WO2020203110A1 - 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン - Google Patents

液晶配向剤、液晶配向膜、液晶表示素子及びジアミン Download PDF

Info

Publication number
WO2020203110A1
WO2020203110A1 PCT/JP2020/010462 JP2020010462W WO2020203110A1 WO 2020203110 A1 WO2020203110 A1 WO 2020203110A1 JP 2020010462 W JP2020010462 W JP 2020010462W WO 2020203110 A1 WO2020203110 A1 WO 2020203110A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
diamine
alignment film
Prior art date
Application number
PCT/JP2020/010462
Other languages
English (en)
French (fr)
Inventor
雄介 山本
一平 福田
司 藤枝
達哉 名木
秀則 石井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080026107.7A priority Critical patent/CN113711117A/zh
Priority to JP2021511328A priority patent/JP7428177B2/ja
Priority to KR1020217030565A priority patent/KR20210145744A/ko
Publication of WO2020203110A1 publication Critical patent/WO2020203110A1/ja
Priority to JP2023203724A priority patent/JP2024019271A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polymer used for a liquid crystal display element, a liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element, and a novel diamine used for them.
  • liquid crystal display elements which differ in electrode structure, physical properties of liquid crystal molecules used, manufacturing process, etc.
  • TN twisted nematic
  • STN super-twisted nematic
  • VA Vertical element type
  • MVA multi-domine vertical indicator
  • IPS in-plane switching
  • FFS far-field switching
  • PSA polymer-suite
  • the liquid crystal display element in the above application is also required to have characteristics that can withstand long-term use in a harsh usage environment, and in Patent Document 4, a liquid crystal aligning agent containing a specific compound is exposed to the backlight for a long time. It is disclosed that a liquid crystal alignment film having a small decrease in voltage retention can be obtained even after that, and a highly reliable liquid crystal display element can be obtained.
  • the composition of the liquid crystal alignment agent proposed in the past could not always achieve all of the above problems.
  • the present invention has been made based on the above circumstances, and an object of the present invention is reliability, which causes less afterimages and can minimize bright spots even when physical friction such as rubbing with a spacer occurs. It is to provide a high-quality liquid crystal display element.
  • Another object of the present invention is to provide a liquid crystal alignment film having high film strength suitable for such a liquid crystal display element and a liquid crystal alignment agent thereof.
  • A is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a benzyl group, a p-methoxybenzyl group, an alkoxy group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, a t-butyloxycarbonyl group, and 9-fluorenyl. It represents a methoxycarbonyl group or an R 1 R 2 R 3 Si group, and R 1 , R 2 and R 3 independently represent an alkyl group or a phenyl group having 1 to 3 carbon atoms, respectively.
  • liquid crystal alignment agent of the present invention a liquid crystal display element capable of minimizing afterimages and minimizing bright spots even when physical friction such as rubbing with a spacer occurs, and a liquid crystal alignment film providing the same can be obtained.
  • a liquid crystal alignment film having excellent adhesion to the sealant can be obtained.
  • a liquid crystal display element having excellent adhesion between substrates and being strong against impact can be obtained.
  • the mechanism by which the adhesion to the sealant is improved is not always clear, but the hydroxy group or methoxy group of the specific diamine or the hydroxy group generated by the desorption of the protecting group by heating is the surface of the liquid crystal alignment film. It is considered that the adhesion between the liquid crystal alignment film and the sealant is improved by the interaction between the group and the functional group in the sealant.
  • the liquid crystal alignment agent of the present invention is a liquid crystal alignment agent containing a polymer (hereinafter, also referred to as a specific polymer) obtained from a diamine having a structure represented by the above formula (1). Each condition will be described in detail below.
  • the polymer of the present invention is a polymer obtained from a diamine having the structure of the above formula (1).
  • Specific examples of the diamine of the above formula (1) include, but are not limited to, the following. Of these, (1-1), (1-2), and (1-3) are particularly preferable from the viewpoint of mitigating the accumulated charge.
  • the polymer of the present invention is a polymer obtained by using the above diamine.
  • Specific examples include polyamic acid, polyamic acid ester, polyimide, polyurea, polyamide, etc., but from the viewpoint of use as a liquid crystal aligning agent, a polyimide precursor containing a structural unit represented by the following formula (6), And at least one selected from polyimide which is an imidized product thereof is more preferable.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine containing the structure of the formula (1)
  • R 4 Is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Further, X 1 in the polyimide precursor is required for solubility of the polymer in the solvent, coating property of the liquid crystal alignment agent, orientation of the liquid crystal when it is used as a liquid crystal alignment film, voltage retention rate, accumulated charge, and the like. It is appropriately selected according to the degree of the characteristics, and one type may be used in the same polymer, or two or more types may be mixed.
  • (A-1) and (A-2) are particularly preferable from the viewpoint of photoorientity, and (A-4) is particularly preferable from the viewpoint of further improving the relaxation rate of accumulated charges, and (A). -15) to (A-17) are particularly preferable from the viewpoint of further improving the liquid crystal orientation and the relaxation rate of the accumulated charge.
  • the polyimide precursor containing the structural unit represented by the formula (6) is selected from at least the structural unit represented by the following formula (7) and the polyimide compound thereof, as long as the effects of the present invention are not impaired. It may contain one kind.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 is a divalent organic group derived from a diamine that does not contain the structure of the formula (1) in the main chain direction.
  • R 5 is the same as the definition of R 4 in the above formula (6)
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Further, it is preferable that at least one of twofold R 6 is hydrogen atom.
  • Y 2 in the polyimide precursor is a divalent organic group derived from a diamine that does not contain the structure of the formula (1) in the main chain direction, and the structure is not particularly limited. Further, Y 2 depends on the degree of required characteristics such as the solubility of the polymer in the solvent, the coatability of the liquid crystal alignment agent, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the voltage retention rate, and the accumulated charge. One type may be used in the same polymer, or two or more types may be mixed in the same polymer.
  • Y 2 the structure of the formulas listed in item 4 of WO 2015/119168 (2), and are published in Section 8 - Section 12, wherein (Y-1) - Structures of (Y-97), (Y-101) to (Y-118); Divalent organic obtained by removing two amino groups from the formula (2), which is published in Section 6 of International Publication 2013/008906.
  • Group A divalent organic group obtained by removing two amino groups from the formula (1) published in Section 8 of International Publication 2015/122413; Formula (3) published in Section 8 of International Publication 2015/060360.
  • Structure A divalent organic group obtained by removing two amino groups from the formula (1) described in paragraph 8 of Japanese Patent Publication 2012-173514; the formula published in paragraph 9 of International Publication 2010-050523. Examples thereof include a divalent organic group obtained by removing two amino groups from (A) to (F).
  • the preferred structure of Y 2 is shown below, but the present invention is not limited thereto.
  • (B-28), (B-29) and the like are particularly preferable from the viewpoint of further improving the film strength, and (B-1) to (B-3) and the like are liquid crystal oriented.
  • Particularly preferable from the viewpoint of further improvement (B-14) to (B-18) and (B-27) are particularly preferable from the viewpoint of further improvement of the relaxation rate of the accumulated charge, and (B-26) and the like. Is preferable from the viewpoint of further improving the voltage holding ratio.
  • the structural unit represented by the formula (6) is the formula (6) and the formula. It is preferably 10 mol% or more, more preferably 15 mol% or more, and particularly preferably 20 mol% or more with respect to the total of (7).
  • the molecular weight of the polyimide precursor used in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000 in terms of weight average molecular weight. is there.
  • Examples of the polyimide having a divalent group represented by the formula (1) in the main chain include a polyimide obtained by ring-closing the above-mentioned polyimide precursor.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the liquid crystal alignment agent of the present invention is a composition containing the above-mentioned specific polymer and an organic solvent, and may contain two or more kinds of specific polymers having different structures. Further, the liquid crystal alignment agent of the present invention contains a polymer other than the specific polymer (hereinafter, also referred to as a second polymer) and various additives to the extent that the effect described in the present invention is exhibited. May be good.
  • the ratio of the specific polymer to the total polymer component is preferably 5% by mass or more, and an example thereof is 5 to 95% by mass.
  • the second polymer includes polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth).
  • examples include acrylate.
  • a polyamic acid obtained from the tetracarboxylic dianhydride component and the diamine component is preferable as the second polymer.
  • Examples of the tetracarboxylic dianhydride component for obtaining the second polyamic acid include a compound represented by the following formula (11).
  • the acid dianhydride component may be composed of one kind of compound or may be composed of two or more kinds of compounds.
  • A is a tetravalent organic group, preferably a tetravalent organic group having 4 to 30 carbon atoms.
  • the diamine component for obtaining the second polyamic acid can be appropriately determined according to the purpose, and for example, a diamine represented by the following formula (12) can be used.
  • Y 9 represents a divalent organic group.
  • a 9 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl having 2 to 5 carbon atoms, respectively. a group, may be the same or different. from the viewpoint of liquid crystal alignment property, a 9 is hydrogen atom, or a methyl group.
  • the present invention is not limited thereto.
  • Y 9 is a divalent organic group having a secondary or tertiary nitrogen atom and a divalent organic group having -NH-CO-NH-in the molecule. Is preferable.
  • a diamine having a pyrrole structure described in International Publication WO2017 / 126627 is preferable. Diamine having a structure represented by the following formula (pr);
  • R 1 represents a hydrogen atom, a fluorine atom, a cyano group, a hydroxy group, and a methyl group
  • R 2 independently represents a single bond or a group "* 1-R 3- Ph- * 2”
  • R 3 is Divalent organic groups selected from single bond, -O-, -COO-, -OCO-,-(CH 2 ) l- , -O (CH 2 ) m O-, -CONH-, and -NHCO- Representation (l and m represent integers from 1 to 5)
  • * 1 represents the site that binds to the benzene ring in the formula (pr)
  • * 2 represents the site that binds to the amino group in the formula (pr).
  • Ph represents a phenylene group.
  • N represents 1 to 3)
  • a diamine having a pyrrole structure described in WO2018 / 062197 preferably a diamine having a structure represented by the following formula (pn);
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group
  • R 3 represents a single bond or a group "* 1-R 4- Ph- * 2”
  • R 4 represents a single bond, -O-
  • * 1 represents a site that binds to a benzene ring in the formula (pn)
  • * 2 represents a site that bonds to an amino group in the formula (pn)
  • Ph represents a phenylene group.
  • N represents 1 to 3
  • a diamine having a carbazole structure described in WO2018 / 110354 preferably a diamine having a structure represented by the following formula (cz);
  • X is a biphenyl skeleton or a fluorene ring
  • Y is a benzene ring, a biphenyl skeleton, or a group selected from -Ph-Z-Ph- (Ph represents a phenylene group)
  • Z is -O-,-. It is a divalent group represented by NH-, -CH 2- , -SO 2- , -C (CH 3 ) 2- or -C (CF 3 ) 2-.
  • a and B are hydrogen atoms or methyl groups.
  • a 1 is -NH-CO-.
  • NH- a group in which at least one of -CH 2- of an alkylene group having 2 to 20 carbon atoms is substituted with -NH-CO-NH-, or -CH 2- of an alkylene group having 2 to 20 carbon atoms.
  • At least one of is substituted with -NH-CO-NH- and at least one of the other -CH 2- is -O-, -CO-, -CO-O-, -NRCO- (R is a hydrogen atom or (Represents a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR- (R represents a methyl).
  • Examples thereof include diamine when the group is substituted with a group selected from (representing a group).
  • Specific examples of more preferable diamines include diamines represented by the following formulas (U-1) to (U-9).
  • a 1 is a single bond, -NH-CO-NH-, or an alkylene group having 2 to 20 carbon atoms (provided that any -CH 2- of the alkylene group is -O-, -CO-, -CO-.
  • O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group) , -COS-, -NR- (R represents a methyl group) or -NH-CO-NH- may be substituted.
  • a 2 is a halogen atom, a hydroxy group, or 1 carbon number.
  • A is an integer of 0 to 4, and a is. In the case of 2 or more, A 2 may be the same or different.
  • B and c are independently integers of 1 to 2.
  • Preferred specific examples of the diamines represented by the above formulas (w1) to (w2) are the diamines represented by the following formulas (n3-1) to (n3-7) and the following formulas (n4-1) to (n4). Examples thereof include diamine represented by -6).
  • a diamine compound having a carboxyl group (COOH group) or a hydroxyl group (OH group) can also be used.
  • 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, 2,5-Diaminobenzoic acid or 3,5-diaminobenzoic acid can be mentioned.
  • 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid is preferable.
  • a diamine compound represented by the following formulas [3b-1] to [3b-4] and a diamine compound in which these amino groups are secondary amino groups can also be used.
  • Q 1 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or -N (CH 3 ) CO-, m 1 and m 2 independently represent integers 0-4, and m 1 + m 2 represent integers 1-4, in the formula.
