WO2020202256A1 - アンテナ装置、レーダ装置及び通信装置 - Google Patents

アンテナ装置、レーダ装置及び通信装置 Download PDF

Info

Publication number
WO2020202256A1
WO2020202256A1 PCT/JP2019/014010 JP2019014010W WO2020202256A1 WO 2020202256 A1 WO2020202256 A1 WO 2020202256A1 JP 2019014010 W JP2019014010 W JP 2019014010W WO 2020202256 A1 WO2020202256 A1 WO 2020202256A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
signals
unit
antenna device
Prior art date
Application number
PCT/JP2019/014010
Other languages
English (en)
French (fr)
Inventor
侑 栗山
紀平 一成
深沢 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/014010 priority Critical patent/WO2020202256A1/ja
Priority to JP2019539306A priority patent/JPWO2020202256A1/ja
Publication of WO2020202256A1 publication Critical patent/WO2020202256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to an antenna device, a radar device, and a communication device that form a beam signal.
  • Patent Document 1 discloses a wireless receiving device capable of A / D conversion of a multiple carrier signal by one analog-to-digital (hereinafter referred to as "A / D") conversion means.
  • the wireless receiving device disclosed in Patent Document 1 below includes a plurality of analog processing means and an addition means in order to enable A / D conversion of a multiple carrier signal by one A / D conversion means. I have.
  • the plurality of analog processing means described in Patent Document 1 converts the frequencies of the respective signals so that the respective signals received by the plurality of antennas have different center frequencies from each other.
  • the adding means described in Patent Document 1 adds the respective signals output from the plurality of analog processing means and outputs the added signal to the A / D conversion means.
  • Each signal output from the plurality of analog processing means described in Patent Document 1 covers not only the frequency band including the signal component but also the frequency lower than the frequency band to the frequency higher than the frequency band. It contains a noise component (see FIG. 6). Therefore, the adding means described in Patent Document 1 adds the respective signals output from the plurality of analog processing means, so that the frequency band of each signal is originally included in each signal. Not only the existing noise component but also the noise component contained in the other added signals will be superimposed (see FIG. 9). Therefore, there is a problem that the signal-to-noise power ratio of the output signal of each analog processing means included in the added signal deteriorates.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain an antenna device, a radar device, and a communication device capable of preventing deterioration of the signal-to-noise power ratio.
  • the antenna device converts the frequencies of the plurality of element antennas that receive the signals and the frequencies of the respective signals so that the frequency bands including the signal components of the respective signals received by the plurality of element antennas do not overlap each other. Then, the signal components included in the frequency band of each signal are extracted from the frequency converter that outputs each signal whose frequency bands do not overlap each other and the signals output from the frequency converter. Then, the extracted signal components are combined with each other, and the signal synthesis unit that outputs the combined signal of each signal component and the combined signal output from the signal synthesis unit are converted from an analog signal to a digital signal and digitalized.
  • An analog-digital converter that outputs a signal and a digital signal output from the analog-digital converter are separated into signals corresponding to the respective signals received by a plurality of element antennas, and the separated signals are used. It is provided with a beam forming portion for forming a beam signal.
  • the signal components included in the frequency band of each signal are extracted from the respective signals output from the frequency conversion unit, and the extracted signal components are synthesized with each other and respectively.
  • the antenna device is configured to include a signal synthesizer that outputs a composite signal of the signal components of. Therefore, the antenna device according to the present invention can prevent deterioration of the signal-to-noise power ratio.
  • FIG. 1A is a configuration diagram showing a radar device including the antenna device 1 according to the first embodiment
  • FIG. 1B is a configuration diagram showing a communication device including the antenna device 1 according to the first embodiment.
  • It is a block diagram which shows the antenna device 1 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of the beam forming part 18 in the antenna device 1.
  • 6 is a hardware configuration diagram of a computer when the beam forming unit 18 is realized by software, firmware, or the like. It is a flowchart which shows the processing procedure of the beam forming part 18. It is explanatory drawing which shows the received signal of the system # 1 to # 4 output from the frequency conversion processing unit 13-1 to 13-4.
  • FIG. 1A is a configuration diagram showing a radar device including the antenna device 1 according to the first embodiment
  • FIG. 1B is a configuration diagram showing a communication device including the antenna device 1 according to the first embodiment.
  • the antenna device 1 forms a beam signal by using the respective signals received by the plurality of element antennas 11-1 to 11-K.
  • K is an integer greater than or equal to 2.
  • the signal processing device 2 performs radar processing or the like for detecting a target by using the beam signal formed by the antenna device 1.
  • the signal processing device 3 performs a process of decoding information contained in the beam signal formed by the antenna device 1.
  • FIG. 2 is a configuration diagram showing the antenna device 1 according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram showing the hardware of the beam forming unit 18 in the antenna device 1.
  • the LNA12-k amplifies the signal received by the element antenna 11-k, and outputs the amplified signal to the frequency conversion processing unit 13-k of the frequency conversion unit 13.
  • LNA Low Noise Amplifier
  • the frequency conversion unit 13 includes frequency conversion processing units 13-1 to 13-K.
  • the frequency conversion unit 13 converts the frequencies of the respective signals so that the frequency bands including the signal components of the respective signals amplified by LNA12-1 to 12-K do not overlap each other, and the frequency bands of the respective signals overlap each other.
  • Each signal that does not exist is output to the signal synthesizer 14.
  • Frequency conversion processing unit 13-k for example, using a mixer, such that the center frequency of the amplified signal output from the LNA 12-k is f k, the signal after amplification outputted from LNA 12-k converts the frequency, center frequency and outputs the signal f k to the filter unit 15-k.
  • the frequency band of a signal having a center frequency of f 1 , the frequency band of a signal having a center frequency of f 2 , and the frequency band of a signal having a center frequency of f K do not overlap each other.
  • the signal synthesis unit 14 includes filter units 15-1 to 15-K and a signal synthesis processing unit 16.
  • the signal synthesis unit 14 extracts signal components included in the frequency band of each signal from the respective signals output from the frequency conversion unit 13, and synthesizes the extracted signal components with each other. Generates a composite signal of each signal component.
  • the signal synthesizer 14 outputs the generated composite signal to an analog-digital converter (hereinafter, referred to as “A / D converter”) 17.
  • a / D converter analog-digital converter
  • the filter unit 15-k is included in the frequency band of the signal of the center frequency fk output from the frequency conversion processing unit 13-k using a bandpass filter (hereinafter referred to as "BPF (Band Pass Filter)").
  • BPF Band Pass Filter
  • the signal component is extracted, and the extracted signal component is output to the signal synthesis processing unit 16.
  • the signal synthesis processing unit 16 synthesizes each signal component extracted by the filter units 15-1 to 15-K with each other to generate a combined signal of each signal component, and the combined signal is converted into an A / D converter 17. Output to.
  • the A / D converter 17 converts the composite signal output from the signal synthesis unit 14 from an analog signal to a digital signal, and outputs the digital signal to the beam forming unit 18.
  • the beam forming unit 18 includes a signal separating unit 19 and a beam forming processing unit 20.
  • the beam forming unit 18 separates the digital signal output from the A / D converter 17 into signals corresponding to the respective signals received by the element antennas 11-1 to 11-K, and separates the separated signals. Is used to form a beam signal.
  • the signal separation unit 19 is realized by, for example, the signal separation circuit 31 shown in FIG.
  • the signal separation unit 19 separates the digital signal output from the A / D converter 17 into signals corresponding to the respective signals received by the element antennas 11-1 to 11-K, and separates the separated signals. Output to the beam forming processing unit 20.
  • the beam forming processing unit 20 is realized by, for example, the beam forming processing circuit 32 shown in FIG.
  • the beam forming processing unit 20 forms beam signals # 1 to # M by using the respective signals separated by the signal separating unit 19, and the beam signals # 1 to # M are combined with the signal processing device 2 or the signal processing device 3.
  • Output to. M is an integer greater than or equal to 2.
  • each of the signal separation unit 19 and the beam formation processing unit 20, which are the components of the beam forming unit 18, is realized by dedicated hardware as shown in FIG. That is, it is assumed that the beam forming unit 18 is realized by the signal separation circuit 31 and the beam forming processing circuit 32.
  • each of the signal separation circuit 31 and the beam formation processing circuit 32 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). Gate Array) or a combination of these is applicable.
  • the components of the beam forming unit 18 are not limited to those realized by dedicated hardware, and the beam forming unit 18 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
  • FIG. 4 is a hardware configuration diagram of a computer when the beam forming unit 18 is realized by software, firmware, or the like.
  • FIG. 5 is a flowchart showing a processing procedure of the beam forming unit 18.
  • FIG. 3 shows an example in which each of the components of the beam forming unit 18 is realized by dedicated hardware
  • FIG. 4 shows an example in which the beam forming unit 18 is realized by software, firmware, or the like. ..
  • this is only an example, and some components in the beam forming unit 18 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • K 4.
  • the frequency conversion unit 13 receives the received signal after amplification from LNA12-1 to 12-K, as shown in FIG. 6, the frequency conversion unit 13 receives the frequency of each received signal so that the frequency bands of the received signals do not overlap each other. To convert. Specifically, the frequency conversion processing unit 13-k receives the system # k so that the center frequency of the received signal of the system #k, which is the amplified received signal output from the LNA12- k , becomes fk. Convert the frequency of the signal.
  • FIG. 6 is an explanatory diagram showing reception signals of systems # 1 to # 4 output from frequency conversion processing units 13-1 to 13-4.
  • the received signals of the systems # 1 to # 4 include not only the frequency band containing the signal component but also the noise component from the frequency lower than the frequency band to the frequency higher than the frequency band.
  • the frequency conversion processing unit 13-k outputs a received signal having a center frequency of f k to the filter unit 15-k.
  • FIG. 7 is an explanatory diagram showing the received signals of the systems # 1 to # 4 from which the signal components have been extracted by the filter units 15-1 to 15-4.
  • the frequency bands of the received signals of the systems # 1 to # 4 from which the signal components are extracted by the filter units 15-1 to 15-4 include noise components.
  • the noise component included in the band other than the frequency band of the received signal of the system #k is suppressed by the filter unit 15-k.
  • FIG. 8 is an explanatory diagram showing a composite signal output from the signal synthesis processing unit 16.
  • the signal synthesis unit 14 includes filter units 15-1 to 15-K and a signal synthesis processing unit 16. Similar to the wireless receiver disclosed in Patent Document 1, when the signal synthesis unit 14 does not include the filter units 15-1 to 15-K but includes only the signal synthesis processing unit 16, signal synthesis is performed.
