WO2020196647A1 - 位相変調装置及び位相変調方法 - Google Patents

位相変調装置及び位相変調方法 Download PDF

Info

Publication number
WO2020196647A1
WO2020196647A1 PCT/JP2020/013395 JP2020013395W WO2020196647A1 WO 2020196647 A1 WO2020196647 A1 WO 2020196647A1 JP 2020013395 W JP2020013395 W JP 2020013395W WO 2020196647 A1 WO2020196647 A1 WO 2020196647A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control
output
charge pump
circuit
Prior art date
Application number
PCT/JP2020/013395
Other languages
English (en)
French (fr)
Inventor
崇 名古屋
俊輔 井澤
健正 大江
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019057222A external-priority patent/JP7208510B2/ja
Priority claimed from JP2019057247A external-priority patent/JP7208514B2/ja
Priority claimed from JP2019057239A external-priority patent/JP7208513B2/ja
Priority claimed from JP2019057214A external-priority patent/JP7127589B2/ja
Priority claimed from JP2019057219A external-priority patent/JP7208509B2/ja
Priority claimed from JP2019057220A external-priority patent/JP7131451B2/ja
Priority claimed from JP2019057225A external-priority patent/JP7208511B2/ja
Priority claimed from JP2019057230A external-priority patent/JP7208512B2/ja
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Priority to CN202080006291.9A priority Critical patent/CN113056702B/zh
Publication of WO2020196647A1 publication Critical patent/WO2020196647A1/ja
Priority to US17/477,989 priority patent/US11450293B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the present invention relates to a phase modulation device and a phase modulation method.
  • Patent Document 1 a phase modulation device using LCOS (Liquid Crystal On Silicon) has been proposed.
  • Paragraph [0015] and the like of Patent Document 1 disclose that the voltage applied to each pixel of the LCOS element is controlled to phase-modulate the incident light.
  • JP 2014-056004A Japanese Unexamined Patent Publication No. 2014-56004
  • a liquid crystal material having a high refractive index anisotropy is basically used, but in addition, firstly, the liquid crystal layer is thickened, and secondly.
  • One example is to increase the voltage applied to the liquid crystal.
  • the method of thickening the liquid crystal layer has a demerit that the orientation of the liquid crystal is easily disturbed.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to suppress an increase in the thickness of the liquid crystal layer and to supply a voltage supplied from a column data line to a pixel circuit. It is an object of the present invention to provide a phase modulation device and a phase modulation method capable of ensuring a sufficient phase modulation amount even in infrared light by increasing the voltage applied to the liquid crystal without increasing the voltage.
  • the phase modulator according to the aspect of the present invention is a phase modulator for reflecting incident light at a desired angle, and has a plurality of column data lines and a plurality of row scanning lines orthogonal to each other.
  • a plurality of pixel circuits provided at positions where the plurality of column data lines and the plurality of row scanning lines intersect each other, and a plurality of reflective pixels provided corresponding to the plurality of pixel circuits.
  • a liquid crystal that is provided corresponding to each of the plurality of reflective pixels and whose refractive index with respect to incident light changes depending on a drive voltage supplied from the pixel circuit, and a charge pump control unit are provided.
  • the column data line outputs a control voltage that changes in a range up to a predetermined maximum voltage to each of the pixel circuits.
  • the pixel circuit includes a charge pump capable of amplifying the control voltage.
  • the charge pump control unit When the drive voltage supplied to the liquid crystal is equal to or lower than the maximum voltage, the charge pump control unit outputs the control voltage to the liquid crystal without amplifying the control voltage, and when the drive voltage exceeds the maximum voltage. Controls the charge pump to amplify the control voltage and output it to the liquid crystal.
  • the phase modulation method according to the aspect of the present invention is a phase modulation method for reflecting incident light at a desired angle, and a plurality of column data lines orthogonal to each other and a plurality of row scan lines intersect with each other.
  • a control voltage output step that outputs a control voltage that changes within a range up to a predetermined maximum voltage is provided in a plurality of pixel circuits provided at the positions, and a control voltage output step that is provided corresponding to each of the pixel circuits and is provided according to the input voltage.
  • the non-amplified voltage output step of outputting the control voltage to the liquid crystal without amplifying the control voltage and the drive voltage are
  • the charge pump includes an amplification voltage output step of amplifying the control voltage and outputting the control voltage to the liquid crystal.
  • phase modulation device and the phase modulation method according to the aspect of the present invention it is possible to set a large amount of phase modulation of reflected light without increasing the control voltage supplied from the column data line to the pixel circuit. It is possible to suppress the thicknessing of the liquid crystal layer for securing the phase modulation amount and the disorder of the liquid crystal orientation due to the thickening of the liquid crystal layer.
  • FIG. 1 is a plan view showing a configuration of a phase modulation device according to each embodiment.
  • FIG. 2 is a side sectional view showing the configuration of the phase modulation device according to each embodiment.
  • FIG. 3 is a circuit diagram of the phase modulation apparatus according to the first embodiment and the second embodiment.
  • FIG. 4 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation apparatus according to the first embodiment and the third embodiment.
  • FIG. 5 is an explanatory diagram showing the direction of the reflected light reflected by each pixel circuit provided in the phase modulation device according to each embodiment, where sa1 is the case where the charge pump is off and sb1 is the case where the charge pump is on. Shown.
  • FIG. 1 is a plan view showing a configuration of a phase modulation device according to each embodiment.
  • FIG. 2 is a side sectional view showing the configuration of the phase modulation device according to each embodiment.
  • FIG. 3 is a circuit diagram of the phase modulation apparatus according to the first
  • FIG. 6A is a graph showing each pixel circuit arranged in a matrix
  • FIG. 6B is a graph showing a drive voltage supplied to the liquid crystal from each pixel circuit
  • FIG. 7A is a graph showing the relationship between the gradation set in the liquid crystal and the control voltage supplied to the pixel circuit in the phase modulation apparatus according to the first embodiment, the fourth embodiment, the sixth embodiment, and the eighth embodiment.
  • FIG. 7B is a graph showing the relationship between the gradation set in the liquid crystal and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the first embodiment, the fourth embodiment, the sixth embodiment, and the eighth embodiment. Is.
  • FIG. 7A is a graph showing the relationship between the gradation set in the liquid crystal and the control voltage supplied to the pixel circuit in the phase modulation apparatus according to the first embodiment, the fourth embodiment, the sixth embodiment, and the eighth embodiment. Is.
  • FIG. 7B is a graph showing the relationship between the gradation set in the liquid crystal and the drive voltage supplied to the liquid
  • FIG. 8 is a timing chart showing the operation of the second transistor Q2 and the switches S1 to S4 provided in each pixel circuit of the phase modulation apparatus according to the first embodiment.
  • FIG. 9 is an explanatory diagram showing a modified example of the pixel circuit provided in the phase modulation circuit according to the first embodiment and the third embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the second embodiment.
  • FIG. 11A is a graph showing the relationship between the gradation set in the liquid crystal and the control voltage supplied to the pixel circuit in the phase modulation apparatus according to the second embodiment and the third embodiment.
  • FIG. 11B is a graph showing the relationship between the gradation set on the liquid crystal and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the second embodiment and the third embodiment.
  • FIG. 12 is a timing chart showing the operation of transistors Q1, Q2, Q3, and switches S1 to S4 provided in each pixel circuit of the phase modulation apparatus according to the second embodiment.
  • FIG. 13 is an explanatory diagram showing a modified example of the pixel circuit provided in the phase modulation circuit according to the second embodiment.
  • FIG. 14 is a circuit diagram of the phase modulation device according to the third embodiment.
  • FIG. 15 is a timing chart showing the operation of the second transistor Q2 and the switches S1 to S4 provided in each pixel circuit of the phase modulation apparatus according to the third embodiment.
  • FIG. 16 is a circuit diagram of the phase modulation apparatus according to the fourth embodiment and the sixth embodiment.
  • FIG. 17 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the fourth embodiment.
  • FIG. 18A shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is not operated in the phase modulation apparatus according to the fourth embodiment and the sixth embodiment.
  • It is a timing chart which shows the operation of the 2nd changeover switch S5.
  • FIG. 18B shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is operated in the phase modulation apparatus according to the fourth embodiment and the sixth embodiment.
  • FIG. 19 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the fifth embodiment.
  • FIG. 20A shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is not operated in the phase modulation apparatus according to the fifth embodiment and the seventh embodiment.
  • FIG. 20B shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is operated in the phase modulation apparatus according to the fifth embodiment and the seventh embodiment. It is a timing chart which shows the operation of.
  • FIG. 20A shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is operated in the phase modulation apparatus according to the fifth embodiment and the seventh embodiment.
  • FIG. 20B shows the second transistors Q2 provided in each pixel circuit, the switches S1 to S4, and the first changeover switch S6 when the charge pump is
  • FIG. 21 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the sixth embodiment.
  • 22A (a) is a circuit diagram when the well of the source follower Q4 of FIG. 21 is connected to the ground
  • FIG. 22A (b) is a graph showing the relationship between Vin and Vout of FIG. 22A (a).
  • .. 22B (a) is a circuit diagram when the well and the source of the source follower Q4 of FIG. 21 are connected
  • FIG. 22B (b) is a graph showing the relationship between Vin and Vout of FIG. 22B (a).
  • .. FIG. 23 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the seventh embodiment.
  • FIG. 24 is a circuit diagram of the phase modulation device according to the eighth embodiment.
  • FIG. 25 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the eighth embodiment.
  • FIG. 26A is a timing chart showing an on / off state of each of the switches S1 to S4 when the control voltage is not amplified by the charge pump in the phase modulation apparatus according to the eighth embodiment.
  • FIG. 26B is a timing chart showing an on / off state of each of the switches S1 to S4 when the control voltage is amplified by the charge pump in the phase modulation apparatus according to the eighth embodiment.
  • FIG. 27 is a circuit diagram of the phase modulation device according to the ninth embodiment.
  • FIG. 28 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the ninth embodiment.
  • FIG. 29 is a graph showing the relationship between the gradation set in the liquid crystal, the lamp waveform voltage, and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the ninth embodiment.
  • FIG. 30A is a graph showing the relationship between the gradation set in the liquid crystal, the control voltage supplied to the pixel circuit, and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the ninth embodiment.
  • FIG. 30B is a graph showing the relationship between the gradation set in the liquid crystal, the control voltage supplied to the pixel circuit, and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the ninth embodiment.
  • FIG. 29 is a graph showing the relationship between the gradation set in the liquid crystal, the lamp waveform voltage, and the drive voltage supplied to the liquid crystal in the phase modulation apparatus according to the ninth embodiment.
  • FIG. 30A is a graph showing the relationship between
  • FIG. 31 is an explanatory diagram showing a first modification of the pixel circuit provided in the phase modulation circuit according to the ninth embodiment.
  • FIG. 32A shows an example of supplying a monotonically increasing lamp voltage to the pixel circuit according to the second modification of the phase modulation apparatus according to the ninth embodiment.
  • FIG. 32B shows an example of supplying a monotonically decreasing lamp voltage to the pixel circuit according to the second modification of the phase modulation apparatus according to the ninth embodiment.
  • FIG. 33 is a circuit diagram of the phase modulation device according to the tenth embodiment.
  • FIG. 34 is a circuit diagram showing a configuration of each pixel circuit provided in the phase modulation device according to the tenth embodiment.
  • FIG. 35 is a graph showing the relationship between the number of data bits of a digital signal and the number and width of pulses in the phase modulation apparatus according to the tenth embodiment.
  • FIG. 36 is a timing chart showing the operation of the second transistor Q2 provided in each pixel circuit of the phase modulation apparatus according to the tenth embodiment, and the switches S1 to S4.
  • FIG. 37 is an explanatory diagram showing a configuration of each pixel circuit provided in the phase modulation circuit according to the modified example of the tenth embodiment.
  • FIG. 1 is a plan view of the phase modulation device according to each embodiment (here, the first embodiment), and FIG. 2 is a side direction of the phase modulation device according to each embodiment (here, the first embodiment). It is a cross-sectional view of.
  • the phase modulation apparatus 101 according to each embodiment is an LCOS (Liquid Crystal) including a reflective substrate 11, a liquid crystal layer 12, and an opposing substrate 13. On Silicon) It has a panel structure. Then, the light incident from the opposite substrate 13 side (direction of arrow Y1 in FIG. 2) is reflected and separated into a plurality of reflected lights having different phases.
  • the surface of the reflective substrate 11 and the opposing substrate 13 on the side where the light is incident is referred to as a “light incident surface”.
  • a plurality of reflective pixels formed of a metal that reflects light (for example, aluminum) are provided on the light incident surface of the reflective substrate 11, and a pixel circuit is provided for each reflective pixel.
  • a plurality of pixel circuits 21 are arranged in the horizontal direction and the vertical direction, respectively, as will be described later in FIG. Each pixel circuit 21 operates under the control of the control circuit 22.
  • the facing substrate 13 is arranged in parallel with the light incident surface side of the reflective substrate 11 at regular intervals, and is formed of a transparent member (for example, a transparent glass material). That is, the opposed substrate 13 has a function as a transparent substrate. Further, the facing substrate 13 is provided with a transparent electrode. Therefore, the light incident from the light incident surface side of the opposed substrate 13 passes through the transparent member and the transparent electrode and is incident on the liquid crystal layer 12 and the reflective substrate 11.
  • a transparent member for example, a transparent glass material
  • the liquid crystal layer 12 is arranged in a space sandwiched between the reflective substrate 11 and the opposing substrate 13, and the periphery thereof is sealed with a sealing material 14. Further, for convenience of the following description, the liquid crystal layer 12 is considered to be a liquid crystal 42 (see FIG. 4 described later) divided on each reflective pixel (that is, each pixel circuit 21).
  • the liquid crystal 42 has a pixel electrode having light reflectivity (q1 shown in FIG. 4 described later, that is, a reflective pixel) and a common electrode (q2 shown in FIG. 4 described later, that is, a transparent electrode) arranged so as to be separated from the pixel electrode. ) Is filled and sealed. Then, a voltage output from the pixel circuit 21 (hereinafter referred to as “driving voltage”) is supplied to the pixel electrode q1, and a preset common electrode voltage is supplied to the common electrode q2.
  • driving voltage a voltage output from the pixel circuit 21
  • the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is determined by the potential difference between the drive voltage applied by each pixel circuit 21 and the common electrode voltage applied to the common electrode q2. It can be changed every 42 or every predetermined number of groups, and the incident light incident from the light incident surface side of the opposing substrate 13 can be reflected in a desired direction.
  • the speed of incident light incident therein can be adjusted. Due to the difference, the incident light bends and travels, and reflected light at a certain angle can be obtained.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a charge pump control unit 25. ing. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the drive lines (L1 to Ln) are wirings for transmitting control signals for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 4) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are wirings for transmitting control signals for switching on / off of switches S1 to S4 (see FIG. 4) provided in each pixel circuit 21.
  • a plurality of control lines (K1 to Kn) are provided (two of K1-1 and K1-2 in FIG. 4), but one control line is provided in FIG. It is shown simply by K1.
  • the column data lines (D1 to Dm) are wirings for supplying an analog voltage (hereinafter referred to as "control voltage") output from the voltage supply line X1 to each pixel circuit 21.
  • the row scanning lines (G1 to Gn) are wirings for outputting a row selection signal (scanning signal) to each pixel circuit 21.
  • FIG. 4 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 3 will be described.
  • the pixel circuit 21a includes a first transistor Q1, a second transistor Q2, a charge pump 31, and an output capacitor C2.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the second transistor Q2 is also a switching transistor like the first transistor Q1 described above, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the function of the charge pump 31 is stopped. be able to. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the second transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be made to.
  • the second transistor Q2 has a function as a short-circuit switch that short-circuits the input terminal p1 for supplying the control voltage to the charge pump 31 and the output terminal p2 for outputting the drive voltage from the charge pump 31 to the liquid crystal 42. There is. Then, when the drive voltage for setting the liquid crystal 42 to a desired refractive index is equal to or less than the maximum voltage VLC supplied from the column data line D1, the charge pump control unit 25 (see FIG. 3) controls the second. The two transistors Q2 are short-circuited, and the control voltage is not amplified by the charge pump 31. When the drive voltage exceeds the maximum voltage VLC, the second transistor Q2 is opened so that the control voltage can be amplified by the charge pump 31.
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the control voltage supplied to the input terminal p1 and outputs the control voltage to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2. Further, the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor C2, and further connected to the pixel electrode q1 of the liquid crystal 42. Further, as described above, the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the first control line K1-1 is connected to the first switch S1 and the fourth switch S4, and the second control line K1-2 is connected to the second switch S2 and the third switch S3. Then, the on / off of the switches S1 to S4 is controlled by the control signals supplied from the control lines K1-1 and K1-2.
  • FIG. 4 shows a configuration in which two control lines K1-1 and K1-2 are provided, a control line (four control lines) may be provided for each of the switches S1 to S4.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode voltage given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference between the drive voltage and the common electrode voltage, and is reflected.
  • FIG. 5 is an explanatory diagram schematically showing the angles of the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the reflected light reflected by the reflected pixel 20.
  • reference numeral st indicates incident light incident from a direction orthogonal to the reflection pixel 20 (light incident surface of the reflection substrate 11) provided for each pixel circuit 21, and reference numeral sa1 indicates an angle ⁇ a at the reflection pixel 20.
  • the reflected light reflected by is indicated by, and the reference numeral sb1 indicates the reflected light reflected at the angle ⁇ b.
  • phase plane of the incident light st (the plane whose normal direction is the incident light st) is r1
  • the phase plane of the reflected light sa1 is ra1
  • the same phase plane of the reflected light sb1 is rb1.
  • the liquid crystal 42 receives a drive voltage applied to the liquid crystal 42 by the pixel circuit 21.
  • the refractive index of is changed.
  • the maximum of the conventional drive voltage is the voltage Va
  • the reflection angle of the reflected light sa1 obtained when the voltage is gradually changed from the minimum voltage Vmin to the voltage Va in continuous pixels is ⁇ a.
  • the maximum drive voltage is Vb (Vb> Va)
  • the reflected light sb1 reflected at a larger reflection angle ⁇ b can be obtained.
  • the liquid crystal on the pixel obtains a large refractive index nmax, for example, and the liquid crystal on the pixel to which the maximum voltage Va is applied changes to, for example, a small refractive index na. Since the light incident on the liquid crystal having the refractive index na travels faster than the light incident on the liquid crystal having the refractive index nmax, the reflected light is emitted by bending at an angle ⁇ a. On the other hand, since the liquid crystal on the pixel to which the voltage Vb is applied has a refractive index nb smaller than na, the incident light travels even faster. Therefore, the reflected light is emitted at a larger angle of ⁇ b.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage "d” supplied from the voltage supply line X1 to each column data line (D1 to Dm) is an analog voltage from “0” (minimum voltage) to "VLC” (maximum voltage).
  • a double voltage (2 ⁇ VLC) which is twice the maximum voltage VLC, is set, and k gradation is further within the range of the voltage “0” to the double voltage “2 ⁇ VLC”. (However, k is an integer of 3 or more).
  • the control voltage (voltage in the range of 0 to VLC) supplied from the column data line is the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above. It is controlled to be (voltage).
  • FIG. 7A is a graph in which the horizontal axis shows the above-mentioned k gradation (5 gradations in this example), and the vertical axis shows the control voltage supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line. is there.
  • Graph R1 shown in FIG. 7A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts and the gradations 1 to 1 to Set 5. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 exceeds the maximum voltage VLC, the control voltage corresponding to the gradations 3 to 5 can be supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. Can not.
  • the charge pump 31 amplifies the voltage twice. That is, the control voltage of (3/5) ⁇ VLC as the gradation 3, (4/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided. It is amplified twice by 31 and output to the liquid crystal 42.
  • control voltage for obtaining the desired gradation is equal to or less than the maximum voltage VLC (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 7A, the control voltage is driven without being amplified. It is output to the liquid crystal 42 as a voltage.
  • the charge pump control unit 25 among a plurality of preset gradations in a range up to a voltage (double voltage) larger than the maximum voltage (VLC), the voltage corresponding to any gradation is the maximum voltage ( VLC) In the following cases, the control voltage is output to the liquid crystal 42 without being amplified. On the other hand, when the voltage corresponding to an arbitrary gradation exceeds the maximum voltage (VLC) among the plurality of gradations, the charge pump 31 amplifies the control voltage and controls the liquid crystal 42 to output the control voltage.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) can be generated and supplied to the liquid crystal 42. That is, as shown in the graph R3 of FIG. 7B, it is possible to output the driving voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the liquid crystal 42.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, of a plurality of gradations (for example, gradations 1 to 5) set within a range up to a voltage (2 ⁇ VLC) larger than the maximum voltage (VLC), any gradation (for example, gradation 1 to gradation 5) For example, when the voltage corresponding to the gradation 1) is equal to or less than the maximum voltage (VLC), an "H" level signal is output to the drive line. Further, when the voltage corresponding to an arbitrary gradation (for example, gradation 3) exceeds the maximum voltage (VLC) among the plurality of gradations, an "L" level signal is output to the drive line.
  • a plurality of gradations for example, gradations 1 to 5
  • any gradation for example, gradation 1 to gradation 5
  • VLC maximum voltage
  • VLC maximum voltage
  • the charge pump control unit 25 does not drive the charge pump 31 when an "H” level signal is supplied to the drive line, and the charge pump does not drive the charge pump 31 when an "L” level signal is supplied to the drive line. It is controlled to drive 31. The operation of the charge pump 31 will be described below.
  • the charge pump control unit 25 sends a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 4 to the control lines K1 (K1-1, K1-2). Output to. Specifically, in the case of driving the charge pump 31, when the control voltage is supplied from the column data line D1, the first switch S1 and the fourth switch S4 are first turned on, and the second switch S2 and the third switch S3 are turned on. Is turned off.
  • the control voltage supplied from the column data line D1 is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the control voltage supplied from the column data line D1 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage that is twice the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the pixel electrode q1.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 3 is set.
  • a block composed of a pixel circuit 21 5 rows ⁇ 6 columns
  • a suffix “-nm” is added to identify the rows (n) and columns (m) of each pixel circuit 21. Therefore, the 1-row, 1-column pixel circuits shown in FIG. 6A are 21-11, and the 1-row, 5-row, and 6-column pixel circuits are 21-56.
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 corresponds to the gradation 1 to the gradation 5. It is set to change in stages. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 7B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • a voltage of gradation 1 "(1/5) x 2 x VLC” is supplied to the pixel circuits 21-11 to 21-16 in the second row, and gradation 2 is supplied to the pixel circuits 21-21 to 21-26 in the second row.
  • Voltage "(2/5) x 2 x VLC” is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in FIG. 7A, "(3/5) x VLC", which is half the above voltage, is output as a control voltage, and this voltage is doubled by the charge pump 31 to "((3/5) x VLC”. A voltage of "3/5) x 2 x VLC" is generated to obtain a voltage of gradation 3.
  • the charge pump 31 When the pixel circuit 21a is set to the above-mentioned gradation 1 and gradation 2, the charge pump 31 is not operated. In this case, as shown at times t0 to t1 in FIG. 8, the charge pump control unit 25 outputs an H level signal to the drive line L1. Further, the switches S1 to S4 of the charge pump 31 are all controlled to be turned off. As a result, the second transistor Q2 shown in FIG. 4 is turned on, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited. Therefore, the control voltage supplied from the column data line D1 is amplified by the charge pump 31. It is output to the liquid crystal 42 without being generated. Therefore, as shown by the reference numeral z1 in FIG. 7B, a voltage of "(1/5) x 2 x VLC" can be supplied to the liquid crystal.
  • the charge pump 31 is not operated in the same manner, and as shown by the reference numeral z2 in FIG. 7B, the control voltage supplied from the column data line D1 is not amplified. Output. As a result, a voltage of "(2/5) x 2 x VLC" can be applied to the liquid crystal.
  • the column data line D1 has a voltage “(2/5) ⁇ VLC” which is half of the voltage “(2/5) ⁇ 2 ⁇ VLC” corresponding to the gradation 3. Is output as the control voltage. Further, this control voltage is doubled by the charge pump 31.
  • the charge pump control unit 25 switches the signal supplied to the drive line L1 from the H level to the L level. As a result, the second transistor Q2 is turned off. Further, at time t1, the charge pump control unit 25 controls a control signal that turns on the first switch S1 and the fourth switch S4 shown in FIG. 4 and turns off the second switch S2 and the third switch S3. Output to line K1 (K1-1, K1-2).
  • the control voltage "(3/5) x VLC” is accumulated in the first capacitor C1. Then, at time t2, the first switch S1 and the fourth switch S4 are turned off, and at time t3, the second switch S2 and the third switch S3 are turned on. As a result, a voltage "(3/5) x 2 x VLC” that is twice the control voltage is accumulated in the output capacitor C2. Therefore, as shown by the reference numeral z3 in FIG. 7B, the driving voltage “(3/5) ⁇ 2 ⁇ VLC” of the gradation 3 can be supplied to the liquid crystal 42.
  • the liquid crystal is driven by “(4/5) ⁇ 2 ⁇ VLC” as shown by the reference numeral z4 in FIG. 7B. A voltage can be supplied.
  • the charge pump 31 can be operated in the same manner to supply a driving voltage of “2 ⁇ VLC” to the liquid crystal as shown by the reference numeral z5 in FIG. 7B. it can.
  • each pixel circuit 21 is provided with a charge pump 31. Then, in the case of setting an arbitrary gradation among a plurality of preset gradations in the range from "0" to twice the maximum voltage (2 x VLC), the arbitrary gradation is supported. When the voltage is equal to or less than the maximum voltage (VLC), the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • VLC maximum voltage
  • the charge pump 31 amplifies the control voltage and controls the output to the liquid crystal 42.
  • the liquid crystal 42 is driven in the range of the voltage (2 ⁇ VLC) which is twice that. It is possible to set the drive voltage of. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be downsized. , It is possible to reduce the weight.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 3, and the other direction.
  • Drive lines (L1 to Ln) for switching on / off of the charge pump are arranged in the. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the drive voltage range is set to twice the maximum voltage (2 ⁇ VLC), but the drive voltage range is not limited to this and should be larger than the maximum voltage VLC. Just do it.
  • FIG. 9 is a circuit diagram showing the configuration of the pixel circuit 21'according to the modified example of the first embodiment.
  • the drive line L1 is arranged in the vertical direction. Therefore, the charge pump circuit can be turned ON or OFF in the vertical direction of each pixel circuit 21'arranged in a matrix. Therefore, the direction in which the refractive index changes is the lateral direction.
  • the magnitude of the refractive index of the liquid crystal 42 changes in the vertical direction
  • the first embodiment shown in FIG. 9 has a configuration in which the magnitude of the refractive index changes.
  • the refractive index of the liquid crystal 42 is set to change in the lateral direction.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a charge pump control unit 25. ing. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the drive lines (L1 to Ln) are electric wires for transmitting a control signal for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 11) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are a control signal for switching on / off of switches S1 to S4 (see FIG. 10) provided in each pixel circuit 21, and on / off of the third transistor Q3. It is a wiring that transmits a control signal for switching.
  • a plurality of control lines (K1 to Kn) are provided (three lines K1-1, K1-2, and K1-3 in the figure), but in FIG. It is shown simply by one control line K1.
  • the column data lines (D1 to Dm) are wirings for supplying an analog voltage (hereinafter referred to as "control voltage") output from the voltage supply line X1 to each pixel circuit 21.
  • FIG. 10 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 3 will be described.
  • the pixel circuit 21a includes a first transistor Q1, a second transistor Q2, a third transistor Q3, a charge pump 31, and an output capacitor C2.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the second transistor Q2 is also a switching transistor like the first transistor Q1 described above, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the function of the charge pump 31 is stopped. be able to. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the second transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be made to.
  • the second transistor Q2 has a function as a short-circuit switch that short-circuits the input terminal p1 for supplying the control voltage to the charge pump 31 and the output terminal p2 for outputting the drive voltage from the charge pump 31 to the liquid crystal 42.
  • the charge pump control unit 25 controls the second.
  • the two transistors Q2 are short-circuited and the drive voltage exceeds the maximum voltage VLC, the second transistor Q2 is opened so that the charge pump 31 can be driven.
  • the third transistor Q3 is also a switching transistor such as a MOSFET like the first transistor Q1 and the second transistor Q2 described above, the first terminal is connected to the input terminal p1 of the charge pump 31, and the second terminal is the voltage Vdd ( The maximum voltage is connected to a power supply (not shown) that outputs VLC). Further, the control terminal (for example, the gate) of the third transistor Q3 is connected to the third control line K1-3.