  • m 3 and m 4 each independently represent an integer of 1 to 5, and in the formula [3b-3], Q 2 is a linear or branched alkylene group having 1 to 5 carbon atoms. indicates, m 5 represents an integer of 1 to 5, wherein [3b-4], Q 3 and Q 4 are each independently a single bond, -CH 2 -, - C 2 H 4 -, - C ( CH 3 ) 2- , -CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O -, - OCH 2 - , - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) CO- indicates, m 6 is an integer of 1-4).
  • the diamine component for obtaining the second polyamic acid a diamine used in a specific polymer or a known diamine can be used in addition to the above, but the present invention is not limited thereto.
  • the diamine component for obtaining the second polyamic acid may be one kind of diamine or two or more kinds of diamines may be used in combination.
  • the polyimide precursors polyamic acid ester, polyamic acid and polyimide used in the present invention can be synthesized by a known method as described in, for example, International Publication WO2013 / 157586.
  • the liquid crystal alignment agent of the present invention contains the polymer (A).
  • the liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (A) and, if desired, the second polymer.
  • Other types of polymers include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth). ) Acrylate and the like can be mentioned.
  • the liquid crystal alignment agent is used for producing a liquid crystal alignment film, and is preferably in the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone can be used.
  • the good solvent in the liquid crystal alignment agent of the present invention is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal alignment agent. Is.
  • a solvent also referred to as a poor solvent for improving the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film is used in combination. It is preferable to use the mixed solvent. Specific examples of the organic solvent used in combination are given below, but the present invention is not limited to these examples.
  • diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether 1,2-butoxyethane
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether.
  • diisobutylcarbinol diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene. It is preferable to use glycol monobutyl ether acetate and diisobutyl ketone.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-.
  • These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the type and content of such a solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
  • the liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, and a compound for increasing the strength of the liquid crystal alignment film (hereinafter, cross-linking).
  • an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material
  • a compound for increasing the strength of the liquid crystal alignment film hereinafter, cross-linking.
  • Also referred to as a sex compound a dielectric material for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film, a conductive substance, and the like can be mentioned.
  • the crosslinkable compound contains an oxylanyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, and a meldric acid structure from the viewpoint of less generation of AC afterimage and a high effect of improving film strength.
  • R 71 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or "* -CH 2- OH", and R 72 and R 73 are independently hydrogen atoms and 1 to 3 carbon atoms, respectively. It is an alkyl group or "* -CH 2- OH”. * Indicates a bond.
  • A represents a (m + n) -valent organic group having an aromatic ring.
  • M represents an integer of 1 to 6.
  • n represents an integer from 0 to 4.
  • the compound having an oxylanyl group include, for example, the compound described in paragraph [0037] of JP-A-10-338880, and the compound having a triazine ring as a skeleton described in International Publication WO2017 / 170483. Examples thereof include compounds having two or more oxylanyl groups.
  • the compound having an oxetanyl group include compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of International Publication No. 2011/132751.
  • the compound having a protected isocyanate group include, for example, the compounds having two or more protected isocyanate groups described in paragraphs [0046] to [0047] of JP-A-2014-224978, International Publication No. 2015/141598. Examples thereof include the compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of No. Of these, compounds represented by the following formulas (bi-1) to (bi-3) are preferable.
  • the compound having a protected isothiocyanate group include, for example, the compound having two or more protected isothiocyanate groups described in JP-A-2016-200798.
  • Specific examples of the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline structures described in paragraph [0115] of JP-A-2007-286597.
  • Specific examples of the compound having a group containing a Meldrum's acid structure include the compound having two or more Meldrum's acid structures described in International Publication No. WO2012 / 091088.
  • Specific examples of the compound having a cyclocarbonate group include the compounds described in International Publication No. WO2011 / 1555777.
  • Examples of the alkyl group having 1 to 3 carbon atoms of the groups R 71 , R 72 and R 73 represented by the formula (d) include a methyl group, an ethyl group and a propyl group.
  • Examples of the (m + n) -valent organic group having an aromatic ring in A of the formula (e) include an (m + n) -valent aromatic hydrocarbon group having 5 to 30 carbon atoms and an aromatic hydrocarbon group having 5 to 30 carbon atoms. Examples thereof include (m + n) valent organic groups bonded directly or via a linking group, and (m + n) valent groups having an aromatic heterocycle. Examples of the aromatic hydrocarbon group include benzene and naphthalene.
  • Examples of the aromatic heterocycle include pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, isoquinoline ring, carbazole ring, pyridazine ring, pyrazine ring, benzimidazole ring, benzimidazole ring, indole ring, and quinoxaline.
  • Examples include a ring and an acridin ring.
  • Examples of the linking group include an alkylene group having 1 to 10 carbon atoms, a group obtained by removing one hydrogen atom from the alkylene group, a divalent or trivalent cyclohexane ring, and the like.
  • Any hydrogen atom of the alkylene group may be substituted with an organic group such as a fluorine atom or a trifluoromethyl group.
  • organic group such as a fluorine atom or a trifluoromethyl group.
  • Preferred specific examples include the following formulas (e-1) to (e-9).
  • the above compound is an example of a crosslinkable compound, and is not limited thereto.
  • the crosslinkable compound contained in the liquid crystal alignment agent of the present invention may be one kind or a combination of two or more kinds.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and the crosslinking reaction proceeds. From the viewpoint of exhibiting the desired effect and generating less AC afterimage, the amount is more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N.
  • -Styryltrimethoxysilane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxy Silane cups such as silane, tris- (trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanoxidetriethoxysilane, etc. Ring agent can be mentioned.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent, from the viewpoint of less generation of AC afterimages. Is 0.1 to 20 parts by mass.
  • a liquid crystal alignment film can be produced by using the above liquid crystal alignment agent.
  • the liquid crystal display element according to the present invention includes a liquid crystal alignment film formed by using the liquid crystal alignment agent.
  • the operation mode of the liquid crystal display element according to the present invention is not particularly limited, and is, for example, TN (Twisted Nematic) type, STN type, vertically oriented type (including VA-MVA type, VA-PVA type, etc.), and in-plane switching type. It can be applied to various operation modes such as (IPS type), FFS (Fringe Field Switching) type, and optical compensation bend type (OCB type).
  • the liquid crystal display element according to the present invention can be manufactured, for example, by a process including the following steps (1-1) to (1-3).
  • the substrate used differs depending on the desired operation mode.
  • Steps (1-2) and steps (1-3) are common to each operation mode.
  • Step (1-1): Formation of coating film First, the liquid crystal alignment agent of the present invention is applied onto the substrate, and then the coated surface is heated to form a coating film on the substrate.
  • liquid crystal alignment agent prepared in the above is preferably applied by an offset printing method, a spin coating method, a roll coater method or an inkjet printing method, respectively.
  • the substrate for example, glass such as float glass and soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, and poly (aliphatic olefin) can be used.
  • Examples of the transparent conductive film provided on one surface of the substrate include a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ) and an ITO film made of indium tin oxide (In 2 O 3- SnO 2 ). Can be used.
  • a patterned transparent conductive film for example, a method of forming a patternless transparent conductive film and then forming a pattern by photo-etching; a method of using a mask having a desired pattern when forming the transparent conductive film; And so on.
  • a functional silane compound and a functional titanium compound are applied to the surface of the substrate on which the coating film is formed in order to further improve the adhesiveness between the substrate surface and the transparent conductive film and the coating film. You may perform pretreatment to apply such as in advance.
  • preheating is preferably performed for the purpose of preventing the applied liquid crystal alignment agent from dripping.
  • the prebake temperature is preferably 30 to 200 ° C, more preferably 40 to 150 ° C, and particularly preferably 40 to 100 ° C.
  • the prebake time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes.
  • a firing (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermally imidizing the amic acid structure present in the polymer.
  • the firing temperature (post-baking temperature) at this time is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the film thickness of the film thus formed is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
  • a liquid crystal aligning agent is applied to one surface thereof, and then each coated surface is heated to form a coating film.
  • the materials of the substrate and transparent conductive film used at this time, the coating method, the heating conditions after coating, the patterning method of the transparent conductive film or the metal film, the pretreatment of the substrate, and the preferable film thickness of the coating film to be formed are described above. It is the same as (1-1A).
  • the metal film a film made of a metal such as chromium can be used.
  • a liquid crystal alignment film or a coating film to be a liquid crystal alignment film is formed by applying a liquid crystal alignment agent on the substrate and then removing the organic solvent. To. At this time, by further heating after forming the coating film, the dehydration ring closure reaction of the polyamic acid, the polyamic acid ester, and the polyimide blended in the liquid crystal alignment agent according to the present invention may proceed to obtain a more imidized coating film. ..
  • a process of imparting a liquid crystal alignment ability to the coating film formed in the above step (1-1) is performed.
  • the alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which polarized or non-polarized radiation is applied to the coating film. Processing etc. can be mentioned.
  • the coating film formed in the above step (1-1) can be used as it is as a liquid crystal alignment film, but the coating film is subjected to an alignment ability imparting treatment. You may.
  • ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used as the radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof.
  • the direction of irradiation is diagonal.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
  • the irradiation amount of radiation is preferably 10 to 5,000 mJ / cm 2 , and more preferably 30 to 2,000 mJ / cm 2 .
  • the light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity.
  • the temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, and more preferably 50 to 150 ° C.
  • the light irradiation film obtained in the above step can be used as it is as a liquid crystal alignment film, but the light irradiation film is fired, water or the like. Cleaning with an organic solvent or a combination thereof may be carried out.
  • the firing temperature at this time is preferably 80 to 300 ° C, more preferably 80 to 250 ° C.
  • the firing time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the number of firings may be one or two or more.
  • the photoalignment treatment here corresponds to the treatment of light irradiation in a state where it is not in contact with the liquid crystal layer.
  • the organic solvent used for the above washing is not particularly limited, but specific examples thereof include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-.
  • Examples thereof include 2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • the liquid crystal alignment film after the rubbing treatment is further subjected to a process of changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or one of the surfaces of the liquid crystal alignment film.
  • a resist film may be formed on the portion, a rubbing treatment may be performed in a direction different from the previous rubbing treatment, and then a treatment for removing the resist film may be performed so that the liquid crystal alignment film has a different liquid crystal alignment ability for each region. .. In this case, it is possible to improve the visibility characteristics of the obtained liquid crystal display element.
  • a liquid crystal alignment film suitable for a VA type liquid crystal display element can also be suitably used for a PSA (Polymer sustained alignment) type liquid crystal display element.
  • Step (1-3): Construction of liquid crystal cell (1-3A) A liquid crystal cell is manufactured by preparing two substrates on which the liquid crystal alignment film is formed as described above and arranging the liquid crystal between the two substrates arranged opposite to each other. For example, the following two methods can be mentioned for manufacturing a liquid crystal cell.
  • the first method is a conventionally known method. First, two substrates are arranged facing each other through a gap (cell gap) so that the respective liquid crystal alignment films face each other, the peripheral portions of the two substrates are bonded with a sealant, and the substrate surface and the sealant are used to partition the two substrates.
  • a liquid crystal cell is manufactured by injecting and filling the formed cell gap with a liquid crystal and then sealing the injection hole.
  • the second method is a method called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet photocurable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal is further dropped on a predetermined number of places on the liquid crystal alignment film surface.