  • the combined signal output from the unit 14 to the A / D converter 17 is as shown in FIG. FIG. 9 is an explanatory diagram showing a composite signal output from the signal synthesis unit 14 including only the signal synthesis processing unit 16.
  • the signal synthesis processing unit 16 of the systems # 1 to # 4 output from the frequency conversion processing units 13-1 to 13-4.
  • the frequency band of the received signal of the system # 1 includes the noise component of the received signal of the system # 1, but the system # 2 to It does not contain the noise component of the received signal of # 4.
  • the frequency band of the received signal of the system # 1 includes the noise component of the received signal of the systems # 2 to # 4 in addition to the noise component of the received signal of the system # 1. .. Therefore, the signal-to-noise ratio of the received signal of system # 1 included in the composite signal shown in FIG. 8 is compared with the signal-to-noise power ratio of the received signal of system # 1 included in the composite signal shown in FIG. The power ratio is improving. Similarly, the signal-to-noise power ratio of the received signals of the systems # 2 to # 4 included in the composite signal shown in FIG. 8 is also improved.
  • the A / D converter 17 When the A / D converter 17 receives the combined signal from the signal combining unit 14, it converts the combined signal from an analog signal to a digital signal and outputs the digital signal to the signal separating unit 19 of the beam forming unit 18.
  • the beam forming unit 18 receives the digital signal from the A / D converter 17, the beam forming unit 18 separates the digital signal into signals corresponding to the respective signals received by the element antennas 11-1 to 11-K, and the separated signals are separated from each other.
  • a beam signal is formed using the signal of.
  • the processing content of the beam forming unit 18 will be specifically described.
  • the signal separation unit 19 When the signal separation unit 19 receives the digital signal from the A / D converter 17, for example, the digital signal is converted into a signal in the frequency domain by performing an FFT (Fast Fourier Transform) (step ST1 in FIG. 5). ). Signal separator 19, a signal corresponding to the signal in the frequency domain to the reception signal of the system # 1, the center frequency extracts a signal of f 1, as a signal corresponding to the received signal of the system # 2 from the signal of the frequency domain , A signal having a center frequency of f 2 is extracted (step ST2 in FIG. 5).
  • FFT Fast Fourier Transform
  • the signal separating unit 19 a signal corresponding to the received signal of the system # 3 from the signal of the frequency domain, the center frequency extracts a signal of f 3, corresponding to the received signal of the system # 4 from the signal of the frequency domain as a signal, center frequency and extracts a signal f 4 (step ST2 of FIG. 5).
  • the signal separation unit 19 includes a signal corresponding to the received signal of the system # 1, a signal corresponding to the received signal of the system # 2, a signal corresponding to the received signal of the system # 3, and a signal corresponding to the received signal of the system # 4. Each is output to the beam forming processing unit 20.
  • the beam forming processing unit 20 uses the signal corresponding to the received signal of the system # 1 to the system # 4, for example.
  • DBF Digital Beamforming
  • M beam signals # 1 to # M are formed (step ST3 in FIG. 5).
  • the beam forming processing unit 20 outputs the formed beam signals # 1 to # M to the signal processing device 2 or the signal processing device 3.
  • the signal processing device 2 performs radar processing or the like for detecting a target by using the beam signals # 1 to # M.
  • the signal processing device 3 When the signal processing device 3 receives the beam signals # 1 to # M from the beam forming processing unit 20, it performs a process of decoding the information contained in the beam signals # 1 to # M and the like. Since the radar process for detecting the target and the process itself for decoding the information are known techniques, detailed description thereof will be omitted.
  • the signal separation unit 19 outputs a signal corresponding to the received signals of the systems # 1 to the system # 4 extracted from the signals in the frequency domain to the beam forming processing unit 20.
  • the signal separation unit 19 reverse-FFTs each of the signals corresponding to the received signals of the systems # 1 to the system # 4 extracted from the signals in the frequency domain, so that the systems # 1 to the system # 4
  • Each of the signals corresponding to the received signal of # 4 is converted into a signal in the time domain.
  • the signal separation unit 19 may output the signal of each time domain to the beam forming processing unit 20.
  • the beam forming processing unit 20 forms M beam signals # 1 to # M by, for example, performing a known DBF processing using the signals in each time domain.
  • the signal separation unit 19 converts the digital signal into a signal in the frequency domain by FFTing the digital signal, and corresponds to the received signal of the system # 1 to the system # 4 from the signal in the frequency domain.
  • the signal to be used is extracted.
  • the signal separation unit 19 may use a BPF or the like to extract each of the signals corresponding to the received signals of the system # 1 to the system # 4 from the digital signal.
  • the signal components included in the frequency band of each signal are extracted from the respective signals output from the frequency conversion unit 13, and the extracted signal components are combined with each other. Therefore, the antenna device 1 is configured to include a signal synthesis unit 14 that outputs a composite signal of each signal component. Therefore, the antenna device 1 can prevent the deterioration of the signal-to-noise power ratio that occurs in the wireless receiving device disclosed in Patent Document 1.
  • the signal synthesis unit 14 includes filter units 15-1 to 15-K and a signal synthesis processing unit 16.
  • the antenna device 1 in which the signal synthesis unit 14 includes the multiplexer 50 will be described.
  • FIG. 10 is a configuration diagram showing the antenna device 1 according to the second embodiment.
  • the signal synthesis unit 14 includes a multiplexer 50.
  • the multiplexer 50 extracts signal components included in the frequency band of each signal from the respective signals output from the frequency conversion unit 13, synthesizes the extracted signal components with each other, and sets each of the extracted signal components. Generates a composite signal of signal components.
  • the multiplexer 50 outputs the generated composite signal to the A / D converter 17.
  • the operation of the antenna device 1 shown in FIG. 10 will be described. Since the components other than the multiplexer 50 are the same as those of the antenna device 1 shown in FIG. 2, only the operation of the multiplexer 50 will be described here.
  • the multiplexer 50 When the multiplexer 50 receives a received signal having a center frequency of f 1 from the frequency conversion processing unit 13-1, the multiplexer 50 suppresses noise components contained in a band other than the frequency band of the received signal having a center frequency of f 1 . center frequency to retain the signal component included in the frequency band of the received signal f 1.
  • the multiplexer 50 receives a received signal having a center frequency of f 2 from the frequency conversion processing unit 13-2, the multiplexer 50 suppresses noise components contained in a band other than the frequency band of the received signal having a center frequency of f 2 . It retains the signal components included in the frequency band of the received signal whose center frequency is f 2 .
  • the multiplexer 50 When the multiplexer 50 receives a received signal having a center frequency of f 3 from the frequency conversion processing unit 13-3, the multiplexer 50 suppresses noise components contained in a band other than the frequency band of the received signal having a center frequency of f 3 . center frequency to retain the signal component included in the frequency band of the received signal f 3.
  • Multiplexer 50 when the center frequency from the frequency conversion processing unit 13-4 receives a reception signal f 4, by suppressing the noise component center frequency is included in the band other than the frequency band of the received signal f 4, center frequency to retain the signal component included in the frequency band of the received signal f 4.
  • the multiplexer 50 holds a signal component of a received signal having a center frequency of f 1 , a signal component of a received signal having a held center frequency of f 2 , and a signal component of a received signal having a held center frequency of f 3. the center frequency by combining together a signal component of the received signals f 4, to generate a composite signal of the respective signal components.
  • the multiplexer 50 outputs the generated composite signal to the A / D converter 17.
  • the antenna device 1 shown in FIG. 10 is configured so that the signal synthesis unit 14 includes the multiplexer 50. Therefore, the antenna device 1 shown in FIG. 10 can prevent deterioration of the signal-to-noise power ratio, similarly to the antenna device 1 shown in FIG. Further, the antenna device 1 shown in FIG. 10 can simplify the configuration of the signal synthesis unit 14 as compared with the antenna device 1 shown in FIG.
  • Embodiment 3 In the third embodiment, the antenna device 1 including a plurality of sub-array antennas 61-1 to 61-N will be described. N is an integer of 2 or more.
  • FIG. 11 is a configuration diagram showing the antenna device 1 according to the third embodiment.
  • the sub-array antennas 61-1 to 61-N include element antennas 11-1 to 11-K, a frequency conversion unit 13, and a signal synthesis unit 14.
  • the signal synthesis unit 14 of the sub-array antennas 61-1 to 61-N includes a filter unit 15-1 to 15-K and a signal synthesis processing unit 16.
  • the signal synthesis unit 14 of the sub-array antennas 61-1 to 61-N may include the multiplexer 50 shown in FIG.
  • the antenna device 1 shown in FIG. 11 includes A / D converters 17-1 to 17-N for the number of sub-array antennas 61-1 to 61-N.
  • the beam forming unit 62 includes a signal separating unit 19-1 to 19-N and a beam forming processing unit 63.
  • the beam forming unit 62 receives the respective digital signals output from the A / D converters 17-1 to 17-N by the element antennas 11-1 to 11-K of the sub-array antennas 61-1 to 61-N. Separate into the signals corresponding to each signal.
  • the beam forming unit 62 forms beam signals # 1 to # M by using the separated signals.
  • the signal separation unit 19-n is realized by, for example, the signal separation circuit 31 shown in FIG.
  • the signal separation unit 19-n uses the digital signal output from the A / D converter 17-n as a signal corresponding to each signal received by the element antennas 11-1 to 11-K of the sub-array antenna 61-n. Separate into.
  • the signal separation unit 19-n outputs each separated signal to the beam forming processing unit 63.
  • the beam forming processing unit 63 is realized by, for example, the beam forming processing circuit 32 shown in FIG.
  • the beam forming processing unit 63 forms beam signals # 1 to # M by using the respective signals separated by the signal separating units 19-1 to 19-N, and the beam signals # 1 to # M are signal processing devices. Output to 2 or the signal processing device 3.
  • each of the signal separation units 19-1 to 19-N and the beam formation processing unit 63 which are the components of the beam forming unit 62, is realized by dedicated hardware as shown in FIG. are doing. That is, it is assumed that the beam forming unit 62 is realized by the signal separation circuit 31 and the beam forming processing circuit 32.
  • the components of the beam forming unit 62 are not limited to those realized by dedicated hardware, and the beam forming unit 62 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the beam forming unit 62 is realized by software, firmware, or the like, a program for causing a computer to execute the processing procedures of the signal separating units 19-1 to 19-N and the beam forming processing unit 63 is a memory 41 shown in FIG. Stored in. Then, the processor 42 shown in FIG. 4 of the computer executes the program stored in the memory 41.
  • the operation of the antenna device 1 shown in FIG. 11 will be described.
  • the operation of the element antennas 11-1 to 11-K, LNA12-1 to 12-K, the frequency conversion unit 13, and the signal synthesis unit 14 included in the sub-array antennas 61-1 to 61-N is the antenna device shown in FIG. Since it is the same as 1, the description thereof will be omitted.
  • the A / D converter converts the combined signal from an analog signal to a digital signal.
