WO2020202873A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2020202873A1
WO2020202873A1 PCT/JP2020/006715 JP2020006715W WO2020202873A1 WO 2020202873 A1 WO2020202873 A1 WO 2020202873A1 JP 2020006715 W JP2020006715 W JP 2020006715W WO 2020202873 A1 WO2020202873 A1 WO 2020202873A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
semiconductor device
switching
pad
switching elements
Prior art date
Application number
PCT/JP2020/006715
Other languages
English (en)
French (fr)
Inventor
加藤 信之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080024830.1A priority Critical patent/CN113678246B/zh
Publication of WO2020202873A1 publication Critical patent/WO2020202873A1/ja
Priority to US17/490,448 priority patent/US11961828B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1425Converter
    • H01L2924/14252Voltage converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the disclosure in this specification relates to semiconductor devices.
  • the semiconductor device disclosed in Patent Document 1 includes a first switching element formed on a silicon (Si) substrate and a second switching element formed on a silicon carbide (SiC) substrate. Each of the first switching element and the second switching element is connected to a heat sink (heat dissipation member) and connected in parallel to each other. The substrate area of the second switching element is smaller than that of the first switching element.
  • a configuration including at least one of the first switching element and the second switching element can be considered.
  • the number of switching elements increases, the number of signal terminals increases.
  • the increase in signal terminals affects, for example, the physique, manufacturing time, cost, and yield of semiconductor devices.
  • One purpose to be disclosed is to provide a semiconductor device capable of reducing the number of signal terminals while improving the output.
  • the semiconductor device is a semiconductor device cooled by a refrigerant, and includes a heat radiating member, a plurality of switching elements, and a plurality of signal terminals.
  • the plurality of switching elements include a first switching element formed on a silicon substrate and a second switching element formed on a silicon carbide substrate, and each has a main electrode through which a main current flows and a pad for a signal.
  • One of the main electrodes is electrically connected to the heat dissipation member and connected in parallel with each other.
  • the plurality of signal terminals are electrically connected to the pad.
  • Each switching element has a temperature sense pad for detecting the substrate temperature as a pad.
  • the switching element includes at least one of the first switching element and the second switching element, and the first switching element and the second switching element are alternately arranged in a predetermined direction in which the refrigerant flows.
  • the signal terminals corresponding to the temperature sense pads are provided only in some switching elements including at least the most downstream in a plurality of switching elements having the same board type as the switching elements located in the most downstream, and more than a part. It is not provided in the switching element on the upstream side.
  • the semiconductor device since at least one of the first switching element and the second switching element is included, the output of the semiconductor device can be improved. Due to the alternating arrangement, the semiconductor device includes a plurality of switching elements having the same type as the switching element located at the most downstream side. For example, when the most downstream is the first switching element, at least a plurality of first switching elements are included. When the most downstream is the second switching element, at least a plurality of second switching elements are included.
  • the substrate temperature is detected via the temperature sense pad and the corresponding signal terminal for overheating monitoring of the switching element. Since the temperature of the refrigerant rises due to heat exchange with the switching element, it is lower toward the upstream side and higher toward the downstream side. Therefore, overheating monitoring of all switching elements of the same type is possible based on the substrate temperature of some switching elements including at least the most downstream. Further, since the signal terminal corresponding to the temperature sense pad is not provided for the switching element on the upstream side of a part, the total number of signal terminals can be reduced. As a result, it is possible to provide a semiconductor device capable of reducing the number of signal terminals while improving the output.
  • FIG. 1 is a diagram showing a circuit configuration of a power conversion device to which the semiconductor device of the first embodiment is applied.
  • FIG. 2 is a plan view showing a semiconductor device on the lower arm side.
  • FIG. 3 is a plan view of FIG. 2 as viewed from the A direction.
  • FIG. 4 is a partial cross-sectional view showing the structure inside the sealing resin.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.
  • FIG. 7 is a diagram showing a semiconductor device on the upper arm side.
  • FIG. 8 is a diagram showing the arrangement of the switching element and the heat radiating member.
  • FIG. 9 is a diagram showing the arrangement of the switching element and the heat radiating member.
  • FIG. 10 is a plan view showing a laminated structure with a cooler.
  • FIG. 11 is a plan view showing a semiconductor device of a modified example.
  • FIG. 12 is a diagram showing the relationship between the current path and the non-overlapping region.
  • FIG. 13 is a diagram showing current imbalance suppression.
  • FIG. 14A is a diagram showing a heat generation state in the first period in the semiconductor device of the second embodiment.
  • FIG. 14B is a diagram showing a heat generation state in the second period in the semiconductor device of the second embodiment.
  • FIG. 15 is a diagram showing a semiconductor device of the third embodiment.
  • FIG. 14A is a diagram showing a heat generation state in the first period in the semiconductor device of the second embodiment.
  • FIG. 14B is a diagram showing a heat generation state in the second period in the semiconductor device of
  • FIG. 16 is a diagram showing the arrangement of main terminals and the current path.
  • FIG. 17 is a diagram showing a semiconductor device of the fourth embodiment.
  • FIG. 18A is a diagram showing a dimensional relationship in the semiconductor device of the fourth embodiment.
  • FIG. 18B is a diagram showing a dimensional relationship in the semiconductor device of the first reference example.
  • FIG. 18C is a diagram showing a dimensional relationship in the semiconductor device of the second reference example.
  • FIG. 19A is a diagram showing the positional relationship between the second switching element and the main terminal in the semiconductor device of the fourth embodiment.
  • FIG. 19B is a diagram showing the positional relationship between the second switching element and the main terminal in the semiconductor device of the reference example.
  • FIG. 19A is a diagram showing the positional relationship between the second switching element and the main terminal in the semiconductor device of the fourth embodiment.
  • FIG. 19B is a diagram showing the positional relationship between the second switching element and the main terminal in the semiconductor device of the reference example.
  • FIG. 20A is a simplified cross-sectional view taken along the line XXA-XXXA of FIG.
  • FIG. 20B is a simplified cross-sectional view of the semiconductor device of the reference example.
  • FIG. 21 is a diagram showing a semiconductor device of the fifth embodiment.
  • FIG. 22 is a diagram showing a modified example.
  • FIG. 23 is a diagram showing a modified example.
  • FIG. 24 is a diagram showing a modified example.
  • FIG. 25 is a diagram showing a semiconductor device of the sixth embodiment.
  • FIG. 26 is a diagram showing a modified example.
  • FIG. 27 is a diagram showing a modified example.
  • FIG. 28 is a diagram showing a modified example.
  • FIG. 29 is a diagram showing a modified example.
  • FIG. 30 is a diagram showing a modified example.
  • FIG. 31 is a diagram showing a modified example.
  • FIG. 32 is a diagram showing a modified example.
  • FIG. 33 is a diagram showing a modified
  • the power conversion device shown below can be applied to a vehicle such as an electric vehicle (EV) or a hybrid vehicle (HV).
  • a vehicle such as an electric vehicle (EV) or a hybrid vehicle (HV).
  • EV electric vehicle
  • HV hybrid vehicle
  • the vehicle drive system 1 includes a DC power supply 2, a motor generator 3, and a power conversion device 4.
  • the DC power supply 2 is a DC voltage source composed of a rechargeable secondary battery. Examples of the secondary battery include a lithium ion battery and a nickel hydrogen battery.
  • the motor generator 3 is a three-phase AC rotary electric machine. The motor generator 3 functions as a traveling drive source of the vehicle, that is, an electric motor. The motor generator 3 functions as a generator during regeneration.
  • the power conversion device 4 performs power conversion between the DC power supply 2 and the motor generator 3.
  • the power conversion device 4 includes at least a power conversion unit.
  • the power conversion device 4 of the present embodiment includes a smoothing capacitor 5, an inverter 6 which is a power conversion unit, a control circuit 7, and a drive IC 8.
  • the smoothing capacitor 5 is connected between the P line 9 which is the power line on the high potential side and the N line 10 which is the power line on the low potential side.
  • the P line 9 is connected to the positive electrode of the DC power supply 2
  • the N line 10 is connected to the negative electrode of the DC power supply 2.
  • the smoothing capacitor 5 mainly smoothes the DC voltage supplied from the DC power supply 2.
  • the inverter 6 is a DC-AC converter.
  • the inverter 6 is configured to include a three-phase upper and lower arm circuit 11.
  • the connection point of the U-phase upper and lower arm circuit 11 is connected to the U-phase winding provided in the stator of the motor generator 3.
  • the connection point of the V-phase upper and lower arm circuits 11 is connected to the V-phase winding of the motor generator 3.
  • the connection point of the W-phase upper and lower arm circuit 11 is connected to the W-phase winding of the motor generator 3.
  • the connection points of the upper and lower arm circuits 11 are connected to the windings of the corresponding phases via the output line 12.
  • the output line 12, the P line 9 and the N line 10 described above are composed of, for example, a bus bar.
  • the upper and lower arm circuit 11 has an upper arm 11U and a lower arm 11L, respectively.
  • the upper arm 11U and the lower arm 11L are connected in series between the P line 9 and the N line 10 with the upper arm 11U on the P line 9 side.
  • Each arm has an IGBT 111, a MOSFET 112, and a diode 113.
  • the IGBT 111 and the MOSFET 112 are connected in parallel to each other.
  • the n-channel type is adopted as the IGBT 111 and the MOSFET 112.
  • the diode 113 is connected to the IGBT 111 in antiparallel for reflux.
  • the MOSFET 112 has a parasitic diode (not shown).
  • the collector electrode of the IGBT 111 and the drain electrode of the MOSFET 112 are connected to each other, and the emitter electrode of the IGBT 111 and the source electrode of the MOSFET 112 are connected to each other.
  • the anode electrode of the diode 113 is connected to the emitter electrode, and the cathode electrode is connected to the collector electrode.
  • the collector electrode and the drain electrode are connected to the P line 9.
  • the emitter electrode and the source electrode are connected to the N line 10.
  • the emitter electrode and source electrode on the upper arm 11U side and the collector electrode and drain electrode on the lower arm 11L side are connected to each other.
  • the semiconductor device 20, which will be described later, constitutes one arm.
  • the upper and lower arm circuits 11 are configured by the two semiconductor devices 20, and the inverter 6 is configured by the six semiconductor devices 20.
  • the inverter 6 converts the DC voltage into a three-phase AC voltage and outputs it to the motor generator 3 according to the switching control by the control circuit 7. As a result, the motor generator 3 is driven so as to generate a predetermined torque.
  • the inverter 6 converts the three-phase AC voltage generated by the motor generator 3 by receiving the rotational force from the wheels during the regenerative braking of the vehicle into a DC voltage according to the switching control by the control circuit 7 and outputs it to the P line 9. .. In this way, the inverter 6 performs bidirectional power conversion between the DC power supply 2 and the motor generator 3.
  • the control circuit 7 generates a drive command for operating the IGBT 111 and the MOSFET 112, and outputs the drive command to the drive IC 8.
  • the control circuit 7 generates a drive command based on a torque request input from a higher-level ECU (not shown) and signals detected by various sensors. Examples of various sensors include a current sensor, a rotation angle sensor, and a voltage sensor.
  • the current sensor detects the phase current flowing through the windings of each phase.
  • the rotation angle sensor detects the rotation angle of the rotor of the motor generator 3.
  • the voltage sensor detects the voltage across the smoothing capacitor 5.
  • the power converter 4 includes these sensors (not shown).
  • the control circuit 7 outputs a PWM signal as a drive command.
  • the control circuit 7 is configured to include, for example, a microcomputer (microcomputer).
  • ECU is an abbreviation for Electronic Control Unit.
  • PWM is an abbreviation for Pulse Width Modulation.
  • the drive IC 8 generates a gate drive signal based on the drive command of the control circuit 7.
  • the drive IC 8 outputs the generated gate drive signal to the IGBT 111 and the MOSFET 112 of the corresponding arm.
  • the gate electrodes of the IGBT 111 and the MOSFET 112 that form one arm are electrically connected to the same drive IC8.
  • the drive IC 8 drives the IGBT 111 and the MOSFET 112, that is, on-drive and off-drive, respectively, by the gate drive signal.
  • the drive IC 8 outputs a gate drive signal having a predetermined duty ratio.
  • the drive IC 8 is also referred to as a driver.
  • one drive IC 8 is provided for one arm.
  • One drive IC 8 may be provided for one vertical arm circuit 11.
  • the drive IC 8 may be provided integrally with the control circuit 7.
  • the power conversion device 4 may further include a converter as a power conversion unit.
  • the converter is a DC-DC converter that converts a DC voltage into a DC voltage of a different value.
  • the converter is provided between the DC power supply 2 and the smoothing capacitor 5.
  • the converter is configured to include, for example, a reactor and the above-mentioned upper and lower arm circuits 11. In this case, the upper and lower arm circuits 11 of the converter can also be configured by the two semiconductor devices 20. Further, a filter capacitor for removing power supply noise from the DC power supply 2 may be provided. The filter capacitor is provided between the DC power supply 2 and the converter.
  • the semiconductor device 20 includes a sealing resin body 30, a heat radiating member 40, a plurality of switching elements 50, a terminal 60, a plurality of main terminals 70, and a plurality of signal terminals 80. It has.
  • the thickness direction of the switching element 50 is referred to as the Z direction.
  • the direction in which the plurality of switching elements 50 are arranged orthogonal to the Z direction is indicated as the X direction.
  • the direction orthogonal to the Z direction and the X direction is referred to as the Y direction.
  • a shape along the XY plane in other words, a shape viewed from the Z direction in a plane is simply referred to as a plane shape.
  • the upper and lower arm circuit 11 is composed of two semiconductor devices 20.
  • the semiconductor device 20L constituting the lower arm 11L and the semiconductor device 20U constituting the upper arm 11U are divided.
  • 2 to 6 show the semiconductor device 20L
  • FIG. 7 shows the semiconductor device 20U.
  • 4 and 7 are partial cross-sectional views showing the structure inside the sealing resin body 30 of each of the semiconductor devices 20L and 20U.
  • the second heat radiating member 42 is shown by a broken line.
  • the appearances of the semiconductor devices 20L and 20U are almost the same.
  • the semiconductor devices 20L and 20U have substantially the same configuration except for the arrangement order of the main terminals 70 and the electrical connection structure between the main terminals 70 and the heat radiating member 40.
  • the semiconductor devices 20L and 20U have a common structure.
  • the sealing resin body 30 seals other elements constituting the semiconductor device 20, for example, the switching element 50.
  • the sealing resin body 30 is made of, for example, an epoxy resin.
  • the sealing resin body 30 is molded by, for example, a transfer molding method.
  • the sealing resin body 30 may be referred to as a mold resin.
  • the sealing resin body 30 has a one-sided surface 30a and a back surface 30b opposite to the one-sided surface 30a in the Z direction.
  • the front surface 30a and the back surface 30b are, for example, flat surfaces.
  • the sealing resin body 30 has a side surface connecting one side surface 30a and the back surface 30b.
  • the sealing resin body 30 has a substantially rectangular shape in a plane.
  • the sealing resin body 30 has side surfaces 30c and 30d.
  • the side surface 30d is a surface opposite to the side surface 30c in the Y direction.
  • the main terminal 70 projects from the side surface 30c.
  • the signal terminal 80 projects from the side surface 30d.
  • the heat radiating member 40 dissipates the heat generated by the switching element 50.
  • the heat radiating member 40 functions as a wiring that electrically relays the switching element 50 and the main terminal 70.
  • the heat radiating member 40 is formed by using at least a metal material (for example, Cu) having excellent electrical conductivity and thermal conductivity.
  • the heat radiating member 40 is, for example, a metal plate. Instead of the metal plate, a composite material of an electric insulator such as resin or ceramics and a metal body can be adopted.
  • the heat radiating member 40 is arranged on at least one side in the Z direction with respect to the switching element 50. A plurality of switching elements 50 connected in parallel to each other are electrically connected to the surface of the heat radiating member 40 on the switching element 50 side.
  • heat radiating members 40 are provided in pairs so as to sandwich the switching element 50.
  • the heat radiating member 40 includes a first heat radiating member 41 arranged on the one side 30a side and a second heat radiating member 42 arranged on the back surface 30b side.
  • the first heat radiating member 41 and the second heat radiating member 42 may be simply referred to as heat radiating members 41 and 42.
  • the heat radiating members 41 and 42 members of the same type may be used, or members different from each other may be used.
  • the same type of members specifically, a metal plate containing Cu, are used as the heat radiating members 41 and 42.
  • the heat radiating members 41 and 42 are provided so as to include the switching element 50 in a plan view from the Z direction.
  • the heat radiating members 41 and 42 include a switching element 50 in a region facing each other.
  • the heat radiating members 41 and 42 have mounting surfaces 41a and 42a on the switching element 50 side and heat radiating surfaces 41b and 42b opposite to the mounting surfaces 41a and 42a, respectively, in the Z direction.
  • the mounting surfaces 41a and 42a face each other in the Z direction.
  • the mounting surfaces 41a and 42a are substantially parallel to each other.
  • the plate thickness directions of the heat radiating members 41 and 42 are substantially parallel to the Z direction.
  • the heat radiating members 41 and 42 have the X direction as the longitudinal direction. At least a part of each of the heat radiating members 41 and 42 is sealed by the sealing resin body 30.
  • the switching element 50 is formed by forming an element constituting the above-mentioned arm on a semiconductor substrate.
  • the switching element 50 may be referred to as a semiconductor element or a semiconductor chip.
  • the plurality of switching elements 50 are electrically connected to the heat radiating member 40 and connected in parallel with each other.
  • the switching element 50 has main electrodes on both sides in the Z direction, and has a vertical structure in which the main current flows in the Z direction.
  • the switching element 50 includes a first switching element 51 and a second switching element 52.
  • the first switching element 51 is formed on a silicon (Si) substrate.
  • the second switching element 52 is formed on a silicon carbide (SiC) substrate.
  • the first switching element 51 and the second switching element 52 may be simply referred to as switching elements 51 and 52.
  • An IGBT 111 is formed on the first switching element 51.
  • the diode 113 is integrally formed with the IGBT 111. That is, RC (Reverse Conducting) -IGBT is formed in the first switching element 51.
  • a MOSFET 112 is formed in the second switching element 52.
  • the first switching element 51 has a collector electrode 51c formed on one surface and an emitter electrode 51e formed on the opposite back surface as a main electrode.
  • the collector electrode 51c also serves as the cathode electrode of the diode 113, and the emitter electrode 51e also serves as the anode electrode of the diode 113.
  • the collector electrode 51c is formed on almost the entire surface of one surface, and the emitter electrode 51e is formed on a part of the back surface.
  • the second switching element 52 has a drain electrode 52d formed on one surface and a source electrode 52s formed on the opposite back surface as a main electrode.
  • the drain electrode 52d is formed on almost the entire surface of one surface, and the source electrode 52s is formed on a part of the back surface.
  • the element formation region is an active region that generates heat when energized.
  • a pressure-resistant structure (for example, a guard ring) (not shown) is formed in the outer peripheral region surrounding the active region.
  • the emitter electrode 51e and the source electrode 52s which are the main electrodes on the low potential side, substantially coincide with the active region.
  • the switching element 50 has a temperature sensor 53 on the back surface side of the semiconductor substrate.
  • the temperature sensor 53 detects the substrate temperature (element temperature) for overheat protection. Since the substrate temperature rises closer to the center of the active region, the temperature sensor 53 is provided near the center of the active region in a plan view from the Z direction.
  • a temperature sensitive diode is used as the temperature sensor 53.
  • a temperature-sensitive diode is formed by doping polysilicon arranged on a semiconductor substrate, for example, with impurities.
  • the detection signal of the temperature sensor 53 is used to control the switching element 50. Specifically, the switching element 50 is forcibly turned off before the switching element 50 becomes overheated.
  • the temperature sensitive diode can also be built in the semiconductor substrate.