  • the other substrate is attached so that the liquid crystal alignment films face each other, the liquid crystal is spread over the entire surface of the substrate, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant to produce a liquid crystal cell. ..
  • the liquid crystal cell produced as described above is further heated to a temperature at which the liquid crystal used is isotropic, and then slowly cooled to room temperature to obtain a flow orientation during liquid crystal filling. It is desirable to remove it.
  • sealing agent for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • liquid crystal examples include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable.
  • a cyclohexane-based liquid crystal, a pyrimidine-based liquid crystal, a dioxane-based liquid crystal, a bicyclooctane-based liquid crystal, a Cuban-based liquid crystal, or the like can be used.
  • cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonaate, and cholesteryl carbonate
  • a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used.
  • the liquid crystal can also contain additional anisotropic dyes.
  • the term "dye” can mean a substance capable of intensively absorbing or transforming light in the visible light region, eg, in the wavelength range of 400 nm to 700 nm, at least in part or in whole, and the term "anisotropy".
  • the "square dye” can mean a substance capable of anisotropically absorbing light in at least a part or the whole range of the visible light region.
  • the color feeling of the liquid crystal cell can be adjusted through the use of the dye as described above.
  • the type of anisotropic dye is not particularly limited, and for example, a black dye (black day) or a color dye (color day) can be used.
  • the ratio of the anisotropic dye to the liquid crystal is appropriately selected within a range that does not impair the desired physical properties.
  • the ratio of the anisotropic dye to 100 parts by weight of the liquid crystal compound is 0.01 to 5 parts by weight.
  • the above ratio can be changed to an appropriate range if necessary.
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates.
  • the voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V.
  • the light to be irradiated for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • the light source of the irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the ultraviolet rays in the preferred wavelength region can be obtained by means of using a light source in combination with, for example, a filter diffraction grating.
  • the irradiation dose of light preferably less than 100 mJ / cm 2 or more 30,000mJ / cm 2, more preferably 100 ⁇ 20,000mJ / cm 2.
  • a liquid crystal cell is constructed in the same manner as in (1-3A) above, and then a liquid crystal cell is constructed.
  • a method of manufacturing a liquid crystal display element may be adopted by undergoing a step of irradiating a liquid crystal cell with light in a state where a voltage is applied between the conductive films of the pair of substrates. According to this method, the merit of the PSA mode can be realized with a small amount of light irradiation.
  • the light irradiation to the liquid crystal cell may be performed in a state where the liquid crystal is driven by applying a voltage, or may be performed in a state where a voltage low enough not to drive the liquid crystal is applied.
  • the voltage to be applied can be, for example, 0.1 to 30 V DC or AC.
  • the above description (1-3B) can be applied to the conditions of the light to be irradiated.
  • the light irradiation process here corresponds to the light irradiation process in a state of being in contact with the liquid crystal layer.
  • the liquid crystal display element according to the present invention can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called "H film” in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between cellulose acetate protective films or the H film itself.
  • a polarizing plate made of the above can be mentioned.
  • the liquid crystal display element according to the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone.
  • a clock for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone.
  • Can be used for various display devices such as various monitors, LCD TVs, and information displays.
  • liquid crystal alignment agent of the present invention a liquid crystal alignment film capable of minimizing afterimages and minimizing bright spots even when physical friction such as rubbing with a spacer is provided.
  • a liquid crystal display element can be obtained. Moreover, the obtained liquid crystal display element has high reliability.
  • AD-1 A compound represented by the following formula (AD-1)
  • the molecular weights of the polyimide precursor and the polyimide are as follows using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It was measured as follows. Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L.
  • GPC room temperature gel permeation chromatography
  • THF tetrahydrofuran
  • Flow velocity 1.0 mL / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • the viscosity of the polyimide polymer was measured by using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34',, R24), measured at a temperature of 25 ° C.
  • THF tetrahydrofuran
  • DCE 1,2-dichloroethane
  • DMAP N, N-dimethyl-4-aminopyridine
  • NMP was added to the obtained polyamic acid solution [1] (30.0 g) to dilute it to 10.0% by mass, and then acetic anhydride (4.83 g) and pyridine (1.50 g) were added as imidization catalysts. The reaction was carried out at 55 ° C. for 2.5 hours. This reaction solution was put into methanol (280 mL), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (1). The imidization ratio of this polyimide was 78.1%, the number average molecular weight was 12,322, and the weight average molecular weight was 44,438.
  • NMP was added to the obtained polyamic acid solution [2] (30.0 g) to dilute it to 10.0% by mass, and then acetic anhydride (4.83 g) and pyridine (1.50 g) were added as imidization catalysts. The reaction was carried out at 55 ° C. for 2.5 hours. This reaction solution was put into methanol (280 mL), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (2). The imidization ratio of this polyimide was 80.1%, the number average molecular weight was 10,582, and the weight average molecular weight was 41,856.
  • NMP was added to the obtained polyamic acid solution [R1] (30.0 g) to dilute it to 10.0% by mass, and then acetic anhydride (4.83 g) and pyridine (1.50 g) were added as imidization catalysts. The reaction was carried out at 55 ° C. for 2.5 hours. This reaction solution was put into methanol (280 mL), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R1). The imidization ratio of this polyimide was 76.1%, the number average molecular weight was 10,958, and the weight average molecular weight was 39,958.
  • Example 1 NMP (22.0 g) was added to the polyimide powder (1) (3.00 g) obtained in Synthesis Example 1 and stirred at 80 ° C. for 15 hours to dissolve.
  • this solution (2.75 g)
  • the polyamic acid solution [3] (3.30 g) obtained in Synthesis Example 3
  • NMP (1.35 g)
  • GBL 3.675 g
  • BCS (3.00 g)
  • AD A 10% by mass diluted solution of NMP (0.248 g) of -1 and a 1% by mass diluted solution of GBL of S-1 (0.825 g) were added, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment agent (V-1). .. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • Example 2 A liquid crystal alignment agent (V-2) was obtained in the same manner as in Example 1 except that the polyimide powder (2) was used instead of the polyimide powder (1) in Example 1. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • Example 1 A liquid crystal aligning agent (W-1) was obtained in the same manner as in Example 1 except that the polyimide powder (R1) was used instead of the polyimide powder (1) in Example 1. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • a sample for adhesion evaluation was prepared as follows.
  • the liquid crystal alignment agents (V-1) and (V-2) obtained in Examples and the liquid crystal alignment agents (W-1) obtained in Comparative Examples were applied to an ITO substrate of 30 mm ⁇ 40 mm by spin coating. did. After drying on a hot plate at 80 ° C. for 120 seconds, it was fired in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a film thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • the two substrates thus obtained were prepared, a bead spacer having a diameter of 4 ⁇ m was applied onto the liquid crystal alignment film surface of one of the substrates, and then a sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped. ..
  • a sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped. ..
  • the liquid crystal alignment film surface of the other substrate was set to the inside, and the bonding was performed so that the overlapping widths around the substrates were 1 cm each.
  • the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm.
  • After fixing the two bonded substrates with clips they were exposed to 3 J of light at 365 nm and thermoset at 120 ° C. for 1 hour to prepare a sample for adhesion evaluation.
  • the liquid crystal alignment agent was applied by spin coating on the ITO surface of a glass substrate having an ITO electrode on the entire surface. After drying on a hot plate at 80 ° C. for 2 minutes, a coating film having a thickness of 100 nm was formed. The surface of the coating film was irradiated with polarized ultraviolet rays so as to have a concentration of 150 mJ / cm 2, and orientation treatment was performed. Then, it was fired at 230 ° C. for 30 minutes using an IR oven to obtain a substrate with a liquid crystal alignment film.
  • This liquid crystal alignment film was rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, pushing length: 0.6 mm).
  • This substrate was measured using an HZ-V3 haze meter manufactured by Suga Test Instruments Co., Ltd. Evaluation was performed by defining a haze value of 0.3 or more as “evil” and a haze value of less than 0.3 as "good”. The results are shown in Table 1.
  • a liquid crystal cell having a configuration of an FFS type liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by the CVD method was formed as the second layer on the counter electrode of the first layer.
  • the thickness of the SiN film of the second layer is 500 nm, and it functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an IZO film was arranged as the third layer to form two pixels, a first pixel and a second pixel. ..
  • the size of each pixel is 10 mm in length and about 5 mm in width.
  • the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer is a comb tooth formed by arranging a plurality of dogleg-shaped electrode elements whose central portion is bent, as in the figure described in Japanese Patent Application Laid-Open No. 2014-77845 (Japanese Patent Publication). It has a shape.
  • each electrode element in the lateral direction is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrodes forming each pixel are configured by arranging a plurality of bent, dogleg-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is bent in the central portion like the electrode elements. , Bold, with a rectangle-like shape.
  • Each pixel is divided into upper and lower parts with a bent portion in the center as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion. Comparing the first region and the second region of each pixel, the forming directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode elements of the pixel electrodes are formed so as to form an angle (clockwise) of + 80 ° in the first region of the pixel.
  • the electrode elements of the pixel electrodes are formed so as to form an angle (clockwise) of ⁇ 80 °. That is, in the first region and the second region of each pixel, the direction of the rotation operation (inplane switching) of the liquid crystal induced by the application of the voltage between the pixel electrode and the counter electrode in the substrate surface is determined. It was configured to be in opposite directions.
  • the liquid crystal alignment agents obtained in the synthetic example and the comparative synthetic example were filtered through a 1.0 ⁇ m filter, and then applied to the prepared substrate with electrodes by spin coating. It was then dried for 120 seconds on a hot plate set at 80 ° C.
  • the substrate was irradiated with linearly polarized ultraviolet rays from the vertical direction through a wavelength selection filter and a polarizing plate. At this time, the direction of the plane of polarization was set so that the direction of the line segment obtained by projecting the plane of polarized ultraviolet rays onto the substrate was inclined by 80 ° with respect to the third layer IZO comb tooth electrode.
  • a substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm that had been subjected to alignment treatment.
  • a substrate with a polyimide liquid crystal alignment film was obtained by subjecting the alignment treatment to a glass substrate having a columnar spacer having a height of 4 ⁇ m and having an ITO electrode formed on the back surface in the same manner as described above.
  • a set of these two substrates with a liquid crystal alignment film is printed with a sealant on one substrate with the liquid crystal injection port left, and the other substrate is exposed to polarized ultraviolet rays with the liquid crystal alignment film surfaces facing each other.
  • Liquid crystal MLC-3019 (Positive liquid crystal manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS type liquid crystal cell. Then, the obtained liquid crystal cell was heated at 120 ° C. for 30 minutes, left at 23 ° C. overnight, and then used for evaluation of liquid crystal orientation.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine compounds WA-1 and WA-2 is the liquid crystal alignment obtained from the liquid crystal alignment agent using the diamine compound A5. It was found that it showed higher adhesion than the film. Specifically, it is shown in the comparison between Examples 1 and 2 and Comparative Example 1 shown in Table 1. Further, in the film strength evaluation, the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine compounds WA-1 and WA-2 has a higher film strength than the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine compound A5. It turned out to show. Specifically, it is shown in the comparison between Examples 1 and 2 and Comparative Example 1 shown in Table 1.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine compounds WA-1 and WA-2 may exhibit the same liquid crystal alignment film as the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine compound A5. Do you get it. From the above, when WA-1 and WA-2 having a biphenyl skeleton and a specific side chain are used, it is possible to improve the seal adhesion and the film strength while maintaining the liquid crystal orientation. It will be possible.
  • a liquid crystal display element using a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention can be suitably used for a liquid crystal display element. These elements are also useful in liquid crystal displays for display purposes, as well as in dimming windows and optical shutters that control the transmission and blocking of light.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

