WO2018188520A1 - 在线检测空调制冷能效比和制冷量的方法 - Google Patents

在线检测空调制冷能效比和制冷量的方法 Download PDF

Info

Publication number
WO2018188520A1
WO2018188520A1 PCT/CN2018/082076 CN2018082076W WO2018188520A1 WO 2018188520 A1 WO2018188520 A1 WO 2018188520A1 CN 2018082076 W CN2018082076 W CN 2018082076W WO 2018188520 A1 WO2018188520 A1 WO 2018188520A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time
energy efficiency
efficiency ratio
typical
Prior art date
Application number
PCT/CN2018/082076
Other languages
English (en)
French (fr)
Inventor
徐贝贝
刘聚科
任志强
李相军
刘运涛
杨晓
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2018188520A1 publication Critical patent/WO2018188520A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests

Definitions

  • the invention belongs to the technical field of air conditioning performance parameter detection, and in particular relates to a method for onlinely detecting an energy efficiency ratio and a cooling capacity of an air conditioner.
  • the air-conditioning refrigeration energy efficiency ratio is the ratio of the air conditioning refrigeration capacity to the operating power. It is a parameter to measure the air conditioning refrigeration performance. The higher the cooling energy efficiency ratio, the less power consumption of the air conditioner.
  • the air conditioning refrigeration energy efficiency ratio is a nominal value marked on the air conditioner nameplate, and is a ratio calculated according to the rated cooling capacity and the rated power consumption in the rated state.
  • the rated cooling energy efficiency ratio on the air conditioner nameplate can only serve as a reference during the actual use process, and the actual cooling performance cannot be presented in real time. Since the real-time cooling energy efficiency ratio of the air conditioner cannot be obtained, the actual cooling capacity during the air conditioning operation cannot be obtained.
  • One of the objects of the present invention is to provide a method for detecting the energy efficiency ratio of an air conditioner on-line, realizing real-time detection of the energy efficiency ratio of the air conditioner under different operating conditions of the air conditioner.
  • a method for onlinely detecting an energy efficiency ratio of an air conditioning refrigeration comprising:
  • the real-time press frequency f the real-time indoor temperature tn, the real-time outdoor temperature tw, the real-time internal machine speed nn, and the real-time external machine speed nw are obtained;
  • EERs [(EERc/EERcr)*d+e]*EERsr+EERtn+EERnn+EERnw;
  • EERcr is a rated core energy efficiency ratio corresponding to the rated press frequency fr and the rated outdoor temperature twr determined according to the typical press frequency, the typical outdoor temperature, the typical core energy efficiency ratio, and the typical relationship; EERsr The nominal cooling energy efficiency ratio of the air conditioner; d and e are correction factors.
  • the real-time core energy efficiency corresponding to the real-time press frequency f and the real-time outdoor temperature tw is determined according to a known typical press frequency, a typical outdoor temperature, a typical core energy efficiency ratio, and a typical relationship. More than EERc, specifically including:
  • the real-time core energy efficiency corresponding to the real-time press frequency f and the real-time outdoor temperature tw is determined according to a known typical press frequency, a typical outdoor temperature, a typical core energy efficiency ratio, and a typical relationship. More than EERc, specifically includes:
  • the relationship between the typical core energy efficiency ratio and the typical press frequency is a linear function relationship; the relationship between the typical core energy efficiency ratio and the typical outdoor temperature is a quadratic function relationship.
  • the real-time indoor energy efficiency ratio correction factor EERtn is determined according to the real-time indoor temperature tn and the rated indoor temperature Tn, and specifically includes:
  • the real-time internal machine speed efficiency ratio correction factor EERnn is determined according to the real-time internal machine speed nn and the rated internal machine speed Nn, and specifically includes:
  • the real-time external machine speed energy efficiency ratio correction factor EERnw is determined according to the real-time external machine speed nw and the rated external machine speed Nw, and specifically includes:
  • the method further includes:
  • the real-time cooling energy efficiency ratio EERs are displayed.
  • the second object of the present invention is to provide a method for detecting the cooling capacity of an air conditioner on-line, realizing real-time detection of the cooling capacity under different operating conditions of the air conditioner.
  • the on-line detection method for cooling capacity provided by the present invention is implemented by the following technical solutions:
  • An online detection method for air conditioning refrigeration capacity comprising:
  • the real-time cooling energy efficiency ratio EERs and real-time running power P of the air conditioner are obtained;
  • the real-time cooling energy efficiency ratio (EERs) is determined according to the above method for detecting the energy efficiency ratio of the refrigerant online.
  • the method further comprises: displaying the real-time cooling capacity W.
  • the advantages and positive effects of the present invention are: the on-line detection method for air conditioning refrigeration energy efficiency ratio provided by the present invention, determining the cooling by typical press frequency, typical outdoor temperature, typical core energy efficiency ratio and typical relationship
  • the real-time core energy efficiency ratio corresponding to the real-time press frequency and the real-time outdoor temperature with high energy efficiency ratio is determined, and then the energy efficiency ratio correction with less influence on the cooling energy efficiency ratio is determined based on the real-time indoor temperature, the real-time internal machine speed and the real-time external machine speed.
  • the real-time core energy efficiency ratio and multiple energy efficiency ratio correction factors to determine the real-time cooling energy efficiency ratio not only can achieve real-time detection of refrigeration energy efficiency ratio under different working conditions in air-conditioning operation, and the detection results are more accurate and consistent.
  • the actual operating conditions can provide users with intuitive and accurate real-time cooling energy efficiency ratio; based on the real-time cooling energy efficiency ratio of the detection, the actual cooling capacity during air conditioning operation can be obtained, real-time detection of cooling capacity can be realized, and thus the user can be intuitively provided. Accurate real-time cooling capacity.
  • FIG. 1 is a flow chart of an embodiment of a method for onlinely detecting an air conditioning refrigeration energy efficiency ratio based on the present invention