  • the first switching element 51 has a pad 51p, which is an electrode for signals, in addition to the main electrode.
  • the pad 51p is formed on the same surface as the emitter electrode 51e.
  • the pad 51p is formed at an end portion of the emitter electrode 51e opposite to the forming region in the Y direction.
  • the second switching element 52 also has a pad 52p.
  • the pad 52p is formed on the same surface as the source electrode 52s.
  • the pad 52p is formed at an end portion of the source electrode 52s opposite to the forming region in the Y direction. In the Y direction, the emitter electrode 51e and the source electrode 52s are formed on the main terminal 70 side, and the pads 51p and 52p are formed on the signal terminal 80 side.
  • the collector electrode 51c is formed on the surface on the first heat radiating member 41 side, and the emitter electrode 51e is formed on the surface on the second heat radiating member 42 side.
  • the drain electrode 52d is formed on the surface of the first heat radiating member 41 side, and the source electrode 52s is formed on the surface of the second heat radiating member 42 side.
  • the collector electrode 51c and the drain electrode 52d which are the main electrodes on the high potential side, are connected to the mounting surface 41a of the first heat radiating member 41 via the bonding material 90.
  • the emitter electrode 51e and the source electrode 52s which are the main electrodes on the low potential side, are connected to the mounting surface 42a of the second heat radiating member 42 via the bonding material 90 and the terminal 60.
  • As the bonding material 90 a conductive paste containing solder, Ag, or the like can be used.
  • the bonding material 90 of this embodiment is solder.
  • the first switching element 51 has five pads 51p. Specifically, it is for the gate electrode, for the potential detection of the emitter electrode 51e, for the current sense, for the anode potential of the temperature sensor 53, and also for the cathode potential. The plurality of pads 51p are provided side by side in the X direction.
  • the second switching element 52 has five pads 52p. Specifically, it is for the gate electrode, for the potential detection of the source electrode 52s, for the current sense, for the anode potential of the temperature sensor 53, and also for the cathode potential. The plurality of pads 52p are provided side by side in the X direction.
  • the switching element 50 includes a plurality of at least one of the first switching element 51 and the second switching element 52.
  • the first switching element 51 and the second switching element 52 are alternately arranged in the X direction, which is the arrangement direction of the switching elements 50. Alternating means that the first switching element 51 and the second switching element 52 are adjacent to each other in the arrangement direction.
  • An example of the alternate minimum configuration is a combination of two first switching elements 51 and one second switching element 52. Another example is a combination of one first switching element 51 and two second switching elements 52.
  • the switching element 50 of the present embodiment includes two first switching elements 51 and one second switching element 52.
  • the two first switching elements 51 have the same configuration as each other.
  • one of the first switching elements 51 may be referred to as a first switching element 51a, and the other one may be referred to as a first switching element 51b.
  • the three switching elements 50 are arranged in the order of the first switching element 51a, the second switching element 52, and the first switching element 51b in the X direction.
  • the second switching element 52 is arranged between the first switching elements 51a and 51b.
  • the first switching elements 51a and 51b are connected in parallel to each other. Since the elements formed in the first switching elements 51a and 51b are circuit-equivalent, one IGBT 111 and the diode 113 are shown in FIG.
  • the terminal 60 is interposed between the second heat radiating member 42 and the switching element 50 in order to secure a predetermined distance between the second heat radiating member 42 and the switching element 50.
  • the thickness of the terminal 60 is sufficiently thicker than that of the switching element 50.
  • the terminal 60 functions to transfer heat from the switching element 50 to the second heat radiating member 42.
  • the terminal 60 functions as a wiring that electrically relays the switching element 50 and the second heat radiating member 42.
  • the terminal 60 is formed by using a metal material such as Cu.
  • the terminal 60 may have either a single-layer structure made of one kind of metal or a multi-layer structure made of a plurality of kinds of metals.
  • the terminal 60 is divided into at least a first switching element 51 and a second switching element 52.
  • one terminal 60 is provided for one switching element 50.
  • the terminal 60 functions as a spacer that secures a predetermined distance between the second heat radiating member 42 and the switching element 50.
  • the spacer can prevent the bonding wire 91 from coming into contact with the second heat radiating member 42.
  • Each of the terminals 60 has a substantially rectangular parallelepiped shape.
  • the planar shape of the terminal 60 is almost the same as the main electrode to be connected. In the Z direction, one of the end faces of the terminal 60 is connected to the main electrode of the switching element 50, and the other one of the end faces is connected to the second heat dissipation member 42.
  • the terminal 60 is connected to the corresponding main electrodes 51e and 52s and the second heat radiating member 42 via the bonding material 90.
  • the main terminal 70 is a terminal through which the main current flows among the external connection terminals for electrically connecting the semiconductor device 20 and the external device.
  • the main terminal 70 is electrically connected to the corresponding main electrode.
  • the main terminal 70 includes a high potential terminal 71 and a low potential terminal 72.
  • the high-potential terminal 71 is electrically connected to the collector electrode 51c and the drain electrode 52d, which are the main electrodes on the high-potential side.
  • the high potential terminal may be referred to as a collector terminal or a drain terminal.
  • the low-potential terminal 72 is electrically connected to the emitter electrode 51e and the source electrode 52s, which are the main electrodes on the low-potential side.
  • the low potential terminal 72 may be referred to as an emitter terminal or a source terminal.
  • the high-potential terminal 71 and the low-potential terminal 72 may be simply referred to as main terminals 71 and 72.
  • the main terminal 70 is connected to the corresponding main electrode via the heat radiating member 40.
  • the high potential terminal 71 is connected to the first heat radiating member 41.
  • the low potential terminal 72 is connected to the second heat radiating member 42.
  • the main terminal 70 is integrally connected to the heat radiating member 40, for example, as a part of a metal member (for example, a lead frame).
  • the main terminal 70 is provided as a separate member from, for example, the heat radiating member 40, and is connected to the heat radiating member 40 by connection.
  • the main terminal 70 is connected to the corresponding heat radiating member 40 inside the sealing resin body 30.
  • the main terminal 70 is connected to the heat radiating member 40 near the end on the side surface 30c side in the Y direction. All the main terminals 70 extend inside and outside the sealing resin body 30.
  • all the main terminals 70 are extended in the Y direction from the corresponding heat radiating member 40. All the main terminals 70 project outward from the side surface 30c of the sealing resin body 30. Both the main terminals 71 and 72 have a bent portion in the sealing resin body 30, and project from substantially the same position in the Z direction on the side surface 30c. In a part including the protruding portion, the main terminals 71 and 72 are lined up with a predetermined gap in the X direction so that the side surfaces face each other.
  • the main terminal 70 includes one of the high-potential terminal 71 and the low-potential terminal 72, and includes two of the other.
  • the main terminal 70 has a plurality (two sets) of side facing portions of the high potential terminal 71 and the low potential terminal 72.
  • the high potential terminal 71 is integrally connected to the first heat radiating member 41.
  • the low potential terminal 72 is connected to the second heat radiating member 42 by connection. As shown in FIG. 6, for example, the low potential terminal 72 is connected to the mounting surface 42a of the second heat radiating member 42 via the bonding material 90.
  • the semiconductor device 20L includes two high-potential terminals 71 and one low-potential terminal 72.
  • the main terminals 71 and 72 are arranged side by side in the X direction.
  • the low potential terminal 72 is arranged between the high potential terminals 71.
  • the first heat radiating member 41 has a recess 41c recessed on the side surface 30d side with respect to the portion where the high potential terminals 71 are connected.
  • the recess 41c is provided in the central region of the first heat radiating member 41 in the X direction.
  • the high-potential terminal 71 is connected to each of the peripheral regions sandwiching the central region in the first heat radiating member 41.
  • the second heat radiating member 42 includes a portion that overlaps the recess 41c in a plan view in the Z direction as a non-opposing region that does not face the first heat radiating member 41.
  • the low potential terminal 72 is connected to a non-opposing region of the second heat radiating member 42 that overlaps the recess 41c. Since it is a non-opposing region, it is easy to connect the low potential terminal 72 to the second heat radiating member 42.
  • the semiconductor device 20U includes one high-potential terminal 71 and two low-potential terminals.
  • the main terminals 71 and 72 are arranged side by side in the X direction.
  • the high potential terminal 71 is arranged between the low potential terminals 72.
  • the first heat radiating member 41 of the semiconductor device 20U also has a recess 41c.
  • the recesses 41c are provided in the peripheral regions of the first heat radiating member 41 in the X direction.
  • the high potential terminal 71 is connected to the central region sandwiched between the peripheral regions in the first heat radiating member 41.
  • the low potential terminal 72 is connected to a non-opposing region of the second heat radiating member 42 that overlaps the recess 41c.
  • the signal terminal 80 is electrically connected to the pad of the corresponding switching element 50.
  • the signal terminal 80 includes a first signal terminal 81 and a second signal terminal 82.
  • the first signal terminal 81 is electrically connected to the pad 51p of the first switching element 51.
  • the second signal terminal 82 is electrically connected to the pad 52p of the second switching element 52.
  • the signal terminal 80 of this embodiment is connected to the corresponding pads 51p and 52p via the bonding wire 91.
  • the signal terminal 80 is connected to the bonding wire 91 inside the sealing resin body 30.
  • Each of the signal terminals 80 extends in the Y direction and projects outward from the side surface 30d of the sealing resin body 30.
  • the signal terminal 80 is a part of a lead frame including a main terminal 70 and a first heat radiating member 41.
  • each of the heat radiating members 40, a part of each of the switching element 50, the terminal 60, the main terminal 70, and a part of each of the signal terminals 80 are sealed resin bodies. It is integrally sealed by 30. That is, the elements constituting one arm are sealed. Therefore, the semiconductor device 20 is also referred to as a 1in1 package.
  • the semiconductor device 20 may have a common structure between the upper arm 11U and the lower arm 11L.
  • the above-mentioned semiconductor device 20L may be used not only for the lower arm 11L but also for the upper arm 11U.
  • the semiconductor device 20U may be used not only for the upper arm 11U but also for the lower arm 11L.
  • the structure may be exchanged between the semiconductor device 20L and the semiconductor device 20U. That is, the semiconductor device 20L may be used for the upper arm 11U, and the semiconductor device 20U may be used for the lower arm 11L.
  • 8 and 9 are schematic plan views showing the positional relationship between the switching element 50 and the heat radiating members 41 and 42. 8 and 9 also show the main terminals 71 and 72. 8 and 9 show the semiconductor device 20L, but the same applies to the semiconductor device 20U.
  • the substrate area of the second switching element 52 is smaller than the substrate area of each of the first switching elements 51.
  • the substrate area is an area orthogonal to the Z direction, which is the thickness direction, that is, an area along the XY plane.
  • the substrate area may be referred to as a chip area or an element area.
  • the active area of the device By increasing the substrate area, the active area of the device also increases.
  • the thickness of the second switching element 52 is thinner than that of the first switching element 51. At the same pressure resistance, SiC can make the drift layer thinner than Si.
  • the switching element 50 is arranged in the central region in the Y direction on the mounting surface 41a. In the Y direction, the positions of the ends on the signal terminal 80 side are substantially the same for the first switching element 51 and the second switching element 52. The position of the end portion on the main terminal 70 side is different between the first switching element 51 and the second switching element 52.
  • FIGS. 8 and 9 show a region R1 in which the first switching element 51 is virtually extended in the X direction and a region R2 in which the second switching element 52 is virtually extended in the Y direction.
  • the region R1 is defined by a line that virtually extends both ends of the first switching element 51 in the Y direction in the X direction.
  • the region R2 is defined by a line in which both ends of the second switching element 52 in the X direction are virtually extended in the Y direction.
  • a virtually extended line is shown as a long-dotted line.
  • the first heat radiating member 41 has an intersecting region 41d which is a region overlapping the intersecting portion between the regions R1 and the regions R2 in a plan view from the Z direction.
  • the intersection region 41d is shown by a broken line.
  • the intersecting region 41d has an overlapping region 41e that overlaps with the second switching element 52 and a non-overlapping region 41f that does not overlap with the second switching element 52.
  • the first heat radiating member 41 has an overlapping region 41e and a non-overlapping region 41f in a facing region formed between two first switching elements 51a and 51b arranged in the X direction.
  • the overlapping region 41e is the mounting region of the second switching element 52, and the non-overlapping region 41f is the non-mounting region.
  • the overlapping region 41e is a region facing the second switching element 52, and the non-overlapping region 41f is a non-opposing region.
  • the second heat radiating member 42 has an intersecting region 42d like the first heat radiating member 41.
  • the intersection region 42d is shown by a broken line.
  • the intersecting region 42d has an overlapping region 42e that overlaps with the second switching element 52 and a non-overlapping region 42f that does not overlap with the second switching element 52.
  • the second heat radiating member 42 has an overlapping region 42e and a non-overlapping region 42f in the facing region formed between the two first switching elements 51a and 51b arranged in the X direction.
  • the overlapping region 42e is a region facing the second switching element 52
  • the non-overlapping region 42f is a non-opposing region.
  • the heat radiating member 40 has non-overlapping regions 41f and 42f as a part of the intersecting regions 41d and 42d. Then, at least a part of the non-overlapping regions 41f and 42f is exposed from the sealing resin body 30. For example, at least a part of the non-overlapping region 41f may be exposed. At least a part of the non-overlapping region 42f may be exposed. The non-overlapping regions 41f and 42f may both be exposed. When the non-overlapping region 41f is exposed, at least one of the mounting surface 41a and the heat radiating surface 41b may be exposed. Similarly, when the non-overlapping region 42f is exposed, at least one of the mounting surface 42a and the heat radiating surface 42b may be exposed.
  • the virtual line CL1 shown in FIGS. 4 and 7 to 9 is a line extending in the Y direction through the element center of the second switching element 52.
  • the elemental center is the center of the second switching element 52 (chip).
  • the virtual line CL1 passes through the center of the active region.
  • the cooling structure of the semiconductor device 20 will be described with reference to FIG. As shown in FIG. 10, the semiconductor device 20 described above is alternately laminated with the cooler 100.
  • the semiconductor device 20 constitutes the power module 110 together with the cooler 100.
  • the cooler 100 has a flow path for the refrigerant inside.
  • the coolers 100 are arranged in multiple stages while having a predetermined interval in the Z direction.
  • the multi-stage cooler 100 is connected by a supply pipe 101 on one end side in the X direction.
  • the supply pipe 101 is a tubular body having a flow path formed therein, and extends in the Z direction.
  • the supply pipe 101 is connected to each of the coolers 100, and the flow path of the supply pipe 101 communicates with each flow path of the cooler 100.
  • the semiconductor devices 20L and 20U constituting the upper and lower arm circuits 11 having the same phase are adjacent to each other in the Z direction.
  • the low-potential terminal 72 of the semiconductor device 20U and the high-potential terminal 71 of the semiconductor device 20L, which form the same phase overlap each other in a plan view from the Z direction. Therefore, the connection distance between the upper arm 11U and the lower arm 11L can be shortened, and for example, the inductance can be reduced. In addition, connectivity can be improved.
  • the switching element 50 includes at least one of the first switching element 51 formed on the Si substrate and the second switching element 52 formed on the SiC substrate. Therefore, the output of the semiconductor device 20 can be improved as compared with the configuration including the switching elements 51 and 52 one by one.
  • the switching elements 51 and 52 are alternately arranged in the X direction (first direction).
  • the heat radiating member 40 has non-overlapping regions 41f and 42f as intersecting regions 41d and 42d.
  • the non-overlapping regions 41f and 42f are regions in which the heat of the first switching element 51 and the second switching element 52 is transferred. At least a part of the non-overlapping regions 41f and 42f is exposed from the sealing resin body 30, and heat can be effectively dissipated. Therefore, the heat generated by the switching elements 51 and 52 tends to diffuse to the non-overlapping regions 41f and 42f. Therefore, it is possible to suppress an increase in the element temperature.
  • the semiconductor device 20 capable of suppressing an increase in the element temperature while improving the output.
  • the on-resistance may increase, the reliability of the bonding material 90 may decrease, and the margin with respect to the rated temperature may decrease (output decrease). According to the present embodiment, it is possible to suppress the occurrence of such a problem.
  • the overlapping regions 41f and 42f are regions directly below the second switching element 52. It is possible to effectively suppress an increase in the element temperature, particularly an increase in the temperature of the second switching element 52.
  • the overlapping regions 41e and 42e and the non-overlapping regions 41f and 42f but also the region overlapping with the first switching element 51 are included, and almost the entire area of the heat radiating surfaces 41b and 42b is exposed.
  • the rise in element temperature can be further suppressed by heat dissipation on both sides and exposure over the entire area.
  • the first switching element 51 and the second switching element 52 may be arranged at least alternately, and the number is not particularly limited.
  • two first switching elements 51 and two second switching elements 52 may be included. It may include three first switching elements 51 and two second switching elements 52.
  • One first switching element 51 may be included, and two second switching elements 52 may be included.
  • two first switching elements 51 on which the IGBT 111 is formed are included, and one second switching element 52 on which the MOSFET 112 is formed is included.
  • the second switching element 52 is arranged between the first switching elements 51. Since the substrate area of the second switching element 52 is small, the heat radiating members 41 and 42 have non-overlapping regions 41f and 42f.
  • the non-overlapping regions 41f and 42f are empty regions that do not overlap with the switching element 50. Since this empty area is positively used for heat dissipation, it is possible to suppress thermal interference between the first switching elements 51 located on both sides of the non-overlapping areas 41f and 42f. Further, the heat of the second switching element 52 adjacent to the non-overlapping regions 41f and 42f in the Y direction can be effectively dissipated. As a result, the temperature rise of the MOSFET 112 can be suppressed, and thus the increase of the on-resistance can be suppressed.
  • the number of main terminals 71 and 72 is not particularly limited.
  • the configuration may include one main terminal 71 and one 72.
  • the arrangements of the main terminals 71 and 72 are alternated in the arrangement direction of the switching elements 50.
  • a plurality of sets of opposite side surfaces of the high potential terminal 71 and the low potential terminal 72 are formed.
  • the directions of the main currents of the high-potential terminal 71 and the low-potential terminal 72 are substantially opposite to each other.
  • the inductance can be reduced by parallelization. For example, the surge voltage can be reduced.
  • the number of main terminals 71 and 72 is not particularly limited. In the present embodiment, one of the main terminals 71 and 72, the first main terminal, is included, and the other, the second main terminal, is included.
  • the low potential terminal 72 is the first main terminal
  • the high potential terminal 71 is the second main terminal.
  • the semiconductor device 20U the high potential terminal 71 is the first main terminal
  • the low potential terminal 72 is the second main terminal.
  • the first main terminal is arranged on the virtual line CL1 passing through the element center of the second switching element 52. Then, in a plan view from the Z direction, non-overlapping regions 41f and 42f are provided on the virtual line CL1.
  • a non-overlapping region 42f is provided in the current path between the first main terminal (low potential terminal 72) and the second switching element 52. Since the number of the first main terminals is smaller than that of the second main terminals, the current density in the non-overlapping region 42f is high. However, the non-overlapping region 42f is exposed from the sealing resin body 30, and heat can be efficiently dissipated. Therefore, it is possible to suppress an increase in the element temperature, particularly the temperature of the second switching element 52. As a result, an increase in the on-resistance of the MOSFET 112 can be suppressed.
  • a non-overlapping region 41f is provided in the current path between the first main terminal (high potential terminal 71) and the second switching element 52.
  • the non-overlapping region 41f is exposed from the sealing resin body 30, and has the same effect as the semiconductor device 20L.
  • the semiconductor device 20 includes an odd number of switching elements 50.
  • the arrangement of the plurality of switching elements 50 is line-symmetrical with respect to the virtual line CL1.
  • the first switching element 51 formed on the Si substrate and the second switching element 52 formed on the SiC substrate have different linear expansion coefficients.
