WO2020196925A1 - 空調能力提示システム - Google Patents

空調能力提示システム Download PDF

Info

Publication number
WO2020196925A1
WO2020196925A1 PCT/JP2020/014698 JP2020014698W WO2020196925A1 WO 2020196925 A1 WO2020196925 A1 WO 2020196925A1 JP 2020014698 W JP2020014698 W JP 2020014698W WO 2020196925 A1 WO2020196925 A1 WO 2020196925A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
unit
outdoor unit
air
presentation system
Prior art date
Application number
PCT/JP2020/014698
Other languages
English (en)
French (fr)
Inventor
友香 三宅
西村 忠史
浩司 長澤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080021513.4A priority Critical patent/CN113631868A/zh
Priority to EP20779988.3A priority patent/EP3951278B1/en
Priority to US17/441,634 priority patent/US20220146133A1/en
Priority to EP23178013.1A priority patent/EP4235052A3/en
Publication of WO2020196925A1 publication Critical patent/WO2020196925A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • Air conditioning capacity presentation system that presents the capacity of the air conditioner.
  • the air conditioning capacity measuring system disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-0388487) measures the capacity of an air conditioner.
  • This air conditioning capacity measurement system measures the first thermo-hygrometer that measures the state of the intake air of the outdoor unit, the second thermo-hygrometer that measures the state of the blown air of the outdoor unit, and the rotation speed of the fan of the outdoor unit. It has a rotation sensor, a first wattmeter that measures the power consumption of the outdoor unit, and a second wattmeter that measures the power supplied to the indoor unit.
  • the air conditioning capacity presentation system presents the capacity of an air conditioner including at least one outdoor unit, at least one indoor unit, and a refrigerant communication pipe connecting the outdoor unit and the indoor unit. ..
  • the air conditioning capacity presentation system includes a first acquisition unit, a measurement unit, a second acquisition unit, and a capacity calculation unit.
  • the first acquisition unit acquires the outdoor unit capacity information which is the rated capacity of the outdoor unit or the information related to the rated capacity.
  • the measuring unit measures the power consumption of the outdoor unit.
  • the second acquisition unit acquires the outside air temperature, which is the temperature of the air around the outdoor unit.
  • the capacity calculation unit obtains a calculated value of the capacity of the air conditioner based on the outdoor unit capacity information, power consumption, and outside air temperature.
  • the calculated value of the air conditioning capacity can be obtained based on the outdoor unit capacity information, power consumption, and outside air temperature. Therefore, the types of data to be acquired for capacity calculation can be reduced.
  • the air conditioning capacity output system is the capacity of the air conditioner including at least one outdoor unit, at least one indoor unit, and a refrigerant connecting pipe connecting the outdoor unit and the indoor unit. Is output.
  • the air conditioning capacity output system includes a first acquisition unit, a measurement unit, a second acquisition unit, a capacity calculation unit, and an output unit.
  • the first acquisition unit acquires the outdoor unit capacity information which is the rated capacity of the outdoor unit or the information related to the rated capacity.
  • the measuring unit measures the power consumption of the outdoor unit.
  • the second acquisition unit acquires the outside air temperature, which is the temperature of the air around the outdoor unit.
  • the capacity calculation unit obtains a calculated value of the capacity of the air conditioner based on the outdoor unit capacity information, power consumption, and outside air temperature.
  • the output unit outputs the calculated capacity.
  • the air conditioning capacity presentation system according to the second viewpoint is the air conditioning capacity presentation system according to the first viewpoint, and the capacity calculation unit includes a plurality of capacity calculation models.
  • the capacity calculation unit selects one capacity calculation model from a plurality of capacity calculation models based on the outdoor unit capacity information.
  • the capacity calculation unit selects one capacity calculation model based on the outdoor unit capacity information. Therefore, an appropriate capacity calculation model is used to simulate the capacity of the outdoor unit.
  • the capacity calculation unit includes a plurality of capacity calculation models in the air conditioning capacity output system according to the modified example of the first viewpoint.
  • the capacity calculation unit selects one capacity calculation model from a plurality of capacity calculation models based on the outdoor unit capacity information.
  • the selected capacity calculation model calculates capacity.
  • each of the capacity calculation models has an air conditioner performance parameter representing the performance of the air conditioner in the air conditioning capacity presentation system according to the second viewpoint.
  • Each of the capacity calculation models derives and derives the evaporation pressure Pe or the equivalent temperature of the refrigeration cycle, the condensation pressure Pc or the equivalent temperature, based on the air conditioner performance parameters, the power consumption, and the outside air temperature. It is configured to calculate the calculated value based on the cycle. At least one of the evaporation pressure of the refrigerant in the refrigeration cycle or its equivalent equivalent temperature, the condensation pressure or its equivalent equivalent temperature is determined as a constant.
  • the air-conditioning capacity presentation system according to the fourth viewpoint is the air-conditioning capacity presentation system according to the second viewpoint, and each of the capacity calculation models has a characteristic formula expressing the relationship between power consumption and capacity.
  • the air conditioning capacity presentation system according to the fifth viewpoint is the air conditioning capacity presentation system according to any one of the second to fourth viewpoints, and the plurality of capacity calculation models are a plurality of cooling capacity calculation models and a plurality of heating capacity models. Includes capacity calculation model.
  • the air conditioning capacity output system is the air conditioning capacity output system according to the modified example of the second viewpoint, and the plurality of capacity calculation models are a plurality of cooling capacity calculation models and a plurality of heating capacity calculation models. including.
  • the cooling capacity one model is selected from a plurality of cooling capacity calculation models.
  • the heating capacity one model is selected from a plurality of heating capacity calculation models.
  • the air-conditioning capacity presentation system further includes a correction unit in the air-conditioning capacity presentation system according to any one of the first to fifth viewpoints.
  • the correction unit obtains the corrected calculated value by correcting the calculated value.
  • the correction unit obtains the corrected calculated value by correcting the calculated value. Therefore, the accuracy of the required capacity is improved.
  • the correction unit corrects the calculated value based on the information related to the pressure loss of the refrigerant in the refrigerant connecting pipe.
  • the air conditioning capacity presentation system according to the eighth viewpoint is the air conditioning capacity presentation system according to the sixth or seventh viewpoint, and the outdoor unit includes an outdoor fan.
  • the correction unit corrects the calculated value based on the information related to the rated output of the outdoor fan.
  • the air conditioning capacity presentation system is the air conditioning capacity presentation system according to any one of the first to eighth viewpoints, and the second acquisition unit is the outside air humidity, which is the humidity of the air around the outdoor unit.
  • the capacity calculation unit obtains a calculated value of the capacity of the air conditioner based on the outdoor unit capacity information, power consumption, outside air temperature, and outside air humidity.
  • outside air humidity is also used in addition to other parameters to obtain the calculated value of capacity. Therefore, a more accurate calculated value is required.
  • the air-conditioning capacity presentation system according to the tenth viewpoint is the air-conditioning capacity presentation system according to any one of the first to ninth viewpoints, and the second acquisition unit measures the blown air discharged from the outdoor unit after heat exchange. Do not do.
  • the air-conditioning capacity presentation system further includes a proposal creation unit in the air-conditioning capacity presentation system according to the sixth viewpoint.
  • the proposal making unit prepares a proposal of a newly introduced unit that should replace at least a part of the outdoor unit and the indoor unit based on the maximum value of the calculated value or the corrected calculated value in a predetermined period.
  • the air conditioning capacity presentation system according to the twelfth viewpoint is the air conditioning capacity presentation system according to the eleventh viewpoint, and the air conditioner includes a plurality of systems.
  • Each of the plurality of systems includes at least one outdoor unit.
  • the measuring unit measures the power consumption of each of the plurality of systems.
  • the air-conditioning capacity presentation system further includes an operation terminal in the air-conditioning capacity presentation system according to the twelfth viewpoint.
  • the measuring unit has a plurality of power sensors that measure the power consumption of each of the plurality of systems.
  • the operation terminal displays the identification information of the power sensor.
  • the operating terminal receives an input about the association between the identification information and the system.
  • the air-conditioning capacity presentation system according to the 14th viewpoint is the air-conditioning capacity presentation system according to the 12th viewpoint or the 13th viewpoint, and the proposal making unit takes at least a part of the outdoor unit and the indoor unit for each of the plurality of systems. Make a proposal for a new installation unit to replace.
  • the method according to the fifteenth aspect is a method of measuring the capacity of an air conditioner having at least one outdoor unit and at least one indoor unit, and is the rated capacity of the outdoor unit or related to the rated capacity.
  • the first acquisition unit obtains the outdoor unit capacity information, which is the information to be used, the measurement unit measures the power consumption of the outdoor unit, and the second acquisition unit measures the outside air temperature, which is the temperature of the air around the outdoor unit. Based on the acquired outdoor unit capacity information, power consumption, and outside air temperature, the capacity calculation unit outputs the calculated value of the capacity of the air conditioner.
  • FIG. 1 shows the overall configuration of the air conditioning capacity presentation system 10.
