積で製膜する際には良好な品質の太陽電池が得られるものの、大面積で製膜する際に、基板間での膜厚分布が大きくなり、品質に偏りが発生し、歩留まりが悪いという問題が生じていた。
By the way, in order to reduce the manufacturing cost of solar cells, it is necessary to form a large number of solar cells at the same time. Therefore, the present inventor, referring to the lift-off method of Patent Document 1, simultaneously forms a lift-off layer with a silicon oxide layer on a plurality of substrates by a plasma CVD apparatus having a large area (length 1200 mm × width 1000 mm). A back contact type solar cell was prototyped.
However, with the prototype lift-off method, although good quality solar cells can be obtained when forming a film in a small area, the film thickness distribution between substrates becomes large when forming a film in a large area, resulting in quality. There was a problem that the yield was poor due to the bias.
 そこで、本発明は、従来に比べて大量生産が容易で、歩留まりが良好な太陽電池の製造方法及び太陽電池を提供することを目的とする。
 本発明は、太陽電池を製造するにあたって、従来に比べて、効率良くリフトオフでき、製造効率を向上できる仕掛太陽電池基板を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a solar cell and a solar cell, which are easier to mass-produce than the conventional ones and have a good yield.
An object of the present invention is to provide a work-in-process solar cell substrate that can be lifted off more efficiently and the manufacturing efficiency can be improved as compared with the conventional case in manufacturing a solar cell.
 上記した課題を解決するための本発明の一つの様相は、半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池の製造方法であって、前記半導体基板の第1主面側に前記逆導電型半導体層を形成する第1半導体層形成工程と、前記逆導電型半導体層上に酸化シリコン又は窒化シリコンを主成分とするリフトオフ層を形成するリフトオフ層形成工程と、前記半導体基板を平面視したときに、一部が前記リフトオフ層と重なり部分をもつように前記一導電型半導体層を形成する第2半導体層形成工程と、リフトオフ液で前記リフトオフ層を溶解することで、前記一導電型半導体層の前記重なり部分を除去するリフトオフ工程を含み、前記リフトオフ層形成工程では、150℃以下の製膜温度で第1反応ガスを吹き付けて前記リフトオフ層を製膜する、太陽電池の製造方法である。 One aspect of the present invention for solving the above-mentioned problems is provided with a monoconductive semiconductor layer, a reverse conductive semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate. A method for manufacturing a solar cell, in which the monoconductive semiconductor layer is interposed between the semiconductor substrate and the first electrode layer, and the reverse conductive semiconductor layer is interposed between the semiconductor substrate and the second electrode layer. The first semiconductor layer forming step of forming the reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate and the lift-off containing silicon oxide or silicon nitride as a main component on the reverse conductive semiconductor layer. A lift-off layer forming step of forming a layer, and a second semiconductor layer forming step of forming the monoconductive semiconductor layer so that a part of the semiconductor substrate overlaps with the lift-off layer when viewed in a plan view. The lift-off step of removing the overlapping portion of the monoconductive semiconductor layer by dissolving the lift-off layer with a lift-off liquid is included, and in the lift-off layer forming step, the first reaction gas is applied at a film forming temperature of 150 ° C. or lower. This is a method for manufacturing a solar cell, in which the lift-off layer is formed by spraying.
 ここでいう「一導電型」とはn型又はp型であることをいい、「逆導電型」とは一導電型とは逆の導電型、すなわち、一導電型がn型の場合にはp型をいい、一導電型がp型の場合にはn型をいう。
 ここでいう「主成分」とは、全成分の50%以上を占める成分をいう。
The "uniconductive type" here means an n-type or a p-type, and the "reverse conductive type" is a conductive type opposite to the one-conductive type, that is, when the one-conductive type is an n-type. It refers to a p-type, and when the one-conductive type is a p-type, it refers to an n-type.
The "main component" here means a component that accounts for 50% or more of all components.
 本様相によれば、リフトオフ層をリフトオフ液で溶解することで一導電型半導体層のパターニングが可能であるため、フォトレジストでパターニングする従来の方法に比べて、低コストで製造できる。
 本様相によれば、150℃以下の製膜温度で酸化シリコン又は窒化シリコンを主成分とするリフトオフ層を形成するので、たとえ大面積の製膜装置であっても面内の膜厚分布が均一で密度が粗いリフトオフ層を形成できる。そのため、大量生産が可能であるとともに、リフトオフ液によるエッチング速度が大きいリフトオフ層を容易に製膜できる。
According to this aspect, since the monoconductive semiconductor layer can be patterned by dissolving the lift-off layer with the lift-off liquid, it can be manufactured at a lower cost than the conventional method of patterning with a photoresist.
According to this aspect, since a lift-off layer containing silicon oxide or silicon nitride as a main component is formed at a film forming temperature of 150 ° C. or less, the in-plane film thickness distribution is uniform even in a large-area film forming apparatus. Can form a coarse lift-off layer. Therefore, mass production is possible, and a lift-off layer having a high etching rate by the lift-off liquid can be easily formed.
 好ましい様相は、前記リフトオフ層上に保護層を製膜する保護層形成工程を含み、前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高いことである。 A preferable aspect includes a protective layer forming step of forming a protective layer on the lift-off layer, and the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
 好ましい様相は、前記半導体基板を基準として前記逆導電型半導体層の外側に所定の形状のレジスト層を形成するレジスト層形成工程と、エッチング液で前記逆導電型半導体層の一部を除去するエッチング工程と、前記レジスト層を除去するレジスト層除去工程を含み、前記レジスト層形成工程では、前記半導体基板を平面視したときに、前記逆導電型半導体層に前記レジスト層と重ならない非重畳部分があり、前記エッチング工程では、前記逆導電型半導体層の前記非重畳部分の一部又は全部を除去することである。 Preferred aspects are a resist layer forming step of forming a resist layer having a predetermined shape on the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate, and etching for removing a part of the reverse conductive semiconductor layer with an etching solution. In the resist layer forming step, which includes a step and a resist layer removing step of removing the resist layer, when the semiconductor substrate is viewed in a plan view, a non-overlapping portion that does not overlap with the resist layer is formed on the reverse conductive semiconductor layer. Yes, in the etching step, a part or all of the non-superimposed portion of the reverse conductive semiconductor layer is removed.
 ところで、通常、高温(例えば、180℃以上)で酸化シリコン層を製膜する場合、原料ガスを水素希釈すると、膜中に取り込まれる水素原子が増加する。そのため、本発明者は、低温(150℃以下)で製膜した場合にも、原料ガスを水素希釈すると、疎な膜が形成されると考えていた。しかしながら、実際に、水素希釈した原料ガスで酸化シリコン層を低温製膜すると、予想に反して緻密な膜が形成されていた。 By the way, when the silicon oxide layer is usually formed at a high temperature (for example, 180 ° C. or higher), when the raw material gas is diluted with hydrogen, the number of hydrogen atoms taken into the film increases. Therefore, the present inventor thought that a sparse film would be formed by diluting the raw material gas with hydrogen even when the film was formed at a low temperature (150 ° C. or lower). However, when the silicon oxide layer was actually formed at a low temperature with a hydrogen-diluted raw material gas, a dense film was unexpectedly formed.
 この結果から導き出される好ましい様相は、前記リフトオフ層上に、酸化シリコンを主成分とする保護層を形成する保護層形成工程を含み、前記保護層形成工程では、150℃以下の温度で第2反応ガスを吹き付けて前記保護層を製膜するものであり、前記第2反応ガスは、シランガスと、二酸化炭素と、水素ガスを含むことである。 A preferable aspect derived from this result includes a protective layer forming step of forming a protective layer containing silicon oxide as a main component on the lift-off layer, and in the protective layer forming step, a second reaction is carried out at a temperature of 150 ° C. or lower. The protective layer is formed by spraying a gas, and the second reaction gas contains silane gas, carbon dioxide, and hydrogen gas.
 本様相によれば、水素ガスで希釈された第2反応ガスを用いて低温で保護層を製膜するため、容易に緻密な保護層を形成できる。 According to this aspect, since the protective layer is formed at a low temperature using the second reaction gas diluted with hydrogen gas, a dense protective layer can be easily formed.
 好ましい様相は、前記第2反応ガスは、シランガスに対する水素ガスの流量比が50以上である。 The preferred aspect is that the second reaction gas has a flow rate ratio of hydrogen gas to silane gas of 50 or more.
 ところで、同一の製膜室で複数の層を連続的に製膜する場合、高温条件(例えば、180℃以上)で製膜した後に、低温条件(例えば、150℃以下)で製膜すると、製膜室の温度が低温条件に達するまで、冷却する必要がある。低温条件で製膜した後に高温条件で製膜する場合も同様に、製膜室の温度が高温条件に達するまで加熱する必要がある。
 ここで、製膜装置は、一般的に、高温条件から低温条件まで降温する時間に比べて、低温条件から高温条件に昇温する時間は短い。
By the way, when a plurality of layers are continuously formed in the same film forming chamber, the film is formed by forming a film under high temperature conditions (for example, 180 ° C. or higher) and then under low temperature conditions (for example, 150 ° C. or lower). It needs to be cooled until the temperature of the membrane chamber reaches low temperature conditions. Similarly, when the film is formed under the high temperature condition after the film is formed under the low temperature condition, it is necessary to heat the film until the temperature of the film forming chamber reaches the high temperature condition.
Here, in the film forming apparatus, the time for raising the temperature from the low temperature condition to the high temperature condition is generally shorter than the time for lowering the temperature from the high temperature condition to the low temperature condition.
 そこで、好ましい様相は、前記保護層形成工程での前記保護層の製膜温度は、実質的に前記リフトオフ層形成工程での前記リフトオフ層の製膜温度以上であって、前記リフトオフ層形成工程での前記リフトオフ層の製膜温度との温度差が50℃以下である。 Therefore, the preferred aspect is that the film forming temperature of the protective layer in the protective layer forming step is substantially equal to or higher than the film forming temperature of the lift-off layer in the lift-off layer forming step, and the film forming temperature of the protective layer is substantially higher than that in the lift-off layer forming step. The temperature difference from the film forming temperature of the lift-off layer is 50 ° C. or less.
 ここでいう「保護層の製膜温度が実質的にリフトオフ層の製膜温度以上である」とは、外気や装置の性能等による製膜時の製膜温度の僅かな温度変動(例えば、3℃)を許容するものである。例えば、保護層の製膜温度が(リフトオフ層の製膜温度-3℃)以上となる場合も含む。 Here, "the film forming temperature of the protective layer is substantially equal to or higher than the film forming temperature of the lift-off layer" means a slight temperature fluctuation of the film forming temperature during film forming due to the outside air, the performance of the device, etc. (for example, 3). ℃) is allowed. For example, it includes the case where the film forming temperature of the protective layer becomes (the film forming temperature of the lift-off layer -3 ° C) or higher.
 本様相によれば、効率良く連続的に製膜できる。 According to this aspect, film formation can be performed efficiently and continuously.
 本発明の一つの様相は、半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池の製造方法であって、前記半導体基板の第1主面側に前記逆導電型半導体層を形成する第1半導体層形成工程と、前記逆導電型半導体層上に酸化シリコン又は窒化シリコンを主成分とするリフトオフ層を形成するリフトオフ層形成工程と、前記リフトオフ層上に、酸化シリコン又は窒化シリコンを主成分とし前記リフトオフ層よりも密度が高い保護層を製膜する保護層形成工程と、前記半導体基板を平面視したときに、前記リフトオフ層と重なり部分をもつように前記一導電型半導体層を形成する第2半導体層形成工程と、リフトオフ液で前記リフトオフ層を溶解することで、前記一導電型半導体層の前記重なり部分を除去するリフトオフ工程を含み、前記リフトオフ工程は、前記保護層形成工程の以後に行うものであり、前記保護層形成工程では、150℃以下の温度で第2反応ガスを吹き付けて前記保護層を製膜するものであり、前記第2反応ガスは、シランガスと、二酸化炭素と、水素ガスとを含むものであって、シランガスに対する水素ガスの流量比が50以上である、太陽電池の製造方法である。 One aspect of the present invention includes a one-conductive semiconductor layer, a reverse conductivity type semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate, and the semiconductor substrate and the first electrode layer are provided. A method for manufacturing a solar cell in which the one conductive semiconductor layer is interposed between the electrode layers and the reverse conductive semiconductor layer is interposed between the semiconductor substrate and the second electrode layer. A first semiconductor layer forming step of forming the reverse conductive semiconductor layer on the first main surface side, and a lift-off layer forming step of forming a lift-off layer containing silicon oxide or silicon nitride as a main component on the reverse conductive semiconductor layer. A protective layer forming step of forming a protective layer containing silicon oxide or silicon nitride as a main component on the lift-off layer and having a density higher than that of the lift-off layer, and the lift-off layer when the semiconductor substrate is viewed in a plan view. A second semiconductor layer forming step of forming the one-conductive semiconductor layer so as to have an overlapping portion with the above, and a lift-off for removing the overlapping portion of the one-conductive semiconductor layer by dissolving the lift-off layer with a lift-off liquid. The lift-off step includes a step, and the lift-off step is performed after the protective layer forming step. In the protective layer forming step, a second reaction gas is sprayed at a temperature of 150 ° C. or lower to form the protective layer. The second reaction gas is a method for producing a solar cell, which comprises silane gas, carbon dioxide, and hydrogen gas, and has a flow rate ratio of hydrogen gas to silane gas of 50 or more.
 本様相によれば、リフトオフ層をリフトオフ液で溶解することで一導電型半導体層のパターニングが可能であるため、フォトレジストでパターニングする従来の方法に比べて、製造工程を簡略化でき、低コストで製造できる。
 本様相によれば、保護層形成工程において、150℃以下でかつ水素ガスでシランガスが希釈された第2反応ガスで保護層を製膜するため、緻密な保護層を形成できる。
According to this aspect, since the monoconductive semiconductor layer can be patterned by dissolving the lift-off layer with the lift-off liquid, the manufacturing process can be simplified and the cost is low as compared with the conventional method of patterning with a photoresist. Can be manufactured at.
