WO2013094350A1 - 遠隔監視制御システムおよびその運転方法 - Google Patents

遠隔監視制御システムおよびその運転方法 Download PDF

Info

Publication number
WO2013094350A1
WO2013094350A1 PCT/JP2012/079693 JP2012079693W WO2013094350A1 WO 2013094350 A1 WO2013094350 A1 WO 2013094350A1 JP 2012079693 W JP2012079693 W JP 2012079693W WO 2013094350 A1 WO2013094350 A1 WO 2013094350A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
optimization
data
control
remote monitoring
Prior art date
Application number
PCT/JP2012/079693
Other languages
English (en)
French (fr)
Inventor
宮島 裕二
菊池 宏成
隆成 水島
慶一 北島
大島 昇
将郎 蔵本
鈴木 浩二
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to SG11201403420TA priority Critical patent/SG11201403420TA/en
Priority to CN201280063073.4A priority patent/CN104011475A/zh
Publication of WO2013094350A1 publication Critical patent/WO2013094350A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states

Definitions

  • the present invention relates to a remote monitoring control system for a heat source facility of a building, a factory, a data center, a facility that requires cooling and heating such as district heating and cooling, and an operation method thereof.
  • Air-conditioning equipment is equipment that manufactures cold and hot heat using a turbo chiller, an absorption cold / hot water generator, etc., and cools and heats the load.
  • a heat source machine that produces cold and warm heat controls the cooling capacity and heating capacity according to the increase and decrease of the load, and conveys the heat medium to the load side by a pump.
  • aged deterioration of the heat source machine and the piping system, and piping pressure loss due to actual construction may differ from the design values set at the time of design, and may differ from the characteristics set at the time of planning.
  • the heat source equipment is operated at a constant flow rate and temperature, there is a current situation in which the energy of the heat source machine and the pump is wasted at the time of partial load.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a remote monitoring control system capable of reducing energy consumption and appropriately adjusting and maintaining performance at the time of introduction and its operation method.
  • the remote monitoring and control system is a remote monitoring and controlling system for controlling the air conditioning equipment by controlling the flow rate and temperature of a heat medium having cold or hot heat obtained by heat exchange with a heat source, Adjustment parameter identifying means for identifying an adjustment parameter for control, an apparatus characteristic storage unit for storing the characteristics of the apparatus of the air conditioner, an air conditioner simulator for simulating the energy consumption of the air conditioner, and the air conditioner
  • a management / adjustment computer having optimization calculation means for performing an optimization operation based on simulation of energy consumption of the facility, the management / adjustment computer corresponding to the environmental conditions of the air conditioning facility, Or at least one of a heat source machine for producing the heat and a heat exchanger for exchanging heat with the heat source, and a feature of a conveyance system for conveying the heat medium. Based on such evaluation function according to the energy consumption becomes a desired value, the optimized control data for controlling the air-conditioning equipment, are calculated by said air conditioning plant simulator wherein the optimization calculation means.
  • the operation method of the remote monitoring control system includes at least one heat source unit, a heat exchanger, a heat source medium pump, a cold / hot medium pump, a piping system through which the heat source medium or the cold / hot medium flows, and the air conditioning.
  • a heat quantity measuring means for measuring the heat quantity of the load of the equipment;
  • a flow rate control means for controlling the flow rate of the heat source medium and the cold / hot medium to a predetermined flow rate; 6.
  • (a) is a figure which shows the relationship between the flow volume of a pump, and a total pressure
  • (b) is a figure which shows the relationship between a flow volume and power consumption
  • (c) is a figure which shows the relationship between a flow volume and an inverter frequency. It is a figure which shows the table data for optimization control of the rotational speed ratio of a cooling water pump.
  • FIG. 1 is a conceptual configuration diagram illustrating a remote monitoring control system according to a first embodiment of the present invention.
  • the remote monitoring and control system S1 of the first embodiment uses a management / adjustment computer c1 to control one or more air conditioning facilities e11,... (A facility side 1, a facility side 2,. It is a system for monitoring and control.
  • the optimization calculation means c15 uses at least one of the flow rate / temperature of the medium) and the operating model and number of heat source machines (see the refrigerator 1 in FIG. 4) as optimization parameters so that the evaluation function is minimized.
  • the air conditioner simulator c14 searches for an optimization value using the result of calculating the energy consumption of each heat source facility based on the change in the outside air state and the load state and the control state of the temperature / flow rate of the cold water / cooling water. .
  • optimization calculations are performed for various combinations of outdoor wet bulb temperatures and loads, and optimization control data is created. Furthermore, the optimization control data is commanded to the monitoring control device e1 of each heat source facility (air conditioning facility e11,%) As a control target value.
  • the management-side management / adjustment computer c1 calculates optimization control data based on the operation data of the monitoring control device e1 and the air conditioning equipment e11,. Adjustments are made by rewriting the optimization control data for each facility.
  • the remote monitoring control system S1 is provided on the management side with a monitoring control device e1 for monitoring and controlling the air conditioning equipment e11 to be controlled provided on each of the equipment sides 1, 2, 3,. And a management / adjustment computer c1 for managing / adjusting each of the monitoring control devices e1.
  • the equipment side 2, the equipment side 3,... Have the same configuration as the equipment side 1, and therefore only the equipment side 1 will be described.
  • the management-side adjustment computer c1 on the management side includes a data communication unit c11, an adjustment parameter identification unit c12, a device characteristic database c13, an air conditioning equipment simulator c14, an optimization calculation unit c15, and creation of optimization control data. Means c16.
  • the data communication means c11 communicates with the data communication means e12 on the equipment side 1, 2, 3,.
  • the adjustment parameter identification means c12 identifies adjustment parameters for each control on the equipment sides 1, 2, 3,... From data collected from the equipment sides 1, 2, 3,.
  • the device characteristic database c13 the characteristics of the devices (the refrigerator 1, the cooling water pump 2, the cold / hot water pump 3, etc. in FIG. 4) provided in the air conditioning facilities e11,.
  • the data is updated by the adjustment parameter identification means c12.
  • the equipment characteristic database c13 includes the characteristics of pressure loss with respect to the flow rate of piping, the characteristics of the flow rate and total pressure and power of the pump, the heat exchange characteristics of the cooling tower, and the like. If there is a deviation, correction is performed so that the value is close to the actual operating state. For example, the energy consumption of the refrigerator may be corrected by linear approximation using a simulation value and an actual operation value.
  • the air conditioning equipment simulator c14, the optimization calculation means c15, and the optimization control data creation means c16 are such that the evaluation function is minimized from the data collected from the equipment sides 1, 2, 3,... And the information in the equipment characteristic database c13. And the optimization calculation is performed to create optimization control data for each equipment side 1, 2, 3,.
  • the facility side 1 includes a monitoring control device e1 that monitors and controls the air conditioning facility e11 to be controlled.
  • the air conditioning equipment e11 performs cooling and heating of buildings, factories, data centers, regions, and the like.
  • the monitoring control device e1 includes a data communication unit e12 that communicates with the management / adjustment computer c1, a storage unit e13 for optimization control data, an optimization command value calculation unit e14, and a communication unit e15 that communicates with the air conditioning equipment e11. And data collection / storage means e16.
  • the optimization control data storage unit e13 stores optimization control data transmitted from the management computer / adjustment computer c1.
  • the data collection / storage means e16 collects and stores data of the air conditioning equipment e11 from the air conditioning equipment e11 via the communication means e15.
  • the optimization command value calculation means e14 determines the control target value used for the control command value used for the PID control and sequence control of the air conditioning equipment e11 from the transmitted optimization control data and information of the data collection / storage means e16. Search for.
  • the air conditioning equipment e11 that is a control target of the remote monitoring control system S1 is automatically controlled by a control means (not shown) such as PID control so that the temperature is set by the user.
  • This automatic control performs sequence control such as temperature control of the air conditioning equipment e11, flow control of the heat medium to be used, and operation stop of equipment such as a refrigerator, a heat source machine, and a pump.
  • the optimization command value calculation means e14 reads the operation information data of the air conditioning equipment e11 from the data collection / storage means e16, the optimization control data corresponding to the operation state and the installation environment, and the optimization control data storage section e13. To obtain a control target value, and commands the control means (not shown) of the air conditioning equipment e11 via the communication means e15.
  • the actual operation data of the air conditioning equipment e11 and the collected data of the control target value are communicated by the data communication means e12 to the management side / adjustment computer c1.
  • the adjustment parameter identifying means c12 of the management / adjustment computer c1 identifies adjustment parameters for controlling the air conditioning equipment e11 from the collected data, and changes the device characteristic data in the device characteristic database c13.
  • the air conditioning equipment simulator c14 and the optimization computing means c15 use the information in the device characteristic database c13 and the collected data to perform a simulation and optimization computation that minimizes the evaluation function for the air conditioning equipment e11. I do.
  • the optimization control data creation means c16 generates optimization control data from the optimization calculation result from the optimization calculation result of the optimization parameter corresponding to the combination of the outside air wet bulb temperature and the load. Update the optimization control data.
  • One or more of the monitoring control devices e1 on the equipment side 1, 2,... Are connected to the air conditioning equipment e11 of the heat source equipment, and optimization control data used for controlling the air conditioning equipment e11 is sent from the management / adjustment computer c1.
  • the storage unit e13 for optimization control data is updated.
  • FIG. 2 is a conceptual configuration diagram showing a remote monitoring control system according to the second embodiment of the present invention.
  • the optimization control data of the first embodiment is data having optimization control table data and adjustment parameters. Since the other configuration of the second embodiment is the same as that of the first embodiment, the same components are denoted by reference numerals in the 20th order of the components of the first embodiment, and detailed description thereof is omitted.
  • the adjustment parameters shown in the remote monitoring control system S2 of the second embodiment are numerical values related to the automatic control of the heat source equipment of the air conditioning equipment e21 such as the update period of the control target value of the optimization control of the monitoring control device e2 and the changing speed.
  • the adjustment parameters include, for example, the number of average processed data, the output interval of the optimization command value, the output interval of the output signal, the default setting value when operating the refrigerator on the facility side, and the like.
  • the optimization control table data is specific detailed data of the control target value of the optimization control.
  • FIG. 7 shows the rotation speed ratio of the cooling water pump as an example of the optimization control table data.
  • the optimization control table data includes, for example, the rotational speed ratio of the cooling water pump 2 shown in FIG. 4 on the equipment side with respect to the wet bulb temperature (° C.) and the load factor (%) of the outside air.
  • the load factor (%) is the load factor (%) of the refrigerator 1.
  • the load factor (%) of the refrigerator 1 is a load factor (%) in which the load factor (%) of the actual air conditioning load (ratio to the maximum load) is allocated to the refrigerator 1.
  • the actual load factor (%) of the air conditioning load is the load factor of the refrigerator 1.
  • the load factor (%) of the actual air-conditioning load is 80%, it is 40% when divided equally.
  • the load factor (%) of one refrigerator 1 is 30%, the load factor (%) of the other refrigerator 1 is 50%.
  • the interval between the wet bulb temperature and the load factor is an example, and the amount of data can be reduced by increasing the interval.
  • the management / adjustment computer c2 on the management side of the second embodiment replaces the optimization control data creation means c16 (see FIG. 1) of the first embodiment, and creates an adjustment parameter creation means c26a and optimization control table creation. Means c26b.
  • the adjustment parameter creation unit c26a creates an adjustment parameter based on the optimization calculation of the optimization calculation unit c25. Also, set values such as temperature, flow rate, and inverter frequency during rated operation are created using values in the device characteristic database c23, and the number of data in the optimization control table is calculated from the calculation result of the optimization calculation means c25. To create data.
  • the optimization control table creation unit c26b creates table data (see FIG.
  • the table data is a group of table data such as the cold water temperature, the cooling water temperature, and the number of operating units. When there is one optimization command value, there is one table.
  • the monitoring control device e2 on the facility side of the second embodiment replaces the optimization control data storage unit e13 of the first embodiment, and replaces the adjustment parameter storage unit e23a and the optimization control table data storage unit e23b. And have.
  • the adjustment parameter storage unit e23a stores and updates the adjustment parameters transmitted from the management / adjustment computer c2.
  • the optimization control table data storage unit e23b stores and updates optimization control table data transmitted from the management / adjustment computer c2.
  • the optimization command value calculation means e24 receives, from the data collection / storage means e26, the outside air temperature on the equipment side, the outside air relative humidity, the cool / warm water temperature to the refrigerator, the cool / warm water return temperature of the refrigerator, and the cool / warm water flow rate. Calculate the outside air wet bulb temperature and the cooling load factor of the refrigerator.
  • the data collection / storage means e26 includes the cooling water inlet temperature of the refrigerator on the facility side, the cooling / warm water flow rate ratio (with respect to the maximum flow rate rating), and the cooling water flow rate ratio (with respect to the maximum flow rate rating) of the refrigerator. From table data for wet bulb temperature (° C) and load factor (%) such as cold / hot water temperature at refrigerator outlet, refrigerator cooling water inlet temperature, refrigerator cold / hot water flow ratio, refrigerator cooling water flow ratio Then, each output value such as the temperature of the hot and cold water at the outlet of the refrigerator is obtained and output to a control means (not shown) of the air conditioning equipment e21 together with adjustment parameters related to automatic control.
