WO2020202893A1 - 冷却装置および筐体 - Google Patents

冷却装置および筐体 Download PDF

Info

Publication number
WO2020202893A1
WO2020202893A1 PCT/JP2020/007266 JP2020007266W WO2020202893A1 WO 2020202893 A1 WO2020202893 A1 WO 2020202893A1 JP 2020007266 W JP2020007266 W JP 2020007266W WO 2020202893 A1 WO2020202893 A1 WO 2020202893A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
cooling
flow path
medium flow
cooling device
Prior art date
Application number
PCT/JP2020/007266
Other languages
English (en)
French (fr)
Inventor
敦 末吉
祐紀 牧田
勝志 谷口
圭俊 野田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019069477A external-priority patent/JP7209220B2/ja
Priority claimed from JP2019069476A external-priority patent/JP7209219B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112020001699.4T priority Critical patent/DE112020001699T5/de
Priority to CN202080023138.7A priority patent/CN113678303A/zh
Publication of WO2020202893A1 publication Critical patent/WO2020202893A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cooling device for cooling a battery module and a housing for accommodating the cooling device.
  • Patent Document 1 describes a battery temperature control system that reduces heat energy loss and maintains efficiency during temperature control, does not have problems of deterioration of electrical insulation and corrosion, and has no problem of temperature change and temperature distribution.
  • the battery temperature control system includes a compressor, a pump that flows the temperature control fluid that cools the battery, and an outside air heat exchanger that dissipates the heat of the temperature control fluid to the outside air.
  • a temperature control fluid refrigerant temperature control part for temperature control is provided, a battery refrigerant temperature control part exists between the battery and the refrigerant heat exchange part, and the temperature control fluid refrigerant temperature control part is heat for the refrigerant. It is described that it exists between the exchange part and the heat exchange part for the temperature control fluid.
  • Patent Document 2 a plurality of refrigerant pipes communicating with a refrigerant inflow port and a refrigerant discharge port for inflow and discharge of liquid refrigerant, a refrigerant inflow port or a refrigerant discharge port, and two or more refrigerant pipes communicate with each other.
  • One or more pipe connecting members that connect these to each other and change or divide the flow of liquid refrigerant between the connected refrigerant pipes, and a hollow type that communicates with at least one of the refrigerant pipes.
  • a cooling system including a flow path, a battery module mounted on one surface thereof, and a plurality of cooling plates in which a liquid refrigerant circulates through the hollow flow path, and a battery pack containing the same are described.
  • a cooling device for cooling a battery module used in a vehicle or the like is required to save space and reduce costs.
  • An object of the present invention is to provide a cooling device and a housing in which space saving and cost reduction are achieved.
  • a cooling device for cooling one or more battery modules is arranged on a side close to the battery module, a first cooling medium flow path through which the first cooling medium flows, and a second cooling medium arranged on a side far from the battery module.
  • a second cooling medium flow path is provided, and in the second cooling medium flow path, the second cooling medium can take heat from the battery module by a change in latent heat, and one of the first cooling systems is provided.
  • a plurality of second cooling medium flow paths are provided with respect to the medium flow path, and a gap is provided between the plurality of second cooling medium flow paths.
  • a cooling device for cooling one or more battery modules is arranged on the side closer to the battery module, the first cooling medium flow path through which the first cooling medium flows, and the second cooling device far from the battery module.
  • a second cooling medium flow path through which a cooling medium flows is provided, and in the second cooling medium flow path, the second cooling medium can take heat from the battery module by a change in latent heat, and one of the first.
  • a plurality of second cooling medium flow paths are provided with respect to the one cooling medium flow path, and the first cooling medium flow path includes a wall portion that defines the flow direction of the first cooling medium, and the first cooling medium flow path is provided.
  • a second cooling medium crossing flow path is further provided across at least two of the two cooling medium flow paths, and the second cooling medium crossing flow path is provided in the wall portion of the first cooling medium flow path. ..
  • FIG. 1 Side view showing the housing ⁇ arranged in the vehicle 100
  • FIG. 1 shows the cooling device 1 using two kinds of cooling media, (a) shows the relationship between a battery module 20 and a cooling device 1, and (b) shows the battery module 20 and a cooling device 1 in a housing.
  • the figure which shows the state housed in ⁇ The figure which shows the cooling apparatus 1 of this disclosure
  • Top view showing the internal structure of the first cooling medium flow path 11.
  • Top view of the second cooling medium flow path 12A, 12B, 12C It is a figure which shows the structure of the cooling apparatus 1, (a) the figure which shows the state which combined the 1st cooling medium flow path 11 and the 2nd cooling medium flow path 12, (b) the 1st cooling medium and the 2nd cooling medium.
  • the figure explaining the variation of the positional relationship between the 2nd cooling medium flow path and the battery module.
  • the second figure explaining the variation of the positional relationship between the second cooling medium flow path 12 and the battery module 20.
  • the figure which shows the cooling apparatus 5 formed by connecting a plurality of cooling plates.
  • the figure which shows the cooling apparatus 1a of this disclosure The figure which shows the state which three 2nd cooling medium flow paths 12A, 12B, 12C are communicated with each other in series by using the 2nd cooling medium crossing flow path P.
  • FIG. 1 The figure which shows the flow direction of the 1st cooling medium and the 2nd cooling medium in the structure shown in FIG.
  • FIG. 1 is a side view showing the housing ⁇ arranged in the vehicle 100.
  • a Cartesian coordinate system including an x-axis, a y-axis, and a z-axis is defined.
  • the z-axis is perpendicular to the x-axis and the y-axis and extends in the height direction of the housing ⁇ and the vehicle 100.
  • the positive direction of each axis is defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the positive direction of the x-axis is expressed as "left side”
  • the negative direction of the x-axis is expressed as “right side”
  • the positive direction side of the y-axis is expressed as “rear side”
  • the negative direction side of the y-axis May be expressed as "front side”
  • the positive direction side of the z-axis may be expressed as “upper side”
  • the negative direction side of the z-axis may be expressed as "lower side”.
  • the housing ⁇ is installed in the vehicle 100, which is a hybrid vehicle, an electric vehicle, or the like.
  • the housing ⁇ is also sometimes called a battery pack.
  • the housing ⁇ houses one or more battery modules 20 installed in the lower part of the vehicle body. In the example of FIG. 1, three battery modules 20 are shown. These battery modules 20 supply electric power to the motor that is the drive source of the vehicle 100.
  • the cooling device 1 for cooling the battery module 20 is housed in the housing ⁇ .
  • the housing ⁇ houses the battery module 20 and the cooling device 1.
  • the cooling device 1 has various shapes, but when the thin plate type cooling device 1 as shown in the figure is used, the housing ⁇ accommodating the cooling device 1 can also be thinned.
  • the cooling device 1 uses a cooling medium (not shown).
  • Typical examples of cooling media are refrigerants and water. Specific examples of the cooling medium will be described later.
  • cooling device 1 In the cooling device 1 shown in FIG. 1, there is a flow path for flowing a cooling medium. Further, a pipe (not shown) is connected from the outside of the cooling device 1 to the flow path in the cooling device 1. The cooling medium flows into the cooling device 1 through the piping, flows through the flow path in the cooling device 1, and goes out of the cooling device 1.
  • the cooling device 1 may be a plate-shaped one (cooling plate).
  • the battery module 20 is placed on the cooling device 1 (cooling plate).
  • the battery module 20 is cooled through the contact surface between the battery module 20 and the cooling device 1.
  • the shape and arrangement of the cooling device 1 and the battery module 20 are not limited to this embodiment.
  • FIG. 2A and 2B are conceptual diagrams showing a cooling device 1 using two types of cooling media, FIG. 2A shows the relationship between the battery module 20 and the cooling device 1, and FIG. 2B shows the relationship between the battery module 20 and the cooling device 1. It is a figure which shows the state which was housed in the housing ⁇ .
  • the cooling device 1 uses two types of cooling media.
  • the first cooling medium flow path 11 through which the first cooling medium flows is arranged on the side closer to the battery module 20 (upper side in FIG. 2A).
  • the second cooling medium flow path 12 through which the second cooling medium flows is provided on the side far from the battery module 20 (lower side in FIG. 2A).
  • the first cooling medium flowing through the first cooling medium flow path 11 can take heat from the battery module by sensible heat change.
  • the first cooling medium is a liquid containing at least a part of water, and an engine coolant, a coolant, an antifreeze, ethylene glycol, or the like is used. However, it is not limited to these.
  • the cooling medium flowing through the second cooling medium flow path 12 can take heat from the battery module by changing the latent heat.
  • An example of a cooling medium flowing through the second cooling medium flow path 12 is an HFC (R134a), an HFO (R1234yf) that further considers the prevention of global warming, and the like. However, it is not limited to these.
  • the second cooling medium exerts a large cooling capacity
  • the first cooling medium diffuses the cooling capacity, so that temperature variation can be reduced.
  • the first problem is that the housing ⁇ is mainly arranged at the bottom of the vehicle body, but the bottom of the vehicle body is not always flat (see FIG. 2B).
  • a reinforcing member may be provided inside the housing ⁇ . In this case as well, unevenness is generated inside the housing ⁇ .
  • the housing ⁇ may have irregularities on its inner surface.
  • the convex portion R when the concave portion is used as a reference is shown in FIG. 2 (b).
  • the cooling device 1 housed in the housing ⁇ must stably support and cool the battery module 20 from below.
  • the second problem is that the space inside the car body is limited. Since the vehicle body carries many parts, even if an attempt is made to arrange the housing ⁇ (battery pack), there may be restrictions on the arrangement location and arrangement shape. Therefore, it is required to make the housing ⁇ thinner and smaller.
  • the cooling device 1 of the present disclosure includes a plurality of second cooling medium flow paths 12A, 12B, 12C for one first cooling medium flow path 11.
  • a gap is provided between the plurality of second cooling medium flow paths 12A, 12B, and 12C.
  • the types of the first cooling medium and the second cooling medium are the same as those shown with reference to FIG.
  • the cooling device 1 of the present embodiment absorbs the convex portion R by the gaps provided between the plurality of second cooling medium flow paths 12A, 12B, and 12C. As a result, the housing ⁇ can be made thinner and smaller.
  • a place where the second cooling medium flow path 12 is provided and a place where the second cooling medium flow path 12 is not provided can be appropriately set.
  • the number and location of the second cooling medium flow path 12 can be appropriately changed according to the unevenness of the inner surface of the housing ⁇ . That is, the above-mentioned thinning of the housing ⁇ can be flexibly performed according to the required specifications.
  • first cooling medium flow path 11 is sandwiched between the plurality of second cooling medium flow paths 12A, 12B, 12C and the battery module 20. That is, the first cooling medium flow path 11 common to the plurality of second cooling medium flow paths 12A, 12B, and 12C fulfills the functions of diffusing the cooling capacity and controlling the temperature. As a result, the temperature deviation between the plurality of second cooling media is alleviated, and the battery module 20 can be cooled uniformly.
  • the number of the second cooling medium flow paths 12 with respect to one first cooling medium flow path 11 is three of 12A, 12B, and 12C in the example of FIG. 3, but may be two or four or more.
  • FIG. 4 is a top view showing the internal structure of the first cooling medium flow path 11.
  • the first cooling medium flow path 11 in the present embodiment generally has a horizontally long rectangular shape. In the vicinity of the right side (negative direction of the x-axis) of the horizontally long rectangle, the dimensions in the front-rear direction (y-axis direction) are reduced. However, there is no intention of limiting the shape to this shape, and the shape of the first cooling medium flow path 11 may be appropriately changed according to the required specifications.
  • the first cooling medium flow path 11 includes a recess 111.
  • the recess 111 receives the first cooling medium.
  • a plate-shaped lid may close the recess 111 from above (z-axis direction).