According to this aspect, in the protective layer forming step, the protective layer is formed with the second reaction gas at 150 ° C. or lower and the silane gas is diluted with hydrogen gas, so that a dense protective layer can be formed.
 ここで、近年の太陽電池の製造工程では、一拠点のみで製造されるのではなく、多拠点で製造されることがある。すなわち、一の拠点で太陽電池の仕掛品たる仕掛太陽電池基板を製造し、他の拠点で当該仕掛太陽電池基板を用いて太陽電池を製造する場合がある。そのため、完成品の構造だけではなく、仕掛品たる仕掛太陽電池基板の構造も太陽電池の量産化には重要である。 Here, in the manufacturing process of solar cells in recent years, it may be manufactured not only at one base but at multiple bases. That is, there is a case where a work-in-process solar cell substrate, which is a work-in-process product of a solar cell, is manufactured at one base, and a solar cell is manufactured using the work-in-process solar cell board at another base. Therefore, not only the structure of the finished product but also the structure of the work-in-process solar cell substrate, which is a work-in-process, is important for mass production of solar cells.
 本発明の一つの様相は、半導体基板の第1主面側に、一導電型半導体層と、逆導電型半導体層を備えた仕掛太陽電池基板であって、前記半導体基板を基準として、前記逆導電型半導体層の外側にリフトオフ層を有し、前記リフトオフ層は、前記半導体基板を基準として、外側に前記一導電型半導体層が積層されており、前記一導電型半導体層は、前記半導体基板を平面視したときに前記リフトオフ層と重なり部分があり、前記リフトオフ層は、リフトオフ液に浸すことで、溶解して前記一導電型半導体層の前記重なり部分を除去可能であり、前記リフトオフ層は、酸化シリコンを主成分とし、2重量%のフッ化水素酸に浸したときのエッチング速度が5nm/s以上である、仕掛太陽電池基板である。 One aspect of the present invention is a work-in-progress solar cell substrate provided with a monoconductive semiconductor layer and a reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate, and the reverse of the semiconductor substrate is used as a reference. The lift-off layer has a lift-off layer on the outside of the conductive semiconductor layer, and the one-conductive semiconductor layer is laminated on the outside of the lift-off layer with the semiconductor substrate as a reference, and the one-conductive semiconductor layer is the semiconductor substrate. There is an overlapping portion with the lift-off layer when viewed in a plan view, and the lift-off layer can be dissolved and removed from the overlapping portion of the monoconductive semiconductor layer by immersing the lift-off layer in the lift-off liquid. This is a work-in-process solar cell substrate containing silicon oxide as a main component and having an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid.
 本様相によれば、効率良くリフトオフでき、製造効率を向上できる。 According to this aspect, it is possible to lift off efficiently and improve manufacturing efficiency.
 好ましい様相は、前記リフトオフ層上に保護層を有し、前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高いことである。 A preferable aspect is that the protective layer has a protective layer on the lift-off layer, and the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
 ところで、本発明者が検討を重ねた結果、以下のことを発見した。すなわち、酸化シリコンは、密度が大きくなると屈折率が大きくなり、密度が小さくなると屈折率が小さくなる傾向がある。また、酸化シリコンは、密度が大きくなると、フッ化水素酸におけるエッチング速度が大きくなり、密度が小さくなると、フッ化水素酸におけるエッチング速度が小さくなる傾向がある。
 そこで、本発明者は、酸化シリコンにおいて、屈折率とフッ化水素酸におけるエッチング速度の相関関係を検討したところ、屈折率とフッ化水素酸におけるエッチング速度の間に一定の相関がみられ、ある範囲の屈折率にすることで良好にエッチングされ、効率良くリフトオフできることを発見した。
By the way, as a result of repeated studies by the present inventor, the following was discovered. That is, the refractive index of silicon oxide tends to increase as the density increases, and the refractive index tends to decrease as the density decreases. Further, the etching rate of silicon oxide tends to increase as the density increases, and the etching rate of hydrofluoric acid tends to decrease as the density decreases.
Therefore, when the present inventor examined the correlation between the refractive index and the etching rate of hydrofluoric acid in silicon oxide, a certain correlation was found between the refractive index and the etching rate of hydrofluoric acid. It was discovered that by setting the refractive index in the range, it is etched well and can be lifted off efficiently.
 好ましい様相は、前記リフトオフ層上に保護層を有し、前記保護層は、酸化シリコンを主成分とし、屈折率が前記リフトオフ層の屈折率よりも高いことである。 A preferable aspect is that the protective layer has a protective layer on the lift-off layer, and the protective layer contains silicon oxide as a main component and has a refractive index higher than that of the lift-off layer.
 本様相によれば、保護層のエッチング速度をリフトオフ層のエッチング速度よりも遅くできる。 According to this aspect, the etching rate of the protective layer can be made slower than the etching rate of the lift-off layer.
 本発明の一つの様相は、半導体基板の第1主面側に、導電型半導体層を備えた仕掛太陽電池基板であって、前記半導体基板を基準として、前記導電型半導体層の外側にリフトオフ層と保護層がこの順に積層されており、前記リフトオフ層は、酸化シリコンを主成分とし、2重量%のフッ化水素酸に浸したときのエッチング速度が5nm/s以上であり、前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高い、仕掛太陽電池基板である。 One aspect of the present invention is a working solar cell substrate provided with a conductive semiconductor layer on the first main surface side of the semiconductor substrate, and a lift-off layer outside the conductive semiconductor layer with the semiconductor substrate as a reference. The protective layer is laminated in this order, and the lift-off layer contains silicon oxide as a main component and has an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid. , Silicon oxide or silicon nitride as a main component, and has a higher density than the lift-off layer.
 本様相によれば、効率良くリフトオフでき、製造効率を向上できる。 According to this aspect, it is possible to lift off efficiently and improve manufacturing efficiency.
 好ましい様相は、前記半導体基板の第2主面側の最表面に前記リフトオフ層よりも2重量%のフッ化水素酸に浸したときのエッチング速度が遅い第2保護層が被覆されていることである。 A preferred aspect is that the outermost surface of the semiconductor substrate on the second main surface side is coated with a second protective layer having a slower etching rate when immersed in 2% by weight of hydrofluoric acid than the lift-off layer. is there.
 また、上記様相は、前記半導体基板の第2主面側の最表面に前記リフトオフ層よりも前記リフトオフ液に対する耐性を有する第2保護層が被覆されていてもよい。 Further, in the above aspect, the outermost surface of the semiconductor substrate on the second main surface side may be coated with a second protective layer having more resistance to the lift-off liquid than the lift-off layer.
 本発明の一つの様相は、半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池であって、真性半導体層を有し、前記真性半導体層は、前記半導体基板と、前記一導電型半導体層及び前記逆導電型半導体層とのそれぞれの間に介在し、さらに前記半導体基板の前記第1主面の広がり方向において、前記一導電型半導体層と前記逆導電型半導体層の間にも介在しており、前記真性半導体層は、前記一導電型半導体層と前記逆導電型半導体層の間から前記第1主面に対する直交方向に露出している、太陽電池である。 One aspect of the present invention includes a one-conductive semiconductor layer, a reverse-conductivity semiconductor layer, a first electrode layer, and a second electrode layer on the first main surface side of the semiconductor substrate, and the semiconductor substrate and the first electrode layer are provided. A solar cell in which the one-conducting semiconductor layer is interposed between the electrode layers and the reverse-conducting semiconductor layer is interposed between the semiconductor substrate and the second electrode layer, and has an intrinsic semiconductor layer. The intrinsic semiconductor layer is interposed between the semiconductor substrate, the monoconductive semiconductor layer and the reverse conductive semiconductor layer, respectively, and further, in the spreading direction of the first main surface of the semiconductor substrate, the one. It is also interposed between the conductive semiconductor layer and the reverse conductive semiconductor layer, and the intrinsic semiconductor layer is formed in a direction orthogonal to the first main surface from between the monoconductive semiconductor layer and the reverse conductive semiconductor layer. It is a solar cell that is exposed to.
 本様相によれば、電極層間や導電型が異なる半導体層の接触を真性半導体層で防止できるため、安全性に優れた太陽電池となる。
 本様相によれば、上記した様相の製造方法で形成できるため、大量生産が容易である。
According to this aspect, the intrinsic semiconductor layer can prevent the contact between the electrode layers and the semiconductor layers having different conductive types, so that the solar cell has excellent safety.
According to this aspect, mass production is easy because it can be formed by the manufacturing method of the above-mentioned aspect.
 好ましい様相は、前記真性半導体層は、第1真性層と、第2真性層で構成されており、前記第1真性層は、前記半導体基板と前記逆導電型半導体層の間に介在しており、前記第2真性層は、前記半導体基板と前記一導電型半導体層の間に介在しており、前記第2真性層は、前記半導体基板を基準として、前記逆導電型半導体層の外側を覆っていないことである。 In a preferred aspect, the intrinsic semiconductor layer is composed of a first intrinsic layer and a second intrinsic layer, and the first intrinsic layer is interposed between the semiconductor substrate and the reverse conductive semiconductor layer. The second intrinsic layer is interposed between the semiconductor substrate and the monoconductive semiconductor layer, and the second intrinsic layer covers the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate. That is not the case.
 より好ましい様相は、前記第2真性層は、前記半導体基板を基準として、前記逆導電型半導体層の外側面と面一又は外側面よりも内側に位置していることである。 A more preferable aspect is that the second intrinsic layer is located flush with the outer surface of the reverse conductive semiconductor layer or inside the outer surface with respect to the semiconductor substrate.
 本発明の太陽電池の製造方法及び太陽電池によれば、従来に比べて大量生産が容易で歩留まりが良好となる。
 本発明の仕掛太陽電池基板によれば、太陽電池を製造するにあたって、従来に比べて、効率良くリフトオフでき、製造効率を向上できる。
According to the method for manufacturing a solar cell and the solar cell of the present invention, mass production is easier and the yield is better than before.
According to the in-process solar cell substrate of the present invention, in manufacturing a solar cell, it is possible to lift off more efficiently and improve the manufacturing efficiency as compared with the conventional case.
本発明の第1実施形態の太陽電池を模式的に示した斜視図である。It is a perspective view which shows typically the solar cell of 1st Embodiment of this invention. 図1の太陽電池のA-A断面図であり、理解を容易にするためにハッチングを省略している。It is the AA sectional view of the solar cell of FIG. 1, and the hatching is omitted for easy understanding. 図1の太陽電池の説明図であり、太陽電池から第1電極層と第2電極層を分解した分解斜視図である。It is explanatory drawing of the solar cell of FIG. 1, and is the exploded perspective view which disassembled the 1st electrode layer and the 2nd electrode layer from the solar cell. 図1の太陽電池の製造方法の説明図であり、(a)は第1真性半導体層形成工程における断面図を表し、(b)は第1半導体層形成工程における断面図を表す。なお、各工程において製膜した層のみをハッチングで示し、残りのハッチングを省略している。It is explanatory drawing of the manufacturing method of the solar cell of FIG. 1, (a) shows the cross-sectional view in the 1st intrinsic semiconductor layer forming step, and (b) shows the cross-sectional view in the 1st semiconductor layer forming step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. 図1の太陽電池の製造方法の図4の各工程に続く工程の説明図であり、(a)はリフトオフ層形成工程における断面図を表し、(b)は第1保護層形成工程における断面図を表し、(c)は第2保護層形成工程における断面図を表す。なお、各工程において製膜した層のみをハッチングで示し、残りのハッチングを省略している。It is explanatory drawing of the process which follows each process of FIG. 4 of the manufacturing method of the solar cell of FIG. 1, (a) shows the sectional view in the lift-off layer forming process, (b) is the sectional view in the 1st protective layer forming process. (C) represents a cross-sectional view in the second protective layer forming step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. 図1の太陽電池の製造方法の図5の各工程に続く工程の説明図であり、(a)はレジスト層形成工程における断面図を表し、(b)はエッチング工程における断面図を表し、(c)はレジスト層除去工程における断面図を表す。なお、各工程において製膜した層のみをハッチングで示し、残りのハッチングを省略している。It is explanatory drawing of the process which follows each process of FIG. 5 of the manufacturing method of the solar cell of FIG. 1, (a) shows the sectional view in the resist layer forming process, (b) shows the sectional view in the etching process, (a). c) represents a cross-sectional view in the resist layer removing step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. 図1の太陽電池の製造方法の図6の各工程に続く工程の説明図であり、(a)は第2真性半導体層形成工程における断面図を表し、(b)は第2半導体層形成工程における断面図を表し、(c)はリフトオフ工程における断面図を表す。なお、各工程において製膜した層のみをハッチングで示し、残りのハッチングを省略している。It is explanatory drawing of the process which follows each process of FIG. 6 of the manufacturing method of the solar cell of FIG. 1, (a) shows the sectional view in the 2nd intrinsic semiconductor layer forming process, (b) is the 2nd semiconductor layer forming process. (C) represents a cross-sectional view in the lift-off process. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. 図1の太陽電池の製造方法の図7の各工程に続く工程の説明図であり、(a)は反射防止層形成工程における断面図を表し、(b)は透明電極層形成工程における断面図を表し、(c)は金属電極層形成工程における断面図を表す。なお、各工程において製膜した層のみをハッチングで示し、残りのハッチングを省略している。It is explanatory drawing of the process which follows each process of FIG. 7 of the manufacturing method of the solar cell of FIG. 1, (a) shows the sectional view in the antireflection layer forming process, (b) is the sectional view in the transparent electrode layer forming process. (C) represents a cross-sectional view in the metal electrode layer forming step. In addition, only the layer formed in each step is shown by hatching, and the remaining hatching is omitted. 本発明の実施例及び比較例の測定に使用するトレーの説明図である。It is explanatory drawing of the tray used for the measurement of the Example and the comparative example of this invention.
 以下、本発明の実施形態について詳細に説明する。なお、表裏については、受光面側を表、その反対側を裏とする。 Hereinafter, embodiments of the present invention will be described in detail. Regarding the front and back, the light receiving surface side is the front side and the opposite side is the back side.