  • the simulation and optimization calculation are performed so that the device characteristics are corrected based on the actual operation data of the air conditioning equipment e21 and the collected control target value, and the evaluation function such as total energy consumption is minimized.
  • the optimization control table data and adjustment parameters are newly generated and the air conditioning equipment e21 is controlled, so that the air conditioning equipment e21 can be controlled with high efficiency. Therefore, energy consumption can be reduced and CO 2 emission can be suppressed.
  • FIG. 3 is a conceptual configuration diagram showing a remote monitoring control system according to the third embodiment of the present invention.
  • the remote monitoring control system S3 of Embodiment 3 is a remote monitoring control system having means for transmitting and receiving data via the existing Internet as a communication method between communication means. Since the other configuration is the same as that of the second embodiment, the same components are denoted by reference numerals in the 30s, and detailed description thereof is omitted.
  • the remote monitoring control system S3 includes an Internet connection means c3i on the management / adjustment computer c3 side and an internet connection means e3i on the equipment side as means for transmitting and receiving data via the Internet.
  • This system it is possible to communicate without installing a long-distance line by sharing the existing line Internet without using a dedicated line.
  • no wired equipment is required.
  • FIG. 4 is a conceptual configuration diagram showing a heat source system used in Embodiments 1 to 3 according to the present invention.
  • the heat source system N1 is a heat source system in which optimization control is performed by any one of the remote monitoring control systems S1 to S3 of the first to third embodiments.
  • the heat source system N1 performs heat exchange with a cold heat source device 1 (referred to as the refrigerator 1 in FIG. 4), a cooling water (heat source water) pump 2, a cold / hot water pump 3, and outside air, such as a turbo refrigerator and an absorption chiller / heater.
  • the cooling tower 4 and the control means 6 for controlling the heat source system N1 are provided, and cold water is supplied to the load 5.
  • the cooling water (heat source water) pump 2 and the cold / hot water pump 3 are each subjected to inverter control, for example.
  • the cooling tower (heat exchanger) 4 exchanges heat with the outside air and generates cooling water (heat source medium, heat medium) having a predetermined temperature.
  • the heat source of the cooling tower 4 includes outside air, seawater, river water, groundwater, etc., but is not limited to these.
  • the cooling water generated in the cooling tower 4 is circulated by the cooling water (heat source water) pump 2 through the refrigerator 1 of the cold heat source device as shown by a one-dot chain line in FIG.
  • the refrigerator 1 creates cold / hot water (cold / hot medium, heat medium) for cooling with the load 5 using the cold heat of the cooling water, and the cold / hot water is circulated through the load 5 by the cold / hot water pump 3 for cooling. Is called.
  • One or more cold / hot water systems including the refrigerator 1, the cold / hot water pump 3, and the load 5 are provided.
  • the control means 6 receives detection signals from a temperature sensor t1 that measures the temperature of the outside air and a humidity sensor h1 that measures the humidity of the outside air.
  • control means 6 includes a temperature sensor t2 for measuring the temperature of the cooling water at the outlet of the cooling tower 4, a temperature sensor t3 for measuring the temperature of the cold / hot water at the outlet of the refrigerator 1, and an inlet / outlet of the load 5 of the air conditioning equipment. Detection signals of temperature sensors t4 and t5 that measure the temperature of the cold / hot water at the outlet are input. Furthermore, a detection signal of a flow sensor f1 that measures the flow rate of cold / hot water at the outlet of the load 5 of the air conditioning equipment is input to the control means 6. In addition, a flow rate sensor that measures the flow rate of the cooling water produced in the cooling tower 4 and a sensor that measures the power consumption of all equipment and the energy consumption of gas may be installed, and the detection signal may be input. improves.
  • the load ratio (%) of the ratio of the air conditioning load 5 to the maximum load is obtained from the temperature detected by the temperature sensors t4 and t5 and the flow rate detected by the flow sensor f1.
  • the load factor (%) of the load 5 is assigned to the refrigerator 1.
  • the distribution of the load factor (%) can be determined by adjusting the flow rate of the cold / hot water flowing through each refrigerator 1.
  • the type and number of the refrigerator 1 of the heat source unit, the number of the cold / hot water pump 3, the number of the cooling water pump 2, the temperature / flow rate of the cold / hot water / heat source water (cooling water) are used as the optimization parameters, and the air conditioning equipment simulator (c14 ⁇ c34) calculation result energy consumption based on operating costs, C0 2 generation amount of at least one is calculated in advance optimization control table data calculated optimization parameter is minimized, the outside air
  • the optimization control table data of the optimization calculation result is searched from the measured values of the wet bulb temperature and the load state of the air conditioning equipment, and the control target value of each device of the heat source system N1 is changed by the numerical value of the table data. .
  • the cold-heat source apparatus 1 becomes a heat source
  • the cooling tower 4 uses the heating tower (heat exchanger) which uses external air as a heat source, for example.
  • the cooling water is heated water (heat source medium)
  • the cold / hot water is hot water (cold / hot medium).
  • the heating tower can be used for both heating and cooling.
  • FIG. 5 is a conceptual configuration diagram showing a remote monitoring control system according to the fourth embodiment of the present invention.
  • the remote monitoring control system S4 of the fourth embodiment is an example of a cold heat source.
  • the remote monitoring control system S4 has the same configuration as the remote monitoring control system S3 of FIG. Components similar to those of the remote monitoring control system S3 of the third embodiment of the remote monitoring control system S4 are denoted by reference numerals in the 40s and detailed description thereof is omitted.
  • the remote monitoring control system S4 includes a router c4i as an Internet connection means of the management / adjustment computer c4, and a router e4i as an Internet connection means of the monitoring control device e4.
  • the remote monitoring control system S4 stores the parameter change history storage unit c47a for storing the adjustment parameters created by the adjustment parameter creation means c46a and the optimization control table data created by the optimization control table creation means c46b. And a table change history storage unit c47b.
  • the adjustment parameter created by the adjustment parameter creation means c46a of the remote monitoring control system S4 and the optimization control table data created by the optimization control table creation means c46b are stored as equipment-specific transmission data c58 for each equipment.
  • the facility-specific transmission data c58 is determined by the facility determination unit c59, and the corresponding facility is transmitted to the monitoring control device e4 of the corresponding facility using the data communication unit c41.
  • the air-conditioning equipment e41 to be controlled by the remote monitoring control system S4 is the heat source system N1 in FIG. 4, and the optimization control processing is divided between the equipment-side monitoring control device e4 and the management-side management / adjustment computer c4.
  • the absorption chiller / heater is an absorption chiller that makes cold / hot water using lithium bromide, ammonia, or the like.
  • Control of the air conditioning equipment e41 of the remote monitoring control system S4 is feedback control such as control means 6 (see FIG. 4), constant temperature control of the built-in equipment such as the refrigerator 1 and cooling tower (4) constant control of the cooling water outlet temperature. Is done.
  • the control target value of the control means 6 (see FIG. 4) and the operating state of the air conditioning equipment e41 are stored in a PC (Personal computer) or PLC (programmable logic controller) by the data collection / storage means e46 (see FIG. 5).
  • the operation state of the heat source system N1 of the air conditioning equipment includes the operation stop state of the equipment, outside air, cooling water (heat medium), cold / hot water temperatures, cooling water, cold / hot water flow rates, cold / hot water pump 3 and cooling water pump. There are 2 inverter frequencies.
  • the optimization command value calculation means e44 the instantaneous data may be subjected to filtering processing, and by performing averaging processing in which failure or abnormal data of various sensors is deleted, at the time of failure detection, a control target value for optimization control Is switched to that for failure, and the failure state and average value are stored.
  • the optimization command value calculation means e44 calculates the wet bulb temperature from the dry bulb temperature measured by the outside air temperature sensor t1 and the relative humidity measured by the humidity sensor h1, and the load 5 side of the cold / hot water (heat medium) is calculated.
  • the cooling load is calculated from the return temperature difference and the flow rate.
  • the optimization command value is searched from the table data of the optimization command value corresponding to the input values of the outside wet bulb temperature and the cooling load.
  • the command value is controlled by limiting the command value so that it falls within the range that satisfies the conditions of the operating range of the device, for example, the range that satisfies the flow rate change amount and temperature change amount per hour and the upper and lower limit range. Output to means 6.
  • the optimization command value calculating means e44 is based on the relationship between the rotational speed of the cold / hot water pump 3 or the cooling water pump 2 and the flow ratio based on the flow rate ratio search value of the optimization control table data. Calculate and output the rotation speed ratio. For example, when the rotation speed ratio of the cold / hot water pump 3 or the cooling water pump 2 is controlled by an inverter, a value obtained by multiplying the rated inverter frequency ratio by 100 and the rated ratio of the inverter frequency is output to the inverter.
  • the adjustment parameter is adjusted by changing the maximum capacity of the device, the optimized operation cycle, the pump rotation speed ratio (inverter frequency ratio) and the coefficient of the flow rate, etc. as parameters, thereby adjusting the monitoring control device e4.
  • the facility-side monitoring and control device e4 is configured by a PC or a PLC, and is connected to the Internet via a router e4i.
  • an existing VPN Virtual Private Network
  • the management / adjustment computer c4 transmits / receives data to / from the plurality of facility-side monitoring / control devices e4 in the same manner. Data is transmitted and received based on established protocols such as FTP (File Transfer Protocol), HTTP (Hypertext Transfer Protocol), HTTPS (Hypertext Transfer Protocol Over Secure Secure Socket Layer) and the like.
  • FTP File Transfer Protocol
  • HTTP Hypertext Transfer Protocol
  • HTTPS HTTP Transfer Protocol Over Secure Secure Socket Layer
  • the operation information data is stored for each facility by the facility determination means c59 of the management side / adjustment computer c4 on the management side.
  • Data to be transmitted and received by the data communication means c41 is only numeric values, and the management-side management / adjustment computer c4 associates and stores the item names corresponding to the numerical order. This method can make it difficult to identify data during data communication.
  • the facility determination unit c59 stores the storage area for the operation data and the optimization control data separately, and the facility-side monitoring control device e4 transmits and receives the data in the storage area corresponding to the facility side.
  • the management / adjustment computer c4 identifies adjustment parameters by comparing the resistance characteristics of the piping system and the deterioration of the equipment with the simulation results at the time of planning from the operation data of the air conditioning equipment e41. For example, in an absorption chiller / heater (refrigerator 1 is illustrated in FIG. 4), the energy consumption (gas consumption) under the same load and cooling water temperature using the air conditioner simulator c44 adjusted at the time of introduction and the device characteristics. ) Is large, it is determined that the battery has deteriorated, and the energy consumption is corrected.
  • the system configuration for simulating the heat source equipment stores data corresponding to each equipment side 1, 2, 3,...
  • the system configuration consists of a cooling tower, refrigerator, pump, chilled water piping, and cooling water piping, and is a combined configuration of equipment that consists of energy conservation and mass conservation, and consists of model, number, capacity, temperature and flow rate control methods. .
  • the pipe resistance ⁇ P is substantially proportional to the square of the flow rate Q from the equation (1). Based on the relationship between the flow rate Q of the pump and the total pressure P (see FIG. 6 (a)) and the relationship between the flow rate Q and the power consumption E (see FIG. 6 (b)), the actual lift C is constant. As shown in FIG. 6 (c), the total pressure P of the pump is obtained from the electric power (kw) and the inverter frequency ni using FIGS. 6 (a) and 6 (b). The relationship of resistance ⁇ P is obtained. That is, a and C in the equation (1) are obtained.
  • the flow rate Q can be expressed by the following equation (2) using the inverter frequency ni from the relationship of the equation (1).
  • (Flow rate) Q d x (ni-e) (2)
  • the coefficients d and e are obtained by measuring at least two points.
  • the flow rate may be obtained from the differential pressure of the heat exchanger of the refrigerator 1, and when there is an external output of the refrigerator 1, the value may be used as operation data.
  • the number of sensors attached to the air conditioning facility e41 can be reduced locally.
  • the control parameter data is converted into data for transmission by the adjustment parameter creation means c46a using the control table data as the adjustment control parameter change cycle and change speed.
  • FIG. 7 shows table data for optimization control of the rotational speed ratio of the cooling water pump.
  • the optimization control table data is, for example, the rotation speed ratio of the cooling water pump 2 corresponding to the combination of the outside air wet bulb temperature and the load factor, the cooling water temperature, the cold / hot water temperature, the cold / hot water pump (3) the rotation speed ratio, the freezing Machine (1) Data such as operation pattern (number, model).
  • the adjustment parameters and the optimization control table may be stored in the change history storage units c47a and c47b.
  • the adjustment parameter and the optimization control table data are transmitted to the monitoring control device e4 on the equipment side via the data communication means c41 so as to be transmitted to the corresponding equipment, and stored in the storage areas (e43a, e43b).
  • Optimization control table data using the characteristics of the equipment and piping system of the air conditioning equipment e41 obtained from the design data is stored as an initial value, and can be updated at any time during adjustment when the air conditioning equipment e41 is introduced. After the adjustment at the time of introduction of the air conditioning equipment e41, the optimization control table data is always updated once a month or once a year, and in the event of a failure, the update cycle is shortened.
  • the monitoring control device e4 At the time of data writing by the monitoring control device e4, it is preferable to perform the operation with the control target value of the operation mode as a rated setting, for example, and to start the optimization control after the writing is completed.
  • the adjustment parameters and optimization control table data are updated using the operation data corresponding to each air-conditioning equipment (e41) for the other equipment 2, equipment 3,... Even one c4 can be used.
  • the management / adjustment computer c4 By sharing the backup and management computer / adjustment computer c4 as a plurality of bases, the management / adjustment computer c4 on the plurality of management sides can be managed, and the management convenience is improved.