  • the thermal stress acting on the heat-dissipating member 40 based on the difference in linear expansion coefficient between the heat-dissipating member 40 and the switching element 50 is also symmetrical. As a result, local deformation of the semiconductor device 20 can be suppressed.
  • three examples are shown as odd numbers, the number is not limited to this. For example, it can be applied to a configuration including five switching elements 50.
  • the intervals between the second switching element 52 and the first switching elements 51a and 51b are substantially equal to each other.
  • the heat generated by the second switching element 52 spreads substantially evenly on both sides of the first switching elements 51a and 51b in the X direction. Further, the heat generated by the first switching elements 51a and 51b spreads similarly to the second switching element 52 side.
  • the DC current is a current that flows not at the time of switching but at the steady state when the switching element is turned on. Further, it is possible to suppress the concentration of heat between one of the first switching elements 51 and the second switching element 52. For example, it is possible to suppress an increase in the on-resistance with an increase in the temperature of the second switching element 52. In particular, it is effective in a configuration in which the switching elements 51 and 52 are driven on at the same time.
  • the intervals are substantially equal, air remains between one of the first switching elements 51a and 51b and the second switching element 52 at the time of molding the sealing resin body 30, and the sealing resin body 30 becomes a void. Can be suppressed. If the intervals between the second switching element 52 and the first switching elements 51a and 51b are substantially equal to each other, the above effect can be obtained regardless of whether the heat radiating member 40 is exposed or not.
  • the switching element 50 not only the switching element 50 but also the heat radiating member 40 and the main terminal 70 are line-symmetric with respect to the virtual line CL1. Due to the line-symmetrical arrangement, the main current of the first switching element 51a and the main current of the first switching element 51b flow so as to be line-symmetric with respect to the virtual line CL1. For example, in the semiconductor device 20L, as shown in FIG. 13, the lengths of the two current paths are substantially equal. One of the current paths is the current path of the high potential terminal 71 on the side of the first switching element 51a ⁇ the first switching element 51a ⁇ the low potential terminal 72.
  • the other one of the current paths is the current path of the high potential terminal 71 on the first switching element 51b side ⁇ the first switching element 51b ⁇ the low potential terminal 72. Since the inductances of the current paths are substantially equal to each other, it is possible to prevent the AC current from flowing unevenly to one of the first switching elements 51a and 51b. Therefore, the imbalance of AC current can be suppressed. The same applies to the semiconductor device 20U.
  • the AC current is the current that flows during switching.
  • the configuration of the semiconductor device 20 of this embodiment is the same as that of the semiconductor device 20U (see FIG. 7) shown in the preceding embodiment.
  • the switching element 50 includes at least one of the first switching element 51 and the second switching element 52.
  • it includes two first switching elements 51 and one second switching element 52.
  • the arrangement of the switching elements 51 and 52 is alternate in the X direction.
  • control circuit 7 and the drive IC 8 control the first switching element 51 (IGBT111) and the second switching element 52 (MOSFET112) to be on-driven at least in different periods.
  • the control circuit 7 and the drive IC 8 are controlled so that the switching elements 51 and 52 have a period of being individually turned on.
  • FIG. 14A the second switching element 52 is driven on in the first period
  • FIG. 14B the first switching element 51 is driven on in the second period.
  • 14A and 14B show the heat generated by the switching element 50 by the on-drive.
  • the control circuit 7 and the drive IC 8 control the first switching element 51 so as to drive it off in the first current region and drive it on in a second current region larger than the first current region.
  • the control circuit 7 and the drive IC 8 control the second switching element 52 so as to be driven on in the first current region and off in the second current region.
  • the first current region is a region below a predetermined first threshold value
  • the second current region is a region above the first threshold value.
  • the first current region is a region where the output current is smaller than the second current region
  • the second current region is a region where the output current is larger than the first current region.
  • the first period is a period in which the output current is in the first current region, and the period in which the output current in the second current region flows is the second period.
  • the on-resistance of the SiC-MOSFET is smaller than that of the Si-IGBT.
  • the on-resistance of the Si-IGBT is smaller than that of the SiC-MOSFET. Therefore, the above-mentioned control can reduce the on-resistance in a wide current range.
  • the control circuit 7 and the drive IC 8 are controlled so as to have a period in which the IGBT 111 and the MOSFET 112 are individually on-driven and a period in which they are both on-driven.
  • the control circuit 7 and the drive IC 8 control both the IGBT 111 and the MOSFET 112 to be driven on in the third current region above the second threshold value.
  • the second threshold value is a current value larger than the first threshold value.
  • the second current region is a region equal to or more than the first threshold value and less than the second threshold value. Since both the IGBT 111 and the MOSFET 112 are driven on for the same period, the output can be further increased.
  • the second switching element 52 (MOSFET 112) is driven on in the first current region, and the first switching element 51 (IGBT111) is driven on in the second current region. Further, in the third current region, the switching elements 51 and 52 are driven on.
  • the switching element 50 includes at least one of the first switching element 51 and the second switching element 52.
  • a second switching element 52 that is driven on in the first period is arranged between the first switching elements 51 that are driven on in the second period.
  • the distance between the first switching elements 51 that are on-driven in the same period can be secured, and the mutual thermal interference of the first switching elements 51 can be reduced.
  • a device can be provided.
  • the first switching element 51 and the second switching element 52 may be arranged at least alternately.
  • the switching element 50 of the present embodiment includes two first switching elements 51 and one second switching element 52.
  • the on-resistance of the second switching element MOSFET 112
  • the on-resistance of the first switching element 51 IGBT111
  • the second switching element 52 is driven on in the first current region, and the first switching element 51 is driven on in the second current region larger than the first current region.
  • a small current range can be covered by one second switching element 52, and a large current range can be covered by two first switching elements 51. Therefore, the loss (conduction loss) can be reduced in a wide current range. Further, it is possible to reduce the thermal interference of the first switching elements 51a and 51b that are driven on in the second current region. Therefore, it is possible to enhance the effect of suppressing the increase in physique while improving the output.
  • the present invention is not limited to this example.
  • the switching elements 51 and 52 may be on-driven at least for different periods, and various combinations are possible.
  • the switching elements 51 and 52 may not be driven on during the same period. That is, the second switching element 52 may be driven on in a small current region, and the first switching element 51 may be driven on in a current region larger than that. Further, the second current region may be divided into a region in which one first switching element 51 is on-driven and a region in which two first switching elements 51 are on-driven.
  • the energization times of the switching elements 51 and 52 different, specifically, by shifting at least one of the turn-on and the turn-off, it is possible to have a period of on-driving each other and a period of individually on-driving. Good.
  • the energization time of the first switching element 51 is shorter than the energization time of the second switching element 52, and in the large current region, the energization time of the second switching element 52 is set to the energization time of the first switching element 51. May be shorter than.
  • the configuration shown in this embodiment can be combined with the configuration described in the preceding embodiment. For example, it may be combined with a configuration in which a part of the heat radiating member 40 is exposed from the sealing resin body 30, or it may be combined with a configuration in which the entire heat radiating member 40 is covered by the sealing resin body 30.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using different semiconductor devices 20U and 20L.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using a semiconductor device 20 having a common structure. At least one arrangement of the heat radiating member 40, the switching element 50, and the main terminal 70 may be line-symmetrical with respect to the virtual line CL1.
  • FIG. 15 shows the semiconductor device 20 of this embodiment.
  • the configuration of the semiconductor device 20 is substantially the same as that of the semiconductor device 20U (see FIG. 7) shown in the preceding embodiment.
  • the switching element 50 includes two first switching elements 51 and one second switching element 52.
  • the main terminal 70 includes one high-potential terminal 71 and two low-potential terminals 72.
  • the high potential terminal 71 is the first main terminal arranged on the virtual line CL1, and the low potential terminal 72 is the second main terminal.
  • the center of the width of the high potential terminal 71 is located on the virtual line CL1.
  • the virtual line CL2 shown in FIG. 15 is a line extending in the Y direction through the element centers of the first switching elements 51a and 51b, respectively.
  • the virtual line CL1 passes through the center positions of the two virtual lines CL2.
  • One of the low potential terminals 72 is arranged on the virtual line CL2 on the first switching element 51a side, and the other one is arranged on the virtual line CL2 on the first switching element 51b side.
  • the center of the width of the low potential terminal 72 is located on the virtual line CL2.
  • the main terminal of this embodiment includes one first main terminal and two second main terminals on the other side.
  • the first main terminal is arranged on the virtual line CL1.
  • the second main terminal is arranged on the virtual line CL2.
  • FIG. 16 shows the current path. In FIG. 16, for convenience, a part in the X direction is omitted so as to include one of the first switching elements 51.
  • the flow of the main current at a predetermined timing is indicated by an arrow.
  • the low potential terminal 72r (second main terminal), which is a reference example, is shown by a chain double-dashed line.
  • the high potential terminal 71 which is the first main terminal, is arranged on the virtual line CL1.
  • the low potential terminal 72 which is the second main terminal, is arranged on the virtual line CL2. Therefore, a current flows as shown by the solid arrow.
  • the low potential terminal 72r which is a reference example, is located outside the virtual line CL2 at a position where it does not overlap with the virtual line CL2. Therefore, a current flows as shown by the arrow of the alternate long and short dash line. According to the arrangement of the low potential terminals 72 of the present embodiment, the current paths of the switching elements 51 and 52 can be shortened as compared with the reference example.
  • the current loop formed between the high potential terminal 71, the switching elements 51 and 52, and the low potential terminal 72 can be made smaller than that of the reference example. Therefore, the inductance can be reduced as compared with the reference example. For example, switching loss can be reduced.
  • the second main terminal is arranged on the virtual line CL2
  • the second main terminal may be arranged at a position that does not overlap with the virtual line CL2 and inside the virtual line CL2.
  • the second main terminal having such an arrangement is shown by a broken line as a low potential terminal 72a in FIG. According to this, a current flows as shown by the broken line arrow.
  • the current path of the second switching element 52 can be shortened as compared with the reference example described above. Further, the current loops of the switching elements 51 and 52 can be made smaller than those of the reference example. Therefore, the inductance can be reduced as compared with the reference example.
  • the low potential terminal 72 may be arranged so that the center of the width is located on the virtual line CL2 or is located inside the virtual line CL2, that is, close to the virtual line CL1.
  • the arrangement of the heat radiating member 40, the switching element 50, and the main terminal 70 is line-symmetrical with respect to the virtual line CL1.
  • the imbalance of the AC current can be suppressed as in the preceding embodiment.
  • switching loss can be reduced while suppressing current imbalance.
  • the configuration shown in this embodiment can be combined with the configuration described in the preceding embodiment. For example, it may be combined with a configuration in which a part of the heat radiating member 40 is exposed from the sealing resin body 30, or it may be combined with a configuration in which the entire heat radiating member 40 is covered by the sealing resin body 30.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using different semiconductor devices 20U and 20L.
  • the semiconductor device 20L shown in FIG. 4 the low potential terminal 72 corresponds to the first main terminal, and the high potential terminal 71 corresponds to the second main terminal.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using a semiconductor device 20 having a common structure.
  • the drive of the switching elements 51 and 52 is not particularly limited. It is possible to combine the switching elements 51 and 52 with a configuration in which they are driven on at least for different periods. In this case, mutual thermal interference between the first switching elements 51 can be reduced.
  • FIG. 17 shows the semiconductor device 20 of this embodiment.
  • the switching element 50 includes at least one of the first switching element 51 and the second switching element 52.
  • the configuration of the semiconductor device 20 is substantially the same as that of the semiconductor device 20U (see FIG. 7) shown in the preceding embodiment.
  • the semiconductor device 20 includes two first switching elements 51 and one second switching element 52. The arrangement of the switching elements 51 and 52 is alternate in the X direction.
  • the length LX2 is shorter than the length LX1 (LX2 ⁇ LX1).
  • the ratio R2 is larger than the ratio R1 (R2> R1).
  • the length LY2 is substantially equal to the length LY1. The positions of both ends in the Y direction are substantially the same for the first switching element 51 and the second switching element 52.
  • FIGS. 18A to 20B the effect of the above-mentioned dimensional relationship will be described.
  • this embodiment and a reference example are shown in comparison with each other.
  • the elements that are the same as or related to the elements of the present embodiment are shown by adding r to the end of the reference numerals of the present embodiment.
  • the dimensions of the first switching element are equal to each other.
  • the intervals between the first switching element and the second switching element are made equal to each other.
  • the semiconductor device is shown in a simplified manner.
  • FIG. 18A shows the present embodiment
  • FIGS. 18B and 18C are diagrams showing a first reference example and a second reference example, respectively.
  • the length of the second switching element 52r is shorter than that of the first switching element 51r in the X direction.
  • the length of the second switching element 52r is equal to that of the second switching element 52.
  • the length of the second switching element 52r is shorter than that of the second switching element 52.
  • the relationship of the length ratio is R2 ⁇ R1.
  • the relationship of the length ratio is R2> R1. Therefore, the substrate area of the second switching element 52 is larger than that of the second switching element 52r. As a result, the active region of the device is also larger than that of the first reference example. Therefore, according to the present embodiment, it is possible to improve the output as compared with the first reference example while making the physique in the X direction equivalent to that of the first reference example.
  • the substrate area of the second switching element 52r is equal to that of the second switching element 52.
  • the length of the second switching element 52r is longer than that of the second switching element 52.
  • the relationship of the length ratio is R2 ⁇ R1.
  • the substrate area of the second switching element 52r is increased by setting the X direction, which is the arrangement direction, as the longitudinal direction.
  • the relationship of the length ratio is R2> R1
  • the length of the second switching element 52 is shorter than that of the second switching element 52r in the X direction. Since the second switching element 52 is short, the physique in the X direction is smaller than that of the second reference example. Therefore, according to the present embodiment, it is possible to make the physique in the X direction smaller than that of the first reference example while making the output equivalent to that of the second reference example.
  • FIG. 19A is a diagram showing the present embodiment
  • FIG. 19B is a diagram showing a reference example.
  • the configuration of the second switching element 52r shown in FIG. 19B is the same as that of the first reference example shown in FIG. 18B.
  • the relationship between the length ratios is R2 ⁇ R1.
  • the positions of the ends on the signal terminal 80r side are substantially the same between the first switching element 51r and the second switching element 52r.
  • the second switching element 52r is arranged closer to the signal terminal 80r in the Y direction. Therefore, as shown by the arrow of the alternate long and short dash line, the main current path of the second switching element 52r is long.
  • the relationship of the length ratio is R2> R1.
  • the arrangement of the second switching element 52 is closer to the main terminal 70 than in the reference example. As a result, the current path of the second switching element 52 can be shortened. Therefore, the switching loss can be reduced.
  • FIG. 20A is a simplified cross section taken along the line XXA-XXXA of FIG.
  • FIG. 20A is a diagram showing the present embodiment
  • FIG. 20B is a diagram showing a reference example.
  • the second switching element 52r has the same arrangement as that of the first reference example shown in FIG. 18B.
  • the relationship between the length ratios is R2 ⁇ R1. Therefore, the substrate area of the second switching element 52r is small.
  • the cross-sectional area of the terminal 60r is small.
  • the relationship of the length ratio is R2> R1.
  • the substrate area of the second switching element 52 is larger than that of the reference example.
  • the cross-sectional area of the terminal 60 is larger than that of the reference example. Therefore, as shown by the arrow of the alternate long and short dash line, the current density can be reduced as compared with the reference example. For example, the electromigration effect increases as the flowing current increases. According to this embodiment, the life of the bonding material 90 can be particularly improved by reducing the current density.
  • the second switching element 52 is arranged between the two switching elements 51a and 51b in the X direction and between the two switching elements 51a and 51b in the Y direction. ..
  • the temperature sensors 53 of the switching element 50 are displaced from each other in the Y direction.
  • the temperature sensor 53 of the first switching element 51a is closest to the main terminal 70
  • the temperature sensor 53 of the first switching element 51b is the farthest from the main terminal 70. That is, in the three switching elements 50, the positions of the maximum heat generating points are deviated from each other in the Y direction orthogonal to the flow direction of the refrigerant. Therefore, each of the switching elements 51 and 52 that are driven on during the same period can be effectively cooled.
  • the inactive region on the upstream side faces the active region on the downstream side in the X direction.
  • the formation region of the pad 51p in the first switching element 51a faces the active region of the second switching element 52.
  • the formation region of the pad 52p in the second switching element 52 faces the active region of the first switching element 51b.
  • the switching elements 51 and 52 of the modified example shown in FIG. 24 are not driven on during the same period.
  • the centers of the active regions of the switching elements 51 and 52 are substantially the same in the Y direction. Since the switching elements 51 and 52 are not driven on at the same time, there is almost no influence of mutual heat. Therefore, the second switching element 52 can be arranged at the center position of the heat radiating member 40. With this arrangement, heat dissipation is improved and the temperature rise of the second switching element 52 can be suppressed. Therefore, it is possible to suppress an increase in the on-resistance of the second switching element 52 (MOSFET 112).
  • the configuration of the semiconductor device 20 shown in FIG. 24 is the same as that of FIG. 22 except for the arrangement of the switching element 50.
  • the configuration shown in the present embodiment can be combined with the configuration described in the preceding embodiment. For example, it may be combined with a configuration in which a part of the heat radiating member 40 is exposed from the sealing resin body 30, or it may be combined with a configuration in which the entire heat radiating member 40 is covered by the sealing resin body 30.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using different semiconductor devices 20U and 20L.
  • the upper arm 11U and the lower arm 11L may be combined with a configuration using a semiconductor device 20 having a common structure.
  • FIG. 25 shows the semiconductor device 20 of this embodiment.
  • the switching element 50 includes at least one of the first switching element 51 and the second switching element 52.
  • the configuration of the semiconductor device 20 is substantially the same as that of the semiconductor device 20U (see FIG. 7) shown in the preceding embodiment.
  • the switching element 50 includes two first switching elements 51 and one second switching element 52.
  • the arrangement of the switching elements 51 and 52 is alternate in the X direction.
  • the switching element 50 and the signal terminal 80 are shown by solid lines for convenience.
  • the first heat radiating member 41 is shown by a broken line.
  • the modified example shown in FIG. 28 has a configuration in which the signal terminal 80 corresponding to the current sense pad 51 psc of the first switching element 51a is omitted from FIG. 27.
  • the substrate temperature of the first switching element 51a on the upstream side becomes lower than that of the first switching element 51b on the downstream side due to the refrigerant.
  • the on-resistance of the IGBT 111 decreases as the substrate temperature rises. Therefore, in the high temperature region, a current tends to flow through the first switching element 51b. Therefore, the signal terminal 80 corresponding to the current sense pad 51 psc on the upstream side can be omitted.
  • the number of signal terminals 80 is 10.
  • the order of the pads 51p and 52p is the same as that in FIG. 27.
  • the signal terminal 80 is not provided for the temperature sense pads 52pa and 52pc and the current sense pad 52psc of the second switching element 52.
  • the other pads 51p and 52p are connected to the signal terminal 80.
  • the reference potential pad 51 psp of the first switching element 51b and the reference potential pad 52 psp of the second switching element 52 are connected to the same signal terminal 80. As a result, the number of signal terminals 80 can be reduced.
  • the modified example shown in FIG. 30 has a configuration in which the signal terminal 80 corresponding to the current sense pad 51psc of the first switching element 51a is omitted from FIG. 29. Similar to the modification shown in FIG. 28, since the substrate temperature of the first switching element 51a on the upstream side is lowered by the refrigerant, the signal terminal 80 corresponding to the current sense pad 51psc on the upstream side can be omitted. As described above, in the configuration shown in FIG. 30, the number of signal terminals 80 is 10.
  • the arrangement order of the pads 51p and 52p is the same as that in FIG. 27.
  • the signal terminal 80 is not provided for the reference potential pads 51 psp and 52 psp of the switching elements 51a, 51b and 52.