  • the digital signal is output to the signal separation unit 19-n of the beam forming unit 62.
  • the signal separation unit 19-n of the beam forming unit 62 may, for example, FFT the digital signal in the same manner as the signal separation unit 19 shown in FIG. Converts a digital signal to a signal in the frequency domain. Similar to the signal separation unit 19 shown in FIG. 2, the signal separation unit 19-n converts the signals in the frequency domain into the respective signals received by the element antennas 11-1 to 11-K of the sub-array antenna 61-n. Separate into corresponding signals. The signal separation unit 19-n outputs each separated signal to the beam forming processing unit 63.
  • the beam forming processing unit 63 forms beam signals # 1 to # M by, for example, performing DBF processing using the respective signals separated by the signal separating units 19-1 to 19-N, and forms a beam.
  • the signals # 1 to # M are output to the signal processing device 2 or the signal processing device 3.
  • the antenna device 1 includes sub-array antennas 61-1 to 61-K having element antennas 11-1 to 11-K, LNA12-1 to 12-K, a frequency conversion unit 13, and a signal synthesis unit 14. It has an N. Further, the antenna device 1 includes A / D converters 17-1 to 17-N for the number of sub-array antennas 61-1 to 61-N. Then, the beam forming unit 62 transmits each digital signal output from the A / D converters 17-1 to 17-N by the element antennas 11-1 to 11-K of the sub-array antennas 61-1 to 61-N.
  • the antenna device 1 shown in FIG. 11 was configured so as to be separated into signals corresponding to the received signals and to form beam signals # 1 to # M by using the separated signals. Therefore, the antenna device 1 shown in FIG. 11 can prevent deterioration of the signal-to-noise power ratio, similarly to the antenna device 1 shown in FIGS. 2 and 10. Further, the antenna device 1 shown in FIG. 11 can realize a larger-scale array antenna than the antenna device 1 shown in FIGS. 2 and 10.
  • the filter unit 15-k uses the BPF and the signal component included in the frequency band of the signal of the center frequency fk output from the frequency conversion processing unit 13-k. Is being extracted.
  • the filter unit 15-k is a high-pass filter (hereinafter, referred to as "HPF (High Pass Filter)”), a low-pass filter (hereinafter, referred to as "LPF (Low Pass Filter)”), or a BPF.
  • HPF High Pass Filter
  • LPF Low Pass Filter
  • the configuration of the antenna device of the fourth embodiment is the same as the configuration of the embodiment of any one of the first embodiment and the third embodiment, and the configuration diagram showing the antenna device of the fourth embodiment is, for example, , FIG. 2 or FIG.
  • the received signal having the highest center frequency is the frequency. center frequency output from the conversion processing unit 13-1 and a receiving signal f 1.
  • the received signal having the lowest center frequency is the center output from the frequency conversion processing unit 13-4. frequency is assumed to be received signal f 4.
  • the filter unit 15-1 for extracting the signal component included in the frequency band of the received signal of the system # 1 output from the frequency conversion processing unit 13-1 is shown in FIG.
  • HPF is used.
  • the filter unit 15-4 for extracting the signal component included in the frequency band of the received signal of the system # 4 output from the frequency conversion processing unit 13-4 uses an LPF.
  • each of the filter units 15-3 for extracting the signal component included in the frequency band of the received signal of # 3 uses a BPF.
  • FIG. 12 is an explanatory diagram showing the types of filters used by the filter units 15-1 to 15-4 and the pass band.
  • FIG. 13 is an explanatory diagram showing a composite signal output from the signal synthesis processing unit 16.
  • the frequency band of the received signal of the system # 1 includes the noise component of the received signal of the system # 1, but the system # 2 to It does not contain the noise component of the received signal of # 4. Therefore, the signal-to-noise ratio of the received signal of system # 1 included in the composite signal shown in FIG. 13 is compared with the signal-to-noise power ratio of the received signal of system # 1 included in the composite signal shown in FIG. The power ratio is improving. Similarly, the signal-to-noise power ratio of the received signals of the systems # 2 to # 4 included in the composite signal shown in FIG. 13 is also improved.
  • the plurality of filter units 15-1 to 15-4 among the signals output from the frequency conversion unit 13, the signals having the highest center frequency are included in the frequency band.
  • HPF is used as the filter unit 15-1 for extracting the signal component.
  • the plurality of filter units 15-1 to 15-4 among the signals output from the frequency conversion unit 13, the signal components included in the frequency band of the signal having the lowest center frequency are extracted.
  • LPF is used for the filter unit 15-4. Then, each of the filter unit 15-2 and the filter unit 15-4 configures the antenna device 1 so as to use the BPF.
  • the deterioration of the signal-to-noise power ratio can be prevented and the filter units 15-1 to 15-4 can be prevented from being deteriorated as in the case where each of the filter units 15-1 to 15-4 uses the BPF.
  • the signal synthesis unit 14 can be made smaller than the case where each of the above uses the BPF.
  • Embodiment 5 In the antenna device shown in FIGS. 2 and 11, the filter unit 15-k uses the BPF and the signal component included in the frequency band of the signal of the center frequency fk output from the frequency conversion processing unit 13-k. Is being extracted. In the fifth embodiment, an antenna device in which the filter unit 15-k uses an HPF or an LPF will be described.
  • the configuration of the antenna device of the fifth embodiment is the same as the configuration of the embodiment of any one of the first embodiment and the third embodiment, and the configuration diagram showing the antenna device of the fifth embodiment is, for example, , FIG. 2 or FIG.
  • K 4 will be described for convenience of explanation.
  • average frequency at the center frequency f 1 to f 4 of the received signal of the system # 1 to system # 4 which is output from the frequency conversion processing unit 13-1 to 13-4 is located at f ave , F 1 > f 2 > f ave > f 3 > f 4 .
  • the antenna device extracts of the filter units 15-1 to 15-4, than the average frequency f ave, the signal component center frequency f 1 is included in the frequency band of high reception signal filter As shown in FIG. 14, the part 15-1 uses the HPF. Moreover, than the average frequency f ave, filter section 15-2 for extracting a signal component is the center frequency f 2 is included in the frequency band of high reception signal, as shown in FIG. 14 uses a HPF.
  • the antenna device extracts of the filter units 15-1 to 15-4, than the average frequency f ave, the signal component is the center frequency f 3 are included in the frequency band of the low received signal filter As shown in FIG. 14, LPF is used in parts 15-3.
  • filter section 15-4 for extracting a signal component center frequency f 4 is included in the frequency band of the low received signal, as shown in FIG. 14 uses a LPF.
  • FIG. 14 is an explanatory diagram showing the types of filters used by the filter units 15-1 to 15-4 and the pass band.
  • the HPF used by the filter unit 15-1 has a pass band through which the signal component of the received signal of the system # 1 output from the frequency conversion processing unit 13-1 is passed.
  • the HPF used by the filter unit 15-2 has a pass band through which the signal component of the received signal of the system # 2 output from the frequency conversion processing unit 13-2 is passed.
  • the LPF used by the filter unit 15-3 has a pass band through which the signal component of the received signal of the system # 3 output from the frequency conversion processing unit 13-3 is passed.
  • the LPF used by the filter unit 15-4 has a pass band through which the signal component of the received signal of the system # 4 output from the frequency conversion processing unit 13-4 is passed.
  • FIG. 15 is an explanatory diagram showing a composite signal output from the signal synthesis processing unit 16.
  • the frequency band of the received signal of the system # 1 is the noise of the received signal of the system # 2 in addition to the noise component of the received signal of the system # 1.
  • the signal-to-noise ratio of the received signal of system # 1 included in the composite signal shown in FIG. 15 is compared with the signal-to-noise power ratio of the received signal of system # 1 included in the composite signal shown in FIG. The power ratio is improving.
  • the frequency band of the received signal of system # 4 includes the noise component of the received signal of system # 3 in addition to the noise component of the received signal of system # 4. It does not contain the noise component of the received signals of # 1 and # 2. Therefore, the signal-to-noise ratio of the received signal of system # 4 included in the composite signal shown in FIG. 15 is compared with the signal-to-noise power ratio of the received signal of system # 4 included in the composite signal shown in FIG. The power ratio is improving.
  • the frequency band of the received signal of system # 2 includes the noise component of the received signal of system # 2, but the noise of the received signal of system # 1, # 3, # 4. Contains no ingredients. Therefore, the signal-to-noise ratio of the received signal of system # 2 included in the composite signal shown in FIG. 15 is compared with the signal-to-noise power ratio of the received signal of system # 2 included in the composite signal shown in FIG. The power ratio is improving.
  • the frequency band of the received signal of system # 3 includes the noise component of the received signal of system # 3, but the noise of the received signal of system # 1, # 2, # 4. Contains no ingredients. Therefore, the signal-to-noise ratio of the received signal of system # 3 included in the composite signal shown in FIG. 15 is compared with the signal-to-noise power ratio of the received signal of system # 3 included in the composite signal shown in FIG. The power ratio is improving.
  • each pass band of the filter units 15-1 to 15-4 is a pass band as shown in FIG.
  • the HPF used by the filter units 15-1 and 15-2 for extracting the signal component of the received signal having a center frequency higher than the average frequency ave is a system as shown in FIG. It may have a pass band through which the signal component of the received signal of # 2 is passed.
  • the HPF used by the filter units 15-3 and 15-3 for extracting the signal component of the received signal whose center frequency is lower than the average frequency ave is the signal of the received signal of the system # 3. It may have a pass band through which the components pass.
  • FIG. 16 is an explanatory diagram showing the types of filters used by the filter units 15-1 to 15-4 and the pass band.
  • FIG. 17 is an explanatory diagram showing a composite signal output from the signal synthesis processing unit 16.
  • the frequency band of the received signal of system # 2 includes the noise component of the received signal of system # 2 as well as the received signal of system # 1. However, it does not contain the noise component of the received signals of the systems # 3 to # 4. Therefore, the signal-to-noise ratio of the received signal of system # 2 included in the composite signal shown in FIG. 17 is compared with the signal-to-noise power ratio of the received signal of system # 2 included in the composite signal shown in FIG. The power ratio is improving.
  • the frequency band of the received signal of system # 3 includes the noise component of the received signal of system # 4 in addition to the noise component of the received signal of system # 3.
  • the filter units 15-1 and 15-2 that extract the signal components included in the band use HPF to extract the signal components contained in the frequency band of the signal whose center frequency is lower than the average frequency.
  • Parts 15-3 and 15-4 configure the antenna device 1 so as to use the LPF. Therefore, in the antenna device 1, the deterioration of the signal-to-noise power ratio can be prevented and the filter units 15-1 to 15-4 can be prevented from being deteriorated as in the case where each of the filter units 15-1 to 15-4 uses the BPF.
  • the signal synthesis unit 14 can be made smaller than the case where each of the above uses the BPF.
  • the average frequency f ave is lower than the center frequencies f 1 and f 2 , and the average frequency f ave is higher than the center frequencies f 3 and f 4 .
  • the filter unit 15-2 may use any of the filters of HPF, BPF and LPF.
  • the present invention is suitable for antenna devices, radar devices and communication devices that form beam signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