  • FIG. 2 is a flow chart of an embodiment of a method for detecting the amount of refrigeration of an air conditioner on-line based on the present invention.
  • the present application proposes that the refrigeration energy efficiency ratio affected by the real-time outdoor temperature and the real-time compressor frequency is taken as the core energy efficiency ratio, and is determined by experimental data calculation.
  • the energy efficiency ratio of the factors that have less influence on the cooling energy efficiency ratio is determined by correcting based on the real-time value and the rated value. Then, determine the total real-time cooling energy efficiency ratio under the influence of all factors, and realize online real-time detection of the cooling energy efficiency ratio.
  • FIG. 1 there is shown a flow chart of an embodiment of a method for detecting an air conditioning refrigeration energy efficiency ratio based on the present invention.
  • the method for implementing online detection of an air conditioning refrigeration energy efficiency ratio in this embodiment includes the following steps:
  • Step 11 During the operation of the air conditioner, obtain the real-time press frequency f, the real-time indoor temperature tn, the real-time outdoor temperature tw, the real-time internal machine speed nn, and the real-time external machine speed nw.
  • the compressor, the indoor fan and the outdoor fan are all commanded by the air conditioner's main controller for frequency and wind speed control, the real-time press frequency f, the real-time internal machine speed nn and the real-time external machine speed nw can be determined by the air conditioner.
  • the master is easily accessible.
  • the real-time indoor temperature and the real-time outdoor temperature can be detected and acquired by temperature detecting devices provided indoors and outdoors, respectively.
  • Step 12 Determine the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw, determine the real-time indoor temperature energy efficiency ratio correction factor EERtn, the real-time internal machine speed energy efficiency ratio correction factor EERnn, and the real-time external machine speed energy efficiency ratio correction.
  • EERnw Determine the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw, determine the real-time indoor temperature energy efficiency ratio correction factor EERtn, the real-time internal machine speed energy efficiency ratio correction factor EERnn, and the real-time external machine speed energy efficiency ratio correction.
  • EERnw Determine the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw.
  • the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw is determined according to the known typical press frequency, typical outdoor temperature, typical core energy efficiency ratio, and typical relationship.
  • typical press frequency, typical outdoor temperature and typical core energy efficiency ratio are multiple, and each typical press frequency and each typical outdoor temperature corresponds to a typical core energy efficiency ratio.
  • Typical press frequencies, typical outdoor temperatures, and the typical core energy efficiency ratios typically are measured by the laboratory and written into the air conditioner memory.
  • the typical relationship is based on the typical press frequency, typical outdoor temperature and typical core energy efficiency ratio.
  • the typical relationship includes the relationship between typical core energy efficiency ratio and typical press frequency at typical outdoor temperatures.
  • the relationship between the typical core energy efficiency ratio and the typical outdoor temperature at the typical press frequency is a linear function; the relationship between the typical core energy efficiency ratio and the typical outdoor temperature is a quadratic function relationship.
  • Table 1 shows a typical core energy efficiency ratio table for typical press frequencies, typical outdoor temperatures, and typical core energy efficiency ratios.
  • the control outdoor temperature is 30 ° C
  • the press operating frequency is 27 hz
  • the indoor temperature is determined
  • the internal machine speed and the external machine speed are rated values (corresponding to the determined air conditioner, the rated value is determined
  • the cooling capacity and power of the air conditioner are tested.
  • the energy efficiency ratio is determined to be 6.42, which is the typical core energy efficiency ratio corresponding to the outdoor temperature of 30 ° C and the press frequency of 27 hz.
  • the typical core energy efficiency ratios corresponding to other typical outdoor temperatures and other typical press frequencies are sequentially obtained. All typical outdoor temperatures, typical press frequencies, and typical core energy efficiency ratios are shown in Table 1, and written into the air conditioner memory. .
  • typical press frequency and typical core energy efficiency ratio the linear relationship between the typical core energy efficiency ratio and the typical press frequency is obtained, and the typical core energy efficiency ratio is the same as the typical press frequency.
  • a quadratic function relationship with typical outdoor temperatures is obtained by numerical fitting, and the specific relationship is as follows:
  • Typical core energy efficiency ratios are typical for typical outdoor temperatures and typical press frequencies, for example, only three, far from covering all actual outdoor temperatures and actual press operating frequencies. Therefore, during the use of the air conditioner, the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw will be determined according to the data in the typical core energy efficiency ratio table and the corresponding relationship. Moreover, the real-time core energy efficiency ratio EERc can be determined in the following two ways:
  • the real-time core energy efficiency ratio EERc is determined according to the quadratic function relationship between the core energy efficiency ratio and the outdoor temperature.
  • a plurality of intermediate core energy efficiency ratios corresponding to the real-time press frequency f at a plurality of typical outdoor temperatures are determined.
  • the typical core energy efficiency ratio table and relationship of the air conditioner are as described above.
  • the relationship between the real-time press frequency f and the intermediate core energy efficiency ratio and typical outdoor temperature is determined.
  • formula That is, according to the quadratic function relationship of A, B and C, the quadratic function relationship between the energy efficiency ratio of the intermediate core and the typical outdoor temperature at 52hz is determined.
  • the specific implementation process of fitting the quadratic function relation is referred to the prior art and will not be described in detail herein.
  • the real-time core energy efficiency ratio corresponding to the real-time outdoor temperature tw is determined as the real-time press frequency f and the real-time outdoor temperature tw.