  • the other pads 51p and 52p are connected to the signal terminal 80.
  • the potentials of the reference potential pads 51 psp and 52 psp are the same as the potentials of the low potential terminal 72.
  • the signal terminal 80 corresponding to the reference potential pads 51 psp and 52 psp can be omitted.
  • the number of signal terminals 80 is 12.
  • Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments.
  • the disclosure includes exemplary embodiments and modifications by those skilled in the art based on them.
  • disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations. Disclosures can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiments have been omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the statements of the claims and should be understood to include all modifications within the meaning and scope equivalent to the statements of the claims.
  • the relationship between the thicknesses of the switching elements 51 and 52 is not limited to the above example.
  • the thicknesses of the switching elements 51 and 52 may be substantially equal to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

半導体装置(20)は、放熱部材(40)と、主電極とパッド(51p,52p)をそれぞれ有し、放熱部材に接続されて互いに並列接続された複数のスイッチング素子(50)と、信号端子(80)を備えている。スイッチング素子は、Si基板に形成された第1スイッチング素子(51)と、SiC基板に形成された第2スイッチング素子(52)を含んでいる。第1スイッチング素子及び第2スイッチング素子は、冷媒の流れる方向において交互に配置されている。スイッチング素子は、基板温度を検出するための温度センスパッド(51pa,51pc,52pa,52pc)を有している。温度センスパッドに対応する信号端子は、冷媒の最下流に位置するスイッチング素子と基板種類が同じ複数のスイッチング素子において、最下流に対して設けられ、上流側に対して設けられていない。

Description

半導体装置 関連出願への相互参照
 本出願は、2019年4月5日に出願された日本特許出願番号2019-073009号に基づくもので、ここにその記載内容が参照により組み入れられる。
 この明細書における開示は、半導体装置に関する。
 特許文献1に開示された半導体装置は、シリコン(Si)基板に形成された第1スイッチング素子と、炭化珪素(SiC)基板に形成された第2スイッチング素子を備えている。第1スイッチング素子及び第2スイッチング素子それぞれひとつが、ヒートシンク(放熱部材)に接続されて互いに並列接続されている。第2スイッチング素子の基板面積は、第1スイッチング素子よりも小さい。
特開2016-219532号公報
 出力を向上するために、第1スイッチング素子及び第2スイッチング素子の少なくとも一方を複数含む構成が考えられる。スイッチング素子の数の増加にともない、信号端子の数が増加する。信号端子の増加は、たとえば半導体装置の体格、製造時間、コスト、歩留などに影響を及ぼす。
 開示されるひとつの目的は、出力を向上しつつ信号端子の本数を低減できる半導体装置を提供することにある。
 本開示の一態様に係る半導体装置は、冷媒により冷却される半導体装置であって、放熱部材と、複数のスイッチング素子と、複数の信号端子とを備えている。複数のスイッチング素子は、シリコン基板に形成された第1スイッチング素子と、炭化珪素基板に形成された第2スイッチング素子と、を含み、主電流が流れる主電極及び信号用のパッドをそれぞれ有し、主電極のひとつが放熱部材に電気的に接続されて互いに並列接続されている。複数の信号端子は、パッドに電気的に接続されている。
 スイッチング素子は、パッドとして、基板温度を検出するための温度センスパッドをそれぞれ有している。スイッチング素子は、第1スイッチング素子及び第2スイッチング素子の少なくとも一方を複数含み、第1スイッチング素子及び第2スイッチング素子は、冷媒の流れる所定方向において交互に配置されている。そして、温度センスパッドに対応する信号端子は、最下流に位置するスイッチング素子と基板の種類が同じ複数のスイッチング素子において、最下流を少なくとも含む一部のスイッチング素子にのみ設けられ、一部よりも上流側のスイッチング素子には設けられていない。
 上記半導体装置によると、第1スイッチング素子及び第2スイッチング素子の少なくとも一方を複数含むため、半導体装置の出力を向上することができる。交互配置により、半導体装置は、最下流に位置するスイッチング素子と基板が同じ種類のスイッチング素子を複数含む。たとえば最下流が第1スイッチング素子の場合、少なくとも第1スイッチング素子を複数含む。最下流が第2スイッチング素子の場合、少なくとも第2スイッチング素子を複数含む。
 たとえばスイッチング素子の過熱監視のために、温度センスパッド及び対応する信号端子を介して基板温度が検出される。冷媒の温度は、スイッチング素子との熱交換により上昇するため、上流側ほど低く、下流側ほど高くなる。よって、最下流を少なくとも含む一部のスイッチング素子の基板温度に基づいて、同じ種類のスイッチング素子すべての過熱監視が可能である。また、一部よりも上流側のスイッチング素子に対して、温度センスパッドに対応する信号端子を設けないため、信号端子の総数を減らすことができる。この結果、出力を向上しつつ信号端子の本数を低減できる半導体装置を提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の半導体装置が適用される電力変換装置の回路構成を示す図である。 図2は、下アーム側の半導体装置を示す平面図である。 図3は、図2をA方向から見た平面図である。 図4は、封止樹脂体内の構造を示す部分断面図である。 図5は、図2のV-V線に沿う断面図である。 図6は、図2のVI-VI線に沿う断面図である。 図7は、上アーム側の半導体装置を示す図である。 図8は、スイッチング素子と放熱部材との配置を示す図である。 図9は、スイッチング素子と放熱部材との配置を示す図である。 図10は、冷却器との積層構造を示す平面図である。 図11は、変形例の半導体装置を示す平面図である。 図12は、電流経路と非重なり領域との関係を示す図である。 図13は、電流アンバランス抑制を示す図である。 図14Aは、第2実施形態の半導体装置における第1期間の発熱状態を示す図である。 図14Bは、第2実施形態の半導体装置における第2期間の発熱状態を示す図である。 図15は、第3実施形態の半導体装置を示す図である。 図16は、主端子の配置と電流経路を示す図である。 図17は、第4実施形態の半導体装置を示す図である。 図18Aは、第4実施形態の半導体装置における寸法関係を示す図である。 図18Bは、第1参考例の半導体装置における寸法関係を示す図である。 図18Cは、第2参考例の半導体装置における寸法関係を示す図である。 図19Aは、第4実施形態の半導体装置における第2スイッチング素子と主端子の位置関係を示す図である。 図19Bは、参考例の半導体装置における第2スイッチング素子と主端子の位置関係を示す図である。 図20Aは、図17のXXA-XXA線に沿う断面の簡略図である。 図20Bは、参考例の半導体装置の断面の簡略図である 図21は、第5実施形態の半導体装置を示す図である。 図22は、変形例を示す図である。 図23は、変形例を示す図である。 図24は、変形例を示す図である。 図25は、第6実施形態の半導体装置を示す図である。 図26は、変形例を示す図である。 図27は、変形例を示す図である。 図28は、変形例を示す図である。 図29は、変形例を示す図である。 図30は、変形例を示す図である。 図31は、変形例を示す図である。 図32は、変形例を示す図である。 図33は、変形例を示す図である。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分には同一の参照符号を付与する。以下に示す電力変換装置は、たとえば電気自動車(EV)やハイブリッド自動車(HV)などの車両に適用可能である。
 (第1実施形態)
 先ず、図1に基づき、電力変換装置が適用される車両の駆動システムの概略構成について説明する。
 図1に示すように、車両の駆動システム1は、直流電源2と、モータジェネレータ3と、電力変換装置4を備えている。
 直流電源2は、充放電可能な二次電池で構成された直流電圧源である。二次電池として、たとえばリチウムイオン電池、ニッケル水素電池がある。モータジェネレータ3は、三相交流方式の回転電機である。モータジェネレータ3は、車両の走行駆動源、すなわち電動機として機能する。モータジェネレータ3は、回生時に発電機として機能する。電力変換装置4は、直流電源2とモータジェネレータ3との間で電力変換を行う。
 次に、図1に基づき、電力変換装置4の回路構成について説明する。電力変換装置4は、電力変換部を少なくとも備えている。本実施形態の電力変換装置4は、平滑コンデンサ5と、電力変換部であるインバータ6と、制御回路7と、駆動IC8を備えている。
 平滑コンデンサ5は、高電位側の電力ラインであるPライン9と低電位側の電力ラインであるNライン10との間に接続されている。Pライン9は直流電源2の正極に接続され、Nライン10は直流電源2の負極に接続されている。平滑コンデンサ5は、主として、直流電源2から供給される直流電圧を平滑化する。
 インバータ6は、DC-AC変換部である。インバータ6は、三相分の上下アーム回路11を備えて構成されている。U相の上下アーム回路11の接続点は、モータジェネレータ3の固定子に設けられたU相巻線に接続されている。同様に、V相の上下アーム回路11の接続点は、モータジェネレータ3のV相巻線に接続されている。W相の上下アーム回路11の接続点は、モータジェネレータ3のW相巻線に接続されている。上下アーム回路11の接続点は、出力ライン12を介して、対応する相の巻線に接続されている。出力ライン12や、上記したPライン9及びNライン10は、たとえばバスバーによって構成される。
 上下アーム回路11は、上アーム11Uと、下アーム11Lをそれぞれ有している。上アーム11Uと下アーム11Lは、上アーム11UをPライン9側として、Pライン9とNライン10との間で直列接続されている。各アームは、IGBT111と、MOSFET112と、ダイオード113を有している。IGBT111及びMOSFET112は、互いに並列接続されている。本実施形態では、IGBT111及びMOSFET112として、nチャネル型を採用している。ダイオード113は、還流のため、IGBT111に逆並列に接続されている。MOSFET112は、図示しない寄生ダイオードを有している。
 ひとつのアームにおいて、IGBT111のコレクタ電極とMOSFET112のドレイン電極が互いに接続され、IGBT111のエミッタ電極とMOSFET112のソース電極が互いに接続されている。ダイオード113のアノード電極はエミッタ電極に接続され、カソード電極はコレクタ電極に接続されている。
 上アーム11Uにおいて、コレクタ電極及びドレイン電極が、Pライン9に接続されている。下アーム11Lにおいて、エミッタ電極及びソース電極が、Nライン10に接続されている。上アーム11U側のエミッタ電極及びソース電極と、下アーム11L側のコレクタ電極及びドレイン電極とは、互いに接続されている。後述する半導体装置20は、ひとつのアームを構成する。2つの半導体装置20によって上下アーム回路11が構成され、6つの半導体装置20によってインバータ6が構成される。
 インバータ6は、制御回路7によるスイッチング制御にしたがって、直流電圧を三相交流電圧に変換し、モータジェネレータ3へ出力する。これにより、モータジェネレータ3は、所定のトルクを発生するように駆動する。インバータ6は、車両の回生制動時、車輪からの回転力を受けてモータジェネレータ3が発電した三相交流電圧を、制御回路7によるスイッチング制御にしたがって直流電圧に変換し、Pライン9へ出力する。このように、インバータ6は、直流電源2とモータジェネレータ3との間で双方向の電力変換を行う。
 制御回路7は、IGBT111及びMOSFET112を動作させるための駆動指令を生成し、駆動IC8に出力する。制御回路7は、図示しない上位ECUから入力されるトルク要求、各種センサにて検出された信号に基づいて、駆動指令を生成する。各種センサとして、たとえば電流センサ、回転角センサ、電圧センサがある。電流センサは、各相の巻線に流れる相電流を検出する。回転角センサは、モータジェネレータ3の回転子の回転角を検出する。電圧センサは、平滑コンデンサ5の両端電圧を検出する。電力変換装置4は、これらの図示しないセンサを備えている。制御回路7は、駆動指令としてPWM信号を出力する。制御回路7は、たとえばマイコン(マイクロコンピュータ)を備えて構成されている。ECUは、Electronic Control Unitの略称である。PWMは、Pulse Width Modulationの略称である。
 駆動IC8は、制御回路7の駆動指令に基づいて、ゲート駆動信号を生成する。駆動IC8は、生成したゲート駆動信号を、対応するアームのIGBT111及びMOSFET112に出力する。ひとつのアームを構成するIGBT111及びMOSFET112それぞれのゲート電極は、互いに同じ駆動IC8に電気的に接続されている。
 駆動IC8は、ゲート駆動信号によって、IGBT111及びMOSFET112のそれぞれを駆動、すなわちオン駆動、オフ駆動させる。駆動IC8は、所定デューティ比のゲート駆動信号を出力する。駆動IC8は、ドライバとも称される。本実施形態では、ひとつのアームに対して、ひとつの駆動IC8が設けられている。なお、ひとつの上下アーム回路11に対して、ひとつの駆動IC8を設けてもよい。駆動IC8を、制御回路7と一体的に設けてもよい。
 電力変換装置4は、電力変換部として、コンバータをさらに備えてもよい。コンバータは、直流電圧を異なる値の直流電圧に変換するDC-DC変換部である。コンバータは、直流電源2と平滑コンデンサ5の間に設けられる。コンバータは、たとえばリアクトルと上記した上下アーム回路11を備えて構成される。この場合、コンバータの上下アーム回路11も、2つの半導体装置20によって構成できる。さらに、直流電源2からの電源ノイズを除去するフィルタコンデンサを備えてもよい。フィルタコンデンサは、直流電源2とコンバータとの間に設けられる。
 次に、図2~図7に基づき、上下アーム回路11を構成する半導体装置について説明する。図2~図7に示すように、半導体装置20は、封止樹脂体30と、放熱部材40と、複数のスイッチング素子50と、ターミナル60と、複数の主端子70と、複数の信号端子80を備えている。
 以下において、スイッチング素子50の厚み方向をZ方向と示す。Z方向に直交し、複数のスイッチング素子50の並び方向をX方向と示す。Z方向及びX方向に直交する方向をY方向と示す。特に断りのない限り、XY平面に沿う形状、換言すればZ方向から平面視した形状を、単に平面形状と示す。
 上下アーム回路11は、2つの半導体装置20により構成される。本実施形態では、下アーム11Lを構成する半導体装置20Lと、上アーム11Uを構成する半導体装置20Uとに分けている。図2~図6は半導体装置20Lを示し、図7は半導体装置20Uを示している。図4及び図7は、半導体装置20L,20Uそれぞれの封止樹脂体30内の構造を示す部分断面図である。図4及び図7では、第2放熱部材42を破線で示している。
 半導体装置20L,20Uの外観は、略等しい。半導体装置20L,20Uは、主端子70の並び順、及び、主端子70と放熱部材40との電気的な接続構造を除けば、ほぼ同じ構成である。以下では、特に断りがない限り、半導体装置20L,20Uの共通構造である。
 封止樹脂体30は、半導体装置20を構成する他の要素、たとえばスイッチング素子50を封止している。封止樹脂体30は、たとえばエポキシ系樹脂からなる。封止樹脂体30は、たとえばトランスファモールド法により成形されている。封止樹脂体30は、モールド樹脂と称されることがある。封止樹脂体30は、Z方向において、一面30aと、一面30aとは反対の裏面30bを有している。一面30a及び裏面30bは、たとえば平坦面である。封止樹脂体30は、一面30aと裏面30bとをつなぐ側面を有している。
 本実施形態では、封止樹脂体30が平面略矩形状をなしている。封止樹脂体30は、側面30c,30dを有している。側面30dは、Y方向において側面30cとは反対の面である。側面30cから、主端子70が突出している。側面30dから信号端子80が突出している。
 放熱部材40は、スイッチング素子50の生じた熱を放熱する。放熱部材40は、スイッチング素子50と主端子70とを電気的に中継する配線として機能する。放熱部材40は、電気伝導性や熱伝導性に優れる金属材料(たとえばCu)を少なくとも用いて形成されている。放熱部材40は、たとえば金属板である。金属板に代えて、樹脂やセラミックスなどの電気絶縁体と金属体との複合材を採用することもできる。放熱部材40は、スイッチング素子50に対して、Z方向における少なくとも一方の側に配置されている。放熱部材40におけるスイッチング素子50側の面には、互いに並列接続される複数のスイッチング素子50が電気的に接続されている。
 本実施形態では、スイッチング素子50を挟むように、放熱部材40が対をなして設けられている。放熱部材40は、一面30a側に配置された第1放熱部材41と、裏面30b側に配置された第2放熱部材42を含んでいる。以下において、第1放熱部材41及び第2放熱部材42を、単に放熱部材41,42と示すことがある。放熱部材41,42として、互いに同じ種類の部材を用いてもよいし、互いに異なる部材を用いてもよい。本実施形態では、放熱部材41,42として同じ種類の部材、具体的にはCuを含む金属板を用いている。
 放熱部材41,42は、Z方向からの平面視において、スイッチング素子50を内包するように設けられている。放熱部材41,42は、互いに対向領域内に、スイッチング素子50を内包している。放熱部材41,42は、Z方向において、スイッチング素子50側の実装面41a,42aと、実装面41a,42aとは反対の放熱面41b,42bをそれぞれ有している。実装面41a,42aは、Z方向において互いに対向している。実装面41a,42aは、互いに略平行とされている。放熱部材41,42の板厚方向は、Z方向に略平行とされている。放熱部材41,42は、X方向が長手方向とされている。放熱部材41,42それぞれの少なくとも一部は、封止樹脂体30によって封止されている。
 スイッチング素子50は、半導体基板に、上記したアームを構成する素子が形成されてなる。スイッチング素子50は、半導体素子、半導体チップと称されることがある。複数のスイッチング素子50は、放熱部材40に電気的に接続されて互いに並列接続されている。
 スイッチング素子50は、Z方向の両面に主電極を有し、Z方向に主電流が流れる縦型構造をなしている。スイッチング素子50は、第1スイッチング素子51と、第2スイッチング素子52を含んでいる。第1スイッチング素子51は、シリコン(Si)基板に形成されている。第2スイッチング素子52は、炭化珪素(SiC)基板に形成されている。以下において、第1スイッチング素子51及び第2スイッチング素子52を、単にスイッチング素子51,52と示すことがある。第1スイッチング素子51には、IGBT111が形成されている。本実施形態では、IGBT111とともに、ダイオード113が一体的に形成されている。すなわち、第1スイッチング素子51には、RC(Reverse Conducting)-IGBTが形成されている。第2スイッチング素子52には、MOSFET112が形成されている。
 第1スイッチング素子51は、主電極として、一面に形成されたコレクタ電極51cと、反対の裏面に形成されたエミッタ電極51eを有している。コレクタ電極51cはダイオード113のカソード電極を兼ねており、エミッタ電極51eはダイオード113のアノード電極を兼ねている。コレクタ電極51cは、一面のほぼ全域に形成されており、エミッタ電極51eは、裏面の一部に形成されている。第2スイッチング素子52は、主電極として、一面に形成されたドレイン電極52dと、反対の裏面に形成されたソース電極52sを有している。ドレイン電極52dは、一面のほぼ全域全面に形成されており、ソース電極52sは、裏面の一部に形成されている。
 半導体基板において、素子の形成領域が、通電により発熱するアクティブ領域である。アクティブ領域を取り囲む外周領域には、図示しない耐圧構造部(たとえばガードリング)が形成されている。Z方向からの平面視において、低電位側の主電極であるエミッタ電極51e及びソース電極52sは、アクティブ領域とほぼ一致している。
 スイッチング素子50は、半導体基板の裏面側に、温度センサ53を有している。温度センサ53は、過熱保護のために基板温度(素子温度)を検出する。アクティブ領域の中心に近いほど基板温度が高くなるため、温度センサ53は、Z方向からの平面視において、アクティブ領域の中心付近に設けられている。本実施形態では、温度センサ53として、感温ダイオードを採用している。感温ダイオードは、たとえば半導体基板上に配置されたポリシリコンに不純物がドープされてなる。温度センサ53の検出信号は、スイッチング素子50の制御に用いられる。具体的には、スイッチング素子50が過熱状態となる前に、スイッチング素子50を強制的にオフ駆動させる。感温ダイオードは、半導体基板内に作り込むこともできる。