信号を受信する複数の素子アンテナ(11-1)~(11-K)と、複数の素子アンテナ(11-1)~(11-K)により受信されたそれぞれの信号の信号成分を含む周波数帯域が互いに重ならないように、それぞれの信号の周波数を変換し、互いの周波数帯域が重なっていないそれぞれの信号を出力する周波数変換部(13)と、周波数変換部(13)から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成部(14)と、信号合成部(14)から出力された合成信号をアナログ信号からデジタル信号に変換して、デジタル信号を出力するA/D変換器(17)と、A/D変換器(17)から出力されたデジタル信号を、複数の素子アンテナ(11-1)~(11-K)により受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成するビーム形成部(18)とを備えるように、アンテナ装置(1)を構成した。

Description

アンテナ装置、レーダ装置及び通信装置
 この発明は、ビーム信号を形成するアンテナ装置、レーダ装置及び通信装置に関するものである。
 以下の特許文献1には、1つのアナログデジタル(以下、「A/D」と称する)変換手段で、多重搬送波信号をA/ D変換できる無線受信装置が開示されている。
 以下の特許文献1に開示されている無線受信装置は、1つのA/D変換手段で、多重搬送波信号をA/ D変換できるようにするために、複数のアナログ処理手段と、加算手段とを備えている。
 特許文献1に記載されている複数のアナログ処理手段は、複数のアンテナにより受信されたそれぞれの信号が、互いに異なる中心周波数を持つように、それぞれの信号の周波数を変換している。
 特許文献1に記載されている加算手段は、複数のアナログ処理手段から出力されたそれぞれの信号を加算して、加算信号をA/D変換手段に出力している。
特開2005-260720号公報
 特許文献1に記載されている複数のアナログ処理手段から出力されたそれぞれの信号は、信号成分を含む周波数帯域だけでなく、当該周波数帯域よりも低い周波数から、当該周波数帯域よりも高い周波数に亘って雑音成分を含んでいる(図6を参照)。
 したがって、特許文献1に記載されている加算手段が、複数のアナログ処理手段から出力されたそれぞれの信号を加算することで、それぞれの信号の周波数帯域には、元々、それぞれの信号に含まれている雑音成分だけでなく、加算された他の信号に含まれている雑音成分も重畳されることになる(図9を参照)。
 よって、加算信号に含まれている、それぞれのアナログ処理手段の出力信号についての信号対雑音電力比が劣化してしまうという課題があった。
 この発明は上記のような課題を解決するためになされたもので、信号対雑音電力比の劣化を防ぐことができるアンテナ装置、レーダ装置及び通信装置を得ることを目的とする。
 この発明に係るアンテナ装置は、信号を受信する複数の素子アンテナと、複数の素子アンテナにより受信されたそれぞれの信号の信号成分を含む周波数帯域が互いに重ならないように、それぞれの信号の周波数を変換し、互いの周波数帯域が重なっていないそれぞれの信号を出力する周波数変換部と、周波数変換部から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成部と、信号合成部から出力された合成信号をアナログ信号からデジタル信号に変換して、デジタル信号を出力するアナログデジタル変換器と、アナログデジタル変換器から出力されたデジタル信号を、複数の素子アンテナにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成するビーム形成部とを備えるようにしたものである。
 この発明によれば、周波数変換部から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成部を備えるように、アンテナ装置を構成した。したがって、この発明に係るアンテナ装置は、信号対雑音電力比の劣化を防ぐことができる。
図1Aは、実施の形態1に係るアンテナ装置1を含むレーダ装置を示す構成図、図1Bは、実施の形態1に係るアンテナ装置1を含む通信装置を示す構成図である。 実施の形態1に係るアンテナ装置1を示す構成図である。 アンテナ装置1におけるビーム形成部18のハードウェアを示すハードウェア構成図である。 ビーム形成部18が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。 ビーム形成部18の処理手順を示すフローチャートである。 周波数変換処理部13-1~13-4から出力された系統#1~#4の受信信号を示す説明図である。 フィルタ部15-1~15-4により信号成分が抽出された系統#1~#4の受信信号を示す説明図である。 信号合成処理部16から出力される合成信号を示す説明図である。 信号合成処理部16のみを備えている信号合成部14から出力される合成信号を示す説明図である。 実施の形態2に係るアンテナ装置1を示す構成図である。 実施の形態3に係るアンテナ装置1を示す構成図である。 フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。 信号合成処理部16から出力される合成信号を示す説明図である。 フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。 信号合成処理部16から出力される合成信号を示す説明図である。 フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。 信号合成処理部16から出力される合成信号を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1Aは、実施の形態1に係るアンテナ装置1を含むレーダ装置を示す構成図であり、図1Bは、実施の形態1に係るアンテナ装置1を含む通信装置を示す構成図である。
 図1A及び図1Bにおいて、アンテナ装置1は、複数の素子アンテナ11-1~11-Kにより受信されたそれぞれの信号を用いて、ビーム信号を形成する。Kは、2以上の整数である。
 図1Aにおいて、信号処理装置2は、アンテナ装置1により形成されたビーム信号を用いて、目標を検出するレーダ処理等を実施する。
 図1Bにおいて、信号処理装置3は、アンテナ装置1により形成されたビーム信号に含まれている情報を復号する処理等を実施する。
 図2は、実施の形態1に係るアンテナ装置1を示す構成図である。
 図3は、アンテナ装置1におけるビーム形成部18のハードウェアを示すハードウェア構成図である。
 図2において、素子アンテナ11-k(k=1,・・・,K)は、信号を受信し、受信した信号を低雑音増幅器(以下、「LNA:Low Noise Amplifier」と称する)12-kに出力する。
 LNA12-kは、素子アンテナ11-kにより受信された信号を増幅し、増幅後の信号を周波数変換部13の周波数変換処理部13-kに出力する。
 周波数変換部13は、周波数変換処理部13-1~13-Kを備えている。
 周波数変換部13は、LNA12-1~12-Kにより増幅されたそれぞれの信号の信号成分を含む周波数帯域が互いに重ならないように、それぞれの信号の周波数を変換し、互いの周波数帯域が重なっていないそれぞれの信号を信号合成部14に出力する。
 周波数変換処理部13-kは、例えば、ミキサを用いて、LNA12-kから出力された増幅後の信号の中心周波数がfになるように、LNA12-kから出力された増幅後の信号の周波数を変換し、中心周波数がfの信号をフィルタ部15-kに出力する。
 例えば、中心周波数がfの信号の周波数帯域と、中心周波数がfの信号の周波数帯域と、中心周波数がfの信号の周波数帯域とは、互いに重なっていない。
 信号合成部14は、フィルタ部15-1~15-K及び信号合成処理部16を備えている。
 信号合成部14は、周波数変換部13から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を生成する。
 信号合成部14は、生成した合成信号をアナログデジタル変換器(以下、「A/D変換器」と称する)17に出力する。
 フィルタ部15-kは、バンドパスフィルタ(以下、「BPF(Band Pass Filter)」と称する)を用いて、周波数変換処理部13-kから出力された中心周波数fの信号の周波数帯域に含まれている信号成分を抽出し、抽出した信号成分を信号合成処理部16に出力する。
 信号合成処理部16は、フィルタ部15-1~15-Kにより抽出されたそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を生成し、合成信号をA/D変換器17に出力する。
 A/D変換器17は、信号合成部14から出力された合成信号をアナログ信号からデジタル信号に変換して、デジタル信号をビーム形成部18に出力する。
 ビーム形成部18は、信号分離部19及びビーム形成処理部20を備えている。
 ビーム形成部18は、A/D変換器17から出力されたデジタル信号を、素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成する。
 信号分離部19は、例えば、図3に示す信号分離回路31によって実現される。
 信号分離部19は、A/D変換器17から出力されたデジタル信号を、素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号をビーム形成処理部20に出力する。
 ビーム形成処理部20は、例えば、図3に示すビーム形成処理回路32によって実現される。
 ビーム形成処理部20は、信号分離部19により分離されたそれぞれの信号を用いて、ビーム信号#1~#Mを形成し、ビーム信号#1~#Mを信号処理装置2又は信号処理装置3に出力する。Mは、2以上の整数である。
 図2では、ビーム形成部18の構成要素である信号分離部19及びビーム形成処理部20のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、ビーム形成部18が、信号分離回路31及びビーム形成処理回路32によって実現されるものを想定している。