 本発明の第1実施形態の太陽電池1は、バックコンタクト型の太陽電池であり、図1のように、支持基板となる半導体基板5の裏側主面26(第1主面)側に一対の電極層2,3が形成され、表側主面25(第2主面)側には電極層2,3が形成されていないものである。本実施形態の太陽電池1は、ヘテロ接合型の太陽電池でもある。 The solar cell 1 of the first embodiment of the present invention is a back contact type solar cell, and as shown in FIG. 1, a pair on the back side main surface 26 (first main surface) side of the semiconductor substrate 5 serving as a support substrate. The electrode layers 2 and 3 are formed, and the electrode layers 2 and 3 are not formed on the front main surface 25 (second main surface) side. The solar cell 1 of the present embodiment is also a heterojunction type solar cell.
 太陽電池1は、図1のように、半導体基板5の表側主面25側に第1真性半導体層6及び反射防止層7がこの順に積層されている。
 太陽電池1は、半導体基板5の裏側主面26側の一部分に、第2真性半導体層10(第2真性層)、一導電型半導体層11、第1電極層2が積層されており、半導体基板5の裏側主面26側の他の部分に、第3真性半導体層15(第1真性層)、逆導電型半導体層16、第2電極層3が積層されている。
 太陽電池1は、図2のように、縦方向Yにおいて、一導電型半導体層11と逆導電型半導体層16の間に第2真性半導体層10が介在している。
In the solar cell 1, as shown in FIG. 1, the first intrinsic semiconductor layer 6 and the antireflection layer 7 are laminated in this order on the front main surface 25 side of the semiconductor substrate 5.
In the solar cell 1, a second intrinsic semiconductor layer 10 (second intrinsic layer), a monoconductive semiconductor layer 11, and a first electrode layer 2 are laminated on a part of the back side main surface 26 side of the semiconductor substrate 5, and the semiconductor is a semiconductor. The third intrinsic semiconductor layer 15 (first intrinsic layer), the reverse conductive semiconductor layer 16, and the second electrode layer 3 are laminated on the other portion on the back side main surface 26 side of the substrate 5.
In the solar cell 1, as shown in FIG. 2, the second intrinsic semiconductor layer 10 is interposed between the monoconductive semiconductor layer 11 and the inverse conductive semiconductor layer 16 in the vertical direction Y.
 太陽電池1は、図1のように、略四角形状であり、互いに直交する四辺を有している。すなわち、太陽電池1は、横方向Xに延びる横辺と、縦方向Yに延びる縦辺を備えている。 As shown in FIG. 1, the solar cell 1 has a substantially square shape and has four sides orthogonal to each other. That is, the solar cell 1 has a horizontal side extending in the horizontal direction X and a vertical side extending in the vertical direction Y.
 電極層2,3は、図3のように、半導体層11,16から電気を取り出す集電極であり、裏面視したときに、ともに櫛状であり、互いに入り組んだ形状となっている。
 すなわち、第1電極層2は、第1バスバー電極部40と第1フィンガー電極部41を備えており、第1フィンガー電極部41は、第1バスバー電極部40から第1バスバー電極部40に対して直交する方向に延びている。
 同様に第2電極層3は、第2バスバー電極部45と第2フィンガー電極部46を備えており、第2フィンガー電極部46は、第2バスバー電極部45から第2バスバー電極部45に対して直交する方向に延びている。
As shown in FIG. 3, the electrode layers 2 and 3 are collector electrodes that extract electricity from the semiconductor layers 11 and 16, and both have a comb shape when viewed from the back surface and have an intricate shape.
That is, the first electrode layer 2 includes a first bus bar electrode portion 40 and a first finger electrode portion 41, and the first finger electrode portion 41 with respect to the first bus bar electrode portion 40 to the first bus bar electrode portion 40. Extends in the direction orthogonal to each other.
Similarly, the second electrode layer 3 includes a second bus bar electrode portion 45 and a second finger electrode portion 46, and the second finger electrode portion 46 relates to the second bus bar electrode portion 45 to the second bus bar electrode portion 45. Extends in the direction orthogonal to each other.
 バスバー電極部40,45は、裏面視したときに、縦辺に沿って縦方向Yに延び、横方向Xに互いに平行となっている。
 フィンガー電極部41,46は、横方向Xに互いに入り組んで延びている。
 すなわち、第1フィンガー電極部41は、第1バスバー電極部40から第2バスバー電極部45に向かって横方向Xに直線状に延び、第2フィンガー電極部46は、第2バスバー電極部45から第1バスバー電極部40に向かって横方向Xに直線状に延びている。フィンガー電極部41,46は、縦方向Yに交互に並んでいる。
The bus bar electrode portions 40 and 45 extend in the vertical direction Y along the vertical side and are parallel to each other in the horizontal direction X when viewed from the back surface.
The finger electrode portions 41 and 46 extend intricately with each other in the lateral direction X.
That is, the first finger electrode portion 41 extends linearly in the lateral direction X from the first bus bar electrode portion 40 toward the second bus bar electrode portion 45, and the second finger electrode portion 46 extends from the second bus bar electrode portion 45. It extends linearly in the lateral direction X toward the first bus bar electrode portion 40. The finger electrode portions 41 and 46 are alternately arranged in the vertical direction Y.
 電極層2,3は、図2のように、半導体基板5側から順に透明電極層20,21と、金属電極層22,23が積層した多層構造となっている。なお、電極層2,3は、金属電極層22,23のみの単層構造であってもよいし、透明電極層20,21のみの単層構造であってもよい。 As shown in FIG. 2, the electrode layers 2 and 3 have a multilayer structure in which transparent electrode layers 20 and 21 and metal electrode layers 22 and 23 are laminated in this order from the semiconductor substrate 5 side. The electrode layers 2 and 3 may have a single layer structure consisting of only the metal electrode layers 22 and 23, or may have a single layer structure containing only the transparent electrode layers 20 and 21.
 半導体層11,16は、図3のように、電極層2,3の下地をなし、裏面視したときに、電極層2,3と同様、ともに櫛状であって、互いに入り組んだ形状となっている。
 裏面視したときに、一導電型半導体層11と逆導電型半導体層16の間には、蛇行した分離溝35が形成されており、一導電型半導体層11の下地となる第2真性半導体層10が分離溝35に充填されている。すなわち、一導電型半導体層11と逆導電型半導体層16は、半導体基板5の広がり方向において第2真性半導体層10によって電気的に絶縁されている。
 第2真性半導体層10は、一導電型半導体層11と逆導電型半導体層16の間から厚み方向(半導体基板5の裏側主面26に対する直交方向)に露出している。すなわち、一導電型半導体層11は、半導体基板5の厚み方向において逆導電型半導体層16と重なっておらず、逆導電型半導体層16も一導電型半導体層11と重なっていない。
As shown in FIG. 3, the semiconductor layers 11 and 16 form a base for the electrode layers 2 and 3, and when viewed from the back surface, they are both comb-shaped and have an intricate shape like the electrode layers 2 and 3. ing.
When viewed from the back side, a meandering separation groove 35 is formed between the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16, and a second intrinsic semiconductor layer serving as a base for the monoconductive semiconductor layer 11 is formed. 10 is filled in the separation groove 35. That is, the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 are electrically insulated by the second intrinsic semiconductor layer 10 in the spreading direction of the semiconductor substrate 5.
The second intrinsic semiconductor layer 10 is exposed from between the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 in the thickness direction (orthogonal direction with respect to the back side main surface 26 of the semiconductor substrate 5). That is, the monoconductive semiconductor layer 11 does not overlap with the reverse conductive semiconductor layer 16 in the thickness direction of the semiconductor substrate 5, and the reverse conductive semiconductor layer 16 also does not overlap with the monoconductive semiconductor layer 11.
 続いて、本実施形態の太陽電池1の製造方法について説明する。なお、従来と同様のものについては、説明を省略する。 Subsequently, the manufacturing method of the solar cell 1 of the present embodiment will be described. The description of the same as the conventional one will be omitted.
 本実施形態の太陽電池1は、一又は複数の製造拠点で製造するものである。
 本実施形態の太陽電池1は、第1仕掛太陽電池基板99及び第2仕掛太陽電池基板100を経て、製造されるものである。
The solar cell 1 of the present embodiment is manufactured at one or more manufacturing bases.
The solar cell 1 of the present embodiment is manufactured via the first work-in-process solar cell substrate 99 and the second work-in-process solar cell substrate 100.
 まず、図4(a)のように、プラズマCVD装置によって、半導体基板5の表側主面25上に第1真性半導体層6を製膜し、裏側主面26上に第3真性半導体層15を製膜する(第1真性半導体形成工程)。 First, as shown in FIG. 4A, the first intrinsic semiconductor layer 6 is formed on the front side main surface 25 of the semiconductor substrate 5 by the plasma CVD apparatus, and the third intrinsic semiconductor layer 15 is formed on the back side main surface 26. Film formation (first intrinsic semiconductor forming step).
 続いて、図4(b)のように、上記工程と同一又は異なるプラズマCVD装置によって、第3真性半導体層15上に逆導電型半導体層16を製膜する(第1半導体層形成工程)。 Subsequently, as shown in FIG. 4B, the reverse conductive semiconductor layer 16 is formed on the third intrinsic semiconductor layer 15 by the same or different plasma CVD apparatus as the above step (first semiconductor layer forming step).
 続いて、図5(a)のように、上記工程と同一又は異なるプラズマCVD装置によって、逆導電型半導体層16上に第1反応ガスを吹き付けてリフトオフ層50を製膜する(リフトオフ層形成工程)。 Subsequently, as shown in FIG. 5A, the lift-off layer 50 is formed by spraying the first reaction gas onto the reverse conductive semiconductor layer 16 by the same or different plasma CVD apparatus as in the above step (lift-off layer forming step). ).
 リフトオフ層形成工程において製膜されるリフトオフ層50の膜厚は、10nm以上150nm以下であることが好ましい。
 この範囲であれば、後述するリフトオフ用エッチング液が含浸しやすく、リフトオフしやすい。
 また、このときの製膜条件としては、以下の条件を満たすことが好ましい。
 基板温度(製膜温度)は、150℃以下であり、100℃以上140℃以下であることが好ましい。
 圧力は、180Pa以上220Pa以下であることが好ましい。
 パワー密度は、0.01W/cm2以上1.00W/cm2以下であることが好ましい。
 第1反応ガスの成分は、シランガス(SiH4)と、二酸化炭素(CO2)を含み、SiH4に対するCO2の流量比(SiH4の流量を1としたときのCO2の流量比)が10以上400以下である好ましい。
 リフトオフ層50は、半導体基板5を平面視したときに、逆導電型半導体層16の全体と重なるように製膜されていることが好ましい。
 リフトオフ層50は、半導体基板5を平面視したときに、半導体基板5の面積の90%以上の範囲で製膜されていることが好ましい。
The film thickness of the lift-off layer 50 formed in the lift-off layer forming step is preferably 10 nm or more and 150 nm or less.
Within this range, the lifting-off etching solution described later is likely to be impregnated and lift-off is likely to occur.
Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
The substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower.
The pressure is preferably 180 Pa or more and 220 Pa or less.
Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
Components of the first reaction gas, silane gas and (SiH 4), carbon dioxide (CO 2) comprises, (flow ratio of CO 2 when the flow rate of SiH 4 and 1) flow rate ratio of CO 2 with respect to SiH 4 is It is preferably 10 or more and 400 or less.
The lift-off layer 50 is preferably formed so as to overlap the entire reverse conductive semiconductor layer 16 when the semiconductor substrate 5 is viewed in a plan view.
The lift-off layer 50 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
 続いて、図5(b)のように、リフトオフ層形成工程から連続して同じプラズマCVD装置の製膜室内において、リフトオフ層50上に第2反応ガスを吹き付けて第1保護層51を製膜する(第1保護層形成工程)。 Subsequently, as shown in FIG. 5B, the second reaction gas is sprayed onto the lift-off layer 50 to form the first protective layer 51 in the film-forming chamber of the same plasma CVD apparatus continuously from the lift-off layer forming step. (First protective layer forming step).
 第1保護層形成工程で製膜される第1保護層51の膜厚は、リフトオフ層50の膜厚よりも厚く、200nm以上400nm以下であることが好ましい。
 この範囲であれば、後述するレジスト除去溶液でリフトオフ層50が溶解することを防止できる。
 また、このときの製膜条件としては、以下の条件を満たすことが好ましい。
 基板温度(製膜温度)は、150℃以下であり、100℃以上140℃以下であることが好ましい。
 第1保護層51の製膜時の製膜温度は、実質的にリフトオフ層50の製膜温度以上であることが好ましい。
 また、第1保護層51の製膜時の製膜温度は、リフトオフ層50の製膜時の製膜温度との温度差が50℃以下であることが好ましく、20℃以下であることがより好ましく、5℃以下であることが特に好ましい。
 この範囲であれば、速やかに昇温できるため、同一のプラズマCVD装置の製膜室内で連続的に製膜できる。
 圧力は、180Pa以上220Pa以下であることが好ましい。
 パワー密度は、0.01W/cm2以上1.00W/cm2以下であることが好ましい。
 第2反応ガスは、シランガス(SiH4)と、二酸化炭素(CO2)と、水素ガス(H2)を含み、SiH4に対するCO2の流量比(SiH4を1としたときのCO2の流量比)が1以上100以下であり、SiH4に対するH2の流量比(SiH4を1としたときのH2の流量比)が50以上300以下であること好ましい。
 この範囲であれば、緻密な第1保護層51を形成できる。
 第1保護層51は、半導体基板5を平面視したときに、リフトオフ層50の全体と重なるように製膜されていることが好ましい。
 第1保護層51は、半導体基板5を平面視したときに、半導体基板5の面積の90%以上の範囲で製膜されていることが好ましい。
The film thickness of the first protective layer 51 formed in the first protective layer forming step is thicker than the film thickness of the lift-off layer 50, and is preferably 200 nm or more and 400 nm or less.
Within this range, it is possible to prevent the lift-off layer 50 from being dissolved in the resist removing solution described later.
Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
The substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower.
It is preferable that the film-forming temperature of the first protective layer 51 at the time of film-forming is substantially equal to or higher than the film-forming temperature of the lift-off layer 50.