  • the equipment determination means c59 identifies many equipment, changes the table data for optimization, and the parameter for adjustment corresponding to each equipment. By centrally managing a large number of facilities, control errors are eliminated and the air conditioning facility simulator c44 can be easily updated.
  • a dedicated signal line may be used instead of the Internet for data communication that makes it possible to grasp the operational status of a large number of facilities at once.
  • the management / adjustment computer c4 and the monitoring control device e4 are each one PC. It may be incorporated into.
  • the relationship between the rotational speed ratio and the flow rate ratio can be linearly approximated and corrected at two points, the maximum flow rate ratio and the minimum flow rate ratio. The number of measurements can be reduced.
  • the management / adjustment computer c4 configures the heat source system N1, the outside air state that changes every moment in the air conditioning equipment e41, the load amount on the load 5 (see FIG. 4) side, the measured value of the temperature of the seawater and river water of the heat source,
  • the temperature and flow rate of cold water / cooling water are optimized so that the energy consumption of the heat source system N1 predicted from the characteristics of the equipment to be used and piping resistance is minimized, and the cooling water outlet temperature ( Temperature sensor t2), cold water outlet temperature on the high temperature side of the refrigerator 1 (measured with temperature sensor t3), cold water outlet temperature of the refrigerator 1, rotational speed of the cold water pump 3, and rotational speed of the cooling water pump 2. Change the control target value.
  • the heat source machine (refrigerator 1 in FIG. 4) as a parameter, the heat treated by the heat source machine (refrigerator 1 in FIG. 4), waste heat using the cogeneration generator exhaust heat Calculate the load of the heat source of the heat source used, and input the operating temperature of the equipment (heat source machine (refrigerator 1), cold / hot water pump 3, heat source water pump) (Cooling water pump 2), cooling tower 4), cooling / warm water system (cooling / warm water system in FIG. 4) / heat source water system (cooling water system in FIG. 4), based on the resistance characteristics of the piping system, Calculate the energy consumption and total value of each device.
  • the equipment heat source machine (refrigerator 1), cold / hot water pump 3, heat source water pump) (Cooling water pump 2), cooling tower 4), cooling / warm water system (cooling / warm water system in FIG. 4) / heat source water system (cooling water system in FIG. 4), based on the resistance characteristics of the piping system,
  • the energy consumption of the cooling water pump 2 and the hot / cold water pump 3 is calculated by predicting or measuring the relationship between the pressure loss and the flow rate of the piping system (piping, valves, heat exchanger, etc.), and calculating the pump head from the results.
  • the pump power is calculated from the relationship.
  • the relationship between the fan power of the cooling tower 4 (see FIG. 4) and the cooling performance is predicted using the general enthalpy standard overall volume transfer coefficient of the cooling tower 4.
  • the total value of energy consumption of the heat source system N1 is an evaluation variable W
  • the heat source unit (refrigerator 1 in FIG. 4 etc.) model and the number of operating units, the cooling water / cooling water pump rotation speed ratio and temperature are optimized variables As a result, an optimization variable that minimizes the evaluation function W is searched, and the optimum value is set as a control target value.
  • This control method is operated so that the evaluation function W is minimized, that is, the total value of energy consumption is minimized, compared with the case where the refrigerator 1 is operated at the maximum load (rated load).
  • the system COP (Coefficient Of Performance) of the heat source system N1 in FIG. 4 can be operated at a high value, and energy saving can be achieved.
  • At least one control target value of the cooling water temperature / cold hot / cold water temperature and the number and type of operating heat source devices (refrigerator 1 in FIG. 4) is set as an optimization parameter.
  • the optimization parameters are determined by the air conditioning equipment simulator c44 and the optimization calculation means c45, and the optimum command value determined for the outside air wet bulb temperature and the load factor (for the rated load) is previously used as optimization control table data.
  • This is an optimization control method in which operating conditions are set for the control system and equipment based on measured values of outside air and load conditions.
  • FIG. 7 shows an example of optimization control table data.
  • FIG. 7 shows the rotation speed ratio of the cooling water pump 2 with respect to the outdoor wet bulb temperature and the load factor (%) of the refrigerator 1.
  • the load factor (%) of the refrigerator 1 is obtained by assigning the load factor (%) of the load 5 of the air conditioning to the refrigerator 1 as described above.
  • the table data for optimization control includes the cooling water outlet temperature of the cooling tower 4, the cooling / warm water flow rate ratio of the refrigerator 1 (relative to the rated flow rate of the maximum flow rate), and the cooling water flow rate ratio of the cooling tower 4 (the maximum flow rate rating). Table data such as cold / hot water temperature at the outlet of the refrigerator 1.
  • the cooling tower 4 shown in FIG. 4 controls the cooling water outlet temperature measured by the temperature sensor t2 to be constant by air volume control that changes the rotation speed of the fan.
  • the cold / hot water secondary pump performs variable flow control of the cold / hot water corresponding to the load on the load 5 side.
  • the control of the cold / hot water secondary pump is a well-known discharge pressure constant control according to the demand on the load side or a terminal pressure constant control in which the terminal pressure on the load 5 side is constant.
  • the wet bulb temperature of the outside air is measured from the temperature sensor t1 and the humidity sensor h1, as shown in FIG.
  • the cooling load is calculated from the cold / hot water flow rate of the cold / hot water system and the difference between the cold / hot water return temperature.
  • the cold / warm water temperature may be the outlet temperature of the refrigerator 1. Further, it may be operated at a constant rotation, and can be dealt with by changing the setting of the system configuration stored in the device characteristic database c43.
  • the monitoring control device e4 to which the optimization parameter and the optimization control table data are sent from the management / adjustment computer c4 determines the model and operation of the refrigerator 1 from the outside wet bulb temperature measured by the temperature sensor t1 and the load factor.
  • the optimum values of the number of units, the temperature of the cool / warm water / cooling water and the pump rotation speed ratio are searched from the optimization control table data e43b (see FIG. 5).
  • the outlet temperature set value of the refrigerator 1 is changed.
  • the setting is changed by following changes in the outside air wet bulb temperature and the cooling load, for example, once every 10 minutes.
  • the cooling tower 4 may be a known open type cooling tower or a closed type cooling tower.
  • the heat pump type refrigerator 1 may be air-cooled.
  • the refrigerator 1 may use an inverter refrigerator that performs rotation speed control of the compressor of the refrigerator 1.
  • the efficiency of partial load is improved compared to the case of constant speed control.
  • the cooling water flow rate / temperature may be set to a constant value, thereby reducing the cost of the inverter of the pump and the cooling tower fan.
  • the optimization command value may be directly transmitted to the monitoring control device e4 side of the remote monitoring control system S4 instead of the optimization control table data. Capability can be reduced.
  • the refrigerator 1 is exemplified as the heat source device, but the heat source device may be a heat pump hot water generator.
  • the refrigerant (heat medium) may not be water, but may be an existing fluid latent heat medium or brine water.
  • the operation starts with the default control target value. Then, for example, once a year, once a month, the operation data of the air conditioning equipment e41 and the monitoring control device e4 are collected, and the simulation and optimization calculation are performed by the management / adjustment computer c4 to obtain the optimization control data. It is created and sent to the monitoring control device e4.
  • the monitoring control device e4 obtains a control target value from the control table data of the optimization control data, and the control means 6 operates the air conditioning equipment e41 with the control target value.
  • control target value can be set for each of the monitoring control devices e4 of the air conditioning facilities e41 at a plurality of locations from a single management / adjustment computer c4. That is, data can be sent by communication without providing a simulator at each site where the air conditioning facility e41 is located. Therefore, when upgrading the simulator, it is only necessary to upgrade the air conditioning equipment simulator c44 of the management / adjustment computer c4 at one location. It can be set in the facility e41.
  • the performance of the air conditioning equipment e41 changes with use over time, but the operation data of the air conditioning equipment e41 and the monitoring control device e4 is collected by the management / adjustment computer c4, and a simulation is performed so that the operating state is newly optimized.
  • the optimal control target value is sent to the monitoring control device e4, and the air conditioning equipment e41 can be operated with the optimal control target value at that time.
  • the configuration of the refrigerator 1 may be a tandem operation in which the refrigerators 1 are arranged in series.
  • the load distribution of the refrigerator 1 is added to the optimization variable, and the power consumption of the cooling water pump 2 and the cold / hot water pump 3 is added to the evaluation function.
  • the command value optimized in this way is used as optimization control table data.
  • the optimization control table data is, for example, the outlet temperature setting value of the refrigerator 1 connected to the return side of the cold / hot water. Thereby, the fall of the partial load efficiency of the tandem operation of the refrigerator 1 can be prevented.
  • ⁇ Modification 2> You may use it for control of the cold / hot water pump 3 and the cooling water pump 2 as a heat source machine which manufactures cold water with the cooling tower 4 by using the refrigerator 1 as a heat exchanger.
  • a heat source machine that produces cold water or hot water by solar heat may be included, and the heat source water pump may be a cooling tower that exchanges heat with air or a hot water transport pump of a solar collector. Thereby, energy saving of the system using renewable energy becomes possible.
  • ⁇ Modification 4> A system including a cold / hot water generator using waste heat of cogeneration may be used. Thereby, the optimization operation
  • the flow rate relative to the pump frequency may be a method of measuring a constant frequency and flow rate of the maximum flow rate when the actual head is small. It is possible to prevent a decrease in flow rate by increasing the numerical value. Adjustment time can be shortened by reducing the number of measurement data at the time of initial adjustment.
  • Automatic tuning may be used. Determine the change range when updating the optimization control table and adjustment parameters (for example, the cooling water flow rate is 10%), and if it can be sent, send the data to the data communication means e12 to e42 on the equipment side. I can send it.
  • the optimization control table and adjustment parameters for example, the cooling water flow rate is 10%
  • ⁇ Modification 7> You may perform the optimization operation including cold / hot water temperature using the heat exchanger characteristic of the load side, and its load.
  • the load side pump and air conditioner fan are included to increase the number of optimization parameter items and the chilled water temperature can be increased, the operating efficiency of the refrigerator is improved and energy is saved.
  • a heating device may be used.
  • efficiency is improved and energy is saved by lowering the temperature of the refrigerant.
  • Display means for displaying the operation data and the optimization control table may be provided.
  • a configuration in which a person (user) makes a judgment and confirms visually or includes a changing unit that manually changes the control target value may be employed. Thereby, control can be assisted.
  • a storage device may be connected to rewrite the data on the facility side. As a result, it is possible to cope with an initial stage where there is no communication means.
  • the outdoor wet bulb temperature used for optimization may be the dry bulb temperature or the specific enthalpy of the outdoor air, and the wet bulb temperature may be estimated from the measured value with the relative humidity being constant. Although the accuracy of optimization is lowered, the number of sensors to be used can be reduced because the physical quantity to be measured is reduced.
  • PID control parameters may be included in the adjustment parameters. As a result, the feedback control system of the control means 6 can be adjusted.
  • ⁇ Modification 13> The upper and lower limits of the pump speed ratio or inverter frequency ratio corresponding to the upper and lower limits of the pump flow ratio relative to the rated flow are obtained from the design or actual measurement values, and the pump flow ratio is set as the command value for optimal control. You may convert into inverter frequency ratio. Although there is an error in the flow rate, when the actual head is small, as shown in the equation (2), the flow rate ratio and the pump rotation speed ratio are approximated by the first order, so that adjustment can be made with two points of data. Further, the pump flow rate may be measured with a differential pressure or a flow meter, and feedback control may be performed so as to obtain a set value.
  • the management / adjustment computers c1 to c4 For example, if the operation data collected by the management / adjustment computers c1 to c4 is the rotational speed and flow rate of the pumps (cooling water pump 2, cold / hot water pump 3) provided in the heat medium transport system, the management / adjustment The computers c1 to c4 generate optimization control data based on the pump rotation speed and flow rate of the operation data of the air conditioning equipment e11 to e41, and the optimization in the monitoring control devices e1 to e4 on the equipment side By changing the control data, the monitoring control devices e1 to e4 obtain the control target value from the optimization control data, and instructs the control means 6 to control the pump.
  • the operation data collected by the management / adjustment computers c1 to c4 is the rotational speed and flow rate of the pumps (cooling water pump 2, cold / hot water pump 3) provided in the heat medium transport system
  • the management / adjustment The computers c1 to c4 generate optimization control data based on the pump rotation speed and flow
  • the heat storage operation schedule may be changed. Data can be exchanged from a remote location.
  • the adjustment parameter and the optimization control table are sent to the monitoring control devices e1 to e4 as the optimization control data, and the air conditioning facilities e11 to e41 are controlled.
  • an optimization control table may be sent to the monitoring control devices e1 to e4 to control the air conditioning equipment e11 to e41.
  • the database is illustrated as an example of a memory
  • the case where the optimization control data and the collected data of the air conditioning equipments e11 to e41 are sent online is exemplified.
  • the optimization control data and the collected data are stored in the storage medium, respectively.
  • a configuration may be adopted in which data is exchanged between the e1 to e4 and the management / adjustment computers c1 to c4 offline.
  • Refrigerator heat source machine, equipment
  • Cooling water pump (equipment, pump, heat source medium pump, cold / hot medium pump) 3 Cold / hot water pump (equipment, pump) 4 Cooling tower (heat exchanger, equipment) 6
  • Control means (equipment control means, temperature control means, flow rate control means) c1, c2, c3, c4 Management / adjustment computers c11, c21, c31, c41 Data communication means c12, c22, c32, c42 Adjustment parameter identification means c13, c23, c33, c43
  • Equipment characteristic database (equipment characteristic storage section) c14, c24, c34, c44
  • Air conditioning equipment simulator c15, c25, c35, c45 Optimization computing means e1, e2, e3, e4 Monitoring and control device e11, e21, e31, e41 Air conditioning equipment e13 Storage unit for optimization control data e23a , E33a Adjust