 ここで、信号分離回路31及びビーム形成処理回路32のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 ビーム形成部18の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、ビーム形成部18が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図4は、ビーム形成部18が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 ビーム形成部18が、ソフトウェア又はファームウェア等によって実現される場合、信号分離部19及びビーム形成処理部20の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 図5は、ビーム形成部18の処理手順を示すフローチャートである。
 また、図3では、ビーム形成部18の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図4では、ビーム形成部18がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、ビーム形成部18における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
 次に、図2に示すアンテナ装置1の動作について説明する。
 素子アンテナ11-k(k=1,・・・,K)は、信号を受信し、受信した信号である受信信号をLNA12-kに出力する。
 図1に示すアンテナ装置1では、説明の便宜上、K=4であるものとして説明する。ただし、Kは、2以上の整数であればよく、K=4に限るものではない。
 また、図1に示すアンテナ装置1では、k=1が系統#1、k=2が系統#2、k=3が系統#3、k=4が系統#4であるとする。
 LNA12-k(k=1,2,3,4)は、素子アンテナ11-kから受信信号を受けると、受信信号を増幅し、増幅後の受信信号を周波数変換処理部13-kに出力する。
 周波数変換部13は、LNA12-1~12-Kから増幅後の受信信号を受けると、図6に示すように、それぞれの受信信号の周波数帯域が互いに重ならないように、それぞれの受信信号の周波数を変換する。
 具体的には、周波数変換処理部13-kは、LNA12-kから出力された増幅後の受信信号である系統#kの受信信号の中心周波数がfになるように、系統#kの受信信号の周波数を変換する。
 f>f>f>fであり、系統#1の受信信号の周波数帯域と、系統#2の受信信号の周波数帯域と、系統#3の受信信号の周波数帯域と、系統#4の受信信号の周波数帯域とは、互いに重なっていない。
 図6は、周波数変換処理部13-1~13-4から出力された系統#1~#4の受信信号を示す説明図である。
 系統#1~#4の受信信号は、信号成分を含んでいる周波数帯域だけでなく、当該周波数帯域よりも低い周波数から、当該周波数帯域よりも高い周波数に亘って雑音成分を含んでいる。
 周波数変換処理部13-kは、中心周波数がfの受信信号をフィルタ部15-kに出力する。
 フィルタ部15-kは、周波数変換処理部13-kから中心周波数がfの受信信号を受けると、図7に示すように、BPFを用いて、中心周波数がfの受信信号の周波数帯域に含まれている信号成分を抽出する。
 フィルタ部15-kは、抽出した信号成分を信号合成処理部16に出力する。
 図7は、フィルタ部15-1~15-4により信号成分が抽出された系統#1~#4の受信信号を示す説明図である。
 フィルタ部15-1~15-4により信号成分が抽出された系統#1~#4の受信信号の周波数帯域は、図7に示すように、雑音成分を含んでいる。しかし、系統#kの受信信号の周波数帯域以外の帯域に含まれていた雑音成分は、図7に示すように、フィルタ部15-kによって抑圧されている。
 信号合成処理部16は、フィルタ部15-1~15-4から系統#1~#4の受信信号の信号成分を受けると、図8に示すように、系統#1~#4の受信信号の信号成分を互いに合成して、それぞれの信号成分の合成信号を生成する。
 信号合成処理部16は、生成した合成信号をA/D変換器17に出力する。
 図8は、信号合成処理部16から出力される合成信号を示す説明図である。
 図2に示すアンテナ装置では、信号合成部14が、フィルタ部15-1~15-K及び信号合成処理部16を備えている。
 特許文献1に開示されている無線受信装置と同様に、信号合成部14が、フィルタ部15-1~15-Kを備えておらず、信号合成処理部16のみを備えている場合、信号合成部14からA/D変換器17に出力される合成信号は、図9のようになる。
 図9は、信号合成処理部16のみを備えている信号合成部14から出力される合成信号を示す説明図である。
 信号合成部14が、フィルタ部15-1~15-Kを備えていない場合、信号合成処理部16が、周波数変換処理部13-1~13-4から出力された系統#1~#4の受信信号の信号成分を互いに合成することで、系統#1~#4の受信信号に含まれているそれぞれの雑音成分は、互いに合成される。
 図8に示す合成信号では、例えば、系統#1の受信信号に着目すると、系統#1の受信信号の周波数帯域は、系統#1の受信信号の雑音成分を含んでいるが、系統#2~#4の受信信号の雑音成分を含んでいない。
 一方、図9に示す合成信号では、系統#1の受信信号の周波数帯域は、系統#1の受信信号の雑音成分のほかに、系統#2~#4の受信信号の雑音成分も含んでいる。
 したがって、図9に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比と比べて、図8に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比は、改善している。
 図8に示す合成信号に含まれている系統#2~系統#4の受信信号の信号対雑音電力比についても、同様に改善している。
 A/D変換器17は、信号合成部14から合成信号を受けると、合成信号をアナログ信号からデジタル信号に変換して、デジタル信号をビーム形成部18の信号分離部19に出力する。
 ビーム形成部18は、A/D変換器17からデジタル信号を受けると、デジタル信号を、素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成する。
 以下、ビーム形成部18の処理内容を具体的に説明する。
 信号分離部19は、A/D変換器17からデジタル信号を受けると、例えば、デジタル信号をFFT(Fast Fourier Transform)することで、デジタル信号を周波数領域の信号に変換する(図5のステップST1)。
 信号分離部19は、周波数領域の信号から系統#1の受信信号に対応する信号として、中心周波数がfの信号を抽出し、周波数領域の信号から系統#2の受信信号に対応する信号として、中心周波数がfの信号を抽出する(図5のステップST2)。
 また、信号分離部19は、周波数領域の信号から系統#3の受信信号に対応する信号として、中心周波数がfの信号を抽出し、周波数領域の信号から系統#4の受信信号に対応する信号として、中心周波数がfの信号を抽出する(図5のステップST2)。
 信号分離部19は、系統#1の受信信号に対応する信号、系統#2の受信信号に対応する信号、系統#3の受信信号に対応する信号及び系統#4の受信信号に対応する信号のそれぞれをビーム形成処理部20に出力する。
 ビーム形成処理部20は、信号分離部19から系統#1~系統#4の受信信号に対応する信号を受けると、系統#1~系統#4の受信信号に対応する信号を用いて、例えば、公知のDBF(Digital Beam Forming)処理を実施することで、M本のビーム信号#1~#Mを形成する(図5のステップST3)。
 ビーム形成処理部20は、形成したビーム信号#1~#Mを信号処理装置2又は信号処理装置3に出力する。
 信号処理装置2は、ビーム形成処理部20からビーム信号#1~#Mを受けると、ビーム信号#1~#Mを用いて、目標を検出するレーダ処理等を実施する。
 信号処理装置3は、ビーム形成処理部20からビーム信号#1~#Mを受けると、ビーム信号#1~#Mに含まれている情報を復号する処理等を実施する。
 目標を検出するレーダ処理及び情報を復号する処理自体は、公知の技術であるため、詳細な説明を省略する。
 図2に示すアンテナ装置では、信号分離部19が、周波数領域の信号から抽出した系統#1~系統#4の受信信号に対応する信号をビーム形成処理部20に出力している。しかし、これは一例に過ぎず、信号分離部19が、周波数領域の信号から抽出した系統#1~系統#4の受信信号に対応する信号のそれぞれを逆FFTすることで、系統#1~系統#4の受信信号に対応する信号のそれぞれを時間領域の信号に変換する。そして、信号分離部19が、それぞれの時間領域の信号をビーム形成処理部20に出力するようにしてもよい。この場合、ビーム形成処理部20は、それぞれの時間領域の信号を用いて、例えば、公知のDBF処理を実施することで、M本のビーム信号#1~#Mを形成する。
 図2に示すアンテナ装置では、信号分離部19が、デジタル信号をFFTすることで、デジタル信号を周波数領域の信号に変換し、周波数領域の信号から系統#1~系統#4の受信信号に対応する信号を抽出している。しかし、これは一例に過ぎず、信号分離部19が、BPF等を用いて、デジタル信号から系統#1~系統#4の受信信号に対応する信号のそれぞれを抽出するようにしてもよい。
 以上の実施の形態1では、周波数変換部13から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成部14を備えるように、アンテナ装置1を構成した。したがって、アンテナ装置1は、特許文献1に開示されている無線受信装置で生じるような信号対雑音電力比の劣化を防ぐことができる。
実施の形態2.
 図2に示すアンテナ装置1では、信号合成部14が、フィルタ部15-1~15-K及び信号合成処理部16を備えている。
 実施の形態2では、信号合成部14が、マルチプレクサ50を備えているアンテナ装置1について説明する。
 図10は、実施の形態2に係るアンテナ装置1を示す構成図である。図10において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 信号合成部14は、マルチプレクサ50を備えている。
 マルチプレクサ50は、周波数変換部13から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を生成する。
 マルチプレクサ50は、生成した合成信号をA/D変換器17に出力する。
 次に、図10に示すアンテナ装置1の動作について説明する。マルチプレクサ50以外は、図2に示すアンテナ装置1と同様であるため、ここでは、マルチプレクサ50の動作のみを説明する。