  • the air conditioning capacity presentation system 10 includes an air conditioner 20, a power sensor 61, a temperature sensor 62, an operation terminal 63, a network N, and a server 100.
  • Air conditioner 20 is a multi-type air conditioner having a plurality of indoor units 21 to 24.
  • the air conditioner 20 includes indoor units 21 to 24, outdoor units 40, and refrigerant communication pipes 31 and 32.
  • the indoor units 21 to 24 are installed inside the building B.
  • the indoor units 21 to 24 regulate the temperature of the environment in which the user is present by providing the user with cold air or hot air.
  • the indoor unit power line 33 is connected to the indoor units 21 to 24.
  • the indoor unit power line 33 transmits electric power from the commercial power supply 52 to the indoor units 21 to 24.
  • Outdoor unit 40 The outdoor unit 40 is installed outside the building B.
  • the outdoor unit 40 acquires cold heat or heat from the outside air which is a heat source.
  • the outdoor unit 40 has an outdoor unit power line 41.
  • the outdoor unit power line 41 transmits electric power from the commercial power source 51 to the outdoor unit 40.
  • the outdoor unit 40 has an outdoor heat exchanger 42 and an outdoor fan 43.
  • Refrigerant connecting pipes 31, 32 move the refrigerant between the indoor units 21 to 24 and the outdoor unit 40.
  • the refrigerant connecting pipes 31 and 32 form a refrigerant circuit together with the indoor units 21 to 24 and the outdoor unit 40.
  • the power sensor 61 acquires a measured value of the power consumption of the outdoor unit 40 of the air conditioner 20.
  • the power sensor 61 is attached to the outdoor unit power line 41.
  • the power sensor 61 can be connected to the network N by wireless communication and transmit power consumption data.
  • Temperature sensor 62 acquires a measured value of the outside air temperature.
  • the temperature sensor 62 is attached, for example, in the vicinity of the outdoor unit 40.
  • the outside air temperature is the temperature of the air around the outdoor unit 40.
  • the temperature sensor 62 can be connected to the network N by wireless communication and transmit outside air temperature data.
  • the temperature sensor 62 does not measure the blown air discharged from the outdoor unit 40 after the heat exchange of the outdoor heat exchanger 42.
  • the operation terminal 63 is operated by a worker or the like of the air conditioner 20.
  • the worker inputs the outdoor unit ability information into the operation terminal 63.
  • the outdoor unit capacity information is, for example, the rated capacity of the outdoor unit 40.
  • the outdoor unit capacity information may be information other than the rated capacity of the outdoor unit 40 and related to the rated capacity.
  • the operation terminal 63 can connect to the network N by wireless communication and transmit the outdoor unit capability information.
  • the worker inputs information related to the pressure loss of the refrigerant in the refrigerant connecting pipes 31 and 32 to the operation terminal 63.
  • the information related to the pressure loss is, for example, the following amount.
  • the operation terminal 63 can transmit information related to pressure loss via the network N.
  • the worker inputs information related to the rated output of the outdoor fan 43 to the operation terminal 63.
  • the operation terminal 63 can transmit information related to the rated output of the outdoor fan 43 via the network N.
  • the network N is configured as a collection of PSTN (public switched telephone network), mobile phone communication network, wireless LAN, and other known networks.
  • PSTN public switched telephone network
  • mobile phone communication network mobile phone communication network
  • wireless LAN wireless local area network
  • the server 100 is connected to the network N.
  • the server 100 can receive the data transmitted from the power sensor 61, the temperature sensor 62, and the operation terminal 63.
  • FIG. 2 is a schematic diagram of a calculation unit 70 that is responsible for the calculation of the air conditioning capacity presentation system 10.
  • the calculation unit 70 is physically configured in the server 100.
  • the calculation unit 70 includes an outdoor unit capacity information receiving unit 71, a power consumption receiving unit 72, an outside air temperature receiving unit 73, a capacity calculation unit 74, a correction unit 75, and a proposal creation unit 76. That is, when the server 100 executes dedicated software, it functions as an outdoor unit capacity information receiving unit 71, a power consumption receiving unit 72, an outside air temperature receiving unit 73, a capacity calculation unit 74, a correction unit 75, and a proposal creating unit 76. ..
  • the outdoor unit capability information receiving unit 71 receives the outdoor unit capability information from the operation terminal 63 via the network N.
  • the power consumption receiving unit 72 receives power consumption data from the power sensor 61 via the network N.
  • the outside air temperature receiving unit 73 receives the outside air temperature data from the temperature sensor 62 via the network N.
  • the capacity calculation unit 74 obtains a calculated value of the capacity of the air conditioner 20 based on the outdoor unit capacity information, power consumption, and outside air temperature.
  • the capacity calculation unit 74 includes a plurality of capacity calculation models M1 to M8.
  • the capacity calculation unit 74 selects one capacity calculation model from the plurality of capacity calculation models M1 to M8 based on the outdoor unit capacity information.
  • the plurality of capacity calculation models M1 to M8 include a plurality of cooling capacity calculation models M1 to M4 and a plurality of heating capacity calculation models M5 to M8.
  • the ability calculation models M1 to M8 are, for example, characteristic formulas.
  • the ability calculation models M1 to M8 may be a table, a trained model, or the like.
  • the correction unit 75 obtains the correction calculation value by correcting the calculation value calculated by the ability calculation unit 74.
  • the correction unit 75 receives "information related to the pressure loss of the refrigerant in the refrigerant connecting pipes 31 and 32" and "information related to the rated output of the outdoor fan 43" from the network N.
  • the correction unit 75 uses this information when obtaining a correction calculation value from the calculated value.
  • the proposal creation unit 76 creates a proposal for a newly introduced unit that should replace at least a part of the outdoor unit 40 and the indoor units 21 to 24 based on the maximum value of the calculated value or the corrected calculated value in a predetermined period.
  • FIG. 6 is a configuration of capacity calculation models M1 to M8 according to the configuration example 1.
  • Each of the capacity calculation models M1 to M8 has an air conditioner performance parameter 742 representing the performance of the air conditioner 20 and a final calculation unit 749.
  • the air conditioner performance parameter 743 may include the compressor performance parameter 753 regarding the performance of the compressor of the air conditioner 20.
  • the air conditioner performance parameter 743 may include an outdoor heat exchanger performance parameter 744 regarding the performance of the outdoor heat exchanger 42 of the air conditioner 20.
  • the air conditioner performance parameter 743 may include an outdoor fan performance parameter 745 regarding the performance of the outdoor fan 43 of the air conditioner 20.
  • the final calculation unit 749 calculates the capacity C for cooling or heating of the air conditioner 20.
  • the capacity calculation unit 74 calculates a plurality of capacities based on at least the outdoor unit capacity information SEL output by the outdoor unit capacity information receiving unit 71.
  • One capacity calculation model is selected from the models M1 to M8.
  • the time or season when the air conditioner 20 is operating may be taken into consideration.
  • which of the cooling capacity calculation models M1 to M4 and the heating capacity calculation models M5 to M8 should be selected is determined.
  • the power consumption data P output by the power consumption receiving unit 72 and the outside air temperature data TO output by the outside air temperature receiving unit 73 are input to the selected capacity calculation model. Will be done.
  • the capacity calculation models M1 to M6 correspond to the condensation pressure Pc in the refrigeration cycle based on the power consumption data P, the outside air temperature data TO, and the air conditioner performance parameter 742.
  • the equivalent temperature, the evaporation pressure Pe or the equivalent temperature is derived.
  • the evaporation pressure Pe or the equivalent temperature In deriving the condensation pressure Pc of the refrigerant or the equivalent temperature, the evaporation pressure Pe or the equivalent temperature, the evaporation pressure Pe of the refrigerant or the equivalent temperature and the condensation pressure Pc or the equivalent temperature are set. To. Specifically, the setting is performed by the following procedure.
  • the evaporation pressure Pe of the refrigerant or the equivalent temperature corresponding thereto is set to a predetermined constant.
  • the evaporation temperature may be set to a predetermined constant.
  • the outside air heat exchange amount and the refrigerant heat exchange amount may be calculated.
  • the "outside air heat exchange amount” refers to the amount of heat received by the outside air in the outdoor heat exchanger.
  • the “refrigerant heat exchange amount” refers to the amount of heat lost by the refrigerant in the outdoor heat exchanger.
  • the outside air heat exchange amount is calculated based on at least the outside air temperature data TO, and is a function of the condensation pressure Pc or the equivalent temperature corresponding to it.
  • the refrigerant heat exchange amount is calculated based on at least the power consumption data P, and is a function of the condensation pressure Pc or the corresponding equivalent temperature. With the condensation pressure Pc or the equivalent temperature as a variable, the condensation pressure Pc or the equivalent temperature corresponding to the outside air heat exchange amount and the refrigerant heat exchange amount are obtained by repeated calculation.
  • the selected model is a heating capacity calculation model M5 to M8]
  • the condensation pressure Pc of the refrigerant or the equivalent temperature corresponding thereto is set to a predetermined constant.
  • the calculation procedure is performed by calculating the outside air heat exchange amount and the refrigerant heat exchange amount as in the case of the cooling capacity calculation models M1 to M4.
  • the outside air heat exchange amount refers to the amount of heat lost by the outside air in the outdoor heat exchanger
  • the refrigerant heat exchange amount refers to the amount of heat received by the refrigerant in the outdoor heat exchanger.
  • the selected capacity calculation model has the set refrigerant evaporation pressure Pe or equivalent temperature, or condensation pressure Pc or equivalent temperature, and Refrigerant circulation amount G and refrigeration cycle 746 obtained based on the air conditioner performance parameter 742 and the power consumption P using the derived refrigerant condensation pressure Pc or equivalent temperature, evaporation pressure Pe or equivalent temperature. Is obtained as an intermediate calculated value.