  • the battery module 20 is arranged on this lid.
  • the first cooling medium flow path 11 includes one or more wall portions 112.
  • the wall portion 112 defines the direction of flow of the first cooling medium in the first cooling medium flow path 11.
  • the white arrow in FIG. 4 indicates the direction of this flow.
  • the inlet 113 and the outlet 114 of the first cooling medium are provided on the left side (x-axis direction) of the first cooling medium flow path 11, respectively.
  • the first cooling medium flows in the direction indicated by the white arrow. That is, the first cooling medium that has flowed from the inlet 113 into the recess 111 flows in the right direction (negative direction of the x-axis) by the guidance of the wall portion 112, makes a U-turn, and flows in the left direction (x-axis direction). , Outflow from outlet 114.
  • the first cooling medium flow path 11 includes a fixing portion 115.
  • a bolt or the like is inserted through the fixing portion 115 to fix the cooling device 1 provided with the first cooling medium flow path 11 to the housing ⁇ or the like.
  • the details of the fixing portion 115 will be described later.
  • the meanings of the "first group” and “second group” shown in FIG. 4 will also be described later.
  • FIG. 5 is a top view of the three second cooling medium flow paths 12A, 12B, and 12C.
  • the second cooling medium flow paths 12A, 12B, and 12C in the present embodiment each have a vertically long (y-axis direction) shape, and a partition 121 extends in the vertical direction (y-axis direction) at the center.
  • the thickness (z-axis direction) of the second cooling medium flow paths 12A, 12B, and 12C is small.
  • the second cooling medium flow paths 12A, 12B, and 12C each have an inlet 123 and an outlet 124 on the front side (negative direction of the y-axis).
  • the second cooling medium flows in the direction indicated by the black arrow. That is, the second cooling medium flowing in from the inlet 123 flows to the rear side (y-axis direction), makes a U-turn, flows to the front side (negative direction of the y-axis), and flows out from the outlet 124.
  • FIG. 6 is a diagram showing the structure of the cooling device 1, (a) a diagram showing a state in which the first cooling medium flow path 11 and the second cooling medium flow path 12 are coupled, and (b) the first cooling medium. It is a figure which shows the flow direction of the 2nd cooling medium.
  • the first cooling medium flow path 11 already shown in FIG. 4 and the three second cooling medium flow paths 12A, 12B, 12C already shown in FIG. 5 are overlapped so as to be bonded to each other, and FIG. A cooling device as shown in a) is formed.
  • the flow of the first cooling medium (white arrow) and the flow of the second cooling medium (black arrow) are at least partially orthogonal to each other.
  • the temperature variation of the cooling medium flowing through the plurality of second cooling medium flow paths 12A, 12B, 12C is positively alleviated by the first cooling medium flowing through the first cooling medium flow path 11.
  • the first cooling medium flow path 11 includes a fixing portion 115.
  • the recess 111 receives the first cooling medium.
  • the island-shaped region ILD at the top of the fixed portion 115 projects at a high position (in the z-axis direction) so that the first cooling medium does not leak out.
  • a through hole H is provided in this island-shaped region ILD.
  • the cooling device 1 is fixed to the housing ⁇ or the like by inserting a bolt through the through hole H or the like.
  • FIG. 7 is a diagram showing a fixed portion of the cooling device 1.
  • the gaps S121 and S122 between the second cooling medium flow paths 12A, 12B and 12C receive the convex portion R of the housing ⁇ .
  • a fixing portion 115 having a through hole H is arranged above the gaps S121 and S122 (in the z-axis direction).
  • a bolt may be inserted from the fixing portion 115 side to fasten the housing ⁇ and the vehicle body further below the housing ⁇ together. Further, the bolt may be inserted from the fixing portion 115 side, and conversely, the bolt may be inserted from the housing ⁇ or the vehicle body side (lower side).
  • FIG. 4 shows the first group and the second group for the arrangement location of the fixed portion 115.
  • the fixed portion 115 belonging to the first group is as follows.
  • the battery module 20 (see FIG. 3 and the like) mounted on the cooling device 1 does not always have a uniform temperature at any location. Therefore, the temperature of the first cooling medium used for cooling also varies depending on the location.
  • the fixed portion 115 belonging to the first group is arranged at a position facing the flow of the first cooling medium. If the fixing portion 115 is arranged at such a position, the flow of the first cooling medium collides with the island-shaped fixing portion 115 and is diffused to the surroundings thereof. That is, turbulence of the first cooling medium occurs. For example, when the first cooling medium is water, the water is mixed. Therefore, the above temperature variation is reduced.
  • the fixed portion 115 belonging to the second group is arranged at a position not facing the flow of the first cooling medium. That is, it is arranged at a position that does not block the flow of the first cooling medium as much as possible. Then, the first cooling medium flows smoothly without being obstructed, and the cooling efficiency is improved.
  • one fixed portion 115 is provided with two or more (two or four) through holes H.
  • the fixing portion 115 is provided to fix the cooling device 1 to the housing ⁇ or the like.
  • the area of the island-shaped region ILD of the fixing portion 115 is large, and the number of bolts inserted into one fixing portion increases, so that the strength of fixing using the fixing portion 115 increases.
  • FIG. 8 is a diagram illustrating variations in the positional relationship between the second cooling medium flow path and the battery module.
  • a first cooling medium flow path 11 exists between the second cooling medium flow paths 12A, 12B, 12C and the battery module 20, and the first cooling medium flow path 11 diffuses the cooling effect, so that the temperature varies. Is relaxed. However, on the other hand, it is not always possible to make the temperature completely uniform. Therefore, as shown in FIG. 8A, at least a part of the second cooling medium flow path 12 is arranged so as to overlap the battery module 20. With the above configuration, the battery module 20 can be cooled more efficiently.
  • the second cooling medium flow paths 12A, 12B rather than the gaps S121, S122 between the second cooling medium flow paths 12A, 12B, 12C exist.
  • the presence of 12C increases the cooling efficiency of the battery module 20. Therefore, as shown in FIG. 8B, the gaps S201 and S202 between the battery modules 20 are arranged so that the gaps S121 and S122 between the second cooling medium flow paths 12A, 12B and 12C correspond to each other. To do. With this arrangement, the cooling efficiency is improved.
  • FIG. 9 is a second diagram illustrating variations in the positional relationship between the second cooling medium flow path 12 and the battery module 20.
  • FIG. 9 shows the battery module 20 from above.
  • the heat load of the battery module 20 is not always the same everywhere. Therefore, the second cooling medium flow path may be arranged at a position where the heat load of the battery module 20 is high. With this arrangement, the portion of the battery module 20 having a high heat load can be centrally cooled, so that the cooling efficiency is improved.
  • the battery modules 20 arranged at the center (center of gravity) of the plurality of battery modules 20 tend to retain heat and have a high heat load.
  • the battery module 20 circled in the figure has a particularly high heat load. Therefore, the second cooling medium flow path 12 is arranged so as to overlap the battery modules arranged at the centers of the plurality of battery modules. With this arrangement, the portion of the battery module 20 having a high heat load can be centrally cooled, so that the cooling efficiency is improved.
  • FIG. 10 shows an example of arrangement of the second cooling medium flow path 12 for increasing the strength of the cooling device 1.
  • the battery module 20 is placed on the cooling device 1, but the cooling device 1 must withstand this load.
  • a member such as a plate is required to have strength on the outside.
  • the cooling device 1 includes two types of flow paths, a first cooling medium flow path 11 and a second cooling medium flow path 12.
  • the portion where these two types of flow paths overlap is stronger than the portion where these two types of flow paths do not overlap (the portion having one layer). Therefore, the portion where the first cooling medium flow path 11 and the second cooling medium flow path 12 overlap and form two layers is interpreted as a reinforcing material for the plate, and the strength of the plate is required. It is preferable to arrange the two-layered portion.
  • the strength of the cooling device 1 itself can be increased.
  • the distance between the outer edge of the cooling device 1 and the second cooling medium flow path 12A closest to the outer edge is defined as S1.
  • S2 be the distance between the plurality of second refrigerant passages (here, between 12A and 12B).
  • the second cooling medium flow path 12A is arranged so that S1 ⁇ S2
  • the second cooling medium flow path 12A will be arranged near the outer edge of the cooling device 1.
  • the outside of the cooling device 1 is reinforced by the second cooling medium flow path 12A, and the cooling device 1 having high strength is obtained.
  • FIG. 11 is a diagram showing a modified example of the first cooling medium flow path 11 for arranging the entrance / exit of the first cooling medium and the entrance / exit of the second cooling medium on the same side of the cooling device 1.
  • the first cooling medium flow path 11 shown in FIG. 11 has basically the same configuration as the first cooling medium flow path 11 shown in FIG. However, some of the wall portions 112 that define the direction in which the first cooling medium flows are arranged so as to be bent around 90 degrees. By controlling the flow direction of the first cooling medium based on the arrangement and shape of the wall portion 112 in this way, the entrances and exits 113 and 114 of the first cooling medium can be changed to the entrances and exits 123 and 124 of the second cooling medium (FIG. 5).
  • cooling device 1a a modified example of the cooling device 1 of the present disclosure
  • the same reference numerals are given to the same members as those of the cooling device 1 provided in the cooling device 1a.
  • FIG. 12 is a diagram showing a cooling device 5 formed by connecting a plurality of cooling plates.
  • the cooling device 5 includes a first cooling medium flow path 51 through which the first cooling medium flows, and a second cooling medium flow path 52 through which the second cooling medium flows.
  • the first cooling medium flow path 51 is formed by communicating the three flow paths 51A, 51B, and 51C with each other by an external pipe.
  • the second cooling medium flow path 52 is formed by communicating the three flow paths 52A, 52B, and 52C with each other by an external pipe.
  • cooling device 1a of the present disclosure it is not necessary to provide an external pipe for communicating each flow path with each other, so that space saving and cost saving are possible.
  • the configuration for that purpose will be described below.
  • the cooling device 1a of the present disclosure shown in FIG. 13 is arranged on a side close to the battery module, a first cooling medium flow path through which a first cooling medium flows, and a side far from the battery module, and is arranged on a second cooling side.
  • a second cooling medium flow path through which a medium flows is provided, and a plurality of second cooling medium flow paths 12A, 12B, and 12C are provided for one first cooling medium flow path 11.
  • the number of the second cooling medium flow paths 12 does not have to be three, and may be two or four or more.
  • the cooling device 1a of the present disclosure allows the second cooling medium flow paths 12A, 12B, and 12C to communicate with each other.
  • the wall portion 112 (see FIG. 4 and the like) provided in the first cooling medium flow path 11 is utilized.
  • the first cooling medium flow path 11 includes a wall portion that defines the flow direction of the first cooling medium, and the second cooling medium flow path.
  • a second cooling medium crossing flow path P that extends between at least two of the two is further provided, and the second cooling medium crossing flow path P is provided in the wall portion 112 of the first cooling medium flow path 11. ..
  • FIGS. 14 to 17 An example of the above configuration is shown in FIGS. 14 to 17.
  • FIG. 14 is a diagram showing a state in which three second cooling medium flow paths 12A, 12B, and 12C are communicated in series using the second cooling medium crossing flow path P.
  • some of the originally existing members are omitted in order to facilitate understanding by the figure.
  • the first cooling medium flows to the right side (negative direction of the x-axis) and makes a U-turn. It is designed to return to the left side (x-axis direction). It is the wall portion 112 that has already been described that defines the flow direction of the first cooling medium.
  • a second cooling medium crossing flow path P is provided inside the wall portion 112 included in the first cooling medium flow path 11. Then, openings A1 to A10 are provided in the lower part (negative direction of the z-axis) of the second cooling medium crossing flow path P. The openings A1 to A10 communicate with the three second cooling medium flow paths 12A, 12B, and 12C shown by the broken lines.