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the control voltage supplied to the input terminal p1 and outputs the control voltage to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2. Further, the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor C2, and is further connected to the pixel electrode q1 of the liquid crystal 42. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage "d” supplied from the voltage supply line X1 to each column data line (D1 to Dm) is an analog voltage from “0” (minimum voltage) to "VLC” (maximum voltage).
  • a double voltage (2 ⁇ VLC) which is twice the maximum voltage VLC, is set, and k gradation is further within the range of the voltage “0” to the double voltage “2 ⁇ VLC”. (However, k is an integer of 3 or more).
  • the control voltage (voltage in the range of 0 to VLC) supplied from the column data line is the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above. It is controlled to be (voltage).
  • FIG. 11A is a graph showing the above-mentioned k gradation (5 gradations in this example) on the horizontal axis and the control voltage supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line on the vertical axis. is there.
  • the graph R1 shown in FIG. 11A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • the graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts.
  • the keys 1 to 5. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 exceeds the maximum voltage VLC, the control voltage corresponding to the gradations 3 to 5 can be supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. Can not.
  • a voltage obtained by subtracting the voltage VLC from each control voltage is output, and then the voltage VLC is added by the charge pump 31. That is, the control voltage of (1/5) ⁇ VLC as the gradation 3, (3/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided.
  • the voltage VLC is added by 31 and output to the liquid crystal 42.
  • control voltage for obtaining the desired gradation is equal to or less than the maximum voltage VLC (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 11A, the control voltage is driven without being amplified. It is output to the liquid crystal 42 as a voltage.
  • the voltage VLC is subtracted from this voltage as shown in Graph R2 of FIG. 11A.
  • a desired drive voltage is obtained by supplying a voltage as a control voltage to the pixel circuit 21 and then adding a voltage VLC by the charge pump 31. Therefore, the slope of the graph R2 is the same as the slope of the graph R1.
  • the charge pump control unit 25 has a voltage corresponding to an arbitrary gradation among a plurality of preset gradations in a range up to a voltage larger than the maximum voltage (VLC) (double voltage in this example).
  • VLC maximum voltage
  • the control voltage is output to the liquid crystal without being amplified.
  • VLC maximum voltage
  • the charge pump 31 adds the voltage VLC (maximum voltage) and controls the output to the liquid crystal 42.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) can be generated and supplied to the liquid crystal 42. That is, as shown in the graph R3 of FIG. 11B, it is possible to output the driving voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the liquid crystal 42.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, when the voltage corresponding to an arbitrary gradation is equal to or less than the maximum voltage (VLC) among a plurality of preset gradations in a range up to a double voltage larger than the maximum voltage (VLC). Outputs an "H” level signal to the drive line. Further, when the voltage corresponding to an arbitrary gradation exceeds the maximum voltage (VLC) among the plurality of gradations, an "L" level signal is output to the drive line.
  • the charge pump control unit 25 does not drive the charge pump 31 when an "H" level signal is supplied to the drive line, and charges when an "L” level signal is supplied to the drive line.
  • the pump 31 is controlled to be driven. The operation of the charge pump 31 will be described below.
  • the charge pump control unit 25 sends a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 10 to the first control line K1-1 and the second control line. Output to K1-2. Specifically, when the charge pump 31 is driven, when the control voltage is input from the column data line D1, the first switch S1 and the fourth switch S4 are first turned on, and then the second switch S2 and the third switch S3 are turned on. Is turned off.
  • the control voltage supplied from the column data line D1 is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the first transistor Q1 is turned off and the third transistor Q3 is turned on.
  • the maximum voltage (VLC) supplied from the third transistor Q3 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage obtained by adding the maximum voltage (VLC) to the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the pixel electrode q1.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 3 is set.
  • a block composed of the pixel circuit 21 5 rows ⁇ 6 columns is set.
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a voltage of gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the voltage of the gradation 5 is set to be supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage. ..
  • the drive voltage supplied to each liquid crystal 42 is stepwise corresponding to the gradations 1 to 5. It is set to change to. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 11B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • the range "0 to 2 x VLC" from “0" to double voltage is divided into five gradations, and the pixel circuits 21-11 to the first line shown in FIG. 6A are shown.
  • a gradation 1 voltage "(1/5) x 2 x VLC” is supplied to 21-16, and a gradation 2 voltage "(2/5) x VLC” is supplied to the pixel circuits 21-21 to 21-26 on the second line. 2 x VLC "is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in graph R2 of FIG. 12A, VLC is derived from the above voltage. The voltage obtained by subtracting the above "(1/5) x VLC" is output as the control voltage.
  • the voltage obtained by subtracting the voltage VLC is output as the control voltage.
  • the charge pump 31 adds the voltage VLC to generate a voltage having gradations 3 to 5.
  • the charge pump control unit 25 When the pixel circuit 21a is set to gradations 1 and 2, the charge pump 31 is not operated. In this case, as shown at times t0 to t1 in FIG. 12, the charge pump control unit 25 outputs an H level signal to the drive line L1. Further, the switches S1 to S4 are all controlled to be turned off, and the third transistor Q3 is controlled to be turned off. Also, the first transistor Q1 is turned on. As a result, the second transistor Q2 shown in FIG. 11 is turned on, the third transistor Q3 is turned off, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, so that the control supplied from the column data line D1 The voltage is output to the liquid crystal 42 without being amplified by the charge pump 31. Therefore, as shown by reference numerals z1 and z2 in FIG. 11B, a desired drive voltage can be supplied to the liquid crystal 42.
  • the charge pump control unit 25 switches the signal supplied to the drive line L1 from the H level to the L level. As a result, the second transistor Q2 is turned off. Further, at time t1, the charge pump control unit 25 controls a control signal that turns on the first switch S1 and the fourth switch S4 shown in FIG. 10 and turns off the second switch S2 and the third switch S3. Output to line K1 (K1-1, K1-2).
  • the control voltage supplied from the column data line is accumulated in the first capacitor C1.
  • the first switch S1, the fourth switch S4, and the first transistor Q1 are turned off, and at time t3, the second switch S2, the third switch S3, and the third transistor Q3 are turned on.
  • a voltage obtained by adding the maximum voltage (VCL) to the control voltage is accumulated in the output capacitor C2. Therefore, as shown by the reference numerals z3 to z5 in FIG. 11B, the driving voltage of the gradation 3 can be supplied to the liquid crystal 42.
  • each pixel circuit 21 is provided with a charge pump 31. Then, when setting to an arbitrary gradation among a plurality of preset gradations in the range of "0" to double voltage (2 x VLC), the voltage corresponding to the arbitrary gradation is the maximum. When the voltage (VLC) or less, the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • the charge pump 31 When the voltage corresponding to an arbitrary gradation exceeds the maximum voltage (VLC) among the plurality of gradations, the charge pump 31 outputs a voltage obtained by adding the maximum voltage (VCL) to the control voltage to the liquid crystal 42. To do.
  • the maximum value of the control voltage supplied to the pixel circuit 21 from the column data line is the maximum voltage (VLC)
  • VLC maximum voltage
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be downsized. , It is possible to reduce the weight.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 3, and the other direction.
  • Drive lines (L1 to Ln) for switching on / off of the charge pump are arranged in the. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the range of the drive voltage is set to twice the maximum voltage (2 ⁇ VLC), but the present invention is not limited to this, and it may be larger than the maximum voltage VLC.
  • FIG. 13 is a circuit diagram showing the configuration of the pixel circuit 21'according to the modified example of the second embodiment.
  • the drive line L1 is arranged in the vertical direction. Therefore, the charge pump 31 can be turned on or off in the vertical direction of each pixel circuit 21'arranged in a matrix. Therefore, the direction in which the refractive index changes is the lateral direction.
  • the magnitude of the refractive index of the liquid crystal 42 changes in the vertical direction
  • the second embodiment shown in FIG. 13 has a configuration in which the magnitude of the refractive index changes.
  • the refractive index of the liquid crystal 42 is set to change in the lateral direction.
  • the voltage supplied to the pixel circuit 21' is set so that the control voltage reaches the maximum voltage VLC in one vertical scanning period.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, a charge pump control unit 25, and a control voltage. It includes an output unit 28. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the drive lines (L1 to Ln) are wirings for transmitting control signals for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 4) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are wirings for transmitting control signals for switching on / off of switches S1 to S4 (see FIG. 4) provided in each pixel circuit 21.
  • a plurality of control lines (K1 to Kn) are provided (two of K1-1 and K1-2 in the figure), but in FIG. 14, one control line K1 is provided. It is shown briefly in.
  • the column data lines (D1 to Dm) are output from the control voltage output unit 28, and the analog voltage (control voltage and maximum voltage VLC) supplied via the voltage supply line X1 is supplied to each pixel circuit 21. It is the wiring of.
  • the row scanning lines (G1 to Gn) are wirings for outputting a row selection signal (scanning signal) to each pixel circuit 21.
  • the "control voltage” indicates a voltage in the range from "0” (minimum voltage) to "VLC” (maximum voltage)
  • the maximum voltage VLC is the maximum output by the control voltage output unit 28. Indicates the voltage.
  • FIG. 4 is a circuit diagram showing a detailed configuration of the pixel circuit 21 in the phase modulation device 101 according to the third embodiment. (Since the configuration of the pixel circuit 21 in the phase modulation device 101 according to the third embodiment is the same as the configuration of the pixel circuit 21 in the phase modulation device 101 according to the first embodiment shown in FIG. 4, the description thereof will be omitted.)
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage output unit 28 outputs an analog voltage in the range from “0” (minimum voltage) to "VLC” (maximum voltage) (this is referred to as a control voltage) and a maximum voltage VLC in time division. Specifically, as shown in FIG. 15 (e) described later, either the control voltage Vh, which is a voltage between “0” and “VLC”, or the maximum voltage VLC is output. Further, as will be described later, when the drive voltage supplied to the liquid crystal 42 is equal to or less than the maximum voltage VLC, the control voltage Vh is continuously output as shown in time t0 to t1 of FIG. 15 (e). .. When the drive voltage exceeds the maximum voltage VLC, the control voltage Vh and the maximum voltage VLC are output in time division as shown at times t1 to t4 in FIG. 15 (e).
  • the voltage (control voltage or maximum voltage) output from the control voltage output unit 28 is supplied from the voltage supply line X1 to each column data line (D1 to Dm).
  • a double voltage (2 ⁇ VLC), which is twice the maximum voltage VLC, is set, and k gradation is further within the range of the voltage “0” to the double voltage “2 ⁇ VLC”.
  • k is an integer of 3 or more.
  • the horizontal axis shows the above-mentioned k gradation (5 gradations in this example), and the vertical axis shows the control voltage (control voltage output) supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line. It is a graph which shows the control voltage output from a part.
  • Graph R1 shown in FIG. 12A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts and the gradations 1 to 1 to Set 5. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 described above exceeds the maximum voltage VLC
  • the control voltage corresponding to the gradations 3 to 5 is supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. Can't.
  • a voltage obtained by subtracting the maximum voltage VLC from each voltage is output as a control voltage, and then the maximum voltage VLC is added by the charge pump 31. That is, the control voltage of (1/5) ⁇ VLC as the gradation 3, (3/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided.
  • the maximum voltage VLC is added by 31 and output to the liquid crystal 42.
  • control voltage for obtaining the desired gradation is equal to or less than the maximum voltage VLC (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 12A, the control voltage is driven without being amplified. It is output to the liquid crystal 42 as a voltage.
  • the control voltage output unit 28 outputs only the control voltage Vh as shown at times t0 to t1 in FIG. 15 (e).
  • the control voltage output unit 28 outputs the control voltage Vh and the maximum voltage VLC in time division as shown at times t1 to t4 in FIG. 15 (e).
  • the voltage corresponding to an arbitrary gradation is the maximum voltage VLC among a plurality of preset gradations in the range up to a voltage (double voltage) larger than the maximum voltage VLC.
  • the control voltage is output to the liquid crystal 42 without being amplified.
  • the control voltage is amplified by the charge pump 31 (adding the maximum voltage VLC) and output to the liquid crystal 42. Control to do.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) can be generated and supplied to the liquid crystal 42. That is, as shown in the graph R3 of FIG. 12B, it is possible to output the driving voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the liquid crystal 42.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, when the voltage corresponding to an arbitrary gradation is equal to or less than the maximum voltage VLC among a plurality of gradations set within a range up to a voltage larger than the maximum voltage VLC (2 ⁇ VLC) (for example, In the case of gradations 1 and 2 described above), an "H" level signal is output to the drive line. Further, when the voltage corresponding to an arbitrary gradation exceeds the maximum voltage VLC among a plurality of gradations (for example, in the case of gradations 3 to 5 described above), an "L" level signal is transmitted to the drive line. Output.
  • the charge pump control unit 25 does not drive the charge pump 31 when an "H" level signal is supplied to the drive line, and charges when an "L” level signal is supplied to the drive line.
  • the pump 31 is controlled to be driven. The operation of the charge pump 31 will be described below.
  • the charge pump control unit 25 sends a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 4 to the control lines K1 (K1-1, K1-2). Output to. Specifically, in the case of driving the charge pump 31, when the control voltage output from the control voltage output unit 28 is supplied, the first switch S1 and the fourth switch S4 are first turned on, and then the second switch S2 and The third switch S3 is turned off.
  • the supplied control voltage is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the maximum voltage VLC supplied from the column data line D1 is added to the control voltage stored in the first capacitor C1, and the added voltage is stored in the output capacitor C2.
  • the voltage after addition is output to the pixel electrode q1. That is, it is possible to obtain a driving voltage in five stages of gradations 1 to 5 supplied to the liquid crystal 42.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 14 is set.
  • a block composed of the pixel circuit 21 5 rows ⁇ 6 columns) is set as shown in FIG. 6 (a).
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 corresponds to the gradation 1 to the gradation 5. It is set to change in stages. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 12B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • the control voltage output unit 28 shown in FIG. 14 outputs the control voltage in the range of “0” to the maximum voltage “VLC” and the maximum voltage VLC to the voltage supply line X1 in a time division manner.
  • the control voltage and the maximum voltage VLC can be supplied to the desired pixel circuit 21.
  • a voltage of gradation 1 "(1/5) x 2 x VLC” is supplied to the pixel circuits 21-11 to 21-16 in the second row, and gradation 2 is supplied to the pixel circuits 21-21 to 21-26 in the second row.
  • Voltage "(2/5) x 2 x VLC” is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in the graph R2 of FIG. 17A, the voltage obtained by subtracting the maximum voltage VLC from each voltage is output as the control voltage. Further, by driving the charge pump 31, the maximum voltage VLC is added to the control voltage to generate a voltage of "(3/5) x 2 x VLC", which is a voltage of gradation 3.
  • the voltage obtained by subtracting the maximum voltage VLC from each voltage is output as the control voltage. After that, the maximum voltage VLC is added by the charge pump 31 to generate voltages of gradations 4 and 5.
  • the charge pump control unit 25 When the pixel circuit 21a is set to gradation 1, the charge pump 31 is not operated. In this case, as shown in the times t0 to t1 of the charts (a), (b), and (c) of FIG. 15, the charge pump control unit 25 outputs an H level signal to the drive line L1 to the second. The two transistors Q2 are turned on, and the switches S1 to S4 are all controlled to be turned off. Further, as shown in FIG. 15D, the first transistor Q1 is turned on. Further, as shown in FIG. 15 (e), the control voltage output unit outputs a control voltage Vh in the range of “0” to “VLC”.
  • the charge pump 31 is not operated in the same manner, and as shown by the reference numeral z2 in FIG. 12B, the control voltage supplied from the column data line D1 is not amplified. Output. As a result, a voltage of "(2/5) x 2 x VLC" can be applied to the liquid crystal 42.
  • the control voltage output unit 28 When the pixel circuit 21 is set to the gradation 3, the control voltage output unit 28 outputs the voltage “(1/5) ⁇ VLC” corresponding to the gradation 3 to the column data line D1 as the control voltage. Further, the control voltage output unit 28 outputs the maximum voltage VLC. Then, the above control voltage and the maximum voltage VLC are added by the charge pump 31.
  • the charge pump control unit 25 switches the signal supplied to the drive line L1 from the H level to the L level at time t1. As a result, the second transistor Q2 is turned off. Further, as shown in the charts (b) and (c) of FIG. 15, the charge pump control unit 25 turns on the first switch S1 and the fourth switch S4 shown in FIG. 4 at time t2, and the second switch S4 is turned on. A control signal for turning off the switch S2 and the third switch S3 is output to the control lines K1 (K1-1, K1-2).
  • the control voltage "(1/5) x VLC” is accumulated in the first capacitor C1. Then, at time t2, the first switch S1 and the fourth switch S4 are turned off, and at time t3, the second switch S2 and the third switch S3 are turned on. Further, as shown in the chart (e) of FIG. 15, at time t3, the voltage output from the control voltage output unit 28 switches from the control voltage to the maximum voltage VLC. As a result, the voltage "(3/5) x 2 x VLC” in which the maximum voltage VLC is added to the control voltage is accumulated in the output capacitor C2. Therefore, as shown by the reference numeral z3 in FIG. 12B, the driving voltage “(3/5) ⁇ 2 ⁇ VLC” of the gradation 3 can be supplied to the liquid crystal 42.
  • the liquid crystal is driven by “(4/5) ⁇ 2 ⁇ VLC” as shown by the reference numeral z4 in FIG. 12B. A voltage can be supplied.
  • the charge pump 31 can be operated in the same manner to supply a driving voltage of “2 ⁇ VLC” to the liquid crystal as shown by the reference numeral z5 in FIG. 12B. it can.
  • each pixel circuit 21 is provided with a charge pump 31. Then, in the case of setting an arbitrary gradation among a plurality of preset gradations in the range from "0" to twice the maximum voltage (2 x VLC), the arbitrary gradation is supported. When the voltage is equal to or less than the maximum voltage VLC, the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • the control voltage output unit 28 outputs the control voltage (Vh) and the maximum voltage (VLC) in a time division manner. Will be done. Then, the control voltage (Vh) and the maximum voltage (VLC) are added by the charge pump 31. Specifically, the control voltage (Vh) is output during the period from time t1 to t2 in the chart (e) of FIG. 18, the maximum voltage (VLC) is output during the period from time t3 to t4, and these are output to the charge pump 31. Is added.
  • the maximum control voltage supplied to the pixel circuit 21 from the column data line is the maximum voltage VLC
  • the drive voltage for driving the liquid crystal 42 within the range of the voltage (2 ⁇ VLC) that is twice that. can be set. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be downsized. , It is possible to reduce the weight.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 14, and the other direction.
  • Drive lines (L1 to Ln) for switching on / off of the charge pump are arranged in the. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the range of the drive voltage is set to twice the maximum voltage (2 ⁇ VLC), but the present invention is not limited to this, and it may be larger than the maximum voltage VLC.
  • FIG. 9 is a circuit diagram showing the configuration of the pixel circuit 21'according to the modified example of the third embodiment.
  • the drive line L1 is arranged in the vertical direction. Therefore, the charge pump circuit can be turned ON or OFF in the vertical direction of each pixel circuit 21'arranged in a matrix. Therefore, the direction in which the refractive index changes is the lateral direction.
  • the magnitude of the refractive index of the liquid crystal 42 changes in the vertical direction
  • the third embodiment shown in FIG. 9 has a configuration in which the magnitude of the refractive index changes.
  • the refractive index of the liquid crystal 42 is set to change in the lateral direction.
  • the voltage supplied to the pixel circuit 21' is set so that the control voltage reaches the maximum voltage VLC in one vertical scanning period.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a switch control unit 25 (charge pump control unit). , Changeover switch control unit). Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the switch control unit 25.
  • short-circuit lines (J1 to Jn) are provided in parallel with the row scanning lines (G1 to Gn). As shown in FIG. 21, the short-circuit lines (J1 to Jn) are provided with first changeover switches (S6, S6'in FIG. 21) for switching between short-circuiting and opening between pixel circuits 21 adjacent to each other.
  • the refractive index of light is controlled to change in the vertical direction (vertical direction in the figure). Therefore, short-circuit lines (J1 to Jn) are provided in the lateral direction (left-right direction in the figure), which is a direction orthogonal to this direction.
  • the drive lines (L1 to Ln) are wirings for transmitting a control signal for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 17) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are control signals for switching on / off of switches S1 to S4 (see FIG. 17) provided in each pixel circuit 21, and the above-mentioned first changeover switch S6 and the first changeover switch S6. 2
  • This is a wiring for transmitting a control signal for switching on / off of the changeover switch S5 (see FIG. 17).
  • a plurality of control lines (K1 to Kn) are provided as shown in FIG. 17 (4 lines of K1-1, K1-2, K1-3, and K1-4 in the figure), but in FIG. It is shown simply by one control line K1.
  • the first control line K1-1 outputs a control signal for controlling the on / off of the first switch S1 and the fourth switch S4 of the charge pump 31.
  • the second control line K1-2 outputs a control signal for controlling the on / off of the second switch S2 and the third switch S3 of the charge pump 31.
  • the third control line K1-3 outputs a control signal for controlling the on / off of the first changeover switches S6 and S6'. Note that S6'is a first changeover switch provided in an adjacent pixel circuit.
  • the fourth control line K1-4 outputs a control signal for controlling the on / off of the second changeover switch S5.
  • the column data lines (D1 to Dm) are wirings for supplying an analog voltage (hereinafter referred to as "control voltage") output from the voltage supply line X1 to each pixel circuit 21.
  • the row scanning lines (G1 to Gn) are wirings for outputting a row selection signal (scanning signal) to each pixel circuit 21.
  • FIG. 17 is a circuit diagram showing a detailed configuration of the pixel circuit 21 in the phase modulation device 101 according to the fourth embodiment.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 16 will be described.
  • the pixel circuit 21a includes a first transistor Q1, a second transistor Q2, a charge pump 31, an output capacitor C2, a source follower Q4 (first source follower), a load transistor Q5, and the like.
  • the second changeover switch S5, the additional capacitor C3, and the first changeover switch S6 are provided.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the second transistor Q2 is also a switching transistor like the above-mentioned transistor Q1, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the function of the charge pump 31 is stopped. be able to. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the second transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be made to.
  • the second transistor Q2 has a function as a short-circuit switch that short-circuits the input terminal p1 for supplying the control voltage to the charge pump 31 and the output terminal p2 for outputting the drive voltage from the charge pump 31 to the liquid crystal 42. There is. Then, when the drive voltage for setting the liquid crystal 42 to a desired refractive index is equal to or less than the maximum voltage VLC (maximum voltage) supplied from the column data line D1, the switch control unit 25 (see FIG. 16) is controlled. As a result, the second transistor Q2 is short-circuited, and the control voltage is not amplified by the charge pump 31. When the drive voltage exceeds the maximum voltage VLC, the second transistor Q2 is opened so that the control voltage can be amplified by the charge pump 31.
  • VLC maximum voltage
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the control voltage supplied to the input terminal p1 and outputs the control voltage to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2. Further, the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor C2, and further connected to the gate of the source follower Q4. Further, as described above, the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the first control line K1-1 is connected to the first switch S1 and the fourth switch S4, and the second control line K1-2 is connected to the second switch S2 and the third switch S3. Then, the on / off of the switches S1 to S4 is controlled by the control signals supplied from the control lines K1-1 and K1-2.
  • the pixel circuit 21 is provided with a series connection circuit of the source follower Q4 and the load transistor Q5, the output terminal p2 of the charge pump 31 is connected to the gate of the source follower Q4, and the source of the load transistor Q5 is connected to the ground. Has been done.
  • the load transistor Q5 is controlled to be turned on when a voltage (control voltage supplied via the transistor Q1 or output voltage of the charge pump 31) is supplied to the gate of the source follower Q4.
  • the control line for controlling the load transistor Q5 is not shown.
  • connection point between the source follower Q4 and the load transistor Q5 (output point q3 of the source follower Q4) is connected to the pixel electrode q1 (supply point) via the second changeover switch S5. Further, the pixel electrode q1 is connected to the ground via the addition capacitor C3 and is connected to the short-circuit line J1.
  • the short-circuit line J1 is provided with a first changeover switch S6 for switching between short-circuiting (on) and opening (off) with the pixel electrodes in the adjacent pixel circuit.
  • the additional capacitor C3 accumulates the voltage output from the source follower Q4 via the second changeover switch S5.
  • the source follower Q4, the load transistor Q5, the second changeover switch S5, and the additional capacitor C3 are driven by being supplied with the voltage after being amplified by the charge pump 31, so a high withstand voltage element is used.
  • each first changeover switch S6 is controlled by a control signal output from the switch control unit 25 via the third control line K1-3.
  • the second changeover switch S5 is turned on and off by a control signal output from the switch control unit 25 via the fourth control line K1-4.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage "d” supplied from the voltage supply line X1 to each column data line (D1 to Dm) is an analog voltage from “0” (minimum voltage) to "VLC” (maximum voltage).
  • a double voltage (2 ⁇ VLC) which is twice the maximum voltage VLC, is set, and k gradation is further provided within the range of the voltage “0” to the double voltage “2 ⁇ VLC”. (However, k is an integer of 3 or more).
  • the control voltage (voltage in the range of 0 to VLC) supplied from the column data line is the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above. It is controlled to be (voltage).
  • FIG. 7A is a graph in which the horizontal axis shows the above-mentioned k gradation (5 gradations in this example), and the vertical axis shows the control voltage supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line. is there.
  • Graph R1 shown in FIG. 7A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts.
  • Gradation 1 to 5 is set. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 exceeds the maximum voltage VLC, the control voltage corresponding to the gradations 3 to 5 can be supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. Can not.
  • the charge pump 31 amplifies the voltage twice. That is, the control voltage of (3/5) ⁇ VLC as the gradation 3, (4/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided. It is amplified twice by 31.
  • control voltage for obtaining the desired gradation is equal to or less than the maximum voltage VLC (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 7A, the control voltage is driven without being amplified. Get the voltage.
  • the voltage corresponding to an arbitrary gradation is the maximum voltage (VLC) among a plurality of preset gradations in the range up to a voltage (double voltage) larger than the maximum voltage (VLC).
  • VLC maximum voltage
  • the control voltage is output to the source follower Q4 and thus to the liquid crystal 42 without being amplified.
  • the control voltage is amplified by the charge pump 31 and output to the source follower Q4 and eventually to the liquid crystal 42.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) is generated and output to the source follower Q4. That is, as shown in the graph R3 of FIG. 7B, it is possible to output the drive voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the source follower Q4.
  • the drive voltage output to the output point q3 of the source follower Q4 is connected to the pixel electrode q1 via the second changeover switch S5, the source follower is turned on when the second changeover switch S5 is turned on.
  • the drive voltage output from Q4 can be supplied to the liquid crystal 42.
  • the short-circuit line J1 connected to the pixel circuit 21a (one pixel circuit) is switched between short-circuiting and opening with the short-circuit line J1 connected to the pixel circuit (another pixel circuit) adjacent to the pixel circuit 21a.
  • a first changeover switch S6 for this purpose is provided. Therefore, by short-circuiting the first changeover switch S6, it is possible to short-circuit between the pixel electrode q1 of the pixel circuit 21a and the pixel electrode of the adjacent pixel circuit. By turning on the first changeover switch S6, the potential of the pixel electrode q1 between adjacent pixel circuits (pixel circuits controlled to have the same refractive index) can be made constant.
  • the first changeover switch S6 is turned on and off by a control signal supplied from the third control line K1-3.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the switch control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, of a plurality of gradations (for example, gradations 1 to 5) set within a range up to a voltage (2 ⁇ VLC) larger than the maximum voltage (VLC), any gradation (for example, gradation 1 to gradation 5) For example, when the voltage corresponding to the gradation 1) is equal to or less than the maximum voltage (VLC), an "H" level signal is output to the drive line. Further, when the voltage corresponding to an arbitrary gradation (for example, gradation 3) exceeds the maximum voltage (VLC) among the plurality of gradations, an "L" level signal is output to the drive line.
  • a plurality of gradations for example, gradations 1 to 5
  • any gradation for example, gradation 1 to gradation 5
  • VLC maximum voltage
  • VLC maximum voltage
  • the switch control unit 25 uses the control voltage as the output voltage when the drive voltage supplied to the liquid crystal 42 is equal to or less than the maximum voltage VLC, and charges the switch control unit 25 when the drive voltage supplied to the liquid crystal 42 exceeds the maximum voltage VLC. It has a function as a charge pump control unit that controls to supply the voltage amplified by the pump 31 as an output voltage to the liquid crystal 42.