  • the final calculation unit 749 calculates the capacity C of the air conditioner 20 based on the intermediate calculated value.
  • FIG. 7 is a configuration of capacity calculation models M1 to M8 according to the configuration example 2.
  • Each of the capacity calculation models M1 to M8 has a characteristic formula 751.
  • the characteristic formula is a calculation formula used to reproduce the behavior of a certain air conditioner.
  • the characteristic formula may express the relationship between the power consumption data P and the capacity C.
  • the characteristic formula may represent the capacity C in the form of a linear function of the power consumption data P.
  • the characteristic formula may include a rated power consumption PN, a rated capacity CN, a half value (1/2) CN of the rated capacity, and the like.
  • the capacity calculation unit 74 selects one capacity calculation model from the plurality of capacity calculation models M1 to M8. select.
  • the time or season when the air conditioner 20 is operating may be taken into consideration.
  • which of the cooling capacity calculation models M1 to M4 and the heating capacity calculation models M5 to M8 should be selected is determined.
  • the final calculation unit 749 calculates the capacity C of the air conditioner 20 based on the power consumption data P.
  • FIG. 8 shows the configuration of the capacity calculation models M1 to M8 according to the configuration example 3.
  • Each of the capacity calculation models M1 to M8 has a characteristic formula 761.
  • the characteristic formula is a calculation formula used to reproduce the behavior of a certain air conditioner.
  • the characteristic formula may express the relationship between the power consumption data P and the capacity C.
  • the characteristic formula may express the ratio C / CN of the capacity C to the rated capacity CN in the form of a function of the ratio P / PN to the rated power consumption PN of the power consumption data P.
  • the capacity calculation unit 74 selects one capacity calculation model from the plurality of capacity calculation models M1 to M8. select.
  • the time or season when the air conditioner 20 is operating may be taken into consideration.
  • which of the cooling capacity calculation models M1 to M4 and the heating capacity calculation models M5 to M8 should be selected is determined.
  • the final calculation unit 749 calculates the capacity C of the air conditioner 20 based on the power consumption data P.
  • Each of the capacity calculation models M1 to M8 It has an air conditioner performance parameter 742 that represents the performance of the air conditioner.
  • Each of the capacity calculation models M1 to M8 derives the condensation pressure or the corresponding equivalent temperature, or the evaporation pressure or the equivalent equivalent temperature based on the power consumption data P, the outside air temperature data TO, and the air conditioner performance parameter 742.
  • the calculated value is calculated based on the derived condensation pressure or the corresponding equivalent temperature, the evaporation pressure or the equivalent equivalent temperature, and the calculated value is calculated.
  • At least one of the evaporation pressure Pe or the equivalent temperature of the refrigerant in the derivation of the condensation pressure or the equivalent temperature or the evaporation pressure or the equivalent temperature, and the condensation pressure Pc or the equivalent temperature is constant. Is determined as.
  • the air conditioner 20 includes a compressor and an outdoor heat exchanger 42.
  • the air conditioner performance parameter 741 Compressor performance parameters 753 for compressor performance, and Outdoor heat exchanger performance parameter 754, relating to the performance of the outdoor heat exchanger 42, Have at least one of.
  • the worker confirms the air conditioner 20 which is an existing facility.
  • the worker arrives at the building B and checks the indoor units 21 to 24, the outdoor units 40, the refrigerant communication pipes 31 to 32, and the like.
  • the worker attaches the power sensor 61 to the outdoor unit power line 41.
  • the worker starts measurement.
  • the power sensor 61 and the temperature sensor 62 continue to transmit the measured value data to the server 100.
  • the capacity calculation unit 74 of the calculation unit 70 selects one of a plurality of capacity calculation models M1 to M8 (for example, the capacity calculation model M3) based on the outdoor unit capacity information.
  • the power consumption and outside air temperature data acquired over the measurement period are input to the selected capacity calculation model M3.
  • the capacity calculation model M3 outputs data on the capacity of the air conditioner 20 required for the measurement period. In this way, the capacity calculation unit 74 outputs the calculated value of the required capacity.
  • the correction unit 75 corrects the calculated value of the ability based on the following information, and outputs the corrected calculation value.
  • the correction unit 75 presents the correction calculation value of the ability.
  • the proposal creation unit 76 creates a proposal for a newly introduced unit that should replace at least a part of the indoor units 21 to 24 and the outdoor unit 40 based on the calculated value of the capacity or the maximum value of the corrected calculated value.
  • a calculated value of the air conditioning capacity can be obtained based on the outdoor unit capacity information, power consumption, and outside air temperature. Therefore, the types of data to be acquired for capacity calculation can be reduced. That is, the labor required for the worker to measure the ability is reduced. In particular, the temperature sensor 62 does not measure the blown air discharged from the outdoor unit 40 after heat exchange. Further, since the system for measuring the capacity has many sensors, the cost of the system for measuring the capacity is low.
  • the capacity calculation unit 74 selects one capacity calculation model based on the outdoor unit capacity information. Therefore, an appropriate capacity calculation model is used to simulate the capacity of the outdoor unit.
  • the correction unit 75 obtains a correction calculation value by correcting the calculation value based on the information related to the pressure loss of the refrigerant in the refrigerant communication pipe and the information related to the rated output of the outdoor fan. Therefore, the accuracy of the required capacity is improved.
  • Modification example (7-1) Modification example 1A
  • the temperature sensor 62 and the outside air temperature receiving unit 73 acquire the outside air temperature.
  • a temperature / humidity sensor 62'and an outside air temperature / humidity receiving unit 73' may be provided to acquire the outside air temperature and the outside air humidity.
  • the capacity calculation unit 74 obtains a calculated value of the capacity of the air conditioner 20 based on the outdoor unit capacity information, power consumption, outside air temperature, and outside air humidity.
  • outside air humidity is also used in addition to other parameters to obtain the calculated value of capacity. Therefore, a more accurate calculated value is required.
  • the outside air temperature data was acquired by the temperature sensor 62.
  • the outside air temperature data may be acquired from the meteorological data bank 200 connected to the network N.
  • FIG. 4 shows the overall configuration of the air conditioning capacity presentation system 10'.
  • the air conditioning capacity presentation system 10' is different from the first embodiment in that it has a plurality of systems of air conditioners.
  • the air conditioning capacity presentation system 10' has a first system 20A, a second system 20B, and a third system 20C of the air conditioner. Further, the air conditioning capacity presentation system 10'has power sensors 61A to C, a temperature sensor 62, an operation terminal 63, a network N, and a server 100.
  • the air conditioner has a first system 20A, a second system 20B, and a third system 20C.
  • the first system 20A includes indoor units 21A to 24A, outdoor units 40A, and refrigerant communication pipes 31A and 32A.
  • the second system 20B includes indoor units 21B to 24B, outdoor units 40B, and refrigerant communication pipes 31B and 32B.
  • the third system 20C has indoor units 21C to 24C, outdoor units 40C, and refrigerant communication pipes 31C and 32C.
  • the power sensor 61A measures the power consumption of the outdoor unit 40A belonging to the first system 20A.
  • the power sensor 61B measures the power consumption of the outdoor unit 40B belonging to the second system 20B.
  • the power sensor 61C measures the power consumption of the outdoor unit 40C belonging to the third system 20C.
  • Identification information is assigned to each of the power sensors 61A to C.
  • Temperature sensor 62 acquires the outside air temperature.
  • the temperature sensor 62 is attached, for example, in the vicinity of the outdoor unit 40A.
  • Operation terminal 63 performs the process described in the first embodiment.
  • the operation terminal 63 receives the input of the association between the power sensors 61A to C and the first system 20A to the third system 20C. As shown in FIG. 5, the operation terminal 63 displays the identification information of the power sensors 61A to C, and receives an input from the worker regarding the association between the identification information and the system.
  • the ability calculation unit 74 outputs the calculated value of the required ability. If necessary, the calculated value of the ability is corrected. In this way, the correction unit 75 presents the correction calculation value of the ability required for each system.
  • the proposal creation unit 76 creates a proposal for a newly introduced unit that should replace at least a part of the outdoor unit and the indoor unit for a plurality of systems based on the calculated value of the capacity or the maximum value of the corrected calculated value.
  • the operation terminal 63 receives an input regarding the association between the identification information of the power sensors 61A to C and the system. Therefore, the initial setting for performing the measurement by the power sensors 61A to C is easy.
  • the proposal creation unit 76 of the arithmetic unit 70 creates a proposal for the outdoor unit and the newly introduced unit that should replace at least a part of the outdoor unit and the indoor unit for each of the plurality of systems.
  • Air conditioning capacity presentation system 20 Air conditioner 20A: First system 20B: Second system 20C: Third system 21 to 24, 21A to 24A, 21B to 24B, 21C to 24C: Indoor unit 31 to 32 , 31A to 32A, 31B to 32B, 32C to 32C: Refrigerant communication pipe 40, 40A to C: Outdoor unit 43: Outdoor fan 61, 61A to 61C: Power sensor 62: Temperature sensor 62': Temperature and humidity sensor 63: Operation terminal 70: Calculation unit 71: Outdoor unit capacity information receiving unit 72: Power consumption receiving unit 73: Outside air temperature receiving unit 73': Outside temperature and humidity receiving unit 74: Capacity calculation unit 75: Correction unit 76: Proposal making unit 100: Server M1 ⁇ M8: Capacity calculation model N: Network