 第1スイッチング素子51は、主電極とは別に、信号用の電極であるパッド51pを有している。パッド51pは、エミッタ電極51eと同じ面に形成されている。パッド51pは、Y方向において、エミッタ電極51eの形成領域とは反対側の端部に形成されている。第2スイッチング素子52も、パッド52pを有している。パッド52pは、ソース電極52sと同じ面に形成されている。パッド52pは、Y方向において、ソース電極52sの形成領域とは反対側の端部に形成されている。Y方向において、エミッタ電極51e及びソース電極52sは主端子70側に形成され、パッド51p,52pは信号端子80側に形成されている。
 本実施形態では、コレクタ電極51cが第1放熱部材41側の面に形成され、エミッタ電極51eが第2放熱部材42側の面に形成されている。ドレイン電極52dが第1放熱部材41側の面に形成され、ソース電極52sが第2放熱部材42側の面に形成されている。高電位側の主電極であるコレクタ電極51c及びドレイン電極52dは、接合材90を介して、第1放熱部材41の実装面41aに接続されている。低電位側の主電極であるエミッタ電極51e及びソース電極52sは、接合材90及びターミナル60を介して、第2放熱部材42の実装面42aに接続されている。接合材90として、はんだや、Agなどを含む導電性ペーストを用いることができる。本実施形態の接合材90は、はんだである。
 第1スイッチング素子51は、5つのパッド51pを有している。具体的には、ゲート電極用、エミッタ電極51eの電位検出用、電流センス用、温度センサ53のアノード電位用、同じくカソード電位用である。複数のパッド51pは、X方向に並んで設けられている。同様に、第2スイッチング素子52は、5つのパッド52pを有している。具体的には、ゲート電極用、ソース電極52sの電位検出用、電流センス用、温度センサ53のアノード電位用、同じくカソード電位用である。複数のパッド52pは、X方向に並んで設けられている。
 スイッチング素子50は、第1スイッチング素子51及び第2スイッチング素子52の少なくとも一方を、複数含んでいる。第1スイッチング素子51及び第2スイッチング素子52は、スイッチング素子50の並び方向であるX方向において、交互に配置されている。交互とは、並び方向において、第1スイッチング素子51と第2スイッチング素子52とが隣り合う配置である。交互の最小構成の一例は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52の組み合わせである。他の例は、ひとつの第1スイッチング素子51と、2つの第2スイッチング素子52の組み合わせである。
 本実施形態のスイッチング素子50は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。2つの第1スイッチング素子51は、互いに同じ構成である。以下において、第1スイッチング素子51のひとつを第1スイッチング素子51a、他のひとつを第1スイッチング素子51bと示すことがある。3つのスイッチング素子50は、X方向において、第1スイッチング素子51a、第2スイッチング素子52、第1スイッチング素子51bの順に並んでいる。第2スイッチング素子52は、第1スイッチング素子51a,51bの間に配置されている。第1スイッチング素子51a,51bは互いに並列接続されている。第1スイッチング素子51a,51bに形成された素子は回路的に等価であるため、図1では、ひとつのIGBT111及びダイオード113を示している。
 ターミナル60は、第2放熱部材42とスイッチング素子50との間に所定の距離を確保すべく、第2放熱部材42とスイッチング素子50との間に介在している。ターミナル60の厚みは、スイッチング素子50よりも十分に厚い。ターミナル60は、スイッチング素子50から第2放熱部材42への伝熱機能を果たす。ターミナル60は、スイッチング素子50と第2放熱部材42とを電気的に中継する配線として機能する。ターミナル60は、Cuなどの金属材料を用いて形成されている。ターミナル60は、1種類の金属による単層構造、複数種類の金属による多層構造のいずれでもよい。ターミナル60は、少なくとも第1スイッチング素子51と、第2スイッチング素子52とで分けられている。
 本実施形態では、ひとつのスイッチング素子50に対して、ひとつのターミナル60が設けられている。ターミナル60は、第2放熱部材42とスイッチング素子50との間に所定の距離を確保するスペーサとして機能する。スペーサにより、第2放熱部材42へのボンディングワイヤ91の接触を防ぐことができる。ターミナル60のそれぞれは、略直方体をなしている。ターミナル60の平面形状は、接続される主電極とほぼ同じである。Z方向において、ターミナル60の端面のひとつがスイッチング素子50の主電極に接続され、端面の他のひとつが第2放熱部材42に接続されている。ターミナル60は、接合材90を介して、対応する主電極51e,52sと、第2放熱部材42に接続されている。
 主端子70は、半導体装置20と外部機器とを電気的に接続するための外部接続端子のうち、主電流が流れる端子である。主端子70は、対応する主電極に電気的に接続されている。主端子70は、高電位端子71と、低電位端子72を含んでいる。高電位端子71は、高電位側の主電極であるコレクタ電極51c及びドレイン電極52dに電気的に接続されている。高電位端子は、コレクタ端子、ドレイン端子と称されることがある。低電位端子72は、低電位側の主電極であるエミッタ電極51e及びソース電極52sに電気的に接続されている。低電位端子72は、エミッタ端子、ソース端子と称されることがある。以下において、高電位端子71及び低電位端子72を、単に主端子71,72と示すことがある。
 主端子70は、放熱部材40を介して、対応する主電極に接続されている。高電位端子71は、第1放熱部材41に連なっている。低電位端子72は、第2放熱部材42に連なっている。主端子70は、たとえば金属部材(たとえばリードフレーム)の一部として、放熱部材40に一体的に連なっている。主端子70は、たとえば放熱部材40とは別部材として設けられ、接続により放熱部材40に連なっている。主端子70は、封止樹脂体30の内部で、対応する放熱部材40に連なっている。主端子70は、放熱部材40に対して、Y方向における側面30c側の端部付近に連なっている。すべての主端子70は、封止樹脂体30の内外にわたって延設されている。
 本実施形態では、すべての主端子70が、対応する放熱部材40からY方向に延設されている。すべての主端子70は、封止樹脂体30の側面30cから外部に突出している。主端子71,72は、ともに封止樹脂体30内に屈曲部を有しており、側面30cにおいてZ方向のほぼ同じ位置から突出している。突出部分を含む一部において、主端子71,72は、側面同士が対向するように、X方向において所定の間隙を有しつつ並んでいる。
 主端子70は、高電位端子71及び低電位端子72の一方を1本含み、他方を2本含んでいる。主端子70は、高電位端子71と低電位端子72との側面対向部を複数(2組)有している。図4及び図7に示すように、高電位端子71は、第1放熱部材41に一体的に連なっている。低電位端子72は、接続により、第2放熱部材42に連なっている。低電位端子72は、たとえば図6に示すように、接合材90を介して、第2放熱部材42の実装面42aに接続されている。
 半導体装置20Lは、2本の高電位端子71と、1本の低電位端子72を備えている。主端子71,72は、X方向に並んで配置されている。低電位端子72は、高電位端子71の間に配置されている。図4に示すように、第1放熱部材41は、高電位端子71が連なる部分に対して側面30d側に凹んだ凹部41cを有している。凹部41cは、X方向において第1放熱部材41の中央領域に設けられている。高電位端子71は、第1放熱部材41において、中央領域を挟む周辺領域のそれぞれに連なっている。第2放熱部材42は、第1放熱部材41と対向しない非対向領域として、Z方向の平面視において凹部41cと重なる部分を含んでいる。低電位端子72は、第2放熱部材42の非対向領域であって凹部41cと重なる部分に接続されている。非対向領域であるため、低電位端子72を第2放熱部材42に接続しやすい。
 半導体装置20Uは、1本の高電位端子71と、2本の低電位端子を備えている。主端子71,72は、X方向に並んで配置されている。高電位端子71は、低電位端子72の間に配置されている。図7に示すように、半導体装置20Uの第1放熱部材41も、凹部41cを有している。凹部41cは、X方向において第1放熱部材41の周辺領域にそれぞれ設けられている。高電位端子71は、第1放熱部材41において、周辺領域に挟まれた中央領域に連なっている。低電位端子72は、第2放熱部材42の非対向領域であって凹部41cと重なる部分に接続されている。
 信号端子80は、対応するスイッチング素子50のパッドに電気的に接続されている。信号端子80は、第1信号端子81と、第2信号端子82を含んでいる。第1信号端子81は、第1スイッチング素子51のパッド51pに電気的に接続されている。第2信号端子82は、第2スイッチング素子52のパッド52pに電気的に接続されている。
 本実施形態の信号端子80は、ボンディングワイヤ91を介して、対応するパッド51p,52pに接続されている。信号端子80は、封止樹脂体30の内部でボンディングワイヤ91に接続されている。信号端子80は、それぞれY方向に延設されており、封止樹脂体30の側面30dから外部に突出している。信号端子80は、主端子70及び第1放熱部材41を含むリードフレームの一部である。
 以上のように構成される半導体装置20において、放熱部材40それぞれの少なくとも一部、スイッチング素子50、ターミナル60、主端子70それぞれの一部、及び信号端子80それぞれの一部が、封止樹脂体30によって一体的に封止されている。すなわち、1つのアームを構成する要素が封止されている。このため、半導体装置20は、1in1パッケージとも称される。
 半導体装置20として、上アーム11U用の半導体装置20Uと、下アーム11L用の半導体装置20Lを個別に設ける例を示したが、これに限定されない。半導体装置20を、上アーム11Uと下アーム11Lとで共通構造としてもよい。たとえば上記した半導体装置20Lを、下アーム11Lだけでなく、上アーム11Uに用いてもよい。半導体装置20Uを、上アーム11Uだけでなく、下アーム11Lに用いてもよい。これにより、部品点数を削減することができる。また、半導体装置20Lと半導体装置20Uとで構造を入れ替えてもよい。すなわち、半導体装置20Lを上アーム11Uに用い、半導体装置20Uを下アーム11Lに用いてもよい。
 次に、図4~図9に基づき、半導体装置20の細部について説明する。図8及び図9は、スイッチング素子50と放熱部材41,42との位置関係を示す模式的な平面図である。図8及び図9では、主端子71,72についても図示している。図8及び図9では半導体装置20Lについて示しているが、半導体装置20Uも同様である。
 本実施形態では、第2スイッチング素子52の基板面積が、第1スイッチング素子51それぞれの基板面積よりも小さくされている。基板面積とは、厚み方向であるZ方向に直交する面積、すなわちXY平面に沿う面積である。基板面積は、チップ面積、素子面積と称されることがある。基板面積を大きくすることで、素子のアクティブ領域も大きくなる。SiC基板をSi基板より小さくすることで、コストの低減、体格の小型化が可能である。また、第2スイッチング素子52の厚みが、第1スイッチング素子51よりも薄くされている。同じ耐圧において、SiCのほうがSiよりもドリフト層を薄くすることができる。
 スイッチング素子50は、実装面41aにおいてY方向の中央領域に配置されている。Y方向において、信号端子80側の端部の位置は、第1スイッチング素子51と第2スイッチング素子52とで略一致している。主端子70側の端部の位置は、第1スイッチング素子51と第2スイッチング素子52とで異なっている。
 図8及び図9には、第1スイッチング素子51をX方向に仮想的に延長した領域R1と、第2スイッチング素子52をY方向に仮想的に延長した領域R2を示している。領域R1は、第1スイッチング素子51のY方向の両端をX方向に仮想的に延長した線にて規定される。領域R2は、第2スイッチング素子52のX方向の両端をY方向に仮想的に延長した線にて規定される。図8及び図9では、仮想的に延長した線を一点鎖線で示している。
 図8に示すように、第1放熱部材41は、Z方向からの平面視において領域R1と領域R2との交差部分と重なる領域である交差領域41dを有している。図8において、交差領域41dを破線で示している。交差領域41dは、第2スイッチング素子52と重なる重なり領域41eと、第2スイッチング素子52と重ならない非重なり領域41fを有している。第1放熱部材41は、X方向に並んだ2つの第1スイッチング素子51a,51bの間に形成される対向領域内に、重なり領域41eと非重なり領域41fを有している。第1放熱部材41において、重なり領域41eは第2スイッチング素子52の実装領域であり、非重なり領域41fは非実装領域である。Z方向において、重なり領域41eは第2スイッチング素子52と対向する領域であり、非重なり領域41fは非対向領域である。
 図9に示すように、第2放熱部材42は、第1放熱部材41と同様に、交差領域42dを有している。図9において、交差領域42dを破線で示している。交差領域42dは、第2スイッチング素子52と重なる重なり領域42eと、第2スイッチング素子52と重ならない非重なり領域42fを有している。第2放熱部材42は、X方向に並んだ2つの第1スイッチング素子51a,51bの間に形成される対向領域内に、重なり領域42eと非重なり領域42fを有している。第2放熱部材42において、重なり領域42eは第2スイッチング素子52と対向する領域であり、非重なり領域42fは非対向領域である。
 図8及び図9に示すように、エミッタ電極51eの一部は、ソース電極52sの一部とY方向において同じ位置に配置されている。エミッタ電極51eの一部は、重なり領域41e,42eの一部とY方向において同じ位置に配置されている。エミッタ電極51eの他の一部は、非重なり領域41fの一部とY方向において同じ位置に配置されている。すなわち、X方向において、エミッタ電極51eの一部がソース電極52sと対向し、他の一部が非重なり領域41f,42fと対向している。
 このように、放熱部材40は、交差領域41d,42dの一部として、非重なり領域41f,42fを有している。そして、非重なり領域41f,42fの少なくとも一部が、封止樹脂体30から露出している。たとえば、非重なり領域41fの少なくとも一部のみが露出してもよい。非重なり領域42fの少なくとも一部のみが露出してもよい。非重なり領域41f,42fが、ともに露出してもよい。非重なり領域41fが露出する場合、実装面41a及び放熱面41bの少なくとも一方が露出すればよい。同様に、非重なり領域42fが露出する場合、実装面42a及び放熱面42bの少なくとも一方が露出すればよい。
 本実施形態では、非重なり領域41f,42fが露出している。非重なり領域41fの全域が、放熱面41b側において露出し、実装面41a側において覆われている。非重なり領域42fの全域が、放熱面42b側において露出し、実装面42a側において覆われている。さらに、重なり領域41e,42eも露出している。放熱面41b,42bは、ほぼ全域において露出している。放熱面41bは、封止樹脂体30の一面30aと略面一で露出している。放熱面42bは、裏面30bと略面一で露出している。半導体装置20は、放熱面41b,42bがともに封止樹脂体30から露出する両面放熱構造をなしている。
 図4及び図7~図9に示す仮想線CL1は、第2スイッチング素子52の素子的中心を通り、Y方向に延びる線である。素子的中心とは、第2スイッチング素子52(チップ)の中心である。仮想線CL1は、アクティブ領域の中心を通っている。
 本実施形態では、3つのスイッチング素子50の配置が、仮想線CL1に対して線対称である。これにより、スイッチング素子51a,52の間隔と、スイッチング素子51b,52の間隔とが、互いに略等しい。上記した非重なり領域41e,42eは、仮想線CL1上に位置している。
 3つのターミナル60の配置も、仮想線CL1に対して線対称である。第1放熱部材41及び第2放熱部材42のそれぞれも、仮想線CL1に対して線対称である。半導体装置20Lにおいて、低電位端子72は、仮想線CL1上に配置されている。低電位端子72の幅の中心は、仮想線CL1上に位置している。図4に示すように、3本の主端子70の配置は、仮想線CL1に対して線対称である。半導体装置20Uにおいて、高電位端子71は、仮想線CL1上に配置されている。低電位端子72の幅の中心は、仮想線CL1上に位置している。図7に示すように、3本の主端子70の配置は、仮想線CL1に対して線対称である。
 次に、図10に基づき、半導体装置20の冷却構造について説明する。上記した半導体装置20は、図10に示すように、冷却器100と交互に積層される。半導体装置20は、冷却器100とともにパワーモジュール110を構成する。
 冷却器100は、冷媒の流路を内部に有している。冷却器100は、Z方向において所定間隔を有しつつ多段に配置されている。多段の冷却器100は、X方向の一端側で、供給管101により連結されている。供給管101は、その内部に流路が形成された筒状体であり、Z方向に延設されている。供給管101は、冷却器100のそれぞれに接続されており、供給管101の流路は冷却器100それぞれの流路に連通している。
 多段の冷却器100は、供給管101とは反対の端部側で、排出管102により連結されている。排出管102も、その内部に流路が形成された筒状体であり、Z方向に延設されている。排出管102は、冷却器100のそれぞれに接続されており、排出管102の流路は冷却器100それぞれの流路に連通している。供給管101から流入した冷媒は、冷却器100それぞれの流路を拡がり、排出管102から排出される。
 冷媒として、水やアンモニアなどの相変化する冷媒や、エチレングリコール系などの相変化しない冷媒を用いることができる。冷却器100は、主として半導体装置20を冷却するものである。しかしながら、冷却機能に加えて、環境温度が低い場合に温める機能をもたせてもよい。この場合、冷却器100は、温度調節器と称される。また、冷媒は熱媒体と称される。
 パワーモジュール110は、インバータ6を構成する6つの半導体装置20と、半導体装置20のそれぞれを両面側から冷却するように、半導体装置20と交互に積層された複数(多段)の冷却器100を備えている。半導体装置20は、Z方向において両面側から冷却器100により挟持されている。封止樹脂体30の大部分は、隣り合う冷却器100の対向領域内に配置されている。主端子70のそれぞれは、図示しないバスバーなどとの接続のため、たとえばY方向において対向領域外まで延設されている。
 複数の半導体装置20は、Z方向からの平面視において、互いに重なるように配置されている。各半導体装置20において、スイッチング素子50は、上流側から下流側に向けて、第1スイッチング素子51a、第2スイッチング素子52、第1スイッチング素子51bの順に配置されている。すなわち、X方向において、供給管101側に第1スイッチング素子51aが配置され、排出管102側に第1スイッチング素子51bが配置されている。
 また、同じ相の上下アーム回路11を構成する半導体装置20L,20Uが、Z方向において隣り合っている。これにより、同じ相を構成する半導体装置20Uの低電位端子72と、半導体装置20Lの高電位端子71とが、Z方向からの平面視において互いに重なる。したがって、上アーム11Uと下アーム11Lとの接続距離を短くし、たとえばインダクタンスを低減することができる。また、接続性を向上することができる。
 このように、半導体装置20(20U,20L)は、対向方向であるZ方向において挟持された状態で、冷却器100により冷却される。
 本実施形態では、スイッチング素子50が、Si基板に形成された第1スイッチング素子51、及び、SiC基板に形成された第2スイッチング素子52の少なくとも一方を複数含んでいる。したがって、スイッチング素子51,52をひとつずつ含む構成に較べて、半導体装置20の出力を向上することができる。
 また、スイッチング素子51,52が、X方向(第1方向)において交互に配置されている。そして、放熱部材40が、交差領域41d,42dとして非重なり領域41f,42fを有している。非重なり領域41f,42fは、第1スイッチング素子51及び第2スイッチング素子52の熱が伝わる領域である。非重なり領域41f,42fの少なくとも一部は封止樹脂体30から露出しており、効果的に放熱することができる。よって、スイッチング素子51,52の生じた熱が、非重なり領域41f,42f側に拡散しやすい。したがって、素子温度の上昇を抑制することができる。
 以上により、出力を向上しつつ素子温度の上昇を抑制できる半導体装置20を提供することができる。素子温度が上昇すると、たとえばオン抵抗の増加、接合材90の信頼性低下、定格温度に対する余裕度の減少(出力低下)などが生じ得る。本実施形態によれば、このような問題が生じるのを抑制することができる。
 放熱部材40は、露出部位として、少なくとも非重なり領域41f、42fを含めばよい。たとえば、図11に示す変形例のように、第2放熱部材42の非重なり領域42fのみが封止樹脂体30から露出する構成としてもよい。図11において、非重なり領域42fは、放熱面42b側で露出している。
 本実施形態では、非重なり領域41f,42fに加えて、重なり領域41f,42fの少なくとも一部が、封止樹脂体30から露出している。重なり領域41f,42fは、第2スイッチング素子52の直下領域である。素子温度の上昇、特に第2スイッチング素子52の温度上昇を効果的に抑制することができる。
 特に本実施形態では、重なり領域41e,42e及び非重なり領域41f,42fだけでなく、第1スイッチング素子51と重なる領域も含んで、放熱面41b,42bのほぼ全域が露出している。両面放熱と全域露出により、素子温度の上昇をさらに抑制することができる。
 第1スイッチング素子51及び第2スイッチング素子52は、少なくとも交互に配置されればよく、個数は特に限定されない。たとえば第1スイッチング素子51と第2スイッチング素子52を2つずつ含んでもよい。第1スイッチング素子51を3つ含み、第2スイッチング素子52を2つ含んでもよい。第1スイッチング素子51をひとつ含み、第2スイッチング素子52を2つ含んでもよい。
 本実施形態では、IGBT111が形成された第1スイッチング素子51を2つ含み、MOSFET112が形成された第2スイッチング素子52をひとつ含んでいる。第2スイッチング素子52は、第1スイッチング素子51の間に配置されている。第2スイッチング素子52の基板面積が小さいため、放熱部材41,42は、非重なり領域41f,42fを有している。非重なり領域41f,42fは、スイッチング素子50と重ならない空き領域である。この空き領域を積極的に放熱に利用するため、非重なり領域41f,42fの両サイドに位置する第1スイッチング素子51同士の熱干渉を抑制することができる。また、Y方向において非重なり領域41f,42fに隣接する第2スイッチング素子52の熱を、効果的に逃がすことができる。これにより、MOSFET112の温度上昇を抑制し、ひいてはオン抵抗の増加を抑制することができる。