 マルチプレクサ50は、周波数変換処理部13-1から中心周波数がfの受信信号を受けると、中心周波数がfの受信信号の周波数帯域以外の帯域に含まれている雑音成分を抑圧して、中心周波数がfの受信信号の周波数帯域に含まれている信号成分を保持する。
 マルチプレクサ50は、周波数変換処理部13-2から中心周波数がfの受信信号を受けると、中心周波数がfの受信信号の周波数帯域以外の帯域に含まれている雑音成分を抑圧して、中心周波数がfの受信信号の周波数帯域に含まれている信号成分を保持する。
 マルチプレクサ50は、周波数変換処理部13-3から中心周波数がfの受信信号を受けると、中心周波数がfの受信信号の周波数帯域以外の帯域に含まれている雑音成分を抑圧して、中心周波数がfの受信信号の周波数帯域に含まれている信号成分を保持する。
 マルチプレクサ50は、周波数変換処理部13-4から中心周波数がfの受信信号を受けると、中心周波数がfの受信信号の周波数帯域以外の帯域に含まれている雑音成分を抑圧して、中心周波数がfの受信信号の周波数帯域に含まれている信号成分を保持する。
 マルチプレクサ50は、保持した中心周波数がfの受信信号の信号成分と、保持した中心周波数がfの受信信号の信号成分と、保持した中心周波数がfの受信信号の信号成分と、保持した中心周波数がfの受信信号の信号成分とを互いに合成して、それぞれの信号成分の合成信号を生成する。
 マルチプレクサ50は、生成した合成信号をA/D変換器17に出力する。
 以上の実施の形態2では、信号合成部14が、マルチプレクサ50を備えるように、図10に示すアンテナ装置1を構成した。したがって、図10に示すアンテナ装置1は、図2に示すアンテナ装置1と同様に、信号対雑音電力比の劣化を防ぐことができる。また、図10に示すアンテナ装置1は、図2に示すアンテナ装置1よりも、信号合成部14の構成を簡単化することができる。
実施の形態3.
 実施の形態3では、複数のサブアレーアンテナ61-1~61-Nを備えるアンテナ装置1について説明する。Nは、2以上の整数である。
 図11は、実施の形態3に係るアンテナ装置1を示す構成図である。図11において、図2及び図10と同一符号は同一又は相当部分を示すので説明を省略する。
 サブアレーアンテナ61-1~61-Nは、素子アンテナ11-1~11-Kと、周波数変換部13と、信号合成部14とを有している。
 図11に示すアンテナ装置1では、サブアレーアンテナ61-1~61-Nの信号合成部14が、フィルタ部15-1~15-K及び信号合成処理部16を備えている。しかし、これは一例に過ぎず、サブアレーアンテナ61-1~61-Nの信号合成部14が、図10に示すマルチプレクサ50を備えていてもよい。
 図11に示すアンテナ装置1は、サブアレーアンテナ61-1~61-Nの個数分のA/D変換器17-1~17-Nを備えている。
 A/D変換器17-n(n=1,・・・,N)は、サブアレーアンテナ61-nの信号合成部14から出力された合成信号をアナログ信号からデジタル信号に変換して、デジタル信号をビーム形成部62の信号分離部19-nに出力する。
 ビーム形成部62は、信号分離部19-1~19-N及びビーム形成処理部63を備えている。
 ビーム形成部62は、A/D変換器17-1~17-Nから出力されたそれぞれのデジタル信号を、サブアレーアンテナ61-1~61-Nの素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離する。
 ビーム形成部62は、分離したそれぞれの信号を用いて、ビーム信号#1~#Mを形成する。
 信号分離部19-nは、例えば、図3に示す信号分離回路31によって実現される。
 信号分離部19-nは、A/D変換器17-nから出力されたデジタル信号を、サブアレーアンテナ61-nの素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離する。
 信号分離部19-nは、分離したそれぞれの信号をビーム形成処理部63に出力する。
 ビーム形成処理部63は、例えば、図3に示すビーム形成処理回路32によって実現される。
 ビーム形成処理部63は、信号分離部19-1~19-Nにより分離されたそれぞれの信号を用いて、ビーム信号#1~#Mを形成し、ビーム信号#1~#Mを信号処理装置2又は信号処理装置3に出力する。
 図11では、ビーム形成部62の構成要素である信号分離部19-1~19-N及びビーム形成処理部63のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、ビーム形成部62が、信号分離回路31及びビーム形成処理回路32によって実現されるものを想定している。
 ビーム形成部62の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、ビーム形成部62が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ビーム形成部62が、ソフトウェア又はファームウェア等によって実現される場合、信号分離部19-1~19-N及びビーム形成処理部63の処理手順をコンピュータに実行させるためのプログラムが図4に示すメモリ41に格納される。そして、コンピュータの図4に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
 次に、図11に示すアンテナ装置1の動作について説明する。
 サブアレーアンテナ61-1~61-Nが有する素子アンテナ11-1~11-K、LNA12-1~12-K、周波数変換部13及び信号合成部14のそれぞれの動作は、図2に示すアンテナ装置1と同様であるため、説明を省略する。
 A/D変換器17-n(n=1,・・・,N)は、サブアレーアンテナ61-nの信号合成部14から合成信号を受けると、合成信号をアナログ信号からデジタル信号に変換して、デジタル信号をビーム形成部62の信号分離部19-nに出力する。
 ビーム形成部62の信号分離部19-nは、A/D変換器17-nからデジタル信号を受けると、図2に示す信号分離部19と同様に、例えば、デジタル信号をFFTすることで、デジタル信号を周波数領域の信号に変換する。
 信号分離部19-nは、図2に示す信号分離部19と同様に、周波数領域の信号から、サブアレーアンテナ61-nが有する素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離する。
 信号分離部19-nは、分離したそれぞれの信号をビーム形成処理部63に出力する。
 ビーム形成処理部63は、信号分離部19-1~19-Nにより分離されたそれぞれの信号を用いて、例えば、DBF処理を実施することで、ビーム信号#1~#Mを形成し、ビーム信号#1~#Mを信号処理装置2又は信号処理装置3に出力する。
 以上の実施の形態3では、アンテナ装置1が、素子アンテナ11-1~11-K、LNA12-1~12-K、周波数変換部13及び信号合成部14を有するサブアレーアンテナ61-1~61-Nを備えている。また、アンテナ装置1が、サブアレーアンテナ61-1~61-Nの個数分のA/D変換器17-1~17-Nを備えている。
 そして、ビーム形成部62が、A/D変換器17-1~17-Nから出力されたそれぞれのデジタル信号を、サブアレーアンテナ61-1~61-Nの素子アンテナ11-1~11-Kにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号#1~#Mを形成するように、図11に示すアンテナ装置1を構成した。したがって、図11に示すアンテナ装置1は、図2及び図10に示すアンテナ装置1と同様に、信号対雑音電力比の劣化を防ぐことができる。また、図11に示すアンテナ装置1は、図2及び図10に示すアンテナ装置1よりも、大規模なアレーアンテナを実現することができる。
実施の形態4.
 図2及び図11に示すアンテナ装置では、フィルタ部15-kが、BPFを用いて、周波数変換処理部13-kから出力された中心周波数fの信号の周波数帯域に含まれている信号成分を抽出している。
 実施の形態4では、フィルタ部15-kが、ハイパスフィルタ(以下、「HPF(High Pass Filter)」と称する)、ローパスフィルタ(以下、「LPF(Low Pass Filter)」と称する)、又は、BPFを用いるアンテナ装置について説明する。
 実施の形態4のアンテナ装置の構成は、実施の形態1及び実施の形態3のうちのいずれかの実施の形態の構成と同様であり、実施の形態4のアンテナ装置を示す構成図は、例えば、図2又は図11である。
 実施の形態4のアンテナ装置では、説明の便宜上、K=4であるものとして説明する。
 また、実施の形態4のアンテナ装置では、周波数変換処理部13-1~13-4から出力された系統#1~系統#4の受信信号の中で、中心周波数が最も高い受信信号が、周波数変換処理部13-1から出力された中心周波数がfの受信信号であるとする。
 周波数変換処理部13-1~13-4から出力された系統#1~系統#4の受信信号の中で、中心周波数が最も低い受信信号が、周波数変換処理部13-4から出力された中心周波数がfの受信信号であるとする。
 実施の形態4のアンテナ装置では、周波数変換処理部13-1から出力された系統#1の受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-1は、図12に示すように、HPFを用いている。
 周波数変換処理部13-4から出力された系統#4の受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-4は、図12に示すように、LPFを用いている。
 また、周波数変換処理部13-2から出力された系統#2の受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-2及び周波数変換処理部13-3から出力された系統#3の受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-3のそれぞれは、図12に示すように、BPFを用いている。
 図12は、フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。
 フィルタ部15-1がHPFを用い、フィルタ部15-2及びフィルタ部15-3のそれぞれがBPFを用い、フィルタ部15-4がLPFを用いる場合、信号合成処理部16から出力される合成信号は、図13のようになる。
 図13は、信号合成処理部16から出力される合成信号を示す説明図である。