  • the switch control unit 25 when the switch control unit 25 supplies the output voltage of the one pixel circuit 21 to the liquid crystal 42, the switch control unit 25 opens the first changeover switch S6 and does not supply the output voltage of the one pixel circuit to the liquid crystal 42. It has a function as a changeover switch control unit that controls the first changeover switch S6 so as to short-circuit at least a part of the time.
  • the switch control unit 25 does not drive the charge pump 31 when the drive line L1 is supplied with the “H” level signal, and is not driven when the drive line L1 is supplied with the “L” level signal.
  • the charge pump 31 is controlled to be driven. The operation of the charge pump 31 will be described below.
  • the switch control unit 25 transmits a control signal for controlling on / off of each of the switches S1 to S4 shown in FIG. 17 to the control lines K1 (K1-1, K1-2). Output. Specifically, in the case of driving the charge pump 31, when the control voltage is supplied from the column data line D1, the first switch S1 and the fourth switch S4 are first turned on, and the second switch S2 and the third switch S3 are turned on. Is turned off.
  • the control voltage supplied from the column data line D1 is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the control voltage supplied from the column data line D1 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage that is twice the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the source follower Q4.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 16 is set.
  • a block composed of the pixel circuit 21 5 rows ⁇ 6 columns is set.
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 is stepwise corresponding to the gradations 1 to 5. It is set to change to. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 7B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • a voltage of gradation 1 "(1/5) x 2 x VLC” is supplied to the pixel circuits 21-11 to 21-16 in the second row, and gradation 2 is supplied to the pixel circuits 21-21 to 21-26 in the second row.
  • Voltage "(2/5) x 2 x VLC” is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in FIG. 22A, "(3/5) x VLC", which is half the above voltage, is output as a control voltage, and this voltage is doubled by the charge pump 31 to "((3/5) x VLC”. A voltage of "3/5) x 2 x VLC" is generated to obtain a voltage of gradation 3.
  • the switch control unit 25 When the pixel circuit 21a is set to gradations 1 and 2, the charge pump 31 is not operated. In this case, as shown in the time t0 to t1 of the chart (a) of FIG. 18A, the switch control unit 25 outputs an H level signal to the drive line L1 to turn on the second transistor Q2.
  • the switches S1 to S4 are all controlled to be turned off.
  • the second transistor Q2 shown in FIG. 17 is turned on, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited. Therefore, the control voltage supplied from the column data line D1 is amplified by the charge pump 31. It is supplied to the gate of the source follower Q4 without being processed. Further, it is amplified by the source follower Q4 and accumulated in the additional capacitor C3.
  • the second changeover switch S5 is turned off (open), and at time t2, the first changeover switch S6 is turned on (short circuit). That is, in a state where the pixel electrode q1 in the pixel circuit 21a is cut off from the source follower Q4, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a are short-circuited. Will be done. Therefore, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same. Then, as shown by the reference numeral z1 in FIG. 7B, a voltage of "(1/5) x 2 x VLC" can be supplied to the liquid crystal.
  • the second changeover switch S5 is turned off.
  • the source follower Q4 and the pixel electrode q1 are separated.
  • the first changeover switch S6 is turned on and connected to the pixel electrode of the adjacent pixel circuit 21. Therefore, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t3, the first changeover switch S6 is turned off.
  • time t2 shown in FIG. 18A is set to be slightly later than the time t1 in order to avoid simultaneous on (a state of short-circuiting at the same time) of the first changeover switch S6 and the second changeover switch S5.
  • the charge pump 31 is not operated in the same manner, and as shown by the reference numeral z2 in FIG. 7B, the control voltage supplied from the column data line D1 is not amplified. Output.
  • a voltage of "(2/5) x 2 x VLC" can be applied to the liquid crystal 42, and the variation in the potential of the pixel electrodes of the adjacent pixel circuits can be reduced.
  • the column data line D1 has a voltage “(2/5) ⁇ VLC” which is half of the voltage “(2/5) ⁇ 2 ⁇ VLC” corresponding to the gradation 3. Is output as the control voltage. Further, this control voltage is doubled by the charge pump 31.
  • the switch control unit 25 sets the signal supplied to the drive line L1 to the L level. As a result, as shown in the chart (a) of FIG. 18B, the second transistor Q2 is turned off. Further, at time t10 in the chart (b) of FIG. 23B, the switch control unit 25 turns on the first switch S1 and the fourth switch S4 shown in FIG. 17 and turns off the second switch S2 and the third switch S3.
  • the control signal to be used is output to the control line K1 (K1-1, K1-2).
  • the control voltage "(3/5) x VLC” is accumulated in the first capacitor C1. Then, at time t11, the first switch S1 and the fourth switch S4 are turned off, and further, at time t12, the second switch S2 and the third switch S3 are turned on, as shown in the chart (c) of FIG. 18B. .. As a result, a voltage "(3/5) x 2 x VLC” that is twice the control voltage is accumulated in the output capacitor C2, and is further supplied to the gate of the source follower Q4. Further, it is amplified by the source follower Q4 and accumulated in the additional capacitor C3.
  • the first changeover switch S6 is turned on (short-circuited). That is, in a state where the pixel electrode q1 in the pixel circuit 21a is cut off from the source follower Q4, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a are short-circuited. Will be done.
  • the source follower Q4 and the pixel electrode q1 are separated. Since it is connected to the pixel electrodes of the adjacent pixel circuits 21, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t16, the first changeover switch S6 is turned off.
  • the control voltage supplied from the column data line D1 is supplied as shown by the symbols z4 and z5 in FIG. 7B. Is amplified and output. As a result, the voltage of "(4/5) x 2 x VLC” and "2 x VLC” can be applied to the liquid crystal 42, and the variation in the potential of the pixel electrodes of the adjacent pixel circuits can be reduced.
  • each pixel circuit 21 is provided with a charge pump 31. Then, in the case of setting an arbitrary gradation among a plurality of preset gradations in the range from "0" to twice the maximum voltage (2 x VLC), the arbitrary gradation is supported. When the voltage is equal to or less than the maximum voltage (VLC), the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • VLC maximum voltage
  • the control voltage is amplified and output by the charge pump 31. Then, the output voltage is amplified by the source follower Q4 and supplied to the pixel electrode q1, and eventually to the liquid crystal 42.
  • the liquid crystal 42 is driven in the range of the voltage (2 ⁇ VLC) which is twice that voltage. It is possible to set the drive voltage. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • each component constituting the control circuit 22 and the charge pump 31 shown in FIG. 21 are configured. It is not necessary to increase the withstand voltage of each component and the first transistor Q1 and the second transistor Q2, and it is possible to reduce the size and weight of the device.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 16, and the other direction.
  • a drive line (L1 to Ln) for switching on / off of the charge pump 31 is arranged therein. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the second changeover switch S5 provided between the output point q3 of the source follower Q4 and the pixel electrode q1 (supply point) is turned off, and the first changeover switch S6 is turned on to obtain the pixel electrode q1.
  • the range of the drive voltage is set to twice the maximum voltage (2 ⁇ VLC), but the present invention is not limited to this, and it may be larger than the maximum voltage VLC.
  • the pixel circuit 21a'according to the fifth embodiment is different from the fourth embodiment in that the source follower Q4 shown in FIG. 17 is provided between the transistor Q1 and the charge pump 31. ing. That is, in the fifth embodiment, a series connection circuit between the source follower Q4'(second source follower) and the load transistor Q5 and the source follower Q4'between the first transistor Q1 and the input terminal p1 of the charge pump 31. It is provided with a capacitor Cd provided between the gate and the ground.
  • the output terminal (source) of the first transistor Q1 is branched into two systems, and one branch line is connected to the ground via the capacitor Cd. The other branch line is connected to the gate of the source follower Q4'.
  • the output unit (connection point q3) of the source follower Q4' is connected to the charge pump 31. The connection point q3 is connected to the ground via the load transistor Q5.
  • the output terminal p2 of the charge pump 31 is connected to the pixel electrode q1 and further connected to the short-circuit line J1. Further, as in the fourth embodiment, the short-circuit line J1 is provided with a first changeover switch S6 for switching between short-circuiting and opening with the pixel electrodes of the adjacent pixel circuit 21.
  • the control voltage supplied via the column data line D1 and the first transistor Q1 is amplified by the source follower Q4', and then the charge pump 31 and the second transistor Q2. Supply. Further, as in the fourth embodiment, when the drive voltage of the gradations 1 and 2 is output, the control voltage is not amplified by the charge pump 31, and the drive voltage of the gradations 3, 4 and 5 is output. Amplifies the control voltage with the charge pump 31.
  • the pixel circuit 21a' does not include the second changeover switch S5 shown in FIG. 17 and the fourth control line K1-4 that outputs a control signal to the second changeover switch S5.
  • the input terminal p1 and the output terminal p2 (pixel electrode q1) of the charge pump 31 are controlled by controlling the on / off of the switches S1 to S4 provided on the second transistor Q2 and the charge pump 31. Control to cut off the interval.
  • FIG. 20A is a timing chart showing the operation of the second transistors Q2, the switches S1 to S4, and the first changeover switch S6 provided in the pixel circuit 21 when the charge pump 31 is not operated.
  • the switch control unit 25 When the pixel circuit 21a'is set to gradations 1 and 2, the charge pump 31 is not operated. In this case, as shown in the time t0 to t1 of the chart (a) of FIG. 20A, the switch control unit 25 outputs an H level signal to the drive line L1 to turn on the second transistor Q2.
  • the switches S1 to S4 are all controlled to be turned off.
  • the second transistor Q2 shown in FIG. 19 is turned on, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited. Therefore, the control voltage supplied from the column data line D1 is amplified by the source follower Q4'and then supplied to the pixel electrode q1 without being amplified by the charge pump 31.
  • the second transistor Q2 is turned off (open), and at time t2, the first changeover switch S6 is turned on (short circuit). That is, in a state where the input terminal p1 and the output terminal p2 of the charge pump 31 are cut off, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a'are It will be short-circuited. Therefore, as in the fourth embodiment, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same. Then, as shown by the reference numerals z1 and z2 in FIG. 7B, a desired drive voltage can be supplied to the liquid crystal 42.
  • the input terminal p1 and the output terminal p2 are cut off. 1
  • the changeover switch S6 is turned on and connected to the pixel electrode of the adjacent pixel circuit 21. Therefore, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t3, the first changeover switch S6 is turned off. A short circuit is prevented by setting the time t2 shown in FIG. 20A to be slightly later than the time t1.
  • the switch control unit 25 sets the signal supplied to the drive line L1 to the L level. As a result, as shown in the chart (a) of FIG. 20B, the second transistor Q2 is turned off. Further, at time t10 in the chart (b) of FIG. 20B, the switch control unit 25 turns on the first switch S1 and the fourth switch S4, and turns off the second switch S2 and the third switch S3.
  • the control voltage is accumulated in the first capacitor C1. Then, at time t11, the first switch S1 and the fourth switch S4 are turned off, and further, at time t12, the second switch S2 and the third switch S3 are turned on, as shown in the chart (c) of FIG. 20B. .. As a result, a voltage that is twice the control voltage is accumulated in the output capacitor C2 and supplied to the output terminal p2, which in turn is supplied to the pixel electrode q1.
  • the second switch S2 and the third switch S3 are turned off. That is, since the second transistor Q2 and the switches S1 to S4 are all turned off, the input terminal p1 and the output terminal p2 are cut off. Further, at the time t15 in the chart (d) of FIG. 20B, the first changeover switch S6 is turned on (short-circuited). That is, in a state where the input terminal p1 and the output terminal p2 are cut off, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a'are short-circuited. become. Therefore, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same.
  • the maximum control voltage supplied to the pixel circuit 21 from the column data line is the maximum voltage (VLC), as in the fourth embodiment. It is possible to set the drive voltage for driving the liquid crystal 42 within the range of the voltage (2 ⁇ VLC) which is twice that. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22.
  • the source follower Q4' is provided in front of the charge pump 31 as compared with the fourth embodiment, the source follower Q4', the load transistor Q5, and the capacitor Cd can be composed of low withstand voltage components. it can. Therefore, it is possible to simplify the circuit configuration, and to reduce the size and weight.
  • the short circuit and open circuit of the input terminal p1 and the output terminal p2 are switched by controlling the on / off of the second transistor Q2 and the switches S1 to S4, the second of FIG. 17 shown in the fourth embodiment is shown. It is not necessary to provide the changeover switch S5 and the fourth control line K1-4. Therefore, in the phase modulation apparatus according to the fifth embodiment, the circuit configuration can be further simplified.
  • the basic configuration of the phase modulation apparatus according to the sixth embodiment is the same as the basic configuration of each embodiment shown in FIGS. 1 and 2 described in the first embodiment, the description thereof will be omitted.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a switch control unit 25 (charge pump control unit). , Changeover switch control unit).
  • control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the switch control unit 25.
  • short-circuit lines (J1 to Jn) are provided in parallel with the row scanning lines (G1 to Gn). As shown in FIG. 21, the short-circuit lines (J1 to Jn) are provided with first changeover switches (S6, S6'in FIG. 21) for switching between short-circuiting and opening between pixel circuits 21 adjacent to each other.
  • the refractive index of light is controlled to change in the vertical direction (vertical direction in the figure). Therefore, short-circuit lines (J1 to Jn) are provided in the lateral direction (left-right direction in the figure), which is a direction orthogonal to this direction.
  • the drive lines (L1 to Ln) are wirings for transmitting control signals for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 21) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are control signals for switching on / off of switches S1 to S4 (see FIG. 21) provided in each pixel circuit 21, and the above-mentioned first changeover switch S6 and the first changeover switch S6. 2
  • This is a wiring for transmitting a control signal for switching on / off of the changeover switch S5 (see FIG. 21).
  • a plurality of control lines (K1 to Kn) are provided (in FIG. 21, four of K1-1, K1-2, K1-3, and K1-4), but FIG. 20 Then, it is simplified and shown by one control line K1.
  • the first control line K1-1 outputs a control signal for controlling the on / off of the first switch S1 and the fourth switch S4 of the charge pump 31.
  • the second control line K1-2 outputs a control signal for controlling the on / off of the second switch S2 and the third switch S3 of the charge pump 31.
  • the third control line K1-3 outputs a control signal for controlling the on / off of the first changeover switches S6 and S6'. Note that S6'is a first changeover switch provided in an adjacent pixel circuit.
  • the fourth control line K1-4 outputs a control signal for controlling the on / off of the second changeover switch S5.
  • the column data lines (D1 to Dm) are wirings for supplying the analog control voltage output from the voltage supply line X1 to each pixel circuit 21.
  • the row scanning lines (G1 to Gn) are wirings for outputting a row selection signal (scanning signal) to each pixel circuit 21.
  • FIG. 21 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 20 will be described.
  • the pixel circuit 21a includes a first transistor Q1, a second transistor Q2, a charge pump 31, an output capacitor C2, a source follower Q4 (first source follower), a load transistor Q5, and the like.
  • the second changeover switch S5, the additional capacitor C3, and the first changeover switch S6 are provided.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the second transistor Q2 is also a switching transistor like the first transistor Q1, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the function of the charge pump 31 is stopped. be able to. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be done.
  • the second transistor Q2 has a function as a short-circuit switch that short-circuits the input terminal p1 for supplying the control voltage to the charge pump 31 and the output terminal p2 for outputting the drive voltage from the charge pump 31 to the liquid crystal 42. There is. Then, when the drive voltage for setting the liquid crystal 42 to a desired refractive index is equal to or less than the maximum voltage VLC (maximum voltage) supplied from the column data line D1, the switch control unit 25 (see FIG. 20) is controlled. As a result, the second transistor Q2 is short-circuited, and the control voltage is not amplified by the charge pump 31. When the drive voltage exceeds the maximum voltage VLC, the transistor Q2 is opened so that the control voltage can be amplified by the charge pump 31.
  • VLC maximum voltage
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the control voltage supplied to the input terminal p1 and outputs the control voltage to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2. Further, the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor (second capacitor) C2, and further connected to the gate of the source follower Q4.
  • the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the first control line K1-1 is connected to the first switch S1 and the fourth switch S4.
  • a second control line K1-2 is connected to the second switch S2 and the third switch S3. Then, the on / off of the switches S1 to S4 is controlled by the control signals supplied from the control lines K1-1 and K1-2.
  • the pixel circuit 21 is provided with a series connection circuit of the source follower Q4 and the load transistor Q5, the output terminal p2 of the charge pump 31 is connected to the gate of the source follower Q4, and the source of the load transistor Q5 is connected to the ground. Has been done.
  • the load transistor Q5 is controlled to be turned on when a voltage (control voltage supplied via the first transistor Q1 or output voltage of the charge pump 31) is supplied to the gate of the source follower Q4. To.
  • the control line for controlling the load transistor Q5 is not shown.
  • connection point between the source follower Q4 and the load transistor Q5 (output point q3 of the source follower Q4) is connected to the pixel electrode q1 (supply point) via the second changeover switch S5. Further, the pixel electrode q1 is connected to the ground via the addition capacitor C3 and is connected to the short-circuit line J1.
  • the short-circuit line J1 is provided with a first changeover switch S6 for switching between short-circuiting (on) and opening (off) with the pixel electrodes in the adjacent pixel circuit.
  • the additional capacitor C3 accumulates the voltage output from the source follower Q4 via the second changeover switch S5.
  • each first changeover switch S6 is controlled by a control signal output from the switch control unit 25 via the third control line K1-3.
  • the second changeover switch S5 is turned on and off by a control signal output from the switch control unit 25 via the fourth control line K1-4.
  • the source follower Q4 As the source follower Q4, a P-channel MOSFET or an N-channel MOSFET can be used.
  • the well region of the source follower Q4 is separated from the surrounding wells and the source is connected. Therefore, the well potential and the source potential are the same potential. With such a configuration, the depletion layer directly under the gate of the source follower Q4 is held at a voltage between the gate voltage Vin and the source voltage Vout, so that the substrate bias effect does not occur.
  • the circuit diagram (a) of FIG. 22A shows a circuit when the source follower Q4 is an N-channel MOSFET and the substrate potential is ground (that is, when the well region and the source are not connected).
  • the voltage Vin input to the gate of the source follower Q4 increases, the voltage between the gate of the source follower Q4 and the substrate increases, the depletion layer formed directly under the gate increases, and the threshold voltage Vth of the source follower Q4 ( The threshold between the gate and the source) rises.
  • the load transistor Q5 is connected to the source follower Q4 and the load transistor Q5 provides a constant current load, the voltage Vgs between the gate voltage Vin and the source voltage Vout is increased by the amount of increase in the threshold voltage Vth. It needs to be large. That is, as shown in the graph (b) of FIG. 22A, the threshold voltage Vth substantially fluctuates depending on the input gate voltage Vin (board bias effect). Therefore, the source voltage Vout does not change linearly with respect to the change in the gate electric Vin, and it becomes impossible to supply the liquid crystal 42 with a voltage having an accurate gradation.
  • the well region of the source follower Q4 is separated from the surrounding wells and connected to the source. Therefore, the well potential and the source potential are the same potential.
  • the depletion layer directly under the gate of the source follower Q4 is held at the voltage between the gate voltage Vin and the source voltage Vout, so that the above-mentioned substrate bias effect does not occur.
  • the source voltage Vout also changes linearly with a substantially same slope with respect to the change in the gate voltage Vin. Therefore, a source voltage Vout that changes linearly with a change in the gate voltage Vin of the source follower Q4 can be obtained. That is, in the sixth embodiment, the well region of the source follower Q4 and the source are connected to make the well potential and the source potential the same potential, so that a stable drive voltage can be supplied to the liquid crystal 42.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage "d” supplied from the voltage supply line X1 to each column data line (D1 to Dm) is an analog voltage from “0” (minimum voltage) to "VLC” (maximum voltage).
  • a double voltage (2 ⁇ VLC) which is twice the maximum voltage VLC, is set, and further, k gradation is set within the range of the voltage “0” to the double voltage “2 ⁇ VLC”. (However, k is an integer of 3 or more).
  • the control voltage (voltage in the range of 0 to VLC) supplied from the column data line is the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above. It is controlled to be (voltage).
  • FIG. 7A is a graph in which the horizontal axis shows the above-mentioned k gradation (5 gradations in this example), and the vertical axis shows the control voltage supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line. is there.
  • Graph R1 shown in FIG. 7A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts.
  • Gradation 1 to 5 is set. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 exceeds the maximum voltage VLC, the control voltage corresponding to the gradations 3 to 5 can be supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. Can not.
  • the control voltage of half of each of the gradations 3 to 5 is output, and then the charge pump 31 amplifies the voltage twice. That is, the control voltage of (3/5) ⁇ VLC as the gradation 3, (4/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided. It is amplified twice by 31.
  • control voltage for obtaining the desired gradation is the maximum voltage VLC or less (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 7A, the control voltage is driven without being amplified. Get the voltage.
  • the voltage corresponding to an arbitrary gradation is the maximum voltage (VLC) among a plurality of preset gradations in the range up to a voltage (double voltage) larger than the maximum voltage (VLC).
  • VLC maximum voltage
  • the control voltage is output to the source follower Q4 and thus to the liquid crystal 42 without being amplified.
  • the control voltage is amplified by the charge pump 31 and output to the source follower Q4 and eventually to the liquid crystal 42.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) is generated and output to the source follower Q4. That is, as shown in the graph R3 of FIG. 7B, it is possible to output the drive voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the source follower Q4.
  • the drive voltage output to the output point q3 of the source follower Q4 is connected to the pixel electrode q1 via the second changeover switch S5, the source follower is turned on when the second changeover switch S5 is turned on.
  • the drive voltage output from Q4 can be supplied to the liquid crystal 42.
  • the short-circuit line J1 connected to the pixel circuit 21a (one pixel circuit) is switched between short-circuiting and opening with the short-circuit line J1 connected to the pixel circuit (another pixel circuit) adjacent to the pixel circuit 21a.
  • the first changeover switch S6 of is provided. Therefore, by short-circuiting the first changeover switch S6, it is possible to short-circuit between the pixel electrode q1 of the pixel circuit 21a and the pixel electrode of the adjacent pixel circuit. By turning on the first changeover switch S6, the potential of the pixel electrode q1 between adjacent pixel circuits (pixel circuits controlled to have the same refractive index) can be made constant.
  • the first changeover switch S6 is turned on and off by a control signal supplied from the third control line K1-3.
  • line scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the switch control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, any gradation (for example, gradation 1 to 5) among a plurality of gradations (for example, gradations 1 to 5) set within a range up to a voltage (2 ⁇ VLC) larger than the maximum voltage (VLC) When the voltage corresponding to the gradation 1) is equal to or less than the maximum voltage (VLC), an "H" level signal is output to the drive line. Further, when the voltage corresponding to an arbitrary gradation (for example, gradation 3) exceeds the maximum voltage (VLC) among the plurality of gradations, an "L" level signal is output to the drive line.
  • any gradation for example, gradation 1 to 5
  • a plurality of gradations for example, gradations 1 to 5
  • VLC maximum voltage
  • the switch control unit 25 uses the control voltage as the output voltage when the drive voltage supplied to the liquid crystal 42 is equal to or less than the maximum voltage VLC, and charges the switch control unit 25 when the drive voltage supplied to the liquid crystal 42 exceeds the maximum voltage VLC. It has a function as a charge pump control unit that controls to supply the voltage amplified by the pump 31 as an output voltage to the liquid crystal 42.
  • the switch control unit 25 when the switch control unit 25 supplies the output voltage of the one pixel circuit 21 to the liquid crystal 42, the switch control unit 25 opens the first changeover switch S6 and does not supply the output voltage of the one pixel circuit to the liquid crystal 42. It has a function as a changeover switch control unit that controls the first changeover switch S6 so as to short-circuit at least a part of the time.
  • the switch control unit 25 does not drive the charge pump 31 when the drive line L1 is supplied with the “H” level signal, and is not driven when the drive line L1 is supplied with the “L” level signal.
  • the charge pump 31 is controlled to be driven. The operation of the charge pump 31 will be described below.
  • the switch control unit 25 transmits a control signal for controlling on / off of each of the switches S1 to S4 shown in FIG. 21 to the control lines K1 (K1-1, K1-2). Output. Specifically, in the case of driving the charge pump 31, when the control voltage is supplied from the column data line D1, the first switch S1 and the fourth switch S4 are first turned on, and the second switch S2 and the third switch S3 are turned on. Is turned off.
  • the control voltage supplied from the column data line D1 is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the control voltage supplied from the column data line D1 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage that is twice the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the source follower Q4.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 20 is set.
  • a block composed of the pixel circuit 21 5 rows ⁇ 6 columns) is set as shown in FIG. 6 (a).
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 is stepwise corresponding to the gradations 1 to 5. It is set to change to. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 7B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • a voltage of gradation 1 "(1/5) x 2 x VLC” is supplied to the pixel circuits 21-11 to 21-16 in the second row, and gradation 2 is supplied to the pixel circuits 21-21 to 21-26 in the second row.
  • Voltage "(2/5) x 2 x VLC” is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in FIG. 29A, "(3/5) x VLC", which is half the above voltage, is output as a control voltage, and this voltage is doubled by the charge pump 31 to "((3/5) x VLC”. A voltage of "3/5) x 2 x VLC" is generated to obtain a voltage of gradation 3.
  • the switch control unit 25 When the pixel circuit 21a is set to gradations 1 and 2, the charge pump 31 is not operated. In this case, as shown at times t0 to t1 in the chart (a) of FIG. 23A, the switch control unit 25 outputs an H level signal to the drive line L1 to turn on the second transistor Q2.
  • the switches S1 to S4 are all controlled to be turned off.
  • the second transistor Q2 shown in FIG. 27 is turned on, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited. Therefore, the control voltage supplied from the column data line D1 is amplified by the charge pump 31. It is supplied to the gate of the source follower Q4 without being processed. Further, it is amplified by the source follower Q4 and accumulated in the additional capacitor C3.
  • the second changeover switch S5 is turned off (open), and at time t2, the first changeover switch S6 is turned on (short circuit). That is, in a state where the pixel electrode q1 in the pixel circuit 21a is cut off from the source follower Q4, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a are short-circuited. Will be done. Therefore, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same. Then, as shown by the reference numeral z1 in FIG. 7B, a voltage of "(1/5) x 2 x VLC" can be supplied to the liquid crystal.
  • the second changeover switch S5 is turned off.
  • the source follower Q4 and the pixel electrode q1 are separated.
  • the first changeover switch S6 is turned on and connected to the pixel electrode of the adjacent pixel circuit 21. Therefore, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t3, the first changeover switch S6 is turned off.
  • time t2 shown in FIG. 23A is set to be slightly later than the time t1 in order to avoid simultaneous on (a state of short-circuiting at the same time) of the first changeover switch S6 and the second changeover switch S5.
  • the charge pump 31 is not operated in the same manner, and as shown by the reference numeral z2 in FIG. 7B, the control voltage supplied from the column data line D1 is not amplified. Output.
  • a voltage of "(2/5) x 2 x VLC" can be applied to the liquid crystal 42, and the variation in the potential of the pixel electrodes of the adjacent pixel circuits can be reduced.
  • the column data line D1 has a voltage “(2/5) ⁇ VLC” which is half of the voltage “(2/5) ⁇ 2 ⁇ VLC” corresponding to the gradation 3. Is output as the control voltage. Further, this control voltage is doubled by the charge pump 31.
  • the switch control unit 25 sets the signal supplied to the drive line L1 to the L level. As a result, as shown in the chart (a) of FIG. 23B, the transistor Q2 is turned off. Further, at time t10 in the chart (b) of FIG. 23B, the switch control unit 25 turns on the first switch S1 and the fourth switch S4 shown in FIG. 21 and turns off the second switch S2 and the third switch S3.
  • the control signal to be used is output to the control line K1 (K1-1, K1-2).
  • the control voltage "(3/5) x VLC” is accumulated in the first capacitor C1. Then, at time t11, the first switch S1 and the fourth switch S4 are turned off, and further, at time t12, the second switch S2 and the third switch S3 are turned on, as shown in the chart (c) of FIG. 23B. .. As a result, a voltage "(3/5) x 2 x VLC” that is twice the control voltage is accumulated in the output capacitor C2, and is further supplied to the gate of the source follower Q4. Further, it is amplified by the source follower Q4 and accumulated in the additional capacitor C3.
  • the second switch S2 and the third switch S3 are turned off, and at time t14 in the chart (d) of FIG. 23B, the second changeover switch S5 is turned off (open), and the chart of FIG. 23B (
  • the first changeover switch S6 is turned on (short-circuited). That is, in a state where the pixel electrode q1 in the pixel circuit 21a is cut off from the source follower Q4, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a are short-circuited. Will be done.