Further, the film forming temperature of the first protective layer 51 at the time of film formation preferably has a temperature difference of 50 ° C. or less from the film formation temperature of the lift-off layer 50 at the time of film formation, and more preferably 20 ° C. or less. It is preferably 5 ° C. or lower, and particularly preferably 5 ° C. or lower.
Within this range, the temperature can be raised quickly, so that film can be continuously formed in the film forming chamber of the same plasma CVD apparatus.
The pressure is preferably 180 Pa or more and 220 Pa or less.
Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
The second reaction gas, a silane gas (SiH 4), and carbon dioxide (CO 2), and includes a hydrogen gas (H 2), flow ratio of CO 2 with respect to SiH 4 (SiH 4 to 1 and the of CO 2 when flow ratio) is 100 or less 1 or more, the flow rate ratio of H 2 to SiH 4 (flow ratio of H 2 when the SiH 4 to 1) is preferable 50 to 300.
Within this range, a dense first protective layer 51 can be formed.
The first protective layer 51 is preferably formed so as to overlap the entire lift-off layer 50 when the semiconductor substrate 5 is viewed in a plan view.
The first protective layer 51 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
 続いて、図5(c)のように、リフトオフ層形成工程から連続して同じプラズマCVD装置の製膜室内において、第1真性半導体層6上に第3反応ガスを吹き付けて第2保護層52を製膜する(第2保護層形成工程)。
 すなわち、第2保護層形成工程では、表側の最表面に第2保護層52を製膜し、第1仕掛太陽電池基板99が形成される。
Subsequently, as shown in FIG. 5C, the third reaction gas is sprayed onto the first intrinsic semiconductor layer 6 in the film forming chamber of the same plasma CVD apparatus continuously from the lift-off layer forming step, and the second protective layer 52 (2nd protective layer forming step).
That is, in the second protective layer forming step, the second protective layer 52 is formed on the outermost surface on the front side, and the first work-in-process solar cell substrate 99 is formed.
 第2保護層形成工程で製膜される第2保護層52の膜厚は、リフトオフ層50の膜厚よりも厚く、10nm以上200nm以下であることが好ましい。
 また、このときの製膜条件としては、以下の条件を満たすことが好ましい。
 基板温度(製膜温度)は、150℃以下であり、100℃以上140℃以下であることが好ましい。
 第2保護層52の製膜時の製膜温度は、実質的にリフトオフ層50の製膜温度以上であることが好ましい。
 第2保護層52の製膜時の製膜温度は、第1保護層51の製膜時の製膜温度との温度差が50℃以下であることが好ましく、20℃以下であることがより好ましく、5℃以下であることが特に好ましい。
 この範囲であれば、速やかに温度調節ができるため、同一のプラズマCVD装置の製膜室内で連続的に製膜できる。
 圧力は、180Pa以上220Pa以下であることが好ましい。
 パワー密度は、0.01W/cm2以上1.00W/cm2以下であることが好ましい。
 第3反応ガスは、シランガス(SiH4)と、二酸化炭素(CO2)と、水素ガス(H2)を含み、SiH4に対するCO2の流量比(SiH4を1としたときのCO2の流量比)が1以上400以下であり、SiH4に対するH2の流量比(SiH4を1としたときのH2の流量比)が0超過300以下であること好ましい。
 第2保護層52は、半導体基板5を平面視したときに、半導体基板5の面積の90%以上の範囲で製膜されていることが好ましい。
The film thickness of the second protective layer 52 formed in the second protective layer forming step is thicker than the film thickness of the lift-off layer 50, and is preferably 10 nm or more and 200 nm or less.
Further, as the film forming conditions at this time, it is preferable to satisfy the following conditions.
The substrate temperature (film formation temperature) is 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower.
It is preferable that the film-forming temperature of the second protective layer 52 at the time of film-forming is substantially equal to or higher than the film-forming temperature of the lift-off layer 50.
The temperature difference between the film forming temperature of the second protective layer 52 and the film forming temperature of the first protective layer 51 at the time of film forming is preferably 50 ° C. or less, and more preferably 20 ° C. or less. It is preferably 5 ° C. or lower, and particularly preferably 5 ° C. or lower.
Within this range, the temperature can be adjusted quickly, so that the film can be continuously formed in the film forming chamber of the same plasma CVD apparatus.
The pressure is preferably 180 Pa or more and 220 Pa or less.
Power density is preferably 0.01 W / cm 2 or more 1.00 W / cm 2 or less.
The third reaction gas, a silane gas (SiH 4), and carbon dioxide (CO 2), and includes a hydrogen gas (H 2), flow ratio of CO 2 with respect to SiH 4 (SiH 4 to 1 and the of CO 2 when flow ratio) is 1 or more 400 or less, preferably the flow rate ratio of H 2 to SiH 4 (flow ratio of H 2 when the SiH 4 1) is more than 0 and 300 or less.
The second protective layer 52 is preferably formed in a range of 90% or more of the area of the semiconductor substrate 5 when the semiconductor substrate 5 is viewed in a plan view.
 そして、必要に応じて第1仕掛太陽電池基板99を別の拠点(例えば、別の建物や別の部屋)に移し、図6(a)のように、スクリーン印刷等により、第1仕掛太陽電池基板99の第1保護層51上に櫛状にパターニングされた液体状のレジスト材料を塗布し、さらに第2保護層52上に液体状のレジスト材料を塗布し、両面にレジスト材料が塗布された基板に熱処理を施し、乾燥させてレジスト層55,56を形成する(レジスト層形成工程)。 Then, if necessary, the first in-process solar cell substrate 99 is moved to another base (for example, another building or another room), and as shown in FIG. 6A, the first in-process solar cell is printed by screen printing or the like. A comb-patterned liquid resist material was applied onto the first protective layer 51 of the substrate 99, a liquid resist material was further applied onto the second protective layer 52, and the resist material was applied to both sides. The substrate is heat-treated and dried to form resist layers 55 and 56 (resist layer forming step).
 このとき、第1保護層51上には、レジスト材料が塗布されレジスト層55が形成された部分(レジスト形成領域60)と、レジスト材料が塗布されずレジスト層55が形成されていない部分(レジスト非形成領域61)が存在している。すなわち、レジスト層形成工程後の基板には、厚み方向において、逆導電型半導体層16上にレジスト層55が重畳した重畳部分(レジスト形成領域60)と、レジスト層55が重畳していない非重畳部分(レジスト非形成領域61)がある。 At this time, on the first protective layer 51, a portion where the resist material is applied and the resist layer 55 is formed (resist forming region 60) and a portion where the resist material is not applied and the resist layer 55 is not formed (resist). There is a non-forming region 61). That is, on the substrate after the resist layer forming step, in the thickness direction, the superposed portion (resist forming region 60) in which the resist layer 55 is superposed on the reverse conductive semiconductor layer 16 and the non-superimposed portion in which the resist layer 55 is not superposed are not superposed. There is a portion (resist non-forming region 61).
 図6(b)のように、レジスト層55,56が形成された基板をレジスト用エッチング液(エッチング液)に浸し、レジスト層55が形成されていない非重畳部分(レジスト非形成領域61)の一部又は全部において、第3真性半導体層15、逆導電型半導体層16、リフトオフ層50、及び第1保護層51を除去する(エッチング工程)。 As shown in FIG. 6B, the substrate on which the resist layers 55 and 56 are formed is immersed in a resist etching solution (etching solution), and the non-overlapping portion (resist non-forming region 61) in which the resist layer 55 is not formed is immersed. The third intrinsic semiconductor layer 15, the reverse conductive semiconductor layer 16, the lift-off layer 50, and the first protective layer 51 are removed in part or all (etching step).
 このとき使用されるレジスト用エッチング液としては、例えば、フッ化水素酸と硝酸との混合溶液(フッ硝酸)やオゾンとフッ化水素酸を含む溶液などが使用できる。
 このとき、半導体基板5は、レジスト非形成領域61において、裏側主面26側の層が剥離した剥離領域62が形成されている。
As the etching solution for resist used at this time, for example, a mixed solution of hydrofluoric acid and nitric acid (fluoric acid) or a solution containing ozone and hydrofluoric acid can be used.
At this time, in the semiconductor substrate 5, a peeled region 62 in which the layer on the back side main surface 26 side is peeled off is formed in the resist non-formed region 61.
 図6(c)のように、レジスト除去溶液により、レジスト層55,56を除去し、必要に応じて基板をフッ化水素酸で洗浄する(レジスト層除去工程)。 As shown in FIG. 6C, the resist layers 55 and 56 are removed with a resist removing solution, and the substrate is washed with hydrofluoric acid if necessary (resist layer removing step).
 このとき、リフトオフ層50は、第1保護層51によって保護されているため、実質的に溶解せず、レジスト層55,56のみが剥離される。また、基材をフッ化水素酸で洗浄してもリフトオフ層50が実質的に溶解しない。 At this time, since the lift-off layer 50 is protected by the first protective layer 51, it is substantially not dissolved, and only the resist layers 55 and 56 are peeled off. Further, even if the base material is washed with hydrofluoric acid, the lift-off layer 50 is not substantially dissolved.
 続いて、図7(a)のように、プラズマCVD装置によって、裏側主面全面に第2真性半導体層10を製膜する(第2真性半導体層形成工程)。
 すなわち、第2真性半導体層形成工程では、半導体基板5を基準としてリフトオフ層50の外側であって、かつ、半導体基板5を平面視したときに、リフトオフ層50と重なり部分をもつように第2真性半導体層10を製膜する。
Subsequently, as shown in FIG. 7A, the second intrinsic semiconductor layer 10 is formed on the entire back surface of the main surface by the plasma CVD apparatus (second intrinsic semiconductor layer forming step).
That is, in the second intrinsic semiconductor layer forming step, the second intrinsic semiconductor layer is formed so as to be outside the lift-off layer 50 with reference to the semiconductor substrate 5 and to have a portion overlapping the lift-off layer 50 when the semiconductor substrate 5 is viewed in a plan view. The intrinsic semiconductor layer 10 is formed.
 このとき、第2真性半導体層10は、図7(a)のように、一部が第1保護層51a(51)上から隣接する半導体基板5の剥離領域62a(62)に跨って形成されており、剥離領域62aから隣接する第1保護層51b上に跨って形成されている。 At this time, as shown in FIG. 7A, a part of the second intrinsic semiconductor layer 10 is formed over the first protective layer 51a (51) over the peeling region 62a (62) of the adjacent semiconductor substrate 5. It is formed so as to extend from the peeled region 62a over the adjacent first protective layer 51b.
 図7(b)のように、同一又は異なるプラズマCVD装置によって第2真性半導体層10上に一導電型半導体層11を製膜し、第2仕掛太陽電池基板100を形成する(第2半導体層形成工程)。
 すなわち、第2半導体層形成工程では、半導体基板5を基準として第2真性半導体層10の外側であって、かつ、半導体基板5を平面視したときに、リフトオフ層50と重なり部分をもつように一導電型半導体層11を製膜する。
As shown in FIG. 7B, the monoconductive semiconductor layer 11 is formed on the second intrinsic semiconductor layer 10 by the same or different plasma CVD apparatus to form the second in-process solar cell substrate 100 (second semiconductor layer). Formation process).
That is, in the second semiconductor layer forming step, it is outside the second intrinsic semiconductor layer 10 with reference to the semiconductor substrate 5, and when the semiconductor substrate 5 is viewed in a plan view, it has a portion overlapping with the lift-off layer 50. A conductive semiconductor layer 11 is formed.
 必要に応じて第2仕掛太陽電池基板100を別の拠点(例えば、別の建物や別の部屋)に移し、第2仕掛太陽電池基板100をリフトオフ用エッチング液(リフトオフ液)に浸し、図7(c)のように、リフトオフ層50を溶解してリフトオフし、リフトオフ層50上の層を除去する(リフトオフ工程)。 If necessary, the second work-in-process solar cell substrate 100 is moved to another base (for example, another building or another room), the second work-in-process solar cell substrate 100 is immersed in a lift-off etching solution (lift-off solution), and FIG. As in (c), the lift-off layer 50 is melted and lifted off, and the layer on the lift-off layer 50 is removed (lift-off step).
 リフトオフ工程で使用されるリフトオフ用エッチング液としては、例えば、フッ化水素酸などが使用できる。
 このとき、第2仕掛太陽電池基板100は、半導体基板5の裏側主面26側では、リフトオフ層50と接する層全てが溶解又は剥離し、半導体基板5の表側主面25側では第2保護層52も溶解又は第1真性半導体層6から剥離する。
 また、このとき、第2真性半導体層10は、リフトオフ層50の被覆部分よりも内側部分のみが残り、半導体基板5を基準として、逆導電型半導体層16の外側を覆っていない。
 第2真性半導体層10は、半導体基板5を基準として、逆導電型半導体層16の外側面と面一又は外側面よりも内側に位置している。
 このとき、リフトオフ用エッチング液によるリフトオフ層50のエッチング速度は、一導電型半導体層11のエッチング速度よりも速い。
 また、第2保護層52のエッチング速度は、第1真性半導体層6のエッチング速度よりも速い。
As the lift-off etching solution used in the lift-off step, for example, hydrofluoric acid or the like can be used.
At this time, in the second in-process solar cell substrate 100, all the layers in contact with the lift-off layer 50 are melted or peeled off on the back side main surface 26 side of the semiconductor substrate 5, and the second protective layer is on the front side main surface 25 side of the semiconductor substrate 5. 52 is also melted or peeled from the first intrinsic semiconductor layer 6.
Further, at this time, only the inner portion of the second intrinsic semiconductor layer 10 remains from the covering portion of the lift-off layer 50, and does not cover the outer side of the reverse conductive semiconductor layer 16 with reference to the semiconductor substrate 5.
The second intrinsic semiconductor layer 10 is located flush with the outer surface of the reverse conductive semiconductor layer 16 or inside the outer surface with reference to the semiconductor substrate 5.
At this time, the etching rate of the lift-off layer 50 by the lift-off etching solution is faster than the etching rate of the monoconductive semiconductor layer 11.
Further, the etching rate of the second protective layer 52 is faster than the etching rate of the first intrinsic semiconductor layer 6.