残像の発生が少なく、スペーサによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる、信頼性の高い液晶配向膜、該液晶配向膜が得られる液晶配向剤、および該液晶配向膜を具備した、液晶表示素子の提供を目的とする。 下記式(1)で表される構造を有するジアミン、それから得られる重合体及びその重合体を含有する液晶配向剤。Aは水素原子、炭素数1~3のアルキル基、ベンジル基、p-メトキシベンジル基、炭素数1~3のアルコキシ基、アセチル基、ベンゾイル基、t-ブチルオキシカルボニル基、9-フルオレニルメトキシカルボニル基、又はRSi基を表し、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基またはフェニル基を表す。

Description

液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
 本発明は、液晶表示素子に用いられる重合体、液晶配向剤、液晶配向膜、及び液晶表示素子、並びにそれらに用いる新規ジアミンに関する。
 液晶表示素子には、電極構造、使用する液晶分子の物性、製造工程等が異なる種々の駆動方式が開発されており、例えばTN(twisted nematic)型、STN(super-twisted nematic)型、VA(vertical alignment)型、MVA(multi-domain vertical alignment)型、IPS(in-plane switching)型、FFS(fringe field switching)型、PSA(polymer-sustained alignment)型等の液晶表示素子が知られている。
 これらの液晶表示素子は、液晶分子を配向するために液晶配向膜を具備している。液晶配向膜の材料は、耐熱性、機械的強度、液晶との親和性等の各種の特性が良好である点から、一般に、ポリアミック酸、ポリイミド、ポリシロキサン等の重合体からなる被膜が使用されている。
 近年では、液晶表示素子の高画質化に対する要求がますます高くなっている。特に、医療用機器のディスプレイや液晶テレビにおいては、長時間駆動した場合に像が残る、いわゆる「残像」が大きな課題となっており、残像の低減に対する要求が高い。液晶表示素子の更なる品質向上の観点から、従来よりも残像が生じにくい液晶表示素子を得ることが望まれている。
 このような状況に鑑みて、残像の低減に優れた液晶表示素子を与える液晶配向膜並びに液晶配向剤が知られている(例えば、特許文献1、特許文献2、特許文献3参照)。
 また、上記用途における液晶表示素子では、過酷な使用環境での長期使用に耐えうる特性も要求されており、特許文献4には特定化合物を含む液晶配向剤が、長時間バックライトに曝された後であっても、電圧保持率の低下が小さい液晶配向膜が得られ、信頼性の高い液晶表示素子を得ることが開示されている。
国際公開第2016/063834号パンフレット 国際公開第2015/060366号パンフレット 特開2018-054761号公報 国際公開第2010/074269号パンフレット
 さらに、いわゆるタッチパネル式の液晶表示素子が広く普及したことで、その表示素子にユーザーが指で強い押圧力を与えることが頻繁に行われている。このとき、液晶表示素子の内部に存在するスペーサが液晶表示素子内で移動し、液晶配向膜をこすり付ける。スペーサによってストレスを与えられた液晶配向膜は液晶の配向を規制することができず、液晶表示素子を、例えば、黒表示させているにも関わらず、スペーサ周辺部から光が抜け、輝点として表示されることが問題となっている。
 従来提案された液晶配向剤の構成は必ずしも上記の課題を全て達成できるものとはいえなかった。本発明は、以上のような事情に基づいてなされるものであり、その目的は、残像の発生が少なく、スペーサによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる、信頼性の高い液晶表示素子を提供することである。また、このような液晶表示素子に好適な膜強度の高い液晶配向膜及びその液晶配向剤を提供することである。
 また、最近の液晶表示素子における有効画素面積の拡大化のため、基板上の周辺外縁部で画素を形成しない、所謂額縁領域をますます小さくすることが要求されている。パネルの狭額縁化に伴って、2枚の基板を接着させて液晶表示素子を作製する際に用いるシール剤が、ポリイミド系液晶配向膜上に塗布されるようになるが、ポリイミド上には極性基がないため、シール剤と液晶配向膜表面で共有結合が形成されず、基板同士の接着が不十分となる問題点があった。従って、ポリイミド系液晶配向膜とシール剤や基板との接着性(密着性)を向上させることが課題となる。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造を導入することで種々の特性が同時に改善されることを見出し、本発明を完成した。本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
1.下記式(1)で表される構造を有するジアミンから得られる重合体を含有する液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
 Aは水素原子、炭素数1~3のアルキル基、ベンジル基、p-メトキシベンジル基、炭素数1~3のアルコキシ基、アセチル基、ベンゾイル基、t-ブチルオキシカルボニル基、9-フルオレニルメトキシカルボニル基、又はRSi基を表し、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基またはフェニル基を表す。
 本発明の液晶配向剤によれば、残像の発生が少なく、スペーサによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる液晶表示素子及びこれを与える液晶配向膜が得られる。
 本発明の液晶配向剤によれば、シール剤との密着性に優れた液晶配向膜が得られる。この液晶配向膜を用いることにより、基板同士の密着性に優れ、衝撃に強い液晶表示素子が得られる。シール剤との密着性が向上するメカニズムについては、必ずしも明らかではないが、特定ジアミンが有するヒドロキシ基やメトキシ基、または、加熱によって保護基が脱離して生成するヒドロキシ基が、液晶配向膜の表面に露出し、かかる基と、シール剤中の官能基との間の相互作用により、液晶配向膜とシール剤との密着性が向上するものと思われる。
 本発明の液晶配向剤は、上記式(1)で表される構造を有するジアミンから得られる重合体(以下、特定重合体とも言う)を含有する液晶配向剤である。以下、各条件につき詳述する。
<特定構造を有するジアミン>
 本発明の重合体は、上記式(1)の構造を有するジアミンから得られる重合体である。
 上記式(1)のジアミンの具体例としては以下が例示出来るが、これらに限定されない。中でも、蓄積電荷の緩和の観点から、(1-1)、(1-2)、(1-3)が特に好ましい。
Figure JPOXMLDOC01-appb-C000007
<重合体>
 本発明の重合体は、上記ジアミンを用いて得られる重合体である。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられるが、液晶配向剤としての使用の観点から、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であるとより好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記式(6)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を含むジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
<<テトラカルボン酸二無水物>>
 Xはテトラカルボン酸誘導体に由来する4価の有機基であり、その構造は特に限定されるものではない。また、ポリイミド前駆体中のXは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Xの具体例をあえて示すならば、国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
 以下に、好ましいXの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上記の構造のうち、(A-1)、(A-2)は光配向性という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
<<重合体(その他の構造単位)>>
 式(6)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(7)で表される構造単位、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種を含んでいても良い。
Figure JPOXMLDOC01-appb-C000011
 式(7)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を主鎖方向に含まないジアミンに由来する2価の有機基であり、Rは、前記式(6)のRの定義と同じであり、Rは水素原子又は炭素数1~4のアルキル基を表す。また、2つあるRの少なくとも一方は水素原子であることが好ましい。
 Xの具体例としては、好ましい例も含めて式(6)のXで例示したものと同じ構造を挙げることができる。また、ポリイミド前駆体中のYは式(1)の構造を主鎖方向に含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Yの具体例をあえて示すならば、国際公開公報2015/119168の4項に掲載される式(2)の構造、及び、8項~12項に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8項に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8項に掲載される式(3)の構造;日本国公開特許公報2012-173514の8項に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9項に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
 以下に、好ましいYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記の構造のうち、(B-28)、(B-29)などは、膜強度の更なる向上という観点から特に好ましく、(B-1)~(B-3)などは、液晶配向性の更なる向上という観点から特に好ましく、(B-14)~(B-18)および(B-27)などは、蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(B-26)などは、電圧保持率の更なる向上という観点から好ましい。
 式(6)で表される構造単位を含むポリイミド前駆体が、式(7)で表される構造単位を同時に含む場合、式(6)で表される構造単位は、式(6)と式(7)の合計に対して10モル%以上であることが好ましく、より好ましくは15モル%以上であり、特に好ましくは20モル%以上である。
 本発明に用いるポリイミド前駆体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
 式(1)で表される2価の基を主鎖に有するポリイミドとしては、前記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 本発明の液晶配向剤は、上記の特定重合体と有機溶媒とを含有する組成物であり、異なる構造の特定重合体を2種以上含有していてもよい。また、本発明の液晶配向剤は、本発明に記載の効果を奏する限度において、特定重合体以外の重合体(以下、第2の重合体とも言う)や各種の添加剤、を含有していてもよい。
 本発明の液晶配向剤が第2の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上であることが好ましく、その一例として5~95質量%が挙げられる。
 第2の重合体としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレンまたはその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 特に、テトラカルボン酸二無水物成分とジアミン成分とから得られるポリアミック酸(以下、第2のポリアミック酸とも言う)は第2の重合体として好ましい。
 第2のポリアミック酸を得るためのテトラカルボン酸二無水物成分としては、下記式(11)で表される化合物を挙げることができる。当該酸二無水物成分は、1種類の化合物からなる物であってもよく、2種類以上の化合物からなる物であってもよい。
Figure JPOXMLDOC01-appb-C000016
 式(11)中、Aは4価の有機基であり、好ましくは炭素数4~30の4価の有機基である。
 Aの具体例としては、好ましい例も含めて式(6)のXで例示したものと同じ構造を挙げることができる。
 第2のポリアミック酸を得るためのジアミン成分としては、目的に応じて適宜決定することができるが、例えば下記式(12)で表されるジアミンを用いることができる。
Figure JPOXMLDOC01-appb-C000017
(Yは2価の有機基を表す。Aは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基であり、同一でも異なってもよい。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。)
 以下に、第2のポリアミック酸を得るためのジアミン成分として用いると好ましい、式(12)のYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