  • Vth the threshold voltage between the gate and the source of the source follower Q4 provided in each pixel circuit 21
  • Vth the threshold voltage between the gate and the source of the source follower Q4 provided in each pixel circuit 21
  • the source follower Q4 and the pixel electrode q1 are separated. Since it is connected to the pixel electrodes of the adjacent pixel circuits 21, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t16, the first changeover switch S6 is turned off.
  • the control voltage supplied from the column data line D1 is supplied as shown by the symbols z4 and z5 in FIG. 7B. Is amplified and output. As a result, the voltage of "(4/5) x 2 x VLC” and "2 x VLC” can be applied to the liquid crystal 42, and the variation in the potential of the pixel electrodes of the adjacent pixel circuits can be reduced.
  • each pixel circuit 21 is provided with a charge pump 31. Then, in the case of setting an arbitrary gradation among a plurality of preset gradations in the range from "0" to twice the maximum voltage (2 x VLC), the arbitrary gradation is supported. When the voltage is equal to or less than the maximum voltage (VLC), the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • VLC maximum voltage
  • the control voltage is amplified and output by the charge pump 31. Then, the output voltage is amplified by the source follower Q4 and supplied to the pixel electrode q1, and eventually to the liquid crystal 42.
  • the liquid crystal 42 is driven in the range of the voltage (2 ⁇ VLC) which is twice that voltage. It is possible to set the drive voltage. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the well region of the source follower Q4 and the source are connected and the well potential and the source potential are the same potential, they are supplied to the gate of the source follower Q4 as shown in the graph (b) of FIG. 22B. It is possible to obtain an output voltage that changes almost linearly with respect to the voltage. Therefore, even when the source follower Q4 is used, a stable voltage can be supplied to the liquid crystal 42, and the refractive index of the liquid crystal 42 can be set stably.
  • each component constituting the control circuit 22 and each component constituting the charge pump shown in FIG. 21 can be set. It is not necessary to increase the withstand voltage of the parts and the first transistor Q1 and the second transistor Q2, and it is possible to reduce the size and weight of the device.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 20, and the other direction.
  • Drive lines (L1 to Ln) for switching on / off of the charge pump are arranged in the. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the second changeover switch S5 provided between the output point q3 of the source follower Q4 and the pixel electrode q1 (supply point) is turned off, and the first changeover switch S6 is turned on to obtain the pixel electrode q1.
  • the range of the drive voltage is set to twice the maximum voltage (2 ⁇ VLC), but the present invention is not limited to this, and it may be larger than the maximum voltage VLC.
  • the seventh embodiment will be described.
  • the overall configuration of the device of the seventh embodiment is the same as that of FIGS. 1 and 2. Further, since the circuit diagram of the entire device of the seventh embodiment is the same as that of FIG. 20 of the sixth embodiment, the description thereof will be omitted.
  • the configuration of the pixel circuit is different from that in the sixth embodiment.
  • the pixel circuit 21a'according to the seventh embodiment will be described with reference to FIG. 23.
  • the pixel circuit 21a' is provided with the source follower Q4 shown in FIG. 21 between the first transistor Q1 and the charge pump 31. Is different from. That is, in the seventh embodiment, a series connection circuit of the source follower Q4'(second source follower) and the load transistor Q5 is set between the transistor Q1 and the input terminal p1 of the charge pump 31. Further, a capacitor Cd provided between the gate and the ground of the source follower Q4'is provided.
  • the output terminal (source) of the first transistor Q1 is branched into two systems, and one branch line is connected to the ground via the capacitor Cd. The other branch line is connected to the gate of the source follower Q4'.
  • the output unit (connection point q3) of the source follower Q4' is connected to the charge pump 31. The connection point q3 is connected to the ground via the load transistor Q5.
  • the well region of the source follower Q4' is separated from the surrounding wells and the source is connected. Therefore, the well potential and the source potential are the same potential.
  • the output terminal p2 of the charge pump 31 is connected to the pixel electrode q1 and further connected to the short-circuit line J1. Further, as in the sixth embodiment, the short-circuit line J1 is provided with a first changeover switch S6 for switching between short-circuiting and opening with the pixel electrodes of the adjacent pixel circuit 21.
  • the control voltage supplied via the column data line D1 and the first transistor Q1 is amplified by the source follower Q4', and then the charge pump 31 and the second transistor Q2. Supply. Further, as in the sixth embodiment, when the drive voltage of the gradations 1 and 2 is output, the control voltage is not amplified by the charge pump 31, and the drive voltage of the gradations 3, 4 and 5 is output. Amplifies the control voltage with the charge pump 31.
  • the pixel circuit 21a' does not include the second changeover switch S5 shown in FIG. 21 and the fourth control line K1-4 that outputs a control signal to the second changeover switch S5.
  • the input terminal p1 and the output terminal p2 (pixel electrode q1) of the charge pump 31 are controlled by controlling the on / off of the switches S1 to S4 provided on the second transistor Q2 and the charge pump 31. Control to cut off the interval.
  • FIG. 25A is a timing chart showing the operation of the second transistors Q2, the switches S1 to S4, and the first changeover switch S6 provided in the pixel circuit 21 when the charge pump 31 is not operated.
  • the switch control unit 25 When the pixel circuit 21a'is set to gradations 1 and 2, the charge pump 31 is not operated. In this case, as shown in the time t0 to t1 of the chart (a) of FIG. 25A, the switch control unit 25 outputs an H level signal to the drive line L1 to turn on the second transistor Q2.
  • the switches S1 to S4 are all controlled to be turned off.
  • the second transistor Q2 shown in FIG. 23 is turned on, and the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited. Therefore, the control voltage supplied from the column data line D1 is amplified by the source follower Q4'and then supplied to the pixel electrode q1 without being amplified by the charge pump 31.
  • the second transistor Q2 is turned off (open), and at time t2, the first changeover switch S6 is turned on (short circuit). That is, in a state where the input terminal p1 and the output terminal p2 of the charge pump 31 are cut off, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a'are It will be short-circuited. Therefore, as in the sixth embodiment, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same. Then, as shown by the reference numerals z1 and z2 in FIG. 7B, a desired drive voltage can be supplied to the liquid crystal 42.
  • the input terminal p1 and the output terminal p2 are cut off. 1
  • the changeover switch S6 is turned on and connected to the pixel electrode of the adjacent pixel circuit 21. Therefore, it is possible to reduce the variation in the voltage supplied to the pixel electrodes adjacent to each other. After that, at time t3, the first changeover switch S6 is turned off. A short circuit is prevented by setting the time t2 shown in FIG. 25A to be slightly later than the time t1.
  • the switch control unit 25 sets the signal supplied to the drive line L1 to the L level. As a result, as shown in the chart (a) of FIG. 25B, the second transistor Q2 is turned off. Further, at time t10 in the chart (b) of FIG. 25B, the switch control unit 25 turns on the first switch S1 and the fourth switch S4, and turns off the second switch S2 and the third switch S3.
  • the control voltage is accumulated in the first capacitor C1. Then, at time t11, the first switch S1 and the fourth switch S4 are turned off, and further, at time t12, the second switch S2 and the third switch S3 are turned on, as shown in the chart (c) of FIG. 25B. .. As a result, a voltage that is twice the control voltage is accumulated in the output capacitor C2 and supplied to the output terminal p2, which in turn is supplied to the pixel electrode q1.
  • the second switch S2 and the third switch S3 are turned off. That is, since the second transistor Q2 and the switches S1 to S4 are all turned off, the input terminal p1 and the output terminal p2 are cut off. Further, at the time t15 in the chart (d) of FIG. 25B, the first changeover switch S6 is turned on (short-circuited). That is, in a state where the input terminal p1 and the output terminal p2 are cut off, the pixel electrode q1 and the pixel electrode of the pixel circuit (pixel circuit in which the refractive index is controlled to be the same) adjacent to the pixel circuit 21a'are short-circuited. become. Therefore, the potentials of the pixel electrodes of the adjacent pixel circuits are controlled to be the same.
  • the maximum control voltage supplied to the pixel circuit 21 from the column data line is the maximum voltage (VLC), as in the sixth embodiment. It is possible to set the drive voltage for driving the liquid crystal 42 within the range of the voltage (2 ⁇ VLC) which is twice that. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the well region of the source follower Q4'and the source are connected and the well potential and the source potential are the same, they are supplied to the gate of the source follower Q4'as shown in the graph (b) of FIG. 22B. It is possible to obtain an output voltage that changes substantially linearly with respect to the voltage to be generated. Therefore, even when the source follower Q4'is used, a stable voltage can be supplied to the liquid crystal 42, and the refractive index of the liquid crystal 42 can be set stably.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22.
  • the source follower Q4' is provided in front of the charge pump 31 as compared with the sixth embodiment, the source follower Q4', the load transistor Q5, and the capacitor Cd can be composed of low withstand voltage components. it can. Therefore, it is possible to simplify the circuit configuration, and to reduce the size and weight.
  • the short circuit and open circuit of the input terminal p1 and the output terminal p2 are switched by controlling the on / off of the second transistor Q2 and the switches S1 to S4, the second of FIG. 27 shown in the fourth embodiment is shown. It is not necessary to provide the changeover switch S5 and the fourth control line K1-4. Therefore, in the phase modulation apparatus according to the seventh embodiment, the circuit configuration can be further simplified.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a charge pump control unit 25. There is. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and applies a drive voltage to the liquid crystal 42 from each pixel circuit 21. Therefore, the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • control lines (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the control lines (K1 to Kn) are wirings for transmitting control signals for switching on / off of switches S1 to S4 (see FIG. 25) provided in each pixel circuit 21. As shown in FIG. 25, a plurality of control lines (K1 to Kn) are provided (in FIG. 25, four lines are K1-1, K1-2, K1-3, and K1-4). In FIG. 24, one control line K1 is simplified.
  • the column data lines (D1 to Dm) are wirings for supplying an analog voltage (hereinafter referred to as "control voltage") output from the voltage supply line X1 to each pixel circuit 21.
  • the row scanning lines (G1 to Gn) are wirings for outputting a row selection signal (scanning signal) to each pixel circuit 21.
  • FIG. 25 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 24 will be described.
  • the pixel circuit 21a includes a first transistor Q1, a charge pump 31, and an output capacitor C2.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the control voltage supplied to the input terminal p1 and outputs the control voltage to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2. Further, the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the four switches S1 to S4 and the first capacitor C1 form a bridge circuit. That is, the charge pump 31 includes a bridge circuit including a plurality of switches S1 to S4. Then, the control voltage can be amplified by controlling the on (short circuit) and off (open) of the switches S1 to S4. Further, by turning on the first switch S1 and the third switch S3 at the same time, the input terminal p1 and the output terminal p2 of the charge pump 31 can be short-circuited.
  • the output terminal p2 is connected to the ground via the output capacitor C2 and is connected to the pixel electrode q1 of the liquid crystal 42. Further, as described above, the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • first control line K1-1 is connected to the first switch S1
  • second control line K1-2 is connected to the second switch S2
  • third control line K1-3 is connected to the third switch S3. It is connected
  • fourth control line K1-4 is connected to the fourth switch S4. Then, the on / off of the switches S1 to S4 is controlled by the control signals supplied from the control lines K1-1, K1-2, K1-1, and K1-2.
  • the first switch S1 and the third switch S3 By outputting control signals for turning on the first switch S1 and the third switch S3 from the first control line K1-1 and the third control line K1-3, the first switch S1 and the third switch Since S3 is turned on at the same time, the operation of the charge pump 31 can be stopped, and the control voltage supplied from the column data line can be supplied to the pixel electrode q1 and eventually to the liquid crystal 42. That is, the first control line K1-1 and the second control line K1-2 have a function as a drive line for switching the charge pump 31 on (short circuit) and off (open). Further, the first switch S1 and the third switch S3 have a function as a short-circuit switch for short-circuiting the input terminal p1 and the output terminal p2 of the charge pump 31.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the control voltage "d" corresponding to each column data line is sequentially input.
  • the switches SW1 to SWm selectively apply the control voltage corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a control voltage corresponding to the column data line D1, and outputs the selected control voltage to the column data line D1.
  • the control voltage "d” supplied from the voltage supply line X1 to each column data line (D1 to Dm) is an analog voltage from “0” (minimum voltage) to "VLC” (maximum voltage).
  • a double voltage (2 ⁇ VLC) which is twice the maximum voltage VLC, is set, and k gradation is further provided within the range of the voltage “0” to the double voltage “2 ⁇ VLC”. (However, k is an integer of 3 or more).
  • the control voltage (voltage in the range of 0 to VLC) supplied from the column data line is the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above. It is controlled to be (voltage).
  • FIG. 7A is a graph in which the horizontal axis shows the above-mentioned k gradation (5 gradations in this example), and the vertical axis shows the control voltage supplied from the voltage supply line X1 to the pixel circuit 21 via the column data line. is there.
  • Graph R1 shown in FIG. 7A shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or less
  • graph R2 shows the characteristics when the drive voltage supplied to the liquid crystal 42 is the maximum voltage VLC or more. It shows.
  • the graphs R1 and R2 show an example in which the voltage changes linearly, the change is not limited to this, and any change may be any monotonically increasing in the range of 0 to VLC.
  • the above-mentioned double voltage (2 ⁇ VLC) is divided into five equal parts.
  • Gradation 1 to gradation 5 are set. Therefore, the double voltage (2 ⁇ VLC) is divided into five equal parts, and the gradation 1 is (1/5) ⁇ 2 ⁇ VLC voltage, and the gradation 2 is (2/5) ⁇ 2 ⁇ VLC voltage, gradation.
  • the control voltage is (3/5) x 2 x VLC voltage as 3, the (4/5) x 2 x VLC voltage as the gradation 4, and the (5/5) x 2 x VLC voltage as the gradation 5. It suffices if it is supplied to the pixel circuit 21.
  • the control voltage corresponding to the gradations 3 to 5 exceeds the maximum voltage VLC, the control voltage corresponding to the gradations 3 to 5 can be supplied to the pixel circuit 21 from the voltage supply line X1 shown in FIG. 24. Can not.
  • the control voltage of half of each of the gradations 3 to 5 is output, and then the charge pump 31 amplifies the voltage twice. That is, the control voltage of (3/5) ⁇ VLC as the gradation 3, (4/5) ⁇ VLC as the gradation 4, and VLC as the gradation 5 is output, and the charge pump provided in each pixel circuit 21 is provided. It is amplified twice by 31 and output to the liquid crystal 42.
  • control voltage for obtaining the desired gradation is equal to or less than the maximum voltage VLC (in the case of gradations 1 and 2), as shown in the graph R1 of FIG. 7A, the control voltage is driven without being amplified. It is output to the liquid crystal 42 as a voltage.
  • the charge pump control unit 25 among a plurality of preset gradations in a range up to a voltage (double voltage) larger than the maximum voltage (VLC), the voltage corresponding to any gradation is the maximum voltage ( VLC) In the following cases, the control voltage is output to the liquid crystal 42 without being amplified. On the other hand, when the voltage corresponding to an arbitrary gradation exceeds the maximum voltage (VLC) among the plurality of gradations, the charge pump 31 amplifies the control voltage and controls the liquid crystal 42 to output the control voltage.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) can be generated and supplied to the liquid crystal 42. That is, as shown in the graph R3 of FIG. 35B, it is possible to output the driving voltage of the gradations 1 to 5 obtained by dividing the double voltage (2 ⁇ VLC) into five equal parts to the liquid crystal 42.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a control signal to the control lines (K1-1, K1-3) that control the on / off of the first switch S1 and the third switch S3 shown in FIG. 25, and the charge pump 31. Control is performed to short-circuit the input terminal p1 and the output terminal p2. Specifically, any gradation (for example, gradation 1 to 5) among a plurality of gradations (for example, gradations 1 to 5) set within a range up to a voltage (2 ⁇ VLC) larger than the maximum voltage (VLC).
  • the first switch S1 and the third switch S3 are turned on at the same time on the first control line K1-1 and the third control line K1-3. Outputs the control signal. Further, when the voltage corresponding to an arbitrary gradation (for example, gradation 3) exceeds the maximum voltage (VLC) among the plurality of gradations, the first switch S1 and the third switch S3 are not turned on at the same time. , Outputs a control signal according to the operation of the normal charge pump 31.
  • VLC maximum voltage
  • the charge pump control unit 25 When driving the charge pump 31, the charge pump control unit 25 sends a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 25 to the control lines K1 (K1-1, K1-2, K1). Output to -3, K1-4). Specifically, when the control voltage is supplied from the column data line D1, the first switch S1 and the fourth switch S4 are turned on, and the second switch S2 and the third switch S3 are turned off. As a result, the control voltage supplied from the column data line D1 is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the control voltage supplied from the column data line D1 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage that is twice the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the pixel electrode q1.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 24 is set.
  • a block composed of the pixel circuit 21 (5 rows ⁇ 6 columns) is set as shown in FIG. 6 (a).
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 is stepwise corresponding to the gradations 1 to 5. It is set to change to. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • FIG. 7B is a graph showing the relationship between the gradation set in five stages and the drive voltage supplied to the liquid crystal 42. Further, as shown in FIG. 6A, an example of having each pixel circuit 21 arranged in a 6 ⁇ 5 matrix and reflection pixels corresponding to each pixel circuit 21 will be described below.
  • a voltage of gradation 1 "(1/5) x 2 x VLC” is supplied to the pixel circuits 21-11 to 21-16 in the second row, and gradation 2 is supplied to the pixel circuits 21-21 to 21-26 in the second row.
  • Voltage "(2/5) x 2 x VLC” is supplied.
  • a voltage of gradation 3 is supplied to the pixel circuits 21-31 to 21-36 on the third line.
  • the voltage supplied to the pixel circuit is "(3/5) x 2 x VLC", which exceeds the maximum voltage VLC. Therefore, as shown in FIG. 7A, "(3/5) x VLC", which is half the above voltage, is output as a control voltage, and this voltage is doubled by the charge pump 31 to "((3/5) x VLC”. A voltage of "3/5) x 2 x VLC" is generated to obtain a voltage of gradation 3.
  • the charge pump 31 When the pixel circuit 21a is set to gradation 1, the charge pump 31 is not operated. In this case, as shown at times t0 to t1 in FIG. 26A, the charge pump control unit 25 turns on the first switch S1 and the third switch S3 at the same time. Further, the second switch S2 and the fourth switch S4 are turned off. As a result, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited via the first switch S1 and the third switch S3, so that the control voltage supplied from the column data line D1 is amplified by the charge pump 31. It is output to the liquid crystal 42 without any problem. Therefore, as shown by the reference numeral z1 in FIG. 7B, a voltage of "(1/5) x 2 x VLC" can be supplied to the liquid crystal.
  • the charge pump 31 is not operated in the same manner, and as shown by the reference numeral z2 in FIG. 7B, the control voltage supplied from the column data line D1 is not amplified. Output. As a result, a voltage of "(2/5) x 2 x VLC" can be applied to the liquid crystal.
  • the column data line D1 has a voltage “(2/5) ⁇ VLC” which is half of the voltage “(2/5) ⁇ 2 ⁇ VLC” corresponding to the gradation 3. Is output as the control voltage. Further, this control voltage is doubled by the charge pump 31.
  • the first switch S1 is turned on during the period from time t0 to t1 as shown in the charts (a) to (d) of FIG. 26A.
  • the second switch S2 is turned off, the third switch S3 is turned on, and the fourth switch S4 is turned off.
  • the first switch S1 and the fourth switch S4 are in the period from time t10 to t11. Is turned on, and the second switch S2 and the third switch S3 are turned off. As a result, the control voltage "(3/5) x VLC" is accumulated in the first capacitor C1.
  • the second switch S2 and the third switch S3 are turned on, and the first switch S1 and the fourth switch S4 are turned off during the period from time t12 to t13.
  • a voltage "(3/5) x 2 x VLC” that is twice the control voltage is accumulated in the output capacitor C2. Therefore, as shown by the reference numeral z3 in FIG. 7B, the driving voltage “(3/5) ⁇ 2 ⁇ VLC” of the gradation 3 can be supplied to the liquid crystal 42.
  • the liquid crystal is driven by “(4/5) ⁇ 2 ⁇ VLC” as shown by the reference numeral z4 in FIG. 7B. A voltage can be supplied.
  • the charge pump 31 can be operated in the same manner to supply a driving voltage of “2 ⁇ VLC” to the liquid crystal as shown by the reference numeral z5 in FIG. 7B. it can.
  • each pixel circuit 21 is provided with a charge pump 31. Then, in the case of setting an arbitrary gradation among a plurality of preset gradations in the range from "0" to twice the maximum voltage (2 x VLC), the arbitrary gradation is supported. When the voltage is equal to or less than the maximum voltage (VLC), the control voltage supplied to the pixel circuit 21 from the column data line is output to the liquid crystal 42 without being amplified.
  • VLC maximum voltage
  • the charge pump 31 amplifies the control voltage and controls the output to the liquid crystal 42.
  • the liquid crystal 42 is driven in the range of the voltage (2 ⁇ VLC) which is twice that voltage. It is possible to set the drive voltage. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • control voltage supplied from the column data line is supplied to the liquid crystal 42 by turning on the first switch S1 and the third switch S3 provided in the charge pump 31 at the same time. Therefore, it is not necessary to separately provide wiring for connecting the column data line and the pixel electrode q1, and the circuit configuration can be simplified.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the control voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be downsized. , It is possible to reduce the weight.
  • the desired drive voltage can be obtained by a simple process of amplifying the control voltage twice. It can be obtained and the circuit configuration can be simplified.
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 24, and the other direction.
  • Drive lines that is, control lines K1-1 and K1-3
  • control lines K1-1 and K1-3 for switching the charge pump on and off are arranged in the sill. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the range of the drive voltage is set to twice the maximum voltage (2 ⁇ VLC), but the present invention is not limited to this, and it may be larger than the maximum voltage VLC.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a charge pump control unit 25. There is. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and a drive voltage is applied from each pixel circuit 21.
  • the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the drive lines (L1 to Ln) are electric wires for transmitting a control signal for switching on / off of the first transistor Q2 (short-circuit switch; see FIG. 28) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are wirings for transmitting control signals for switching on / off of switches S1 to S4 (see FIG. 4) provided in each pixel circuit 21.
  • a plurality of control lines (K1 to Kn) are provided (three lines K1-1, K1-2, and K1-3 in the figure), but one in FIG. It is shown simply by the control line K1 of.
  • the column data lines (D1 to Dm) are wirings for supplying a lamp wave-shaped voltage (lamp-shaped reference voltage) output from the voltage supply line X1 to each pixel circuit 21.
  • FIG. 28 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 27 will be described.
  • the pixel circuit 21a includes a capacitor Cd that stores the control voltage supplied from the column data line D1, and a series connection circuit of the source follower Q4 and the load transistor Q5.
  • the pixel circuit 21a further includes a first transistor Q1, a second transistor Q2, a charge pump 31, and an output capacitor C2.
  • the capacitor Cd accumulates the control voltage supplied from the column data line D1 and outputs it to the gate of the source follower Q4.
  • the output of the source follower Q4 is connected to the input terminal p1 of the charge pump 31.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input terminal p1 of the charge pump 31.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and the control voltage is input from the column data line D1, this control voltage is supplied to the input terminal p1 of the charge pump 31.
  • the second transistor Q2 is also a switching transistor like the first transistor Q1 described above, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the function of the charge pump 31 is stopped. be able to. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be done.
  • the second transistor Q2 functions as a short-circuit switch that short-circuits the input terminal p1 to which the control voltage is supplied to the charge pump 31 and the output terminal p2 to output the voltage (drive voltage) from the charge pump 31 to the liquid crystal 42. It has.
  • the charge pump control unit 25 (see FIG. 27). )
  • the second transistor Q2 is short-circuited.
  • the second transistor Q2 is opened so that the charge pump 31 can be driven.
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and is acquired from the control voltage supplied to the input terminal p1, that is, the lamp waveform voltage, and is obtained from the source follower Q4.
  • the control voltage supplied via the above is amplified and output to the output terminal p2.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2.
  • the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor C2, and is further connected to the pixel electrode q1 of the liquid crystal 42. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 is shown in the first embodiment. Since it is the same as that described with reference to 5, the description here will be omitted.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26, a comparator circuit 28, a counter circuit 29, and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning to generate, for example, a q-bit digital signal output to the comparator circuit 28 in a cycle of one horizontal scanning period. To do.
  • the shift register circuit 26 inputs digital signals up to 2 ⁇ q (where 2 ⁇ q indicates 2 to the qth power), which is a q-bit digital signal, and further, a digital signal corresponding to each pixel circuit 21. Is latched and output to the comparator circuit 28.
  • 2 ⁇ q (where 2 ⁇ q indicates 2 to the qth power)
  • a digital signal corresponding to each pixel circuit 21 Is latched and output to the comparator circuit 28.
  • a drive voltage corresponding to five gradations from gradation 1 to gradation 5 is supplied to the liquid crystal 42 for control, (1/5) ⁇ 2 ⁇ q, (2/5) ⁇
  • the digital signals of 2 ⁇ q, (3/5) ⁇ 2 ⁇ q, and (4/5) ⁇ 2 ⁇ q, 2 ⁇ q are latched and output to the comparator circuit 28.
  • the shift register circuit 26 has a function of outputting a preset multiple-stage digital signal among the digital signals that change according to the voltage in the range up to a predetermined maximum voltage (VLC).
  • the counter circuit 29 counts the above-mentioned q-bit digital signal within one horizontal scanning period and outputs the count value. That is, the counter circuit 29 has a function of counting up to the maximum value of a predetermined digital gradation and outputting the count value.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, the switches SW1 to SWm are controlled to an on state or an off state based on the switching control signal output from the comparator circuit 28. When the switches SW1 to SWm are turned on, the voltage value of the lamp waveform voltage at that timing is supplied to each column data line (D1 to Dm) as a control voltage (details will be described later).
  • the comparator circuit 28 includes a comparison circuit (not shown) for each column data line (D1 to Dm), and controls to supply a control voltage to each column data line (D1 to Dm). That is, each switch SW1 to SWm provided in the switch circuit 27 is provided with a comparison circuit that generates a switching control signal for switching the on state and the off state of the switches SW1 to SWm. Then, a digital signal corresponding to any of the gradations (gradations 1 to 5) supplied from the shift register circuit 26 and a count value output from the counter circuit 29 are input to each comparison circuit. .. Then, when both inputs match, a switching control signal is output.
  • the comparator circuit 28 has a function of comparing the gradation value corresponding to each pixel circuit 21 with the count value output from the counter circuit 29 and outputting a switching control signal when they match.
  • the liquid crystal 42 is controlled to have five gradations from gradation 1 to gradation 5, for example, the five comparison circuits or the comparison circuits grouped into five are divided into (1/5). ) ⁇ 2 ⁇ q, (2/5) ⁇ 2 ⁇ q, (3/5) ⁇ 2 ⁇ q, (4/5) ⁇ 2 ⁇ q, 2 ⁇ q
  • a counter circuit When each digital signal is supplied, a counter circuit When the count value output from 29 matches the above digital signal, the switching control signal is output from each comparison circuit.
  • the comparator circuit 28 acquires the lamp waveform voltage corresponding to the change in the count value of the counter circuit 29, and the digital signal output from the shift register circuit 26 and the count value output from the counter circuit 29 match. It has a function to supply the lamp waveform voltage as a control voltage to the column data line.
  • the scale (a) in FIG. 29 shows gradations (gradations 1 to 5) corresponding to digital signals of 0 to 2 ⁇ q.
  • Graph (b) of FIG. 29 shows the lamp waveform voltage output in one horizontal scanning cycle in which a digital signal of 0 to 2 ⁇ q is output.
  • the graph (c) of FIG. 29 shows the drive voltage output to the liquid crystal 42 corresponding to each gradation.
  • the lamp waveform voltage is an analog voltage having two lamp waveforms in a cycle (1 horizontal scanning cycle) in which a q-bit digital signal is output by the shift register circuit 26.
  • the period of time t0 to t1 which is half of the period (1 horizontal scanning period) of time t0 to t2 (first half).
  • monotonically increases from the minimum voltage "0" to the maximum voltage "VLC” and then changes from the intermediate voltage "VLC / 2" to the maximum voltage "VLC” in the period from time t1 to t2, which is a half period (second half). It is a voltage that changes to increase monotonically.
  • a double voltage (2 ⁇ VLC), which is twice the maximum voltage VLC of the lamp waveform voltage, is set, and further, within the range of the voltage “0” to the double voltage “2 ⁇ VLC”.
  • Set the voltage of k gradation (where k is an integer of 3 or more) with (in the case of FIG. 29, k 5).
  • the lamp waveform voltage (voltage in the range of 0 to VLC) supplied from the column data line becomes the voltage of the k gradation (range of 0 to 2 ⁇ VLC) described above.