Abstract

空調能力提示システム(10)は、室外ユニット(40)と、室内ユニット(21~24)と、室外ユニット(40)及び室内ユニット(21~24)を連絡する冷媒連絡配管(31、32)と、を含む空気調和装置(20)の能力を提示する。空調能力提示システム(10)は、第1取得部(71)と、計測部(72)と、第2取得部(73)と、能力算出部(74)と、を備える。第1取得部(71)は、室外ユニット(40)の定格能力である又は定格能力に関連する情報である室外ユニット能力情報を取得する。計測部(72)は、室外ユニット(40)の消費電力を計測する。第2取得部(73)は、室外ユニット(40)の周囲の空気の温度である外気温を取得する。能力算出部(74)は、室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和装置(20)の能力の算出値を得る。

Description

空調能力提示システム
 空気調和装置の能力を提示する、空調能力提示システム。
 特許文献1(特開2010-038487号公報)に開示されている空調能力計測システムは、空気調和装置の能力を計測する。この空調能力計測システムは、室外ユニットの吸込み空気の状態を計測する第1の温湿度計、室外ユニットの吹出し空気の状態を計測する第2の温湿度計、室外ユニットのファンの回転数を計測する回転センサ、室外ユニットの消費電力を計測する第1の電力計、室内ユニットに供給される電力を測定する第2の電力計を有する。
 ユーザによって使用される空気調和装置に、空気調和装置の能力を計測するための数多くのセンサを設置することは、ユーザに不便を強いる。すなわち、能力を計測する作業員が要する労力が大きくなる。さらに、能力を計測するためのシステムが多くのセンサを有するので、能力を計測するシステムのコストが高い。
 第1観点に係る空調能力提示システムは、少なくとも1台の室外ユニットと、少なくとも1台の室内ユニットと、室外ユニット及び室内ユニットを連絡する冷媒連絡配管と、を含む空気調和装置の能力を提示する。空調能力提示システムは、第1取得部と、計測部と、第2取得部と、能力算出部と、を備える。第1取得部は、室外ユニットの定格能力である又は定格能力に関連する情報である室外ユニット能力情報を取得する。計測部は、室外ユニットの消費電力を計測する。第2取得部は、室外ユニットの周囲の空気の温度である外気温を取得する。能力算出部は、室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和装置の能力の算出値を得る。
 この構成によれば、室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和能力の算出値が得られる。したがって、能力算出のために取得すべきデータの種類が少なくて済む。
 第1観点の変形例に係る空調能力出力システムは、少なくとも1台の室外ユニットと、少なくとも1台の室内ユニットと、室外ユニット及び室内ユニットを連絡する冷媒連絡配管と、を含む空気調和装置の能力を出力する。空調能力出力システムは、第1取得部と、計測部と、第2取得部と、能力算出部と、出力部と、を備える。第1取得部は、室外ユニットの定格能力である又は定格能力に関連する情報である室外ユニット能力情報を取得する。計測部は、室外ユニットの消費電力を計測する。第2取得部は、室外ユニットの周囲の空気の温度である外気温を取得する。能力算出部は、室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和装置の能力の算出値を得る。出力部は、算出された能力を出力する。
 第2観点に係る空調能力提示システムは、第1観点に係る空調能力提示システムにおいて、能力算出部は、複数の能力算出モデルを含む。能力算出部は、室外ユニット能力情報に基づいて、複数の能力算出モデルのうちから1つの能力算出モデルを選択する。
 この構成によれば、能力算出部は、室外ユニット能力情報に基づいて1つの能力算出モデルを選択する。したがって、室外ユニットの能力をシミュレーションするのに適切な能力算出モデルが用いられる。
 第2観点の変形例に係る空調能力出力システムは、第1観点の変形例に係る空調能力出力システムにおいて、能力算出部が、複数の能力算出モデルを含む。能力算出部は、室外ユニット能力情報に基づいて、複数の能力算出モデルのうちから1つの能力算出モデルを選択する。選択された能力算出モデルは能力を算出する。
 第3観点に係る空調能力提示システムは、第2観点に係る空調能力提示システムにおいて、能力算出モデルの各々が、空気調和装置の性能を表す空調機性能パラメータを有する。能力算出モデルの各々は、空調機性能パラメータと消費電力と外気温に基づいて、冷凍サイクルの蒸発圧力Peまたはそれに相当する相当温度、凝縮圧力Pcまたはそれに相当する相当温度を導出し、導出した冷凍サイクルに基づいて前記算出値を算出するように構成されている。冷凍サイクルにおける冷媒の蒸発圧力またはそれに相当する相当温度、凝縮圧力またはそれに相当する相当温度の少なくとも1つが定数として決定される。
 第4観点に係る空調能力提示システムは、第2観点に係る空調能力提示システムにおいて、能力算出モデルの各々は、消費電力及び能力の関係を表現する特性式を有する。
 第5観点に係る空調能力提示システムは、第2観点から第4観点のいずれか1つに係る空調能力提示システムにおいて、複数の能力算出モデルは、複数の冷房用能力算出モデル及び複数の暖房用能力算出モデルを含む。
 第5観点の変形例に係る空調能力出力システムは、第2観点の変形例に係る空調能力出力システムにおいて、複数の能力算出モデルは、複数の冷房用能力算出モデル及び複数の暖房用能力算出モデルを含む。冷房能力を算出する場合には、複数の冷房用能力算出モデルから1つのモデルが選択される。暖房能力を算出する場合には、複数の暖房用能力算出モデルから1つのモデルが選択される。
 第6観点に係る空調能力提示システムは、第1観点から第5観点のいずれか1つに係る空調能力提示システムにおいて、補正部をさらに備える。補正部は、算出値を補正することによって補正算出値を得る。
 この構成によれば、補正部は、算出値を補正することによって補正算出値を得る。したがって、必要とされる能力についての精度が向上する。
 第7観点に係る空調能力提示システムは、第6観点に係る空調能力提示システムにおいて、補正部は、冷媒連絡配管における冷媒の圧力損失に関連する情報、に基づいて算出値を補正する。
 第8観点に係る空調能力提示システムは、第6観点又は第7観点に係る空調能力提示システムにおいて、室外ユニットは室外ファンを含む。補正部は、室外ファンの定格出力に関連する情報、に基づいて算出値を補正する。
 第9観点に係る空調能力提示システムは、第1観点から第8観点のいずれか1つに係る空調能力提示システムにおいて、第2取得部は、室外ユニットの周囲の空気の湿度である外気湿度、をさらに取得する。能力算出部は、室外ユニット能力情報、消費電力、外気温、及び外気湿度に基づいて空気調和装置の能力の算出値を得る。
 この構成によれば、能力の算出値を得るのに、他のパラメータに加えて、外気湿度も用いられる。したがって、より精度のよい算出値が求められる。
 第10観点に係る空調能力提示システムは、第1観点から第9観点のいずれか1つに係る空調能力提示システムにおいて、第2取得部は、熱交換後に室外ユニットから排出される吹出空気に関する計測を行わない。
 第11観点に係る空調能力提示システムは、第6観点に係る空調能力提示システムにおいて、提案作成部、をさらに備える。提案作成部は、所定期間における算出値又は補正算出値の最大値に基づいて、室外ユニット及び室内ユニットの少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する。
 第12観点に係る空調能力提示システムは、第11観点に係る空調能力提示システムにおいて、空気調和装置は、複数の系統を含む。複数の系統の各々は、少なくとも1台の室外ユニットを含む。計測部は、複数の系統の各々について消費電力を計測する。
 第13観点に係る空調能力提示システムは、第12観点に係る空調能力提示システムにおいて、操作端末、をさらに備える。計測部は、複数の系統の各々について消費電力を計測する複数の電力センサを有する。操作端末は、電力センサの識別情報を表示する。操作端末は、識別情報と系統との関連付けについての入力を受け取る。
 第14観点に係る空調能力提示システムは、第12観点又は第13観点に係る空調能力提示システムにおいて、提案作成部が、複数の系統の各々について、室外ユニット及び室内ユニットの少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する。
 第15観点に係る方法は、少なくとも1台の室外ユニットと、少なくとも1台の室内ユニットと、を有する空気調和装置の能力を測定する方法であり、室外ユニットの定格能力である又は定格能力に関連する情報である室外ユニット能力情報を、第1取得部が得て、室外ユニットの消費電力を、計測部が計測し、室外ユニットの周囲の空気の温度である外気温を、第2取得部が取得し、室外ユニット能力情報、消費電力、及び外気温に基づいて、能力算出部が、空気調和装置の能力の算出値を出力する。
第1実施形態に係る空調能力提示システム10を示す模式図である。 演算部70を示す模式図である。 第1実施形態の変形例1Bに係る空調能力提示システム10を示す模式図である。 第2実施形態に係る空調能力提示システム10’を示す模式図である。 電力センサ61A~Cの識別情報と系統の関連付けの作業における操作端末63の画面である。 能力算出モデルの構成例1を説明する模式図である。 能力算出モデルの構成例2を説明する模式図である。 能力算出モデルの構成例3を説明する模式図である。
 <第1実施形態>
 (1)全体構成
 図1は、空調能力提示システム10の全体構成を示す。空調能力提示システム10は、空気調和装置20、電力センサ61、温度センサ62、操作端末63、ネットワークN、サーバ100、を有する。
 (2)詳細構成
 (2-1)空気調和装置20
 空気調和装置20は、複数の室内ユニット21~24を有する、マルチタイプの空気調和装置である。
 空気調和装置20は、室内ユニット21~24、室外ユニット40、冷媒連絡配管31、32を有する。
 (2-1-1)室内ユニット21~24
 室内ユニット21~24は、建物Bの内部に設置される。室内ユニット21~24は、冷風又は温風をユーザに提供することによって、ユーザのいる環境の温度を調節する。室内ユニット21~24には、室内ユニット電源線33が接続されている。室内ユニット電源線33は、商用電源52から電力を室内ユニット21~24へ伝達する。
 (2-1-2)室外ユニット40
 室外ユニット40は、建物Bの外部に設置される。室外ユニット40は、熱源である外気から、冷熱又は温熱を取得する。室外ユニット40は、室外ユニット電源線41を有する。室外ユニット電源線41は、商用電源51から電力を室外ユニット40へ伝達する。室外ユニット40は、室外熱交換器42、及び室外ファン43を有する。
 (2-1-3)冷媒連絡配管31、32