 図8(a)のように、プラズマCVD装置によって、第1真性半導体層6上に反射防止層7を形成する(反射防止層形成工程)。 As shown in FIG. 8A, the antireflection layer 7 is formed on the first intrinsic semiconductor layer 6 by the plasma CVD apparatus (antireflection layer forming step).
 反射防止層形成工程で使用する反応ガスは、シランガス(SiH4)と、アンモニア(NH3)を含むことが好ましい。 The reaction gas used in the antireflection layer forming step preferably contains silane gas (SiH 4 ) and ammonia (NH 3 ).
 続いて、一導電型半導体層11及び逆導電型半導体層16上に電極層2,3を形成する。 Subsequently, the electrode layers 2 and 3 are formed on the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16.
 具体的には、まず、図8(b)のように、一導電型半導体層11及び逆導電型半導体層16上に透明電極層20,21を形成する(透明電極層形成工程)。
 透明電極層形成工程では、透明電極層20,21は、フォトレジスト法やマスク法等によって、パターニングされており、透明電極層20は、一導電型半導体層11上のみに形成され、透明電極層21は、逆導電型半導体層16上のみに形成される。すなわち、透明電極層20は、逆導電型半導体層16上に跨っておらず、透明電極層21は、一導電型半導体層11上に跨っていない。
Specifically, first, as shown in FIG. 8B, the transparent electrode layers 20 and 21 are formed on the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 (transparent electrode layer forming step).
In the transparent electrode layer forming step, the transparent electrode layers 20 and 21 are patterned by a photoresist method, a mask method, or the like, and the transparent electrode layer 20 is formed only on the one-conductive semiconductor layer 11 and is a transparent electrode layer. 21 is formed only on the reverse conductive semiconductor layer 16. That is, the transparent electrode layer 20 does not straddle the reverse conductive semiconductor layer 16, and the transparent electrode layer 21 does not straddle the monoconductive semiconductor layer 11.
 次に、図8(c)のように、スクリーン印刷等により、透明電極層20,21上に金属電極層22,23を形成する(金属電極層形成工程)。
 金属電極層形成工程では、金属電極層22は、フォトレジスト法やマスク法等によって、透明電極層20上のみに形成され、金属電極層23は、透明電極層21上のみに形成される。なお、透明電極層21と金属電極層22は、同時にパターニングされてもよい。
Next, as shown in FIG. 8C, the metal electrode layers 22 and 23 are formed on the transparent electrode layers 20 and 21 by screen printing or the like (metal electrode layer forming step).
In the metal electrode layer forming step, the metal electrode layer 22 is formed only on the transparent electrode layer 20 by a photoresist method, a mask method, or the like, and the metal electrode layer 23 is formed only on the transparent electrode layer 21. The transparent electrode layer 21 and the metal electrode layer 22 may be patterned at the same time.
 そして、必要に応じてインターコネクタ等の配線部材を電極層2,3に取り付けて太陽電池1が完成する。 Then, if necessary, wiring members such as interconnectors are attached to the electrode layers 2 and 3, and the solar cell 1 is completed.
 続いて、太陽電池1を構成する各部位の詳細な構成について説明する。 Next, the detailed configuration of each part constituting the solar cell 1 will be described.
 半導体基板5は、n型又はp型の一方の導電型をもつ半導体基板である。
 本実施形態の半導体基板5は、一導電型半導体層11と同様の導電型をもつ一導電型半導体基板であり、具体的にはn型の単結晶シリコン基板である。
 半導体基板5の平均厚みは、120μm以上250μm以下であることが好ましく、160μm以上200μm以下であることがより好ましい。
 半導体基板5は、必要に応じて表側主面25及び/又は裏側主面26にテクスチャ構造を備えていてもよい。
The semiconductor substrate 5 is a semiconductor substrate having either an n-type or a p-type conductive type.
The semiconductor substrate 5 of the present embodiment is a monoconductive semiconductor substrate having a conductive type similar to that of the monoconductive semiconductor layer 11, and is specifically an n-type single crystal silicon substrate.
The average thickness of the semiconductor substrate 5 is preferably 120 μm or more and 250 μm or less, and more preferably 160 μm or more and 200 μm or less.
The semiconductor substrate 5 may have a texture structure on the front side main surface 25 and / or the back side main surface 26, if necessary.
 真性半導体層6,10,15は、半導体基板5への不純物の拡散を抑制し、表面の不動態化処理する層である。真性半導体層6,10,15は、i型半導体層であり、実質的に導電性不純物を含まないものである。
 ここでいう「実質的に導電性不純物を含まないもの」とは、完全にn型不純物やp型不純物などの導電性不純物を含まないものだけではなく、真性層として機能を維持し得る範囲で微量の導電性不純物を含むものも含む。
The intrinsic semiconductor layers 6, 10 and 15 are layers that suppress the diffusion of impurities to the semiconductor substrate 5 and passivate the surface. Intrinsic semiconductor layers 6, 10 and 15 are i-type semiconductor layers and are substantially free of conductive impurities.
The term "substantially free of conductive impurities" as used herein means not only those that do not completely contain conductive impurities such as n-type impurities and p-type impurities, but also those that can maintain their functions as an intrinsic layer. It also includes those containing a trace amount of conductive impurities.
 真性半導体層6,10,15は、半導体基板5への不純物の拡散を抑制し、表面の不動態化処理する機能を有すれば、特に限定されない。真性半導体層6,10,15としては、例えば、非晶質シリコン系半導体層であってもよいし、水素化非晶質シリコン系半導体層であってもよい。 The intrinsic semiconductor layers 6, 10 and 15 are not particularly limited as long as they have a function of suppressing the diffusion of impurities to the semiconductor substrate 5 and performing a surface passivation treatment. The intrinsic semiconductor layers 6, 10 and 15 may be, for example, an amorphous silicon-based semiconductor layer or a hydrogenated amorphous silicon-based semiconductor layer.
 真性半導体層6,10,15の平均厚みは、2nm以上20nm以下であることが好ましく、5nm以上10nm以下であることがより好ましい。この範囲であれば、半導体基板5に対するパッシベ―ション層として良好に機能しつつ、抵抗を低く抑えることができる。 The average thickness of the intrinsic semiconductor layers 6, 10 and 15 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 10 nm or less. Within this range, the resistance can be suppressed low while functioning well as a passivation layer for the semiconductor substrate 5.
 一導電型半導体層11は、n型又はp型の導電型をもつ半導体層であり、半導体基板5と同じ導電型をもつ半導体層である。
 本実施形態の一導電型半導体層11は、真性半導体層6,10,15と同様の半導体にn型のドーパント(リン等)を添加したn型の半導体層であり、具体的には、n型非晶質シリコン層である。
 一導電型半導体層11の平均厚みは、2nm以上20nm以下であることが好ましく、5nm以上15nm以下であることがより好ましい。
The conductive semiconductor layer 11 is a semiconductor layer having an n-type or p-type conductive type, and is a semiconductor layer having the same conductive type as the semiconductor substrate 5.
The one conductive semiconductor layer 11 of the present embodiment is an n-type semiconductor layer in which an n-type dopant (phosphorus or the like) is added to the same semiconductor as the intrinsic semiconductor layers 6, 10 and 15, and specifically, n. It is a type amorphous silicon layer.
The average thickness of the one-conductive semiconductor layer 11 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 15 nm or less.
 逆導電型半導体層16は、n型又はp型の導電型をもつ半導体層であり、半導体基板5及び一導電型半導体層11とは異なる導電型の半導体層である。
 本実施形態の逆導電型半導体層16は、真性半導体層6,10,15と同様の半導体にp型のドーパント(ホウ素等)を添加したp型半導体層であり、具体的には、p型非晶質シリコン層である。
 逆導電型半導体層16の平均厚みは、2nm以上20nm以下であることが好ましく、5nm以上15nm以下であることがより好ましい。
The reverse conductive semiconductor layer 16 is a semiconductor layer having an n-type or p-type conductive type, and is a conductive type semiconductor layer different from the semiconductor substrate 5 and the monoconductive semiconductor layer 11.
The reverse conductive semiconductor layer 16 of the present embodiment is a p-type semiconductor layer in which a p-type dopant (boron or the like) is added to the same semiconductor as the intrinsic semiconductor layers 6, 10 and 15, and specifically, the p-type semiconductor layer. It is an amorphous silicon layer.
The average thickness of the reverse conductive semiconductor layer 16 is preferably 2 nm or more and 20 nm or less, and more preferably 5 nm or more and 15 nm or less.
 反射防止層7は、透光性をもち、且つ光の反射を抑制する低反射層である。
 反射防止層7は、例えば、酸化シリコン、酸化亜鉛、酸化チタンなどの金属酸化物や窒化シリコン等の金属窒化物などで形成できる。
 反射防止層7は、入射光の光閉じ込め効果の観点から窒化シリコンで形成されていることが好ましい。
The antireflection layer 7 is a low reflection layer having translucency and suppressing light reflection.
The antireflection layer 7 can be formed of, for example, a metal oxide such as silicon oxide, zinc oxide, or titanium oxide, or a metal nitride such as silicon nitride.
The antireflection layer 7 is preferably made of silicon nitride from the viewpoint of the light confinement effect of incident light.
 透明電極層20,21は、例えば、酸化亜鉛、酸化インジウム錫(ITO)、酸化チタン、酸化錫、酸化タングステン、酸化モリブデンなどの透明導電性酸化物で形成できる。
 透明電極層20,21の平均厚みは、20nm以上200nm以下であることが好ましく、50nm以上150nm以下であることがより好ましい。
The transparent electrode layers 20 and 21 can be formed of, for example, a transparent conductive oxide such as zinc oxide, indium tin oxide (ITO), titanium oxide, tin oxide, tungsten oxide, and molybdenum oxide.
The average thickness of the transparent electrode layers 20 and 21 is preferably 20 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less.
 金属電極層22,23は、抵抗率が透明電極層20,21の抵抗率に比べて小さく、透明電極層20,21の補助電極層として機能する層である。
 金属電極層22,23は、例えば、金、銀、銅、白金、アルミニウム、ニッケル、パラジウム等の金属又はこれらの金属を含む合金で形成できる。
 金属電極層22,23の平均厚みは、1μm以上80μm以下であることが好ましい。
The metal electrode layers 22 and 23 are layers whose resistivity is smaller than that of the transparent electrode layers 20 and 21 and functions as an auxiliary electrode layer of the transparent electrode layers 20 and 21.
The metal electrode layers 22 and 23 can be formed of, for example, a metal such as gold, silver, copper, platinum, aluminum, nickel, or palladium, or an alloy containing these metals.
The average thickness of the metal electrode layers 22 and 23 is preferably 1 μm or more and 80 μm or less.
 続いて、仕掛太陽電池基板99,100を構成する各部位の詳細な構成について説明する。なお、太陽電池1と重複する構成については、説明を省略する。 Next, the detailed configuration of each part constituting the in-process solar cell substrates 99, 100 will be described. The description of the configuration overlapping with the solar cell 1 will be omitted.
 リフトオフ層50は、リフトオフ用エッチング液で溶解する層である。
 リフトオフ層50は、窒化シリコン又は酸化シリコンを主成分とすることが好ましく、全成分のうち窒化シリコン又は酸化シリコンが90%以上占めることが好ましい。本実施形態のリフトオフ層50は、酸化シリコンを主成分とする酸化シリコン層である。
 リフトオフ層50として酸化シリコン層を使用した場合の屈折率は、1.42以上1.50以下であることが好ましい。
 ここでいう「屈折率」とは、550nmの光を照射したときの屈折率をいう。
 この範囲であれば、リフトオフ用エッチング液でのエッチング速度が大きく、リフトオフしやすい。
 リフトオフ層50として酸化シリコン層を使用した場合の2重量%のフッ化水素酸に浸したときのエッチング速度は、3nm/s以上であることが好ましく、5nm/s以上であることがより好ましく、7nm/s以上であることがさらに好ましい。
The lift-off layer 50 is a layer that dissolves in the lift-off etching solution.
The lift-off layer 50 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components. The lift-off layer 50 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component.
When the silicon oxide layer is used as the lift-off layer 50, the refractive index is preferably 1.42 or more and 1.50 or less.
The "refractive index" here means the refractive index when irradiated with light of 550 nm.
Within this range, the etching rate with the lift-off etching solution is high, and lift-off is easy.
When a silicon oxide layer is used as the lift-off layer 50, the etching rate when immersed in 2% by weight of hydrofluoric acid is preferably 3 nm / s or more, more preferably 5 nm / s or more. It is more preferably 7 nm / s or more.
 第1保護層51は、レジスト用エッチング液、第2真性半導体層形成工程前の洗浄に使用するフッ化水素酸からリフトオフ層50を保護する層である。第1保護層51は、窒化シリコン又は酸化シリコンを主成分とすることが好ましく、全成分のうち窒化シリコン又は酸化シリコンが90%以上占めることが好ましい。
 本実施形態の第1保護層51は、リフトオフ層50と同様、酸化シリコンを主成分とする酸化シリコン層である。
 第1保護層51として酸化シリコン層を使用した場合の屈折率は、リフトオフ層50よりも高い屈折率であり、1.50超過であることが好ましい。
 この範囲であれば、レジスト用エッチング液、フッ化水素酸でのエッチング速度が低く、溶解しにくい。
The first protective layer 51 is a layer that protects the lift-off layer 50 from hydrofluoric acid used for cleaning before the process of forming the resist etching solution and the second intrinsic semiconductor layer. The first protective layer 51 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components.
Like the lift-off layer 50, the first protective layer 51 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component.
When the silicon oxide layer is used as the first protective layer 51, the refractive index is higher than that of the lift-off layer 50, and is preferably more than 1.50.
Within this range, the etching rate with the resist etching solution and hydrofluoric acid is low, and it is difficult to dissolve.