 主端子71,72の本数は、特に限定されない。主端子71,72を1本ずつ含む構成としてもよい。本実施形態において、主端子71,72の配置は、スイッチング素子50の並び方向において交互である。これにより、高電位端子71と低電位端子72との対向する側面が、複数組形成される。高電位端子71と低電位端子72とで、主電流の向きは略逆向きとなる。複数組備えることで、主電流が流れたときに生じる磁束を互いに打ち消し、インダクタンスを低減する効果を高めることができる。また、主端子71,72の少なくとも一方を複数含むため、並列化により、インダクタンスを低減することができる。たとえば、サージ電圧を低減することができる。
 交互配置において、主端子71,72の本数は特に限定されない。本実施形態では、主端子71,72の一方である第1主端子を1本含み、他方である第2主端子を2本含んでいる。半導体装置20Lにおいて、低電位端子72が第1主端子であり、高電位端子71が第2主端子である。半導体装置20Uにおいて、高電位端子71が第1主端子であり、低電位端子72が第2主端子である。第1主端子は、第2スイッチング素子52の素子的中心を通る仮想線CL1上に配置されている。そして、Z方向からの平面視において、非重なり領域41f,42fが仮想線CL1上に設けられている。
 たとえば図12に示す半導体装置20Lにおいて、第1主端子(低電位端子72)と第2スイッチング素子52との電流経路に、非重なり領域42fが設けられている。第1主端子は、第2主端子に較べて本数が少ないため、非重なり領域42fの電流密度が高くなる。しかしながら、非重なり領域42fは、封止樹脂体30から露出しており、効率よく放熱することができる。したがって、素子温度、特に第2スイッチング素子52の温度が上昇するのを抑制することができる。これにより、MOSFET112のオン抵抗の増加を抑制することができる。図示を省略するが、半導体装置20Uでは、第1主端子(高電位端子71)と第2スイッチング素子52との電流経路に、非重なり領域41fが設けられている。非重なり領域41fは封止樹脂体30から露出しており、半導体装置20Lと同等の効果を奏する。
 本実施形態では、半導体装置20が、奇数個のスイッチング素子50を備えている。そして、複数のスイッチング素子50の配置が、仮想線CL1に対して線対称である。Si基板に形成された第1スイッチング素子51と、SiC基板に形成された第2スイッチング素子52とは、線膨張係数が互いに異なる。しかしながら、線対称配置により、放熱部材40とスイッチング素子50との線膨張係数差に基づいて放熱部材40に作用する熱応力も対称的となる。これにより、半導体装置20の局所的な変形を抑制することができる。なお、奇数個として3個の例を示したが、これに限定されない。たとえば5個のスイッチング素子50を備える構成に適用することもできる。
 本実施形態では、第2スイッチング素子52と第1スイッチング素子51a,51bそれぞれとの間隔が、互いに略等しい。これにより、第2スイッチング素子52の生じた熱が、X方向において第1スイッチング素子51a,51bの両側にほぼ均等に拡がる。また、第1スイッチング素子51a,51bの生じた熱が、第2スイッチング素子52側に同様に拡がる。
 したがって、第1スイッチング素子51a,51bの温度差を低減し、第1スイッチング素子51a,51bの一方にDC電流が偏って流れるのを抑制することができる。DC電流とは、スイッチング時ではなく、スイッチング素子がオンされている定常時に流れる電流である。また、第1スイッチング素子51の一方と第2スイッチング素子52との間に熱が集中するのを抑制することができる。たとえば、第2スイッチング素子52の温度上昇にともなうオン抵抗の増加を抑制することができる。特に、スイッチング素子51,52が同時にオン駆動する構成において効果的である。
 また、間隔が略等しいため、封止樹脂体30の成形時において、第1スイッチング素子51a,51bの一方と第2スイッチング素子52との間に空気が残り、封止樹脂体30においてボイドとなるのを抑制することができる。なお、第2スイッチング素子52と第1スイッチング素子51a,51bそれぞれとの間隔を互いに略等しくすると、放熱部材40の露出有無によらず、上記した効果を奏することができる。
 本実施形態では、スイッチング素子50だけでなく、放熱部材40及び主端子70も、仮想線CL1に対して線対称である。線対称配置により、第1スイッチング素子51aの主電流と、第1スイッチング素子51bの主電流とが、仮想線CL1に対して線対称となるように流れる。たとえば半導体装置20Lでは、図13に示すように、2つの電流経路の長さがほぼ等しくなる。電流経路のひとつは、第1スイッチング素子51a側の高電位端子71→第1スイッチング素子51a→低電位端子72の電流経路である。電流経路の他のひとつは、第1スイッチング素子51b側の高電位端子71→第1スイッチング素子51b→低電位端子72の電流経路である。電流経路のインダクタンスが互いにほぼ等しくなるため、AC電流が、第1スイッチング素子51a,51bの一方に偏って流れるのを抑制することができる。よって、AC電流のアンバランスを抑制することができる。半導体装置20Uについても同様である。AC電流とは、スイッチング時に流れる電流である。
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。この実施形態では、スイッチング素子50の駆動と配置との関係に特徴がある。
 本実施形態の半導体装置20の構成は、先行実施形態に示した半導体装置20U(図7参照)と同じである。スイッチング素子50は、第1スイッチング素子51及び第2スイッチング素子52の少なくとも一方を複数含んでいる。たとえば2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。スイッチング素子51,52の配置は、X方向において交互である。
 本実施形態において、制御回路7及び駆動IC8は、第1スイッチング素子51(IGBT111)及び第2スイッチング素子52(MOSFET112)を、少なくとも互いに異なる期間においてオン駆動するように制御する。制御回路7及び駆動IC8は、スイッチング素子51,52が個別にオン駆動する期間を有するように制御する。図14Aに示すように、第1期間において第2スイッチング素子52がオン駆動し、図14Bに示すように第2期間において第1スイッチング素子51がオン駆動する。図14Aおよび図14Bでは、オン駆動によりスイッチング素子50が生じる熱を示している。
 制御回路7及び駆動IC8は、第1スイッチング素子51を、第1電流域においてオフ駆動し、第1電流域よりも大きい第2電流域においてオン駆動するように制御する。制御回路7及び駆動IC8は、第2スイッチング素子52を、第1電流域においてオン駆動し、第2電流域においてオフ駆動するように制御する。第1電流域は所定の第1閾値未満の領域であり、第2電流域は第1閾値以上の領域である。第1電流域は第2電流域よりも出力電流の小さい領域であり、第2電流域は第1電流域よりも出力電流の大きい領域である。第1期間は、出力電流が第1電流域内の期間であり、第2電流域内の出力電流が流れる期間が第2期間である。
 小電流域では、SiC-MOSFETのオン抵抗がSi-IGBTよりも小さい。一方、大電流域では、Si-IGBTのオン抵抗がSiC-MOSFETよりも小さい。したがって、上記した制御により、広い電流範囲においてオン抵抗を低減することができる。
 制御回路7及び駆動IC8は、IGBT111及びMOSFET112が個別にオン駆動する期間とは別に、ともにオン駆動する期間を有するように制御する。制御回路7及び駆動IC8は、第2閾値以上の第3電流域において、IGBT111及びMOSFET112の両方を、オン駆動するように制御する。第2閾値は第1閾値よりも大きい電流値である。第2閾値を有する場合、第2電流域は、第1閾値以上、第2閾値未満の領域である。IGBT111及びMOSFET112の両方が同じ期間においてオン駆動するため、出力をさらに高めることができる。
 このように、第1電流域において第2スイッチング素子52(MOSFET112)がオン駆動し、第2電流域において第1スイッチング素子51(IGBT111)がオン駆動する。また、第3電流域において、スイッチング素子51,52がオン駆動する。
 本実施形態では、スイッチング素子50が、第1スイッチング素子51及び第2スイッチング素子52の少なくとも一方を複数含んでいる。これにより、並列接続されるスイッチング素子50の数、特に同じ期間においてオン駆動するスイッチング素子50の数を増やし、半導体装置20の出力を向上することができる。
 また、第1スイッチング素子51と第2スイッチング素子52とが、X方向において交互に配置されている。第1スイッチング素子51と第2スイッチング素子52は、少なくとも互いに異なる期間においてオン駆動する。上記したように、第1期間において、第2スイッチング素子52がオン駆動する。第1期間とは異なる第2期間において、第1スイッチング素子51がオン駆動する。
 第2期間においてオン駆動する第1スイッチング素子51の間に、第1期間においてオン駆動する第2スイッチング素子52が配置されている。この配置により、図14Aおよび図14Bに示すように、同じ期間においてオン駆動する第1スイッチング素子51間の距離を確保し、第1スイッチング素子51の相互の熱干渉を低減することができる。第1スイッチング素子、第1スイッチング素子、第2スイッチング素子の順のように、同じ期間においてオン駆動するスイッチング素子が隣り合う構成の場合に較べて、出力を向上しつつ体格の増大を抑制できる半導体装置を提供することができる。
 第1スイッチング素子51及び第2スイッチング素子52は、少なくとも交互配置されればよい。本実施形態のスイッチング素子50は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。上記したように、小さな電流域において第2スイッチング素子(MOSFET112)のオン抵抗が小さく、大きな電流域において第1スイッチング素子51(IGBT111)のオン抵抗が小さい。
 第2スイッチング素子52は、第1電流域においてオン駆動し、第1スイッチング素子51は、第1電流域よりも大きな第2電流域においてオン駆動する。ひとつの第2スイッチング素子52により小さな電流域をカバーし、2つの第1スイッチング素子51により大きな電流域を広い範囲でカバーすることができる。したがって、広い電流範囲において、損失(導通損失)を低減することができる。また、第2電流域でオン駆動する第1スイッチング素子51a,51bについて、熱干渉を低減することができる。よって、出力を向上しつつ体格の増大を抑制できる効果を高めることができる。
 本実施形態では、3つの電流域でスイッチング素子50の駆動を切り替える例を示したが、この例に限定されない。スイッチング素子51,52は、少なくとも異なる期間においてオン駆動すればよく、多様な組み合わせが可能である。たとえば、スイッチング素子51,52が同じ期間においてオン駆動しないようにしてもよい。すなわち、小電流域において第2スイッチング素子52をオン駆動し、それよりも大きい電流域において、第1スイッチング素子51をオン駆動するようにしてもよい。また、第2電流域を、ひとつの第1スイッチング素子51がオン駆動する領域と、2つの第1スイッチング素子51がオン駆動する領域とに分けてもよい。
 また、スイッチング素子51,52の通電時間を異ならせること、具体的にはターンオン及びターンオフの少なくとも一方をずらすことで、互いにオン駆動する期間と、個別にオン駆動する期間とを有するようにしてもよい。たとえば小電流域において、第1スイッチング素子51の通電時間を第2スイッチング素子52の通電時間よりも短くし、大電流域において、第2スイッチング素子52の通電時間を第1スイッチング素子51の通電時間よりも短くしてもよい。
 本実施形態に示した構成は、先行実施形態に記載の構成との組み合わせが可能である。たとえば、封止樹脂体30から放熱部材40の一部が露出される構成と組み合わせてもよいし、封止樹脂体30により放熱部材40の全体が覆われる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで異なる半導体装置20U,20Lを用いる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで、共通構造の半導体装置20を用いる構成と組み合わせてもよい。放熱部材40、スイッチング素子50、主端子70の少なくともひとつの配置を、仮想線CL1に対して線対称としてもよい。
 (第3実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。この実施形態では、第2主端子の配置に特徴がある。
 図15は、本実施形態の半導体装置20を示している。この半導体装置20の構成は、先行実施形態に示した半導体装置20U(図7参照)とほぼ同じである。スイッチング素子50は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。主端子70は、1本の高電位端子71と、2本の低電位端子72を含んでいる。高電位端子71が仮想線CL1上に配置された第1主端子であり、低電位端子72が第2主端子である。高電位端子71の幅の中心は、仮想線CL1上に位置している。
 図15に示す仮想線CL2は、第1スイッチング素子51a,51bそれぞれの素子的中心を通り、Y方向に延びる線である。仮想線CL1は、2つの仮想線CL2の中心位置を通っている。低電位端子72のひとつは、第1スイッチング素子51a側の仮想線CL2上に配置され、他のひとつは、第1スイッチング素子51b側の仮想線CL2上に配置されている。低電位端子72の幅の中心は、仮想線CL2上にそれぞれ位置している。
 本実施形態の主端子は、第1主端子を1本含み、他方である第2主端子を2本含んでいる。第1主端子は、仮想線CL1上に配置されている。第2主端子は、仮想線CL2上に配置されている。図16は、電流経路を示している。図16では、便宜上、第1スイッチング素子51のひとつを含むようにX方向の一部分を省略して図示している。図16では、所定のタイミングにおける主電流の流れを矢印で示している。図16には、参考例である低電位端子72r(第2主端子)を二点鎖線で示している。
 第1主端子である高電位端子71は、仮想線CL1上に配置されている。第2主端子である低電位端子72は、仮想線CL2上に配置されている。このため、実線矢印で示すように電流が流れる。参考例である低電位端子72rは、仮想線CL2と重ならない位置であって、仮想線CL2よりも外側に配置されている。このため、二点鎖線の矢印で示すように電流が流れる。本実施形態の低電位端子72の配置によれば、スイッチング素子51,52の電流経路を、参考例に較べて短くすることができる。また、高電位端子71、スイッチング素子51,52のそれぞれ、及び低電位端子72との間に形成される電流ループを、参考例に較べて小さくすることができる。よって、参考例に較べて、インダクタンスを小さくすることができる。たとえば、スイッチング損失を低減することができる。
 本実施形態では、第2主端子が仮想線CL2上に配置される例を示したが、これに限定されない。第2主端子を、仮想線CL2と重ならない位置であって、仮想線CL2よりも内側に配置してもよい。このような配置の第2主端子を、図16では、低電位端子72aとして破線で示している。これによれば、破線矢印で示すように電流が流れる。上記した参考例に較べて、第2スイッチング素子52の電流経路を短くすることができる。また、スイッチング素子51,52それぞれの電流ループを、参考例に較べて小さくすることができる。よって、参考例に較べて、インダクタンスを低減することができる。
 なお、低電位端子72が仮想線CL2上に位置しても、低電位端子72の幅の中心が仮想線CL2より外側になると、低電位端子72の幅の中心が仮想線CL2上に位置する構成に較べて、スイッチング素子51,52の電流経路が長くなる。また、電流ループが大きくなる。よって、幅の中心が仮想線CL2上に位置する、若しくは、仮想線CL2より内側、すなわち仮想線CL1に近い位置となるように、低電位端子72(第2主端子)を配置するとよい。
 本実施形態では、放熱部材40、スイッチング素子50、及び主端子70のそれぞれの配置が、仮想線CL1に対して線対称である。これにより、先行実施形態同様、AC電流のアンバランスを抑制することができる。本実施形態によれば、電流アンバランスを抑制しつつ、スイッチング損失を低減することができる。
 本実施形態に示した構成は、先行実施形態に記載の構成との組み合わせが可能である。たとえば、封止樹脂体30から放熱部材40の一部が露出される構成と組み合わせてもよいし、封止樹脂体30により放熱部材40の全体が覆われる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで異なる半導体装置20U,20Lを用いる構成と組み合わせてもよい。たとえば図4に示した半導体装置20Lの場合、低電位端子72が第1主端子に相当し、高電位端子71が第2主端子に相当する。上アーム11Uと下アーム11Lとで、共通構造の半導体装置20を用いる構成と組み合わせてもよい。
 スイッチング素子51,52の駆動については特に限定されない。スイッチング素子51,52が、少なくとも互いに異なる期間においてオン駆動する構成との組み合わせが可能である。この場合、第1スイッチング素子51の相互の熱干渉を低減することができる。
 (第4実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。この実施形態では、スイッチング素子51,52の寸法関係に特徴がある。
 図17は、本実施形態の半導体装置20を示している。スイッチング素子50は、第1スイッチング素子51及び第2スイッチング素子52の少なくとも一方を複数含んでいる。半導体装置20の構成は、先行実施形態に示した半導体装置20U(図7参照)とほぼ同じである。半導体装置20は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。スイッチング素子51,52の配置は、X方向において交互である。
 第2スイッチング素子52の基板面積は、第1スイッチング素子51よりも小さい。第1スイッチング素子51において、X方向の長さはLX1、Y方向の長さはLY1である。X方向の長さに対するY方向の長さの比R1は、LY1/LX1である。第2スイッチング素子52において、X方向の長さはLX2、Y方向の長さはLY2である。X方向の長さに対するY方向の長さの比R2は、LY2/LX2である。第2スイッチング素子52は、Y方向を長手方向とする平面略矩形状をなしている。
 そして、長さLX2は、長さLX1よりも短い(LX2<LX1)。比R2は、比R1よりも大きい(R2>R1)。さらに、長さLY2は、長さLY1と略等しい。Y方向における両端の位置は、第1スイッチング素子51と第2スイッチング素子52とで、略一致している。
 次に、図18A~図20Bに基づき、上記した寸法関係による効果について説明する。図18A~図20Bの各図では、本実施形態と参考例とを対比して示している。参考例では、本実施形態の要素と同一又は関連する要素について、本実施形態の符号の末尾にrを付け加えて示している。本実施形態と参考例において、第1スイッチング素子の寸法が、互いに等しくされている。また、第1スイッチング素子と第2スイッチング素子との間隔が、互いに等しくされている。図18A~図20Bでは、半導体装置を簡略化して図示している。
 図18Aは本実施形態を示し、図18Bおよび図18Cはそれぞれ第1参考例および第2参考例を示す図である。図18Bに示す第1参考例では、X方向において、第2スイッチング素子52rの長さが、第1スイッチング素子51rよりも短い。X方向において、第2スイッチング素子52rの長さが、第2スイッチング素子52と等しい。Y方向において、第2スイッチング素子52rの長さは、第2スイッチング素子52よりも短い。第1参考例では、長さの比の関係がR2≦R1となっている。
 本実施形態では、長さの比の関係が、R2>R1となっている。このため、第2スイッチング素子52の基板面積が、第2スイッチング素子52rよりも大きい。これにより、素子のアクティブ領域も、第1参考例に較べて大きい。したがって、本実施形態によれば、X方向の体格を第1参考例と同等としつつ、第1参考例よりも出力を向上することができる。
 図18Cに示す第2参考例では、第2スイッチング素子52rの基板面積が、第2スイッチング素子52と等しい。X方向において、第2スイッチング素子52rの長さが、第2スイッチング素子52よりも長い。第2参考例では、長さの比の関係が、R2≦R1とされている。第2参考例では、並び方向であるX方向を長手方向とすることで、第2スイッチング素子52rの基板面積を大きくしている。
 本実施形態では、長さの比の関係がR2>R1とされており、X方向において、第2スイッチング素子52の長さが、第2スイッチング素子52rよりも短い。第2スイッチング素子52が短いため、X方向の体格が第2参考例よりも小さくなる。したがって、本実施形態によれば、出力を第2参考例と同等としつつ、第1参考例よりもX方向の体格を小型化することができる。
 以上より、本実施形態の半導体装置20によれば、出力を向上しつつ体格の増大を抑制することができる。特に本実施形態では、第2スイッチング素子52の長さLY2が、第1スイッチング素子51の長さLY1と略等しい。LY2<LY1を満たす構成に較べて、第2スイッチング素子52の基板面積を稼いで、出力をさらに向上することができる。また、Y方向における両端の位置が、第1スイッチング素子51と第2スイッチング素子52とで略一致している。これにより、Y方向において半導体装置20の体格増大を抑制しつつ、出力を向上することができる。
 図19Aは本実施形態を示す図であり、図19Bは参考例を示す図である。図19Bに示す第2スイッチング素子52rの構成は、図18Bに示した第1参考例と同じである。長さの比の関係は、R2≦R1となっている。Y方向において、信号端子80r側の端部の位置が、第1スイッチング素子51rと第2スイッチング素子52rとで略一致している。第2スイッチング素子52rは、Y方向において信号端子80r寄りに配置されている。したがって、一点鎖線の矢印で示すように、第2スイッチング素子52rの主電流の経路が長い。
 本実施形態では、長さの比の関係が、R2>R1となっている。第2スイッチング素子52の配置が、参考例に較べて主端子70に近い。これにより、第2スイッチング素子52の電流経路を短くすることができる。よって、スイッチング損失を低減することができる。