  • FIG. 15 illustrates the flow directions of the first cooling medium and the second cooling medium in the configuration shown in FIG.
  • the second cooling medium flowing in from the inlet 123 provided on the left side of the cooling device 1a passes through the second cooling medium crossing flow path P provided in the wall portion 112 and is indicated by a black arrow. , Flows into the second cooling medium flow path 12A through the opening A1.
  • the second cooling medium flows counterclockwise in the second cooling medium flow path 12A, passes through the opening A2, and returns to the second cooling medium crossing flow path P.
  • This cooling medium proceeds as it is to the right side of the figure (negative direction of the x-axis) and flows into the central second cooling medium flow path 12B.
  • the second cooling medium flows back and forth between the second cooling medium flow path and the second cooling medium crossing flow path P, and flows into the second cooling medium flow path 12C through the opening A5. Then, the second cooling medium flows counterclockwise in the second cooling medium flow path 12C, passes through the opening A6, and returns to the second cooling medium crossing flow path P.
  • the second cooling medium passes through the openings A6, A7, and A8, moves back and forth between the second cooling medium flow path and the second cooling medium crossing flow path P, and reaches the opening A9.
  • the second cooling medium that has passed through the opening A9 flows into the second cooling medium flow path 12A, flows counterclockwise, and returns to the second cooling medium crossing flow path P through the opening A10.
  • the second cooling medium flows out to the outside through the outlet 124 provided on the left side (x-axis direction) side of the first cooling medium flow path 11.
  • the second cooling medium crossing flow path P exerts a bridging function so that the second cooling medium flows in series between the plurality of second cooling medium flow paths 12A to 12C.
  • the entrances and exits of the second cooling medium for the plurality of second cooling medium flow paths 12A to 12C can be grouped on one side (the left side in the drawing) of the cooling device 1a.
  • FIG. 16 is a diagram showing a state in which three second cooling medium flow paths 12A, 12B, and 12C are communicated in parallel using the second cooling medium crossing flow path P.
  • some of the originally existing members are omitted.
  • the first cooling medium flows to the right side (negative direction of the x-axis), makes a U-turn, and returns to the left side (x-axis direction). There is. It is the wall portion 112 already described that defines the flow of this cooling medium.
  • a second cooling medium crossing flow path P is provided inside the wall portion 112 included in the first cooling medium flow path 11. Then, openings A1 to A6 are provided in the lower part (negative direction of the z-axis) of the second cooling medium crossing flow path P. The openings A1 to A6 communicate with the three second cooling medium flow paths 12A, 12B, and 12C shown in the figure.
  • FIG. 17 illustrates the flow directions of the first cooling medium and the second cooling medium in the configuration shown in FIG.
  • a part of the second cooling medium that has flowed in from the inlet 123 provided on the left side (x-axis direction) side of the first cooling medium flow path 11 is a second cooling medium crossing flow provided in the wall portion 112. It flows through the path P, through the opening A1, and into the second cooling medium flow path 12A. The remaining part of the second cooling medium flows through the second cooling medium crossing flow path P and into the second cooling medium flow path 12B.
  • the second cooling medium that has flowed into the second cooling medium flow path 12A flows through the second cooling medium flow path 12A counterclockwise in the figure, passes through the opening A2, and returns to the second cooling medium crossing flow path P. .. Then, the second cooling medium flows out to the outside through the outlet 124 provided on the left side (x-axis direction) side of the first cooling medium flow path 11.
  • the second cooling medium that has flowed into the second cooling medium flow path 12B flows through the second cooling medium flow path 12B counterclockwise in the figure, passes through the opening A4, and returns to the second cooling medium crossing flow path P. .. Then, the second cooling medium passes through the second cooling medium flow path 12A, passes through the outlet 124 provided on the left side (x-axis direction) side of the first cooling medium flow path 11, and goes to the outside. And leak.
  • the remaining part of the second cooling medium that has flowed into the second cooling medium flow path 12C flows into the second cooling medium flow path 12C through the opening A5.
  • the second cooling medium that has flowed into the second cooling medium flow path 12C flows through the second cooling medium flow path 12C counterclockwise in the figure, passes through the opening A6, and returns to the second cooling medium crossing flow path P. ..
  • the second cooling medium passes through the second cooling medium flow paths 12B and 12A, and passes through the outlet 124 provided on the left side (x-axis direction) side of the first cooling medium flow path 11. It leaks to the outside.
  • the second cooling medium crossing flow path P exerts a bridging function so that the second cooling medium flows in parallel between the plurality of second cooling medium flow paths 12A, 12B, and 12C.
  • the entrances and exits 123 and 124 of the second cooling medium for the plurality of second cooling medium flow paths 12A, 12B and 12C can be combined on one side (the left side in the drawing) of the cooling device 1a.
  • the flow direction of the first cooling medium in the first cooling medium flow path 11 and the flow direction of the second cooling medium in the second cooling medium flow paths 12A, 12B, 12C are at least partially orthogonal.
  • the temperature variation of the second cooling medium flowing through the plurality of second cooling medium flow paths 12A, 12B, 12C is positively caused by the first cooling medium flowing through the first cooling medium flow path 11. It will be relaxed.
  • the entrance / exit 113 of the first cooling medium flow path can be provided on the same side of the cooling device.
  • the wall portion 112 crossing the first cooling medium flow path 11 in the left-right (x-axis direction) was used, but the orientation of the wall portion 112 is other than that. It may be oriented. However, it is limited to the wall portion 112 having a position and a length capable of bridging the second cooling medium between the plurality of second cooling medium flow paths.
  • the above-described embodiment provided with the second cooling medium flow path P can achieve the same effect even if there is no gap between each of the plurality of second cooling medium flow paths 12A, 12B, 12C. ..
  • the second cooling medium flow path 12 can be arranged near the outer edge of the cooling device 1a to enhance the strength of the cooling device.
  • the distance between the outer edge of the cooling device 1a and the second cooling medium flow path 12A closest to the outer edge is defined as S1.
  • S2 be the distance between the plurality of second refrigerant passages (here, between 12A and 12B).
  • the second cooling medium flow path 12A is arranged so that S1 ⁇ S2.
  • the second cooling medium flow path 12A is arranged near the outer edge of the cooling device 1a.
  • the outside of the cooling device 1a is reinforced by the second cooling medium flow path 12, and a high-strength cooling device 1a is obtained.
  • the cooling device of the present disclosure has the above configuration.
  • the flow direction of the first cooling medium in the first cooling medium flow path and the flow direction of the second cooling medium in the second cooling medium flow path may be at least partially orthogonal to each other.
  • the temperature variation of the cooling medium flowing through the plurality of second cooling medium flow paths 12A, 12B, 12C is positively alleviated by the first cooling medium flowing through the first cooling medium flow path 11.
  • the first cooling medium may be a liquid containing at least a part of water.
  • the second cooling medium may be a refrigerant.
  • one or more fixing portions for fixing the cooling device to a predetermined housing accommodating the cooling device may be provided between the plurality of second cooling medium flow paths.
  • the cooling device may include the fixing portion arranged at a position facing the flow of the first cooling medium.
  • the flow of the first cooling medium collides with the fixed portion 115 and is diffused around the fixed portion 115. That is, the temperature variation is improved by the fixed portion 115 performing the function of diffusing the flow.
  • the fixing portion may be provided at a position not facing the flow of the first cooling medium.
  • the fixing portion may be provided with a through hole for passing a fastening member.
  • the cooling device 1 can be fixed to the housing ⁇ or the like by inserting a bolt through the through hole H.
  • the fixing portion may include two or more of the through holes.
  • the island-shaped region ILD of the fixing portion 115 is large, and the number of bolts inserted through one fixing portion is increased, so that the strength of fixing by the fixing portion 115 is increased.
  • the entrance / exit of the first cooling medium flow path and the entrance / exit of the second cooling medium flow path may be provided on the same side of the cooling device.
  • the pipes coming out of the cooling device 1 are grouped on one side, so that the pipes on the outside of the cooling device 1 (1a) become compact and the pipes can be easily routed.
  • the space of the cooling device 1 (1a) and the housing ⁇ accommodating the cooling device 1 (1a) can be saved.
  • At least a part of the second cooling medium flow path may be arranged so as to overlap the battery module.
  • the battery module cooled by the cooling device is a plurality of battery modules, and the gap between the plurality of battery modules may correspond to the gap between the plurality of second cooling medium flow paths.
  • the portion of the battery module 20 having a high heat load can be centrally cooled, so that the cooling efficiency is improved.
  • the battery module cooled by the cooling device is a plurality of battery modules, and the second cooling medium flow path may be arranged at a position where the heat load of the battery module is high.
  • the portion of the battery module 20 having a high heat load can be centrally cooled, so that the cooling efficiency is improved.
  • the second cooling medium flow path may be arranged so as to overlap the battery modules arranged in the center of the plurality of battery modules.
  • the distance between the outer edge of the cooling device and the second cooling medium flow path closest to the outer edge is smaller than the distance between the gaps between the plurality of second cooling medium flow paths.
  • the second cooling medium flow path may be arranged.
  • the second cooling medium flow path 12A is arranged near the outer edge of the cooling device 1. As a result, the outside of the cooling device 1 is reinforced by the second cooling medium flow path 12, and the cooling device 1 having high strength is obtained.
  • the second cooling medium crossing flow path may be arranged so that the second cooling medium flows in series or in parallel in the plurality of second cooling medium flow paths.
  • the entrances and exits 123 and 124 of the second cooling medium for the plurality of second cooling medium flow paths 12A to 12C can be combined on one side of the cooling device 1a. Therefore, the space for piping can be reduced, and the space for the housing ⁇ can be saved.
  • the housing may include one or more battery modules and the above-mentioned cooling device for cooling the battery modules.
  • the present application has the following features.
  • (Feature A1) A cooling device that cools one or more battery modules.
  • a first cooling medium flow path arranged near the battery module and flowing the first cooling medium,
  • a second cooling medium flow path arranged on the side far from the battery module and flowing the second cooling medium, With In the second cooling medium flow path, the second cooling medium can take heat from the battery module by changing the latent heat.
  • a plurality of second cooling medium flow paths are provided with respect to the one first cooling medium flow path.
  • the first cooling medium flow path includes a wall portion that defines the flow direction of the first cooling medium. Further provided with a second cooling medium crossover that crosses at least two of the second cooling medium channels.
  • the second cooling medium flow path is provided in the wall portion of the first cooling medium flow path. Cooling system.
  • the second cooling medium crossing flow path is arranged so that the second cooling medium flows in parallel in the plurality of second cooling medium flow paths.
  • Cooling system. (Feature A6) The cooling device according to any one of features A1 to A5. The entrance / exit of the first cooling medium flow path and the entrance / exit of the second cooling medium flow path are provided on the same side of the cooling device. Cooling system. (Feature A7) The cooling device according to any one of features A1 to A6. The distance between the outer edge of the cooling device and the second cooling medium flow path closest to the outer edge is smaller than the distance of the gap between the plurality of second cooling medium flow paths. Cooling system. (Feature A8) It's a housing With one or more battery modules The cooling device according to any one of features A1 to A7 for cooling the battery module. Housing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