 第2保護層52は、リフトオフ層50に比べてレジスト用エッチング液及びリフトオフ用エッチング液に対する耐性を有し、レジスト用エッチング液及びリフトオフ用エッチング液から第1真性半導体層6を保護する層である。
 第2保護層52は、窒化シリコン又は酸化シリコンを主成分とすることが好ましく、全成分のうち窒化シリコン又は酸化シリコンが90%以上占めることが好ましい。
 本実施形態の第2保護層52は、リフトオフ層50や第1保護層51と同様、酸化シリコンを主成分とする酸化シリコン層である。
 第2保護層52として酸化シリコン層を使用した場合の屈折率は、リフトオフ層50よりも高い屈折率であり、1.50超過であることが好ましい。
The second protective layer 52 is more resistant to the resist etching solution and the lift-off etching solution than the lift-off layer 50, and protects the first intrinsic semiconductor layer 6 from the resist etching solution and the lift-off etching solution. ..
The second protective layer 52 preferably contains silicon nitride or silicon oxide as a main component, and silicon nitride or silicon oxide preferably accounts for 90% or more of all the components.
The second protective layer 52 of the present embodiment is a silicon oxide layer containing silicon oxide as a main component, like the lift-off layer 50 and the first protective layer 51.
When the silicon oxide layer is used as the second protective layer 52, the refractive index is higher than that of the lift-off layer 50, and is preferably more than 1.50.
 本実施形態の太陽電池1の製造方法によれば、一部がリフトオフ層50と重なるように一導電型半導体層11を形成し、リフトオフ層50をリフトオフ液で溶解することでリフトオフ層50上の一導電型半導体層11を除去でき、一導電型半導体層11のパターニングが可能である。そのため、フォトレジストでパターニングする従来の方法に比べて、低コストで製造できる。
 本実施形態の太陽電池1の製造方法によれば、150℃以下の製膜温度でリフトオフ層50を形成するので、たとえ大面積の製膜装置であっても、面内の膜厚分布が均一なリフトオフ層50を形成できる。そのため、大量生産が可能である。
According to the method for manufacturing the solar cell 1 of the present embodiment, the monoconductive semiconductor layer 11 is formed so that a part of the solar cell 1 overlaps with the lift-off layer 50, and the lift-off layer 50 is dissolved by the lift-off liquid to be formed on the lift-off layer 50. The monoconductive semiconductor layer 11 can be removed, and the monoconductive semiconductor layer 11 can be patterned. Therefore, it can be manufactured at a lower cost than the conventional method of patterning with a photoresist.
According to the method for manufacturing the solar cell 1 of the present embodiment, the lift-off layer 50 is formed at a film forming temperature of 150 ° C. or lower, so that the in-plane film thickness distribution is uniform even in a large area film forming apparatus. Lift-off layer 50 can be formed. Therefore, mass production is possible.
 本実施形態の太陽電池1の製造方法によれば、第1保護層51がリフトオフ層50よりも高密度であり、レジスト用エッチング液に対する耐性が高い。そのため、エッチング工程においてレジスト用エッチング液に浸したときに、リフトオフ層50が直接レジスト用エッチング液に浸される場合に比べて、リフトオフ層50が溶解しにくく、レジスト用エッチング液によってリフトオフ層50が溶解し、当該溶解によりリフトオフ層50よりも外側の層が剥離することを防止できる。 According to the method for manufacturing the solar cell 1 of the present embodiment, the first protective layer 51 has a higher density than the lift-off layer 50, and has high resistance to the etching solution for resist. Therefore, when the lift-off layer 50 is immersed in the resist etching solution in the etching step, the lift-off layer 50 is less likely to dissolve than when the lift-off layer 50 is directly immersed in the resist etching solution, and the lift-off layer 50 is formed by the resist etching solution. It dissolves, and it is possible to prevent the layer outside the lift-off layer 50 from peeling off due to the dissolution.
 本実施形態の太陽電池1の製造方法によれば、櫛型にパターニングされたレジスト層55を第1保護層51上に形成し、半導体基板5を平面視したときに、逆導電型半導体層16のレジスト層55が重ならない部分をレジスト用エッチング液で溶解して除去してパターニングする。そのため、逆導電型半導体層16の製膜時にマスク等を設けなくても、逆導電型半導体層16のパターニングが可能である。 According to the method for manufacturing the solar cell 1 of the present embodiment, when the resist layer 55 patterned in a comb shape is formed on the first protective layer 51 and the semiconductor substrate 5 is viewed in a plan view, the reverse conductive semiconductor layer 16 is formed. The portion where the resist layer 55 does not overlap is dissolved with a resist etching solution, removed, and patterned. Therefore, the reverse conductive semiconductor layer 16 can be patterned without providing a mask or the like when the reverse conductive semiconductor layer 16 is formed.
 本実施形態の太陽電池1の製造方法によれば、保護層形成工程において、150℃以下の温度で、シランガスと二酸化炭素と水素ガスを含む第2反応ガスを吹き付けて酸化シリコンを主成分とする第1保護層51を製膜する。すなわち、水素希釈した低濃度の第2反応ガスを吹き付けて低温で製膜するため、緻密な第1保護層51を形成できる。 According to the method for producing the solar cell 1 of the present embodiment, in the protective layer forming step, a second reaction gas containing silane gas, carbon dioxide and hydrogen gas is sprayed at a temperature of 150 ° C. or lower to contain silicon oxide as a main component. The first protective layer 51 is formed. That is, since a low-concentration second reaction gas diluted with hydrogen is sprayed to form a film at a low temperature, a dense first protective layer 51 can be formed.
 本実施形態の太陽電池1の製造方法によれば、リフトオフ層形成工程でのリフトオフ層50の製膜温度と、第1保護層形成工程での第1保護層51の製膜温度は、温度差が50℃以下である。そのため、速やかな温度調節が可能であり、リフトオフ層50と、第1保護層51の製膜を連続的に行うことができる。
 また、第1保護層形成工程での第1保護層51の製膜温度と、第2保護層形成工程での第2保護層52の製膜温度は、温度差が50℃以下であるため、速やかな温度調節が可能であり、第1保護層51と、第2保護層52の製膜を連続的に行うことができる。
According to the method for manufacturing the solar cell 1 of the present embodiment, the film forming temperature of the lift-off layer 50 in the lift-off layer forming step and the film forming temperature of the first protective layer 51 in the first protective layer forming step are different in temperature. Is 50 ° C. or lower. Therefore, the temperature can be adjusted quickly, and the lift-off layer 50 and the first protective layer 51 can be continuously formed.
Further, since the temperature difference between the film forming temperature of the first protective layer 51 in the first protective layer forming step and the film forming temperature of the second protective layer 52 in the second protective layer forming step is 50 ° C. or less, The temperature can be adjusted quickly, and the first protective layer 51 and the second protective layer 52 can be continuously formed.
 本実施形態の仕掛太陽電池基板99,100によれば、リフトオフ層50は、酸化シリコンを主成分とし、2重量%のフッ化水素酸に浸したときのエッチング速度が5nm/s以上であるため、リフトオフ層50を速やかに剥離できる。 According to the in-process solar cell substrates 99 and 100 of the present embodiment, the lift-off layer 50 contains silicon oxide as a main component and has an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid. , The lift-off layer 50 can be quickly peeled off.
 本実施形態の第2仕掛太陽電池基板100によれば、リフトオフ層50は、リフトオフ除去溶液に浸すことで溶解し、半導体基板5を平面視したときに一導電型半導体層11のリフトオフ層50との重なり部分を除去可能であり、リフトオフ層50が酸化シリコンを主成分とし、屈折率が1.42以上1.50以下である。そのため、リフトオフする際に、エッチング速度を大きくすることができ、容易に一導電型半導体層11をパターニングできる。 According to the second in-process solar cell substrate 100 of the present embodiment, the lift-off layer 50 is dissolved by being immersed in the lift-off removing solution, and when the semiconductor substrate 5 is viewed in a plan view, the lift-off layer 50 and the lift-off layer 50 of the one-conductive semiconductor layer 11 The overlapping portion can be removed, the lift-off layer 50 contains silicon oxide as a main component, and the refractive index is 1.42 or more and 1.50 or less. Therefore, when the lift is off, the etching rate can be increased, and the monoconductive semiconductor layer 11 can be easily patterned.
 本実施形態の第2仕掛太陽電池基板100によれば、半導体基板5の表側主面25側の最表面にリフトオフ層50よりもリフトオフ液に対する耐性を有する第2保護層52が被覆されている。そのため、エッチング工程においてリフトオフ液による半導体基板5の第2主面側の各層の損傷を抑制できる。 According to the second work-in-process solar cell substrate 100 of the present embodiment, the outermost surface of the semiconductor substrate 5 on the front side main surface 25 side is coated with a second protective layer 52 having more resistance to the lift-off liquid than the lift-off layer 50. Therefore, damage to each layer on the second main surface side of the semiconductor substrate 5 due to the lift-off liquid can be suppressed in the etching step.
 本実施形態の太陽電池1によれば、一導電型半導体層11と逆導電型半導体層16が厚み方向に重ならず、電極層2,3間や導電型が異なる半導体層11,16の接触を真性半導体層10,15で防止できるため、安全性に優れた太陽電池となる。 According to the solar cell 1 of the present embodiment, the monoconductive semiconductor layer 11 and the reverse conductive semiconductor layer 16 do not overlap in the thickness direction, and the contact between the electrode layers 2 and 3 and the semiconductor layers 11 and 16 having different conductive types This can be prevented by the intrinsic semiconductor layers 10 and 15, so that the solar cell has excellent safety.
 上記した実施形態では、逆導電型半導体層16がp型の半導体層であり、一導電型半導体層11がn型の半導体層であったが、本発明はこれに限定されるものではない。逆導電型半導体層16がn型の半導体層であり、一導電型半導体層11がp型の半導体層であってもよい。 In the above-described embodiment, the reverse conductive semiconductor layer 16 is a p-type semiconductor layer and the monoconductive semiconductor layer 11 is an n-type semiconductor layer, but the present invention is not limited thereto. The reverse conductive semiconductor layer 16 may be an n-type semiconductor layer, and the one conductive semiconductor layer 11 may be a p-type semiconductor layer.
 上記した実施形態では、半導体基板5は、n型の半導体基板であったが、本発明はこれに限定されるものではない。半導体基板5は、p型の半導体基板であってもよい。 In the above-described embodiment, the semiconductor substrate 5 is an n-type semiconductor substrate, but the present invention is not limited thereto. The semiconductor substrate 5 may be a p-type semiconductor substrate.
 上記した実施形態では、リフトオフ層50と、第1保護層51と、第2保護層52を同一のプラズマCVD装置の製膜室で製膜したが、本発明はこれに限定されるものではない。異なる製膜室で製膜してもよい。 In the above-described embodiment, the lift-off layer 50, the first protective layer 51, and the second protective layer 52 are formed in a film forming chamber of the same plasma CVD apparatus, but the present invention is not limited thereto. .. The film may be formed in a different film forming chamber.
 上記した実施形態では、第1保護層51と第2保護層52を別途工程にて製膜したが、本発明はこれに限定されるものではない。第1保護層51と第2保護層52を同時に成膜してもよい。 In the above-described embodiment, the first protective layer 51 and the second protective layer 52 are formed by a separate process, but the present invention is not limited to this. The first protective layer 51 and the second protective layer 52 may be formed at the same time.
 上記した実施形態では、リフトオフ層50と第1保護層51を同様の材料で形成したが、本発明はこれに限定されるものではない。リフトオフ層50と第1保護層51は異なる材料で形成されていてもよい。 In the above embodiment, the lift-off layer 50 and the first protective layer 51 are made of the same material, but the present invention is not limited to this. The lift-off layer 50 and the first protective layer 51 may be made of different materials.
 上記した実施形態では、リフトオフ層50と、第1保護層51と、第2保護層52をいずれも酸化シリコン層で形成していたが、本発明はこれに限定されるものではない。リフトオフ層50と、第1保護層51と、第2保護層52を、窒化シリコンを主成分とする窒化シリコン層で形成してもよい。 In the above-described embodiment, the lift-off layer 50, the first protective layer 51, and the second protective layer 52 are all formed of a silicon oxide layer, but the present invention is not limited thereto. The lift-off layer 50, the first protective layer 51, and the second protective layer 52 may be formed of a silicon nitride layer containing silicon nitride as a main component.
 上記した実施形態では、リフトオフ層50を一層で形成していたが、本発明はこれに限定されるものではない。リフトオフ層50を複数の層で構成された積層体で形成してもよい。 In the above-described embodiment, the lift-off layer 50 is formed by one layer, but the present invention is not limited to this. The lift-off layer 50 may be formed of a laminated body composed of a plurality of layers.
 上記した実施形態では、第1保護層51や第2保護層52を一層で形成していたが、本発明はこれに限定されるものではない。第1保護層51や第2保護層52を複数の層で構成された積層体で形成してもよい。 In the above-described embodiment, the first protective layer 51 and the second protective layer 52 are formed by one layer, but the present invention is not limited to this. The first protective layer 51 and the second protective layer 52 may be formed of a laminated body composed of a plurality of layers.
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 As long as the above-described embodiment is included in the technical scope of the present invention, each component can be freely replaced or added between the respective embodiments.
 以下、実施例により本発明を具体的に説明する。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施できる。 Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to the following examples, and the present invention can be appropriately modified without changing the gist thereof.
 (実施例1)
 まず、図9のように縦998mm横1200mmの四角形状のトレーに縦5枚、横6枚の計30枚(図9に示される1番から30番)の鏡面研磨されたシリコンウェハ(縦横156.75mm)を縦横碁盤状に配置し、これらのシリコンウェハに対してプラズマCVD装置によって酸化シリコン層を形成した。これを実施例1とした。
 実施例1の酸化シリコン層の製膜条件は、基板温度100℃、電極から基板までの距離10mm、圧力200Pa、ガス流量比SiH4:CO2を25:4900、及びパワー密度を0.22W/cm2とした。
(Example 1)
First, as shown in FIG. 9, a total of 30 wafers (Nos. 1 to 30 shown in FIG. 9), 5 in length and 6 in width, are mirror-polished silicon wafers (156 in length and width) on a square tray having a length of 998 mm and a width of 1200 mm. .75 mm) was arranged in a vertical and horizontal checkerboard shape, and a silicon oxide layer was formed on these silicon wafers by a plasma CVD apparatus. This was designated as Example 1.