Abstract

 本発明の遠隔監視制御システムは、空調設備(e11)の制御のための調整用パラメータを同定する調整用パラメータ同定手段(c12)、空調設備(e11)の機器の特性やシステム構成が記憶される機器特性記憶部(c13)、空調設備(e11)のエネルギー消費量をシミュレートする空調設備シミュレータ(c14)、および最適化演算を行う最適化演算手段(c15)を有する管理・調整用計算機(c1)を備え、管理・調整用計算機(c1)は、環境条件に対応して、冷熱または温熱を製造する熱源機(1)および熱源と熱交換する熱交換器(4)の少なくとも何れか、および熱媒体を搬送する搬送系の特性を基に、エネルギ消費に係る評価関数(W)が所望値になるように、空調設備(e11)を制御するための最適化制御用データを演算する。

Description

遠隔監視制御システムおよびその運転方法
 本発明は、ビル、工場、データセンタ、地域冷暖等の冷熱や温熱が必要な施設の熱源設備に係る遠隔監視制御システムおよびその運転方法に関する。
 空調設備は、冷熱や温熱をターボ冷凍機や吸収冷温水発生機等で製造し、負荷側の冷却や加熱を行う設備である。冷熱や温熱を製造する熱源機は負荷の増減に従って冷却能力や暖房能力を制御し、熱媒体を負荷側にポンプで搬送する。
特開2003-299161号公報 特開2006-275323号公報 特開2005-114295号公報
 ところで、負荷や外気条件の変化により、熱源機の種類や台数を高効率運転となるように運転停止することや、搬送系の必要な流量に制御しないと、冷凍機の運転効率が低い運転やポンプのエネルギが無駄になる場合がある。そのため、機器の負荷や外気条件が変化したときの機器を含むシステムの特性を考慮した運転方法が必要となる。
 一方、熱源機や配管系の経年劣化や、実際の施工による配管圧損が設計時に設定した設計値と異なることがあり、計画時に設定した特性と異なることがある。
 また、熱源設備の流量や温度条件を一定で運転した場合、部分負荷時に熱源機やポンプのエネルギが無駄になる現状がある。
 本発明は上記実状に鑑み、エネルギ消費量を削減できるとともに、導入時の調整や性能の維持管理を適切に行える遠隔監視制御システムおよびその運転方法の提供を目的とする。
 請求項1の遠隔監視制御システムは、熱源と熱交換して得られる冷熱または温熱をもつ熱媒体の流量や温度を制御して空調設備を制御する遠隔監視制御システムであって、前記空調設備の制御のための調整用パラメータを同定する調整用パラメータ同定手段、前記空調設備の機器の特性が記憶される機器特性記憶部、前記空調設備のエネルギー消費量をシミュレートする空調設備シミュレータ、および前記空調設備のエネルギー消費量のシミュレートに基づき最適化演算を行う最適化演算手段を有する管理・調整用計算機を備え、前記管理・調整用計算機は、前記空調設備の環境条件に対応して、前記冷熱または前記温熱を製造する熱源機および前記熱源と熱交換する熱交換器の少なくとも何れか、および前記熱媒体を搬送する搬送系の特性を基に、エネルギ消費に係る評価関数が所望値になるように、前記空調設備を制御するための最適化制御用データを、前記空調設備シミュレータと前記最適化演算手段によって演算している。
 請求項10の遠隔監視制御システムの運転方法は、少なくとも1台以上の熱源機、熱交換器、熱源媒体ポンプ、冷/温媒体ポンプ、熱源媒体や冷/温媒体が流れる配管系統と、前記空調設備の負荷の熱量を計測する熱量計測手段と、前記熱源媒体、前記冷/温媒体の流量を所定の流量に制御する流量制御手段と、前記冷/温媒体、前記熱源媒体の温度を所定の温度に制御する温度制御手段とを前記空調設備に備える請求項1から請求項5の何れか一項に記載の遠隔監視制御システムの運転方法であって、前記最適化制御用データにより前記空調設備に設けられる機器の運転台数、前記熱源媒体や前記冷・温媒体の温度・流量の少なくとも1つを制御する。
 本発明によれば、エネルギ消費量を削減できるとともに、導入時の調整や性能の維持管理を適切に行える遠隔監視制御システムおよびその運転方法を実現できる。
本発明に係る実施形態1の遠隔監視制御システムを示す概念的構成図である。 本発明に係る実施形態2の遠隔監視制御システムを示す概念的構成図である。 本発明に係る実施形態3の遠隔監視制御システムを示す概念的構成図である。 本発明に係る実施形態1~3の熱源システムを示す概念的構成図である。 本発明に係る実施形態4の遠隔監視制御システムを示す概念的構成図である (a)はポンプの流量と全圧の関係を示す図であり、(b)は流量と消費電力の関係を示す図であり、(c)は流量とインバータ周波数の関係を示す図である。 冷却水ポンプの回転速度比の最適化制御用テーブルデータを示す図である。
 以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
 図1は、本発明に係る実施形態1の遠隔監視制御システムを示す概念的構成図である。
 実施形態1の遠隔監視制御システムS1は、遠隔地の制御対象である単数または複数の空調設備e11、…(図1の設備側1、設備側2、…)を管理・調整用計算機c1によって、監視制御するシステムである。
 遠隔監視制御システムS1は、遠隔地の熱源設備(空調設備e11、…)それぞれの全体のエネルギ消費、C0発生量、使用する一次エネルギ量の1つ以上を評価関数とし、使用する冷媒(熱媒体)の流量・温度、熱源機(図4の冷凍機1参照)の運転機種と台数のうちの少なくとも一つを最適化パラメータとして、評価関数が最小となるように、最適化演算手段c15により、空調設備シミュレータc14で、外気状態や負荷状態の変化と冷水・冷却水の温度・流量の制御状態に基づいた各熱源設備のエネルギ消費量を算出した結果を用いて、最適化値を探索する。そして、さまざまな外気湿球温度や負荷の組み合わせに対して、最適化演算を行い、最適化制御用データを作成する。更に、最適化制御用データを制御目標値として、各熱源設備(空調設備e11、…)の監視制御装置e1にそれぞれ指令する。
 管理側の管理・調整用計算機c1は、適時に、各設備側の監視制御装置e1から収集した監視制御装置e1と空調設備e11、…の運転データを基に最適化制御用データを演算し、各設備側の最適化制御用データを書き換えることで、調整を行う。
 遠隔監視制御システムS1は、設備側1、2、3、…にそれぞれ設けられる制御対象の空調設備e11を監視制御する監視制御装置e1と、管理側に設けられ、設備側1、2、3、…の各監視制御装置e1をそれぞれ管理・調整する管理・調整用計算機c1とを具備している。設備側2、設備側3、…は、設備側1と同様な構成であるので、設備側1についてのみ説明を行う。
 管理側の管理・調整用計算機c1は、データ通信手段c11と、調整用パラメータ同定手段c12と、機器特性データベースc13と、空調設備シミュレータc14と、最適化演算手段c15と、最適化制御用データ作成手段c16とを備えている。
 データ通信手段c11は、設備側1、2、3…のデータ通信手段e12と通信を行う。
 調整用パラメータ同定手段c12は、設備側1、2、3…から収集したデータから設備側1、2、3…の各制御のための調整用パラメータを同定する。
 機器特性データベースc13には、設備側1、2、3…の各空調設備e11、…に設けられる機器(図4の冷凍機1、冷却水ポンプ2、冷温水ポンプ3等)の特性が記憶され、調整用パラメータ同定手段c12によりデータが更新される。例えば、機器特性データベースc13には、配管の流量に対する圧力損失の特性、ポンプの流量と全圧及び電力の特性、冷却塔の熱交換特性等があり、実運転後の機器特性と設計データの数値がずれている場合に、実際の運転状態に近い値として、補正を行う。例えば、冷凍機のエネルギー消費量では、シミュレーションの値と実運転の値を用いて、一次近似で補正を行ってもよい。
 空調設備シミュレータc14と最適化演算手段c15と最適化制御用データ作成手段c16は、設備側1、2、3…から収集したデータと機器特性データベースc13の情報とから、評価関数が最小となるようにシミュレーションを行うとともに最適化演算を行い、各設備側1、2、3、…の最適化制御データを作成する。
 設備側1には、制御対象の空調設備e11を監視制御する監視制御装置e1を備えている。
 空調設備e11は、ビル、工場、データセンタ、地域等の冷房や暖房を遂行する。
 監視制御装置e1は、管理・調整用計算機c1と通信を行うデータ通信手段e12、最適化制御用データの記憶部e13、最適化指令値演算手段e14、空調設備e11と通信を行う通信手段e15、およびデータ収集・記憶手段e16を有している。
 最適化制御用データの記憶部e13には、管理側の管理・調整用計算機c1から送信される最適化制御用データが記憶される。
 データ収集・記憶手段e16は、空調設備e11から、通信手段e15を介して、空調設備e11のデータを収集して記憶する。
 最適化指令値演算手段e14は、送信される最適化制御用データとデータ収集・記憶手段e16の情報から空調設備e11のPID制御、シーケンス制御に使用される制御指令値に用いられる制御目標値を検索する。
 以下、遠隔監視制御システムS1の制御の流れについて説明する。
 遠隔監視制御システムS1の制御対象である空調設備e11は、ユーザが設定した温度等になるように、PID制御等の不図示の制御手段により自動制御される。本自動制御は、空調設備e11の温度、使用される熱媒体の流量制御や冷凍機や温熱源機、ポンプ等の機器の運転停止等のシーケンス制御を行う。
 最適化指令値演算手段e14は、空調設備e11の運転情報データをデータ収集・記憶手段e16から読み取り、運転状態、設置環境に対応した最適化制御用データを、最適化制御用データの記憶部e13から検索して制御目標値を求め、通信手段e15を介して、空調設備e11の制御手段(図示せず)に指令する。
 空調設備e11の実際の運転データとその制御目標値の収集データは、データ通信手段e12により、管理側の管理・調整用計算機c1に通信される。
 管理・調整用計算機c1の調整用パラメータ同定手段c12は、収集されるデータから空調設備e11の制御のための調整用パラメータを同定して、機器特性データベースc13の機器特性データを変更する。
 そして、空調設備シミュレータc14と最適化演算手段c15とは、機器特性データベースc13の情報と収集されるデータとを用いて、空調設備e11のための評価関数が最小となるようなシミュレーションと最適化演算を行う。最適化制御用データ作成手段c16は、外気湿球温度と負荷の組み合わせに対応する最適化パラメータの最適化演算の結果から、最適化演算の結果から最適化制御用データを生成し、設備側1の最適化制御用データを更新する。
 1つ以上の設備側1、2、…の監視制御装置e1は、熱源設備の空調設備e11と接続され、空調設備e11の制御に用いられる最適化制御用データが管理・調整用計算機c1から送られ最適化制御用データの記憶部e13が更新される。
 上記構成によれば、空調設備e11の実際の運転データとその制御目標値の収集データに基づき、全消費エネルギなどの評価関数が最小になるように、シミュレーション、最適化演算を行い、新たに実設備の特性に合わせた最適化制御用データを生成して、空調設備e11を制御するので、効率が高い空調設備e11の制御が可能である。
 従って、エネルギ消費の低下が可能であるとともに、COの排出抑制が可能である。
<<実施形態2>>
 図2は、本発明に係る実施形態2の遠隔監視制御システムを示す概念的構成図である。
 実施形態2の遠隔監視制御システムS2は、実施形態1の最適化制御用データが、最適化制御用テーブルデータと調整用パラメータとを有するデータである。