1以上の電池モジュールを冷却する冷却装置が、前記電池モジュールに近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、を備え、前記第2冷却媒体流路において、前記第2冷却媒体は潜熱変化によって前記電池モジュールから熱を奪うことが可能であり、1つの前記第1冷却媒体流路に対して、複数の第2冷却媒体流路が設けられており、前記複数の第2冷却媒体流路の間に隙間が設けられている。

Description

冷却装置および筐体
 本発明は、電池モジュールを冷却する冷却装置およびこれを収容する筐体に関する。
 特許文献1には、熱エネルギーのロスを少なくして温度調節時の効率を維持しながら、電気絶縁性の悪化や腐食の問題がなく、温度変化および温度分布に問題のない電池温調システムを提供すべく、電池温調システムが、圧縮機と、電池を冷却する温度調節用の流体である温調流体を流すポンプと、温調流体の熱を外気に放熱させる外気用熱交換器と、圧縮機からの冷媒が流れる冷媒用熱交換部と、温調流体が流れる温調流体用熱交換部と、電池の冷媒による温度調節を行う電池冷媒間温度調節部位と、温調流体の冷媒による温度調節を行う温調流体冷媒間温度調節部位とを備え、電池冷媒間温度調節部位は、電池と冷媒用熱交換部の間に存在し、温調流体冷媒間温度調節部位は、冷媒用熱交換部と温調流体用熱交換部との間に存在することが記載されている。
 特許文献2には、液状冷媒の流入と排出のための冷媒流入口および冷媒排出口、冷媒流入口または冷媒排出口に連通している複数の冷媒パイプ、2以上の冷媒パイプが相互連通するようにこれらの間を連結し、連結された冷媒パイプの間で液状冷媒の流れを変更乃至分割する一つ以上のパイプ連結部材、および冷媒パイプのうち少なくとも一つの冷媒パイプに連通している中空型流路を含んでおり、一面に電池モジュールが搭載され、前記中空型流路を通じて液状冷媒が循環する複数の冷却プレート、を含む冷却システムおよびこれを含む電池パックが記載されている。
日本国特開2014-229480号公報 日本国特表2018-533167号公報
 ところで、車両等に用いられる電池モジュールを冷却する冷却装置は、省スペース化、低コスト化が求められる。
 本発明は、省スペース化、低コスト化がなされた冷却装置および筐体を提供することを目的とする。
 1以上の電池モジュールを冷却する冷却装置が、前記電池モジュールに近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、を備え、前記第2冷却媒体流路において、前記第2冷却媒体は潜熱変化によって前記電池モジュールから熱を奪うことが可能であり、1つの前記第1冷却媒体流路に対して、複数の第2冷却媒体流路が設けられており、前記複数の第2冷却媒体流路の間に隙間が設けられている。前記構成により、前記冷却装置を所定の筐体等に固定する際、筐体等が有する凹凸を、第2冷却媒体流路の間に設けた隙間によって吸収することができる。そのため、省スペース化が実現される。また、第2冷却媒体を局所的に用いることができるので、低コスト化が実現される。
 また、1以上の電池モジュールを冷却する冷却装置が、前記電池モジュールに近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、を備え、前記第2冷却媒体流路において、前記第2冷却媒体は潜熱変化によって前記電池モジュールから熱を奪うことが可能であり、1つの前記第1冷却媒体流路に対して、複数の第2冷却媒体流路が設けられており、前記第1冷却媒体流路は、前記第1冷却媒体の流れる方向を規定する壁部を備え、前記第2冷却媒体流路のうちの少なくとも2つの間を渡る、第2冷却媒体渡り流路を更に備え、前記第2冷却媒体渡り流路が、前記第1冷却媒体流路の前記壁部内に設けられる。前記構成により、前記第2冷却媒体渡り流路が、複数の第2冷却媒体流路をバイパス接続するため、冷却装置外部で配管等を用いて相互連通する必要が無くなる。その結果、省スペース化、低コスト化が実現される。
 省スペース化、低コスト化がなされた冷却装置および筐体を提供することができる。
車両100に配置された筐体αを示す側面図 2種類の冷却媒体を用いた冷却装置1を示す概念図であり、(a)は電池モジュール20と冷却装置1との関係を示し、(b)は電池モジュール20と冷却装置1とを筐体αに収容した状態を示す図 本開示の冷却装置1を示す図 第1冷却媒体流路11の内部構造を示した上面図 第2冷却媒体流路12A、12B、12Cの上面図 冷却装置1の構造を示す図であり、(a)第1冷却媒体流路11と第2冷却媒体流路12とを結合した状態を示す図、(b)第1冷却媒体と第2冷却媒体の流れの方向を示す図 冷却装置1の固定箇所を示す図 第2冷却媒体流路と、電池モジュールの位置関係のバリエーションを説明する図 第2冷却媒体流路12と、電池モジュール20の位置関係のバリエーションを説明する第2の図 冷却装置1の強度を増す為の、第2冷却媒体流路12の配置例を示す図。 第1冷却媒体流路11の変形例を示す図 複数の冷却プレートを連結して形成した冷却装置5を示す図 本開示の冷却装置1aを示す図 3つの第2冷却媒体流路12A、12B、12Cを、第2冷却媒体渡り流路Pを用いて直列に連通した状態を示す図 図14に示した構成における、第1冷却媒体および第2冷却媒体の流れる方向を示す図 3つの第2冷却媒体流路12A、12B、12Cを、第2冷却媒体渡り流路Pを用いて並列に連通した状態を示す図 図16に示した構成における、第1冷却媒体および第2冷却媒体の流れる方向を示す図
 以下、適宜図面を参照しながら詳細に説明する。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 図1は、車両100に配置された筐体αを示す側面図である。なお、理解を容易とするため、図1に示すように、x軸、y軸、z軸からなる直交座標系が規定される。z軸は、x軸およびy軸に対して垂直であり、筐体αおよび車両100の高さ方向に延びる。また、各軸の正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。ここで、x軸の正方向を「左側」と表現し、x軸の負方向を「右側」と表現し、y軸の正方向側を「後側」と表現し、y軸の負方向側を「前側」と表現し、z軸の正方向側を「上側」と表現し、z軸の負方向側を「下側」と表現することがある。
 なお、以下の説明において、「平行」、「垂直」は完全な平行、垂直だけでなく、誤差の範囲で平行、垂直からずれている場合も含むものとする。
 ハイブリッド車や電気自動車等である車両100に、筐体αが設置されている。筐体αは、電池パックとも呼ばれることもある。筐体αは、車体下部に設置される、1以上の電池モジュール20を収容している。なお、図1の例では、3つの電池モジュール20が示されている。これらの電池モジュール20が、車両100の駆動源であるモータに電力を供給する。
 電池モジュール20は発熱するため、電池モジュール20を冷却するための冷却装置1が、筐体αの中に収容される。筐体αは、電池モジュール20と、冷却装置1とを収容している。冷却装置1には種々の形状があるが、図示されているような薄いプレート型の冷却装置1を用いると、冷却装置1を収容する筐体αも薄くすることができる。
 電池モジュール20を冷却するために、冷却装置1は冷却媒体(図示省略)を用いる。冷却媒体の典型例は冷媒や水である。冷却媒体の具体例については後述する。
 図1に示した冷却装置1の中には、冷却媒体を流すための流路がある。また、図示を省略する配管が、冷却装置1の外から冷却装置1内の流路へと接続される。冷却媒体は配管を通って冷却装置1の中へ流入し、冷却装置1内の流路を流れ、そして、冷却装置1の外へと出ていく。
 図1に示したように、冷却装置1はプレート状のもの(冷却プレート)であってよい。本実施形態の場合、電池モジュール20は冷却装置1(冷却プレート)の上に載る。電池モジュール20と冷却装置1との接触面を介して、電池モジュール20が冷却される。ただし、冷却装置1と電池モジュール20の形状や配置は、この実施形態には限られない。
 図2は、2種類の冷却媒体を用いた冷却装置1を示す概念図であり、(a)は電池モジュール20と冷却装置1との関係を示し、(b)は電池モジュール20と冷却装置1とを筐体αに収容した状態を示す図である。
 冷却媒体として冷媒を用いた場合、冷媒を流す配管等の流路に液状の冷媒が隅々まで行き渡らず、温度のばらつきが生じることがある。この温度ばらつきを回避するため、図2の実施形態においては、冷却装置1が2種類の冷却媒体を用いている。第1冷却媒体を流す第1冷却媒体流路11が、電池モジュール20に近い側(図2(a)における上側)に配置されている。第2冷却媒体を流す第2冷却媒体流路12が、電池モジュール20から遠い側(図2(a)における下側)に設けられている。
 第1冷却媒体流路11を流れる第1冷却媒体は、顕熱変化によって前記電池モジュールから熱を奪うことが可能である。第1冷却媒体は少なくとも一部に水を含む液体であり、エンジン冷却液、冷却液、不凍液、エチレングリコールなどが用いられる。ただし、これらには限定されない。
 一方、第2冷却媒体流路12を流れる冷却媒体は、潜熱変化によって前記電池モジュールから熱を奪うことが可能である。第2冷却媒体流路12を流れる冷却媒体の一例は、HFC(R134a)や、地球温暖化防止にさらに配慮したHFO(R1234yf)等である。ただし、これらには限定されない。
 2種類の冷却媒体を用いることにより、第2冷却媒体が大きな冷却能力を発揮しつつ、その冷却能力を第1冷却媒体が拡散するので、温度ばらつきを減らすことができる。
 このような冷却装置1を、主に車両用の筐体α(電池パック)に収容する際に、2つの問題点がある。1つ目の問題点は、筐体αは、主に車体の底部に配置されるのだが、車体の底部は平坦であるとは限らないことである(図2(b)参照)。
 強度維持のため、車体底部には通常、柱やリブ等の補強部材が存在する。すなわち、車体底部には凹凸がある。すると、車体底部に設置する筐体αは、その凹凸に沿った、相補的な形状となる。その結果、筐体αの内面にも凹凸が生じる(図2(b)参照)。
 筐体αの内部に補強部材が設けられることもある。この場合も、筐体αの内部に凹凸が生じる。