  • Core energy efficiency ratio EERc That is, the outdoor temperature in the quadratic functional relationship between the intermediate core energy efficiency ratio and the typical outdoor temperature is replaced by 32 ° C, and a core energy efficiency ratio is calculated.
  • the core energy efficiency ratio is a real-time compressor frequency of 52 hz.
  • the real-time core energy efficiency ratio EERc is determined according to a linear functional relationship between the core energy efficiency ratio and the press frequency.
  • a plurality of intermediate core energy efficiency ratios corresponding to the real-time outdoor temperature tw at a plurality of typical press frequencies are determined.
  • the typical core energy efficiency ratio table and relationship of the air conditioner are as described above.
  • the relationship between the energy efficiency ratio of the intermediate core and the typical core energy efficiency ratio and the typical press frequency ie, the one-time relationship
  • the relationship between the real-time outdoor temperature tw, the intermediate core energy efficiency ratio and the typical press frequency is determined.
  • formula That is, according to the fitting of the functional relationship formula of D, E and F, the relationship function between the intermediate core energy efficiency ratio and the typical press frequency at 32 ° C is determined.
  • the specific implementation process of fitting the one-time function relationship refers to the prior art and will not be described in detail herein.
  • the real-time core energy efficiency ratio corresponding to the real-time outdoor temperature tw is determined as the real-time press frequency f and the real-time outdoor temperature tw.
  • Real-time core energy efficiency ratio EERc That is, the compressor frequency in the linear relationship between the intermediate core energy efficiency ratio and the typical press frequency determined above is replaced by 52hz, and a core energy efficiency ratio is calculated.
  • the core energy efficiency ratio is 52hz real-time press frequency.
  • the real-time indoor temperature energy efficiency ratio correction factor EERtn is determined according to the real-time indoor temperature tn and the rated indoor temperature Tn.
  • the real-time internal engine speed efficiency ratio correction factor EERnn is determined according to the real-time internal engine speed nn and the rated internal machine speed Nn.
  • b is a correction coefficient not less than zero.
  • b has different value ranges.
  • the value range of b is [0, 0.04]; if the real-time internal machine speed nn is not greater than the speed threshold, the value range of b is [ 0,0.3].
  • the real-time external motor speed efficiency ratio correction factor EERnw is determined according to the real-time external machine speed nw and the rated external machine speed Nw.
  • Step 13 Determine the real-time cooling energy efficiency ratio EERs.
  • the real-time cooling energy efficiency ratio EERs are determined according to the following formula:
  • EERs [(EERc/EERcr)*d+e]*EERsr+EERtn+EERnn+EERnw.
  • EERc, EERtn, EERnn and EERnw are determined by step 12;
  • EERcr is determined according to typical press frequency, typical outdoor temperature, typical core energy efficiency ratio and typical relationship, rated press frequency fr and rated outdoor temperature twr Corresponding rated core energy efficiency ratio, the determination method refers to step 12 to determine the EERc process;
  • EERsr is the nominal refrigeration energy efficiency ratio of the air conditioner, determined by the prior art;
  • d and e are correction coefficients.
  • d has a value range of [0, 2]
  • the real-time core energy efficiency ratio corresponding to the real-time press frequency and the real-time outdoor temperature which have a great influence on the cooling energy efficiency ratio, is determined by typical press frequency, typical outdoor temperature, typical core energy efficiency ratio and typical relationship. Then, based on real-time indoor temperature, real-time internal engine speed and real-time external engine speed, the energy efficiency ratio correction factor with less influence on the cooling energy efficiency ratio is determined. Finally, the real-time cooling energy efficiency ratio is determined according to the real-time core energy efficiency ratio and multiple energy efficiency ratio correction factors. It can not only realize real-time detection of refrigeration energy efficiency ratio under different working conditions in air-conditioning operation, but also has high accuracy of detection results, which is in line with actual operating conditions, and can provide users with intuitive and accurate real-time cooling operation energy efficiency ratio.
  • the determined real-time cooling energy efficiency ratio EERs are displayed, for example, through the display panel of the air conditioner panel, so that the real-time cooling energy efficiency ratio during the operation of the air conditioner can be known in a timely and intuitive manner.
  • FIG. 2 there is shown a flow chart of an embodiment of a method for detecting the air conditioning capacity of an air conditioner based on the present invention.
  • the method for implementing on-line detection of air conditioning refrigeration capacity in this embodiment includes the following steps:
  • Step 21 During the operation of the air conditioner, obtain the real-time press frequency f, the real-time indoor temperature tn, the real-time outdoor temperature tw, the real-time internal machine speed nn, and the real-time external machine speed nw.
  • Step 22 Determine the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw, determine the real-time indoor temperature energy efficiency ratio correction factor EERtn, the real-time internal machine speed energy efficiency ratio correction factor EERnn, and the real-time external machine speed energy efficiency ratio correction.
  • EERnw Determine the real-time core energy efficiency ratio EERc corresponding to the real-time press frequency f and the real-time outdoor temperature tw, determine the real-time indoor temperature energy efficiency ratio correction factor EERtn, the real-time internal machine speed energy efficiency ratio correction factor EERnn, and the real-time external machine speed energy efficiency ratio correction.
  • Step 23 Determine the real-time cooling energy efficiency ratio EERs.
  • Step 24 Determine the real-time cooling capacity W according to the real-time cooling energy efficiency ratio EERs and the real-time operating power P.
  • step 23 determines the real-time cooling energy efficiency ratio EERs
  • the actual cooling capacity during the operation of the air conditioner can be obtained, and the real-time detection of the cooling capacity can be realized, thereby providing the user with an intuitive and accurate real-time cooling capacity.
  • the determined real-time cooling capacity W is also displayed, for example, displayed on the air conditioner panel display screen, so that the real-time cooling capacity during the operation of the air conditioner can be known in a timely and intuitive manner.