 電気特性や緩和特性を改善する目的では、Yは第二級又は第三級窒素原子を有する2価の有機基、分子内に-NH-CO-NH-を有する2価の有機基であることが好ましい。Yが第二級又は第三級窒素原子を有する2価の有機基である場合における式(12)の具体例としては、国際公開公報WO2017/126627に記載のピロール構造を有するジアミン、好ましくは下式(pr)で表される構造を有するジアミン;
Figure JPOXMLDOC01-appb-C000019
(Rは水素原子、フッ素原子、シアノ基、ヒドロキシ基、メチル基を表し、Rはそれぞれ独立して単結合又は基「*1-R-Ph-*2」を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*1は式(pr)中のベンゼン環と結合する部位を表し、*2は式(pr)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。)、国際公開公報WO2018/062197に記載のピロール構造を有するジアミン、好ましくは下式(pn)で表される構造を有するジアミン;
Figure JPOXMLDOC01-appb-C000020
(R及びRはそれぞれ独立に水素原子又はメチル基を表し、Rは単結合又は基「*1-R-Ph-*2」を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*1は式(pn)中のベンゼン環と結合する部位を表し、*2は式(pn)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。)、国際公開公報WO2018/110354に記載のカルバゾール構造を有するジアミン、好ましくは下式(cz)で表される構造を有するジアミン;
Figure JPOXMLDOC01-appb-C000021
(Rは水素原子又はメチル基を表し、Rはメチル基を表す。)、国際公開公報WO2015/046374の段落[0173]~[0188]に記載の窒素含有複素環を有するジアミンや特開2016-218149号公報の段落[0050]に記載の窒素含有構造を有するジアミン、下記式(BP)で表されるジアミン;
Figure JPOXMLDOC01-appb-C000022
(Xはビフェニル骨格又はフルオレン環であり、Yはベンゼン環、ビフェニル骨格、又は-Ph-Z-Ph-(Phはフェニレン基を表す。)から選ばれる基であり、Zは-O-、-NH-、-CH-、-SO-、-C(CH-または-C(CF-で表される2価の基である。AおよびBは水素原子又はメチル基である)、2,3-ジアミノピリジン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、5,6-ジアミノ-2,3-ジシアノピラジン、5,6-ジアミノ-2,4-ジヒドロキシピリミジン、2,4-ジアミノ-6-ジメチルアミノ-1,3,5-トリアジン、1,4-ビス(3-アミノプロピル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、2,4-ジアミノ-6-メチル-1,3,5-トリアジン、2,4-ジアミノ-1,3,5-トリアジン、4,6-ジアミノ-2-ビニル-1,3,5-トリアジン、3,5-ジアミノ-1,2,4-トリアゾール、6,9-ジアミノ-2-エトキシアクリジンラクテート、3,8-ジアミノ-6-フェニルフェナントリジン、1,4-ジアミノピペラジン、3,6-ジアミノアクリジン、ビス(4-アミノフェニル)-N-フェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、4,4’-ジアミノジフェニルアミン、3,6-ジアミノカルバゾール、9-メチル-3,6-ジアミノカルバゾール、9-エチル-3,6-ジアミノカルバゾール、下記式(w1)~(w2)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(Spは、フェニレン、ピロリジン、ピペリジン、ピペラジン、炭素数2~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基を表す。)
 Yが分子内に-NH-CO-NH-を有する2価の有機基である場合における前記式(12)の具体例としては、下記式(4)で、Aが-NH-CO-NH-であるか、炭素数2~20のアルキレン基の-CH-の少なくとも一つが-NH-CO-NH-で置換された基、又は炭素数2~20のアルキレン基の-CH-の少なくとも一つが-NH-CO-NH-で置換され、且つ、他の-CH-の少なくとも一つが-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)から選ばれる基で置換された基である場合のジアミンなどを挙げることができる。より好ましいジアミンの具体例としては、下記式(U-1)~(U-9)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(Aは単結合、-NH-CO-NH-、又は炭素数2~20のアルキレン基(但し、該アルキレン基の任意の-CH-は、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)又は-NH-CO-NH-で置換されていてもよい。)を表す。Aは、ハロゲン原子、ヒドロキシ基、又は炭素数1~5のアルキル基若しくはアルコキシ基(但し、該アルキル基若しくはアルコキシ基の任意の水素原子は、ハロゲン原子で置換されていてもよい。)を表す。aは0~4の整数であり、aが2以上の場合、Aは同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。)
Figure JPOXMLDOC01-appb-C000025
 上記式(w1)~(w2)で表されるジアミンの好ましい具体例としては、下記式(n3-1)~(n3-7)で表されるジアミン、下記式(n4-1)~(n4-6)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 印刷性を改善する目的では、カルボキシル基(COOH基)や水酸基(OH基)を有するジアミン化合物を用いることもできる。具体的には、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸または3,5-ジアミノ安息香酸を挙げることができる。なかでも、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸または3,5-ジアミノ安息香酸が好ましい。また、下記の式[3b-1]~式[3b-4]で示されるジアミン化合物およびこれらのアミノ基が第二級のアミノ基であるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000028
(式[3b-1]中、Qは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示し、mおよびmはそれぞれ独立して、0~4の整数を示し、かつm+mは1~4の整数を示し、式[3b-2]中、mおよびmはそれぞれ独立して、1~5の整数を示し、式[3b-3]中、Qは炭素数1~5の直鎖または分岐アルキレン基を示し、mは1~5の整数を示し、式[3b-4]中、QおよびQはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示し、mは1~4の整数を示す。)
 第2のポリアミック酸を得るためのジアミン成分としては、上記以外に特定重合体で用いたジアミンや公知のジアミンを用いることができるが、本発明はこれらに限定されるものではない。第2のポリアミック酸を得るためのジアミン成分は、一種類のジアミンであってもよく、2種類以上のジアミンが併用されていてもよい。
<ポリアミック酸、ポリアミック酸エステル及びポリイミドの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸及びポリイミドは、例えば、国際公開公報WO2013/157586に記載されるような公知の方法で合成出来る。
<液晶配向剤>
 本発明の液晶配向剤は、重合体(A)を含有する。本発明の液晶配向剤は、重合体(A)及び所望により第2の重合体に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとることが好ましい。本発明の液晶配向剤においても前記した重合体成分と、有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド(これらを総称して「良溶媒」ともいう)などを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンを用いることが好ましい。本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう)を併用した混合溶媒を使用することが好ましい。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジイソブチルケトンを用いることが好ましい。
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテルなどを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
 前記架橋性化合物として、AC残像の発生が少なく、膜強度の改善効果が高い観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基及び下記式(d)で表される基よりなる群から選ばれる少なくとも1種の基を有する化合物、又は下記式(e)で表される化合物から選ばれる化合物(以下、これらを総称して化合物(C)ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、R71は、水素原子、炭素数1~3のアルキル基又は「*-CH-OH」であり、R72及びR73は、それぞれ独立に水素原子、炭素数1~3のアルキル基又は「*-CH-OH」である。*は結合手であることを示す。Aは芳香環を有する(m+n)価の有機基を表す。mは1~6の整数を表し、nは0~4の整数を表す。)
 オキシラニル基を有する化合物の具体例としては、例えば、特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開公報WO2017/170483号に記載のトリアジン環を骨格にもつ化合物などの、2個以上のオキシラニル基を有する化合物が挙げられる。これらのうち、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、下記式(r-1)~(r-3)で表される化合物などの窒素原子を含有する化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000030
 オキセタニル基を有する化合物の具体例としては、例えば、国際公開公報2011/132751号の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等が挙げられる。
 保護イソシアネート基を有する化合物の具体例としては、例えば、特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、国際公開公報2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等が挙げられる。これらのうち、下記式(bi-1)~(bi-3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000031
 保護イソチオシアネート基を有する化合物の具体例としては、例えば、特開2016-200798号公報に記載の、2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
 オキサゾリン環構造を含む基を有する化合物の具体例としては、例えば、特開2007-286597号公報の段落[0115]に記載の、2個以上のオキサゾリン構造を含む化合物が挙げられる。
 メルドラム酸構造を含む基を有する化合物の具体例としては、例えば国際公開公報WO2012/091088号に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
 シクロカーボネート基を有する化合物の具体例としては、例えば、国際公開公報WO2011/155577号に記載の化合物が挙げられる。
 前記式(d)で表される基のR71、R72、R73の炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基が挙げられる。
 前記式(d)で表される基を有する化合物の具体例としては、例えば、国際公開公報WO2015/072554号や、特開2016-118753号公報の段落[0058]に記載の、前記式(d)で表される基を2個以上有する化合物、特開2016-200798号公報に記載の化合物等が挙げられる。これらのうち、下記式(hd-1)~(hd-8)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000032
 前記式(e)のAにおける芳香環を有する(m+n)価の有機基としては、炭素数5~30の(m+n)価の芳香族炭化水素基、炭素数5~30の芳香族炭化水素基が直接又は連結基を介して結合した(m+n)価の有機基、芳香族複素環を有する(m+n)価の基が挙げられる。前記芳香族炭化水素基としては、例えばベンゼン、ナフタレンなどが挙げられる。芳香族複素環としては、例えばピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環などが挙げられる。前記連結基としては、炭素数1~10のアルキレン基、又は前記アルキレン基から水素原子を一つ除いた基、2価又は3価のシクロヘキサン環等が挙げられる。尚、前記アルキレン基の任意の水素原子は、フッ素原子又はトリフルオロメチル基などの有機基で置換されてもよい。具体例を挙げるならば、国際公開公報WO2010/074269号に記載の化合物等が挙げられる。好ましい具体例としては、下記式(e-1)~(e-9)が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、国際公開公報2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、本発明の液晶配向剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、架橋反応が進行し目的の効果を発現し、かつAC残像の発生が少ない観点から、より好ましくは1~15質量部である。