 図示を省略するが、参考例として、Y方向における主端子70r側の端部の位置を、第1スイッチング素子51rと第2スイッチング素子52rとで略一致させる構成、すなわち、第2スイッチング素子52rを主端子70r寄りに配置する構成も考えられる。この場合、第2スイッチング素子52rと第2信号端子82rとの距離が長くなる。この参考例に較べて、本実施形態の第2スイッチング素子52は、第2信号端子82に近い位置とされている。よって、第2スイッチング素子52(MOSFET112)の高速スイッチングに有利である。
 図20Aは、図17のXXA-XXA線に沿う断面を、簡略化した図である。図20Aは本実施形態を示す図であり、図20Bは参考例を示す図である。図20Bに示す参考例において、第2スイッチング素子52rは、図18Bに示した第1参考例と同様の配置となっている。長さの比の関係は、R2≦R1となっている。このため、第2スイッチング素子52rの基板面積は小さい。また、ターミナル60rの断面積も小さい。
 本実施形態では、長さの比の関係が、R2>R1となっている。これにより、第2スイッチング素子52の基板面積が、参考例よりも大きい。また、ターミナル60の断面積が、参考例よりも大きい。したがって、一点鎖線の矢印で示すように、参考例に較べて電流密度を低減することができる。たとえばエレクトロマイグレーション効果は、流れる電流が大きいほど高くなる。本実施形態によれば、電流密度の低減により、特に接合材90の寿命を向上することができる。
 また、図20Bに示すように、参考例の第2スイッチング素子52rは基板面積が小さいため、放熱部材41r,42rの対向領域において、第2スイッチング素子52r及びターミナル60rの占める割合が小さい。すなわち、対向領域に、多くの封止樹脂体30rが入り込む。封止樹脂体30rは、放熱部材41r,42rによって挟まれた介在部30erを有している。介在部30erの一部は、Y方向において第2スイッチング素子52rに隣接している。これに対し、本実施形態では、第2スイッチング素子52の基板面積が参考例よりも大きいため、参考例に較べて介在部30eを小さくすることができる。参考例に示す介在部30erの一部が、第2スイッチング素子52及びターミナル60に置き換わっている。したがって、放熱性を向上することができる。
 なお、長さの比がR2>R1の関係を満たす範囲で、長さLY2を長さLY1より短くしてもよい。R2>R1の関係を満たすため、R2≦R1とされる構成に較べて、出力を向上することができる。長さLY2を長さLY1より長くすると、さらに出力を向上できるが、Y方向の体格が増大する。また、Y方向においてスイッチング素子51,52の両端の位置をずらした場合にも、Y方向の体格が増大する。よって、図17に示したように、長さLY2が長さLY1と略等しく、且つ、Y方向における両端の位置が、第1スイッチング素子51と第2スイッチング素子52とで略一致する構成が好ましい。
 第1スイッチング素子51及び第2スイッチング素子52の個数は特に限定されない。交互配置可能な個数であればよい。
 本実施形態に示した構成は、先行実施形態に記載の構成との組み合わせが可能である。たとえば、封止樹脂体30から放熱部材40の一部が露出される構成と組み合わせてもよいし、封止樹脂体30により放熱部材40の全体が覆われる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで異なる半導体装置20U,20Lを用いる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで、共通構造の半導体装置20を用いる構成と組み合わせてもよい。スイッチング素子51,52の駆動については特に限定されない。
 (第5実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。この実施形態では、スイッチング素子51,52の位置関係に特徴がある。
 2つの第1スイッチング素子51の間に、ひとつの第2スイッチング素子52が配置される構成において、第2スイッチング素子52と第1スイッチング素子51a,51bそれぞれとの間隔を、互いに異ならせてもよい。
 図21は、本実施形態の半導体装置20を示している。この半導体装置20の構成は、先行実施形態に示した半導体装置20(図15参照)とほぼ同じである。先行実施形態に示したように、冷却構造において、第1スイッチング素子51aが冷媒の上流側、第1スイッチング素子51bが下流側となっている。第1スイッチング素子51a,51bは、同じ期間においてオン駆動する。本実施形態では、第2スイッチング素子52の配置が、第1スイッチング素子51bよりも第1スイッチング素子51aに対して近い。
 図21に示す配置によれば、より冷やされる第1スイッチング素子51aに対して、第2スイッチング素子52の熱が伝わりやすい。これにより、第1スイッチング素子51a,51bの温度差を低減することができる。したがって、第1スイッチング素子51a,51bのオン抵抗の差が小さくなり、DC電流のアンバランスを抑制することができる。
 また、第1スイッチング素子51aと第1スイッチング素子51bとで、第2スイッチング素子52とともにオン駆動する期間が異なる場合、間隔が異なる構成を適用してもよい。たとえば第1スイッチング素子51aのほうが、第1スイッチング素子51bよりも第2スイッチング素子52とともにオン駆動する頻度が高いものとする。一例として、A電流域においてスイッチング素子51a,52をオン駆動し、A領域よりも大きいB電流域においてスイッチング素子51a,51b,52をオン駆動する。他の例として、A電流域においてスイッチング素子51a,52をオン駆動し、A領域よりも大きいB電流域においてスイッチング素子51a,51bをオン駆動する。
 第2スイッチング素子52を、第1スイッチング素子51aの近くに配置することで、同じ期間においてオン駆動する頻度が高い第1スイッチング素子51aと第2スイッチング素子52の電流経路が、互いに近づく。したがって、電流経路のインダクタンスを低減することができる。なお、第1スイッチング素子51bのほうが第2スイッチング素子52とともにオン駆動する頻度が高い場合、第2スイッチング素子52を、第1スイッチング素子51bの近くに配置すればよい。
 <変形例>
 2つの第1スイッチング素子51の間に配置される第2スイッチング素子52について、Y方向の位置を種々変更することができる。
 たとえば、第1スイッチング素子51と第2スイッチング素子52とで、アクティブ領域の中心がY方向にずれた位置となるように、第2スイッチング素子52を配置してもよい。図22に示す変形例では、先行実施形態同様、アクティブ領域のほぼ中心に、温度センサ53(感温ダイオード)が設けられている。そして、アクティブ領域の中心、すなわち温度センサ53が、第1スイッチング素子51と第2スイッチング素子52とでY方向にずれている。第2スイッチング素子52は、Y方向において主端子71寄りに配置されている。図22に示す半導体装置20の構成は、第2スイッチング素子52の配置を除けば、先行実施形態(図15参照)と同じである。図22では、便宜上、ボンディングワイヤ91を省略している。
 上記したように、素子において、アクティブ領域の中心付近が最高発熱点となる。第1スイッチング素子51と第2スイッチング素子52とでアクティブ領域の中心をずらすことで、中心間の距離が長くなる。これにより、同じ期間にオン駆動するスイッチング素子51,52において、相互の熱干渉を抑制することができる。また、第2スイッチング素子52が主端子70に近いため、主回路のインダクタンスを低減することができる。
 なお、先行実施形態(たとえば図4及び図7参照)に示した構成においても、第1スイッチング素子51と第2スイッチング素子52とで、アクティブ領域の中心がY方向にずれている。よって、図22に示す構成と同等の効果を奏することができる。先行実施形態において、スイッチング素子51,52は、信号端子80側の端部の位置がY方向において略一致している。たとえばゲート配線を短くできるため、第2スイッチング素子52(MOSFET112)の高速スイッチングに有利である。
 図23に示す変形例では、第2スイッチング素子52が、X方向において2つのスイッチング素子51a,51bの間に配置されるとともに、Y方向において2つのスイッチング素子51a,51bの間に配置されている。スイッチング素子50の温度センサ53は、Y方向において互いにずれている。図23では、第1スイッチング素子51aの温度センサ53が主端子70にもっとも近く、第1スイッチング素子51bの温度センサ53が主端子70に対して最も遠い配置となっている。すなわち、3つのスイッチング素子50において、最高発熱点の位置が、冷媒の流れ方向と直交するY方向において互いにずれている。よって、同じ期間にオン駆動するスイッチング素子51,52のそれぞれを効果的に冷やすことができる。
 なお、図23に示す例では、隣り合うスイッチング素子50において、上流側の非アクティブ領域が、下流側のアクティブ領域と、X方向において対向している。たとえば第1スイッチング素子51aにおけるパッド51pの形成領域が、第2スイッチング素子52のアクティブ領域と対向している。また、第2スイッチング素子52におけるパッド52pの形成領域が、第1スイッチング素子51bのアクティブ領域と対向している。これにより、隣り合うスイッチング素子50において、熱干渉を抑制しつつ、Y方向の体格増大を抑制することができる。図23に示す半導体装置20の構成は、スイッチング素子50の配置を除けば、図22と同じである。
 図24に示す変形例のスイッチング素子51,52は、同じ期間においてオン駆動しない。スイッチング素子51,52のアクティブ領域の中心は、Y方向においてほぼ同じである。スイッチング素子51,52が同時にオン駆動しないため、相互の熱の影響がほとんどない。このため、放熱部材40の中心位置に第2スイッチング素子52を配置することができる。この配置により、放熱性が向上し、第2スイッチング素子52の温度上昇を抑制することができる。したがって、第2スイッチング素子52(MOSFET112)のオン抵抗の増加を抑制することができる。図24に示す半導体装置20の構成は、スイッチング素子50の配置を除けば、図22と同じである。
 なお、先行実施形態(図17参照)に示した構成においても、スイッチング素子51,52のアクティブ領域の中心が、Y方向においてほぼ同じ位置である。よって、スイッチング素子51,52が同じ期間においてオン駆動しない構成において、図24に示す構成と同等の効果を奏することができる。
 なお、本実施形態に示した構成は、先行実施形態に記載の構成との組み合わせが可能である。たとえば、封止樹脂体30から放熱部材40の一部が露出される構成と組み合わせてもよいし、封止樹脂体30により放熱部材40の全体が覆われる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで異なる半導体装置20U,20Lを用いる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで、共通構造の半導体装置20を用いる構成と組み合わせてもよい。
 (第6実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。この実施形態では、信号端子80の配置に特徴がある。
 図25は、本実施形態の半導体装置20を示している。スイッチング素子50は、第1スイッチング素子51及び第2スイッチング素子52の少なくとも一方を複数含んでいる。半導体装置20の構成は、先行実施形態に示した半導体装置20U(図7参照)とほぼ同じである。スイッチング素子50は、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。スイッチング素子51,52の配置は、X方向において交互である。図25では、便宜上、封止樹脂体30内の要素のうち、スイッチング素子50及び信号端子80を実線で図示している。また、放熱部材40のうち、第1放熱部材41を破線で示している。
 スイッチング素子51,52は、上記したように対応するパッド51p,52pを有している。冷媒の流れ方向は、スイッチング素子50の並び方向であるX方向にほぼ一致している。パッド51pは、上流側から、基準電位パッド51psp、電流センスパッド51psc、ゲートパッド51pg、温度センスパッド51pa,51pcの順に設けられている。パッド52pは、上流側から、基準電位パッド52psp、電流センスパッド52psc、ゲートパッド52pg、温度センスパッド52pa,52pcの順に設けられている。パッド51p,52pの並び順は、互いに同じである。
 基準電位パッド51psp,52pspは、ゲート駆動信号に対する基準電位を検出するためのパッドである。基準電位パッド51pspは、エミッタ電位を検出するためのパッドであり、ケルビンエミッタパッドとも称される。基準電位パッド52pspは、ソース電位を検出するためのパッドであり、ケルビンソースパッドとも称される。
 電流センスパッド51psc,52pscは、スイッチング素子51,52に形成されたセンス素子に流れる電流を検出するためのパッドである。第1スイッチング素子51において、センス素子の構成は、アクティブ領域に形成されたIGBT111と同じである。センス素子は、アクティブ領域よりも面積の小さいセンス領域(たとえば1/1000程度)に形成され、IGBT111に比例した電流が流れる。第2スイッチング素子52において、センス素子の構成は、アクティブ領域に形成されたMOSFET112と同じである。センス素子は、アクティブ領域よりも面積の小さいセンス領域に形成され、MOSFET112に比例した電流が流れる。電流センスパッド51psc,52pscは、主電流に相関する電流を検出するためのパッドである。
 ゲートパッド51pg,52pgは、ゲート駆動信号が入力されるパッドである。温度センスパッド51pa,51pcは、第1スイッチング素子51の基板温度を検出するためのパッドである。温度センスパッド51pa,51pcは、第1スイッチング素子51に形成された温度センサ53と電気的に接続されている。温度センスパッド52pa,52pcは、第2スイッチング素子52の基板温度を検出するためのパッドである。温度センスパッド52pa,52pcは、第2スイッチング素子52に形成された温度センサ53と電気的に接続されている。温度センスパッド51pa,52paは、温度センサ53である感温ダイオードのアノード電位を検出するためのパッドである。温度センスパッド51pc,52pcは、カソード電位を検出するためのパッドである。
 複数のスイッチング素子50のうち、最下流に位置する第1スイッチング素子51bのパッド51pと、第2スイッチング素子52のパッド52pは、信号端子80にそれぞれ接続されている。一方、最上流に位置する第1スイッチング素子51aのパッド51pのうち、基準電位パッド51psp、電流センスパッド51psc、及びゲートパッド51pgは、対応する信号端子80に接続されている。温度センスパッド51pa,51pcは、対応する信号端子80が設けられていない。このように、信号端子80が間引かれている。半導体装置20は、15個のパッド51p,52pに対し、13本の信号端子80を有している。
 なお、駆動IC8は、図示しない判定回路を有している。判定回路は、たとえば、電流センスパッド51psc,52psc及び信号端子80を介して取得した信号に基づき、スイッチング素子50に過電流が生じているか否かを判定する。判定回路は、温度センスパッド51pa,51pc,52pa,52pc及び信号端子80を介して取得した信号に基づき、スイッチング素子50が過熱状態か否かを判定する。駆動IC8は、判定結果に応じた駆動信号を出力する。なお、判定回路を、制御回路7にもたせてもよい。
 本実施形態では、スイッチング素子50が、スイッチング素子51,52の少なくとも一方を複数含んでいる。具体的には、2つの第1スイッチング素子51と、ひとつの第2スイッチング素子52を含んでいる。したがって、スイッチング素子51,52をひとつずつ含む構成に較べて、半導体装置20の出力を向上することができる。
 また、交互配置により、最下流に位置する第1スイッチング素子51bと基板が同じ種類の第1スイッチング素子51を複数含んでいる。複数の第1スイッチング素子51は、同時にオン駆動する期間を有している。複数の第1スイッチング素子51において、流れる電流は互いにほぼ同じであり、損失は互いにほぼ同じである。一方、冷媒の温度は、スイッチング素子50との熱交換により上昇し、上流側ほど低く、下流側ほど高くなる。よって、下流側ほど熱抵抗が大きくなり、基板温度が上昇する。最下流の第1スイッチング素子51bの温度センスパッド51pa,51pcは、信号端子80に接続されている。したがって、第1スイッチング素子51bの基板温度に基づいて、上流側の第1スイッチング素子51aについても過熱保護が可能である。
 また、上流側の第1スイッチング素子51aに対して、温度センスパッド51pa,51pcに対応する信号端子80を設けないため、半導体装置20が備える信号端子80の総数を減らすことができる。以上により、出力を向上しつつ信号端子80の本数を低減することができる。なお、スイッチング素子51,52を同時にオン駆動する期間を有する場合、同時にオン駆動する期間を有さない場合のいずれにおいても、効果を奏することができる。
 <変形例>
 パッド51p,52pの並び順は、上記した例に限定されない。温度センスパッド51pa,51pcの並び順を逆にしてもよい。同様に、温度センスパッド52pa,52pcの並び順を逆にしてもよい。
 図26に示す変形例では、たとえばパッド51pにおいて、温度センスパッド51pa,51pcを上流側としている。具体的には、上流側から、温度センスパッド51pc、温度センスパッド51paの順で設けている。パッド52pも同様の配置である。この構成によれば、第1スイッチング素子51aにおいて、温度センスパッド51pa,51pcを除く残りのパッド51pと、信号端子80とをつなぐボンディングワイヤ91が長くなる。図25に示した構成によれば、図26に示す構成に較べてボンディングワイヤ91の長さが短くなる。これにより、封止樹脂体30の成形時に、樹脂の流動にともなうワイヤ流れ(変位)を小さくすることができる。したがって、ボンディングワイヤ91の接続信頼性の低下を抑制することができる。
 スイッチング素子51,52の数は、上記した例に限定されない。たとえばスイッチング素子50が、3つの第1スイッチング素子51と、2つの第2スイッチング素子52を含んでもよい。この場合、3つの第1スイッチング素子51のうち、最下流にのみ、温度センスパッド51pa,51pcに対応する信号端子80を設けてもよい。また、下流側の2つに温度センスパッド51pa,51pcに対応する信号端子80を設け、最上流に温度センスパッド51pa,51pcに対応する信号端子80を設けない構成としてもよい。
 第1スイッチング素子51を最下流とする例を示したが、これに限定されない。第2スイッチング素子52を最下流としてもよい。スイッチング素子50が、ひとつ第1スイッチング素子51と、2つの第2スイッチング素子52を含む場合、最下流のパッド52pは信号端子80に接続される。最上流のパッド52pのうち、基準電位パッド52psp、電流センスパッド52psc、及びゲートパッド51pgは、信号端子80に接続される。そして、温度センスパッド52pa,52pcの信号端子80が省かれる。
 すなわち、最下流に位置するスイッチング素子と基板種類が同じ複数のスイッチング素子において、最下流を少なくとも含む一部のスイッチング素子にのみ温度センスパッドに対応する信号端子を設ける。そして、一部よりも上流側のスイッチング素子には、温度センスパッドに対応する信号端子を設けない構成とすればよい。
 図27に示す変形例は、図25に対して、パッド52pの並びと、信号端子80の本数が異なっている。パッド51pの並び順は、図25と同じである。パッド52pは、上流側から、温度センスパッド52pc,52pa、ゲートパッド52pg、電流センスパッド52psc、基準電位パッド52pspの順に設けられている。すなわち、第1スイッチング素子51において基準電位パッド51pspが最上流に設けられ、第2スイッチング素子52において基準電位パッド52pspが最下流に設けられている。
 そして、第1スイッチング素子51bの基準電位パッド51pspと、第2スイッチング素子52の基準電位パッド52pspが、互いに同じ信号端子80に接続されている。このように、隣り合う基準電位パッド51psp,52pspについて信号端子80を共通化することで、スイッチング素子51,52の駆動期間によらず、信号端子80の本数を低減することができる。
 さらに、図27では、電流センスパッド52pscに対応する信号端子80を設けていない。第2スイッチング素子52の基板面積は、第1スイッチング素子51よりも小さい。上記したように、MOSFET112のオン抵抗は、温度が高いほど大きくなる。このため、高温域において、第1スイッチング素子51のオン抵抗は、第2スイッチング素子52よりも小さい。よって、スイッチング素子51,52を同時にオン駆動したとしても、高温域では第1スイッチング素子51に電流が流れやすい。したがって、電流センスパッド52pscの信号端子80を省くことができる。なお、第2スイッチング素子52が小電流域においてのみオン駆動する場合にも、電流センスパッド52pscの信号端子80を省くことができる。以上により、図27に示す構成では、信号端子80の本数が11本となっている。
 図27では、基準電位パッド51psp,52pspの信号端子80を、下流側の第1スイッチング素子51bと第2スイッチング素子52とで共通化したが、これに限定されない。基準電位パッド51pspを最下流に設け、基準電位パッド52pspを最上流に設けた場合、スイッチング素子51a,52について、基準電位パッド51psp,52pspの信号端子80を共通化することができる。
 図28に示す変形例は、図27に対して、第1スイッチング素子51aの電流センスパッド51pscに対応する信号端子80を省いた構成となっている。上流側の第1スイッチング素子51aの基板温度は、冷媒によって、下流側の第1スイッチング素子51bより低くなる。IGBT111のオン抵抗は、基板温度が高いほど小さくなる。このため、高温域では、第1スイッチング素子51bに電流が流れやすい。よって、上流側の電流センスパッド51pscに対応する信号端子80を省くことができる。以上により、図28に示す構成では、信号端子80の本数が10本となっている。
 図29に示す変形例は、パッド51p,52pの並び順が、図27と同じである。第2スイッチング素子52の温度センスパッド52pa,52pc及び電流センスパッド52pscに対して信号端子80が設けられていない。それ以外のパッド51p,52pは、信号端子80に接続されている。図27同様、第1スイッチング素子51bの基準電位パッド51pspと、第2スイッチング素子52の基準電位パッド52pspが、互いに同じ信号端子80に接続されている。これにより、信号端子80の本数を低減することができる。