The film forming conditions of the silicon oxide layer of Example 1 were a substrate temperature of 100 ° C., a distance of 10 mm from the electrode to the substrate, a pressure of 200 Pa, a gas flow rate ratio of SiH 4 : CO 2 of 25: 4900, and a power density of 0.22 W /. It was set to cm 2 .
 (実施例2)
 実施例1において、基板温度を140℃としたこと以外は同様にし、これを実施例2とした。
(Example 2)
The same applies except that the substrate temperature was set to 140 ° C. in Example 1, and this was designated as Example 2.
 (比較例1)
 実施例1において、基板温度を180℃としたこと以外は同様にし、これを比較例1とした。
(Comparative Example 1)
In Example 1, the same was true except that the substrate temperature was set to 180 ° C., and this was designated as Comparative Example 1.
 (実施例3)
 実施例1と同様のトレーに設置された鏡面研磨されたシリコンウェハに対し、プラズマCVD装置によって酸化シリコン層を形成し、これを実施例3とした。
 実施例3の酸化シリコン層の製膜条件は、基板温度140℃、電極から基板までの距離10mm、圧力200Pa、ガス流量比SiH4:CO2:H2を150:4900:9800、及びパワー密度を0.37W/cm2とした。すなわち、水素ガスで希釈して製膜を行った。
(Example 3)
A silicon oxide layer was formed on a mirror-polished silicon wafer installed on the same tray as in Example 1 by a plasma CVD apparatus, and this was designated as Example 3.
The film forming conditions of the silicon oxide layer of Example 3 are a substrate temperature of 140 ° C., a distance of 10 mm from the electrode to the substrate, a pressure of 200 Pa, a gas flow rate ratio of SiH 4 : CO 2 : H 2 of 150: 4900: 9800, and a power density. Was 0.37 W / cm 2 . That is, the film was formed by diluting with hydrogen gas.
 (比較例2)
 実施例3において、水素で希釈しなかったこと以外は同様にし、これを比較例2とした。すなわち、比較例2では、ガス流量比SiH4:CO2を150:4900として製膜を行った。
(Comparative Example 2)
The same was applied in Example 3 except that it was not diluted with hydrogen, and this was designated as Comparative Example 2. That is, in Comparative Example 2, the film was formed with a gas flow rate ratio of SiH 4 : CO 2 of 150: 4900.
 実施例1~3及び比較例1,2に対してジェー・エー・ウーラム(J.A. Woollam)社製のエリプソンメーターによってシリコンウェハ上の酸化シリコンの550nmの光を照射したときの屈折率を測定した。その後、2重量%のフッ化水素酸によって酸化シリコン層を溶解させ、再度エリプソンメーターによって550nmの光を照射したときの屈折率を測定し、エッチング速度を算出した。また、トレーに設置された各1番から30番のシリコンウェハにおいて、シリコンウェハ上の酸化シリコン層の最も厚い膜厚(最大膜厚Max)と、最も薄い膜厚(最小膜厚Min)の差から、下記式(1)を用いて面内分布を算出した。
 {(Max-Min)/Min}×100・・・(1)
The refractive index of silicon oxide on a silicon wafer when irradiated with 550 nm light was measured with an ellipson meter manufactured by JA Woollam for Examples 1 to 3 and Comparative Examples 1 and 2. .. Then, the silicon oxide layer was dissolved with 2% by weight of hydrofluoric acid, the refractive index when irradiated with light of 550 nm was measured again with an ellipson meter, and the etching rate was calculated. Further, in each of the 1st to 30th silicon wafers installed on the tray, the difference between the thickest film thickness (maximum film thickness Max) and the thinnest film thickness (minimum film thickness Min) of the silicon oxide layer on the silicon wafer. Therefore, the in-plane distribution was calculated using the following formula (1).
{(Max-Min) / Min} x 100 ... (1)
 また、リフトオフ性の評価として、エッチング溶液に15分間浸漬し、リンス液でリンスを行った際の酸化シリコン層の剥離の程度で評価した。具体的には、剥離の程度が、目視観察で50%以上90%未満の剥離ではB、90%以上の剥離ではAとした。 In addition, as an evaluation of lift-off property, the degree of peeling of the silicon oxide layer when immersed in an etching solution for 15 minutes and rinsed with a rinsing solution was evaluated. Specifically, the degree of peeling was B for peeling of 50% or more and less than 90% by visual observation, and A for peeling of 90% or more.
 実施例1,2,3及び比較例1,2の測定結果を表1及び表2に示す。 The measurement results of Examples 1, 2 and 3 and Comparative Examples 1 and 2 are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1のように、低温で製膜した実施例1、2と、高温で製膜した比較例1の酸化シリコン層を比較すると、低温になる程エッチング速度が大きくなることがわかった。
 このとき、実施例1、2の酸化シリコン層は、トレー内の面内分布が10%以内と大面積のトレーで製膜しても膜厚が均一な層を形成できた。
 また、実施例1,2のリフトオフ特性は、50%以上であって良好であり、特に実施例1のリフトオフ特性は実施例2と比べても良好であることがわかった。
As shown in Table 1, when the silicon oxide layers of Examples 1 and 2 formed at a low temperature and Comparative Example 1 formed at a high temperature were compared, it was found that the etching rate increased as the temperature decreased.
At this time, the silicon oxide layers of Examples 1 and 2 could form a layer having a uniform film thickness even when the film was formed with a tray having a large in-plane distribution of 10% or less in the tray.
Further, it was found that the lift-off characteristics of Examples 1 and 2 were good at 50% or more, and the lift-off characteristics of Example 1 were particularly good as compared with Example 2.
 表2のように、水素希釈した実施例3の酸化シリコン層は、水素希釈しなかった比較例2に比べてエッチング速度が小さく、フッ化水素酸に溶解しにくいことがわかった。 As shown in Table 2, it was found that the silicon oxide layer of Example 3 diluted with hydrogen had a lower etching rate than that of Comparative Example 2 not diluted with hydrogen, and was difficult to dissolve in hydrofluoric acid.
 実施例1の酸化シリコン層のエッチング速度は、表1,2のように、実施例3の酸化シリコン層のエッチング速度の約9倍程度であり、実施例2の酸化シリコン層のエッチング速度は、実施例3の酸化シリコン層のエッチング速度の約6倍程度であった。
 このことから、実施例1,2の酸化シリコン層のエッチング速度は、フッ化水素酸によって実施例3の酸化シリコン層に比べて極めて溶解しやすいことがわかった。
As shown in Tables 1 and 2, the etching rate of the silicon oxide layer of Example 1 is about 9 times the etching rate of the silicon oxide layer of Example 3, and the etching rate of the silicon oxide layer of Example 2 is It was about 6 times the etching rate of the silicon oxide layer of Example 3.
From this, it was found that the etching rate of the silicon oxide layers of Examples 1 and 2 was extremely easy to dissolve by hydrofluoric acid as compared with the silicon oxide layer of Example 3.
 上記の結果から、基板温度を140℃以下で製膜することで、大面積製膜装置でも面内分布が均一に所望のエッチング速度に制御した酸化シリコン層を製膜できることが示唆された。
 基板温度以外を同一の製膜条件にしたときに、基板温度を140℃以下で製膜することで屈折率が低く、エッチング速度が高い酸化シリコン層を製膜できることが示唆された。
 また、原料ガスを水素で希釈することで、基板温度を140℃以下であっても緻密な酸化シリコン層を製膜できることが示唆された。
 以上のことから、実施例1又は実施例2の酸化シリコン層をリフトオフ層に使用し、実施例3の酸化シリコン層を保護層として使用することで、同一のプラズマCVD装置を使用して連続的に製膜できることが示唆された。
From the above results, it was suggested that by forming a film at a substrate temperature of 140 ° C. or lower, a silicon oxide layer having a uniform in-plane distribution controlled to a desired etching rate can be formed even in a large-area film forming apparatus.
It was suggested that a silicon oxide layer having a low refractive index and a high etching rate could be formed by forming a film at a substrate temperature of 140 ° C. or lower under the same film forming conditions other than the substrate temperature.
It was also suggested that by diluting the raw material gas with hydrogen, a dense silicon oxide layer can be formed even when the substrate temperature is 140 ° C. or lower.
From the above, by using the silicon oxide layer of Example 1 or 2 as the lift-off layer and using the silicon oxide layer of Example 3 as the protective layer, the same plasma CVD apparatus is used continuously. It was suggested that the film could be formed.
  1 太陽電池
  2 第1電極層
  3 第2電極層
  5 半導体基板
  6 第1真性半導体層
 10 第2真性半導体層(真性半導体層,第2真性層)
 11 一導電型半導体層
 15 第3真性半導体層(真性半導体層,第1真性層)
 16 逆導電型半導体層
 25 表側主面(第2主面)
 26 裏側主面(第1主面)
 50 リフトオフ層
 51 第1保護層
 52 第2保護層
 55,56 レジスト層
 60 レジスト形成領域
 61 レジスト非形成領域
 62 剥離領域
 99 第1仕掛太陽電池基板
100 第2仕掛太陽電池基板
1 Solar cell 2 1st electrode layer 3 2nd electrode layer 5 Semiconductor substrate 6 1st intrinsic semiconductor layer 10 2nd intrinsic semiconductor layer (intrinsic semiconductor layer, 2nd intrinsic layer)
11 1 Conductive semiconductor layer 15 3rd intrinsic semiconductor layer (intrinsic semiconductor layer, 1st intrinsic layer)
16 Reverse conductive semiconductor layer 25 Front side main surface (second main surface)
26 Back side main surface (first main surface)
50 Lift-off layer 51 1st protective layer 52 2nd protective layer 55,56 Resist layer 60 Resist forming area 61 Non-resist forming area 62 Peeling area 99 1st in-process solar cell substrate 100 2nd in-process solar cell substrate

Claims (15)

  1.  半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池の製造方法であって、
     前記半導体基板の第1主面側に前記逆導電型半導体層を形成する第1半導体層形成工程と、
     前記逆導電型半導体層上に酸化シリコン又は窒化シリコンを主成分とするリフトオフ層を形成するリフトオフ層形成工程と、
     前記半導体基板を平面視したときに、一部が前記リフトオフ層と重なり部分をもつように前記一導電型半導体層を形成する第2半導体層形成工程と、
     リフトオフ液で前記リフトオフ層を溶解することで、前記一導電型半導体層の前記重なり部分を除去するリフトオフ工程を含み、
     前記リフトオフ層形成工程では、150℃以下の製膜温度で第1反応ガスを吹き付けて前記リフトオフ層を製膜する、太陽電池の製造方法。
    A monoconductive semiconductor layer, a reverse conductive semiconductor layer, a first electrode layer, and a second electrode layer are provided on the first main surface side of the semiconductor substrate, and the monoconductive is provided between the semiconductor substrate and the first electrode layer. A method for manufacturing a solar cell in which a type semiconductor layer is interposed and the reverse conductive semiconductor layer is further interposed between the semiconductor substrate and the second electrode layer.
    A first semiconductor layer forming step of forming the reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate, and
    A lift-off layer forming step of forming a lift-off layer containing silicon oxide or silicon nitride as a main component on the reverse conductive semiconductor layer,
    A second semiconductor layer forming step of forming the monoconductive semiconductor layer so that a part of the semiconductor substrate overlaps with the lift-off layer when viewed in a plan view.
    A lift-off step of removing the overlapping portion of the monoconductive semiconductor layer by dissolving the lift-off layer with a lift-off liquid is included.
    In the lift-off layer forming step, a method for manufacturing a solar cell, in which the first reaction gas is sprayed at a film forming temperature of 150 ° C. or lower to form the lift-off layer.
  2.  前記リフトオフ層上に保護層を製膜する保護層形成工程を含み、
     前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高い、請求項1に記載の太陽電池の製造方法。
    A protective layer forming step of forming a protective layer on the lift-off layer is included.
    The method for manufacturing a solar cell according to claim 1, wherein the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
  3.  前記半導体基板を基準として前記逆導電型半導体層の外側に所定の形状のレジスト層を形成するレジスト層形成工程と、
     エッチング液で前記逆導電型半導体層の一部を除去するエッチング工程と、
     前記レジスト層を除去するレジスト層除去工程を含み、
     前記レジスト層形成工程では、前記半導体基板を平面視したときに、前記逆導電型半導体層に前記レジスト層と重ならない非重畳部分があり、
     前記エッチング工程では、前記逆導電型半導体層の前記非重畳部分の一部又は全部を除去する、請求項1又は2に記載の太陽電池の製造方法。
    A resist layer forming step of forming a resist layer having a predetermined shape on the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate.
    An etching step of removing a part of the reverse conductive semiconductor layer with an etching solution, and
    Including a resist layer removing step of removing the resist layer.
    In the resist layer forming step, when the semiconductor substrate is viewed in a plan view, the reverse conductive semiconductor layer has a non-overlapping portion that does not overlap with the resist layer.
    The method for manufacturing a solar cell according to claim 1 or 2, wherein in the etching step, a part or all of the non-superimposed portion of the reverse conductive semiconductor layer is removed.
  4.  前記リフトオフ層上に、酸化シリコンを主成分とする保護層を形成する保護層形成工程を含み、
     前記保護層形成工程では、150℃以下の温度で第2反応ガスを吹き付けて前記保護層を製膜するものであり、
     前記第2反応ガスは、シランガスと、二酸化炭素と、水素ガスを含む、請求項1乃至3のいずれか1項に記載の太陽電池の製造方法。
    A protective layer forming step of forming a protective layer containing silicon oxide as a main component on the lift-off layer is included.
    In the protective layer forming step, the protective layer is formed by spraying a second reaction gas at a temperature of 150 ° C. or lower.
    The method for producing a solar cell according to any one of claims 1 to 3, wherein the second reaction gas contains silane gas, carbon dioxide, and hydrogen gas.
  5.  前記第2反応ガスは、シランガスに対する水素ガスの流量比が50以上である、請求項4に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 4, wherein the second reaction gas has a flow rate ratio of hydrogen gas to silane gas of 50 or more.