Abstract

一种在线检测空调制冷能效比和制冷量的方法,在线检测制冷能效比的方法包括:空调运行过程中,获取实时压机频率、实时室内温度、实时室外温度、实时内机转速和实时外机转速;根据典型压机频率、典型室外温度、典型核心能效比及典型关系式确定实时压机频率和实时室外温度所对应的实时核心能效比;根据实时室内温度和额定室内温度确定实时室内温度能效比修正因子,根据实时内机转速和额定内机转速确定实时内机转速能效比修正因子,根据实时外机转速和额定外机转速确定实时外机转速能效比修正因子;根据实时核心能效比和各能效比修正因子确定实时制冷能效比,从而可实现在空调不同运行工况下制冷能效比及制冷量的实时检测。

Description

在线检测空调制冷能效比和制冷量的方法 技术领域
本发明属于空调性能参数检测技术领域,具体地说,是涉及一种在线检测空调制冷能效比和制冷量的方法。
背景技术
空调制冷能效比,是空调制冷量与运行功率的比值,是衡量空调制冷性能优劣的参数,制冷能效比越高,空调的耗电量越少。
现有技术中,空调制冷能效比为标识在空调铭牌上的标称值,是在额定状态下根据额定制冷量与额定功耗所计算出来的比值。但是,空调在实际使用过程中,受使用环境的影响,很难达到额定工况。因此,空调铭牌上所标称的制冷能效比在使用实际过程中仅能起到参考的作用,不能实时呈现实际制冷性能。由于不能获得空调实时的制冷能效比,因此,也不能得到空调运行过程中的实际制冷量。
技术问题
本发明的目的之一是提供一种在线检测空调制冷能效比的方法,实现在空调不同运行工况下制冷能效比的实时检测。
技术解决方案
为实现上述发明目的,本发明提供的在线检测制冷能效比的方法采用下述技术方案予以实现:
一种在线检测空调制冷能效比的方法,所述方法包括:
空调运行过程中,获取实时压机频率f、实时室内温度tn、实时室外温度tw、实时内机转速nn和实时外机转速nw;
根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc;所述典型关系式包括同典型室外温度下、典型核心能效比与典型压机频率的关系式和同典型压机频率下、典型核心能效比与典型室外温度的关系式;
根据所述实时室内温度tn和额定室外温度Tn确定实时室内温度能效比修正因子EERtn,根据所述实时内机转速nn和额定内机转速Nn确定实时内机转速能效比修正因子EERnn,根据所述实时外机转速nw和额定外机转速Nw确定实时外机转速能效比修正因子EERnw;
确定实时制冷能效比EERs:
EERs=[(EERc/EERcr)*d+e]*EERsr+EERtn+EERnn+EERnw;
EERcr为根据所述典型压机频率、所述典型室外温度、所述典型核心能效比及所述典型关系式确定的、额定压机频率fr和额定室外温度twr所对应的额定核心能效比;EERsr为空调的标称制冷能效比;d和e为修正系数。
如上所述的方法,所述根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc,具体包括:
根据所述典型核心能效比与典型压机频率的关系式确定出多个所述典型室外温度下、所述实时压机频率f所对应的多个中间核心能效比;
根据多个所述中间核心能效比和所述典型核心能效比与典型室外温度的关系式确定出同所述实时压机频率f下、中间核心能效比与典型室外温度的关系式;
根据所述中间核心能效比与典型室外温度的关系式确定出所述实时压机频率f下、所述实时室外温度tw所对应的实时核心能效比,作为所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc。
如上所述的方法,所述根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc,具体包括:
根据所述典型核心能效比与典型室外温度的关系式确定出多个所述典型压机频率下、所述实时室外温度tw所对应的多个中间核心能效比;
根据多个所述中间核心能效比和所述典型核心能效比与典型压机频率的关系式确定出同所述实时室外温度tw下、中间核心能效比与典型压机频率的关系式;
根据所述中间核心能效比与典型压机频率的关系式确定出所述实时室外温度tw下、所述实时压机频率f所对应的实时核心能效比,作为所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc。
优选的,所述典型核心能效比与典型压机频率的关系式为一次函数关系式;典型核心能效比与典型室外温度的关系式为二次函数关系式。
如上所述的方法,所述根据所述实时室内温度tn和额定室内温度Tn确定实时室内温度能效比修正因子EERtn,具体包括:
根据下述公式EERtn=a*(tn-Tn),确定实时室内温度能效比修正因子EERtn;a为不小于0的修正系数。
如上所述的方法,所述根据所述实时内机转速nn和额定内机转速Nn确定实时内机转速能效比修正因子EERnn,具体包括:
根据下述公式EERnn=b*(nn-Nn),确定实时内机转速能效比修正因子EERnn;b为不小于0的修正系数。
如上所述的方法,所述根据所述实时外机转速nw和额定外机转速Nw确定实时外机转速能效比修正因子EERnw,具体包括:
根据下述公式EERnw=c*(nw-Nw),确定实时外机转速能效比修正因子EERnw;c为不小于0的修正系数。
优选的,所述方法还包括:
将所述实时制冷能效比EERs进行显示。
本发明的目的之二是提供一种在线检测空调制冷量的方法,实现在空调不同运行工况下制冷量的实时检测。
为实现上述发明目的,本发明提供的制冷量在线检测方法采用下述技术方案予以实现:
一种空调制冷量在线检测方法,所述方法包括:
空调运行过程中,获取空调的实时制冷能效比EERs和实时运行功率P;
确定实时制冷量W:W=EERs*P;
所述实时制冷能效比EERs根据上述在线检测制冷能效比的方法确定。
如上所述的方法,所述方法还包括:将所述实时制冷量W进行显示。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明提供的空调制冷能效比在线检测方法,通过典型压机频率、典型室外温度、典型核心能效比及典型关系式确定出对制冷能效比影响较大的实时压机频率和实时室外温度所对应的实时核心能效比,再基于实时室内温度、实时内机转速和实时外机转速确定出对制冷能效比影响较小的能效比修正因子,最后根据实时核心能效比和多个能效比修正因子确定出实时制冷能效比,不仅能够实现对空调运行过程中不同工况下制冷能效比的实时检测,且检测结果精确度较高,符合实际运行工况,可以为用户提供直观、准确地实时制冷运行能效比;基于检测的实时制冷能效比,可以得到空调运行过程中的实际制冷量,实现制冷量的实时检测,进而为用户提供直观、准确地实时制冷量。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是基于本发明在线检测空调制冷能效比的方法一个实施例的流程图;
图2是基于本发明在线检测空调制冷量的方法一个实施例的流程图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
首先,对本发明的技术思路作简要说明:
经理论分析和实验验证,对空调制冷运行时的制冷能效比影响较大的因素是室外温度和压机频率,而室内温度、内机转速及外机转速对制冷能效比影响较小。因此,为简化制冷能效比在线检测过程、而又保证检测的精确度,本申请提出了将实时室外温度和实时压机频率所影响的制冷能效比作为核心能效比,采用实验数据推算的方式确定;而将对制冷能效比影响较小的因素的能效比采用根据实时值和额定值作修正的方式确定。然后,再确定出所有因素影响下的总的实时制冷能效比,实现对制冷能效比的在线实时检测。
请参见图1,该图所示为基于本发明在线检测空调制冷能效比的方法一个实施例的流程图。
如图1所示,该实施例实现在线检测空调制冷能效比的方法包括下述步骤:
步骤11:空调运行过程中,获取实时压机频率f、实时室内温度tn、实时室外温度tw、实时内机转速nn和实时外机转速nw。
由于压缩机、室内风机和室外风机均是由空调器的主控器发出指令进行频率和风速控制,因此,实时压机频率f、实时内机转速nn和实时外机转速nw可以由空调器的主控器方便地获取到。实时室内温度和实时室外温度可以分别通过设置在室内和室外的温度检测装置检测并获取。
步骤12:确定实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc,确定实时室内温度能效比修正因子EERtn、实时内机转速能效比修正因子EERnn和实时外机转速能效比修正因子EERnw。
具体而言,根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc。其中,典型压机频率、典型室外温度和典型核心能效比为多个,且每个典型压机频率和每个典型室外温度下对应着一个典型核心能效比。典型压机频率、典型室外温度及所对应的典型核心能效比一般为空调器出厂前实验室测定并写入到空调器存储器中。而典型关系式是基于典型压机频率、典型室外温度和典型核心能效比而获得的关系式,具体来说,典型关系式包括同典型室外温度下、典型核心能效比与典型压机频率的关系式以及同典型压机频率下、典型核心能效比与典型室外温度的关系式。而且,经分析和试验验证,典型核心能效比与典型压机频率的关系式为一次函数关系式;典型核心能效比与典型室外温度的关系式为二次函数关系式。
关于典型压机频率、典型室外温度、典型核心能效比及典型关系式的一个具体实例如下:
表1所示为典型压机频率、典型室外温度和典型核心能效比构成的典型核心能效比表格。
表1  典型核心能效比表
Figure 912533dest_path_image002
 