 スイッチング素子51,52が、互いに異なる期間でオン駆動し、同じ期間でオン駆動しないようにしてもよい。第1電流域において第2スイッチング素子52がオン駆動し、第2電流域において第1スイッチング素子51がオン駆動する。第3電流域の設定はない。大きい電流域において第2スイッチング素子52がオン駆動しないため、電流センスパッド52pscに対応する信号端子80を省くことができる。また、第2スイッチング素子52は、小さい電流域においてのみオン駆動するため、温度センスパッド52pa,52pcに対応する信号端子80を省くことができる。以上により、図29に示すように、信号端子80の本数を11本にすることができる。
 また、3つのスイッチング素子50が下記に示す電気特性の関係を満たすようにしてもよい。たとえばゲート閾値電圧Vthは、第1スイッチング素子51a>第1スイッチング素子51bの関係を満たす。室温におけるオン電圧Von(RT)は、第1スイッチング素子51a>第1スイッチング素子51b>第2スイッチング素子52の関係を満たす。高温(たとえば100℃)におけるオン電圧Von(HT)は、第2スイッチング素子52>第1スイッチング素子51a>第1スイッチング素子51bの関係を満たす。この場合、第1スイッチング素子51bを監視しておけば、最大電流、最高温度を検出することができる。よって、電流センスパッド52pscに対応する信号端子80を省くことができる。また、温度センスパッド52pa,52pcに対応する信号端子80を省くことができる。以上により、図29に示すように、信号端子80の本数を11本にすることができる。
 図30に示す変形例は、図29に対して、第1スイッチング素子51aの電流センスパッド51pscに対応する信号端子80を省いた構成となっている。図28に示す変形例同様、冷媒によって上流側の第1スイッチング素子51aの基板温度が低くなるため、上流側の電流センスパッド51pscに対応する信号端子80を省くことができる。以上により、図30に示す構成では、信号端子80の本数が10本となっている。
 なお、図29、図30の構成と図25に示した構成とを組み合わせることもできる。たとえば図31に示す変形例は、図29に対して、第1スイッチング素子51aの温度センスパッド51pa,51pcの信号端子80を省いた構成となっている。これにより、信号端子80の本数が9本となっている。
 図32に示す変形例は、パッド51p,52pの並び順が、図27と同じである。スイッチング素子51a,51b,52の基準電位パッド51psp,52pspに対して、信号端子80が設けられていない。それ以外のパッド51p,52pは、信号端子80に接続されている。基準電位パッド51psp,52pspの電位は、低電位端子72の電位と同じである。低電位端子72と共通化することで、基準電位パッド51psp,52pspに対応する信号端子80を省くことができる。以上により、図32に示す構成では、信号端子80の本数が12本となっている。
 なお、第2スイッチング素子52(MOSFET112)を高速スイッチングする場合には、図33に示す変形例のように、図32に対して、基準電位パッド52pspに対応する信号端子80を追加してもよい。これにより、図32に示す構成に較べてインダクタンスを低減し、第2スイッチング素子52の高速スイッチングが可能となる。図33に示す構成では、信号端子80の本数が13本となっている。
 本実施形態に示した構成は、先行実施形態との組み合わせが可能である。たとえば、封止樹脂体30から放熱部材40の一部が露出される構成と組み合わせてもよいし、封止樹脂体30により放熱部材40の全体が覆われる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで異なる半導体装置20U,20Lを用いる構成と組み合わせてもよい。上アーム11Uと下アーム11Lとで、共通構造の半導体装置20を用いる構成と組み合わせてもよい。仮想線CL1に対して、放熱部材40、スイッチング素子50、及び主端子70の少なくともひとつを線対称配置としてもよい。Y方向を長手方向とする第2スイッチング素子52を採用してもよい。
 (他の実施形態)
 この明細書及び図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。たとえば、開示は、実施形態において示された部品及び/又は要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品及び/又は要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品及び/又は要素の置き換え、又は組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものと解されるべきである。
 明細書及び図面等における開示は、請求の範囲の記載によって限定されない。明細書及び図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書及び図面等の開示から、多様な技術的思想を抽出することができる。
 制御回路7及び駆動IC8は、少なくともひとつのコンピュータを含む制御システムによって提供される。制御システムは、ハードウェアである少なくともひとつのプロセッサ(ハードウェアプロセッサ)を含む。ハードウェアプロセッサは、下記(i)、(ii)、又は(iii)により提供することができる。
 (i)ハードウェアプロセッサは、ハードウェア論理回路である場合がある。この場合、コンピュータは、プログラムされた多数の論理ユニット(ゲート回路)を含むデジタル回路によって提供される。デジタル回路は、プログラム及び/又はデータを格納したメモリを備える場合がある。コンピュータは、アナログ回路によって提供される場合がある。コンピュータは、デジタル回路とアナログ回路との組み合わせによって提供される場合がある。
 (ii)ハードウェアプロセッサは、少なくともひとつのメモリに格納されたプログラムを実行する少なくともひとつのプロセッサコアである場合がある。この場合、コンピュータは、少なくともひとつのメモリと、少なくともひとつのプロセッサコアとによって提供される。プロセッサコアは、たとえばCPUと称される。メモリは、記憶媒体とも称される。メモリは、プロセッサによって読み取り可能な「プログラム及び/又はデータ」を非一時的に格納する非遷移的かつ実体的な記憶媒体である。
 (iii)ハードウェアプロセッサは、上記(i)と上記(ii)との組み合わせである場合がある。(i)と(ii)とは、異なるチップの上、又は共通のチップの上に配置される。
 すなわち、制御回路7及び駆動IC8が提供する手段及び/又は機能は、ハードウェアのみ、ソフトウェアのみ、又はそれらの組み合わせにより提供することができる。
 スイッチング素子51,52の厚みの関係は、上記した例に限定されない。たとえばスイッチング素子51,52の厚みを互いにほぼ等しくしてもよい。
 半導体装置20が、ターミナル60を備える例を示したが、これに限定されない。たとえば第2放熱部材42の実装面42aに凸部を設けることで、ターミナル60を備えない構成としてもよい。
 第1スイッチング素子51に、RC-IGBTが形成される例を示したが、これに限定されない。第1スイッチング素子51にIGBT111が形成され、スイッチング素子50とは別チップにダイオード113が形成された構成としてもよい。
 半導体装置20は、両面放熱構造に限定されない。ひとつの放熱部材40を備え、放熱部材40の一面に、スイッチング素子51,52の高電位側の主電極、又は、低電位側の主電極が接続された片面放熱構造の半導体装置にも適用が可能である。片面放熱構造の場合、放熱部材におけるスイッチング素子51,52の実装面及び/又は裏面が露出されればよい。
 半導体装置20として、1つのアームを構成する要素単位でパッケージ化された1in1パッケージの例を示したが、これに限定されない。スイッチング素子51,52が放熱部材に並列接続されてなるアームを複数備える構成にも適用できる。たとえば上アーム11Uを構成する要素と下アーム11Lを構成する要素を含んでパッケージ化された2in1パッケージにも適用できる。

Claims (7)

  1.  冷媒により冷却される半導体装置であって、
     放熱部材(40)と、
     Si基板に形成された第1スイッチング素子(51)と、SiC基板に形成された第2スイッチング素子(52)と、を含み、主電流が流れる主電極(51c,51e,52d,52s)及び信号用のパッド(51p,52p)をそれぞれ有し、前記主電極のひとつが前記放熱部材に電気的に接続されて互いに並列接続された複数のスイッチング素子(50)と、
     前記パッドに電気的に接続された複数の信号端子(80)と、
    を備え、
     前記スイッチング素子は、前記パッドとして、基板温度を検出するための温度センスパッド(51pa,51pc,52pa,52pc)をそれぞれ有し、
     前記スイッチング素子は、前記第1スイッチング素子及び前記第2スイッチング素子の少なくとも一方を複数含み、
     前記第1スイッチング素子及び前記第2スイッチング素子は、前記冷媒の流れる所定方向において交互に配置されており、
     前記温度センスパッドに対応する前記信号端子は、最下流に位置する前記スイッチング素子と基板の種類が同じ複数の前記スイッチング素子において、最下流を少なくとも含む一部の前記スイッチング素子に設けられ、前記一部よりも上流側の前記スイッチング素子には設けられていない半導体装置。
  2.  前記第1スイッチング素子は、IGBTであり、
     前記第2スイッチング素子は、MOSFETであり、
     前記スイッチング素子は、2つの前記第1スイッチング素子と、ひとつの前記第2スイッチング素子を含み、
     前記所定方向において、前記第1スイッチング素子の間に前記第2スイッチング素子が配置されており、
     前記スイッチング素子は、前記パッドとして、ゲート駆動信号が入力されるゲートパッド(51pg,52pg)をそれぞれ有し、
     前記温度センスパッドに対応する前記信号端子は、最下流の前記第1スイッチング素子に対して設けられ、上流側の前記第1スイッチング素子には設けられていない請求項1に記載の半導体装置。
  3.  前記スイッチング素子のそれぞれにおいて、複数の前記パッドは、前記所定方向に並んで設けられており、
     前記スイッチング素子は、前記パッドとして、前記ゲート駆動信号に対する基準電位を検出するための基準電位パッド(51psp,52psp)をそれぞれ有し、
     前記基準電位パッドは、前記第1スイッチング素子において一方の端部に設けられ、前記第2スイッチング素子において前記第1スイッチング素子とは反対の端部に設けられ、
     前記第1スイッチング素子のひとつと前記第2スイッチング素子とにおいて、前記所定方向において隣り合う前記基準電位パッドが、互いに同じ前記信号端子に接続されている請求項2に記載の半導体装置。
  4.  前記スイッチング素子は、前記パッドとして、電流センスパッド(51psc,52psc)をそれぞれ有している請求項2又は請求項3に記載の半導体装置。
  5.  前記電流センスパッドに対応する前記信号端子は、最下流の前記第1スイッチング素子に対して設けられ、前記第2スイッチング素子には設けられていない請求項4に記載の半導体装置。
  6.  前記電流センスパッドに対応する前記信号端子は、最下流の前記第1スイッチング素子に対して設けられ、上流側の前記第1スイッチング素子には設けられていない請求項4又は請求項5に記載の半導体装置。
  7.  前記第1スイッチング素子は、第1電流域でオフ駆動し、前記第1電流域よりも大きい第2電流域でオン駆動し、
     前記第2スイッチング素子は、前記第1電流域でオン駆動し、前記第2電流域でオフ駆動し、
     前記電流センスパッドに対応する前記信号端子は、最下流の前記第1スイッチング素子に対して設けられ、前記第2スイッチング素子には設けられておらず、
     前記温度センスパッドに対応する前記信号端子は、最下流の前記第1スイッチング素子に対して設けられ、前記第2スイッチング素子には設けられていない請求項4に記載の半導体装置。
PCT/JP2020/006715 2019-04-05 2020-02-20 半導体装置 WO2020202873A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080024830.1A CN113678246B (zh) 2019-04-05 2020-02-20 半导体装置
US17/490,448 US11961828B2 (en) 2019-04-05 2021-09-30 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-073009 2019-04-05
JP2019073009A JP7056622B2 (ja) 2019-04-05 2019-04-05 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,448 Continuation US11961828B2 (en) 2019-04-05 2021-09-30 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2020202873A1 true WO2020202873A1 (ja) 2020-10-08

Family

ID=72667899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006715 WO2020202873A1 (ja) 2019-04-05 2020-02-20 半導体装置

Country Status (4)

Country Link
US (1) US11961828B2 (ja)
JP (1) JP7056622B2 (ja)
CN (1) CN113678246B (ja)
WO (1) WO2020202873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031393A1 (de) * 2021-09-03 2023-03-09 Zf Friedrichshafen Ag Inverteranordnung für ein fahrzeug sowie fahrzeug mit der inverteranordnung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212019000115U1 (de) 2018-11-08 2020-03-31 Rohm Co., Ltd. Leistungswandler
DE112019005065T5 (de) * 2018-11-08 2021-07-01 Rohm Co., Ltd. Leistungswandlungsbauteil
DE102019107112B3 (de) * 2019-03-20 2020-07-09 Lisa Dräxlmaier GmbH Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
GB2602338B (en) * 2020-12-23 2023-03-15 Yasa Ltd A Method and Apparatus for Cooling One or More Power Devices
KR102690205B1 (ko) * 2022-06-29 2024-08-06 주식회사 제이알솔루텍 비대칭 소자의 회로 배치 구조 및 그 회로 기판 구조

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270293A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd パワーモジュール
JP2008277433A (ja) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp パワー半導体モジュール
JP2014027816A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp 電力変換装置
JP2014057007A (ja) * 2012-09-13 2014-03-27 Fuji Electric Co Ltd 半導体装置
WO2016000340A1 (zh) * 2014-07-03 2016-01-07 王承延 一体化耳挂式耳塞
WO2017169693A1 (ja) * 2016-04-01 2017-10-05 三菱電機株式会社 半導体モジュール
JP2017195259A (ja) * 2016-04-19 2017-10-26 株式会社デンソー 半導体モジュール、及び電力変換装置
JP2018068097A (ja) * 2016-04-19 2018-04-26 株式会社デンソー スイッチング素子の駆動回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354156A (ja) 1991-05-31 1992-12-08 Fuji Electric Co Ltd 半導体スイッチング装置
JP4340890B2 (ja) * 2004-08-03 2009-10-07 株式会社デンソー 発熱検出装置
JP5167728B2 (ja) 2007-08-31 2013-03-21 株式会社デンソー 電力変換装置
JP4506848B2 (ja) 2008-02-08 2010-07-21 株式会社デンソー 半導体モジュール
JP5691916B2 (ja) * 2011-07-28 2015-04-01 トヨタ自動車株式会社 電力変換装置
EP2781380B1 (en) * 2011-11-16 2017-08-02 Toyota Jidosha Kabushiki Kaisha Device for cooling electrical apparatus
JP6065771B2 (ja) * 2013-07-03 2017-01-25 株式会社デンソー 半導体装置
JP2015095560A (ja) * 2013-11-12 2015-05-18 株式会社デンソー パワーモジュール
JP2016012670A (ja) * 2014-06-30 2016-01-21 株式会社デンソー 半導体モジュール
WO2016000840A1 (en) * 2014-07-04 2016-01-07 Abb Technology Ag Power semiconductor module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270293A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd パワーモジュール
JP2008277433A (ja) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp パワー半導体モジュール
JP2014027816A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp 電力変換装置
JP2014057007A (ja) * 2012-09-13 2014-03-27 Fuji Electric Co Ltd 半導体装置
WO2016000340A1 (zh) * 2014-07-03 2016-01-07 王承延 一体化耳挂式耳塞
WO2017169693A1 (ja) * 2016-04-01 2017-10-05 三菱電機株式会社 半導体モジュール
JP2017195259A (ja) * 2016-04-19 2017-10-26 株式会社デンソー 半導体モジュール、及び電力変換装置
JP2018068097A (ja) * 2016-04-19 2018-04-26 株式会社デンソー スイッチング素子の駆動回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031393A1 (de) * 2021-09-03 2023-03-09 Zf Friedrichshafen Ag Inverteranordnung für ein fahrzeug sowie fahrzeug mit der inverteranordnung

Also Published As

Publication number Publication date
JP2020170826A (ja) 2020-10-15
JP7056622B2 (ja) 2022-04-19
US20220020730A1 (en) 2022-01-20
US11961828B2 (en) 2024-04-16
CN113678246B (zh) 2024-03-22
CN113678246A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2020202873A1 (ja) 半導体装置
JP6836201B2 (ja) 電力変換装置
JP6717270B2 (ja) 半導体モジュール
JP6597549B2 (ja) 半導体モジュール
US11456238B2 (en) Semiconductor device including a semiconductor chip connected with a plurality of main terminals
WO2015072105A1 (ja) パワーモジュール
US20210407875A1 (en) Semiconductor device
JP2014033060A (ja) 電力用半導体装置モジュール
US11942869B2 (en) Power module and electric power conversion device
JP2020170827A (ja) 半導体装置
WO2021149352A1 (ja) 電力変換装置
JP6123722B2 (ja) 半導体装置
US20200211954A1 (en) Semiconductor module
JP7147668B2 (ja) 半導体装置
WO2020079970A1 (ja) 半導体装置
JP2018207044A (ja) 半導体モジュール
JP2020170824A (ja) 半導体装置
JP7331811B2 (ja) 電力変換装置
JP7544288B2 (ja) 電力変換装置
JP7392557B2 (ja) 半導体装置
JP7563359B2 (ja) 電力変換装置
US20240079383A1 (en) Semiconductor device
JP2024066844A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784968

Country of ref document: EP

Kind code of ref document: A1