  • the voltage is controlled to be).
  • the drive voltage corresponding to the gradations 1 to 5 can be generated and supplied to the liquid crystal 42.
  • the charge pump control unit 25 sets an arbitrary gradation among a plurality of preset gradations in a range up to a voltage larger than the maximum voltage (VLC) (for example, a voltage twice the maximum voltage VLC).
  • VLC maximum voltage
  • the control voltage is output to the liquid crystal without being amplified.
  • the charge pump 31 amplifies the control voltage and controls the output to the liquid crystal 42.
  • the pixel circuit 21 has k gradation (5 in the above example).
  • a drive signal corresponding to the gradation) can be generated and supplied to the liquid crystal 42. That is, as shown in the graph (c) of FIG. 29, the driving voltage of the gradation 1 to the gradation 5 obtained by dividing the voltage (2 ⁇ VLC) twice the maximum voltage VCL into five equal parts is applied to the liquid crystal 42. It becomes possible to output.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. Specifically, among a plurality of preset gradations in the range up to a voltage larger than the maximum voltage (VLC) (for example, a voltage twice the maximum voltage), the voltage corresponding to any gradation is the maximum voltage. (VLC) or less, an "H" level signal is output to the drive line. As a result, the second transistor Q2 is turned on.
  • VLC maximum voltage
  • the charge pump control unit 25 does not drive the charge pump 31 when an "H” level signal is supplied to the drive line, and the charge pump does not drive the charge pump 31 when an "L” level signal is supplied to the drive line. It is controlled to drive 31.
  • the charge pump control unit 25 sends a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 28 to the control lines K1 (K1-1, K1-2). Output to. Specifically, when the charge pump 31 is driven, when the control voltage is input from the column data line D1, the first switch S1 and the fourth switch S4 are first turned on, and then the second switch S2 and the third switch S3 are turned on. Is turned off.
  • the control voltage is stored in the first capacitor C1.
  • the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on.
  • the control voltage supplied from the column data line D1 and the voltage stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, a voltage that is twice the control voltage supplied from the column data line D1 is accumulated in the output capacitor C2 and is output to the pixel electrode q1.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 27 is set.
  • a block composed of the pixel circuit 21 5 rows ⁇ 6 columns) is set.
  • the same voltage is supplied to the six pixel circuits 21-11 to 21-16 in the same row.
  • the pixel circuits 21-11 to 21-16 are supplied with a control voltage corresponding to gradation 1 among gradations 1 to 5.
  • the gradation is set so as to gradually increase from the top to the bottom in the figure, and the control voltage corresponding to the gradation 5 is supplied to the pixel circuits 21-51 to 21-56 in the lowermost stage.
  • the drive voltage supplied to each liquid crystal 42 is stepwise corresponding to the gradations 1 to 5. It is set to change to. Therefore, the six pixel circuits 21 can be grouped into one group, and the reflectance can be changed in five ways, and thus the reflected light phase-modulated in five ways can be obtained.
  • the comparator circuit 28 sets five levels of gradation (gradations 1 to 5) in the q-bit digital signal (0 to 2 ⁇ q) output by the shift register circuit 26. Then, when a digital signal corresponding to each gradation 1 to 5 is output from the shift register circuit 26, when the count value output from the counter circuit 29 matches the digital signal, the desired switch circuit 27 is desired. Outputs a switching control signal to the switch. Therefore, the lamp waveform voltage at this point can be supplied to the pixel circuit 21 as a control voltage.
  • the lamp waveform voltage is (2/5) ⁇ VLC, and the digital signal corresponding to the gradation 2 is output. If so, the ramp waveform voltage is (4/5) x VLC. Further, when the digital signal corresponding to the gradation 3 is output, the lamp waveform voltage is (3/5) ⁇ VLC, and when the digital signal corresponding to the gradation 4 is output, the lamp waveform. The voltage is (4/5) ⁇ VLC, and when the digital signal corresponding to the gradation 5 is output, the lamp waveform voltage is VLC. Then, a voltage corresponding to each lamp waveform voltage is supplied to the pixel circuit 21 as a control voltage.
  • the control voltage is not amplified, and when it is more than half (time t1 to t2). In the case), the control voltage is amplified by the charge pump 31 to obtain the drive voltage to be output to the liquid crystal 42.
  • control voltage supplied from the column data line is stored in the capacitor Cd via the first transistor Q1 shown in FIG. 28, and further supplied to the input terminal p1 of the charge pump 31 via the source follower Q4. ..
  • FIG. 30A is a timing chart showing changes in each signal when the drive voltage of gradation 2 is output to the liquid crystal 42 as an example.
  • FIG. 30B is a timing chart showing changes in each signal when the drive voltage of gradation 4 is output.
  • a q-bit digital signal 2 ⁇ q is output from the shift register circuit 26 (see FIG. 27).
  • the q-bit digital signal is divided into five equal parts, and gradations 1 to 5 (denoted as “1" to "5" in the figure) are assigned to each digital signal.
  • the comparator circuit 28 outputs the switching control signal to the desired switch among the plurality of switches SW1 to SWm provided in the switch circuit 27.
  • the lamp waveform voltage is supplied to the column data line as a control voltage.
  • two waveforms two serrated waveforms are output as the lamp waveform voltage within one horizontal scanning period.
  • the lamp waveform voltage of (4/5) ⁇ VLC is supplied to the column data line as a control voltage at the time ta when the digital signal corresponding to gradation 2 is output. Will be. This control voltage is stored in the capacitor Cd and held until time t12.
  • the second transistor Q2 continues to be in the ON state even after the time t12, and as shown in the graphs (e) and (f), the switches S1 to S4 are Even after the time t12, all the off states continue. Therefore, the charge pump 31 is not driven, and the lamp waveform voltage supplied to the pixel circuit 21 is not amplified. Then, as shown in the graph (c) of FIG. 30A, the row selection signal G in the vertical scanning circuit 24 is turned on at the time t12, so that the liquid crystal 42 is supplied from the column data line as shown in the graph (g). Control voltage (4/5) x VLC is output. Therefore, the liquid crystal 42 can be supplied with the drive voltage (4/5) ⁇ VLC of the second gradation.
  • the driving voltage (2/5) ⁇ VLC of gradation 1 can be supplied to the liquid crystal 42 in the same manner as described above.
  • the second transistor Q2 is turned off at time t22.
  • the first switch S1 and the fourth switch S4 are turned on, and the voltage (4/5) ⁇ VLC is held in the first capacitor C1.
  • the second switch S2 and the third switch S3 are turned on at the time t24. Therefore, as shown in the graph (g), the output capacitor C2 shown in FIG. A voltage (8/5) ⁇ VLC obtained by doubling the voltage (4/5) ⁇ VLC can be obtained. Therefore, the voltage of the gradation 4 can be supplied to the liquid crystal 42.
  • the liquid crystal 42 can be supplied with the drive voltage (6/5) ⁇ VLC of the gradation 3 and the drive voltage 2 ⁇ VLC of the gradation 5 in the same manner as described above. ..
  • each liquid crystal 42 can be set to a desired gradation, and the liquid crystal 42 connected to each pixel circuit 21 can be set. It is possible to set the refractive index of the above to a desired refractive index.
  • each pixel circuit 21 is provided with a charge pump 31. Then, when the liquid crystal 42 is set to an arbitrary gradation among a plurality of preset gradations in the range from "0" to a voltage (2 x VLC) that is twice the maximum voltage, this arbitrary gradation is set. When the voltage corresponding to the gradation of is less than or equal to the maximum voltage (VLC), the liquid crystal 42 is displayed without amplifying the control voltage (voltage acquired from the lamp waveform voltage) supplied to the pixel circuit 21 from the column data line. Output.
  • VLC maximum voltage
  • the control voltage supplied to the pixel circuit 21 from the column data line is amplified by the charge pump 31. It is controlled to output to the liquid crystal 42.
  • the liquid crystal 42 is driven in the range of the voltage (2 ⁇ VLC) which is twice that voltage. It is possible to set the drive voltage. Therefore, the magnitude of the refractive index of the liquid crystal 42 can be changed in a wider range, the increase in the thickness of the liquid crystal layer 12 can be suppressed, and the accuracy of phase modulation can be improved.
  • the gradation can be set in a wide voltage range without increasing the control voltage VLC supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be made smaller and lighter. It becomes possible to plan.
  • the voltage which is the range of the voltage for setting the drive voltage of the liquid crystal 42, is set to twice the predetermined maximum voltage (VLC), it is easy to amplify the control voltage twice.
  • VLC predetermined maximum voltage
  • the present invention is limited to this. Instead, the drive voltage may be set larger than the maximum voltage VLC.
  • FIG. 31 is a circuit diagram showing the configuration of the pixel circuit 21 ′ according to the first modification of the ninth embodiment.
  • the drive line L1 is arranged in the vertical direction. Therefore, the same voltage can be output to the liquid crystal 42 in the vertical direction of each pixel circuit 21'arranged in a matrix. Therefore, the direction in which the refractive index changes is the vertical direction.
  • the magnitude of the refractive index of the liquid crystal 42 changes in the vertical direction
  • the ninth embodiment shown in FIG. 31 has a configuration in which the magnitude of the refractive index changes.
  • the configuration is such that the magnitude of the refractive index of the liquid crystal 42 changes in the lateral direction.
  • 32A and 32B are explanatory views showing the temporal change of the lamp waveform voltage according to the second modification of the ninth embodiment.
  • two pixel circuits are connected to the intersections of the column data lines D1 to Dm and the row scanning lines G1 to Gn shown in FIG. 27, respectively. These are referred to as a first pixel circuit 21A and a second pixel circuit 21B.
  • the first pixel circuit 21A has a positive electrode property and the second pixel circuit 21B has a negative electrode property, and the first pixel circuit 21A and the second pixel circuit 21B give a lamp waveform voltage in which the directions in which the voltages change with each other are reversed.
  • the lamp waveform voltage that increases monotonically is applied to the first pixel circuit 21A, and as shown in the graph (a) of FIG. 32B, the second pixel circuit 21B is monotonously increasing. Gives a reduced ramp waveform voltage. Then, in the gradation i, the control voltage VpixH (see FIG. 42A) and the control voltage VpixL (see FIG. 32B) can be obtained. Therefore, as shown in the graph (b) of FIG. 32A, the voltage CceL to VpixH is applied to the voltage CceL of the counter electrode, and the voltage CceH of the counter electrode is used as shown in the graph (b) of FIG. 32B.
  • the voltages of VpixL to CceH can be output to the liquid crystal 42, and the gradation of the liquid crystal 42 can be changed in a time shorter than one horizontal scanning period. Therefore, it is possible to further improve the accuracy of phase modulation.
  • the control circuit 22 includes a plurality of (m columns, n rows) pixel circuits 21 arranged in a matrix, a horizontal scanning circuit 23, a vertical scanning circuit 24, and a charge pump control unit 25. There is. Then, the control circuit 22 outputs an electric signal to each pixel circuit 21 to drive each pixel circuit 21, and a drive voltage is applied from each pixel circuit 21.
  • the refractive index of the liquid crystal 42 on each reflective pixel with respect to the incident light is controlled to be a desired value.
  • a plurality of pixel circuits 21 are formed in a matrix at each intersection (intersection position) of m column data lines (D1 to Dm) orthogonal to each other and n row scanning lines (G1 to Gn). ⁇ n) are arranged.
  • the plurality of pixel circuits 21 are all configured in the same manner.
  • a drive line (L1 to Ln) and a control line (K1 to Kn) are provided in parallel with the row scanning lines (G1 to Gn).
  • the drive lines (L1 to Ln) and control lines (K1 to Kn) are connected to the charge pump control unit 25.
  • the drive lines (L1 to Ln) are electric wires for transmitting a control signal for switching on / off of the second transistor Q2 (short-circuit switch; see FIG. 44) provided in each pixel circuit 21.
  • the control lines (K1 to Kn) are wirings for transmitting control signals for switching on / off of switches S1 to S4 (see FIG. 34) provided in each pixel circuit 21.
  • a plurality of control lines (K1 to Kn) are provided (two of K1-1 and K1-2 in the figure), but in FIG. 33, one control line K1 is provided. It is shown briefly in.
  • the column data lines (D1 to Dm) are wirings for supplying the digital signal output from the digital signal line X1 to each pixel circuit 21.
  • FIG. 34 is a circuit diagram showing a detailed configuration of the pixel circuit 21.
  • the configuration of the pixel circuit 21 (referred to as the pixel circuit 21a) arranged at the intersection of the column data line D1 and the row scanning line G1 shown in FIG. 33 will be described.
  • the pixel circuit 21a includes an SRAM (Static RAM; digital signal holding unit) 32, a first transistor Q1, a second transistor Q2, a charge pump 31, and an output capacitor C2.
  • SRAM Static RAM; digital signal holding unit
  • the SRAM 32 holds a digital signal consisting of a pulse pattern corresponding to each bit supplied from the column data line D1 and outputs a digital signal of voltage VLC having the maximum amplitude. As will be described later, the SRAM 32 outputs a digital signal having a voltage of "0" or "VLC". Specifically, when the pulse is not set, the voltage "VLC” is output, and when the pulse is set, the pulse pattern of the amplitude "VLC” is output. Further, by driving the charge pump 31, the voltage VLC can be amplified to double the voltage "2 x VLC" and supplied to the liquid crystal 42.
  • the SRAM 32 has a function of outputting a digital signal according to the number of pulses or the pulse width of the digital signal supplied to the column data line.
  • the first transistor Q1 is a switching transistor, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the first transistor Q1 is connected to the column data line D1, and the second terminal (for example, source) is connected to the input of the SRAM 32.
  • the control terminal (for example, the gate) of the first transistor Q1 is connected to the row scanning line G1. Therefore, when the row scanning line G1 is selected and a digital signal is input from the column data line D1, this digital signal is supplied to the SRAM 32.
  • the second transistor Q2 is also a switching transistor like the first transistor Q1 described above, and is composed of, for example, an N-channel MOSFET (field effect transistor).
  • the first terminal (for example, drain) of the second transistor Q2 is connected to the input terminal p1 of the charge pump 31, and the second terminal (for example, the source) is connected to the output terminal p2 of the charge pump 31.
  • control terminal (for example, the gate) of the second transistor Q2 is connected to the drive line L1. Therefore, when an "H" level voltage is supplied to the drive line L1, the second transistor Q2 is turned on, the input terminal p1 and the output terminal p2 of the charge pump 31 are short-circuited, and the voltage supplied to the input terminal p1. Can be output to the output terminal p2 as it is, and the function of the charge pump 31 can be stopped. On the contrary, when a voltage of "L" level is supplied to the drive line L1, the second transistor Q2 is turned off, the input terminal p1 and the output terminal p2 of the charge pump 31 are opened, and the charge pump 31 is operated. Can be made to.
  • the second transistor Q2 is a short-circuit switch that short-circuits the input terminal p1 to which the output voltage of the SRAM 32 is supplied to the charge pump 31 and the output terminal p2 to output the voltage (drive voltage) from the charge pump 31 to the liquid crystal 42. It has the function of.
  • the charge pump control unit Under the control of 25 (see FIG. 33), the second transistor Q2 is short-circuited and the drive of the charge pump 31 is stopped.
  • the second transistor Q2 When the number of data bits of the digital signal is in the range of "m / 2 to m", the second transistor Q2 is opened so that the charge pump 31 can be driven.
  • the charge pump 31 includes four switches S1 to S4 and a first capacitor C1 for accumulating electric charges, and amplifies the voltage supplied to the input terminal p1 (the output voltage of the SRAM 32) to the output terminal p2. Output.
  • the first switch S1 and the third switch S3 are connected in series with each other, the end on the first switch S1 side is connected to the input terminal p1, and the end on the third switch S3 side is connected to the output terminal p2.
  • the second switch S2 and the fourth switch S4 are connected in series with each other, the end on the second switch S2 side is connected to the input terminal p1, and the end on the fourth switch S4 side is connected to the ground.
  • a first capacitor C1 is provided between the connection point between the first switch S1 and the third switch S3 and the connection point between the second switch S2 and the fourth switch S4.
  • the output terminal p2 is connected to the ground via the output capacitor C2, and is further connected to the pixel electrode q1 of the liquid crystal 42. That is, one end of the first capacitor C1 is connected to the first switch S1 and the third switch S3, and the other end of the first capacitor C1 is connected to the second switch S2 and the fourth switch S4.
  • the common electrode q2 of the liquid crystal 42 is a transparent electrode provided on the transparent glass. A common electrode voltage is applied to the transparent electrode.
  • the liquid crystal 42 is driven according to the potential difference between the drive voltage given to the pixel electrode q1 from the pixel circuit 21 and the common electrode given to the common electrode q2. Therefore, the incident light incident on the liquid crystal 42 is phase-modulated according to the potential difference and reflected.
  • the relationship between the incident light incident on the reflected pixel 20 corresponding to the pixel circuit 21 provided on the reflective substrate 11 and the angle of the reflected light reflected by the reflected pixel 20 corresponding to the pixel circuit 21 is the first. Since it is the same as that described with reference to FIG. 5 in one embodiment, the description here will be omitted.
  • the refractive index of the liquid crystal is changed by the voltage value, but even when a high-frequency pulse signal is applied to the liquid crystal, the refractive index is changed by the number of pulses, the pulse width, and the pulse pattern. be able to. In the case of a pulse pattern, for example, the larger the number of pulses, the larger the amount of change in the refractive index.
  • the horizontal scanning circuit 23 provided in the control circuit 22 includes a shift register circuit 26 and a switch circuit 27 including switches SW1 to SWm.
  • the shift register circuit 26 inputs a horizontal synchronization signal (HST) and a clock signal for horizontal scanning (HCK1, HCK2).
  • the shift register circuit 26 sequentially shifts the clock signals based on the horizontal synchronization signal and the clock signal for horizontal scanning, and outputs a switching signal (referred to as “SD1 to SDm”) to the switch circuit 27. It is generated in a cycle of one horizontal scanning period.
  • the switch circuit 27 includes m switches SW1 to SWm for switching on / off of each column data line (D1 to Dm). Further, each switch SW1 to SWm is controlled to an on state or an off state based on the switching signal (SD1 to SDm) output from the shift register circuit 26.
  • the switches SW1 to SWm are provided corresponding to the column data lines (D1 to Dm), and the digital signal "d" corresponding to each column data line is sequentially input.
  • Switches SW1 to SWm selectively give digital signals corresponding to each column data line (D1 to Dm) to the column data line.
  • the switch SW1 is turned on when the switching signal SD1 is at a high level, selects a digital signal corresponding to the column data line D1, and outputs the selected digital signal to the column data line D1.
  • the digital signal is supplied from the digital signal line X1.
  • FIG. 35 is a graph showing the relationship between the number of data bits and the number of pulses of a digital signal.
  • the horizontal axis represents the number of data bits (maximum value m) of the digital signal supplied from the column data line D1
  • the vertical axis represents the number of pulses.
  • the charge pump 31 is turned off in the range of 0 to (m / 2) and the charge pump 31 is turned on in the range of (m / 2) to m. That is, the charge pump control unit 25 shown in FIG. 33 turns off the charge pump 31 when the number of data bits of the digital signal is in the range of 0 to (m / 2), and the charge pump is in the range of (m / 2) to m. It is controlled to turn on 31.
  • the pulse pattern corresponding to each bit is output from the SRAM 32 at the voltage VCL which is the maximum amplitude of the digital signal. Will be done.
  • the charge pump 31 is turned on. Therefore, the voltage VLC output from the SRAM 32 is amplified to twice the voltage (2 ⁇ VLC) by the charge pump 31, and the pulse pattern of this voltage (2 ⁇ VLC) is supplied to the liquid crystal 42 as the drive voltage.
  • the voltage output from the SRAM 32 can be set to "VLC", and the drive voltage supplied to the liquid crystal 42 can be set to "VLC". Further, by outputting the voltage VLC from the SRAM 32 and stopping the charge pump 31, the drive voltage supplied to the liquid crystal 42 can be set to "VLC”. Further, by outputting the pulse pattern of the voltage VLC from the SRAM 32 and driving the charge pump 31, this voltage VCL can be amplified twice, so that the amplitude of the drive voltage supplied to the liquid crystal 42 is set to "2 x VLC". can do.
  • the number of pulses is not always linear because the relationship of the phase change with respect to the voltage in the liquid crystal 42 is not always linear. Further, since the polarity of the voltage output from the SRAM 32 is inverted, the voltage whose polarity is inverted is supplied to the pixel electrode q1. Correspondingly, by inverting the voltage supplied to the common electrode q2, it becomes possible to apply a desired voltage to the liquid crystal 42.
  • the liquid crystal 42 can be set to a plurality of gradations by the pulse pattern (pulse width or the number of pulses) of each amplitude.
  • the pixel circuit 21 generates drive signals having a plurality of gradations. It can be supplied to the liquid crystal 42.
  • row scanning lines (G1 to Gn) are connected to the vertical scanning circuit 24.
  • the vertical scanning circuit 24 inputs a vertical synchronization signal (VST) and a clock signal for vertical scanning (VCK1, VCK2).
  • VST vertical synchronization signal
  • VCK1, VCK2 clock signal for vertical scanning
  • the vertical scanning circuit 24 sequentially supplies a row selection signal (scanning signal) from the row scanning line G1 to the row scanning line Gn based on the vertical synchronization signal and the clock signal for vertical scanning in a cycle of one horizontal scanning period. ..
  • the charge pump control unit 25 outputs a drive signal to each drive line (L1 to Ln) shown in FIG. 33. Specifically, when the number of data bits of the digital signal supplied from the column data line is in the range of 0 to (m / 2), an "H" level signal is output to the drive line. When the number of data bits of the digital signal is in the range of (m / 2) to m, an "L" level signal is output to the drive line.
  • the charge pump control unit 25 does not drive the charge pump 31 when an "H" level signal is supplied to the drive line, and charges when an "L” level signal is supplied to the drive line.
  • the pump 31 is controlled to be driven. The operation of the charge pump 31 will be described below.
  • the charge pump control unit 25 transmits a control signal for controlling on / off of the switches S1 to S4 shown in FIG. 34 to the control lines K1 (K1-1, K1-2). Output. Specifically, when the pulse pattern is output from the SRAM 32, the first switch S1 and the fourth switch S4 are turned on first, and the second switch S2 and the third switch S3 are turned off.
  • the voltage due to the pulse pattern of the amplitude VLC output from the SRAM 32 is stored in the first capacitor C1. Then, after the elapse of a predetermined time, the first switch S1 and the fourth switch S4 are turned off, and the second switch S2 and the third switch S3 are turned on. As a result, the voltage of the pulse pattern output from the SRAM 32 and the voltage VLC stored in the first capacitor C1 are added, and the added voltage is stored in the output capacitor C2. Therefore, the voltage stored in the output capacitor C2 is output to the pixel electrode q1.
  • a block composed of some pixel circuits among the (n ⁇ m) pixel circuits 21 provided in FIG. 33 is set.
  • a block composed of the pixel circuit 21 (5 rows ⁇ 6 columns) is set as shown in FIG. 6 (a).
  • the six pixel circuits 21-11 to 21-16 in the same row are set to have the same refractive index.
  • the pixel circuits 21-11 to 21-16 in the first row are set to the first refractive index
  • the pixel circuits 21-21 to 21-26 in the second row are set to the second refractive index.
  • the third line pixel circuits 21-31 to 21-36 are set to the third refractive index
  • the fourth line pixel circuits 21-41 to 21-46 are set to the fourth refractive index
  • the fifth line are set to the fifth refractive index.
  • the refractive index of each liquid crystal 42 is set to change in five stages. Therefore, the six pixel circuits 21 arranged in the horizontal direction can be grouped into one group, the refractive index can be changed to five gradations, and the reflected light phase-modulated in five ways can be obtained.
  • the vertical direction and the horizontal direction may be interchanged.
  • the SRAM 32 when the digital signal pulse is not set, the SRAM 32 outputs the voltage "VLC". Further, as shown in the graph R1 of FIG. 7, when the number of data bits is in the range of 0 to (m / 2) and a pulse is generated, the SRAM 32 outputs a pulse pattern having an amplitude “VLC”. At this time, as shown at times t0 to t1 in FIG. 8, the transistor Q2 is turned on, and all the switches S1 to S4 are turned off. Therefore, the charge pump 31 is not driven. The pulse pattern of the amplitude "VLC” is supplied to the pixel electrode q1 and the liquid crystal 42 via the second transistor Q2.
  • the SRAM 32 when the number of data bits is in the range of (m / 2) to m and a pulse is generated, the SRAM 32 outputs a pulse pattern having an amplitude of “VLC”.
  • the second transistor Q2 is turned off.
  • the first switch S1 and the fourth switch S4 are turned on
  • the second switch S2 and the third switch S3 are turned off
  • at times t3 to t4 the second switch S2 and the third switch S3 are turned on. Since the first switch S1 and the fourth switch S4 are turned off, the pulse pattern output from the SRAM 32 is amplified twice and supplied to the pixel electrode q1 and the liquid crystal 42.
  • the digital signal output from the column data lines (D1 to Dm) is input to the SRAM 32 provided in each pixel circuit 21. Then, by controlling the drive and stop of the charge pump 31, the liquid crystal 42 can be switched to a plurality of gradations within the range of "0" to "2 x VLC".
  • the maximum value of the digital signal output from the SRAM 32 is the voltage VLC
  • the drive voltage for driving the liquid crystal 42 in the range of the voltage (2 ⁇ VLC) which is twice that. It becomes. Therefore, the refractive index of the liquid crystal 42 can be changed in a wider range, and the accuracy of phase modulation can be improved.
  • the gradation can be set in a wide voltage range without increasing the maximum voltage VLC of the voltage supplied to the pixel circuit 21, it is not necessary to increase the withstand voltage of each component constituting the control circuit 22, and the device can be miniaturized. It is possible to reduce the weight.
  • the voltage range for setting the gradation of the liquid crystal 42 is set to twice the predetermined maximum voltage (VLC), it is easy to amplify the voltage output from the SRAM 32 twice.
  • VLC predetermined maximum voltage
  • the refractive index of the liquid crystal 42 is set to change toward one of the directions orthogonal to each other, that is, the column direction and the row direction shown in FIG. 33, and the other direction.
  • Drive lines (L1 to Ln) for switching on / off of the charge pump are arranged in the. Therefore, it is possible to prevent the orientation of the liquid crystal from being disturbed due to a change in the refractive index.
  • the SRAM 32 is used as the digital signal holding unit, it is possible to hold the digital signal in a simple configuration and output it to the charge pump 31. Further, in the tenth embodiment, since the digital signal is used, the operation of switching the gradation can be performed at higher speed.
  • the maximum value of the drive voltage for driving the liquid crystal 42 a voltage (2 ⁇ VLC) that is twice the maximum voltage VLC is set, but the drive voltage is not limited to this. It is sufficient that the maximum value of is larger than the predetermined maximum voltage (VLC).
  • FIG. 37 is a circuit diagram showing the configuration of the pixel circuit 21'according to the modified example of the tenth embodiment.
  • the drive line L1 is arranged in the vertical direction. Therefore, the charge pump circuit can be turned on or off in the vertical direction of each pixel circuit 21'arranged in a matrix. Therefore, the direction in which the refractive index changes is the lateral direction.
  • the magnitude of the refractive index of the liquid crystal 42 changes in the vertical direction
  • the tenth embodiment shown in FIG. 37 has a configuration.
  • the refractive index of the liquid crystal 42 is set to change in the lateral direction.