在上面表1示出的典型核心能效比表中,包括有三个典型室外温度,分别为30℃、35℃、40℃,还包括有三个典型压机频率,分别为27hz、46hz、64hz。每个典型压机频率和每个典型室外温度下分别对应着一个典型核心能效比,共有九个典型核心能效比。以30℃的典型室外温度和27hz的典型压机频率所对应的典型核心能效比6.42为例,简要说明典型核心能效比的获取方法:
在一定实验环境中,控制室外温度为30℃、压机运行频率为27hz,室内温度、内机转速和外机转速均为额定值(对应确定机型的空调器,额定值是确定的、已知的);然后,测试空调的制冷量和功率,根据制冷量和功率的比值确定出能效比为6.42,作为室外温度为30℃、压机频率为27hz所对应的典型核心能效比。实验室测试制冷量和功率的设备及方法,采用现有技术来实现。
采用上述方法,依次获取其他典型室外温度和其他典型压机频率所对应的典型核心能效比,所有的典型室外温度、典型压机频率及典型核心能效比构成表1,写入到空调器存储器中。
此外,还根据典型室外温度、典型压机频率及典型核心能效比获取同典型室外温度下、典型核心能效比与典型压机频率的一次函数关系式以及同典型压机频率下、典型核心能效比与典型室外温度的二次函数关系式。具体来说,是通过数值拟合的方式获得上述的一次函数关系式和二次函数关系式,具体的关系式如下:
同典型室外温度下,典型核心能效比Yeer与典型压机频率f的一次函数关系式包括:
30℃下, Yeer=-0.052f+7.842。
35℃下, Yeer=-0.04f+6.396。
40℃下, Yeer=-0.024f+8.971。
同典型压机频率下,典型核心能效比Yeer与典型室外温度tw的二次函数关系式包括:
27hz,Yeer=-0.0035tw 2+0.0007tw+9.5179。
46hz,Yeer=-0.0018tw 2-0.0638tw+8.9311。
64hz,Yeer=-0.0002tw 2-0.125tw+8.3751。
上述的各关系式也写入到空调器存储器中存储。
典型核心能效比表中的典型室外温度和典型压机频率数量有限,例如,均仅有三个,远远不能覆盖所有的实际室外温度和实际压机运行频率。因此,在空调器使用过程中,将根据上述的典型核心能效比表中的数据及对应的关系式去确定实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc。而且,具体可以采用下述的两种方式确定实时核心能效比EERc:
方法一,根据核心能效比与室外温度的二次函数关系式确定实时核心能效比EERc。
首先,根据典型核心能效比与典型压机频率的一次关系式确定出多个典型室外温度下、实时压机频率f所对应的多个中间核心能效比。
举例来说,空调器的典型核心能效比表及关系式如上所述,空调器实际运行中,实时压机频率f=52hz,实时室外温度tw=32℃。那么,
根据30℃下典型核心能效比Yeer与典型压机频率f的一次函数关系式Yeer=-0.052f+7.842,将f=52hz代入关系式,计算出30℃、52hz所对应的中间核心能效比,记为A。
根据35℃下典型核心能效比Yeer与典型压机频率f的一次函数关系式Yeer=-0.04f+6.396,将f=52hz代入关系式,计算出35℃、52hz所对应的中间核心能效比,记为B。
根据40℃下典型核心能效比Yeer与典型压机频率f的一次函数关系式Yeer=-0.024f+8.971,将f=52hz代入关系式,计算出40℃、52hz所对应的中间核心能效比,记为C。
然后,根据多个中间核心能效比和典型核心能效比与典型室外温度的关系式(也即二次函数关系式)确定出同实时压机频率f下、中间核心能效比与典型室外温度的关系式。也即,根据A、B和C拟合二次函数关系式,确定出52hz下、中间核心能效比与典型室外温度的二次函数关系式。拟合二次函数关系式的具体实现过程参考现有技术,在此不作详细描述。
最后,根据中间核心能效比与典型室外温度的关系式确定出实时压机频率f下、实时室外温度tw所对应的实时核心能效比,作为实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc。也即,将上述确定出的中间核心能效比与典型室外温度的二次函数关系式中的室外温度替换为32℃,计算得出一个核心能效比,该核心能效比是52hz的实时压机频率下、32℃的实时室外温度下所对应的实时核心能效比EERc。
方法二,根据核心能效比与压机频率的一次函数关系式确定实时核心能效比EERc。
首先,根据典型核心能效比与典型室外温度的二次关系式确定出多个典型压机频率下、实时室外温度tw所对应的多个中间核心能效比。
举例来说,空调器的典型核心能效比表及关系式如上所述,空调器实际运行中,实时压机频率f=52hz,实时室外温度tw=32℃。那么,
根据27hz下典型核心能效比Yeer与典型室外温度tw的二次函数式Yeer=-0.0035tw 2+0.0007tw+9.5179,将tw=32℃代入关系式,计算出27hz、32℃所对应的中间核心能效比,记为D。
根据46hz下典型核心能效比Yeer与典型室外温度tw的二次函数式Yeer=-0.0018tw 2-0.0638tw+8.9311,将tw=32℃代入关系式,计算出46hz、32℃所对应的中间核心能效比,记为E。
根据64hz下典型核心能效比Yeer与典型室外温度tw的二次函数式Yeer=-0.0002tw 2-0.125tw+8.3751,将tw=32℃代入关系式,计算出64hz、32℃所对应的中间核心能效比,记为F。
然后,根据多个中间核心能效比和典型核心能效比与典型压机频率的关系式(也即一次函数关系式)确定出同实时室外温度tw下、中间核心能效比与典型压机频率的关系式。也即,根据D、E和F拟合一次函数关系式,确定出32℃下、中间核心能效比与典型压机频率的一次函数关系式。拟合一次函数关系式的具体实现过程参考现有技术,在此不作详细描述。
最后,根据中间核心能效比与典型压机频率的关系式确定出实时压机频率f下、实时室外温度tw所对应的实时核心能效比,作为实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc。也即,将上述确定出的中间核心能效比与典型压机频率的一次函数关系式中的压机频率替换为52hz,计算得出一个核心能效比,该核心能效比是52hz的实时压机频率下、32℃的实时室外温度下所对应的实时核心能效比EERc。
采用上述关系式的方式确定实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc,仅需要少量的典型压机频率、典型室外温度及典型核心能效比,该方法尤其适合于在实验时间有限或实验条件有限而无法获得更多的典型核心能效比的情况下使用。
此外,还需要确定实时室内温度能效比修正因子EERtn、实时内机转速能效比修正因子EERnn和实时外机转速能效比修正因子EERnw。具体的:
根据实时室内温度tn和额定室内温度Tn确定实时室内温度能效比修正因子EERtn。作为优选实施例,是根据公式EERtn=a*(tn-Tn),确定实时室内温度能效比修正因子EERtn;a为不小于0的修正系数。优选的,a的取值范围为[0,20],譬如,a=8。
根据实时内机转速nn和额定内机转速Nn确定实时内机转速能效比修正因子EERnn。作为优选实施例,是根据公式EERnn=b*(nn-Nn),确定实时内机转速能效比修正因子EERnn;b为不小于0的修正系数。优选的,实时内机转速位于不同范围时、b具有不同的取值范围。具体来说,如果实时内机转速nn大于转速阈值(譬如,为1400rpm),b的取值范围为[0,0.04];如果实时内机转速nn不大于转速阈值,b的取值范围为[0,0.3]。
根据实时外机转速nw和额定外机转速Nw确定实时外机转速能效比修正因子EERnw。作为优选实施例,是根据公式EERnw=c*(nw-Nw),确定实时外机转速能效比修正因子EERnw;c为不小于0的修正系数。优选的,c的取值范围为[0,0.06],c=0.02。
步骤13:确定实时制冷能效比EERs。
具体来说,是根据下述公式确定实时制冷能效比EERs:
EERs=[(EERc/EERcr)*d+e]*EERsr+EERtn+EERnn+EERnw。
式中,EERc、EERtn、EERnn和EERnw均由步骤12确定;EERcr为根据典型压机频率、典型室外温度、典型核心能效比及典型关系式确定的、额定压机频率fr和额定室外温度twr所对应的额定核心能效比,确定方法参考步骤12确定EERc的过程;EERsr为空调的标称制冷能效比,采用现有技术来确定;d和e为修正系数。优选的,d的取值范围为[0,2],e的取值范围为[-1,1]。譬如,d=1,e=0。
采用该实施例的方法,通过典型压机频率、典型室外温度、典型核心能效比及典型关系式确定出对制冷能效比影响较大的实时压机频率和实时室外温度所对应的实时核心能效比,再基于实时室内温度、实时内机转速和实时外机转速确定出对制冷能效比影响较小的能效比修正因子,最后根据实时核心能效比和多个能效比修正因子确定出实时制冷能效比,不仅能够实现对空调运行过程中不同工况下制冷能效比的实时检测,且检测结果精确度较高,符合实际运行工况,可以为用户提供直观、准确地实时制冷运行能效比。
在其他一些优选实施例中,还将确定的实时制冷能效比EERs进行显示,譬如,通过空调器面板显示屏进行显示,便于及时、直观地获知空调器运行过程中的实时制冷能效比。
请参见图2,该图所示为基于本发明在线检测空调制冷量的方法一个实施例的流程图。
如图2所示,该实施例实现在线检测空调制冷量的方法包括下述步骤:
步骤21:空调运行过程中,获取实时压机频率f、实时室内温度tn、实时室外温度tw、实时内机转速nn和实时外机转速nw。
步骤22:确定实时压机频率f和实时室外温度tw所对应的实时核心能效比EERc,确定实时室内温度能效比修正因子EERtn、实时内机转速能效比修正因子EERnn和实时外机转速能效比修正因子EERnw。
步骤23:确定实时制冷能效比EERs。
上述步骤21至步骤23的具体实现过程参考图1实施例对应步骤的描述。
步骤24:根据实时制冷能效比EERs和实时运行功率P确定实时制冷量W。
实时运行功率P的获得可以采用现有技术来实现,在此不作具体阐述。步骤23确定了实时制冷能效比EERs之后,根据公式W=EERs*P确定出实时制冷量。
基于检测的实时制冷能效比,可以得到空调运行过程中的实际制冷量,实现制冷量的实时检测,进而为用户提供直观、准确地实时制冷量。
在其他一些优选实施例中,还将确定的实时制冷量W进行显示,譬如,通过空调器面板显示屏进行显示,便于及时、直观地获知空调器运行过程中的实时制冷量。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种在线检测空调制冷能效比的方法,其特征在于,所述方法包括:
    空调运行过程中,获取实时压机频率f、实时室内温度tn、实时室外温度tw、实时内机转速nn和实时外机转速nw;
    根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc;所述典型关系式包括同典型室外温度下、典型核心能效比与典型压机频率的关系式和同典型压机频率下、典型核心能效比与典型室外温度的关系式;
    根据所述实时室内温度tn和额定室外温度Tn确定实时室内温度能效比修正因子EERtn,根据所述实时内机转速nn和额定内机转速Nn确定实时内机转速能效比修正因子EERnn,根据所述实时外机转速nw和额定外机转速Nw确定实时外机转速能效比修正因子EERnw;
    确定实时制冷能效比EERs:
    EERs=[(EERc/EERcr)*d+e]*EERsr+EERtn+EERnn+EERnw;
    EERcr为根据所述典型压机频率、所述典型室外温度、所述典型核心能效比及所述典型关系式确定的、额定压机频率fr和额定室外温度twr所对应的额定核心能效比;EERsr为空调的标称制冷能效比;d和e为修正系数。
  2. 根据权利要求1所述的方法,其特征在于,所述根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc,具体包括:
    根据所述典型核心能效比与典型压机频率的关系式确定出多个所述典型室外温度下、所述实时压机频率f所对应的多个中间核心能效比;
    根据多个所述中间核心能效比和所述典型核心能效比与典型室外温度的关系式确定出同所述实时压机频率f下、中间核心能效比与典型室外温度的关系式;
    根据所述中间核心能效比与典型室外温度的关系式确定出所述实时压机频率f下、所述实时室外温度tw所对应的实时核心能效比,作为所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc。
  3. 根据权利要求1所述的方法,其特征在于,所述根据已知的典型压机频率、典型室外温度、典型核心能效比及典型关系式确定所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc,具体包括:
    根据所述典型核心能效比与典型室外温度的关系式确定出多个所述典型压机频率下、所述实时室外温度tw所对应的多个中间核心能效比;
    根据多个所述中间核心能效比和所述典型核心能效比与典型压机频率的关系式确定出同所述实时室外温度tw下、中间核心能效比与典型压机频率的关系式;
    根据所述中间核心能效比与典型压机频率的关系式确定出所述实时室外温度tw下、所述实时压机频率f所对应的实时核心能效比,作为所述实时压机频率f和所述实时室外温度tw所对应的实时核心能效比EERc。
  4. 根据权利要求1所述的方法,其特征在于,所述典型核心能效比与典型压机频率的关系式为一次函数关系式;典型核心能效比与典型室外温度的关系式为二次函数关系式。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述实时室内温度tn和额定室内温度Tn确定实时室内温度能效比修正因子EERtn,具体包括:
    根据下述公式EERtn=a*(tn-Tn),确定实时室内温度能效比修正因子EERtn;a为不小于0的修正系数。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述实时内机转速nn和额定内机转速Nn确定实时内机转速能效比修正因子EERnn,具体包括:
    根据下述公式EERnn=b*(nn-Nn),确定实时内机转速能效比修正因子EERnn;b为不小于0的修正系数。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述实时外机转速nw和额定外机转速Nw确定实时外机转速能效比修正因子EERnw,具体包括:
    根据下述公式EERnw=c*(nw-Nw),确定实时外机转速能效比修正因子EERnw;c为不小于0的修正系数。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述实时制冷能效比EERs进行显示。
  9. 一种在线检测空调制冷量的方法,其特征在于,所述方法包括:
    空调运行过程中,获取空调的实时制冷能效比EERs和实时运行功率P;
    确定实时制冷量W:W=EERs*P;
    所述实时制冷能效比EERs根据权利要求1至7中任一项所述的在线检测空调制冷能效比的方法确定。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    将所述实时制冷量W进行显示。
PCT/CN2018/082076 2017-04-13 2018-04-06 在线检测空调制冷能效比和制冷量的方法 WO2018188520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710238888.6A CN107144438B (zh) 2017-04-13 2017-04-13 在线检测空调制冷能效比和制冷量的方法
CN201710238888.6 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188520A1 true WO2018188520A1 (zh) 2018-10-18