 いずれの場合にせよ、筐体αはその内面に凹凸を有し得る。凹部を基準とした場合の凸部Rが、図2(b)に示されている。しかしながら、筐体αが収容する冷却装置1は、安定して電池モジュール20を下から支持して冷却しなければならない。
 2つ目の問題点として、車体内部のスペースには限りがある。車体は多くの部品を搭載するため、筐体α(電池パック)を配置しようとしても、その配置箇所や配置形状に制約が存在することがある。そのため、筐体αの薄型化、小型化が求められる。
 そこで本開示の冷却装置1は、図3に示すように、1つの第1冷却媒体流路11に対して、複数の第2冷却媒体流路12A、12B、12Cを備える。そして、前記複数の第2冷却媒体流路12A、12B、12Cの間には隙間が設けられている。なお、第1冷却媒体および第2冷却媒体の種類は、図2に基づいて示したものと同様である。
 図2(b)と同様、図3においても、筐体αの内面には凸部Rがある。しかし、本実施形態の冷却装置1は、その凸部Rを、前記複数の第2冷却媒体流路12A、12B、12Cの間に設けられた隙間が吸収する。その結果、筐体αを薄く小型化することができる。
 また、1つの第1冷却媒体流路11に対して、第2冷却媒体流路12を設ける箇所と、設けない箇所とを適宜設定することができる。言い換えると、第2冷却媒体流路12を設ける数や設ける場所は、筐体αの内面が有する凹凸に応じて適宜変更可能である。すなわち、上述の筐体αの薄型化を、要求仕様に応じて柔軟に行うことができる。
 さらに、複数の第2冷却媒体流路12A、12B、12Cと、電池モジュール20との間には、第1冷却媒体流路11が挟まっている。すなわち、複数の第2冷却媒体流路12A、12B、12Cに共通の第1冷却媒体流路11が、冷却能力の拡散と、温度調節の機能を果たす。結果、複数の第2冷却媒体同士の温度偏差が緩和され、電池モジュール20の冷却を均一に行うことができる。
 1つの第1冷却媒体流路11に対する第2冷却媒体流路12の数は、図3の例では12A、12B、12Cの3つであるが、2つや、4つ以上であってもよい。
 次に、第1冷却媒体および第2冷却媒体の、流れの方向に係る工夫について説明する。
 図4は、第1冷却媒体流路11の内部構造を示した上面図である。本実施形態における第1冷却媒体流路11は、概して横長長方形の形状を呈している。横長長方形の右側(x軸の負方向)付近において、前後方向(y軸方向)の寸法が減じられている。ただし、この形状に限定する意図はなく、要求される仕様に応じて第1冷却媒体流路11の形状を適宜変更してよい。
 第1冷却媒体流路11は、凹部111を備えている。この凹部111が第1冷却媒体を受容する。なお、図示は省略するが、板状の蓋が凹部111を上側(z軸方向)から塞いでよい。電池モジュール20は、この蓋の上に配置される。
 第1冷却媒体流路11は、1つ以上の壁部112を備えている。壁部112によって、第1冷却媒体流路11内の、第1冷却媒体の流れの方向が規定される。図4の白矢印は、この流れの方向を示している。
 本実施形態においては、第1冷却媒体流路11の左側(x軸方向)に、第1冷却媒体の入口113と出口114がそれぞれ設けられている。第1冷却媒体は、白い矢印で示した方向に流れる。すなわち、入口113から前記凹部111へと流入した第1冷却媒体は、前記壁部112による案内により右方向(x軸の負方向)に流れ、Uターンして左方向(x軸方向)に流れ、出口114から流出する。
 また、第1冷却媒体流路11は、固定部115を備えている。この固定部115にボルト等を挿通し、第1冷却媒体流路11を備える冷却装置1を筐体α等に固定する。なお、固定部115の詳細については後述する。また、図4に示した「第1群」「第2群」の意義についても後述する。
 図5は、3つの第2冷却媒体流路12A、12B、12Cの上面図である。本実施形態における第2冷却媒体流路12A、12B、12Cは、それぞれ、縦長(y軸方向)の形状を呈しており、中央部に仕切り121が縦方向(y軸方向)に延びている。本実施形態においては、第2冷却媒体流路12A、12B、12Cの厚み(z軸方向)は小さい。
 本実施形態においては、第2冷却媒体流路12A、12B、12Cはそれぞれ、前側(y軸の負方向)に、入口123と出口124を有している。第2冷却媒体は、黒い矢印で示した方向に流れる。すなわち、入口123から流入した第2冷却媒体は、後側(y軸方向)へと流れ、Uターンして前側(y軸の負方向)へと流れ、出口124から流出する。
 図6は、冷却装置1の構造を示す図であり、(a)第1冷却媒体流路11と第2冷却媒体流路12とを結合した状態を示す図、(b)第1冷却媒体と第2冷却媒体の流れの方向を示す図である。図4で既に示されている第1冷却媒体流路11と、図5で既に示されている3つの第2冷却媒体流路12A、12B、12Cとを貼り合わせるように重ねて、図6(a)に示すような冷却装置が形成される。すると、図6(b)に示されているように、第1冷却媒体の流れ(白矢印)と、第2冷却媒体の流れ(黒矢印)が、少なくとも部分的に直交する。このような構成にすることで、複数の第2冷却媒体流路12A、12B、12Cを流れる冷却媒体の温度ばらつきが、第1冷却媒体流路11を流れる第1冷却媒体によって積極的に緩和される。
 以上を踏まえた上で、再び図4等を参照し、第1冷却媒体流路11が備える固定部115の構成について説明する。
 図4に示されているように、第1冷却媒体流路11は、固定部115を備えている。上述のように、凹部111は第1冷却媒体を受け入れている。第1冷却媒体が漏れ出ないよう、固定部115頂部の島状領域ILDが高い位置(z軸方向)に突出している。この島状領域ILD内に、貫通孔Hが設けられている。この貫通孔Hにボルトを挿通等することにより、冷却装置1を筐体α等に固定する。
 図7は、冷却装置1の固定箇所を示す図である。第2冷却媒体流路12A、12B、12C間の隙間S121、S122が、筐体αの凸部Rを受け入れている。その隙間S121、S122の上方(z軸方向)に、貫通孔Hを有する固定部115が配置される。
 そして、筐体αの外側(下側)と、前記固定部115との間を、図7に示したような位置でボルト止めする。なお、前記固定部115側からボルトを挿通し、筐体αと、そのさらに下に存在する車体とを共締めしてもよい。また、前記固定部115側からボルトを挿通してよく、逆に、筐体αや車体側(下側)からボルトを挿通してもよい。
 次に、固定部115と、第1冷却媒体の流れとの関係について、再び図4を参照しつつ説明する。図4には、固定部115の配置箇所につき、第1群と第2群とを示している。
 第1群に属する固定部115については、下記の通りである。冷却装置1の上に載せられた電池モジュール20(図3等を参照)は、いずれの場所も均一の温度とは限らない。よって、冷却に用いられた第1冷却媒体も、場所により温度がばらつくことになる。
 そこで、第1群に属する固定部115は、第1冷却媒体の流れに正対する位置に配置されている。このような位置に固定部115を配置すれば、第1冷却媒体の流れはこの島状の固定部115に衝突して、その周囲へと拡散される。すなわち、第1冷却媒体の乱流が起こる。一例を挙げると、第1冷却媒体が水の場合、この水が混ざりあう。従って、上記の温度ばらつきが軽減される。
 一方、第2群に属する固定部115は、第1冷却媒体の流れに正対しない位置に配置されている。すなわち、第1冷却媒体の流れを可能な限り遮らない位置に配置されている。すると、第1冷却媒体は流れを阻害されることなく円滑に流れ、冷却効率が向上する。
 次に、固定部115と、強度との関係について説明する。図4に示されているように、一つの固定部115につき、貫通孔Hが2つ以上(2つや4つ)設けられている。ここで上述の通り、固定部115は、冷却装置1を筐体α等に固定する為に設けられている。固定部115の島状領域ILDの面積が大きく、1つの固定部に挿通するボルトの数が増加することで、前記固定部115を用いた固定の強度が増す。
 次に、電池モジュール20をより効率的に冷却するための、第2冷却媒体流路12A、12B、12Cの配置例について説明する。
 図8は、第2冷却媒体流路と、電池モジュールの位置関係のバリエーションを説明する図である。第2冷却媒体流路12A、12B、12Cと電池モジュール20との間には第1冷却媒体流路11が存在し、この第1冷却媒体流路11が冷却効果の拡散を行うので、温度ばらつきが緩和される。しかし一方で、温度の完全な均一化ができるとは限らない。そこで、図8(a)に示されているように、第2冷却媒体流路12の少なくとも一部が、電池モジュール20と重なって配置されるようにする。前記構成により、より効率的に電池モジュール20の冷却を行うことができる。
 また、電池モジュール20の下(z軸の負方向)には、第2冷却媒体流路12A、12B、12C間の隙間S121、S122が存在するよりも、第2冷却媒体流路12A、12B、12Cが存在した方が、電池モジュール20の冷却効率が高くなる。そこで、図8(b)に示されているように、電池モジュール20間の隙間S201、S202に、第2冷却媒体流路12A、12B、12C間の隙間S121、S122が対応するような配置とする。この配置であれば、冷却効率が向上する。
 図9は、第2冷却媒体流路12と、電池モジュール20の位置関係のバリエーションを説明する第2の図である。図9は、電池モジュール20を上から見ている。電池モジュール20の熱負荷は、どの場所でも同じとは限らない。そこで、電池モジュール20の熱負荷の高い位置に、第2の冷却媒体流路を配置してよい。この配置であれば、電池モジュール20のうち熱負荷の高い箇所を集中的に冷却できるので、冷却効率が向上する。
 より具体的な例としては、複数の電池モジュール20の中心(重心)に配置された電池モジュール20には、熱がこもりやすく、熱負荷が高い。図9の例では、図中、丸で囲まれている電池モジュール20が、特に熱負荷が高い。そこで、第2冷却媒体流路12が、複数の電池モジュールの中心に配置された電池モジュールと重なって配置される。この配置であれば、電池モジュール20のうち熱負荷の高い箇所を集中的に冷却できるので、冷却効率が向上する。
 次に、第2冷却媒体流路12を用いて冷却装置1の強度を増す構成について説明する。
 図10は、冷却装置1の強度を増す為の、第2冷却媒体流路12の配置例を示している。上述の通り、冷却装置1の上には電池モジュール20が置かれるのだが、冷却装置1はこの荷重に耐えねばならない。