  • the digital signal supplied to the pixel circuit 21' is set so that the number of pulses or the pulse width changes in one vertical scanning period.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

入射光(st)を所望の角度に反射させるための位相変調装置(101)は、互いに直交する複数の列データ線(D1-Dm)と複数の行走査線(G1-Gn)とがそれぞれ交差する位置に設けられた複数の画素回路(21)及び複数の反射画素(20)と、画素回路(21)より供給される駆動電圧により入射光(st)に対する屈折率が変化する液晶(42)を備える。列データ線(D1-Dm)は、画素回路(21)に所定の最大電圧(VLC)までの範囲で変化する制御電圧を出力する。画素回路(21)は、制御電圧を増幅可能なチャージポンプ(31)を備える。液晶(42)に供給する駆動電圧が最大電圧以下の場合には、制御電圧を増幅せずに液晶(42)に出力し、液晶(42)に供給する駆動電圧が最大電圧を超える場合には、チャージポンプ(31)にて制御電圧を増幅して液晶(42)に出力する。

Description

位相変調装置及び位相変調方法
 本発明は、位相変調装置及び位相変調方法に関する。
 従来より、特許文献1に開示されているように、LCOS(Liquid Crystal On Silicon)を用いた位相変調装置が提案されている。特許文献1の段落[0015]等には、LCOS素子の各画素に印加する電圧を制御して、入射した光を位相変調することが開示されている。
特開2014-56004号公報(JP 2014-056004 A)
 赤外域の光を扱う位相変調装置では、長波長の光を十分に変調させなければならない。そのために、高い変調率を確保するための手段としては、基本として高い屈折率異方性を持つ液晶材料を用いることが挙げられるが、その他に、第一に液晶層を厚くする、第二に液晶への印加電圧を高くすることが挙げられる。液晶層を厚くする方法では、液晶の配向が乱れやすくなるといったデメリットが生じる。
 一方、特許文献1に開示された技術では、駆動回路より各画素に供給する電圧が限られているため、位相を変調する際の変調量を大きくすることができない。駆動回路より出力する電圧を高めると、回路素子の耐圧を高める必要があり、更には消費電力が高まるという問題が発生する。
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、液晶層の厚みの増加を抑制するとともに、列データ線から画素回路に供給する電圧を高めることなく、液晶への印加電圧を高めることにより、赤外光においても十分な位相変調量を確保することが可能な位相変調装置及び位相変調方法を提供することにある。
 上記目的を達成するため、本発明の態様に係る位相変調装置は、入射光を所望の角度に反射させるための位相変調装置であって、互いに直交する複数の列データ線と複数の行走査線と、前記複数の列データ線と前記複数の行走査線とがそれぞれ交差する位置に設けられた複数の画素回路と、前記複数の画素回路にそれぞれ対応して設けられた複数の反射画素と、前記複数の反射画素にそれぞれ対応して設けられ、前記画素回路より供給される駆動電圧により入射光に対する屈折率が変化する液晶と、チャージポンプ制御部とを備える。前記列データ線は、各々の前記画素回路に所定の最大電圧までの範囲で変化する制御電圧を出力する。前記画素回路は、前記制御電圧を増幅可能なチャージポンプを備える。前記チャージポンプ制御部は、前記液晶に供給する前記駆動電圧が前記最大電圧以下の場合には、前記制御電圧を増幅せずに前記液晶に出力し、前記駆動電圧が前記最大電圧を超える場合には、前記チャージポンプにて前記制御電圧を増幅して前記液晶に出力する制御を行う。
 また、本発明の態様に係る位相変調方法は、入射光を所望の角度に反射させるための位相変調方法であって、互いに直交する複数の列データ線と複数の行走査線とがそれぞれ交差する位置に設けられた複数の画素回路に、所定の最大電圧までの範囲で変化する制御電圧を出力する制御電圧出力ステップと、各々の前記画素回路に対応して設けられ、入力する電圧に応じて入射光に対する屈折率が変化する液晶に供給する駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧を増幅せずに前記液晶に出力する非増幅電圧出力ステップと、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧を増幅して前記液晶に出力する増幅電圧出力ステップとを備える。
 本発明の態様に係る位相変調装置および位相変調方法によれば、列データ線から画素回路に供給する制御電圧を大きくすることなく、反射光の位相変調量を大きく設定することが可能となるため、位相変調量の確保のための液晶層の厚化と、この液晶層の厚化による液晶配向の乱れを抑えることができる。
図1は、各実施形態に係る位相変調装置の構成を示す平面図である。 図2は、各実施形態に係る位相変調装置の構成を示す側面方向の断面図である。 図3は、第1実施形態と第2実施形態に係る位相変調装置の回路図である。 図4は、第1実施形態と第3実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図5は、各実施形態に係る位相変調装置に設けられる各画素回路で反射する反射光の方向を示す説明図であり、sa1はチャージポンプがオフの場合、sb1はチャージポンプがオンの場合を示す。 図6(a)はマトリクス状に配置された各画素回路を示し、図6(b)は各画素回路から液晶に供給される駆動電圧を示すグラフである。 図7Aは、第1実施形態と第4実施形態と第6実施形態と第8実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を示すグラフである。 図7Bは、第1実施形態と第4実施形態と第6実施形態と第8実施形態に係る位相変調装置における、液晶に設定する階調と、液晶に供給する駆動電圧との関係を示すグラフである。 図8は、第1実施形態に係る位相変調装置の各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4の作動を示すタイミングチャートである。 図9は、第1実施形態と第3実施形態に係る位相変調回路に設けられる画素回路の変形例を示す説明図である。 図10は、第2実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図11Aは、第2実施形態と第3実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を示すグラフである。 図11Bは、第2実施形態と第3実施形態に係る位相変調装置における、液晶に設定する階調と、該液晶に供給する駆動電圧との関係を示すグラフである。 図12は、第2実施形態に係る位相変調装置の各画素回路に設けられるトランジスタQ1、Q2、Q3、スイッチS1~S4の作動を示すタイミングチャートである。 図13は、第2実施形態に係る位相変調回路に設けられる画素回路の変形例を示す説明図である。 図14は、第3実施形態に係る位相変調装置の回路図である。 図15は、第3実施形態に係る位相変調装置の各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4の作動を示すタイミングチャートである。 図16は、第4実施形態と第6実施形態に係る位相変調装置の回路図である。 図17は、第4実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図18Aは、第4実施形態と第6実施形態に係る位相変調装置において、チャージポンプを作動させないときの、各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4、第1切替スイッチS6、第2切替スイッチS5の作動を示すタイミングチャートである。 図18Bは、第4実施形態と第6実施形態に係る位相変調装置において、チャージポンプを作動させるときの、各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4、第1切替スイッチS6、第2切替スイッチS5の作動を示すタイミングチャートである。 図19は、第5実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図20Aは、第5実施形態と第7実施形態に係る位相変調装置において、チャージポンプを作動させないときの、各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4、第1切替スイッチS6の作動を示すタイミングチャートである。 図20Bは、第5実施形態と第7実施形態に係る位相変調装置において、チャージポンプを作動させるときの、各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4、第1切替スイッチS6の作動を示すタイミングチャートである。 図21は、第6実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図22Aの(a)は、図21のソースフォロワQ4のウェルをグランドに接続したときの回路図、図22Aの(b)は図22Aの(a)のVinとVoutの関係を示すグラフである。 図22Bの(a)は、図21のソースフォロワQ4のウェルとソースを接続したときの回路図、図22Bの(b)は図22Bの(a)のVinとVoutの関係を示すグラフである。 図23は、第7実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図24は、第8実施形態に係る位相変調装置の回路図である。 図25は、第8実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図26Aは、第8実施形態に係る位相変調装置において、制御電圧をチャージポンプで増幅しない場合における各スイッチS1~S4のオン、オフ状態を示すタイミングチャートである。 図26Bは、第8実施形態に係る位相変調装置において、制御電圧をチャージポンプで増幅する場合における各スイッチS1~S4のオン、オフ状態を示すタイミングチャートである。 図27は、第9実施形態に係る位相変調装置の回路図である。 図28は、第9実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図29は、第9実施形態に係る位相変調装置における、液晶に設定する階調とランプ波形電圧、及び液晶に供給する駆動電圧の関係を示すグラフである。 図30Aは、第9実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧、液晶に供給する駆動電圧の関係を示すグラフである。 図30Bは、第9実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧、液晶に供給する駆動電圧との関係を示すグラフである。 図31は、第9実施形態に係る位相変調回路に設けられる画素回路の第1変形例を示す説明図である。 図32Aは、第9実施形態に係る位相変調装置の第2変形例に係り、画素回路に単調増加のランプ電圧を供給する例を示す。 図32Bは、第9実施形態に係る位相変調装置の第2変形例に係り、画素回路に単調減少のランプ電圧を供給する例を示す。 図33は、第10実施形態に係る位相変調装置の回路図である。 図34は、第10実施形態に係る位相変調装置に設けられる各画素回路の構成を示す回路図である。 図35は、第10実施形態に係る位相変調装置における、デジタル信号のデータビット数と、パルス数・幅との関係を示すグラフである。 図は36、第10実施形態に係る位相変調装置の各画素回路に設けられる第2トランジスタQ2、及びスイッチS1~S4の作動を示すタイミングチャートである。 図37は、第10実施形態の変形例に係る位相変調回路に設けられる各画素回路の構成を示す説明図である。
 [第1実施形態の説明]
 以下、第1実施形態に係る位相変調装置について図面を参照して説明する。図1は、各実施形態(ここでは、第1実施形態)に係る位相変調装置の平面図であり、図2は各実施形態(ここでは、第1実施形態)に係る位相変調装置の側面方向の断面図である。図1、2に示すように、各実施形態(ここでは、第1実施形態)に係る位相変調装置101は、反射基板11と、液晶層12と、対向基板13とを備えたLCOS(Liquid Crystal On Silicon)パネル構造を有している。そして、対向基板13側(図2の矢印Y1の方向)から入射した光を反射させて、それぞれ位相が異なる複数の反射光に分別するものである。なお以下では、反射基板11、及び対向基板13の光が入射する側の面を「光入射面」とする。
 反射基板11の光入射面には、光を反射する金属(例えば、アルミニウムなど)で形成される複数の反射画素が設けられ、更に、反射画素ごとにそれぞれ画素回路が設けられている。画素回路21は、図3にて後述するように、水平方向、及び垂直方向にそれぞれ複数配置されている。各画素回路21は、制御回路22の制御により作動する。
 対向基板13は、反射基板11の光入射面側に一定の間隔を持って平行に配置されており、透明部材(例えば、透明なガラス材)で形成されている。即ち、対向基板13は、透明基板としての機能を備えている。更に、対向基板13には透明電極が設けられている。従って、対向基板13の光入射面側から入射する光は、透明部材及び透明電極を通過して、液晶層12、及び反射基板11に入射することになる。
 液晶層12は、反射基板11及び対向基板13に挟まれた空間に配置され、周囲はシール材14により封止されている。また、以下の説明の便宜上、液晶層12を各反射画素(即ち、各画素回路21)上で区分した液晶42(後述する図4参照)と考える。液晶42は、光反射性を有する画素電極(後述の図4に示すq1、即ち反射画素)と、画素電極に離間して対向配置された共通電極(後述の図4に示すq2、即ち透明電極)との間に充填封止されて構成されている。そして、画素電極q1には、画素回路21より出力される電圧(以下、「駆動電圧」とする)が供給され、共通電極q2には、予め設定された共通電極電圧が供給される。
 従って、各画素回路21により印加される駆動電圧と、共通電極q2に印加される共通電極電圧と、の間の電位差により、各反射画素上の液晶42の入射光に対する屈折率を、個別の液晶42ごと或いは所定数のグループごとに変化させ、対向基板13の光入射面側から入射した入射光を所望の方向に反射させることができる。
 ある複数の連続した反射画素上の液晶42の屈折率を段階的に大から小(或いは、小から大)と変化させることで、そこに入射した入射光の速度(位相の進みや遅れ)に差が生じることから、入射した光は曲がって進み、ある角度を持った反射光を得ることができる。
 次に、第1実施形態に係る位相変調装置おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図3に示すブロック図、及び図4に示す回路図を参照して説明する。図3において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25と、を備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図4参照)のオン、オフを切り替えるための制御信号を送信する配線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図4参照)のオン、オフを切り替えるための制御信号を送信する配線である。なお、制御線(K1~Kn)は、図4に示すようにそれぞれ複数本(図4では、K1-1、K1-2の2本)設けられているが、図3では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるアナログの電圧(以下、「制御電圧」という)を各画素回路21に供給するための配線である。行走査線(G1~Gn)は、各画素回路21に、行選択信号(走査信号)を出力するための配線である。
 図4は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図3に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図4に示すように、画素回路21aは、第1トランジスタQ1と、第2トランジスタQ2と、チャージポンプ31と、出力キャパシタC2とを備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 第2トランジスタQ2についても前述した第1トランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、第2トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31に制御電圧が供給される入力端子p1と、チャージポンプ31から液晶42に駆動電圧を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。そして、液晶42を所望の屈折率に設定するための駆動電圧が、列データ線D1より供給される最大電圧VLC以下の場合には、チャージポンプ制御部25(図3参照)の制御により、第2トランジスタQ2を短絡し、チャージポンプ31による制御電圧の増幅を行わない。また、駆動電圧が最大電圧VLCを超える場合には、第2トランジスタQ2を開放し、チャージポンプ31による制御電圧の増幅が可能な状態とする。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧を増幅して出力端子p2に出力する。
 第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には第1キャパシタC1が設けられている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。
 出力端子p2は、出力キャパシタC2を介してグランドに接続され、更に液晶42の画素電極q1に接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 第1スイッチS1と第4スイッチS4には第1制御線K1-1が接続され、第2スイッチS2と第3スイッチS3には第2制御線K1-2が接続されている。そして、各制御線K1-1、K1-2より供給される制御信号により、各スイッチS1~S4のオン、オフが制御される。なお、図4では、2本の制御線K1-1、K1-2を設ける構成を示しているが、各スイッチS1~S4毎の制御線(4本の制御線)を設ける構成としてもよい。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極電圧との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、駆動電圧と共通電極電圧との間の電位差に応じて位相変調されて、反射することになる。
 図5は、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度を模式的に示す説明図である。図5において、符号stは、各画素回路21ごとに設けられる反射画素20(反射基板11の光入射面)に直交する方向から入射する入射光を示し、符号sa1は反射画素20にて角度θaで反射した反射光を示し、符号sb1は角度θbで反射した反射光を示している。入射光stの同一位相面(入射光stの方向を法線とする面)はr1であり、反射光sa1の位相面はra1であり、反射光sb1の同一位相面はrb1である。
 図5に示すように、反射画素20に対してほぼ直交する方向から入射光stが照射され、反射画素20に入射すると、画素回路21により液晶42に印加される駆動電圧に応じて、液晶42の屈折率が変化する。例えば、従来の駆動電圧の最大が電圧Vaである場合には、連続した画素で段階的に最小電圧Vminから電圧Vaまで電圧を変化させた際に得られる反射光sa1の反射角度はθaなのに対して、チャージポンプ31を駆動させた場合には、駆動電圧の最大がVb(Vb>Va)となり、より大きな反射角度θbで反射する反射光sb1が得られる。
 この際、Vminが印加されているが画素上の液晶では例えば大きな屈折率nmaxが得られ、最大の電圧Vaが印加される画素上の液晶では例えば小さな屈折率naに変化する。屈折率nmaxの液晶に入射する光に対して、屈折率naの液晶に入射する光の方が速く進むため、反射光は角度θaに曲がって出射される。一方で、電圧Vbが印加される画素上の液晶はnaより小さい屈折率nbとなるので、入射する光はさらに速く進む。そのため、反射光はより大きな角度のθbで出射されることになる。
 図3に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 電圧供給線X1より、各列データ線(D1~Dm)に供給される制御電圧「d」は、「0」(最小電圧)から「VLC」(最大電圧)までのアナログの電圧である。第1実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図7Aを参照して、第1実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図7Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧を示すグラフである。
 図7Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 例えば、液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図3に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第1実施形態では、階調3~5については、それぞれの半分の制御電圧を出力し、その後、チャージポンプ31により2倍に増幅する。つまり、階調3として(3/5)×VLC、階調4として(4/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により2倍に増幅して液晶42に出力する。
 つまり、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図7AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧として液晶42に出力する。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図7AのグラフR2に示すように、この電圧の半分の電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31で2倍に増幅することにより、所望の駆動電圧を得る。従って、グラフR2の傾きは、グラフR1の傾きの半分となっている。
 即ち、チャージポンプ制御部25は、最大電圧(VLC)よりも大きい電圧(2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずに液晶42に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して液晶42に供給することができる。即ち、図7BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、液晶42に出力することが可能となる。
 図3に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図3に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧(VLC)よりも大きい電圧(2×VLC)までの範囲内において設定されている複数の階調(例えば、階調1~階調5)のうち、任意の階調(例えば、階調1)に対応する電圧が最大電圧(VLC)以下の場合には、駆動線に「H」レベルの信号を出力する。また、複数の階調のうち、任意の階調(例えば、階調3)に対応する電圧が最大電圧(VLC)を超える場合には、駆動線に「L」レベルの信号を出力する。
 更に、チャージポンプ制御部25は、駆動線に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線に「L」レベルの信号が供給さる場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 チャージポンプ制御部25は、チャージポンプ31を駆動させる場合には、図4に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、チャージポンプ31を駆動させる場合において、列データ線D1より制御電圧が供給された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、列データ線D1より供給された制御電圧は、第1キャパシタC1に蓄積される。所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、列データ線D1より供給される制御電圧と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧の2倍となる電圧が蓄積されて、画素電極q1に出力されることになる。
 そして、第1実施形態に係る位相変調装置101では、図3に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。なお、図6(a)では、各画素回路21の行(n)及び列(m)を特定するために、それぞれサフィックス「-nm」を付して示す。従って、図6(a)に示す1行、1列の画素回路は21-11、5行、6列の画素回路は21-56である。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~階調5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~階調5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第1実施形態の動作の説明]
 次に、第1実施形態に係る位相変調装置101の動作を、図7A、7Bに示すグラフ、及び図8に示すタイミングチャートを参照して説明する。図7Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図3に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査線を選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 例えば、「0」から最大電圧の2倍電圧までの範囲の電圧「0~2×VLC」を5つの階調(即ち、k=1~5)に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになる。従って、図7Aに示したように、上記の半分の電圧である「(3/5)×VLC」を制御電圧として出力し、更に、チャージポンプ31によりこの電圧を2倍に増幅して「(3/5)×2×VLC」の電圧を生成して階調3の電圧とする。
 4行目の画素回路21-41~21-46、5行目の画素回路21-51~21-56についても同様に、それぞれ半分の電圧を制御電圧として出力し、その後、チャージポンプ31で2倍に増幅することにより、階調4、階調5の電圧を生成する。
 次に、画素回路21における動作を、図8に示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、上述した階調1、階調2に設定する場合には、チャージポンプ31を作動させない。この場合には、図8の時刻t0~t1に示すように、チャージポンプ制御部25は、駆動線L1にHレベルの信号を出力する。更に、チャージポンプ31の各スイッチS1~S4が全てオフとなるように制御する。その結果、図4に示した第2トランジスタQ2がオンとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、液晶42に出力される。従って、図7Bの符号z1に示すように液晶に「(1/5)×2×VLC」の電圧を供給することができる。
 また、画素回路21aを階調2に設定する場合についても同様にチャージポンプ31を作動させず、図7Bの符号z2に示すように、列データ線D1より供給される制御電圧を増幅せずに出力する。その結果、液晶に「(2/5)×2×VLC」の電圧を印加することができる。
 画素回路21を階調3に設定する場合には、列データ線D1に、階調3に対応する電圧「(2/5)×2×VLC」の半分の電圧「(2/5)×VLC」を制御電圧として出力する。更に、この制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、図8の時刻t1においてチャージポンプ制御部25は、駆動線L1に供給する信号をHレベルからLレベルに切り替える。その結果、第2トランジスタQ2がオフとなる。更に、時刻t1において、チャージポンプ制御部25は、図4に示す第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする制御信号を、制御線K1(K1-1、K1-2)に出力する。
 その結果、第1キャパシタC1に制御電圧「(3/5)×VLC」が蓄積される。そして、時刻t2において、第1スイッチS1と第4スイッチS4をオフとし、更に、時刻t3において、第2スイッチS2と第3スイッチS3をオンとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧「(3/5)×2×VLC」が蓄積されることになる。このため、図7Bの符号z3に示すように、液晶42に階調3の駆動電圧「(3/5)×2×VLC」を供給することができる。
 また、画素回路21aを階調4に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z4に示すように液晶に「(4/5)×2×VLC」の駆動電圧を供給することができる。
 更に、画素回路21aを階調5に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z5に示すように液晶に「2×VLC」の駆動電圧を供給することができる。
 [第1実施形態の効果の説明]
 第1実施形態に係る位相変調装置101では、図4に示すように、各画素回路21にチャージポンプ31を備えている。そして、「0」から最大電圧の2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して液晶42に出力するように制御する。
 従って、列データ線より画素回路21に供給される制御電圧の最大値が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第1実施形態では、互いに直交する方向、即ち、図3に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 なお、第1実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、駆動電圧の範囲はこれに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 [第1実施形態の変形例の説明]
 次に、第1実施形態の変形例について説明する。図9は、第1実施形態の変形例に係る画素回路21’の構成を示す回路図である。図9に示すように、画素回路21’は、駆動線L1が縦方向に配置されている。従って、マトリクス状に配置された各画素回路21’の縦方向に向けてチャージポンプ回路のONもしくはOFFが設定できる。このため、屈折率が変化する方向が横方向となる。
 即ち、図6(a)、6(b)に示した例では、縦方向に向けて液晶42の屈折率の大小が変化する構成であるのに対して、図9に示す第1実施形態の変形例では、横方向に向けて液晶42の屈折率の大小が変化するように設定する構成となる。
 [第2実施形態の説明]
 第2実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第2実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図3に示すブロック図、及び図11に示す回路図を参照して説明する。図3において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25と、を備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図11参照)のオン、オフを切り替えるための制御信号を送信する電線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図10参照)のオン、オフを切り替えるための制御信号、及び、第3トランジスタQ3のオン、オフを切り替えるための制御信号を送信する配線である。なお、各々の制御線(K1~Kn)は、図10に示すようにそれぞれ複数本(図では、K1-1、K1-2、K1-3の3本)設けられているが、図3では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるアナログの電圧(以下、「制御電圧」という)を各画素回路21に供給するための配線である。
 図10は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図3に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図10に示すように、画素回路21aは、第1トランジスタQ1と、第2トランジスタQ2と、第3トランジスタQ3と、チャージポンプ31と、出力キャパシタC2とを備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 第2トランジスタQ2についても前述した第1トランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、第2トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31に制御電圧が供給される入力端子p1と、チャージポンプ31から液晶42に駆動電圧を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。そして、液晶42を所望の屈折率に設定するための駆動電圧が、列データ線D1より供給される最大電圧VLC以下の場合には、チャージポンプ制御部25(図3参照)の制御により、第2トランジスタQ2を短絡し、駆動電圧が最大電圧VLCを超える場合には、第2トランジスタQ2を開放し、チャージポンプ31を駆動可能な状態とする。
 第3トランジスタQ3についても前述した第1トランジスタQ1や第2トランジスタQ2と同様にMOSFETなどのスイッチングトランジスタであり、第1端子はチャージポンプ31の入力端子p1に接続され、第2端子は電圧Vdd(最大電圧はVLC)を出力する電源(図示省略)に接続されている。また、第3トランジスタQ3の制御端子(例えば、ゲート)は、第3制御線K1-3に接続されている。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧を増幅して出力端子p2に出力する。
 第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には第1キャパシタC1が設けられている。出力端子p2は、出力キャパシタC2を介してグランドに接続され、更に、液晶42の画素電極q1に接続されている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、該液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第2実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図3に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 電圧供給線X1より、各列データ線(D1~Dm)に供給される制御電圧「d」は、「0」(最小電圧)から「VLC」(最大電圧)までのアナログの電圧である。第2実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図11Aを参照して、第2実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図11Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧を示すグラフである。
 図11Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 図11Aにおいて、例えば液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図3に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第2実施形態では、階調3~5については、それぞれの制御電圧から電圧VLCを減算した電圧を出力し、その後、チャージポンプ31により電圧VLCを加算する。つまり、階調3として(1/5)×VLC、階調4として(3/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により電圧VLCを加算して液晶42に出力する。
 即ち、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図11AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧として液晶42に出力する。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図11AのグラフR2に示すように、この電圧から電圧VLCを減算した電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31で電圧VLCを加算することにより、所望の駆動電圧を得る。従って、グラフR2の傾きは、グラフR1の傾きと同一となっている。
 即ち、チャージポンプ制御部25は、最大電圧(VLC)よりも大きい電圧(この例では2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずに前記液晶に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、この階調に対応する電圧から最大電圧(VLC)を減じた電圧を制御電圧として出力し、その後、チャージポンプ31により電圧VLC(最大電圧)を加算して液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して液晶42に供給することができる。即ち、図11BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、液晶42に出力することが可能となる。
 図3に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図3に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧(VLC)よりも大きい2倍電圧までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、駆動線に「H」レベルの信号を出力する。また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、駆動線に「L」レベルの信号を出力する。
 更に、チャージポンプ制御部25は、駆動線に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線に「L」レベルの信号が供給される場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 チャージポンプ制御部25は、チャージポンプ31を駆動させる場合には、図10に示した各スイッチS1~S4のオン、オフを制御する制御信号を、第1制御線K1-1、第2制御線K1-2に出力する。具体的に、チャージポンプ31を駆動させる場合において、列データ線D1より制御電圧が入力された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、列データ線D1より供給された制御電圧は、第1キャパシタC1に蓄積される。所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。このとき、第1トランジスタQ1をオフとし、第3トランジスタQ3をオンとする。その結果、第3トランジスタQ3より供給される最大電圧(VLC)と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧に最大電圧(VLC)が加算された電圧が蓄積されて、画素電極q1に出力されることになる。
 そして、第2実施形態に係る位相変調装置101では、図3に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第2実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~階調5のうち階調1の電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5の電圧を供給するように設定する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第2実施形態の動作の説明]