 図13に示す合成信号では、例えば、系統#1の受信信号に着目すると、系統#1の受信信号の周波数帯域は、系統#1の受信信号の雑音成分を含んでいるが、系統#2~#4の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比と比べて、図13に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比は、改善している。
 図13に示す合成信号に含まれている系統#2~系統#4の受信信号の信号対雑音電力比についても、同様に改善している。
 以上の実施の形態4では、複数のフィルタ部15-1~15-4のうち、周波数変換部13から出力されたそれぞれの信号の中で、中心周波数が最も高い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-1は、HPFを用いる。また、複数のフィルタ部15-1~15-4のうち、周波数変換部13から出力されたそれぞれの信号の中で、中心周波数が最も低い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-4は、LPFを用いる。そして、フィルタ部15-2及びフィルタ部15-4のそれぞれは、BPFを用いるように、アンテナ装置1を構成した。したがって、アンテナ装置1は、フィルタ部15-1~15-4のそれぞれがBPFを用いる場合と同様に、信号対雑音電力比の劣化を防ぐことができるほか、フィルタ部15-1~15-4のそれぞれがBPFを用いる場合よりも、信号合成部14の小型化を図ることができる。
実施の形態5.
 図2及び図11に示すアンテナ装置では、フィルタ部15-kが、BPFを用いて、周波数変換処理部13-kから出力された中心周波数fの信号の周波数帯域に含まれている信号成分を抽出している。
 実施の形態5では、フィルタ部15-kが、HPF、又は、LPFを用いるアンテナ装置について説明する。
 実施の形態5のアンテナ装置の構成は、実施の形態1及び実施の形態3のうちのいずれかの実施の形態の構成と同様であり、実施の形態5のアンテナ装置を示す構成図は、例えば、図2又は図11である。
 実施の形態5のアンテナ装置では、説明の便宜上、K=4であるものとして説明する。
 実施の形態5のアンテナ装置では、周波数変換処理部13-1~13-4から出力された系統#1~系統#4の受信信号の中心周波数f~fにおける平均周波数がfaveであり、f>f>fave>f>fであるとする。
 実施の形態5のアンテナ装置では、フィルタ部15-1~15-4のうち、平均周波数faveよりも、中心周波数fが高い受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-1は、図14に示すように、HPFを用いている。また、平均周波数faveよりも、中心周波数fが高い受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-2は、図14に示すように、HPFを用いている。
 実施の形態5のアンテナ装置では、フィルタ部15-1~15-4のうち、平均周波数faveよりも、中心周波数fが低い受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-3は、図14に示すように、LPFを用いている。また、平均周波数faveよりも、中心周波数fが低い受信信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-4は、図14に示すように、LPFを用いている。
 図14は、フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。
 フィルタ部15-1が用いるHPFは、図14に示すように、周波数変換処理部13-1から出力された系統#1の受信信号の信号成分を通過させる通過帯域を有している。
 フィルタ部15-2が用いるHPFは、図14に示すように、周波数変換処理部13-2から出力された系統#2の受信信号の信号成分を通過させる通過帯域を有している。
 フィルタ部15-3が用いるLPFは、図14に示すように、周波数変換処理部13-3から出力された系統#3の受信信号の信号成分を通過させる通過帯域を有している。
 フィルタ部15-4が用いるLPFは、図14に示すように、周波数変換処理部13-4から出力された系統#4の受信信号の信号成分を通過させる通過帯域を有している。
 フィルタ部15-1及びフィルタ部15-2のそれぞれがHPFを用い、フィルタ部15-3及びフィルタ部15-4のそれぞれがLPFを用いる場合、信号合成処理部16から出力される合成信号は、図15のようになる。
 図15は、信号合成処理部16から出力される合成信号を示す説明図である。
 図15に示す合成信号では、系統#1の受信信号に着目すると、系統#1の受信信号の周波数帯域は、系統#1の受信信号の雑音成分のほかに、系統#2の受信信号の雑音成分を含んでいるが、系統#3~#4の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比と比べて、図15に示す合成信号に含まれている系統#1の受信信号の信号対雑音電力比は、改善している。
 系統#4の受信信号に着目すると、系統#4の受信信号の周波数帯域は、系統#4の受信信号の雑音成分のほかに、系統#3の受信信号の雑音成分を含んでいるが、系統#1~#2の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#4の受信信号の信号対雑音電力比と比べて、図15に示す合成信号に含まれている系統#4の受信信号の信号対雑音電力比は、改善している。
 系統#2の受信信号に着目すると、系統#2の受信信号の周波数帯域は、系統#2の受信信号の雑音成分を含んでいるが、系統#1,#3,#4の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#2の受信信号の信号対雑音電力比と比べて、図15に示す合成信号に含まれている系統#2の受信信号の信号対雑音電力比は、改善している。
 系統#3の受信信号に着目すると、系統#3の受信信号の周波数帯域は、系統#3の受信信号の雑音成分を含んでいるが、系統#1,#2,#4の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#3の受信信号の信号対雑音電力比と比べて、図15に示す合成信号に含まれている系統#3の受信信号の信号対雑音電力比は、改善している。
 実施の形態5のアンテナ装置では、フィルタ部15-1~15-4のそれぞれの通過帯域が、図14に示すような通過帯域であるものを示している。
 しかし、これは一例に過ぎず、平均周波数faveよりも、中心周波数が高い受信信号の信号成分を抽出するフィルタ部15-1,15-2が用いるHPFは、図16に示すように、系統#2の受信信号の信号成分を通過させる通過帯域を有していてもよい。
 また、平均周波数faveよりも、中心周波数が低い受信信号の信号成分を抽出するフィルタ部15-3,15-3が用いるHPFは、図16に示すように、系統#3の受信信号の信号成分を通過させる通過帯域を有していてもよい。
 図16は、フィルタ部15-1~15-4が用いるフィルタの種類と通過帯域とを示す説明図である。
 フィルタ部15-1~15-4のそれぞれの通過帯域が、図16に示すような通過帯域である場合、信号合成処理部16から出力される合成信号は、図17のようになる。
 図17は、信号合成処理部16から出力される合成信号を示す説明図である。
 図17に示す合成信号では、例えば、系統#2の受信信号に着目すると、系統#2の受信信号の周波数帯域は、系統#2の受信信号の雑音成分のほかに、系統#1の受信信号の雑音成分を含んでいるが、系統#3~#4の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#2の受信信号の信号対雑音電力比と比べて、図17に示す合成信号に含まれている系統#2の受信信号の信号対雑音電力比は、改善している。
 例えば、系統#3の受信信号に着目すると、系統#3の受信信号の周波数帯域は、系統#3の受信信号の雑音成分のほかに、系統#4の受信信号の雑音成分を含んでいるが、系統#1~#2の受信信号の雑音成分を含んでいない。
 したがって、図9に示す合成信号に含まれている系統#3の受信信号の信号対雑音電力比と比べて、図17に示す合成信号に含まれている系統#3の受信信号の信号対雑音電力比は、改善している。
 以上の実施の形態5では、複数のフィルタ部15-1~15-4のうち、周波数変換部13から出力されたそれぞれの受信信号の中心周波数の平均周波数よりも、中心周波数が高い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-1,15-2は、HPFを用い、平均周波数よりも、中心周波数が低い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部15-3,15-4は、LPFを用いるように、アンテナ装置1を構成した。したがって、アンテナ装置1は、フィルタ部15-1~15-4のそれぞれがBPFを用いる場合と同様に、信号対雑音電力比の劣化を防ぐことができるほか、フィルタ部15-1~15-4のそれぞれがBPFを用いる場合よりも、信号合成部14の小型化を図ることができる。
 実施の形態5のアンテナ装置では、平均周波数faveが、中心周波数f,fよりも低く、平均周波数faveが、中心周波数f,fよりも高いものを示している。
 しかし、これは一例に過ぎず、中心周波数f~fと、平均周波数faveとの関係が、例えば、f>f=fave>f>fであってもよい。
 f>f=fave>f>fの場合、フィルタ部15-2は、HPF、BPF及びLPFのうちのいずれのフィルタを用いてもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、ビーム信号を形成するアンテナ装置、レーダ装置及び通信装置に適している。
 1 アンテナ装置、2,3 信号処理装置、11-1~11-K 素子アンテナ、12-1~12-K LNA、13 周波数変換部、13-1~13-K 周波数変換処理部、14 信号合成部、15-1~15-K フィルタ部、16 信号合成処理部、17,17-1~17-N A/D変換器、18 ビーム形成部、19,19-1~19-N 信号分離部、20 ビーム形成処理部、31 信号分離回路、32 ビーム形成処理回路、41 メモリ、42 プロセッサ、50 マルチプレクサ、61-1~61-N サブアレーアンテナ、62 ビーム形成部、63 ビーム形成処理部。