 ここで、プレートの如き部材は、その外側に強度が要求される。外側の強度が高ければ、プレート自体の強度が向上する。
 一方、冷却装置1は、第1冷却媒体流路11と、第2冷却媒体流路12との、2種類の流路を備えている。この2種類の流路が重なっている部分(2層になっている部分)の方が、これらが重なっていない部分(1層になっている部分)よりも強度が強い。そこで、第1冷却媒体流路11と、第2冷却媒体流路12とが重なって、2層になっている部分を、プレートの補強材であると解釈し、プレートの強度が求められる箇所に当該2層になっている部分を配置すれば好適である。
 すなわち、第2冷却媒体流路12を、冷却装置1(冷却プレート)の外縁付近に配置すれば、冷却装置1自体の強度を増すことができる。
 例えば、図10に示しているように、冷却装置1の外縁と、前記外縁に最も近い前記第2冷却媒体流路12Aとの間の距離をS1とする。複数の前記第2冷媒通流路間(ここでは、12Aと12Bとの間)の隙間の距離をS2とする。このとき、S1<S2となるように、第2冷却媒体流路12Aを配置すれば、第2冷却媒体流路12Aが冷却装置1の外縁近くに配置されることになる。その結果、冷却装置1の外側が第2冷却媒体流路12Aによって補強され、強度の高い冷却装置1が得られる。
 次に、配管の配置の工夫について説明する。図4~図6に既に示したように、第1冷却媒体が流れる方向と、第2冷却媒体が流れる方向とを直交させた場合、それぞれの冷却媒体の出入口が、冷却装置1の相異なる辺に配置されることとなる。すると、前記出入口から冷却装置1の外へと延びる配管が、筐体α内のスペース(図3参照)を圧迫する。
 この観点から、冷却媒体が流れる方向を一部変更して、第1冷却媒体の出入口と、第2冷却媒体の出入口とを、冷却装置1の同じ辺に配置すると好適である。
 図11は、第1冷却媒体の出入口と、第2冷却媒体の出入口を、冷却装置1の同一の辺に配置するための、第1冷却媒体流路11の変形例を示す図である。図11に示されている第1冷却媒体流路11は、図4に示されている第1冷却媒体流路11と構成は基本的に同様である。しかし、第1冷却媒体が流れる方向を規定する壁部112のうち、いくつかが、90度前後折り曲げられた形で配置されている。このように、壁部112の配置や形状に基づいて第1冷却媒体の流れる方向を制御することで、第1冷却媒体の出入口113、114を、第2冷却媒体の出入口123、124(図5参照)と同一の辺に揃えて配置することができる。すると、冷却装置1から出る配管が一つの辺にまとまるので、冷却装置1の外側の配管がコンパクトになり、配管の取り回しも容易になる。その結果、冷却装置1およびこれを収容する筐体αを省スペース化することができる。
 次に、本開示の冷却装置1の変形例(以下、冷却装置1a)について説明する。なお、冷却装置1aが備える、前記冷却装置1と同様の部材については、同じ参照符号を付している。
 まず初めに、本開示の冷却装置1aに対する比較例を示す。図12は、複数の冷却プレートを連結して形成した冷却装置5を示す図である。冷却装置5は、第1冷却媒体を流す第1冷却媒体流路51と、第2冷却媒体を流す第2冷却媒体流路52を備える。
 第1冷却媒体流路51は、3つの流路51A、51B、51Cを外部の配管によって相互連通することにより形成されている。第2冷却媒体流路52も同様に、3つの流路52A、52B、52Cを外部の配管によって相互連通することにより形成されている。このように複数の流路を相互連通することにより、冷却装置5の面積は大きくなり、より多くの電池モジュールを冷却することができるようになる。
 しかし、図12に示した構成においては、各流路を相互連通するための配管が多数、冷却装置5の外側に配置される。これらの外部配管は筐体α内で多くのスペースを占有する。そのため、電池モジュール20を搭載するスペースが圧迫され、筐体αの小型化ができない。
 一方、本開示の冷却装置1aは、各流路を相互連通するための配管を外部に設ける必要が無い為、省スペース化、省コスト化が可能である。以下、その為の構成について説明する。
 図13に示す、本開示の冷却装置1aは、前記電池モジュールと近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、を備え、1つの前記第1冷却媒体流路11に対して、複数の第2冷却媒体流路12A、12B、12Cが設けられている。ただし、第2冷却媒体流路12の数は3つでなくともよく、2つや、4つ以上であってもよい。
 本開示の冷却装置1aは、第2冷却媒体流路12A、12B、12Cを相互連通させる。この相互連通の為に、第1冷却媒体流路11に設けられている壁部112(図4等参照)を活用する。
 より具体的には、図14以降に例示されているように、前記第1冷却媒体流路11が、前記第1冷却媒体の流れる方向を規定する壁部を備え、前記第2冷却媒体流路のうちの少なくとも2つの間を渡る、第2冷却媒体渡り流路Pを更に備え、前記第2冷却媒体渡り流路Pが、前記第1冷却媒体流路11の前記壁部112内に設けられる。
 上記構成の一例を、図14から図17に図示している。
 図14は、3つの第2冷却媒体流路12A、12B、12Cを、第2冷却媒体渡り流路Pを用いて直列に連通した状態を示す図である。なお、図による理解を容易とするために、本来存在する部材の一部は省略されている。
 第1冷却媒体流路11は、図4で既に説明したように、また、図14に示されているように、第1冷却媒体が右側(x軸の負方向)へと流れ、Uターンして左側(x軸方向)へと戻ってくるようになっている。この第1冷却媒体の流れる方向を規定しているのは、既に説明した壁部112である。
 この第1冷却媒体流路11に含まれる壁部112の内側に、第2冷却媒体渡り流路Pを設ける。そして、第2冷却媒体渡り流路Pの下部(z軸の負方向)に開口A1~A10を設ける。この開口A1~A10は、破線で図示した3つの第2冷却媒体流路12A、12B、12Cと連通している。
 図15は、図14に示した構成における、第1冷却媒体および第2冷却媒体の流れる方向を図示したものである。冷却装置1aの左側の辺に設けられた入口123から流入した第2冷却媒体は、壁部112内に設けられた第2冷却媒体渡り流路Pを通り、黒矢印で示されているように、開口A1を通って第2冷却媒体流路12Aへと流入する。
 この第2冷却媒体は、第2冷却媒体流路12Aを図の反時計回りに流れ、開口A2を通って第2冷却媒体渡り流路Pへと戻る。この冷却媒体はそのまま図の右側(x軸の負方向)へと進み、中央の第2冷却媒体流路12Bへと流入する。
 第2冷却媒体は、以下同様に、第2冷却媒体流路と第2冷却媒体渡り流路Pとの間を行き来し、開口A5を通って第2冷却媒体流路12Cへと流入する。そしてこの第2冷却媒体は、第2冷却媒体流路12C内を反時計回りに流れ、開口A6を通って第2冷却媒体渡り流路Pへと戻る。
 この第2冷却媒体は、同様に、開口A6、A7、A8を通って、第2冷却媒体流路と第2冷却媒体渡り流路Pとの間を行き来し、開口A9へとたどり着く。
 開口A9を通った第2冷却媒体は、第2冷却媒体流路12Aへと流入し、反時計回りに流れ、そして開口A10を通って第2冷却媒体渡り流路Pへと戻る。
 最後に、第2冷却媒体は、第1冷却媒体流路11の、図の左側(x軸方向)の辺に設けられた出口124を通って、外部へと流出する。
 このように、第2冷却媒体渡り流路Pは、第2冷却媒体が、複数の第2冷却媒体流路12A~12Cの間を直列に流れるように、橋渡しの機能を発揮する。その結果、複数の第2冷却媒体流路12A~12Cに対する、第2冷却媒体の出入口を、冷却装置1aの1辺(図の左側の辺)にまとめることができる。
 図16は、3つの第2冷却媒体流路12A、12B、12Cを、第2冷却媒体渡り流路Pを用いて並列に連通した状態を示す図である。なお、図による理解を容易とするために、本来存在する部材の一部は省略されている。
 第1冷却媒体流路は、図示されているように、第1冷却媒体が右側(x軸の負方向)へ流れ、Uターンして左側(x軸方向)へと戻ってくるようになっている。この冷却媒体の流れを規定しているのは、既に説明した壁部112である。
 この第1冷却媒体流路11に含まれる壁部112の内部に、第2冷却媒体渡り流路Pを設ける。そして、第2冷却媒体渡り流路Pの下部(z軸の負方向)に開口A1~A6を設ける。この開口A1~A6は、図示した3つの第2冷却媒体流路12A、12B、12Cと連通している。
 図17は、図16に示した構成における、第1冷却媒体および第2冷却媒体の流れる方向を図示したものである。第1冷却媒体流路11の左側(x軸方向)の辺に設けられた入口123から流入した第2冷却媒体は、その一部が、壁部112内に設けられた第2冷却媒体渡り流路Pを通り、開口A1を通って、第2冷却媒体流路12Aへと流入する。第2冷却媒体の残りの一部は、第2冷却媒体渡り流路Pを通り、第2冷却媒体流路12Bへと流れる。
 第2冷却媒体流路12Aの中に流入した第2冷却媒体は、第2冷却媒体流路12Aを図の反時計回りに流れ、開口A2を通って第2冷却媒体渡り流路Pへと戻る。そして、当該第2冷却媒体は、第1冷却媒体流路11の、図の左側(x軸方向)の辺に設けられた出口124を通って、外部へと流出する。
 一方、第2冷却媒体流路12Bへと流れた、第2冷却媒体の残りの一部は、そのさらに一部が開口A3を通って、第2冷却媒体流路12Bへと流入する。残った冷却媒体は、第2冷却媒体渡り流路Pを通って、第2冷却媒体流路12Cへと流れる。
 第2冷却媒体流路12Bの中に流入した第2冷却媒体は、第2冷却媒体流路12Bを図の反時計回りに流れ、開口A4を通って第2冷却媒体渡り流路Pへと戻る。そして、当該第2冷却媒体は、第2冷却媒体流路12Aを通り過ぎ、第1冷却媒体流路11の、図の左側(x軸方向)の辺に設けられた出口124を通って、外部へと流出する。
 最後に、第2冷却媒体流路12Cへと流れた、第2冷却媒体の残りの一部は、開口A5を通って、第2冷却媒体流路12Cへと流入する。第2冷却媒体流路12Cの中に流入した第2冷却媒体は、第2冷却媒体流路12Cを図の反時計回りに流れ、開口A6を通って第2冷却媒体渡り流路Pへと戻る。そして、当該第2冷却媒体は、第2冷却媒体流路12Bおよび12Aを通り過ぎ、第1冷却媒体流路11の、図の左側(x軸方向)の辺に設けられた出口124を通って、外部へと流出する。