 前記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。これらシランカップリング剤を使用する場合は、AC残像の発生が少ない観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
<液晶配向膜・液晶表示素子>
 上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN(Twisted Nematic)型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS(Fringe Field Switching)型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
 本発明に係る液晶表示素子は、例えば以下の工程(1-1)~(1-3)を含む工程により製造することができる。工程(1-1)は、所望の動作モードによって使用基板が異なる。工程(1-2)及び工程(1-3)は各動作モード共通である。
[工程(1-1):塗膜の形成]
 先ず、基板上に本発明の液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に塗膜を形成する。
(1-1A)
 例えばTN型、STN型又はVA型の液晶表示素子を製造する場合、まず、パターニングされた透明導電膜が設けられている基板二枚を一対として、その各透明性導電膜形成面上に、上記で調製した液晶配向剤を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後、フォト・エッチングによりパターンを形成する方法;透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法;などによることができる。液晶配向剤の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成する面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は、好ましくは0.25~10分であり、より好ましくは0.5~5分である。その後、溶剤を完全に除去し、必要に応じて重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は、好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmであり、より好ましくは0.005~0.5μmである。
(1-1B)
 IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。このとき使用される基板及び透明導電膜の材質、塗布方法、塗布後の加熱条件、透明導電膜又は金属膜のパターニング方法、基板の前処理、並びに形成される塗膜の好ましい膜厚については上記(1-1A)と同様である。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
 上記(1-1A)及び(1-1B)のいずれの場合も、基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって液晶配向膜又は液晶配向膜となる塗膜が形成される。このとき、塗膜形成後に更に加熱することによって、本発明に係る液晶配向剤に配合されるポリアミック酸、ポリアミック酸エステル及びポリイミドの脱水閉環反応を進行させ、よりイミド化された塗膜としてもよい。
[工程(1-2):配向能付与処理]
 TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程(1-1)で形成した塗膜に液晶配向能を付与する処理を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向能付与処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程(1-1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。
 光配向処理により塗膜に液晶配向能を付与する場合、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは10~5,000mJ/cmであり、より好ましくは30~2,000mJ/cmである。
 また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。
 また、150~800nmの波長の光を含む紫外線を使用する場合には、上記工程で得られた光照射膜をそのまま液晶配向膜として使用することができるが、該光照射膜を焼成、水や有機溶媒による洗浄、又はこれらの組合せを実施してもよい。このときの焼成温度は、好ましくは80~300℃であり、より好ましくは80~250℃である。焼成時間は、好ましくは5~200分であり、より好ましくは10~100分である。尚、焼成の回数は1回若しくは2回以上の回数で行ってもよい。ここでの光配向処理が、液晶層と接触していない状態での光照射の処理に相当する。
 上記洗浄に使用する有機溶媒としては、特に限定されるものではないが、具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。
 なお、ラビング処理後の液晶配向膜に対して更に、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、液晶配向膜が領域ごとに異なる液晶配向能を持つようにしてもよい。この場合、得られる液晶表示素子の視界特性を改善することが可能である。VA型の液晶表示素子に好適な液晶配向膜は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
[工程(1-3):液晶セルの構築]
(1-3A)
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤で貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより液晶セルを製造する。第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより液晶セルを製造する。いずれの方法による場合でも、上記のようにして製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 シール剤としては、例えば硬化剤及びスペーサとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。
 液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C-15」、「CB-15」(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。液晶はまた、異方性染料を追加で含むことができる。用語「染料」は、可視光領域、例えば、400nmないし700nm波長範囲内で少なくとも一部または全体範囲内の光を集中的に吸収または変形させることができる物質を意味することができ、用語「異方性染料」は前記可視光領域の少なくとも一部または全体範囲で光の異方性吸収が可能な物質を意味することができる。
 前記のような染料の使用を通じて液晶セルの色感を調節することができる。異方性染料の種類は特別に制限されないし、例えば、黒色染料(black dye)またはカラー染料(color dye)を使用することができる。異方性染料の液晶に対する割合は目的とする物性を損なわない範囲内で適切に選択され、例えば、異方性染料は液晶化合物100重量部に対して0.01重量部~5重量部の割合で含まれることができるが、前記の割合は必要によって適正範囲に変更することができる。
(1-3B)
 PSA型液晶表示素子を製造する場合には、液晶と共に例えば下記式(w-1)~(w-5)などの光重合性化合物を注入又は滴下する点以外は上記(1-3A)と同様にして液晶セルを構築する。
Figure JPOXMLDOC01-appb-C000034
 その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。なお、上記の好ましい波長領域の紫外線は、光源を、例えばフィルター回折格子などと併用する手段などにより得ることができる。光の照射量としては、好ましくは100mJ/cm以上30,000mJ/cm未満であり、より好ましくは100~20,000mJ/cmである。
(1-3C)
 光重合性基を有する化合物(重合体又は添加剤)を含む液晶配向剤を用いて基板上に塗膜を形成した場合、上記(1-3A)と同様にして液晶セルを構築し、その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する工程を経ることにより液晶表示素子を製造する方法を採用してもよい。この方法によれば、PSAモードのメリットを少ない光照射量で実現可能である。液晶セルに対する光照射は、電圧印加により液晶を駆動させた状態で行ってもよく、あるいは液晶を駆動させない程度に低い電圧を印加した状態で行ってもよい。印加する電圧は、例えば0.1~30Vの直流又は交流とすることができる。照射する光の条件については、上記(1-3B)の説明を適用することができる。ここでの光照射処理が、液晶層と接触した状態での光照射の処理に相当する。
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明に係る液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
 本発明に係る液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
 上記のようにして、本発明の液晶配向剤を用いることで、残像の発生が少なく、スペーサによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる液晶配向膜並びにこれを具備した液晶表示素子を得ることができる。また、得られる液晶表示素子は高い信頼性を有する。
以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略語は、以下の通りである。
(液晶)
MLC-3019(メルク社製、ポジ型液晶)
(ジアミン化合物)
WA-1:式[WA-1]で表される化合物
WA-2:式[WA-2]で表される化合物
Figure JPOXMLDOC01-appb-C000035
(その他ジアミン化合物)
 A1~A7:それぞれ、式[A1]~式[A7]で表される化合物
Figure JPOXMLDOC01-appb-C000036
(Bocは、tert-ブトキシカルボニル基を表す。)
(酸二無水物化合物)
 B1~B3:それぞれ、式[B1]~式[B3]で表される化合物
Figure JPOXMLDOC01-appb-C000037
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 GBL:γ-ブチルラクトン
(添加剤)
S-1:3-グリシドキシプロピルトリエトキシシラン
(架橋剤)
AD-1:下記式(AD-1)で表される化合物
Figure JPOXMLDOC01-appb-C000038
(分子量測定)
 ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
(ポリイミドのイミド化率の測定)
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(粘度測定)
 合成例または比較合成例において、ポリイミド系重合体の粘度はE型粘度計TVE-22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
 (WA-1)は下記先行文献を参考に合成を実施した。
Salvatore Zarra, Jack K. Clegg, Jonathan R. Nitschke, Angewandte Chemie International Edition, 52, 18, (4837-4840, Supporting Information:S2-S3), (2013).
 (WA-2)は文献等未公開の新規化合物であり、以下に合成法を詳述する。
 下記合成例1に記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
 装置:BRUKER ADVANCE III-500MHz
 測定溶媒:DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
 本発明における略号はそれぞれ以下の意味を示す。
 THF:テトラヒドロフラン
 DCE:1,2-ジクロロエタン
 DMAP:N,N-ジメチル-4-アミノピリジン
<<モノマー合成例1 WA-2の合成>>
Figure JPOXMLDOC01-appb-C000039
<化合物[1]の合成>