 冷媒連絡配管31、32は、室内ユニット21~24と室外ユニット40の間で冷媒を移動させる。冷媒連絡配管31、32は、室内ユニット21~24及び室外ユニット40と共に冷媒回路を形成する。
 (2-2)電力センサ61
 電力センサ61は、空気調和装置20の室外ユニット40の消費電力の測定値を取得する。電力センサ61は、室外ユニット電源線41に取り付けられる。電力センサ61は、無線通信によってネットワークNに接続し、消費電力データを送信することができる。
 (2-3)温度センサ62
 温度センサ62は、外気温の測定値を取得する。温度センサ62は、例えば室外ユニット40の近傍に取り付けられる。この場合、外気温は、室外ユニット40の周囲の空気の温度である。温度センサ62は、無線通信によってネットワークNに接続し、外気温データを送信することができる。
 なお、温度センサ62は、室外熱交換器42の熱交換後に室外ユニット40から排出される吹出空気に関する計測を行わない。
 (2-4)操作端末63
 操作端末63は、空気調和装置20の作業員等によって操作される。作業員は、室外ユニット能力情報を操作端末63に入力する。室外ユニット能力情報は、例えば室外ユニット40の定格能力である。あるいは、室外ユニット能力情報は、室外ユニット40の定格能力以外であって、当該定格能力に関連する情報であってもよい。操作端末63は、無線通信によってネットワークNに接続し、室外ユニット能力情報を送信することができる。
 また、作業員は、冷媒連絡配管31、32における冷媒の圧力損失に関連する情報を操作端末63に入力する。圧力損失に関連する情報とは、例えば以下の量である。
 - 室外ユニット40から最も遠い室内ユニット24と、室外ユニット40とを接続する冷媒連絡配管31、32の長さ。
 - 室外ユニット40と室内ユニット21~24との高低差。
 操作端末63は、ネットワークNを経由して、圧力損失に関連する情報を送信することができる。
 また、作業員は、室外ファン43の定格出力に関連する情報を操作端末63に入力する。操作端末63は、ネットワークNを経由して、室外ファン43の定格出力に関連する情報を送信することができる。
 (2-5)ネットワークN
 ネットワークNは、PSTN(公衆交換電話網)、携帯電話通信網、無線LAN、その他の公知のネットワークの集合体として構成される。
 (2-6)サーバ100
 サーバ100は、ネットワークNに接続される。サーバ100は、電力センサ61、温度センサ62、操作端末63から送信されたデータを受信することができる。
 (3)演算部70
 図2は、空調能力提示システム10の演算を担う演算部70の模式図である。演算部70は、物理的にはサーバ100に構成されている。演算部70は、室外ユニット能力情報受信部71、消費電力受信部72、外気温受信部73、能力算出部74、補正部75、提案作成部76、を有する。すなわち、サーバ100が専用のソフトウェアを実行することによって、室外ユニット能力情報受信部71、消費電力受信部72、外気温受信部73、能力算出部74、補正部75、提案作成部76として機能する。
 室外ユニット能力情報受信部71は、操作端末63からネットワークN経由で室外ユニット能力情報を受信する。
 消費電力受信部72は、電力センサ61からネットワークN経由で消費電力データを受信する。
 外気温受信部73は、温度センサ62からネットワークN経由で外気温データを受信する。
 能力算出部74は、室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和装置20の能力の算出値を得る。
 能力算出部74は、複数の能力算出モデルM1~M8を含む。能力算出部74は、室外ユニット能力情報に基づいて、複数の能力算出モデルM1~M8のうちから1つの能力算出モデルを選択する。複数の能力算出モデルM1~M8は、複数の冷房用能力算出モデルM1~M4及び複数の暖房用能力算出モデルM5~M8を含む。
 能力算出モデルM1~M8は、例えば特性式である。これに代えて、能力算出モデルM1~M8は、テーブル、又は学習済モデル、その他であってもよい。
 補正部75は、能力算出部74が算出した算出値を補正することによって、補正算出値を得る。補正部75はネットワークNから、“冷媒連絡配管31、32における冷媒の圧力損失に関連する情報”及び“室外ファン43の定格出力に関連する情報”を受信する。補正部75は、算出値から補正算出値を得る際に、これらの情報を用いる。
 提案作成部76は、所定期間における算出値又は補正算出値の最大値に基づいて、室外ユニット40及び前記室内ユニット21~24の少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する。
 (4)能力算出部74の詳細構成
 能力算出部74の構成としては、さまざまなものが考えられる。以下に、考えられる構成例について説明する。
 (4-1)構成例1
 (4-1-1)構成の詳細
 図6は、構成例1に係る能力算出モデルM1~M8の構成である。
 能力算出モデルM1~M8の各々は、空気調和装置20の性能を表す空調機性能パラメータ742と、最終算出部749と、を有する。
 空調機性能パラメータ743は、空気調和装置20の圧縮機の性能に関する圧縮機性能パラメータ753を含んでもよい。
 空調機性能パラメータ743は、空気調和装置20の室外熱交換器42の性能に関する室外熱交換器性能パラメータ744を含んでもよい。
 空調機性能パラメータ743は、空気調和装置20の室外ファン43の性能に関する室外ファン性能パラメータ745を含んでもよい。
 最終算出部749は、空気調和装置20の冷房又は暖房についての能力Cを算出する。
 (4-1-2)動作
 (4-1-2-1)モデルの選択
 室外ユニット能力情報受信部71が出力する室外ユニット能力情報SELに少なくとも基づいて、能力演算部74は、複数の能力算出モデルM1~M8から1つの能力算出モデルを選択する。
 この選択において、空気調和装置20が運転している時期又は季節などが考慮されてもよい。その結果、冷房用能力算出モデルM1~M4及び暖房用能力算出モデルM5~M8のいずれが選択されるべきかが決定される。
 (4-1-2-2)測定値の入力
 消費電力受信部72が出力する消費電力データP、及び、外気温受信部73が出力する外気温データTOは、選択された能力算出モデルに入力される。
 (4-1-2-3)冷凍サイクル746のシミュレーション
 能力算出モデルM1~M6は、消費電力データPと外気温データTOと空調機性能パラメータ742に基づき、冷凍サイクルにおける凝縮圧力Pcまたはそれに相当する相当温度、蒸発圧力Peまたはそれに相当する相当温度を導出する。
 冷媒の凝縮圧力Pcまたはそれに相当する相当温度、蒸発圧力Peまたはそれに相当する相当温度の導出においては、冷媒の蒸発圧力Peまたはそれに相当する相当温度および凝縮圧力Pcまたはそれに相当する相当温度が設定される。具体的には、設定は以下の手順で行われる。
 [選択されたモデルが冷房用能力算出モデルM1~M4である場合]
 (i)シミュレートされる冷凍サイクル746において、冷媒の蒸発圧力Peまたはそれに相当する相当温度が所定の定数に設定される。蒸発圧力Peの代わりに、蒸発温度が所定の定数に設定されてもよい。
 (ii)冷媒の凝縮圧力Pcまたはそれに相当する相当温度の導出において冷媒の凝縮圧力Pcまたはそれに相当する相当温度は演算により取得される。
 冷媒の凝縮圧力Pcまたはそれに相当する相当温度を取得するための演算においては、外気熱交換量と冷媒熱交換量が計算されてもよい。ここで、「外気熱交換量」とは、室外熱交換器において外気が受け取った熱量を指す。「冷媒熱交換量」とは、室外熱交換器において冷媒が失った熱量を指す。外気熱交換量は、少なくとも外気温データTOに基づいて計算されるものであり、凝縮圧力Pcまたはそれに相当する相当温度の関数である。冷媒熱交換量は、少なくとも消費電力データPに基づいて計算されるものであり、凝縮圧力Pcまたはそれに相当する相当温度の関数である。凝縮圧力Pcまたはそれに相当する相当温度を変数として、繰り返し計算により外気熱交換量と冷媒熱交換量が一致する凝縮圧力Pcまたはそれに相当する相当温度が取得される。
 [選択されたモデルが暖房用能力算出モデルM5~M8である場合]
 (i)冷媒の蒸発圧力Peまたはそれに相当する相当温度の導出において、冷媒の凝縮圧力Pcまたはそれに相当する相当温度が所定の定数に設定される。
 (ii)冷媒の蒸発圧力Peまたはそれに相当する相当温度の導出において、冷媒の蒸発圧力Peまたはそれに相当する相当温度は演算により取得される。
 演算の手順は、冷房用能力算出モデルM1~M4の場合と同様に、外気熱交換量と冷媒熱交換量の計算により行われる。ただし、暖房の場合は、外気熱交換量は、室外熱交換器において外気が失った熱量を指し、冷媒熱交換量は、室外熱交換器において冷媒が受け取った熱量を指す。
 [すべての能力算出モデルM1~M8について]
 過冷却度及び過熱度は所定の定数であると仮定してもよい。
 (4-1-2-4)中間計算値の取得
 選択された能力算出モデルが、設定した冷媒の蒸発圧力Peまたはそれに相当する相当温度、または、凝縮圧力Pcまたはそれに相当する相当温度、および、導出した冷媒の凝縮圧力Pcまたはそれに相当する相当温度、蒸発圧力Peまたはそれに相当する相当温度、を用いて空調機性能パラメータ742と消費電力Pに基づいて求められた冷媒循環量Gと冷凍サイクル746を中間計算値として得る。
 (4-1-2-5)能力Cの算出
 最終算出部749が、中間計算値に基づいて、空気調和装置20の能力Cを算出する。
 (4-2)構成例2
 (4-2-1)構成の詳細
 図7は、構成例2に係る能力算出モデルM1~M8の構成である。
 能力算出モデルM1~M8の各々は、特性式751を有する。特性式は、ある空気調和装置の挙動を再現するために用いられる計算式である。
 特性式は、消費電力データP及び能力Cの関係を表現するものであってよい。例えば、特性式は、能力Cを消費電力データPの一次関数の形式で表したものであってよい。特性式には、定格消費電力PN、定格能力CN、定格能力の半値(1/2)CNなどが含まれていてもよい。
 (4-2-2)動作
 (4-2-2-1)測定値の入力
 消費電力受信部72が出力する消費電力データP、及び、外気温受信部73が出力する外気温データTOは、能力算出部74に入力される。
 (4-2-2-2)モデルの選択
 室外ユニット能力情報SEL、及び、外気温データTOに少なくとも基づいて、能力演算部74は、複数の能力算出モデルM1~M8から1つの能力算出モデルを選択する。
 この選択において、空気調和装置20が運転している時期又は季節などが考慮されてもよい。その結果、冷房用能力算出モデルM1~M4及び暖房用能力算出モデルM5~M8のいずれが選択されるべきかが決定される。
 (4-2-2-3)能力Cの算出
 最終算出部749が、消費電力データPに基づいて、空気調和装置20の能力Cを算出する。
 (4-3)構成例3
 (4-3-1)構成の詳細
 図8は、構成例3に係る能力算出モデルM1~M8の構成である。