 このように、第2冷却媒体渡り流路Pは、第2冷却媒体が、複数の第2冷却媒体流路12A、12B、12Cの間を並列に流れるように、橋渡しの機能を発揮する。その結果、複数の第2冷却媒体流路12A、12B、12Cに対する、第2冷却媒体の出入口123、124を、冷却装置1aの1辺(図の左側の辺)にまとめることができる。
 図14~図17に示した例では、前記第1冷却媒体流路11における第1冷却媒体の流れる方向と、前記第2冷却媒体流路12A、12B、12Cにおける第2冷却媒体の流れる方向とが、少なくとも部分的に直交している。このような構成にすることで、複数の第2冷却媒体流路12A、12B、12Cを流れる第2冷却媒体の温度ばらつきが、第1冷却媒体流路11を流れる第1冷却媒体によって積極的に緩和される。
 また、図14~図17から明らかなように、第2冷却媒体渡り流路Pを第1冷却媒体流路11の壁部112内部に設けたことによって、第1冷却媒体流路の出入口113、114と、第2冷却媒体流路の出入口123、124とを、前記冷却装置の同一の辺に設けることができるようになる。
 第2冷却媒体渡り流路Pを設ける壁部112として、第1冷却媒体流路11を左右(x軸方向)に横断する壁部112を用いたが、この壁部112の向きは、その他の向きであってもよい。ただし、複数の第2冷却媒体流路の間で、第2冷却媒体を橋渡しできるような位置、長さを有している壁部112に限られる。
 なお、第2冷却媒体渡り流路Pを設けた上記の実施形態は、複数の第2冷却媒体流路12A、12B、12Cのそれぞれの間に隙間が無くとも、同様の効果を奏することができる。
 また、前述と同様に、第2冷却媒体流路12を、冷却装置1aの外縁付近に配置して、冷却装置の強度増強を図ることができる。
 既に説明した図10の例と同様に、冷却装置1aの外縁と、前記外縁に最も近い前記第2冷却媒体流路12Aとの間の距離をS1とする。複数の前記第2冷媒通流路間(ここでは、12Aと12Bとの間)の隙間の距離をS2とおく。このとき、S1<S2となるように、第2冷却媒体流路12Aを配置する。これにより、第2冷却媒体流路12Aが冷却装置1aの外縁近くに配置されることになる。その結果、冷却装置1aの外側が第2冷却媒体流路12によって補強され、強度の高い冷却装置1aが得られる。
 本開示の冷却装置は以上のような構成を有する。上記構成において、前記第1冷却媒体流路における第1冷却媒体の流れる方向と、前記第2冷却媒体流路における第2冷却媒体の流れる方向とが、少なくとも部分的に直交してよい。前記構成により、複数の第2冷却媒体流路12A、12B、12Cを流れる冷却媒体の温度ばらつきが、第1冷却媒体流路11を流れる第1冷却媒体によって積極的に緩和される。
 上記構成において、第1冷却媒体は少なくとも一部に水を含む液体であってよい。また、第2冷却媒体は冷媒であってよい。前記構成により、冷媒による冷却能力を、少なくとも一部に水を含む液体によって拡散することで、温度のばらつきを緩和することができる。
 上記構成において、前記冷却装置を、前記冷却装置を収容する所定の筐体に固定する、1以上の固定部を、複数の前記第2冷却媒体流路の間に備えてよい。前記構成により、第2冷却媒体流路を間に挟むことなく、冷却装置1(1a)を筐体αに固定することができる。そのため、厚みが減らされ、筐体αを省スペース化することができる。
 上記構成において、冷却装置が、前記第1冷却媒体の流れに正対する位置に配置されている前記固定部を備えてよい。前記構成により、第1冷却媒体の流れは固定部115に衝突して、その周囲へと拡散される。すなわち、流れを拡散する機能を固定部115が果たすことにより、温度ばらつきの改善がなされる。
 上記構成において、前記第1冷却媒体の流れに正対しない位置に配置されている前記固定部を備えてよい。前記構成により、第1冷却媒体は流れを阻害されることなく円滑に流れ、冷却効率が向上する。
 上記構成において、前記固定部が、留め部材を通すための貫通孔を備えてよい。前記構成により、この貫通孔Hにボルトを挿通することで、冷却装置1を筐体α等に固定することができる。
 上記構成において、前記固定部が、2つ以上の前記貫通孔を備えてよい。前記構成により、固定部115の前記島状領域ILDが大きく、1つの固定部について挿通するボルトの数が増加することで、前記固定部115による固定の強度が増す。
 上記構成において、第1冷却媒体流路の出入口と、第2冷却媒体流路の出入口とが、前記冷却装置の同一の辺に設けられるようにしてよい。前記構成により、冷却装置1から出る配管が一つの辺にまとまるので、冷却装置1(1a)の外側の配管がコンパクトになり、また、配管の取り回しも容易になる。その結果、冷却装置1(1a)およびこれを収容する筐体αを省スペース化することができる。
 前記構成において、第2冷却媒体流路の少なくとも一部が、前記電池モジュールと重なって配置されてよい。前記構成により、より効率的に電池モジュール20の冷却を行うことができる。
 前記構成において、前記冷却装置が冷却する前記電池モジュールは複数の電池モジュールであり、前記複数の電池モジュール間の隙間が、前記複数の第2冷却媒体流路間の隙間と対応していてよい。前記構成により、電池モジュール20のうち熱負荷の高い箇所を集中的に冷却できるので、冷却効率が向上する。
 上記構成において、前記冷却装置が冷却する前記電池モジュールは複数の電池モジュールであり、電池モジュールの熱負荷の高い位置に、第2冷却媒体流路が配置されてよい。前記構成により、電池モジュール20のうち熱負荷の高い箇所を集中的に冷却できるので、冷却効率が向上する。
 上記構成において、第2冷却媒体流路が、複数の電池モジュールの中心に配置された電池モジュールと重なって配置されてよい。前記構成により、電池モジュール20のうち熱負荷の高い箇所を集中的に冷却できるので、冷却効率が向上する。
 上記構成において、前記冷却装置の外縁と、前記外縁に最も近い前記第2冷却媒体流路と間の距離が、複数の前記第2冷却媒体流路間の隙間の距離よりも小さくなるように、前記第2冷却媒体流路を配置してよい。前記構成により、第2冷却媒体流路12Aが冷却装置1の外縁近くに配置されることになる。その結果、冷却装置1の外側が第2冷却媒体流路12によって補強され、強度の高い冷却装置1が得られる。
 前記構成において、前記第2冷却媒体渡り流路は、前記複数の第2冷却媒体流路の中を前記第2冷却媒体が直列あるいは並列に流れるように、配置されてよい。前記構成により、その結果、複数の第2冷却媒体流路12A~12Cに対する、第2冷却媒体の出入口123、124を、冷却装置1aの1辺にまとめることができる。そのため、配管のスペースが削減され、筐体αの省スペース化が実現できる。
 また、筐体が、1以上の電池モジュールと、前記電池モジュールを冷却する、上記の冷却装置を備えてよい。前記構成により、省スペース化、省コスト化された筐体(電池パック)を得ることができる。
 その他、本願は、以下の特徴を有する。
(特徴A1)
 1以上の電池モジュールを冷却する冷却装置であって、
 前記電池モジュールに近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、
 前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、
 を備え、
 前記第2冷却媒体流路において、前記第2冷却媒体は潜熱変化によって前記電池モジュールから熱を奪うことが可能であり、
 1つの前記第1冷却媒体流路に対して、複数の第2冷却媒体流路が設けられており、
 前記第1冷却媒体流路は、前記第1冷却媒体の流れる方向を規定する壁部を備え、
 前記第2冷却媒体流路のうちの少なくとも2つの間を渡る、第2冷却媒体渡り流路を更に備え、
 前記第2冷却媒体渡り流路が、前記第1冷却媒体流路の前記壁部内に設けられる、
 冷却装置。
(特徴A2)
 特徴A1に記載の冷却装置であって、
 前記第1冷却媒体流路において、前記第1冷却媒体は顕熱変化によって前記電池モジュールから熱を奪うことが可能である、
 冷却装置。
(特徴A3)
 特徴A1又は特徴A2に記載の冷却装置であって、
 前記第1冷却媒体流路における第1冷却媒体の流れる方向と、前記第2冷却媒体流路における第2冷却媒体の流れる方向とが、少なくとも部分的に直交する、
 冷却装置。
(特徴A4)
 特徴A1から特徴A3のいずれか1項に記載の冷却装置であって、
 前記第2冷却媒体渡り流路が、前記複数の第2冷却媒体流路の中を前記第2冷却媒体が直列に流れるように、配置されている、
 冷却装置。
(特徴A5)
 特徴A1から特徴A3のいずれか1項に記載の冷却装置であって、
 前記第2冷却媒体渡り流路が、前記複数の第2冷却媒体流路の中を前記第2冷却媒体が並列に流れるように、配置されている、
 冷却装置。
(特徴A6)
 特徴A1から特徴A5のいずれか1項に記載の冷却装置であって、
 第1冷却媒体流路の出入口と、第2冷却媒体流路の出入口とが、前記冷却装置の同一の辺に設けられている、
 冷却装置。
(特徴A7)
 特徴A1から特徴A6のいずれか1項に記載の冷却装置であって、
 前記冷却装置の外縁と、前記外縁に最も近い前記第2冷却媒体流路との間の距離が、複数の前記第2冷却媒体流路間の隙間の距離よりも小さい、
 冷却装置。
(特徴A8)
 筐体であって、
 1以上の電池モジュールと、
 前記電池モジュールを冷却する、特徴A1から特徴A7のいずれか1項に記載の冷却装置を備える、
 筐体。
 以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年3月30日出願の日本特許出願(特願2019-069476および特願2019-069477)に基づくものであり、その内容は本出願の中に参照として援用される。
1   冷却装置
1a  冷却装置
5   冷却装置
11  第1冷却媒体流路
12  第2冷却媒体流路
12A~12C  第2冷却媒体流路
20  電池モジュール
51  第1冷却媒体流路
52  第2冷却媒体流路
51A~51C  流路
52A~52C  流路
111 凹部
112 壁部
113 入口
114 出口
115 固定部
121 仕切り
123 入口
124 出口
A1~A10  開口
H   貫通孔
ILD 島状領域
P   流路
R   凸部
S121  隙間
S122  隙間
α   筐体