 実施形態2のその他の構成は、実施形態1と同様であるから、同様な構成要素は実施形態1の構成要素に20番台の符号を付して示し、詳細な説明を省略する。
 実施形態2の遠隔監視制御システムS2に示す調整用パラメータは、監視制御装置e2の最適化制御の制御目標値の更新周期、変化速度等の空調設備e21の熱源設備の自動制御に関わる数値である。
 調整用パラメータは、例えば、平均処理データ数、最適化指令値の出力間隔、出力信号の出力間隔、設備側の冷凍機運転時のデフォルトの設定値等がある。
 最適化制御用テーブルデータは、最適化制御の制御目標値の具体的な詳細データである。
 図7に最適化制御用テーブルデータの一例の冷却水ポンプの回転速度比を示す。
 最適化制御用テーブルデータは、例えば、外気の湿球温度(℃)と負荷率(%)とに対する設備側の図4に示す冷却水ポンプ2の回転速度比がある。なお、図7では、anm(n、m:自然数)としているが、定格(最大)回転速度に対する回転速度の割合(%)で表される。
 なお、負荷率(%)とは冷凍機1の負荷率(%)である。冷凍機1の負荷率(%)とは、実際の空調負荷の負荷率(%)(最大負荷に対する割合)が冷凍機1に配分された負荷率(%)である。例えば、冷凍機1が一つの場合、実際の空調負荷の負荷率(%)が冷凍機1の負荷率となる。或いは、冷凍機1が二つの場合、実際の空調負荷の負荷率(%)が80%の場合、等分したとき、40%ずつとなる。また、一方の冷凍機1が負荷率(%)が30%のとき、他方の冷凍機1の負荷率(%)は50%である。湿球温度と負荷率の間隔は例であり、間隔を大きくすることで、データ量を削減できる。
 実施形態2の管理側の管理・調整用計算機c2は、実施形態1の最適化制御用データ作成手段c16(図1参照)に代替して、調整用パラメータ作成手段c26aと最適化制御用テーブル作成手段c26bとを有する。
 調整用パラメータ作成手段c26aは、最適化演算手段c25の最適化演算に基づき、調整用パラメータを作成する。また、定格運転時の温度、流量及びインバータ周波数等の設定値は、機器特性データベースc23の値を用いて作成し、最適化演算手段c25の演算結果から、最適化制御用テーブルのデータ数を算出して、データを作成する。
 最適化制御用テーブル作成手段c26bは、最適化演算手段c25の最適化演算に基づき、最適化制御目標値の具体的な詳細データであるテーブルデータ(図7参照)を作成する。テーブルデータは、冷水温度、冷却水温度、運転台数等のテーブルデータ群である。最適化指令値が1つの場合は、1テーブルとなる。
 また、実施形態2の設備側の監視制御装置e2は、実施形態1の最適化制御用データの記憶部e13に代替し、調整用パラメータの記憶部e23aと最適化制御用テーブルデータの記憶部e23bとを有する。
 調整用パラメータの記憶部e23aは、管理・調整用計算機c2から送信される調整用パラメータが記憶され更新される。
 最適化制御用テーブルデータの記憶部e23bは、管理・調整用計算機c2から送信される最適化制御用テーブルデータが記憶され更新される。
 監視制御装置e2において、管理・調整用計算機c2から送信される最適化制御用テーブルデータである外気の湿球温度(℃)と負荷率(%)に対する設備側の冷凍機の冷却水入口温度等を使用する場合を以下説明する。
 最適化指令値演算手段e24は、データ収集・記憶手段e26から、設備側における外気温度、外気相対湿度、冷凍機への冷温水往温度、冷凍機の冷温水戻り温度、冷温水流量を入力とし、外気湿球温度と冷凍機の冷却負荷率を演算する。
 そして、データ収集・記憶手段e26は、設備側における冷凍機の冷却水入口温度、冷凍機の冷温水流量比率(最大流量の定格に対する)、冷凍機の冷却水流量比率(最大流量の定格に対する)、冷凍機出口の冷温水温度等の湿球温度(℃)と負荷率(%)に対するテーブルデータから、冷凍機の冷却水入口温度、冷凍機の冷温水流量比率、冷凍機の冷却水流量比率、冷凍機出口の冷温水温度等の各出力値を求め、空調設備e21の不図示の制御手段に自動制御に関わる調整用パラメータとともに出力する。
 上記構成によれば、空調設備e21の実際の運転データとその制御目標値の収集データに基づき、機器特性を補正し、全消費エネルギなどの評価関数が最小になるように、シミュレーション、最適化演算を行い、新たに最適化制御用テーブルデータと調整用パラメータを生成して、空調設備e21を制御するので、効率が高い空調設備e21の制御が可能である。
 従って、エネルギ消費の低下が可能であるとともに、COの排出抑制が可能である。
<<実施形態3>>
 図3は、本発明に係る実施形態3の遠隔監視制御システムを示す概念的構成図である。
 実施形態3の遠隔監視制御システムS3は、通信手段間の通信方法として、既存のインターネットを介してデータを送受信する手段を有した遠隔監視制御システムである。
 その他の構成は、実施形態2と同様であるから、同様な構成要素には30番台の符号を付して示し、詳細な説明は省略する。
 遠隔監視制御システムS3は、インターネットを介してデータを送受信する手段として、管理・調整用計算機c3側のインターネット接続手段c3iと、設備側のインターネット接続手段e3iとを備えている。
 本システムにより、専用回線を使用することなく既存の回線のインターネットを共用することで、長距離の回線設置を行うことなく通信することが可能である。また、モバイル回線を使用する場合には、有線の設備が必要ない。
 図4は、本発明に係る実施形態1~3に用いる熱源システムを示す概念的構成図である。
 熱源システムN1は、実施形態1から実施形態3の遠隔監視制御システムS1~S3のいずれかの遠隔監視制御システムにより最適化制御が行われる熱源システムである。
 熱源システムN1は、ターボ冷凍機、吸収冷温水機等の冷熱源機器1(図4では冷凍機1とする)、冷却水(熱源水)ポンプ2、冷温水ポンプ3、外気と熱交換を行う冷却塔4、および、熱源システムN1を制御する制御手段6を備え、負荷5に冷温水を供給するように構成されている。
 冷却水(熱源水)ポンプ2、冷温水ポンプ3はそれぞれ例えばインバータ制御が行われる。
 冷却塔(熱交換器)4は、外気と熱交換を行い所定温度の冷却水(熱源媒体、熱媒体)を生成する。なお、冷却塔4の熱源は外気、海水、河川水、地下水等が使用されるが、これらに限定されない。
 冷却塔4で生成した冷却水は、冷却水(熱源水)ポンプ2により、図4の一点鎖線のように冷熱源機器の冷凍機1を循環される。
 冷凍機1は、冷却水の冷熱を用いて負荷5で冷房するための冷温水(冷/温媒体、熱媒体)を作り、冷温水は冷温水ポンプ3により、負荷5を循環し冷房が行われる。
 冷凍機1、冷温水ポンプ3、負荷5を含む冷温水系統は、単数または複数設けられる。
 制御手段6には、外気の温度を計測する温度センサt1、外気の湿度を計測する湿度センサh1のそれぞれの検出信号が入力される。
 また、制御手段6には、冷却塔4の出口の冷却水の温度を計測する温度センサt2、冷凍機1の出口の冷温水の温度を計測する温度センサt3、空調設備の負荷5の入口・出口の冷温水の温度を計測する温度センサt4、t5のそれぞれの検出信号が入力される。
 さらに、制御手段6には、空調設備の負荷5の出口の冷温水の流量を計測する流量センサf1の検出信号が入力される。また、冷却塔4で作られる冷却水の流量を計測する流量センサ、全機器の電力量やガスのエネルギー消費量を計測するセンサを設置して検出信号を入力してもよく、補正の精度が向上する。
 熱源システムN1の制御について説明する。
 空調の負荷5の最大負荷に対する割合の負荷率(%)は、温度センサt4、t5で検出した温度と流量センサf1で検出した流量とから求められる。
 負荷5の負荷率(%)が冷凍機1に割り当てられる。冷凍機1が複数の場合は、各冷凍機1を流れる冷温水の流量を調節して、負荷率(%)の配分を決定できる。
 熱源システムN1においては、熱源機の冷凍機1の種別と台数、冷温水ポンプ3、冷却水ポンプ2の台数、冷温水・熱源水(冷却水)の温度・流量を最適化パラメータとして、空調設備シミュレータ(c14~c34)の計算結果を基にエネルギ消費量、運転コスト、C0発生量の少なくとも何れかが最小になる最適化パラメータを演算した最適化制御用テーブルデータを予め計算し、外気の湿球温度と空調設備の機器の負荷状態の計測値から最適化演算結果の最適化制御用テーブルデータを検索して、当該テーブルデータの数値で熱源システムN1の各機器の制御目標値を変更する。
 なお、空調設備の負荷5で暖房を行う場合は、冷熱源機器1は温熱源となり、冷却塔4は、例えば外気を熱源とするヒーティングタワー(熱交換器)を用いる。暖房時、冷却水が加熱水(熱源媒体)、冷温水が温水(冷/温媒体)となる。なお、ヒーティングタワーは、暖房、冷房が兼用できる。
 上記構成によれば、熱源システムN1の実際の運転データとその制御目標値の収集データに基づき、全消費エネルギなどの評価関数が最小になるように、シミュレーション、最適化演算を行い、新たに最適化制御用テーブルデータと調整用パラメータを生成して、熱源システムN1を制御するので、効率が高い熱源システムN1の制御が可能である。
 従って、エネルギ消費の低下が可能であるとともに、COの排出抑制が可能である。
<<実施形態4>>
 図5は、本発明に係る実施形態4の遠隔監視制御システムを示す概念的構成図である。
 実施形態4の遠隔監視制御システムS4は、冷熱源の例である。
 遠隔監視制御システムS4は、図3の遠隔監視制御システムS3と同様な構成である。
 遠隔監視制御システムS4の実施形態3の遠隔監視制御システムS3と同様な構成要素には、40番台の符号を付して示し詳細な説明は省略する。
 遠隔監視制御システムS4は、管理・調整用計算機c4のインターネット接続手段としてルータc4iを備えており、監視制御装置e4のインターネット接続手段としてルータe4iを備えている。
 遠隔監視制御システムS4は、調整用パラメータ作成手段c46aで作成した調整用パラメータを記憶するパラメータ変更履歴記憶部c47aと、最適化制御用テーブル作成手段c46bで作成した最適化制御用テーブルデータを記憶するテーブル変更履歴記憶部c47bとを備えている。
 遠隔監視制御システムS4の調整用パラメータ作成手段c46aで作成した調整用パラメータと、最適化制御用テーブル作成手段c46bで作成した最適化制御用テーブルデータは、各設備別に設備別送信データc58として記憶される。
 設備別送信データc58は、設備判定手段c59により対応する設備が判定され、データ通信手段c41を用いて、該当する設備の監視制御装置e4に送信される。
 遠隔監視制御システムS4の制御対象の空調設備e41は、図4の熱源システムN1とし、設備側の監視制御装置e4と管理側の管理・調整用計算機c4とで最適化制御の処理が分けられる。
 遠隔監視制御システムS4の設備側に、制御対象の空調設備e41があり、空調設備e41はターボ冷凍機や吸収冷温水機の冷熱源機器1が並列または直列に配置され、冷房が行われる。吸収冷温水機は、臭化リチウム、アンモニア等を用いて冷温水を作る吸収式冷凍機である。
 <空調設備e41の制御>
 遠隔監視制御システムS4の空調設備e41の制御は、制御手段6(図4参照)、冷凍機1等の機器内臓の温度一定制御、冷却塔(4)冷却水出口温度の一定制御等のフィードバック制御が行われる。
 制御手段6(図4参照)の制御目標値と空調設備e41の運転状態は、データ収集・記憶手段e46(図5参照)により、PC(Personal computer)やPLC(programmable logic controller)に記憶する。
 空調設備の熱源システムN1の運転状態には、機器の運転停止状態、外気、冷却水(熱媒体)、冷温水の各温度、冷却水、冷温水の各流量、冷温水ポンプ3や冷却水ポンプ2の各インバータ周波数等がある。