 次に、第2実施形態に係る位相変調装置101の動作を、図11A、11Bに示すグラフ、及び図12に示すタイミングチャートを参照して説明する。図11Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図3に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 即ち、前述したように、「0」から2倍電圧までの範囲「0~2×VLC」を5つの階調に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになるので、図12AのグラフR2に示したように、上記の電圧からVLCを減算した電圧である「(1/5)×VLC」を制御電圧として出力する。
 4行目の画素回路21-41~21-46、5列目の画素回路21-51~21-56についても同様に、それぞれ電圧VLCを減じた電圧を制御電圧として出力する。その後、チャージポンプ31で電圧VLCを加算することにより、階調3~5の電圧を生成する。
 次に、画素回路21における動作を、図12に示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、階調1、2に設定する場合には、チャージポンプ31を作動させない。この場合には、図12の時刻t0~t1に示すように、チャージポンプ制御部25は、駆動線L1にHレベルの信号を出力する。更に、各スイッチS1~S4が全てオフとなるように制御し、第3トランジスタQ3がオフとなるように制御する。また、第1トランジスタQ1をオンとする。その結果、図11に示した第2トランジスタQ2がオンとなり、第3トランジスタQ3がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、液晶42に出力される。従って、図11Bの符号z1、z2に示すように液晶42に所望の駆動電圧を供給することができる。
 一方、画素回路21を階調3に設定する場合には、列データ線D1に、階調3に対応する電圧「(6/5)×VLC」から電圧VLCを減じた電圧「(1/5)×VLC」を制御電圧として出力する。更に、チャージポンプ31により、この制御電圧に電圧VLCを加算する。
 具体的に、図12の時刻t1において、チャージポンプ制御部25は、駆動線L1に供給する信号をHレベルからLレベルに切り替える。その結果、第2トランジスタQ2がオフとなる。更に、時刻t1において、チャージポンプ制御部25は、図10に示す第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする制御信号を、制御線K1(K1-1、K1-2)に出力する。
 その結果、第1キャパシタC1には、列データ線より供給される制御電圧が蓄積されることになる。その後、時刻t2において、第1スイッチS1、第4スイッチS4、第1トランジスタQ1をオフとし、更に、時刻t3において、第2スイッチS2、第3スイッチS3、第3トランジスタQ3をオンとする。その結果、出力キャパシタC2には、制御電圧に最大電圧(VCL)が加算された電圧が蓄積されることになる。このため、図11Bの符号z3~z5に示すように、液晶42に階調3の駆動電圧を供給することができる。
 [第2実施形態の効果の説明]
 第2実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、「0」から2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧に最大電圧(VCL)を加算した電圧を液晶42に出力する。
 従って、列データ線より画素回路21に供給される制御電圧の最大値が最大電圧(VLC)である場合に、その2倍である2倍電圧(2×VLC)の範囲で、液晶42に供給する駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第2実施形態では、互いに直交する方向、即ち、図3に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 なお、第2実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、これに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 [第2実施形態の変形例の説明]
 次に、第2実施形態の変形例について説明する。図13は、第2実施形態の変形例に係る画素回路21’の構成を示す回路図である。図13に示すように、画素回路21’は、駆動線L1が縦方向に配置されている。従って、マトリクス状に配置された各画素回路21’の縦方向に向けてチャージポンプ31のオンもしくはオフが設定できる。このため、屈折率が変化する方向が横方向となる。
 即ち、図6(a)、6(b)に示した例では、縦方向に向けて液晶42の屈折率の大小が変化する構成であるのに対して、図13に示す第2実施形態の変形例では、横方向に向けて液晶42の屈折率の大小が変化するように設定する構成となる。この場合には、1垂直走査期間において、制御電圧が最大電圧VLCに達するように、画素回路21’に供給する電圧を設定する。
 [第3実施形態の説明]
 第3実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第3実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図14に示すブロック図、及び図4に示す回路図を参照して説明する。図4において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25と、制御電圧出力部28とを備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図4参照)のオン、オフを切り替えるための制御信号を送信する配線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図4参照)のオン、オフを切り替えるための制御信号を送信する配線である。なお、制御線(K1~Kn)は、図4に示すようにそれぞれ複数本(図では、K1-1、K1-2の2本)設けられているが、図14では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、制御電圧出力部28より出力され、電圧供給線X1を経由して供給されるアナログの電圧(制御電圧及び最大電圧VLC)を各画素回路21に供給するための配線である。行走査線(G1~Gn)は、各画素回路21に、行選択信号(走査信号)を出力するための配線である。後述するように「制御電圧」とは、「0」(最小電圧)から「VLC」(最大電圧)までの範囲の電圧を示し、最大電圧VLCとは、制御電圧出力部28が出力する最大の電圧を示す。
 図4は、第3実施形態に係る位相変調装置101おける画素回路21の詳細な構成を示す回路図である。(第3実施形態に係る位相変調装置101おける画素回路21の構成は、図4に示す第1実施形態に係る位相変調装置101おける画素回路21の構成と同一なため、説明を省略する。)
 第3実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図14に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 制御電圧出力部28は、「0」(最小電圧)から「VLC」(最大電圧)までの範囲のアナログの電圧(これを、制御電圧とする)、及び最大電圧VLCを時分割で出力する。具体的には、後述する図15の(e)に示すように、「0」から「VLC」の間の電圧である制御電圧Vh、或いは最大電圧VLCのいずれかを出力する。また、後述するように、液晶42に供給する駆動電圧が最大電圧VLC以下である場合には、図15の(e)の時刻t0~t1に示すように、制御電圧Vhを継続して出力する。また、上記の駆動電圧が最大電圧VLCを超える場合には、図15の(e)の時刻t1~t4に示すように、制御電圧Vh、及び最大電圧VLCを時分割で出力する。
 制御電圧出力部28より出力される電圧(制御電圧または最大電圧)は、電圧供給線X1より、各列データ線(D1~Dm)に供給される。
 第3実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図12Aを参照して、第3実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図12Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧(制御電圧出力部より出力される制御電圧)を示すグラフである。
 図12Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 例えば、液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、上記の階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図14に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第3実施形態では、階調3~5については、それぞれの電圧から最大電圧VLCを減じた電圧を制御電圧として出力し、その後、チャージポンプ31により最大電圧VLCを加算する。つまり、階調3として(1/5)×VLC、階調4として(3/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により最大電圧VLCを加算して液晶42に出力する。
 即ち、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図12AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧として液晶42に出力する。この場合は、制御電圧出力部28は、図15の(e)の時刻t0~t1に示しているように制御電圧Vhのみを出力する。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図12AのグラフR2に示すように、この電圧から最大電圧VLCを減じた電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31により最大電圧VLCを加算することにより、所望の駆動電圧(加算電圧)を得る。この場合は、制御電圧出力部28は、図15の(e)の時刻t1~t4に示しているように制御電圧Vhと最大電圧VLCを時分割で出力する。
 換言すれば、チャージポンプ制御部25は、最大電圧VLCよりも大きい電圧(2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧VLC以下の場合には、制御電圧を増幅せずに液晶42に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧VLCを超える場合には、チャージポンプ31により制御電圧を増幅して(最大電圧VLCを加算して)液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して液晶42に供給することができる。即ち、図12BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、液晶42に出力することが可能となる。
 図14に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図14に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧VLCよりも大きい電圧(2×VLC)までの範囲内において設定されている複数の階調のうち、任意の階調に対応する電圧が最大電圧VLC以下の場合(例えば、上述した階調1、2の場合)には、駆動線に「H」レベルの信号を出力する。また、複数の階調のうち、任意の階調に対応する電圧が最大電圧VLCを超える場合(例えば、上述した階調3~5の場合)には、駆動線に「L」レベルの信号を出力する。
 更に、チャージポンプ制御部25は、駆動線に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線に「L」レベルの信号が供給される場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 チャージポンプ制御部25は、チャージポンプ31を駆動させる場合には、図4に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、チャージポンプ31を駆動させる場合において、制御電圧出力部28より出力される制御電圧が供給された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、供給された制御電圧は、第1キャパシタC1に蓄積される。その後、制御電圧出力部28より、最大電圧VLCが供給された際には、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、第1キャパシタC1に蓄積されている制御電圧に対して、列データ線D1より供給される最大電圧VLCが加算され、加算後の電圧が出力キャパシタC2に蓄積される。そして、加算後の電圧が画素電極q1に出力されることになる。つまり、液晶42に供給する階調1~5の5段階の駆動電圧を得ることができる。
 そして、第3実施形態に係る位相変調装置101では、図14に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第3実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~階調5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~階調5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第3実施形態の動作の説明]
 次に、第3実施形態に係る位相変調装置101の動作を、図12A、図12Bに示すグラフ、及び図15に示すタイミングチャートを参照して説明する。図12Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図14に示した制御電圧出力部28は、「0」から最大電圧「VLC」の範囲の制御電圧と最大電圧VLCを時分割で電圧供給線X1に出力する。
 また、水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧或いは最大電圧VLCを、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧、及び最大電圧VLCを供給することができる。
 例えば、「0」から最大電圧の2倍電圧までの範囲の電圧「0~2×VLC」を5つの階調(即ち、k=1~5)に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになる。従って、図17AのグラフR2に示したように、それぞれの電圧から最大電圧VLCを減じた電圧を制御電圧として出力する。更に、チャージポンプ31を駆動させることにより、制御電圧に最大電圧VLCを加算して「(3/5)×2×VLC」の電圧を生成し、階調3の電圧とする。
 4行目の画素回路21-41~21-46、5行目の画素回路21-51~21-56についても同様に、それぞれの電圧から最大電圧VLCを減算した電圧を制御電圧として出力し、その後、チャージポンプ31で最大電圧VLCを加算して、階調4、5の電圧を生成する。
 次に、画素回路21における動作を、図15に示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、階調1に設定する場合には、チャージポンプ31を作動させない。この場合には、図15のチャート(a)、(b)、(c)の時刻t0~t1に示すように、チャージポンプ制御部25は、駆動線L1にHレベルの信号を出力して第2トランジスタQ2をオンとする、更に、各スイッチS1~S4が全てオフとなるように制御する。また、図15の(d)に示すように、第1トランジスタQ1をオンとする。更に、図15の(e)に示すように、制御電圧出力部は、「0」~「VLC」の範囲の制御電圧Vhを出力する。
 第2トランジスタQ2がオンとなることにより、チャージポンプ31の入力端子p1と出力端子p2が短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、液晶42に出力される。従って、図7Bの符号z1に示すように液晶42に「(1/5)×2×VLC」の電圧を供給することができる。
 また、画素回路21aを階調2に設定する場合についても同様にチャージポンプ31を作動させず、図12Bの符号z2に示すように、列データ線D1より供給される制御電圧を増幅せずに出力する。その結果、液晶42に「(2/5)×2×VLC」の電圧を印加することができる。
 画素回路21を階調3に設定する場合には、制御電圧出力部28は列データ線D1に、階調3に対応する電圧「(1/5)×VLC」を制御電圧として出力する。更に、制御電圧出力部28は、最大電圧VLCを出力する。そして、上記の制御電圧と最大電圧VLCをチャージポンプ31により加算する。
 具体的に、図15のチャート(a)に示すようにチャージポンプ制御部25は、時刻t1にて駆動線L1に供給する信号をHレベルからLレベルに切り替える。その結果、第2トランジスタQ2がオフとなる。更に、図15のチャート(b)、(c)に示すように、チャージポンプ制御部25は、時刻t2において、図4に示す第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする制御信号を、制御線K1(K1-1、K1-2)に出力する。
 その結果、第1キャパシタC1に制御電圧「(1/5)×VLC」が蓄積される。そして、時刻t2において、第1スイッチS1と第4スイッチS4をオフとし、更に、時刻t3において、第2スイッチS2と第3スイッチS3をオンとする。更に、図15のチャート(e)に示すように、時刻t3において、制御電圧出力部28より出力される電圧は制御電圧から最大電圧VLCに切り替わる。その結果、出力キャパシタC2には、制御電圧に最大電圧VLCが加算された電圧「(3/5)×2×VLC」が蓄積されることになる。このため、図12Bの符号z3に示すように、液晶42に階調3の駆動電圧「(3/5)×2×VLC」を供給することができる。
 また、画素回路21aを階調4に設定する場合についても同様にチャージポンプ31を作動させることにより、図12Bの符号z4に示すように液晶に「(4/5)×2×VLC」の駆動電圧を供給することができる。
 更に、画素回路21aを階調5に設定する場合についても同様にチャージポンプ31を作動させることにより、図12Bの符号z5に示すように液晶に「2×VLC」の駆動電圧を供給することができる。
 [第3実施形態の効果の説明]
 第3実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、「0」から最大電圧の2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧VLC以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧VLCを超える場合には、制御電圧出力部28より、制御電圧(Vh)と最大電圧(VLC)が時分割で出力される。そして、チャージポンプ31により制御電圧(Vh)と最大電圧(VLC)を加算する。具体的に、図18のチャート(e)の時刻t1~t2の期間に制御電圧(Vh)を出力し、時刻t3~t4の期間で最大電圧(VLC)を出力し、これらをチャージポンプ31にて加算している。
 従って、列データ線より画素回路21に供給される制御電圧の最大が最大電圧VLCである場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第3実施形態では、互いに直交する方向、即ち、図14に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 なお、第3実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、これに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 [第3実施形態の変形例の説明]
 次に、第3実施形態の変形例について説明する。図9は、第3実施形態の変形例に係る画素回路21’の構成を示す回路図である。図9に示すように、画素回路21’は、駆動線L1が縦方向に配置されている。従って、マトリクス状に配置された各画素回路21’の縦方向に向けてチャージポンプ回路のONもしくはOFFが設定できる。このため、屈折率が変化する方向が横方向となる。
 即ち、図6(a)、6(b)に示した例では、縦方向に向けて液晶42の屈折率の大小が変化する構成であるのに対して、図9に示す第3実施形態の変形例では、横方向に向けて液晶42の屈折率の大小が変化するように設定する構成となる。この場合には、1垂直走査期間において、制御電圧が最大電圧VLCに達するように、画素回路21’に供給する電圧を設定する。
 [第4実施形態の説明]
 第4実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第4実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図16に示すブロック図、及び図17に示す回路図を参照して説明する。図16において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、スイッチ制御部25(チャージポンプ制御部、切替スイッチ制御部)と、を備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、スイッチ制御部25に接続されている。
 また、行走査線(G1~Gn)に並行して短絡線(J1~Jn)が設けられている。短絡線(J1~Jn)には、図21に示すように、互いに隣接する画素回路21間での短絡、開放を切り替える第1切替スイッチ(図21におけるS6、S6’)が設けられている。
 なお、図16に示す例では縦方向(図中、上下方向)に向けて光の屈折率が変化するように制御する。従って、この方向に直交する方向である横方向(図中、左右方向)に向けて短絡線(J1~Jn)を設けている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図17参照)のオン、オフを切り替えるための制御信号を送信する配線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図17参照)のオン、オフを切り替えるための制御信号、及び上述した第1切替スイッチS6、及び第2切替スイッチS5(図17参照)のオン、オフを切り替えるための制御信号を送信する配線である。制御線(K1~Kn)は、図17に示すようにそれぞれ複数本(図では、K1-1、K1-2、K1-3、K1-4の4本)設けられているが、図16では1本の制御線K1で簡略化して示している。
 図17に示すように、第1制御線K1-1は、チャージポンプ31の第1スイッチS1と第4スイッチS4のオン、オフを制御する制御信号を出力する。第2制御線K1-2は、チャージポンプ31の第2スイッチS2と第3スイッチS3のオン、オフを制御する制御信号を出力する。第3制御線K1-3は、第1切替スイッチS6、S6’のオン、オフを制御する制御信号を出力する。なお、S6’は、隣接する画素回路に設けられる第1切替スイッチである。第4制御線K1-4は、第2切替スイッチS5のオン、オフを制御する制御信号を出力する。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるアナログの電圧(以下、「制御電圧」という)を各画素回路21に供給するための配線である。行走査線(G1~Gn)は、各画素回路21に、行選択信号(走査信号)を出力するための配線である。
 図17は、第4実施形態に係る位相変調装置101おける画素回路21の詳細な構成を示す回路図である。なお、ここでは図16に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図17に示すように、画素回路21aは、第1トランジスタQ1と、第2トランジスタQ2と、チャージポンプ31と、出力キャパシタC2と、ソースフォロワQ4(第1ソースフォロワ)と、負荷トランジスタQ5と、第2切替スイッチS5と、付加キャパシタC3と、第1切替スイッチS6とを備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 第2トランジスタQ2についても前述したトランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、第2トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31に制御電圧が供給される入力端子p1と、チャージポンプ31から液晶42に駆動電圧を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。そして、液晶42を所望の屈折率に設定するための駆動電圧が、列データ線D1より供給される最大電圧VLC(最大電圧)以下の場合には、スイッチ制御部25(図16参照)の制御により、第2トランジスタQ2を短絡し、チャージポンプ31による制御電圧の増幅を行わない。また、駆動電圧が最大電圧VLCを超える場合には、第2トランジスタQ2を開放し、チャージポンプ31による制御電圧の増幅を可能な状態とする。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧を増幅して出力端子p2に出力する。
 第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には第1キャパシタC1が設けられている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。
 出力端子p2は、出力キャパシタC2を介してグランドに接続され、更に、ソースフォロワQ4のゲートに接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 第1スイッチS1と第4スイッチS4には第1制御線K1-1が接続され、第2スイッチS2と第3スイッチS3には第2制御線K1-2が接続されている。そして、各制御線K1-1、K1-2より供給される制御信号により、各スイッチS1~S4のオン、オフが制御される。
 画素回路21には、ソースフォロワQ4と負荷トランジスタQ5との直列接続回路が設けられており、チャージポンプ31の出力端子p2はソースフォロワQ4のゲートに接続され、負荷トランジスタQ5のソースはグランドに接続されている。
 負荷トランジスタQ5は、ソースフォロワQ4のゲートに電圧(トランジスタQ1を経由して供給される制御電圧、或いはチャージポンプ31の出力電圧)が供給されているときに、オンとなるように制御される。なお、負荷トランジスタQ5を制御するための制御線については図示を省略している。
 ソースフォロワQ4と負荷トランジスタQ5の接続点(ソースフォロワQ4の出力点q3)は、第2切替スイッチS5を介して画素電極q1(供給点)に接続されている。更に、該画素電極q1は付加キャパシタC3を介してグランドに接続され、且つ、短絡線J1に接続されている。短絡線J1には、隣接する画素回路における画素電極との短絡(オン)、開放(オフ)を切り替えるための第1切替スイッチS6が設けられている。
 付加キャパシタC3は、ソースフォロワQ4より第2切替スイッチS5を介して出力される電圧を蓄積する。
 ソースフォロワQ4、負荷トランジスタQ5、第2切替スイッチS5、付加キャパシタC3は、チャージポンプ31で増幅した後の電圧が供給されて駆動するので、高耐圧の素子を用いている。
 各第1切替スイッチS6は、スイッチ制御部25より第3制御線K1-3を介して出力される制御信号により、オン、オフが制御される。第2切替スイッチS5は、スイッチ制御部25より第4制御線K1-4を介して出力される制御信号により、オン、オフが制御される。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第4実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図16に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 電圧供給線X1より、各列データ線(D1~Dm)に供給される制御電圧「d」は、「0」(最小電圧)から「VLC」(最大電圧)までのアナログの電圧である。第4実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図7Aを参照して、第4実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図7Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧を示すグラフである。
 図7Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 図7Aにおいて、例えば、液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図16に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第4実施形態では、階調3~5については、それぞれの半分の制御電圧を出力し、その後、チャージポンプ31により2倍に増幅する。つまり、階調3として(3/5)×VLC、階調4として(4/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により2倍に増幅する。
 つまり、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図7AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧を得る。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図7AのグラフR2に示すように、この電圧の半分の電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31で2倍に増幅することにより、所望の駆動電圧を得る。従って、グラフR2の傾きは、グラフR1の傾きの半分となっている。
 即ち、スイッチ制御部25は、最大電圧(VLC)よりも大きい電圧(2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずにソースフォロワQ4ひいては液晶42に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して、ソースフォロワQ4ひいては液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して、ソースフォロワQ4に出力する。即ち、図7BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、ソースフォロワQ4に出力することが可能となる。
 更に、ソースフォロワQ4の出力点q3に出力された駆動電圧は、第2切替スイッチS5を介して画素電極q1に接続されているので、該第2切替スイッチS5がオンとされているときにはソースフォロワQ4より出力される駆動電圧を液晶42に供給することができる。
 また、画素回路21a(一の画素回路)に接続される短絡線J1には、該画素回路21aに隣接する画素回路(他の画素回路)に接続される短絡線J1との短絡、開放を切り替えるための第1切替スイッチS6が設けられている。従って、第1切替スイッチS6を短絡させることにより、画素回路21aの画素電極q1と、隣接する画素回路の画素電極との間を短絡させることができる。第1切替スイッチS6をオンとすることにより、隣接する画素回路(同一の屈折率に制御する画素回路)どうしの、画素電極q1の電位を一定にすることができる。第1切替スイッチS6のオン、オフは、第3制御線K1-3より供給される制御信号により実施される。
 図16に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 スイッチ制御部25は、図16に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧(VLC)よりも大きい電圧(2×VLC)までの範囲内において設定されている複数の階調(例えば、階調1~階調5)のうち、任意の階調(例えば、階調1)に対応する電圧が最大電圧(VLC)以下の場合には、駆動線に「H」レベルの信号を出力する。また、複数の階調のうち、任意の階調(例えば、階調3)に対応する電圧が最大電圧(VLC)を超える場合には、駆動線に「L」レベルの信号を出力する。
 即ち、スイッチ制御部25は、液晶42に供給する駆動電圧が最大電圧VLC以下の場合には、制御電圧を出力電圧とし、液晶42に供給する駆動電圧が最大電圧VLCを超える場合には、チャージポンプ31で増幅された電圧を出力電圧として、液晶42に供給する制御を行うチャージポンプ制御部としての機能を備えている。
 また、スイッチ制御部25は、一の画素回路21の出力電圧を液晶42に供給しているときには、第1切替スイッチS6を開放し、一の画素回路の出力電圧を液晶42に供給していないときの少なくとも一部の時間に第1切替スイッチS6を短絡するように制御する切替スイッチ制御部としての機能を備えている。
 更に、スイッチ制御部25は、駆動線L1に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線L1に「L」レベルの信号が供給される場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 スイッチ制御部25は、チャージポンプ31を駆動させる場合には、図17に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、チャージポンプ31を駆動させる場合において、列データ線D1より制御電圧が供給された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、列データ線D1より供給された制御電圧は、第1キャパシタC1に蓄積される。所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、列データ線D1より供給される制御電圧と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧の2倍となる電圧が蓄積されて、ソースフォロワQ4に出力されることになる。
 そして、第4実施形態に係る位相変調装置101では、図16に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第4実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~階調5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第4実施形態の動作の説明]
 次に、第4実施形態に係る位相変調装置101の動作を、図7A、7Bに示すグラフ、及び図18A,18Bに示すタイミングチャートを参照して説明する。図7Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図16に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 例えば、「0」から最大電圧の2倍電圧までの範囲の電圧「0~2×VLC」を5つの階調(即ち、k=1~5)に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになる。従って、図22Aに示したように、上記の半分の電圧である「(3/5)×VLC」を制御電圧として出力し、更に、チャージポンプ31によりこの電圧を2倍に増幅して「(3/5)×2×VLC」の電圧を生成して階調3の電圧とする。
 4行目の画素回路21-41~21-46、5行目の画素回路21-51~21-56についても同様に、それぞれ半分の電圧を制御電圧として出力し、その後、チャージポンプ31で2倍に増幅することにより、階調4、5の電圧を生成する。
 次に、画素回路21における動作を、図18A、18Bに示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、階調1、2に設定する場合には、チャージポンプ31を作動させない。この場合には、図18Aのチャート(a)の時刻t0~t1に示すように、スイッチ制御部25は、駆動線L1にHレベルの信号を出力して、第2トランジスタQ2をオンとする。
 更に、図18Aのチャート(b)、(c)に示すように、各スイッチS1~S4が全てオフとなるように制御する。その結果、図17に示した第2トランジスタQ2がオンとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、ソースフォロワQ4のゲートに供給される。更に、ソースフォロワQ4にて増幅され、付加キャパシタC3に蓄積される。
 その後、時刻t1において、第2切替スイッチS5をオフ(開放)とし、時刻t2において、第1切替スイッチS6をオン(短絡)とする。つまり、画素回路21aにおける画素電極q1がソースフォロワQ4から遮断された状態で、画素電極q1と、画素回路21aに隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z1に示すように液晶に「(1/5)×2×VLC」の電圧を供給することができる。
 このように、各画素回路21に設けられるソースフォロワQ4のゲート~ソース間のしきい値電圧(これを「Vth」とする)にばらつきが生じる場合であっても、第2切替スイッチS5をオフとしてソースフォロワQ4と画素電極q1を切り離す。更に、第1切替スイッチS6をオンとして、隣接する画素回路21の画素電極に接続する。従って、互いに隣接する画素電極に供給される電圧のばらつきを低減することができる。その後、時刻t3において、第1切替スイッチS6をオフとする。
 なお、第1切替スイッチS6と第2切替スイッチS5の同時オン(同時に短絡する状態)を回避するために、図18Aに示す時刻t2は、時刻t1よりも若干遅くなるように設定されている。
 また、画素回路21aを階調2に設定する場合についても同様にチャージポンプ31を作動させず、図7Bの符号z2に示すように、列データ線D1より供給される制御電圧を増幅せずに出力する。その結果、液晶42に「(2/5)×2×VLC」の電圧を印加することができ、且つ、隣接する画素回路の画素電極の電位のばらつきを低減できる。
 画素回路21を階調3に設定する場合には、列データ線D1に、階調3に対応する電圧「(2/5)×2×VLC」の半分の電圧「(2/5)×VLC」を制御電圧として出力する。更に、この制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、図18Bに示す時刻t10においてスイッチ制御部25は、駆動線L1に供給する信号をLレベルとする。その結果、図18Bのチャート(a)に示すように、第2トランジスタQ2がオフとなる。更に、図23Bのチャート(b)の時刻t10において、スイッチ制御部25は、図17に示す第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする制御信号を、制御線K1(K1-1、K1-2)に出力する。
 その結果、第1キャパシタC1に制御電圧「(3/5)×VLC」が蓄積される。そして、時刻t11において、第1スイッチS1と第4スイッチS4をオフとし、更に、図18Bのチャート(c)に示すように、時刻t12において、第2スイッチS2と第3スイッチS3をオンとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧「(3/5)×2×VLC」が蓄積され、更に、ソースフォロワQ4のゲートに供給される。更に、ソースフォロワQ4にて増幅され、付加キャパシタC3に蓄積される。
 その後、時刻t13において、第2スイッチS2と第3スイッチS3をオフとし、更に、図18のチャート(d)の時刻t14において、第2切替スイッチS5をオフ(開放)とし、図18のチャート(e)の時刻t15において、第1切替スイッチS6をオン(短絡)とする。つまり、画素回路21aにおける画素電極q1がソースフォロワQ4から遮断された状態で、画素電極q1と、画素回路21aに隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z3に示すように液晶42に「(3/5)×2×VLC」の電圧を供給することができる。
 従って、各画素回路21に設けられるソースフォロワQ4のゲート~ソース間のしきい値電圧(これを「Vth」とする)にばらつきが生じる場合であっても、ソースフォロワQ4と画素電極q1を切り離して、隣接する画素回路21の画素電極に接続するので、互いに隣接する画素電極に供給される電圧のばらつきを低減できる。その後、時刻t16において、第1切替スイッチS6をオフとする。
 また、画素回路21aを階調4、5に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z4、z5に示すように、列データ線D1より供給される制御電圧を増幅して出力する。その結果、液晶42に「(4/5)×2×VLC」、「2×VLC」の電圧を印加することができ、且つ、隣接する画素回路の画素電極の電位のばらつきを低減できる。
 [第4実施形態の効果の説明]
 第4実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、「0」から最大電圧の2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して出力する。そして、上記の出力電圧をソースフォロワQ4にて増幅して画素電極q1に供給し、ひいては液晶42に供給する。