Family

ID=59774651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082076 WO2018188520A1 (zh) 2017-04-13 2018-04-06 在线检测空调制冷能效比和制冷量的方法

Country Status (2)

Country Link
CN (1) CN107144438B (zh)
WO (1) WO2018188520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112464A (zh) * 2021-11-15 2022-03-01 宁波奥克斯电气股份有限公司 一种室内机的测试方法和室内机的测试系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144438B (zh) * 2017-04-13 2019-10-01 青岛海尔空调器有限总公司 在线检测空调制冷能效比和制冷量的方法
CN109140678B (zh) * 2018-08-28 2020-11-10 四川长虹空调有限公司 变频空调系统空调数据及制冷剂参数的回归分析方法
CN110726221B (zh) * 2019-10-29 2020-09-25 珠海格力电器股份有限公司 确定空调能效信息的方法、装置和空调
CN115875802A (zh) * 2021-09-26 2023-03-31 中国移动通信集团浙江有限公司 空调制冷能力评估方法、装置、设备及可读存储介质
CN117419422B (zh) * 2023-12-18 2024-03-26 深圳市前海能源科技发展有限公司 区域供冷系统的能效计算方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288822A1 (en) * 2004-06-29 2005-12-29 York International Corporation HVAC start-up control system and method
WO2009064111A2 (en) * 2007-11-12 2009-05-22 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
CN102261717A (zh) * 2010-05-24 2011-11-30 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CN102455093A (zh) * 2011-08-17 2012-05-16 深圳市善能科技有限公司 制冷系统能效控制方法
CN103245031A (zh) * 2012-02-06 2013-08-14 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106524355A (zh) * 2016-12-02 2017-03-22 青岛海尔空调器有限总公司 空调节能控制方法
CN107144438A (zh) * 2017-04-13 2017-09-08 青岛海尔空调器有限总公司 在线检测空调制冷能效比和制冷量的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101239B (zh) * 2006-07-03 2010-05-12 珠海格力电器股份有限公司 用于测试空调的设备及方法
CN101435643B (zh) * 2008-12-12 2011-05-04 华南理工大学 冷水机组运行能效比监测方法
CN104515245B (zh) * 2013-09-26 2017-06-30 珠海格力电器股份有限公司 空调系统的控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288822A1 (en) * 2004-06-29 2005-12-29 York International Corporation HVAC start-up control system and method
WO2009064111A2 (en) * 2007-11-12 2009-05-22 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
CN102261717A (zh) * 2010-05-24 2011-11-30 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CN102455093A (zh) * 2011-08-17 2012-05-16 深圳市善能科技有限公司 制冷系统能效控制方法
CN103245031A (zh) * 2012-02-06 2013-08-14 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106524355A (zh) * 2016-12-02 2017-03-22 青岛海尔空调器有限总公司 空调节能控制方法
CN107144438A (zh) * 2017-04-13 2017-09-08 青岛海尔空调器有限总公司 在线检测空调制冷能效比和制冷量的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112464A (zh) * 2021-11-15 2022-03-01 宁波奥克斯电气股份有限公司 一种室内机的测试方法和室内机的测试系统
CN114112464B (zh) * 2021-11-15 2024-02-02 宁波奥克斯电气股份有限公司 一种室内机的测试方法和室内机的测试系统

Also Published As

Publication number Publication date
CN107144438A (zh) 2017-09-08
CN107144438B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2018188520A1 (zh) 在线检测空调制冷能效比和制冷量的方法
CN101101239B (zh) 用于测试空调的设备及方法
WO2018188430A1 (zh) 在线检测空调制热能效比和制热量的方法
WO2019109959A1 (zh) 空调装置及用于判断其运行状态是否正常的方法
EP2973120B1 (en) Smart hvac manifold system
CN105650022B (zh) 一种风扇转速控制方法及风扇转速控制装置
CN106415145B (zh) Hvac系统和控制
WO2018188521A1 (zh) 空调器制热运行控制方法
WO2018188522A1 (zh) 一种空调器制热运行控制方法
CN107192085B (zh) 一种空调器制冷运行控制方法
WO2018188519A1 (zh) 空调制热能效比及制热量在线检测方法
CN104776943A (zh) 空调器换热量检测方法及装置
CN110749025A (zh) 空调整机功率的确定方法及装置
Yin et al. Experimental performance evaluations and empirical model developments of residential furnace blowers with PSC and ECM motors
JP2020186910A (ja) 空調能力提示システム
CN109114750A (zh) 空调室外机的控制方法、装置及计算机可读存储介质
JP2019020070A (ja) 空調装置の評価装置および評価方法
Rogers et al. Uncertainty analysis and field implementation of a fault detection method for residential HVAC systems
CN107091753B (zh) 空调制冷能效比及制冷量在线检测方法
CN106949611A (zh) 一种空调器管理装置和具有该管理装置的空调器
CN113294897A (zh) 空调器的转速控制方法、空调器和存储介质
US20220082284A1 (en) Systems and methods for measuring efficiencies of hvacr systems
CN106839339B (zh) 一种空调器实时送风量的检测方法及装置、空调器
CN110966712B (zh) 确定空调器电子膨胀阀目标排气温度的方法和装置
CN110966713B (zh) 确定电子膨胀阀目标排气温度的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784155

Country of ref document: EP

Kind code of ref document: A1