 能力算出モデルM1~M8の各々は、特性式761を有する。特性式は、ある空気調和装置の挙動を再現するために用いられる計算式である。
 特性式は、消費電力データP及び能力Cの関係を表現するものであってよい。例えば、特性式は、能力Cの定格能力CNに対する比率C/CNを、消費電力データPの定格消費電力PNに対する比率P/PNの関数の形式で表したものであってよい。
 (4-3-2)動作
 (4-3-2-1)測定値の入力
 消費電力受信部72が出力する消費電力データP、及び、外気温受信部73が出力する外気温データTOは、能力算出部74に入力される。
 (4-3-2-2)モデルの選択
 室外ユニット能力情報SEL、及び、外気温データTOに少なくとも基づいて、能力演算部74は、複数の能力算出モデルM1~M8から1つの能力算出モデルを選択する。
 この選択において、空気調和装置20が運転している時期又は季節などが考慮されてもよい。その結果、冷房用能力算出モデルM1~M4及び暖房用能力算出モデルM5~M8のいずれが選択されるべきかが決定される。
 (4-3-2-3)能力Cの算出
 最終算出部749が、消費電力データPに基づいて、空気調和装置20の能力Cを算出する。
 (4-4)構成例4
 前述したとおり、構成例1~3の構成において、能力算出モデルM1~M8は演算を行うのではなく、複数次元のテーブルの形式で入力及び出力の関係式を有していてもよい。
 (4-5)具体例
 (4-5-1)
 能力算出モデルM1~M8の各々は、
 空気調和装置の性能を表す空調機性能パラメータ742を有し、
 能力算出モデルM1~M8の各々は、消費電力データPおよび外気温データTOと空調機性能パラメータ742に基づいて凝縮圧力またはそれに相当する相当温度、または蒸発圧力またはそれに相当する相当温度を導出するとともに、導出した前記凝縮圧力またはそれに相当する相当温度、前記蒸発圧力またはそれに相当する相当温度に基づいて前記算出値を算出するように構成されており、
 凝縮圧力またはそれに相当する相当温度、または、蒸発圧力またはそれに相当する相当温度、の導出における冷媒の蒸発圧力Peまたはそれに相当する相当温度、凝縮圧力Pcまたはそれに相当する相当温度、の少なくとも1つが定数として決定される。
 この構成の効果としては、消費電力データP及び外気温データTOの2種類という少ない種類のデータだけを、センサを用いて測定すればよい点が挙げられる。
 (4-5-2)
 空気調和装置20は、圧縮機及び室外熱交換器42を有し、
 空調機性能パラメータ741は、
  圧縮機の性能に関する圧縮機性能パラメータ753、及び、
  室外熱交換器42の性能に関する室外熱交換器性能パラメータ754、
の少なくとも一方を有する。
 この構成の効果としては、室外ユニット40に搭載される圧縮機又は室外熱交換器42の挙動を能力Cの算出に反映させることができるので、能力Cの計算精度が向上する点が挙げられる。
 (4-5-3)
 能力算出モデルM1~M8の各々は、
  消費電力P及び前記能力Cの関係を表現する特性式751又は特性式761、
を有する。
 この構成の効果としては、能力算出モデルM1~M8の構成が比較的簡単である点が挙げられる。
 (5)能力提示の手順
 まず、作業員が既存の設備である空気調和装置20を確認する。作業員は建物Bに到着し、室内ユニット21~24、室外ユニット40、冷媒連絡配管31~32等を確認する。
 次に、作業員は電力センサ61を室外ユニット電源線41に取り付ける。
 次に、作業員は温度センサ62を室外ユニット40の近傍に取り付ける。
 次に、作業員は操作端末63を用いて、以下の値を入力する。
  - 室外ユニット能力情報(室外ユニットの定格能力など)。
  - 冷媒連絡配管31、32における冷媒の圧力損失に関連する情報。
  - 室外ファン43の定格出力に関連する情報。
 次に、作業員は計測を開始する。計測期間(例えば1年)にわたり、電力センサ61及び温度センサ62は測定値データをサーバ100へ送信し続ける。
 次に、データの分析が行われる。まず、演算部70の能力算出部74は、室外ユニット能力情報に基づいて、複数の能力算出モデルM1~M8のうち1つ(例えば能力算出モデルM3)を選択する。次いで、選択された能力算出モデルM3に、計測期間にわたり取得された消費電力及び外気温のデータが入力される。能力算出モデルM3は、計測期間にわたり必要とされた空気調和装置20の能力のデータを出力する。こうして、能力算出部74は、必要とされた能力の算出値を出力する。
 次に、能力の算出値が補正される。補正部75は、能力の算出値を、以下の情報に基づいて補正し、補正算出値を出力する。
  - 冷媒連絡配管31、32における冷媒の圧力損失に関連する情報。
  - 室外ファン43の定格出力に関連する情報。
こうして、補正部75は能力の補正算出値を提示する。
 次に、空気調和装置20の更新についての提案がなされる。提案作成部76は、能力の算出値又は補正算出値の最大値に基づいて、室内ユニット21~24及び室外ユニット40の少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する。
 (6)特徴
 (6-1)
 室外ユニット能力情報、消費電力、及び外気温に基づいて空気調和能力の算出値が得られる。したがって、能力算出のために取得すべきデータの種類が少なくて済む。すなわち、能力を計測する作業員が要する労力が小さくなる。とくに、温度センサ62は、熱交換後に室外ユニット40から排出される吹出空気に関する計測を行わない。さらに、能力を計測するためのシステムが多くのセンサを有するので、能力を計測するシステムのコストが安い。
 (6-2)
 能力算出部74は、室外ユニット能力情報に基づいて1つの能力算出モデルを選択する。したがって、室外ユニットの能力をシミュレーションするのに適切な能力算出モデルが用いられる。
 (6-3)
 補正部75は、冷媒連絡配管における冷媒の圧力損失に関連する情報、及び、室外ファンの定格出力に関連する情報に基づいて、算出値を補正することによって補正算出値を得る。したがって、必要とされる能力についての精度が向上する。
 (7)変形例
 (7-1)変形例1A
 上述の実施形態では、温度センサ62及び外気温受信部73は、外気温を取得する。これに代えて、温湿度センサ62’及び外気温湿度受信部73’を設け、外気温及び外気湿度を取得するようにしてもよい。この場合、能力算出部74は、室外ユニット能力情報、消費電力、外気温、及び外気湿度に基づいて空気調和装置20の能力の算出値を得る。
 この構成によれば、能力の算出値を得るのに、他のパラメータに加えて、外気湿度も用いられる。したがって、より精度のよい算出値が求められる。
 (7-2)変形例1B
 上述の実施形態では、外気温のデータは温度センサ62によって取得された。これに代えて、図3に示すように、外気温のデータを、ネットワークNに接続された気象データバンク200から取得するようにしてもよい。
 <第2実施形態>
 (1)全体構成
 図4は、空調能力提示システム10’の全体構成を示す。空調能力提示システム10’は、複数系統の空気調和装置を有する点において、第1実施形態と異なる。空調能力提示システム10’は、空気調和装置の第1系統20A、第2系統20B、第3系統20Cを有する。さらに、空調能力提示システム10’は、電力センサ61A~C、温度センサ62、操作端末63、ネットワークN、サーバ100、を有する。
 (2)詳細構成
 (2-1)空気調和装置
 空気調和装置は、第1系統20A、第2系統20B、第3系統20Cを有する。第1系統20Aは、室内ユニット21A~24A、室外ユニット40A、冷媒連絡配管31A、32Aを有する。第2系統20Bは、室内ユニット21B~24B、室外ユニット40B、冷媒連絡配管31B、32Bを有する。第3系統20Cは、室内ユニット21C~24C、室外ユニット40C、冷媒連絡配管31C、32Cを有する。
 (2-2)電力センサ61A~C
 電力センサ61Aは、第1系統20Aに属する室外ユニット40Aの消費電力を計測する。電力センサ61Bは、第2系統20Bに属する室外ユニット40Bの消費電力を計測する。電力センサ61Cは、第3系統20Cに属する室外ユニット40Cの消費電力を計測する。
 電力センサ61A~Cのそれぞれには、識別情報が割り振られている。
 (2-3)温度センサ62
 温度センサ62は、外気温を取得する。温度センサ62は、例えば室外ユニット40Aの近傍に取り付けられる。
 (2-4)操作端末63
 操作端末63は、第1実施形態で説明した処理を行う。
 加えて、操作端末63は、電力センサ61A~Cと、第1系統20A~第3系統20Cの関連付けの入力を受け付ける。操作端末63は、図5に示すように、電力センサ61A~Cの識別情報を表示するとともに、識別情報と系統の関連付けについて作業員からの入力を受け付ける。
 (2-5)その他
 その他の要素は、第1実施形態と同様である。
 (3)能力提示
 能力算出部74は、必要とされた能力の算出値を出力する。必要に応じて、能力の算出値が補正される。こうして、補正部75は系統ごとに必要であった能力の補正算出値を提示する。
 次に、空気調和装置20の更新についての提案がなされる。提案作成部76は、能力の算出値又は補正算出値の最大値に基づいて、複数の系統について、室外ユニット及び室内ユニットの少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する。
 (4)特徴
 (4-1)
 系統ごとに消費電力が計算される。しかしながら、複数の系統において、温度センサ62は共用される。したがって、設置すべき温度センサ62の数が少ない。
 (4-2)
 操作端末63が、電力センサ61A~Cの識別情報と系統との関連付けについての入力を受け取る。したがって、電力センサ61A~Cによる測定を行うための初期設定が容易である。
 (4-3)
 演算部70の提案作成部76が、複数の系統の各々について、室外ユニット及び前記室内ユニットの少なくとも一部に取って代わるべき前記新規導入ユニットの提案を作成する。
 (5)変形例
 第1実施形態の各変形例を第2実施形態に適用してもよい。
 <むすび>
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
10、10' :空調能力提示システム
20  :空気調和装置
20A :第1系統
20B :第2系統
20C :第3系統
21~24、21A~24A、21B~24B、21C~24C:室内ユニット
31~32、31A~32A、31B~32B、32C~32C:冷媒連絡配管
40、40A~C :室外ユニット
43  :室外ファン
61、61A~61C :電力センサ
62  :温度センサ
62' :温湿度センサ
63  :操作端末
70  :演算部
71  :室外ユニット能力情報受信部
72  :消費電力受信部
73  :外気温受信部
73' :外気温湿度受信部
74  :能力算出部
75  :補正部
76  :提案作成部
100 :サーバ
M1~M8  :能力算出モデル
N   :ネットワーク
特開2010-038487号公報