Claims (12)

  1.  信号を受信する複数の素子アンテナと、
     前記複数の素子アンテナにより受信されたそれぞれの信号の信号成分を含む周波数帯域が互いに重ならないように、それぞれの信号の周波数を変換し、互いの周波数帯域が重なっていないそれぞれの信号を出力する周波数変換部と、
     前記周波数変換部から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成部と、
     前記信号合成部から出力された合成信号をアナログ信号からデジタル信号に変換して、前記デジタル信号を出力するアナログデジタル変換器と、
     前記アナログデジタル変換器から出力されたデジタル信号を、前記複数の素子アンテナにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成するビーム形成部と
     を備えたアンテナ装置。
  2.  前記信号合成部は、
     前記周波数変換部から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出する複数のフィルタ部と、
     前記複数のフィルタ部により抽出されたそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力する信号合成処理部とを備えていることを特徴とする請求項1記載のアンテナ装置。
  3.  前記信号合成部は、
     前記周波数変換部から出力されたそれぞれの信号の中から、それぞれの信号の周波数帯域に含まれている信号成分を抽出し、抽出したそれぞれの信号成分を互いに合成して、それぞれの信号成分の合成信号を出力するマルチプレクサを備えていることを特徴とする請求項1記載のアンテナ装置。
  4.  前記複数の素子アンテナと、前記周波数変換部と、前記信号合成部とを有する複数のサブアレーアンテナを備え、
     前記アナログデジタル変換器として、前記複数のサブアレーアンテナの個数分のアナログデジタル変換器を備え、
     前記ビーム形成部は、複数のアナログデジタル変換器から出力されたそれぞれのデジタル信号を、前記複数のサブアレーアンテナが有する前記複数の素子アンテナにより受信されたそれぞれの信号に対応する信号に分離し、分離したそれぞれの信号を用いて、ビーム信号を形成することを特徴とする請求項1記載のアンテナ装置。
  5.  前記周波数変換部は、ミキサを用いて、前記複数の素子アンテナにより受信されたそれぞれの信号の周波数帯域が互いに重ならないように、それぞれの信号の周波数を変換することを特徴とする請求項1記載のアンテナ装置。
  6.  前記複数のフィルタ部のそれぞれは、バンドパスフィルタを用いて、前記周波数変換部から出力されたそれぞれの信号の周波数帯域に含まれている信号成分を抽出することを特徴とする請求項2記載のアンテナ装置。
  7.  前記複数のフィルタ部のうち、前記周波数変換部から出力されたそれぞれの信号の中で、中心周波数が最も高い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部は、ハイパスフィルタを用い、
     前記複数のフィルタ部のうち、前記周波数変換部から出力されたそれぞれの信号の中で、中心周波数が最も低い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部は、ローパスフィルタを用い、
     前記複数のフィルタ部のうち、前記ハイパスフィルタ、又は、前記ローパスフィルタのいずれかを用いるフィルタ部以外のフィルタ部は、バンドパスフィルタを用いることを特徴とする請求項2記載のアンテナ装置。
  8.  前記複数のフィルタ部のうち、前記周波数変換部から出力されたそれぞれの信号の中心周波数の平均周波数よりも、中心周波数が高い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部は、ハイパスフィルタを用い、
     前記複数のフィルタ部のうち、前記周波数変換部から出力されたそれぞれの信号の中心周波数の平均周波数よりも、中心周波数が低い信号の周波数帯域に含まれている信号成分を抽出するフィルタ部は、ローパスフィルタを用いることを特徴とする請求項2記載のアンテナ装置。
  9.  前記ハイパスフィルタは、前記周波数変換部から出力されたそれぞれの信号のうち、前記平均周波数よりも、中心周波数が高い信号の信号成分を通過させる通過帯域を有していることを特徴とする請求項8記載のアンテナ装置。
  10.  前記ローパスフィルタは、前記周波数変換部から出力されたそれぞれの信号のうち、前記平均周波数よりも、中心周波数が低い信号の信号成分を通過させる通過帯域を有していることを特徴とする請求項8記載のアンテナ装置。
  11.  請求項1から請求項10のうちのいずれか1項記載のアンテナ装置を備えたレーダ装置。
  12.  請求項1から請求項10のうちのいずれか1項記載のアンテナ装置を備えた通信装置。
PCT/JP2019/014010 2019-03-29 2019-03-29 アンテナ装置、レーダ装置及び通信装置 WO2020202256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014010 WO2020202256A1 (ja) 2019-03-29 2019-03-29 アンテナ装置、レーダ装置及び通信装置
JP2019539306A JPWO2020202256A1 (ja) 2019-03-29 2019-03-29 アンテナ装置、レーダ装置及び通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014010 WO2020202256A1 (ja) 2019-03-29 2019-03-29 アンテナ装置、レーダ装置及び通信装置

Publications (1)

Publication Number Publication Date
WO2020202256A1 true WO2020202256A1 (ja) 2020-10-08

Family

ID=72666159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014010 WO2020202256A1 (ja) 2019-03-29 2019-03-29 アンテナ装置、レーダ装置及び通信装置

Country Status (2)

Country Link
JP (1) JPWO2020202256A1 (ja)
WO (1) WO2020202256A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298225A (ja) * 1998-04-08 1999-10-29 Mitsubishi Electric Corp 基地局アンテナ装置
JP2006086869A (ja) * 2004-09-16 2006-03-30 Mitsubishi Electric Corp 無線受信装置
JP2008504773A (ja) * 2004-07-02 2008-02-14 キネテイツク・リミテツド Mimoシステムにおけるビームステアリング

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298225A (ja) * 1998-04-08 1999-10-29 Mitsubishi Electric Corp 基地局アンテナ装置
JP2008504773A (ja) * 2004-07-02 2008-02-14 キネテイツク・リミテツド Mimoシステムにおけるビームステアリング
JP2006086869A (ja) * 2004-09-16 2006-03-30 Mitsubishi Electric Corp 無線受信装置

Also Published As

Publication number Publication date
JPWO2020202256A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
JP4950212B2 (ja) 帯域幅可変受信機
JP4523643B2 (ja) デジタイザ構成
EP0863620B1 (en) Diversity circuit
KR100828758B1 (ko) 다중대역 수신기 및 상기 다중대역 수신기의 수신 방법
JP4962422B2 (ja) 到来電波方位測定装置、到来電波方位測定方法及び到来電波方位測定プログラム
US20080112519A1 (en) Apparatus for receiving multi-band signals of multiple modes and method thereof
JP2008535358A (ja) 広帯域無線通信用の信号受信機
JP2002503912A (ja) 受信信号を複数のディジタル化周波数でディジタル化する無線受信機
JP2010011376A (ja) 既存サービス帯域以外の複数の帯域を用いる受信機、プログラム及び方法
JP5866701B2 (ja) アンテナシステム、基地局システム、及び通信システム
JP2010183171A (ja) 受信機
JP2007110696A (ja) アナログ信号処理回路およびそれを用いた通信装置
JP5025198B2 (ja) 無線受信装置と無線受信方法
WO2020202256A1 (ja) アンテナ装置、レーダ装置及び通信装置
KR100837431B1 (ko) 멀티 밴드 수신장치 및 멀티 밴드 신호 처리방법
US20160277159A1 (en) Diversity filtering
JP4439280B2 (ja) Dbf空中線装置
JP6570798B2 (ja) 受信機
JP6544645B2 (ja) 受信装置
JP6333193B2 (ja) 受信機
KR101934110B1 (ko) 필터 뱅크를 이용한 신호 수신 장치 및 방법
JP2006177671A (ja) 妨害電波キャンセラ装置
JP2009171349A (ja) 受信機
US20050085203A1 (en) Receiver
JP4610003B2 (ja) 受信機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019539306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922569

Country of ref document: EP

Kind code of ref document: A1