 最適化指令値演算手段e44では、瞬時データはフィルタ処理を行ってもよく、各種センサの故障や異常データを削除した平均化処理を行うことで、故障検知時には、最適化制御用の制御目標値を故障時用に切替えるとともに、故障状態と平均値を記憶する。
 そして、最適化指令値演算手段e44は、外気の温度センサt1で計測する乾球温度と湿度センサh1で計測する相対湿度から湿球温度を演算し、冷温水(熱媒体)の負荷5側の往還温度差とその流量から、冷却の負荷を算出する。
 さらに、外気湿球温度と冷却の負荷の入力値に対応する最適化指令値のテーブルデータから最適化指令値を検索する。また、指令値変更は、機器の運転範囲の条件、例えば時間当たりの流量変化量や温度変化量を満たす範囲と上下限範囲を満たす範囲に入るように指令値に制限を設けて指令値を制御手段6に出力する。
 最適化指令値演算手段e44は最適化制御用テーブルデータの流量比の検索値から冷温水ポンプ3や冷却水ポンプ2の回転速度と流量比の関係を基に冷温水ポンプ3や冷却水ポンプ2の回転速度比を算出し出力する。例えば、冷温水ポンプ3や冷却水ポンプ2の回転速度比をインバータで制御する場合、定格のインバータ周波数の比率を100として回転速度比をインバータ周波数の定格比率に乗じた値をインバータに出力する。
 調整用パラメータは、機器の最大能力、最適化運転周期、ポンプ回転速度比(インバータ周波数比)と流量の関係の係数等をパラメータとして変更することで、監視制御装置e4の調整を行う。
 <設備側の監視制御装置e4と管理側の管理・調整用計算機c4とのデータの送受信>
 設備側の監視制御装置e4と管理側の管理・調整用計算機c4とでデータが送受信される。
 設備側の監視制御装置e4をPCやPLCで構成し、ルータe4iを介してインターネットに接続する。インターネット接続時は既存のVPN(Virtual PrivateNetwork)装置を用いることでデータの情報漏えいの可能性を小さくする。
 管理・調整用計算機c4は複数の設備側の監視制御装置e4を対象として、同様にデータを送受信する。データはFTP(File Transfer Protocol)、HTTP(Hypertext Transfer Protocol)、HTTPS(Hypertext Transfer Protocol over Secure Socket Layer)等の既成のプロトコルに基づいて、送受信を行う。
 運転情報のデータは管理側の管理・調整用計算機c4の設備判定手段c59により設備毎に運転データを保存する。データ通信手段c41によって送受信するデータは数値のみであり、管理側の管理・調整用計算機c4で数値の順番に対応した項目名を関連付けして、保存する。この方法により、データ通信時のデータの識別を困難とすることが可能である。
 例えば、設備判定手段c59は、運転データと最適化制御用データの記憶領域を分けて保存し、設備側の監視制御装置e4は設備側に対応した記憶領域のデータを送受信する。
 <管理・調整用計算機c4>
 管理・調整用計算機c4は、空調設備e41の運転データからその配管系統の抵抗特性や機器の劣化を計画時のシミュレーション結果と比べて調整用パラメータを同定する。例えば、吸収冷温水器(図4では冷凍機1を例示)において、導入時に調整した空調設備シミュレータc44と機器特性を用いて、負荷や冷却水温度が同条件において、エネルギ消費量(ガス消費量)が大きい場合に、劣化したと判断して、エネルギ消費量を補正する。また、熱源設備のシミュレーションを行うためのシステム構成は、設備側1、2、3・・毎に対応するデータを、機器特性データベースc43または、空調設備シミュレータc44等に記憶し、空調設備シミュレータc44は、設備側に対応したシステム構成と機器特性を呼びだして、エネルギー消費量をシミュレートする。システム構成は、冷却塔、冷凍機、ポンプ及び冷水配管、冷却水配管の構成であり、エネルギー保存と質量保存で成り立つ機器の組合せ構成であり、機種・台数・容量や温度・流量制御方法からなる。
 また、ポンプのインバータ周波数niに対して、ポンプ動力が大きくなった場合は配管抵抗の係数aを補正する。例えば、
   (配管抵抗)ΔP=a×Q + C     (1)
 と表せる。ここで、Cは実揚程であり、bは定数で例えば2である。
 配管抵抗ΔPは、式(1)より、ほぼ流量Qの二乗に比例する。実揚程Cを一定とし、ポンプの流量Qと全圧Pの関係(図6(a)参照)、流量Qと消費電力Eの関係(図6(b)参照)から、流量Qがインバータ周波数niに比例するもの(図6(c)参照)として、電力(kw)とインバータ周波数niから、図6(a)、図6(b)を用いてポンブ全圧Pを求めて、流量Qと配管抵抗ΔPの関係を求める。
 すなわち、式(1)のa、Cを求める。
 流量Qは、実揚程が小さく、ポンプの全圧が流量の2次式で近似できるとすると、式(1)の関係から、インバータ周波数niを用いて、次の式(2)で表せる。
   (流量)Q=d×(ni-e)          (2)
 式(1)、式(2)より、少なくとも2点を測ることで係数d、eが求められる。
 流量計がある場合には、流量Qとインバータ周波数niの関係から、流量Qと配管抵抗ΔPの関係を推定する。
 流量は冷凍機1の熱交換器の差圧から求めてもよく、冷凍機1の外部出力がある場合には、その値を運転データとしてもよい。空調設備e41に設けられる機器の信号を用いることで、現地で空調設備e41に取り付けるセンサ数を削減できる。
 調整用パラメータを同定した結果から、機器特性データベースc43の情報を変更して、空調設備シミュレータc44と最適化演算手段c45で得られた最適制御指令値を最適化制御用テーブル作成手段c46bで最適化制御用テーブルデータとし、最適化制御指令の変更周期や変更速度からなる調整用バラメータを調整用パラメータ作成手段c46aで送信用のデータに変換する。
 <最適化制御用テーブルデータ>
 図7に、冷却水ポンプの回転速度比の最適化制御用テーブルデータを示す。
 最適化制御テーブルデータは、例えば、外気湿球温度と負荷率との組み合わせに対応する冷却水ポンプ2の回転速度比、冷却水温度、冷温水温度、冷温水ポンプ(3)回転速度比、冷凍機(1)運転パターン(台数、機種)等のデータである。ここで、調整用パラメータ、最適化制御テーブルは変更履歴記憶部c47a、c47bに保管してもよい。人(ユーザ)が旧データと比較することで、データの変更点を確認可能となり、値が大きく変わっていることを確認することや、テーブルデータの送信前にシミュレーションにより動作確認することで、信頼性が向上する。
 調整用パラメータと最適化制御用テーブルデータは、対応した設備に送信するようにデータ通信手段c41を介して、設備側の監視制御装置e4に送信し、記憶領域(e43a、e43b)に保存する。初期値として設計データから得られる空調設備e41の機器や配管系の特性を用いた最適化制御テーブルデータを記憶しておき、空調設備e41の導入時の調整時には随時更新可能とする。空調設備e41の導入時の調整後は、最適化制御テーブルデータの更新は常時は1ヶ月や年に1度の更新とし、故障時には、更新周期を短くする。
 監視制御装置e4のデータ書き込み時は、運転モードの制御目標値を、例えば定格設定として運転を行い、書き込み終了後最適化制御を開始するとよい。
 調整用パラメータと最適化制御テーブルデータの更新は、他の設備2、設備3、…に対しても各空調設備(e41)に対応した運転データを用いて行い、管理側の管理・調整用計算機c4が1台でも対応可能である。バックアップや管理側の管理・調整用計算機c4を複数拠点として共有化することで、複数の管理側の管理・調整用計算機c4で管理も可能となり、管理の利便性が向上する。
 そして、設備判定手段c59を有し、多数の設備を識別して、各設備に対応して最適化用テーブルデータと調整用パラメータを変更する。
 多数の設備に対して一元管理することで、制御の誤りが解消し、空調設備シミュレータc44の更新が容易となる。
 多数の設備の運転状況を一度に把握することが可能となるデータの通信にはインターネットを用いずに専用の信号線でもよく、管理・調整用計算機c4と監視制御装置e4をそれぞれ1台のPCに組み込んでもよい。
 ポンプの回転速度比の算出では、実揚程bが小さい場合には、回転速度比と流量比の関係を一次近似して、最大流量比と最小流量比の二点で補正することもでき、調整用の計測数を削減できる。
 <最適化演算>
 管理・調整用計算機c4は、空調設備e41での時々刻々と変化する外気状態と負荷5(図4参照)側の負荷量、熱源の海水や河川水の温度の計測値、熱源システムN1を構成する機器や配管抵抗の特性から予測される熱源システムN1のエネルギ消費量が最小になるように、冷温水・冷却水の温度・流量の最適化演算を行い、冷却塔4の冷却水出口温度(温度センサt2で計測)、冷凍機1の高温側の冷温水出口温度(温度センサt3で計測)、冷凍機1の冷水出口温度、冷温水ポンプ3の回転速度、冷却水ポンプ2の回転速度の制御目標値を変更する。
 以下、最適化演算の詳細について説明する。
 負荷5側から、熱源機(図4の冷凍機1)の機種と台数をパラメータとして、熱源機(図4の冷凍機1)で処理する負荷、コジェネレーションの発電機排熱を利用した排熱利用熱源の熱源機の負荷を算出し、外気湿球温度、冷温水・冷却水の流量・温度を入力として、機器の運転特性(熱源機(冷凍機1)、冷温水ポンプ3、熱源水ポンプ(冷却水ポンプ2)、冷却塔4)、冷温水系(図4の冷温水系統)・熱源水系(図4の冷却水系統)の流量に対する配管系の抵抗特性を基に、空調設備シミュレータc44で各機器のエネルギ消費量と合計値を演算する。
 冷却水ポンプ2や冷温水ポンプ3のエネルギ消費量は、配管系(配管、バルブ、熱交換器等)の流量に対する圧力損失の関係を予測または実測し結果からポンプ揚程を算出し、流量と揚程の関係からポンプ動力を演算する。
 また、冷却塔4(図4参照)のファン動力と冷却性能の関係は、一般的な冷却塔4のエンタルピ基準総括容積伝達係数を用いて予測する。更に、熱源システムN1のエネルギ消費量の合計値を評価関数W、熱源機(図4の冷凍機1等)の機種と運転台数、冷温水・冷却水のポンプ回転速度比・温度を最適化変数として、評価関数Wが最小となる最適化変数を探索し、最適値を制御目標値とする。
Figure JPOXMLDOC01-appb-M000001
 ここで、Erefl  : 熱源機nのエネルギ消費量
     Norefl : 熱源機nの台数
     Ecpm   : 冷温水ポンプmのエネルギ消費量
     Ecwpn  : 熱源水ポンプnのエネルギ消費量
     Ectp   : 冷却塔pのエネルギ消費量
 本制御方法により、冷凍機1を最大負荷(定格負荷)で運転した場合に比べて、評価関数Wが最小となるように、すなわちエネルギ消費量の合計値が最小となるように運転するので、図4の熱源システムN1のシステムCOP(Coefficient Of Performance)を高い値で運転でき、省エネ化が可能となる。
 具体的には、熱源設備のポンプ(2、3)回転速度比(定格(最大)回転速度に対する)、冷却塔(4)ファン回転速度比(定格(最大)回転速度に対する)、冷凍機1の冷却水温度・冷温水温度、熱源機器(図4では冷凍機1)の運転台数・種類の少なくとも一つの制御目標値を最適化パラメータとする。
 そして、外気条件と負荷条件を入力条件として、機器特性から得られる設備全体のエネルギ消費量、C0排出量または使用する一次エネルギを評価関数として、評価関数が最小となるように最適化演算を行って、最適化パラメータを空調設備シミュレータc44と最適化演算手段c45により決定し、外気湿球温度、負荷率(定格負荷に対する)に対して定められる最適指令値を予め最適化制御用テーブルデータとして、外気や負荷条件の計測値を基に制御系と機器に運転条件を設定する最適化制御方法である。