Claims (15)

  1.  少なくとも1台の室外ユニット(40)と、少なくとも1台の室内ユニット(21~24)と、前記室外ユニット及び前記室内ユニットを連絡する冷媒連絡配管(31、32)と、を含む空気調和装置の能力を提示する、空調能力提示システムであって、
     前記室外ユニットの定格能力である又は前記定格能力に関連する情報である室外ユニット能力情報を取得する第1取得部(63、71)と、
     前記室外ユニットの消費電力を計測する計測部(61、72)と、
     前記室外ユニットの周囲の空気の温度である外気温を取得する第2取得部(62、73)と、
     前記室外ユニット能力情報、前記消費電力、及び前記外気温に基づいて前記空気調和装置の前記能力の算出値を得る能力算出部(74)と、
    を備える、空調能力提示システム。
  2.  前記能力算出部は、複数の能力算出モデル(M1~M8)を含み、
     前記能力算出部は、前記室外ユニット能力情報に基づいて、前記複数の能力算出モデルのうちから1つの能力算出モデルを選択する、
    請求項1に記載の空調能力提示システム。
  3.  前記能力算出モデルの各々は、前記空気調和装置の性能を表す空調機性能パラメータ(742)を有し、
     前記能力算出モデルの各々は、前記消費電力、前記外気温、及び前記空調機性能パラメータに基づいて、冷凍サイクル(746)の凝縮圧力(Pc)またはそれに相当する相当温度、または、蒸発圧力(Pe)またはそれに相当する相当温度、を導出するとともに、導出した前記凝縮圧力(Pc)またはそれに相当する相当温度、または、前記蒸発圧力(Pe)またはそれに相当する相当温度、に基づいて前記算出値を算出するように構成されており、
     前記冷凍サイクルにおける前記冷媒の蒸発圧力(Pe)またはそれに相当する相当温度、凝縮圧力(Pc)またはそれに相当する相当温度の少なくとも1つが定数として決定される、
    請求項2に記載の空調能力提示システム。
  4.  前記能力算出モデルの各々は、
      前記消費電力(P)及び前記能力(C)の関係を表現する特性式(751、761)
    を有する、
    請求項2に記載の空調能力提示システム。
  5.  前記複数の能力算出モデルは、複数の冷房用能力算出モデル(M1~M4)及び複数の暖房用能力算出モデル(M5~M8)を含む、
    請求項2~4のいずれか1項に記載の空調能力提示システム。
  6.  前記算出値を補正することによって補正算出値を得る補正部(75)、
    をさらに備える、
    請求項1~5のいずれか1項に記載の空調能力提示システム。
  7.  前記補正部は、前記冷媒連絡配管における冷媒の圧力損失に関連する情報、に基づいて前記算出値を補正する、
    請求項6に記載の空調能力提示システム。
  8.  前記室外ユニットは室外ファン(43)を含み、
     前記補正部は、前記室外ファンの定格出力に関連する情報、に基づいて前記算出値を補正する、
    請求項6又は請求項7に記載の空調能力提示システム。
  9.  前記第2取得部は、前記室外ユニットの周囲の前記空気の湿度である外気湿度、をさらに取得し、
     前記能力算出部は、前記室外ユニット能力情報、前記消費電力、前記外気温、及び前記外気湿度に基づいて前記空気調和装置の前記能力の前記算出値を得る、
    請求項1~8のいずれか1項に記載の空調能力提示システム。
  10.  前記第2取得部は、熱交換後に前記室外ユニットから排出される吹出空気に関する計測を行わない、
    請求項1~9のいずれか1項に記載の空調能力提示システム。
  11.  所定期間における前記算出値又は前記補正算出値の最大値に基づいて、前記室外ユニット及び前記室内ユニットの少なくとも一部に取って代わるべき新規導入ユニットの提案を作成する、提案作成部(76)、
    をさらに備える、
    請求項6に記載の空調能力提示システム。
  12.  前記空気調和装置は、複数の系統(20A、20B、20C)を含み、
     前記複数の系統の各々は、少なくとも1台の室外ユニット(40A、40B、40C)を含み、
     前記計測部は、前記複数の系統の各々について前記消費電力を計測する、
    請求項11に記載の空調能力提示システム。
  13.  操作端末(63)、
    をさらに備え、
     前記計測部は、前記複数の系統の各々について前記消費電力を計測する複数の電力センサ(61A、61B、61C)を有し、
     前記操作端末は、前記電力センサの識別情報を表示し、
     前記操作端末は、前記識別情報と前記系統との関連付けについての入力を受け取る、
    請求項12に記載の空調能力提示システム。
  14.  前記提案作成部は、前記複数の系統の各々について、前記室外ユニット及び前記室内ユニットの少なくとも一部に取って代わるべき前記新規導入ユニットの提案を作成する、
    請求項12又は請求項13に記載の空調能力提示システム。
  15.  少なくとも1台の室外ユニット(40)と、少なくとも1台の室内ユニット(21~24)と、を有する空気調和装置の能力を測定する方法であって、
     前記室外ユニットの定格能力である又は前記定格能力に関連する情報である室外ユニット能力情報を、第1取得部(63、71)が得て、
     前記室外ユニットの消費電力を、計測部(61、72)が計測し、
     前記室外ユニットの周囲の空気の温度である外気温を、第2取得部(62、73)が取得し、
     前記室外ユニット能力情報、前記消費電力、及び前記外気温に基づいて、能力算出部(74)が、前記空気調和装置の前記能力の算出値を出力する、
    方法。
PCT/JP2020/014698 2019-03-28 2020-03-30 空調能力提示システム WO2020196925A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080021513.4A CN113631868A (zh) 2019-03-28 2020-03-30 空调能力提示系统
EP20779988.3A EP3951278B1 (en) 2019-03-28 2020-03-30 Air conditioning capability indication system
US17/441,634 US20220146133A1 (en) 2019-03-28 2020-03-30 Air conditioning capacity presenting system
EP23178013.1A EP4235052A3 (en) 2019-03-28 2020-03-30 Air conditioning capability indication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063098 2019-03-28
JP2019-063098 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196925A1 true WO2020196925A1 (ja) 2020-10-01