Claims (17)

  1.  1以上の電池モジュールを冷却する冷却装置であって、
     前記電池モジュールに近い側に配置され、第1冷却媒体を流す第1冷却媒体流路と、
     前記電池モジュールから遠い側に配置され、第2冷却媒体を流す第2冷却媒体流路と、
     を備え、
     前記第2冷却媒体流路において、前記第2冷却媒体は潜熱変化によって前記電池モジュールから熱を奪うことが可能であり、
     1つの前記第1冷却媒体流路に対して、複数の第2冷却媒体流路が設けられており、
     前記複数の第2冷却媒体流路の間に隙間が設けられている、
     冷却装置。
  2.  請求項1に記載の冷却装置であって、
     前記第1冷却媒体流路において、前記第1冷却媒体は顕熱変化によって前記電池モジュールから熱を奪うことが可能である、
     冷却装置。
  3.  請求項1又は請求項2に記載の冷却装置であって、
     前記第1冷却媒体流路における第1冷却媒体の流れる方向と、前記第2冷却媒体流路における第2冷却媒体の流れる方向とが、少なくとも部分的に直交する、
     冷却装置。
  4.  請求項1から請求項3のいずれか1項に記載の冷却装置であって、
     前記第1冷却媒体は少なくとも一部に水を含む液体である、
     冷却装置。
  5.  請求項1から請求項4のいずれか1項に記載の冷却装置であって、
     前記第2冷却媒体は冷媒である、
     冷却装置。
  6.  請求項1から請求項5のいずれか1項に記載の冷却装置であって、
     前記冷却装置を、前記冷却装置を収容する所定の筐体に固定する、1以上の固定部を、複数の前記第2冷却媒体流路の間に備えている、
     冷却装置。
  7.  請求項6に記載の冷却装置であって、
     前記第1冷却媒体の流れに正対する位置に配置されている前記固定部を備える、
     冷却装置。
  8.  請求項6または請求項7に記載の冷却装置であって、
     前記第1冷却媒体の流れに正対しない位置に配置されている前記固定部を備える、
     冷却装置。
  9.  請求項6から請求項8のいずれか1項に記載の冷却装置であって、
     前記固定部が、留め部材を通すための貫通孔を備える、
     冷却装置。
  10.  請求項9に記載の冷却装置であって、
     前記固定部が、2つ以上の前記貫通孔を備える、
     冷却装置。
  11.  請求項1から請求項10のいずれか1項に記載の冷却装置であって、
     第1冷却媒体流路の出入口と、第2冷却媒体流路の出入口とが、前記冷却装置の同一の辺に設けられている、
     冷却装置。
  12.  請求項1から請求項11のいずれか1項に記載の冷却装置であって、
     第2冷却媒体流路の少なくとも一部が、前記電池モジュールと重なって配置される
     冷却装置。
  13.  請求項12に記載の冷却装置であって、
     前記冷却装置が冷却する前記電池モジュールは複数の電池モジュールであり、
     前記複数の電池モジュール間の隙間が、
     前記複数の第2冷却媒体流路間の隙間と対応している、
     冷却装置。
  14.  請求項1から請求項13のいずれか1項に記載の冷却装置であって、
     前記冷却装置が冷却する前記電池モジュールは複数の電池モジュールであり、
     電池モジュールの熱負荷の高い位置に、第2冷却媒体流路が配置される
     冷却装置。
  15.  請求項14に記載の冷却装置であって、
     第2冷却媒体流路が、複数の電池モジュールの中心に配置された電池モジュールと重なって配置される、
     冷却装置。
  16.  請求項1から請求項15のいずれか1項に記載の冷却装置であって、
     前記冷却装置の外縁と、前記外縁に最も近い前記第2冷却媒体流路との間の距離が、複数の前記第2冷却媒体流路間の隙間の距離よりも小さい、
     冷却装置。
  17.  筐体であって、
     1以上の電池モジュールと、
     前記電池モジュールを冷却する、請求項1から請求項16のいずれか1項に記載の冷却装置を備える、
     筐体。
PCT/JP2020/007266 2019-03-30 2020-02-21 冷却装置および筐体 WO2020202893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020001699.4T DE112020001699T5 (de) 2019-03-30 2020-02-21 Kühlvorrichtung und Gehäuse
CN202080023138.7A CN113678303A (zh) 2019-03-30 2020-02-21 冷却装置以及壳体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019069477A JP7209220B2 (ja) 2019-03-30 2019-03-30 冷却装置および筐体
JP2019-069477 2019-03-30
JP2019069476A JP7209219B2 (ja) 2019-03-30 2019-03-30 冷却装置および筐体
JP2019-069476 2019-03-30

Publications (1)

Publication Number Publication Date
WO2020202893A1 true WO2020202893A1 (ja) 2020-10-08

Family

ID=72668675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007266 WO2020202893A1 (ja) 2019-03-30 2020-02-21 冷却装置および筐体

Country Status (3)

Country Link
CN (1) CN113678303A (ja)
DE (1) DE112020001699T5 (ja)
WO (1) WO2020202893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491196B2 (ja) 2020-11-25 2024-05-28 トヨタ自動車株式会社 蓄電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122913A1 (de) 2021-09-03 2023-03-09 Muhr Und Bender Kg Batteriekühlvorrichtung für ein elektrisches Batteriemodul eines Elektroantriebs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050000A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 車両用の電源装置
JP2011228301A (ja) * 2010-04-21 2011-11-10 Sb Limotive Co Ltd バッテリパック及びバッテリパック用冷却システム
JP2011253801A (ja) * 2010-06-03 2011-12-15 Sb Limotive Co Ltd バッテリーパック
JP2013201832A (ja) * 2012-03-26 2013-10-03 Sumitomo Heavy Ind Ltd 電力変換装置及び作業機械
KR20140077272A (ko) * 2012-12-13 2014-06-24 대한칼소닉주식회사 적층형 유로 형성 구조를 갖는 배터리 히트 싱크
US20150236385A1 (en) * 2014-02-17 2015-08-20 Samsung Sdi Co., Ltd. Battery module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154157A (ja) * 1997-08-04 1999-02-26 Toyota Motor Corp 熱交換装置及びバッテリケース
JP2013051274A (ja) * 2011-08-30 2013-03-14 Toyota Motor Corp 冷却装置
US9700964B2 (en) 2013-03-15 2017-07-11 Lincoln Global, Inc. Boric acid free flux
JP5983534B2 (ja) 2013-05-22 2016-08-31 株式会社デンソー 電池温調システム
KR101748360B1 (ko) * 2014-12-01 2017-06-16 주식회사 엘지화학 배터리 모듈
KR102044426B1 (ko) 2015-12-04 2019-11-13 주식회사 엘지화학 전지모듈들을 균일하게 냉각시킬 수 있는 간접 냉각 시스템 및 이를 포함하는 전지팩
JP2019069477A (ja) 2019-02-13 2019-05-09 三協オイルレス工業株式会社 カム装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050000A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 車両用の電源装置
JP2011228301A (ja) * 2010-04-21 2011-11-10 Sb Limotive Co Ltd バッテリパック及びバッテリパック用冷却システム
JP2011253801A (ja) * 2010-06-03 2011-12-15 Sb Limotive Co Ltd バッテリーパック
JP2013201832A (ja) * 2012-03-26 2013-10-03 Sumitomo Heavy Ind Ltd 電力変換装置及び作業機械
KR20140077272A (ko) * 2012-12-13 2014-06-24 대한칼소닉주식회사 적층형 유로 형성 구조를 갖는 배터리 히트 싱크
US20150236385A1 (en) * 2014-02-17 2015-08-20 Samsung Sdi Co., Ltd. Battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491196B2 (ja) 2020-11-25 2024-05-28 トヨタ自動車株式会社 蓄電装置

Also Published As

Publication number Publication date
CN113678303A (zh) 2021-11-19
DE112020001699T5 (de) 2021-12-16

Similar Documents

Publication Publication Date Title
KR102643493B1 (ko) 차량의 배터리 시스템
US10483604B2 (en) Battery pack
US9565792B2 (en) Connection structure and inverter
JP5862646B2 (ja) 冷媒管の連結構造及び冷却器内蔵インバータ
JP2023029417A (ja) 冷却装置および車両
WO2020202893A1 (ja) 冷却装置および筐体
JP5516166B2 (ja) 車両用電源装置
KR20170079177A (ko) 전기소자 냉각용 열교환기
US20180337435A1 (en) Cell module for electric and hybrid vehicles
WO2020241193A1 (ja) 移動体用冷却器一体型バッテリトレイおよび移動体用バッテリ装置
JP5683704B2 (ja) 冷却器及び電動機一体型電力変換装置
JP2005343221A (ja) 車両の冷却装置構造
JP2020167133A (ja) 冷却装置および筐体
JP7306255B2 (ja) 熱交換器
US11165108B2 (en) High voltage accumulator
WO2024014491A1 (ja) 冷却モジュール
WO2024106330A1 (ja) 冷却システム
CN117565623A (zh) 热管理集成部件、系统和车辆
JP7423232B2 (ja) 車両のバッテリケース用冷却器
CN113263886B (zh) 换热器
CN220980393U (zh) 温控系统、储能系统、车辆及多通阀
JP7494453B2 (ja) 熱交換器
US20240154199A1 (en) Vehicle battery pack
JP6443298B2 (ja) 電池パック
KR20230142160A (ko) 통합 급수 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783601

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20783601

Country of ref document: EP

Kind code of ref document: A1