 1,2-ジクロロエタン(540g)中、(4,4’-ジニトロ-[1,1’-ビフェニル]-2,2’-ジイル)ジメタノール(60.0g,0.197mol)、トリエチルアミン(45.9g,0.454mol)、N,N-ジメチル-4-アミノピリジン(2.39g,0.0197mol)を仕込み、氷冷条件にて撹拌した。1,2-ジクロロエタン(60g)で希釈した二炭酸ジ-tert-ブチル(94.7g,0.434mol)を発熱に注意しながら滴下し、発熱しなくなったところで室温条件にて終夜撹拌した。反応終了後、撹拌を停止し、水(600g)を加えて分液洗浄し、クロロホルム(300g×2回)で分液抽出した。有機相を濃縮し、得られた粗物を酢酸エチル/ヘキサン=2/1(体積比)混合溶媒を用いてシリカゲルカラムクロマトグラフィーにより精製し、得られた溶液を濃縮および乾燥させ、化合物[1]の粗物を得た(収量:102g)。得られた化合物は、そのまま次の工程に使用した。
H-NMR(500MHz) in DMSO-d:8.41ppm(s,2H), 8.33ppm(d,2H,J=8.5Hz),7.58ppm(d,2H,J=8.5Hz),4.90ppm(s,4H),1.39ppm(s,18H).
<WA-2の合成>
 テトラヒドロフラン(600g)中、化合物[1]粗物(101g)、3%プラチナカーボン(含水品)(8.00g)を仕込み、水素雰囲気下室温条件で終夜撹拌した。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物にメタノールを加えて再度濃縮し、乾燥させ、WA-2を得た(収量:86.6g,0.195mol)。
H-NMR(500MHz) in DMSO-d:6.72ppm(d,2H,J=8.0Hz),6.63ppm(d,2H,J=2.5Hz),6.52ppm(d,1H,J=2.5Hz),6.50ppm(d,1H,J=2.0Hz),5.15ppm(s,4H),4.64-4.59ppm(m,4H),1.34ppm(s,18H).
(合成例1)
 WA-1(2.19g,9.00mmol)、A1(1.83g,7.50mmol)、A2(1.72g,7.50mmol)、A4(2.04g,6.00mmol)及びB2(1.12g,4.50mmol)をNMP(50.6g)中で混合し、50℃で3時間反応させた後、B1(5.32g,23.7mmol)、及びNMP(30.1g)を加え、40℃で15時間反応させ、樹脂固形分濃度15質量%のポリアミック酸溶液[1](粘度 384mPa・s)を得た。
 得られたポリアミック酸溶液[1](30.0g)に、NMPを加え10.0質量%に希釈した後、イミド化触媒として無水酢酸(4.83g)及びピリジン(1.50g)を加え、55℃で2.5時間反応させた。この反応溶液をメタノール(280mL)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は78.1%であり、数平均分子量は12,322であり、重量平均分子量は44,438であった。
(合成例2)
 WA-2(4.00g,9.00mmol)、A1(1.83g,7.50mmol)、A2(1.72g,7.50mmol)、A4(2.04g,6.00mmol)及びB2(1.12g,4.50mmol)をNMP(50.6g)中で混合し、50℃で3時間反応させた後、B1(5.32g,23.7mmol)、及びNMP(30.1g)を加え、40℃で15時間反応させ、樹脂固形分濃度15質量%のポリアミック酸溶液[2](粘度 188mPa・s)を得た。
 得られたポリアミック酸溶液[2](30.0g)に、NMPを加え10.0質量%に希釈した後、イミド化触媒として無水酢酸(4.83g)及びピリジン(1.50g)を加え、55℃で2.5時間反応させた。この反応溶液をメタノール(280mL)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は80.1%であり、数平均分子量は10,582であり、重量平均分子量は41,856であった。
(合成例3)
 A6(1.19g,6.00mmol)、A7(4.78g,24.0mmol)及びB2(3.75g,15.0mmol)をNMP(55.1g)中で混合し、50℃で3時間反応させた後、B3(4.06g,13.8mmol)、及びNMP(23.0g)を加え、70℃で15時間反応させ、樹脂固形分濃度15質量%のポリアミック酸溶液[3](粘度 941mPa・s)を得た。
 ポリアミック酸溶液[3]の数平均分子量は15,244であり、重量平均分子量は40,724であった。
(比較合成例1)
 A5(1.91g,9.00mmol)、A1(1.83g,7.50mmol)、A2(1.72g,7.50mmol)、A4(2.04g,6.00mmol)及びB2(1.12g,4.50mmol)をNMP(50.6g)中で混合し、50℃で3時間反応させた後、B1(5.32g,23.7mmol)、及びNMP(30.1g)を加え、40℃で15時間反応させ、樹脂固形分濃度15質量%のポリアミック酸溶液[R1](粘度 365mPa・s)を得た。
 得られたポリアミック酸溶液[R1](30.0g)に、NMPを加え10.0質量%に希釈した後、イミド化触媒として無水酢酸(4.83g)及びピリジン(1.50g)を加え、55℃で2.5時間反応させた。この反応溶液をメタノール(280mL)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R1)を得た。このポリイミドのイミド化率は76.1%であり、数平均分子量は10,958であり、重量平均分子量は39,958であった。
<液晶配向剤の調製>
 実施例及び比較例では、液晶配向剤の調製例を記載する。実施例及び比較例で得られた液晶配向剤を用い、液晶表示素子の作製、及び各種評価を行った。
(実施例1)
 合成例1で得られたポリイミド粉末(1)(3.00g)に、NMP(22.0g)を加え80℃にて15時間撹拌して溶解させた。この溶液(2.75g)に、合成例3で得られたポリアミック酸溶液[3](3.30g)とNMP(1.35g)、GBL(3.675g)、BCS(3.00g)、AD-1のNMP10質量%希釈溶液(0.248g)、S-1のGBL1質量%希釈溶液(0.825g)を加え、室温で5時間撹拌して、液晶配向剤(V-1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
(実施例2)
 実施例1において、ポリイミド粉末(1)の代わりにポリイミド粉末(2)としたこと以外は、実施例1と同様にして液晶配向剤(V-2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
(比較例1)
 実施例1において、ポリイミド粉末(1)の代わりにポリイミド粉末(R1)としたこと以外は、実施例1と同様にして液晶配向剤(W-1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<シール密着性評価用サンプル作製>
 密着性評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート塗布にて実施例で得られた液晶配向剤(V-1)、(V-2)及び比較例で得られた液晶配向剤(W-1)を塗布した。80℃のホットプレート上で120秒間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させ液晶配向膜付き基板を得た。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に直径4μmビーズスペーサーを塗布した後、シール剤(協立化学産業社製XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の周囲の重なり幅が各1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤の滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、365nmの光を3Jあて、120℃1時間熱硬化させて密着性評価用のサンプルを作製した。
<密着性の評価>
 その後、上記で得られたサンプル基板を島津製作所社製の卓上形精密万能試験機AGS-X500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の力(N)を測定した。(N)が3.50未満のものを「悪」、3.50以上のものを「良」と定義した。結果を表1に示す。
<膜強度(膜硬度)評価>
 液晶配向剤を、全面にITO電極が付いたガラス基板のITO面にスピンコートにて塗布した。80℃のホットプレート上で2分間乾燥させた後、厚み100nmの塗膜を形成させた。この塗膜面に偏光紫外線を150mJ/cmとなるように照射して配向処理を施した。その後IR式オーブンを用いて230℃、30分焼成を行って、液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.6mm)した。本基板をスガ試験機社製HZ-V3ヘーズメーターを用いて測定を行った。ヘーズの値が0.3以上のものを「悪」、0.3未満のものを「良」と定義して評価を行った。結果を表1に示す。
<液晶配向性評価用液晶セルの作製>
 以下に、液晶配向性を評価するための液晶セルの作製方法を示す。
 FFS方式の液晶表示素子の構成を備えた液晶セルを作製した。初めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、IZO電極を全面に形成した。第1層目の対向電極の上には、第2層目として、CVD法により成膜したSiN(窒化珪素)膜を形成した。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、IZO膜をパターニングして形成した櫛歯状の画素電極を配置し、第1画素及び第2画素の2つの画素を形成した。各画素のサイズは、縦10mm、横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。
 第3層目の画素電極は、特開2014-77845(日本国公開特許公報)に記載の図と同様、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極を、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成したため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の、くの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する偏光紫外線の偏光面を基板に投影した線分の方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+80°の角度(時計回り)をなすように形成し、画素の第2領域では、画素電極の電極要素が-80°の角度(時計回り)をなすように形成した。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成した。
 次に、合成例および比較合成例で得られた液晶配向剤を、1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。次いで、80℃に設定したホットプレート上で120秒間乾燥させた。次いで、ウシオ電機社製露光装置:APL-L050121S1S-APW01を用いて、基板に対して鉛直方向から、波長選択フィルターおよび偏光板を介して紫外線の直線偏光を照射した。このとき、偏光紫外線の偏光面を基板に投影した線分の方向が、3層目IZO櫛歯電極に対して80°傾いた方向となるように偏光面方向を設定した。次いで、IR(赤外線)型オーブンで230℃、30分間焼成を行い、配向処理が施された膜厚100nmのポリイミド液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にして配向処理が施されたポリイミド液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、片方の基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、偏光紫外線の偏光面を基板に投影した線分の方向が平行になるようにして張り合わせて圧着した。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製ポジ液晶)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で30分間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。
<液晶配向性の評価>
 この液晶セルを用いて、流動配向が確認されたものを「悪」と定義し、流動配向が確認されなかったものを「良」とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000040
 上記の結果からわかるように、密着性評価において、ジアミン化合物WA-1、WA-2を用いた液晶配向剤から得られる液晶配向膜は、ジアミン化合物A5を用いた液晶配向剤から得られる液晶配向膜よりも高い密着性を示すことが分かった。具体的には、表1に示す実施例1~2と比較例1の比較において示されている。
 さらに膜強度評価において、ジアミン化合物WA-1、WA-2を用いた液晶配向剤から得られる液晶配向膜は、ジアミン化合物A5を用いた液晶配向剤から得られる液晶配向膜よりも高い膜強度を示すことが分かった。具体的には、表1に示す実施例1~2と比較例1の比較において示されている。
 そして、ジアミン化合物WA-1、WA-2を用いた液晶配向剤から得られる液晶配向膜は、ジアミン化合物A5を用いた液晶配向剤から得られる液晶配向膜と同等の液晶配向性を示すことが分かった。
 以上のことから、ビフェニル骨格を有して特定の側鎖が存在するようなWA-1、WA-2を用いると、液晶配向性を維持したまま、シール密着性と膜強度を向上させることが可能となる。
 本発明の液晶配向剤から得られる液晶配向膜を用いた液晶表示素子は、液晶表示素子に、好適に用いることができる。そして、これらの素子は、表示を目的とする液晶ディスプレイ、さらには、光の透過と遮断を制御する調光窓や光シャッターなどにおいても有用である。