Family

ID=72608441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014698 WO2020196925A1 (ja) 2019-03-28 2020-03-30 空調能力提示システム

Country Status (5)

Country Link
US (1) US20220146133A1 (ja)
EP (2) EP3951278B1 (ja)
JP (3) JP6816838B2 (ja)
CN (1) CN113631868A (ja)
WO (1) WO2020196925A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231725A1 (en) * 2019-05-10 2020-11-19 Carrier Corporation Online capacity estimation of a refrigeration unit
CN112524746B (zh) * 2019-09-17 2021-11-26 青岛海尔空调电子有限公司 多联机空调系统中室外机均衡结霜的控制方法
JP7367472B2 (ja) 2019-11-11 2023-10-24 東京電力ホールディングス株式会社 推定方法、推定装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038487A (ja) 2008-08-07 2010-02-18 Takasago Thermal Eng Co Ltd 空調能力計測システムおよび室外機の風量検出方法
JP2010096432A (ja) * 2008-10-16 2010-04-30 Chubu Electric Power Co Inc 空調機の運転制御装置及び空調機の運転制御方法
JP2012255570A (ja) * 2011-06-07 2012-12-27 Shimizu Corp 空調能力算出システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476899B2 (ja) * 1994-04-12 2003-12-10 東芝キヤリア株式会社 空気調和機
JP2004301505A (ja) * 2004-07-30 2004-10-28 Matsushita Electric Ind Co Ltd 空調制御装置
JP5940295B2 (ja) * 2011-12-27 2016-06-29 株式会社竹中工務店 空調制御システム及び空調制御方法
JP5868251B2 (ja) * 2012-04-16 2016-02-24 三菱電機株式会社 制御装置、及び、この制御装置を備えた冷熱機器システム
JP6529747B2 (ja) * 2014-11-20 2019-06-12 三菱重工サーマルシステムズ株式会社 空気調和機
JP6249932B2 (ja) * 2014-12-04 2017-12-20 三菱電機株式会社 空調システム
JP6562893B2 (ja) * 2016-11-17 2019-08-21 株式会社東芝 パラメータ推定装置、空調システム評価装置、パラメータ推定方法およびプログラム
JP6606053B2 (ja) * 2016-12-09 2019-11-13 ダイキン工業株式会社 空気調和装置
US10989429B2 (en) * 2017-03-31 2021-04-27 Daikin Industries, Ltd. Air conditioning system
US10731886B2 (en) * 2017-07-20 2020-08-04 Carrier Corporation HVAC system including energy analytics engine
JP6627913B2 (ja) * 2018-05-28 2020-01-08 ダイキン工業株式会社 空気調和装置
CN109323419A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 用电高峰控制空调的方法和装置及空调系统和设备
EP4019856A4 (en) * 2019-08-19 2022-08-17 Mitsubishi Electric Corporation INFORMATION PROCESSING DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038487A (ja) 2008-08-07 2010-02-18 Takasago Thermal Eng Co Ltd 空調能力計測システムおよび室外機の風量検出方法
JP2010096432A (ja) * 2008-10-16 2010-04-30 Chubu Electric Power Co Inc 空調機の運転制御装置及び空調機の運転制御方法
JP2012255570A (ja) * 2011-06-07 2012-12-27 Shimizu Corp 空調能力算出システム

Also Published As

Publication number Publication date
JP2020186910A (ja) 2020-11-19
CN113631868A (zh) 2021-11-09
JP2020165649A (ja) 2020-10-08
EP3951278B1 (en) 2023-07-19
JP6816838B2 (ja) 2021-01-20
JP2022075917A (ja) 2022-05-18
EP4235052A3 (en) 2023-09-27
US20220146133A1 (en) 2022-05-12
EP4235052A2 (en) 2023-08-30
EP3951278A1 (en) 2022-02-09
EP3951278A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP6816838B2 (ja) 空調能力提示システム
Hong et al. Development and validation of a new variable refrigerant flow system model in EnergyPlus
KR102087981B1 (ko) 실외의 가변 온습도 환경 및 실내의 가변 현열 잠열 건물부하 모사가 가능한 냉난방기 에너지성능 시험장치 및 이를 이용하는 에너지성능 시험방법
CN104764173B (zh) 一种暖通空调系统的监控方法、装置及系统
CN101101239B (zh) 用于测试空调的设备及方法
CN101937011B (zh) 中央空调的分户计量系统和分户计量方法
Xu et al. Inherent correlation between the total output cooling capacity and equipment sensible heat ratio of a direct expansion air conditioning system under variable-speed operation (XXG SMD SHR DX AC unit)
US10174963B2 (en) Smart building HVAC energy management system
JP2020186910A5 (ja)
CN105387571B (zh) 低温制冷控制方法、装置及空调器
Li et al. A DDC-based capacity controller of a direct expansion (DX) air conditioning (A/C) unit for simultaneous indoor air temperature and humidity control–Part I: Control algorithms and preliminary controllability tests
WO2013094350A1 (ja) 遠隔監視制御システムおよびその運転方法
JP2022075917A5 (ja)
JP2019132530A (ja) 空調機器選定システム
WO2018188520A1 (zh) 在线检测空调制冷能效比和制冷量的方法
CN110736248A (zh) 空调出风温度的控制方法和装置
JP6972468B2 (ja) 空調装置の評価装置および評価方法
WO2018188430A1 (zh) 在线检测空调制热能效比和制热量的方法
CN106765931A (zh) 多联机空调的控制方法
CN113864991B (zh) 空调器室内环境温度的修正方法、装置以及空调器
CN110726221B (zh) 确定空调能效信息的方法、装置和空调
CN107990502A (zh) 供水温度的控制方法及装置
CN115614907A (zh) 一种空调器及其室内温度预测方法和装置
CN112396763B (zh) 一种多联机空调分户计量与计费方法及装置
JP3877955B2 (ja) 可変制御システムの運用評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779988

Country of ref document: EP

Effective date: 20211028