 <最適化制御用テーブルデータ>
 図7に最適化制御用テーブルデータの例を示す。図7は、外気湿球温度、冷凍機1の負荷率(%)に対する冷却水ポンプ2の回転速度比である。冷凍機1の負荷率(%)は、前記したように、空調の負荷5の負荷率(%)が冷凍機1に割り当てられたものである。
 その他、最適化制御用テーブルデータには、冷却塔4の冷却水出口温度、冷凍機1の冷温水流量比率(最大流量の定格流量に対する)、冷却塔4の冷却水流量比率(最大流量の定格に対する)、冷凍機1出口の冷温水温度等のテーブルデータ等がある。
 図4に示す冷却塔4はファンの回転速度を変更する風量制御により、温度センサt2で計測する冷却水出口温度が一定になるように制御する。また、図示してないが、冷温水二次ポンプは、負荷5側の負荷に対応して、冷温水の変流量制御を行う。冷温水二次ポンプの制御は、負荷側の要求に応じた公知の吐出圧力一定制御や負荷5側の末端の圧力が一定となる末端圧力一定制御である。
 外気状態は、図4に示すように、外気の湿球温度を温度センサt1と湿度センサh1から計測する。冷却負荷は、冷温水系統の冷温水流量と冷温水往還温度差から演算する。冷温水往温度は、冷凍機1の出口温度としてもよい。また、一定回転の運転でもよく、機器特性データベースc43が記憶するシステム構成の設定変更で対応可能である。
 <監視制御装置e4>
 管理・調整用計算機c4から最適化パラメータ、最適化制御用テーブルデータが送られた監視制御装置e4は、温度センサt1で計測した外気湿球温度と負荷率とから、冷凍機1の機種、運転台数、冷温水・冷却水の温度とポンプ回転速度比の最適値を最適化制御用テーブルデータe43b(図5参照)から検索する。そして、検索結果を制御目標値として冷凍機1の出口温度設定値、冷却水ポンプ2・冷温水ポンプ3のインバータ周波数比(定格のインバータ周波数に対する)または回転速度比(定格回転速度比に対する)、冷却塔4の冷却水出口温度設定値を変更する。設定変更は外気湿球温度と冷却負荷の変化に追従させて変更し、例えば10分に1回変更する。
 冷却塔4は、公知の開放式冷却塔や密閉式冷却塔でよい。
 ヒートポンプ式の冷凍機1は空冷式でもよい。
 冷凍機1の台数・機種、冷温水ポンプ3の回転速度比と冷凍機1の冷水出口温度の制御目標値を最適化演算結果のデータを用いて外気温度、負荷条件に応じて変更することで、省エネ化可能となる。
 冷凍機1は、冷凍機1の圧縮機の回転速度制御を行うインバータ冷凍機を用いてもよい。部分負荷の効率が、一定速度制御の場合よりも向上する。
 最適化演算において、冷却水流量・温度を一定値としてもよく、これにより、ポンプや冷却塔ファンのインバータのコストを削減できる。
 なお、遠隔監視制御システムS4の監視制御装置e4側に最適化制御用テーブルデータでなく、最適化指令値を直接送信してもよく、これにより、監視制御装置e4の側のデータ記憶容量や演算能力を削減できる。
 以上の説明では、熱源機として冷凍機1を例示したが、熱源機はヒートポンプ式の温水発生機としてもよい。冷媒(熱媒体)は、水でなくてもよく、既存の流動性の潜熱媒体やブライン水でもよい。
 以上まとめると、空調設備e41の運転開始時には、デフォルトの制御目標値で運転を開始する。そして、適時に、例えば年1回、月1回、空調設備e41および監視制御装置e4の運転データを収集して管理・調整用計算機c4でシミュレーションと最適化演算を行い、最適化制御用データを作成し、監視制御装置e4に送る。監視制御装置e4は最適化制御用データの制御用テーブルデータから制御目標値を求め、制御手段6は当該制御目標値で空調設備e41を運転する。
 したがって、1箇所の管理・調整用計算機c4から遠隔地にある複数箇所の空調設備e41の監視制御装置e4に対して、制御目標値をそれぞれ設定できる。つまり、空調設備e41がある現地にそれぞれシミュレータを設けることなく、通信でデータを送れる。そのため、シミュレータをバージョンアップする場合には、1箇所の管理・調整用計算機c4の空調設備シミュレータc44をバージョンアップすることで済み、容易に新たな制御目標値をそれぞれ、遠隔地の複数箇所の空調設備e41に設定できる。
 空調設備e41は、使用とともに経年劣化で性能が変化するが、空調設備e41および監視制御装置e4の運転データを管理・調整用計算機c4で収集し、新たに運転状態が最適になるようにシミュレーションを行い、最適な制御目標値を監視制御装置e4に送り、その時点で最適な制御目標値で空調設備e41を運転できる。
<変形形態1>
 冷凍機1の構成は、冷凍機1を直列に配置したタンデム運転でもよい、冷凍機1の負荷配分を最適化変数に加え、冷却水ポンプ2、冷温水ポンプ3の消費電力を評価関数に加えて最適化した指令値を最適化制御用テーブルデータとする。最適化制御用テーブルデータは、例えば、冷温水の戻り側に接続した冷凍機1の出口温度設定値である。
 これにより、冷凍機1のタンデム運転の部分負荷効率の低下を防止できる。
<変形形態2>
 冷凍機1を熱交換器として、冷却塔4で冷水を製造する熱源機として、冷温水ポンプ3、冷却水ポンプ2の制御に用いてもよい。
<変形形態3>
 太陽熱で冷水や温水を製造する熱源機を含んでもよく、熱源水ポンプは、空気と熱交換を行う冷却塔や太陽集熱器の温水搬送ポンプでもよい。これにより、再生可能エネルギを利用したシステムの省エネ化が可能となる。
<変形形態4>
 コジェネレーションの排熱を用いた冷温水発生機を含むシステムでもよい。これにより、排熱利用熱源機の最適化運転も可能となる。
<変形形態5>
 ポンプ周波数(ポンプ回転速度)に対する流量は、実揚程が小さい場合に、最大流量の一定の周波数と流量を計測する方法でもよい。数値を高めにすることで流量の低下を防ぐことが可能となる。初期調整時の計測データ数を少なくして、調整時間を短縮できる。
<変形形態6>
 自動チューニングとしてもよい。最適化制御用テーブルと調整用パラメータ更新時の変更範囲を決めて(例えば、冷却水流量は士10%)として判定し、送信可能の場合は、設備側のデータ通信手段e12~e42にデータを送れるようにする。
<変形形態7>
 負荷側の熱交換器特性とその負荷を用いて、冷温水温度を含めた最適化運転を行ってもよい。負荷側のポンプや空調機ファンを含めることで、最適化パラメータの項目を増やして、冷水温度が高くできる場合には、冷凍機の運転効率が向上し、省エネとなる。
<変形形態8>
 前記実施形態で説明した冷房でなく、暖房機器でもよい。ヒートポンプ式の加熱機では、冷媒の温度を下げることで、効率が上がり、省エネとなる。
<変形形態9>
 運転データ、最適化制御用テーブルを表示する表示手段を設けるとよい。人(ユーザ)が視覚で判断し、確認したり、制御目標値を手入力で変更する変更手段を備える構成としてもよい。これにより、制御の補助することができる。
<変形形態10>
 前記実施形態で説明したインターネット等の通信手段を用いずに、記憶装置を接続して、設備側のデータを書き換えることとしてもよい。これにより、通信手段が無い初期段階でも対応が可能となる。
<変形形態11>
 最適化に用いる外気湿球温度は、乾球温度や外気の比エンタルピでもよく、計測値から相対湿度を一定として湿球温度を概算してもよい。最適化の精度は下がるが、測定する物理量が減少するので使用するセンサを削減できる。
<変形形態12>
 調整用パラメータにPID制御のパラメータを含めてもよい。これにより、制御手段6のフィードバック制御系の調整が可能となる。
<変形形態13>
 定格流量に対するポンプ流量比の上下限値に対応するポンプ回転速度比またはインバータ周波数比の上下限値を設計または実測値から求めて、ポンプ流量比を最適制御用の指令値として、回転速度比またはインバータ周波数比に変換してもよい。流量の誤差はあるが、実揚程が小さい場合に、式(2)に示すように、流量比とポンプ回転速度比が1次近似することで、2点のデータで調整が可能となる。また、ポンプ流量を差圧や流量計で計測して、設定値となるようにフィードバック制御してもよい。
 ポンプは、配管が詰まり等で細くなると、同じ制御の周波数でも流量が変わってくるが、定期的または随時に、最適化制御用テーブルデータで運転をカスタマイズすることで必要な流量を満足する周波数とすることでシステムの性能変化、機器性能劣化に対応可能となる。
 例えば、管理・調整用計算機c1~c4に収集される運転データが、熱媒体の搬送系に設けられるポンプ(冷却水ポンプ2、冷温水ポンプ3)の回転速度とその流量の場合、管理・調整用計算機c1~c4は、空調設備e11~e41の運転データのポンプの回転速度とその流量を基に最適化制御用データを生成して、設備側の監視制御装置e1~e4に在る最適化制御用データを変更し、監視制御装置e1~e4は、最適化制御用データから制御目標値を求めて、制御手段6に指令し、当該ポンプを制御する。
<変形形態14>
 蓄熱運転スケジュールを有する監視制御装置e1~e4では、蓄熱運転スケジュールの変更を行ってもよい。遠隔地からのデータ入れ替えが可能となる。
<<その他の実施形態>>
 なお、前記実施形態では、最適化制御用データとして調整用パラメータと最適化制御用テーブルとを監視制御装置e1~e4に送り、空調設備e11~e41を制御する場合を例示したが、調整用パラメータまたは最適化制御用テーブルを監視制御装置e1~e4に送り、空調設備e11~e41を制御するように構成してもよい。
 また、前記実施形態では、記憶部の一例として、データベースを例示しているが、情報を記憶できる記憶部であれば、その実現態様は限定されない。
 なお、前記実施形態では、最適化制御用データや空調設備e11~e41の収集データをオンラインで送る場合を例示したが、最適化制御用データや収集データをそれぞれ記憶媒体に記憶して監視制御装置e1~e4、管理・調整用計算機c1~c4間をオフラインでデータ交換する構成としてもよい。
 以上、本発明の様々な実施形態を述べたが、その説明は限定的なものではなく、典型的であることを意図している。従って、本発明の範囲内で様々な修正と変更が可能である。すなわち、本発明は発明の趣旨を変更しない範囲において任意に変更可能である。
 1   冷凍機(熱源機、機器)
 2   冷却水ポンプ(機器、ポンプ、熱源媒体ポンプ、冷/温媒体ポンプ)
 3   冷温水ポンプ(機器、ポンプ)
 4   冷却塔(熱交換器、機器)
 6   制御手段(設備制御手段、温度制御手段、流量制御手段)
 c1、c2、c3、c4 管理・調整用計算機
 c11、c21、c31、c41 データ通信手段
 c12、c22、c32、c42 調整用パラメータ同定手段
 c13、c23、c33、c43 機器特性データベース(機器特性記憶部)
 c14、c24、c34、c44 空調設備シミュレータ
 c15、c25、c35、c45 最適化演算手段
 e1、e2、e3、e4 監視制御装置
 e11、e21、e31、e41 空調設備
 e13 最適化制御用データの記憶部
 e23a、e33a 調整パラメータの記憶部
 e43a 記憶領域の調整パラメータ
 e23b、e33b 最適化制御用テーブルデータの記憶部
 e43b 記憶領域の最適化制御用テーブルデータ
 Ectp 冷却塔のエネルギ消費量(エネルギ消費量)
 Ecpm 冷温水ポンプのエネルギ消費量(エネルギ消費量)
 Ecwpn 熱源水ポンプのエネルギ消費量(エネルギ消費量)
 Erefl 熱源機のエネルギ消費量(エネルギ消費量)
 S1、S2、S3、S4 遠隔監視制御システム
 t4、t5 温度センサ(熱量計測手段)
 W   評価関数