  6.  前記保護層形成工程での前記保護層の製膜温度は、実質的に前記リフトオフ層形成工程での前記リフトオフ層の製膜温度以上であって、前記リフトオフ層形成工程での前記リフトオフ層の製膜温度との温度差が50℃以下である、請求項4又は5に記載の太陽電池の製造方法。 The film forming temperature of the protective layer in the protective layer forming step is substantially equal to or higher than the film forming temperature of the lift-off layer in the lift-off layer forming step, and the lift-off layer is formed in the lift-off layer forming step. The method for manufacturing a solar cell according to claim 4 or 5, wherein the temperature difference from the film temperature is 50 ° C. or less.
  7.  半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池の製造方法であって、
     前記半導体基板の第1主面側に前記逆導電型半導体層を形成する第1半導体層形成工程と、
     前記逆導電型半導体層上に酸化シリコン又は窒化シリコンを主成分とするリフトオフ層を形成するリフトオフ層形成工程と、
     前記リフトオフ層上に、酸化シリコン又は窒化シリコンを主成分とし前記リフトオフ層よりも密度が高い保護層を製膜する保護層形成工程と、
     前記半導体基板を平面視したときに、前記リフトオフ層と重なり部分をもつように前記一導電型半導体層を形成する第2半導体層形成工程と、
     リフトオフ液で前記リフトオフ層を溶解することで、前記一導電型半導体層の前記重なり部分を除去するリフトオフ工程を含み、
     前記リフトオフ工程は、前記保護層形成工程の以後に行うものであり、
     前記保護層形成工程では、150℃以下の温度で第2反応ガスを吹き付けて前記保護層を製膜するものであり、
     前記第2反応ガスは、シランガスと、二酸化炭素と、水素ガスとを含むものであって、シランガスに対する水素ガスの流量比が50以上である、太陽電池の製造方法。
    A monoconductive semiconductor layer, a reverse conductive semiconductor layer, a first electrode layer, and a second electrode layer are provided on the first main surface side of the semiconductor substrate, and the monoconductive is provided between the semiconductor substrate and the first electrode layer. A method for manufacturing a solar cell in which a type semiconductor layer is interposed and the reverse conductive semiconductor layer is further interposed between the semiconductor substrate and the second electrode layer.
    A first semiconductor layer forming step of forming the reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate, and
    A lift-off layer forming step of forming a lift-off layer containing silicon oxide or silicon nitride as a main component on the reverse conductive semiconductor layer,
    A protective layer forming step of forming a protective layer containing silicon oxide or silicon nitride as a main component on the lift-off layer and having a higher density than the lift-off layer.
    A second semiconductor layer forming step of forming the monoconductive semiconductor layer so as to have a portion overlapping the lift-off layer when the semiconductor substrate is viewed in a plan view.
    A lift-off step of removing the overlapping portion of the monoconductive semiconductor layer by dissolving the lift-off layer with a lift-off liquid is included.
    The lift-off step is performed after the protective layer forming step, and is performed.
    In the protective layer forming step, the protective layer is formed by spraying a second reaction gas at a temperature of 150 ° C. or lower.
    A method for producing a solar cell, wherein the second reaction gas contains silane gas, carbon dioxide, and hydrogen gas, and the flow rate ratio of hydrogen gas to silane gas is 50 or more.
  8.  半導体基板の第1主面側に、一導電型半導体層と、逆導電型半導体層を備えた仕掛太陽電池基板であって、
     前記半導体基板を基準として、前記逆導電型半導体層の外側にリフトオフ層を有し、
     前記リフトオフ層は、前記半導体基板を基準として、外側に前記一導電型半導体層が積層されており、
     前記一導電型半導体層は、前記半導体基板を平面視したときに前記リフトオフ層と重なり部分があり、
     前記リフトオフ層は、リフトオフ液に浸すことで、溶解して前記一導電型半導体層の前記重なり部分を除去可能であり、
     前記リフトオフ層は、酸化シリコンを主成分とし、2重量%のフッ化水素酸に浸したときのエッチング速度が5nm/s以上である、仕掛太陽電池基板。
    A work-in-process solar cell substrate provided with a monoconductive semiconductor layer and a reverse conductive semiconductor layer on the first main surface side of the semiconductor substrate.
    A lift-off layer is provided on the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate.
    The lift-off layer has the one-conductive semiconductor layer laminated on the outside with the semiconductor substrate as a reference.
    The one-conductive semiconductor layer has a portion that overlaps with the lift-off layer when the semiconductor substrate is viewed in a plan view.
    By immersing the lift-off layer in the lift-off liquid, the lift-off layer can be dissolved and the overlapping portion of the monoconductive semiconductor layer can be removed.
    The lift-off layer is a work-in-process solar cell substrate containing silicon oxide as a main component and having an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid.
  9.  前記リフトオフ層上に保護層を有し、
     前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高い、請求項8に記載の仕掛太陽電池基板。
    A protective layer is provided on the lift-off layer.
    The work-in-process solar cell substrate according to claim 8, wherein the protective layer contains silicon oxide or silicon nitride as a main component and has a higher density than the lift-off layer.
  10.  前記リフトオフ層上に保護層を有し、
     前記保護層は、酸化シリコンを主成分とし、屈折率が前記リフトオフ層の屈折率よりも高い、請求項8又は9に記載の仕掛太陽電池基板。
    A protective layer is provided on the lift-off layer.
    The work-in-process solar cell substrate according to claim 8 or 9, wherein the protective layer contains silicon oxide as a main component and has a refractive index higher than that of the lift-off layer.
  11.  半導体基板の第1主面側に、導電型半導体層を備えた仕掛太陽電池基板であって、
     前記半導体基板を基準として、前記導電型半導体層の外側にリフトオフ層と保護層がこの順に積層されており、
     前記リフトオフ層は、酸化シリコンを主成分とし、2重量%のフッ化水素酸に浸したときのエッチング速度が5nm/s以上であり、
     前記保護層は、酸化シリコン又は窒化シリコンを主成分とし、前記リフトオフ層よりも密度が高い、仕掛太陽電池基板。
    A work-in-process solar cell substrate provided with a conductive semiconductor layer on the first main surface side of the semiconductor substrate.
    A lift-off layer and a protective layer are laminated in this order on the outside of the conductive semiconductor layer with the semiconductor substrate as a reference.
    The lift-off layer contains silicon oxide as a main component and has an etching rate of 5 nm / s or more when immersed in 2% by weight of hydrofluoric acid.
    The protective layer is a work-in-process solar cell substrate containing silicon oxide or silicon nitride as a main component and having a higher density than the lift-off layer.
  12.  前記半導体基板の第2主面側の最表面に前記リフトオフ層よりも2重量%のフッ化水素酸に浸したときのエッチング速度が遅い第2保護層が被覆されている、請求項8乃至11のいずれか1項に記載の仕掛太陽電池基板。 Claims 8 to 11 include a second protective layer on the outermost surface of the semiconductor substrate on the second main surface side, which has a slower etching rate when immersed in 2% by weight of hydrofluoric acid than the lift-off layer. The in-process solar cell substrate according to any one of the above items.
  13.  半導体基板の第1主面側に、一導電型半導体層、逆導電型半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記一導電型半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記逆導電型半導体層が介在する太陽電池であって、
     真性半導体層を有し、
     前記真性半導体層は、前記半導体基板と、前記一導電型半導体層及び前記逆導電型半導体層とのそれぞれの間に介在し、さらに前記半導体基板の前記第1主面の広がり方向において、前記一導電型半導体層と前記逆導電型半導体層の間にも介在しており、
     前記真性半導体層は、前記一導電型半導体層と前記逆導電型半導体層の間から前記第1主面に対する直交方向に露出している、太陽電池。
    A monoconductive semiconductor layer, a reverse conductive semiconductor layer, a first electrode layer, and a second electrode layer are provided on the first main surface side of the semiconductor substrate, and the monoconductive is provided between the semiconductor substrate and the first electrode layer. A solar cell in which a type semiconductor layer is interposed and the reverse conductive type semiconductor layer is further interposed between the semiconductor substrate and the second electrode layer.
    It has an intrinsic semiconductor layer and
    The intrinsic semiconductor layer is interposed between the semiconductor substrate, the monoconductive semiconductor layer and the reverse conductive semiconductor layer, and further, in the spreading direction of the first main surface of the semiconductor substrate, the one. It is also interposed between the conductive semiconductor layer and the reverse conductive semiconductor layer.
    A solar cell in which the intrinsic semiconductor layer is exposed from between the monoconductive semiconductor layer and the reverse conductive semiconductor layer in a direction orthogonal to the first main surface.
  14.  前記真性半導体層は、第1真性層と、第2真性層で構成されており、
     前記第1真性層は、前記半導体基板と前記逆導電型半導体層の間に介在しており、
     前記第2真性層は、前記半導体基板と前記一導電型半導体層の間に介在しており、
     前記第2真性層は、前記半導体基板を基準として、前記逆導電型半導体層の外側を覆っていない、請求項13に記載の太陽電池。
    The intrinsic semiconductor layer is composed of a first intrinsic layer and a second intrinsic layer.
    The first intrinsic layer is interposed between the semiconductor substrate and the reverse conductive semiconductor layer.
    The second intrinsic layer is interposed between the semiconductor substrate and the monoconductive semiconductor layer.
    The solar cell according to claim 13, wherein the second intrinsic layer does not cover the outside of the reverse conductive semiconductor layer with reference to the semiconductor substrate.
  15.  前記第2真性層は、前記半導体基板を基準として、前記逆導電型半導体層の外側面と面一又は外側面よりも内側に位置している、請求項14に記載の太陽電池。 The solar cell according to claim 14, wherein the second intrinsic layer is located flush with the outer surface of the reverse conductive semiconductor layer or inside the outer surface with respect to the semiconductor substrate.
PCT/JP2020/011484 2019-03-29 2020-03-16 Method for manufacturing solar cell, in-process solar cell substrate, and solar cell WO2020203227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080024664.5A CN113678265B (en) 2019-03-29 2020-03-16 Solar cell manufacturing method, semi-finished solar cell substrate and solar cell
JP2021511381A JPWO2020203227A1 (en) 2019-03-29 2020-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068106 2019-03-29
JP2019-068106 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203227A1 true WO2020203227A1 (en) 2020-10-08

Family

ID=72668820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011484 WO2020203227A1 (en) 2019-03-29 2020-03-16 Method for manufacturing solar cell, in-process solar cell substrate, and solar cell

Country Status (3)

Country Link
JP (1) JPWO2020203227A1 (en)
CN (1) CN113678265B (en)
WO (1) WO2020203227A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200599A (en) * 2000-10-30 2002-07-16 Sony Corp Producing method for three-dimensional structure
JP2008010866A (en) * 2006-06-29 2008-01-17 Hynix Semiconductor Inc Manufacturing method of cylinder type capacitor utilizing amorphous carbon layer
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
JP2017005253A (en) * 2015-06-10 2017-01-05 エルジー エレクトロニクス インコーポレイティド Method of manufacturing solar cell
US20170358495A1 (en) * 2016-06-14 2017-12-14 Chih-Shu Huang Epitaxial structure of ga-face group iii nitride, active device, and method for fabricating the same
JP2018010916A (en) * 2016-07-12 2018-01-18 株式会社アルバック Method for manufacturing hbc type crystal solar cell, and hbc type crystal solar cell
JP2018163988A (en) * 2017-03-24 2018-10-18 株式会社カネカ Solar cell module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006564B2 (en) * 2009-03-10 2015-04-14 Sanyo Electric Co., Ltd. Method of manufacturing solar cell and solar cell
JP2014075526A (en) * 2012-10-05 2014-04-24 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method
WO2017217219A1 (en) * 2016-06-15 2017-12-21 株式会社カネカ Solar cell and production method therefor, and solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200599A (en) * 2000-10-30 2002-07-16 Sony Corp Producing method for three-dimensional structure
JP2008010866A (en) * 2006-06-29 2008-01-17 Hynix Semiconductor Inc Manufacturing method of cylinder type capacitor utilizing amorphous carbon layer
WO2015060432A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion device
JP2017005253A (en) * 2015-06-10 2017-01-05 エルジー エレクトロニクス インコーポレイティド Method of manufacturing solar cell
US20170358495A1 (en) * 2016-06-14 2017-12-14 Chih-Shu Huang Epitaxial structure of ga-face group iii nitride, active device, and method for fabricating the same
JP2018010916A (en) * 2016-07-12 2018-01-18 株式会社アルバック Method for manufacturing hbc type crystal solar cell, and hbc type crystal solar cell
JP2018163988A (en) * 2017-03-24 2018-10-18 株式会社カネカ Solar cell module

Also Published As

Publication number Publication date
JPWO2020203227A1 (en) 2020-10-08
CN113678265A (en) 2021-11-19
CN113678265B (en) 2024-03-26

Similar Documents

Publication Publication Date Title
JP5801791B2 (en) Silicon solar cell having emitter with back-etching and method of forming similar solar cell
KR101863294B1 (en) Solar cell and method for fabricating the same
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP2011238903A (en) Structure of solar cell grid stacks and method for manufacturing the same
JP6692797B2 (en) Solar cell and manufacturing method thereof
JP7361023B2 (en) Solar cell manufacturing method and holder used therein
US20220320355A1 (en) Solar cell and a manufacturing method therefor
JP2011258767A (en) Solar cell
TWI590478B (en) Solar cell and method of manufacturing solar cell
JP5723143B2 (en) Manufacturing method of back electrode type solar cell and back electrode type solar cell
JPWO2012132758A1 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
US8852990B2 (en) Method of fabricating solar cell
JP7228561B2 (en) Solar cell manufacturing method
WO2020203227A1 (en) Method for manufacturing solar cell, in-process solar cell substrate, and solar cell
JP4641858B2 (en) Solar cell
WO2019138613A1 (en) Method for manufacturing solar cell
WO2019163646A1 (en) Method for producing solar cell
WO2019181834A1 (en) Method for producing solar cell, and solar cell
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JPWO2019163648A1 (en) How to manufacture solar cells
JP7183245B2 (en) Solar cell manufacturing method
CN116072742A (en) Solar cell and preparation method thereof
WO2019163784A1 (en) Method for manufacturing solar cell
JP7353865B2 (en) How to manufacture solar cells
JP7361045B2 (en) How to manufacture solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783375

Country of ref document: EP

Kind code of ref document: A1