 

Claims (8)

  1.  下記式(1)で表される構造を有するジアミンから得られる重合体を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     Aは水素原子、炭素数1~3のアルキル基、ベンジル基、p-メトキシベンジル基、炭素数1~3のアルコキシ基、アセチル基、ベンゾイル基、t-ブチルオキシカルボニル基、9-フルオレニルメトキシカルボニル基、又はRSi基を表し、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基またはフェニル基を表す。
  2.  上記重合体が、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を含むジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。
  3.  上記式(6)中、Xの構造が下記構造中から選ばれる少なくとも1種である、請求項1又は請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  4.  式(6)で表される構造単位が、重合体の全構造単位に対して10モル%以上である、請求項1から請求項3のいずれか1項に記載の液晶配向剤。
  5.  請求項1から請求項4のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。
  6.  請求項5に記載の液晶配向膜を具備する液晶表示素子。
  7.  下記式(1)で表される構造を有するジアミン。
    Figure JPOXMLDOC01-appb-C000005
     Aは炭素数1~3のアルキル基、ベンジル基、p-メトキシベンジル基、炭素数1~3のアルコキシ基、アセチル基、ベンゾイル基、t-ブチルオキシカルボニル基、9-フルオレニルメトキシカルボニル基、又はRSi基を表し、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基またはフェニル基を表す。
  8.  請求項7に記載のジアミンを用いて得られる重合体。

     
PCT/JP2020/010462 2019-03-29 2020-03-11 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン WO2020203110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080026107.7A CN113711117A (zh) 2019-03-29 2020-03-11 液晶取向剂、液晶取向膜、液晶显示元件以及二胺
JP2021511328A JP7428177B2 (ja) 2019-03-29 2020-03-11 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
KR1020217030565A KR20210145744A (ko) 2019-03-29 2020-03-11 액정 배향제, 액정 배향막, 액정 표시 소자 및 디아민
JP2023203724A JP2024019271A (ja) 2019-03-29 2023-12-01 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065795 2019-03-29
JP2019-065795 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203110A1 true WO2020203110A1 (ja) 2020-10-08

Family

ID=72668391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010462 WO2020203110A1 (ja) 2019-03-29 2020-03-11 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン

Country Status (4)

Country Link
JP (2) JP7428177B2 (ja)
KR (1) KR20210145744A (ja)
CN (1) CN113711117A (ja)
WO (1) WO2020203110A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158254A2 (en) * 2017-03-03 2018-09-07 Rolic Technologies AG New photoalignment composition for the stabilization of the pre-tilt angle in liquid crystal layers
WO2018159733A1 (ja) * 2017-03-02 2018-09-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870487B2 (ja) 2008-12-26 2016-03-01 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN105659156B (zh) 2013-10-23 2019-02-01 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
CN107077032B (zh) 2014-10-20 2021-04-16 日产化学工业株式会社 液晶取向剂、液晶取向膜和使用了其的液晶表示元件
JP6561475B2 (ja) * 2015-01-20 2019-08-21 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、並びに位相差フィルム及びその製造方法
JP2018054761A (ja) 2016-09-27 2018-04-05 Jsr株式会社 液晶素子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159733A1 (ja) * 2017-03-02 2018-09-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018158254A2 (en) * 2017-03-03 2018-09-07 Rolic Technologies AG New photoalignment composition for the stabilization of the pre-tilt angle in liquid crystal layers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING, WEI-DONG ET AL.: "Novel and Specific Respiratory Syncytial Virus Inhibitors That Target Virus Fusion", J. MED. CHEM., vol. 41, 1998, pages 2671 - 2675, XP002203844, DOI: 10.1021/jm980239e *
SALVATORE ZARRA, CLEGG JACK K., NITSCHKE JONATHAN R.: "Selective Assembly and Disassembly of a Water- Soluble Fel0L15 Prism", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 52, no. 18, 26 April 2013 (2013-04-26), pages 4837 - 4840, XP055746366 *

Also Published As

Publication number Publication date
TW202104559A (zh) 2021-02-01
JP2024019271A (ja) 2024-02-08
KR20210145744A (ko) 2021-12-02
JP7428177B2 (ja) 2024-02-06
JPWO2020203110A1 (ja) 2020-10-08
CN113711117A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN107338058B (zh) 液晶取向剂、液晶取向膜及其制造方法、液晶元件、聚合物以及化合物
TWI691547B (zh) 含有聚醯胺酸系聚合物的組合物、液晶配向劑、液晶配向膜以及液晶顯示元件
US20150323837A1 (en) Liquid crystal display device and method for fabticating the same
CN109913241B (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
JP7417205B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
KR20160095610A (ko) 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 소자, 중합체, 디아민 및 산 2무수물
US9260663B2 (en) Liquid crystal composition, liquid crystal display, and method for producing liquid crystal display
JPWO2020175559A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
TWI773714B (zh) 液晶配向劑、液晶配向膜以及液晶顯示元件
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2021161989A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
JP7468365B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP6682965B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶配向膜の製造方法
WO2018124166A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7428177B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
TWI841710B (zh) 液晶配向劑、液晶配向膜、液晶顯示元件及二胺
JP2022044847A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TWI842852B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7494852B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020184629A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2021206003A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023068085A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物
WO2023074392A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR20230153396A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782301

Country of ref document: EP

Kind code of ref document: A1