Claims (10)

  1.  熱源と熱交換して得られる冷熱または温熱をもつ熱媒体の流量や温度を制御して空調設備を制御する遠隔監視制御システムであって、
     前記空調設備の制御のための調整用パラメータを同定する調整用パラメータ同定手段、前記空調設備の機器の特性が記憶される機器特性記憶部、前記空調設備のエネルギー消費量をシミュレートする空調設備シミュレータ、および前記空調設備のエネルギー消費量のシミュレートに基づき最適化演算を行う最適化演算手段を有する管理・調整用計算機を備え、
     前記管理・調整用計算機は、
     前記空調設備の環境条件に対応して、前記冷熱または前記温熱を製造する熱源機および前記熱源と熱交換する熱交換器の少なくとも何れか、および前記熱媒体を搬送する搬送系の特性を基に、エネルギ消費に係る評価関数が所望値になるように、前記空調設備を制御するための最適化制御用データを、前記空調設備シミュレータと前記最適化演算手段によって演算する
     ことを特徴とする遠隔監視制御システム。
  2.  請求項1に記載の遠隔監視制御システムにおいて、
     前記空調設備を制御する設備制御手段と、
     前記最適化制御用データから制御目標値を求めて前記設備制御手段に指令するとともに前記空調設備の運転データを収集する監視制御装置とを
     備えることを特徴とする遠隔監視制御システム。
  3.  請求項2に記載の遠隔監視制御システムにおいて、
     前記管理・調整用計算機は、前記空調設備の運転データを基に新たに最適化制御用データを生成して変更する
     ことを特徴とする遠隔監視制御システム。
  4.  請求項2に記載の遠隔監視制御システムにおいて、
     前記運転データは、前記搬送系に設けられるポンプの回転速度とその流量であり、
     前記管理・調整用計算機は、前記空調設備の前記ポンプの回転速度とその流量を基に新たに最適化制御用データを生成し変更する
     ことを特徴とする遠隔監視制御システム。
  5.  請求項3に記載の遠隔監視制御システムにおいて、
     前記運転データは、前記搬送系に設けられるポンプの回転速度とその流量であり、
     前記管理・調整用計算機は、前記空調設備の前記ポンプの回転速度とその流量を基に新たに最適化制御用データを生成し変更する
     ことを特徴とする遠隔監視制御システム。
  6.  請求項4または請求項5に記載の遠隔監視制御システムにおいて、
     前記監視制御装置は、変更された前記最適化制御用データから制御目標値を求めて、前記設備制御手段に指令して前記ポンプを制御する
     ことを特徴とする遠隔監視制御システム。
  7.  請求項1から請求項3のいずれかに記載の遠隔監視制御システムにおいて、
     前記最適化制御用データは、最適化制御用テーブルデータと調整用パラメータの少なくとも一つを含む
     ことを特徴とする遠隔監視制御システム。
  8.  請求項7に記載の遠隔監視制御システムにおいて、
     前記管理・調整用計算機は、
     前記設備側から収集した運転データから前記調整パラメータと前記最適化制御用テーブルデータをもつ最適化制御テーブルの少なくとも一つを生成し、前記調整パラメータと前記最適化制御テーブルの何れかを変更する
     ことを特徴とする遠隔監視制御システム。
  9.  請求項1から請求項3のいずれかに記載の遠隔監視制御システムにおいて、
     インターネットを利用してデータの送受信を行う通信手段を備える
     ことを特徴とする遠隔監視制御システム。
  10.  少なくとも1台以上の熱源機、熱交換器、熱源媒体ポンプ、冷/温媒体ポンプ、熱源媒体や冷/温媒体が流れる配管系統と、前記空調設備の負荷の熱量を計測する熱量計測手段と、前記熱源媒体、前記冷/温媒体の流量を所定の流量に制御する流量制御手段と、前記冷/温媒体、前記熱源媒体の温度を所定の温度に制御する温度制御手段とを前記空調設備に備える請求項1から請求項5の何れか一項に記載の遠隔監視制御システムの運転方法であって、
     前記最適化制御用データにより前記空調設備に設けられる機器の運転台数、前記熱源媒体や前記冷・温媒体の温度・流量の少なくとも1つを制御する
     ことを特徴とする遠隔監視制御システムの運転方法。
PCT/JP2012/079693 2011-12-19 2012-11-15 遠隔監視制御システムおよびその運転方法 WO2013094350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201403420TA SG11201403420TA (en) 2011-12-19 2012-11-15 Remote monitoring and controlling system and method of operating same
CN201280063073.4A CN104011475A (zh) 2011-12-19 2012-11-15 远程监控系统及其运转方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277703 2011-12-19
JP2011277703A JP2013127348A (ja) 2011-12-19 2011-12-19 遠隔監視制御システムおよびその運転方法

Publications (1)

Publication Number Publication Date
WO2013094350A1 true WO2013094350A1 (ja) 2013-06-27

Family

ID=48668249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079693 WO2013094350A1 (ja) 2011-12-19 2012-11-15 遠隔監視制御システムおよびその運転方法

Country Status (4)

Country Link
JP (1) JP2013127348A (ja)
CN (1) CN104011475A (ja)
SG (1) SG11201403420TA (ja)
WO (1) WO2013094350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131166A (ja) * 2019-02-25 2020-08-31 株式会社神鋼環境ソリューション 二酸化炭素吸着設備

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523798B2 (ja) * 2015-06-04 2019-06-05 株式会社日立製作所 熱源設備及び熱源設備制御方法
CN106532647A (zh) * 2015-09-14 2017-03-22 天津捷金金属制品有限公司 一种基于pid控制的风力发电机控制系统
JP2018071805A (ja) * 2016-10-24 2018-05-10 株式会社東芝 空調制御装置、空調システム、空調制御方法およびプログラム
CN106774242A (zh) * 2016-12-01 2017-05-31 黄宏伟 一种发电机组模拟量控制系统的远程监测系统及方法
JP2018106566A (ja) * 2016-12-27 2018-07-05 株式会社日建設計総合研究所 建築設備のフォルト検出システム及びそれを適用した建築設備の管理システム
CN109150973B (zh) * 2018-07-18 2022-04-15 宁波高新区安立特电气科技有限公司 一种物联网ALT-eba-cloud控制系统
JP6971364B1 (ja) * 2020-08-20 2021-11-24 新菱冷熱工業株式会社 熱源システムの制御方法及び制御装置
CN114413448B (zh) * 2022-01-25 2023-08-22 南京天朗防务科技有限公司 空调所属建筑物一阶模型实时参数辨识方法
CN116007122B (zh) * 2022-12-31 2023-07-21 珠海市百徽机电工程有限公司 基于数据分析的高效制冷机房节能监控系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293844A (ja) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd 空調設備
JP2005180870A (ja) * 2003-12-22 2005-07-07 Shin Nippon Air Technol Co Ltd 空調管理システム
JP2007113913A (ja) * 2007-02-07 2007-05-10 Sanyo Electric Co Ltd 空調装置の遠隔監視システム
JP2010127559A (ja) * 2008-11-28 2010-06-10 Sanki Eng Co Ltd 空調設備用の熱源制御システム
JP2011169533A (ja) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293844A (ja) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd 空調設備
JP2005180870A (ja) * 2003-12-22 2005-07-07 Shin Nippon Air Technol Co Ltd 空調管理システム
JP2007113913A (ja) * 2007-02-07 2007-05-10 Sanyo Electric Co Ltd 空調装置の遠隔監視システム
JP2010127559A (ja) * 2008-11-28 2010-06-10 Sanki Eng Co Ltd 空調設備用の熱源制御システム
JP2011169533A (ja) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131166A (ja) * 2019-02-25 2020-08-31 株式会社神鋼環境ソリューション 二酸化炭素吸着設備

Also Published As

Publication number Publication date
SG11201403420TA (en) 2014-10-30
JP2013127348A (ja) 2013-06-27
CN104011475A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2013094350A1 (ja) 遠隔監視制御システムおよびその運転方法
JP5963959B2 (ja) 空調システム制御装置及び空調システム制御方法
US10605477B2 (en) HVAC system with free cooling optimization based on coolant flowrate
US10461954B2 (en) Intelligent equipment sequencing
JP4630702B2 (ja) 熱源システム最適運転制御装置
CN106323390B (zh) 用于使用压差测得值确定流率的系统和方法
CN102193525B (zh) 基于云计算的设备监控系统及方法
US9423172B2 (en) Energy-saving optimized control system and method for refrigeration plant room
CN111336669B (zh) 基于模型预测控制的室内空调通风系统
CN102193527B (zh) 基于云计算的电子信息系统机房能源管理控制系统及方法
CN110736227A (zh) 具有在线可配置系统标识的建筑物管理系统
CN201812187U (zh) 基于云计算的电子信息系统机房能源管理控制系统
JP2004293844A (ja) 空調設備
US20180356808A1 (en) Control system with asynchronous wireless data transmission
Liao Uncertainty analysis for chiller sequencing control
CN104160217A (zh) 空调控制装置以及存储介质
KR101725245B1 (ko) 공기조화시스템 및 제어방법
CN109386934A (zh) 具有协作极值搜索控制的建筑物控制系统
JP6812283B2 (ja) 熱源制御システム、熱源制御システムの制御方法および演算装置
US20200209820A1 (en) System and method for improving the energy management of hvac equipment
CN217109938U (zh) 一种空调能效分析与调适系统
JP3877955B2 (ja) 可変制御システムの運用評価装置
EP3460349B1 (en) Latent heat reduction
GB2472385A (en) Controlling power demand using a building management system
CN206055876U (zh) 中央空调系统及其控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860506

Country of ref document: EP

Kind code of ref document: A1