 従って、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品、及び図21に示すチャージポンプ31を構成する各部品、及び第1トランジスタQ1と第2トランジスタQ2の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第4実施形態では、互いに直交する方向、即ち、図16に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプ31のオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 更に、ソースフォロワQ4の出力点q3と画素電極q1(供給点)との間に設けた第2切替スイッチS5をオフとし、更に、第1切替スイッチS6をオンとすることにより、画素電極q1と、隣接する画素回路21の画素電極とを接続する。従って、各画素回路21のソースフォロワQ4のしきい値電圧のばらつきを低減することができ、ひいてはノイズの発生を防止することができる。
 なお、第4実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、これに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 また、第4実施形態では、ソースフォロワQ4に負荷トランジスタQ5を接続する構成について説明したが、負荷トランジスタQ5の代わりに負荷抵抗を設ける構成としてもよい。
 [第5実施形態の説明]
 次に、第5実施形態について説明する。第5実施形態の装置の全体構成は、図1、2と同様である。また、第5実施形態の装置全体の回路図は第4実施形態の図16と同様であるので説明を省略する。第5実施形態では、第4実施形態と対比して画素回路の構成が相違している。以下、図19を参照して第5実施形態に係る画素回路21a’について説明する。
 図19に示すように、5実施形態に係る画素回路21a’は、図17に示したソースフォロワQ4を、トランジスタQ1とチャージポンプ31との間に設けている点で第4実施形態と相違している。即ち、第5実施形態では、第1トランジスタQ1とチャージポンプ31の入力端子p1との間に、ソースフォロワQ4’(第2ソースフォロワ)と負荷トランジスタQ5との直列接続回路、及びソースフォロワQ4’のゲートとグランドとの間に設けられたキャパシタCdを備えている。
 第1トランジスタQ1の出力端子(ソース)は2系統に分岐しており、一方の分岐線はキャパシタCdを介してグランドに接続されている。他方の分岐線はソースフォロワQ4’のゲートに接続されている。ソースフォロワQ4’の出力部(接続点q3)は、チャージポンプ31に接続されている。接続点q3は、負荷トランジスタQ5を介してグランドに接続されている。
 チャージポンプ31の出力端子p2は、画素電極q1に接続され、更に、短絡線J1に接続されている。また、第4実施形態と同様に短絡線J1には、隣接する画素回路21の画素電極との短絡、開放を切り替えるための第1切替スイッチS6が設けられている。
 第5実施形態に係る画素回路21a’では、列データ線D1及び第1トランジスタQ1を経由して供給される制御電圧をソースフォロワQ4’で増幅した後、チャージポンプ31、及び第2トランジスタQ2に供給する。また、第4実施形態と同様に、階調1、2の駆動電圧を出力する場合には制御電圧をチャージポンプ31で増幅せず、階調3、4、5の駆動電圧を出力する場合には制御電圧をチャージポンプ31で増幅する。
 また、第5実施形態に係る画素回路21a’は、図17に示した第2切替スイッチS5、及び第2切替スイッチS5に制御信号を出力する第4制御線K1-4を備えていない。その代わりに、第2トランジスタQ2、及びチャージポンプ31に設けられている各スイッチS1~S4のオン、オフを制御して、チャージポンプ31の入力端子p1と出力端子p2(画素電極q1)との間を遮断する制御を行う。
 以下、図20A、20Bを参照して詳細に説明する。図20Aは、チャージポンプ31を作動させないときの、画素回路21に設けられる第2トランジスタQ2、スイッチS1~S4、及び第1切替スイッチS6の作動を示すタイミングチャートである。
 画素回路21a’を階調1、2に設定する場合には、チャージポンプ31を作動させない。この場合には、図20Aのチャート(a)の時刻t0~t1に示すように、スイッチ制御部25は、駆動線L1にHレベルの信号を出力して、第2トランジスタQ2をオンとする。
 更に、図20Aのチャート(b)、(c)に示すように、各スイッチS1~S4が全てオフとなるように制御する。その結果、図19に示した第2トランジスタQ2がオンとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡される。従って、列データ線D1より供給される制御電圧は、ソースフォロワQ4’で増幅された後、チャージポンプ31で増幅されることなく、画素電極q1に供給される。
 その後、時刻t1において、第2トランジスタQ2をオフ(開放)とし、時刻t2において、第1切替スイッチS6をオン(短絡)とする。つまり、チャージポンプ31の入力端子p1と出力端子p2が遮断された状態で、画素電極q1と、画素回路21a’に隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、第4実施形態と同様に、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z1、z2に示したように、所望の駆動電圧を液晶42に供給することができる。
 このように、画素回路21a’に設けられるソースフォロワQ4’のゲート~ソース間のしきい値電圧Vthにばらつきが生じる場合であっても、入力端子p1と出力端子p2を遮断した状態で、第1切替スイッチS6をオンとして、隣接する画素回路21の画素電極に接続する。従って、互いに隣接する画素電極に供給される電圧のばらつきを低減することができる。その後、時刻t3において、第1切替スイッチS6をオフとする。なお、図20Aに示す時刻t2を時刻t1よりも若干遅くすることにより、短絡を防止している。
 一方、画素回路21a’を階調3、4、5に設定する場合には、列データ線D1より供給される制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、図20Bに示す時刻t10においてスイッチ制御部25は、駆動線L1に供給する信号をLレベルとする。その結果、図20Bのチャート(a)に示すように、第2トランジスタQ2がオフとなる。更に、図20Bのチャート(b)の時刻t10において、スイッチ制御部25は、第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする。
 その結果、第1キャパシタC1に制御電圧が蓄積される。そして、時刻t11において、第1スイッチS1と第4スイッチS4をオフとし、更に、図20Bのチャート(c)に示すように、時刻t12において、第2スイッチS2と第3スイッチS3をオンとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧が蓄積され、出力端子p2に供給され、ひいては、画素電極q1に供給される。
 その後、時刻t13において、第2スイッチS2と第3スイッチS3をオフとする。即ち、第2トランジスタQ2、及び各スイッチS1~S4が全てオフとなるので、入力端子p1と出力端子p2が遮断される。更に、図20Bのチャート(d)の時刻t15において、第1切替スイッチS6をオン(短絡)とする。つまり、入力端子p1と出力端子p2が遮断された状態で、画素電極q1と、画素回路21a’に隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。
 従って、各画素回路21に設けられるソースフォロワQ4’のゲート~ソース間のしきい値電圧Vthにばらつきが生じる場合であっても、入力端子p1と出力端子p2を遮断した状態で、隣接する画素回路21の画素電極に接続するので、互いに隣接する画素電極に供給される電圧のばらつきを低減できる。その後、時刻t16において、第1切替スイッチS6をオフとする。そして、図7Bの符号z3~z5に示したように、所望の駆動電圧を液晶42に供給することができる。
 このようにして、第5実施形態に係る位相変調装置においても第4実施形態と同様に、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がない。加えて、第4実施形態と対比して、ソースフォロワQ4’をチャージポンプ31の前段に設けているので、ソースフォロワQ4’、負荷トランジスタQ5、及びキャパシタCdを低耐圧の部品で構成することができる。このため、回路構成を簡素化し、且つ小型化、軽量化を図ることが可能となる。
 更に、第2トランジスタQ2及びスイッチS1~S4のオン、オフを制御することにより、入力端子p1と出力端子p2の短絡、開放を切り替えているので、第4実施形態で示した図17の第2切替スイッチS5、及び第4制御線K1-4を設ける必要がない。従って、第5実施形態に係る位相変調装置では、回路構成をより一層簡素化することが可能となる。
 [第6実施形態の説明]
 第6実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
第6実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図20に示すブロック図、及び図21に示す回路図を参照して説明する。図20において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、スイッチ制御部25(チャージポンプ制御部、切替スイッチ制御部)とを備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、スイッチ制御部25に接続されている。
 また、行走査線(G1~Gn)に並行して短絡線(J1~Jn)が設けられている。短絡線(J1~Jn)には、図21に示すように、互いに隣接する画素回路21間での短絡、開放を切り替える第1切替スイッチ(図21におけるS6、S6’)が設けられている。
 なお、図20に示す例では縦方向(図中、上下方向)に向けて光の屈折率が変化するように制御する。従って、この方向に直交する方向である横方向(図中、左右方向)に向けて短絡線(J1~Jn)を設けている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図21参照)のオン、オフを切り替えるための制御信号を送信する配線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図21参照)のオン、オフを切り替えるための制御信号、及び上述した第1切替スイッチS6、及び第2切替スイッチS5(図21参照)のオン、オフを切り替えるための制御信号を送信する配線である。制御線(K1~Kn)は、図21に示すようにそれぞれ複数本(図21では、K1-1、K1-2、K1-3、K1-4の4本)設けられているが、図20では1本の制御線K1で簡略化して示している。
 図21に示すように、第1制御線K1-1は、チャージポンプ31の第1スイッチS1と第4スイッチS4のオン、オフを制御する制御信号を出力する。第2制御線K1-2は、チャージポンプ31の第2スイッチS2と第3スイッチS3のオン、オフを制御する制御信号を出力する。第3制御線K1-3は、第1切替スイッチS6、S6’のオン、オフを制御する制御信号を出力する。なお、S6’は、隣接する画素回路に設けられる第1切替スイッチである。第4制御線K1-4は、第2切替スイッチS5のオン、オフを制御する制御信号を出力する。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるアナログの制御電圧を各画素回路21に供給するための配線である。行走査線(G1~Gn)は、各画素回路21に、行選択信号(走査信号)を出力するための配線である。
 図21は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図20に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図21に示すように、画素回路21aは、第1トランジスタQ1と、第2トランジスタQ2と、チャージポンプ31と、出力キャパシタC2と、ソースフォロワQ4(第1ソースフォロワ)と、負荷トランジスタQ5と、第2切替スイッチS5と、付加キャパシタC3と、第1切替スイッチS6とを備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 第2トランジスタQ2についても第1トランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31に制御電圧が供給される入力端子p1と、チャージポンプ31から液晶42に駆動電圧を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。そして、液晶42を所望の屈折率に設定するための駆動電圧が、列データ線D1より供給される最大電圧VLC(最大電圧)以下の場合には、スイッチ制御部25(図20参照)の制御により、第2トランジスタQ2を短絡し、チャージポンプ31による制御電圧の増幅を行わない。また、駆動電圧が最大電圧VLCを超える場合には、トランジスタQ2を開放し、チャージポンプ31による制御電圧の増幅が可能な状態とする。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧を増幅して出力端子p2に出力する。
 第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には第1キャパシタC1が設けられている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。
 出力端子p2は、出力キャパシタ(第2キャパシタ)C2を介してグランドに接続され、更に、ソースフォロワQ4のゲートに接続されている。液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 第1スイッチS1と第4スイッチS4には第1制御線K1-1が接続されている。第2スイッチS2と第3スイッチS3には第2制御線K1-2が接続されている。そして、各制御線K1-1、K1-2より供給される制御信号により、各スイッチS1~S4のオン、オフが制御される。
 画素回路21には、ソースフォロワQ4と負荷トランジスタQ5との直列接続回路が設けられており、チャージポンプ31の出力端子p2はソースフォロワQ4のゲートに接続され、負荷トランジスタQ5のソースはグランドに接続されている。
 負荷トランジスタQ5は、ソースフォロワQ4のゲートに電圧(第1トランジスタQ1を経由して供給される制御電圧、或いはチャージポンプ31の出力電圧)が供給されているときに、オンとなるように制御される。なお、負荷トランジスタQ5を制御するための制御線については図示を省略している。
 ソースフォロワQ4と負荷トランジスタQ5の接続点(ソースフォロワQ4の出力点q3)は、第2切替スイッチS5を介して画素電極q1(供給点)に接続されている。更に、該画素電極q1は付加キャパシタC3を介してグランドに接続され、且つ、短絡線J1に接続されている。短絡線J1には、隣接する画素回路における画素電極との短絡(オン)、開放(オフ)を切り替えるための第1切替スイッチS6が設けられている。
 付加キャパシタC3は、ソースフォロワQ4より第2切替スイッチS5を介して出力される電圧を蓄積する。
 なお、上述したソースフォロワQ4、負荷トランジスタQ5、第2切替スイッチS5、付加キャパシタC3は、チャージポンプ31で増幅した後の電圧が供給されて駆動するので、高耐圧の素子を用いている。
 各第1切替スイッチS6は、スイッチ制御部25より第3制御線K1-3を介して出力される制御信号により、オン、オフが制御される。第2切替スイッチS5は、スイッチ制御部25より第4制御線K1-4を介して出力される制御信号により、オン、オフが制御される。
 ソースフォロワQ4は、PチャネルのMOSFET、或いはNチャネルのMOSFETを用いることができる。ソースフォロワQ4のウェル領域は、周囲のウェルと分離され且つソースが接続されている。このため、ウェル電位とソース電位が同電位となっている。このような構成とすることにより、ソースフォロワQ4のゲート直下の空乏層はゲート電圧Vinとソース電圧Voutの間の電圧に保持されるので、基板バイアス効果が発生しない。
 以下、詳細に説明する。図22Aの回路図(a)は、ソースフォロワQ4がNチャネルのMOSFETであり、基板電位がグランドである場合(即ち、ウェル領域とソースが接続されていない場合)の回路を示している。ソースフォロワQ4のゲートに入力する電圧Vinが増加すると、ソースフォロワQ4のゲート~基板間の電圧が大きくなり、ゲート直下に形成される空乏層が大きくなり、ソースフォロワQ4のしきい値電圧Vth(ゲート~ソース間のしきい値)が上昇する。
 一方、ソースフォロワQ4には負荷トランジスタQ5が接続され、負荷トランジスタQ5により定電流負荷となっているので、しきい値電圧Vthが上昇した分だけ、ゲート電圧Vinとソース電圧Vout間の電圧Vgsを大きくする必要がある。即ち、図22Aのグラフ(b)に示すように、入力ゲート電圧Vinによって実質的にしきい値電圧Vthが変動してしまう(基板バイアス効果)。このため、ゲート電Vinの変化に対してソース電圧Voutがリニアに変化せず、液晶42に正確な階調の電圧を供給することができなくなってしまう。
 これに対して第6実施形態では、図22Bの回路図(a)に示すように、ソースフォロワQ4のウェル領域は周囲のウェルと分離され、且つソースに接続されている。従って、ウェル電位とソース電位が同電位となっている。このような構成とすることにより、ソースフォロワQ4のゲート直下の空乏層はゲート電圧Vinとソース電圧Vout間の電圧に保持されるので、上記の基板バイアス効果が発生しない。即ち、図22Bのグラフ(b)に示すように、ゲート電圧Vinの変化に対して、ソース電圧Voutもほぼ同一の傾きでリニアに変化することになる。このため、ソースフォロワQ4のゲート電圧Vinの変化に対してリニアに変化するソース電圧Voutが得られる。即ち、第6実施形態は、ソースフォロワQ4のウェル領域とソースを接続して、ウェル電位とソース電位を同電位とすることにより、液晶42に安定した駆動電圧を供給することが可能となる。
 図27に示すように、液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第6実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図20に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 電圧供給線X1より、各列データ線(D1~Dm)に供給される制御電圧「d」は、「0」(最小電圧)から「VLC」(最大電圧)までのアナログの電圧である。第6実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図7Aを参照して、第6実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図7Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧を示すグラフである。
 図7Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 図7Aにおいて、例えば、液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図20に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第6実施形態では、階調3~5については、それぞれの半分の制御電圧を出力し、その後、チャージポンプ31により2倍に増幅する。つまり、階調3として(3/5)×VLC、階調4として(4/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により2倍に増幅する。
 つまり、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図7AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧を得る。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図7AのグラフR2に示すように、この電圧の半分の電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31で2倍に増幅することにより、所望の駆動電圧を得る。従って、グラフR2の傾きは、グラフR1の傾きの半分となっている。
 即ち、スイッチ制御部25は、最大電圧(VLC)よりも大きい電圧(2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずにソースフォロワQ4ひいては液晶42に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して、ソースフォロワQ4ひいては液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して、ソースフォロワQ4に出力する。即ち、図7BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、ソースフォロワQ4に出力することが可能となる。
 更に、ソースフォロワQ4の出力点q3に出力された駆動電圧は、第2切替スイッチS5を介して画素電極q1に接続されているので、該第2切替スイッチS5がオンとされているときにはソースフォロワQ4より出力される駆動電圧を液晶42に供給することができる。
 また、画素回路21a(一の画素回路)に接続される短絡線J1には、画素回路21aに隣接する画素回路(他の画素回路)に接続される短絡線J1との短絡、開放を切り替えるための第1切替スイッチS6が設けられている。従って、第1切替スイッチS6を短絡させることにより、画素回路21aの画素電極q1と、隣接する画素回路の画素電極との間を短絡させることができる。第1切替スイッチS6をオンとすることにより、隣接する画素回路(同一の屈折率に制御する画素回路)どうしの、画素電極q1の電位を一定にすることができる。第1切替スイッチS6のオン、オフは、第3制御線K1-3より供給される制御信号により実施される。
 図20に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 スイッチ制御部25は、図20に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧(VLC)よりも大きい電圧(2×VLC)までの範囲内において設定されている複数の階調(例えば、階調1~5)のうち、任意の階調(例えば、階調1)に対応する電圧が最大電圧(VLC)以下の場合には、駆動線に「H」レベルの信号を出力する。また、複数の階調のうち、任意の階調(例えば、階調3)に対応する電圧が最大電圧(VLC)を超える場合には、駆動線に「L」レベルの信号を出力する。
 即ち、スイッチ制御部25は、液晶42に供給する駆動電圧が最大電圧VLC以下の場合には、制御電圧を出力電圧とし、液晶42に供給する駆動電圧が最大電圧VLCを超える場合には、チャージポンプ31で増幅された電圧を出力電圧として、液晶42に供給する制御を行うチャージポンプ制御部としての機能を備えている。
 また、スイッチ制御部25は、一の画素回路21の出力電圧を液晶42に供給しているときには、第1切替スイッチS6を開放し、一の画素回路の出力電圧を液晶42に供給していないときの少なくとも一部の時間に第1切替スイッチS6を短絡するように制御する切替スイッチ制御部としての機能を備えている。
 更に、スイッチ制御部25は、駆動線L1に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線L1に「L」レベルの信号が供給される場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 スイッチ制御部25は、チャージポンプ31を駆動させる場合には、図21に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、チャージポンプ31を駆動させる場合において、列データ線D1より制御電圧が供給された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、列データ線D1より供給された制御電圧は、第1キャパシタC1に蓄積される。所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、列データ線D1より供給される制御電圧と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧の2倍となる電圧が蓄積されて、ソースフォロワQ4に出力されることになる。
 そして、第6実施形態に係る位相変調装置101では、図20に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第6実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第6実施形態の動作の説明]
 次に、第6実施形態に係る位相変調装置101の動作を、図7A、7Bに示すグラフ、及び図23A、23Bに示すタイミングチャートを参照して説明する。図7Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図20に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 例えば、「0」から最大電圧の2倍電圧までの範囲の電圧「0~2×VLC」を5つの階調(即ち、k=1~5)に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになる。従って、図29Aに示したように、上記の半分の電圧である「(3/5)×VLC」を制御電圧として出力し、更に、チャージポンプ31によりこの電圧を2倍に増幅して「(3/5)×2×VLC」の電圧を生成して階調3の電圧とする。
 4行目の画素回路21-41~21-46、5行目の画素回路21-51~21-56についても同様に、それぞれ半分の電圧を制御電圧として出力し、その後、チャージポンプ31で2倍に増幅することにより、階調4、5の電圧を生成する。
 次に、画素回路21における動作を、図23A、23Bに示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、階調1、2に設定する場合には、チャージポンプ31を作動させない。この場合には、図23Aのチャート(a)の時刻t0~t1に示すように、スイッチ制御部25は、駆動線L1にHレベルの信号を出力して、第2トランジスタQ2をオンとする。
 更に、図23Aのチャート(b)、(c)に示すように、各スイッチS1~S4が全てオフとなるように制御する。その結果、図27に示した第2トランジスタQ2がオンとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、ソースフォロワQ4のゲートに供給される。更に、ソースフォロワQ4にて増幅され、付加キャパシタC3に蓄積される。
 その後、時刻t1において、第2切替スイッチS5をオフ(開放)とし、時刻t2において、第1切替スイッチS6をオン(短絡)とする。つまり、画素回路21aにおける画素電極q1がソースフォロワQ4から遮断された状態で、画素電極q1と、画素回路21aに隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z1に示すように液晶に「(1/5)×2×VLC」の電圧を供給することができる。
 このように、各画素回路21に設けられるソースフォロワQ4のゲート・ソース間のしきい値電圧(これを「Vth」とする)にばらつきが生じる場合であっても、第2切替スイッチS5をオフとしてソースフォロワQ4と画素電極q1を切り離す。更に、第1切替スイッチS6をオンとして、隣接する画素回路21の画素電極に接続する。従って、互いに隣接する画素電極に供給される電圧のばらつきを低減することができる。その後、時刻t3において、第1切替スイッチS6をオフとする。
 なお、第1切替スイッチS6と第2切替スイッチS5の同時オン(同時に短絡する状態)を回避するために、図23Aに示す時刻t2は、時刻t1よりも若干遅くなるように設定されている。
 また、画素回路21aを階調2に設定する場合についても同様にチャージポンプ31を作動させず、図7Bの符号z2に示すように、列データ線D1より供給される制御電圧を増幅せずに出力する。その結果、液晶42に「(2/5)×2×VLC」の電圧を印加することができ、且つ、隣接する画素回路の画素電極の電位のばらつきを低減できる。
 画素回路21を階調3に設定する場合には、列データ線D1に、階調3に対応する電圧「(2/5)×2×VLC」の半分の電圧「(2/5)×VLC」を制御電圧として出力する。更に、この制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、図23Bに示す時刻t10においてスイッチ制御部25は、駆動線L1に供給する信号をLレベルとする。その結果、図23Bのチャート(a)に示すように、トランジスタQ2がオフとなる。更に、図23Bのチャート(b)の時刻t10において、スイッチ制御部25は、図21に示す第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする制御信号を、制御線K1(K1-1、K1-2)に出力する。
 その結果、第1キャパシタC1に制御電圧「(3/5)×VLC」が蓄積される。そして、時刻t11において、第1スイッチS1と第4スイッチS4をオフとし、更に、図23Bのチャート(c)に示すように、時刻t12において、第2スイッチS2と第3スイッチS3をオンとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧「(3/5)×2×VLC」が蓄積され、更に、ソースフォロワQ4のゲートに供給される。更に、ソースフォロワQ4にて増幅され、付加キャパシタC3に蓄積される。
 その後、時刻t13において、第2スイッチS2と第3スイッチS3をオフとし、更に、図23Bのチャート(d)の時刻t14において、第2切替スイッチS5をオフ(開放)とし、図23Bのチャート(e)の時刻t15において、第1切替スイッチS6をオン(短絡)とする。つまり、画素回路21aにおける画素電極q1がソースフォロワQ4から遮断された状態で、画素電極q1と、画素回路21aに隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z3に示すように液晶42に「(3/5)×2×VLC」の電圧を供給することができる。
 従って、各画素回路21に設けられるソースフォロワQ4のゲート・ソース間のしきい値電圧(これを「Vth」とする)にばらつきが生じる場合であっても、ソースフォロワQ4と画素電極q1を切り離して、隣接する画素回路21の画素電極に接続するので、互いに隣接する画素電極に供給される電圧のばらつきを低減できる。その後、時刻t16において、第1切替スイッチS6をオフとする。
 また、画素回路21aを階調4、5に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z4、z5に示すように、列データ線D1より供給される制御電圧を増幅して出力する。その結果、液晶42に「(4/5)×2×VLC」、「2×VLC」の電圧を印加することができ、且つ、隣接する画素回路の画素電極の電位のばらつきを低減できる。
 [第6実施形態の効果の説明]
 第6実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、「0」から最大電圧の2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して出力する。そして、上記の出力電圧をソースフォロワQ4にて増幅して画素電極q1に供給し、ひいては液晶42に供給する。
 従って、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 また、ソースフォロワQ4のウェル領域とソースが接続され、ウェル電位とソース電位が同電位とされているので、図22Bのグラフ(b)に示したように、ソースフォロワQ4のゲートに供給される電圧に対して、ほぼリニアに対応して変化する出力電圧を得ることができる。従って、ソースフォロワQ4を用いた場合であっても、液晶42に安定した電圧を供給することができ、ひいては液晶42の屈折率を安定的に設定することが可能となる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品、及び図21に示すチャージポンプを構成する各部品、及び第1トランジスタQ1、第2トランジスタQ2の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第6実施形態では、互いに直交する方向、即ち、図20に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 更に、ソースフォロワQ4の出力点q3と画素電極q1(供給点)との間に設けた第2切替スイッチS5をオフとし、更に、第1切替スイッチS6をオンとすることにより、画素電極q1と、隣接する画素回路21の画素電極とを接続する。従って、各画素回路21のソースフォロワQ4のしきい値電圧のばらつきを低減することができ、ひいてはノイズの発生を防止することができる。
 なお、第6実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、これに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 また、第6実施形態では、ソースフォロワQ4に負荷トランジスタQ5を接続する構成について説明したが、負荷トランジスタQ5の代わりに負荷抵抗を設ける構成としてもよい。
 [第7実施形態の説明]
 次に、第7実施形態について説明する。第7実施形態の装置の全体構成は、図1、2と同様である。また、第7実施形態の装置全体の回路図は第6実施形態の図20と同様であるので説明を省略する。第7実施形態では、第6実施形態と対比して画素回路の構成が相違している。以下、図23を参照して第7実施形態に係る画素回路21a’について説明する。
 図23に示すように、第7実施形態に係る画素回路21a’は、図21に示したソースフォロワQ4を、第1トランジスタQ1とチャージポンプ31との間に設けている点で第6実施形態と相違している。即ち、第7実施形態では、トランジスタQ1とチャージポンプ31の入力端子p1との間に、ソースフォロワQ4’(第2ソースフォロワ)と負荷トランジスタQ5との直列接続回路を設定している。更に、ソースフォロワQ4’のゲートとグランドとの間に設けられたキャパシタCdを備えている。
 第1トランジスタQ1の出力端子(ソース)は2系統に分岐しており、一方の分岐線はキャパシタCdを介してグランドに接続されている。他方の分岐線はソースフォロワQ4’のゲートに接続されている。ソースフォロワQ4’の出力部(接続点q3)は、チャージポンプ31に接続されている。接続点q3は、負荷トランジスタQ5を介してグランドに接続されている。
 第6実施形態と同様に、ソースフォロワQ4’のウェル領域は、周囲のウェルと分離され且つソースが接続されている。このため、ウェル電位とソース電位が同電位となっている。
 チャージポンプ31の出力端子p2は、画素電極q1に接続され、更に、短絡線J1に接続されている。また、第6実施形態と同様に短絡線J1には、隣接する画素回路21の画素電極との短絡、開放を切り替えるための第1切替スイッチS6が設けられている。
 第7実施形態に係る画素回路21a’では、列データ線D1及び第1トランジスタQ1を経由して供給される制御電圧をソースフォロワQ4’で増幅した後、チャージポンプ31、及び第2トランジスタQ2に供給する。また、第6実施形態と同様に、階調1、2の駆動電圧を出力する場合には制御電圧をチャージポンプ31で増幅せず、階調3、4、5の駆動電圧を出力する場合には制御電圧をチャージポンプ31で増幅する。
 また、第7実施形態に係る画素回路21a’は、図21に示した第2切替スイッチS5、及び第2切替スイッチS5に制御信号を出力する第4制御線K1-4を備えていない。その代わりに、第2トランジスタQ2、及びチャージポンプ31に設けられている各スイッチS1~S4のオン、オフを制御して、チャージポンプ31の入力端子p1と出力端子p2(画素電極q1)との間を遮断する制御を行う。
 以下、図25A、25Bを参照して詳細に説明する。図25Aは、チャージポンプ31を作動させないときの、画素回路21に設けられる第2トランジスタQ2、スイッチS1~S4、及び第1切替スイッチS6の作動を示すタイミングチャートである。
 画素回路21a’を階調1、2に設定する場合には、チャージポンプ31を作動させない。この場合には、図25Aのチャート(a)の時刻t0~t1に示すように、スイッチ制御部25は、駆動線L1にHレベルの信号を出力して、第2トランジスタQ2をオンとする。
 更に、図25Aのチャート(b)、(c)に示すように、各スイッチS1~S4が全てオフとなるように制御する。その結果、図23に示した第2トランジスタQ2がオンとなり、チャージポンプ31の入力端子p1と出力端子p2が短絡される。従って、列データ線D1より供給される制御電圧は、ソースフォロワQ4’で増幅された後、チャージポンプ31で増幅されることなく、画素電極q1に供給される。
 その後、時刻t1において、第2トランジスタQ2をオフ(開放)とし、時刻t2において、第1切替スイッチS6をオン(短絡)とする。つまり、チャージポンプ31の入力端子p1と出力端子p2が遮断された状態で、画素電極q1と、画素回路21a’に隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、第6実施形態と同様に、隣接する画素回路の画素電極の電位が同一となるように制御される。そして、図7Bの符号z1、z2に示したように、所望の駆動電圧を液晶42に供給することができる。
 このように、画素回路21a’に設けられるソースフォロワQ4’のゲート~ソース間のしきい値電圧Vthにばらつきが生じる場合であっても、入力端子p1と出力端子p2を遮断した状態で、第1切替スイッチS6をオンとして、隣接する画素回路21の画素電極に接続する。従って、互いに隣接する画素電極に供給される電圧のばらつきを低減することができる。その後、時刻t3において、第1切替スイッチS6をオフとする。なお、図25Aに示す時刻t2を時刻t1よりも若干遅くすることにより、短絡を防止している。
 一方、画素回路21a’を階調3、4、5に設定する場合には、列データ線D1より供給される制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、図25Bに示す時刻t10においてスイッチ制御部25は、駆動線L1に供給する信号をLレベルとする。その結果、図25Bのチャート(a)に示すように、第2トランジスタQ2がオフとなる。更に、図25Bのチャート(b)の時刻t10において、スイッチ制御部25は、第1スイッチS1と第4スイッチS4をオンとし、且つ、第2スイッチS2と第3スイッチS3をオフとする。
 その結果、第1キャパシタC1に制御電圧が蓄積される。そして、時刻t11において、第1スイッチS1と第4スイッチS4をオフとし、更に、図25Bのチャート(c)に示すように、時刻t12において、第2スイッチS2と第3スイッチS3をオンとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧が蓄積され、出力端子p2に供給され、ひいては、画素電極q1に供給される。
 その後、時刻t13において、第2スイッチS2と第3スイッチS3をオフとする。即ち、第2トランジスタQ2、及び各スイッチS1~S4が全てオフとなるので、入力端子p1と出力端子p2が遮断される。更に、図25Bのチャート(d)の時刻t15において、第1切替スイッチS6をオン(短絡)とする。つまり、入力端子p1と出力端子p2が遮断された状態で、画素電極q1と、画素回路21a’に隣接する画素回路(屈折率が同一に制御される画素回路)の画素電極が短絡されることになる。このため、隣接する画素回路の画素電極の電位が同一となるように制御される。
 従って、各画素回路21に設けられるソースフォロワQ4’のゲート~ソース間のしきい値電圧Vthにばらつきが生じる場合であっても、入力端子p1と出力端子p2を遮断した状態で、隣接する画素回路21の画素電極に接続するので、互いに隣接する画素電極に供給される電圧のばらつきを低減できる。その後、時刻t16において、第1切替スイッチS6をオフとする。そして、図7Bの符号z3~z5に示したように、所望の駆動電圧を液晶42に供給することができる。
 このようにして、第7実施形態に係る位相変調装置においても第6実施形態と同様に、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 また、ソースフォロワQ4’のウェル領域とソースが接続され、ウェル電位とソース電位が同電位とされているので、図22Bのグラフ(b)に示したように、ソースフォロワQ4’のゲートに供給される電圧に対して、ほぼリニアに対応して変化する出力電圧を得ることができる。従って、ソースフォロワQ4’を用いた場合であっても、液晶42に安定した電圧を供給することができ、ひいては液晶42の屈折率を安定的に設定することが可能となる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がない。加えて、第6実施形態と対比して、ソースフォロワQ4’をチャージポンプ31の前段に設けているので、ソースフォロワQ4’、負荷トランジスタQ5、及びキャパシタCdを低耐圧の部品で構成することができる。このため、回路構成を簡素化し、且つ小型化、軽量化を図ることが可能となる。
 更に、第2トランジスタQ2及びスイッチS1~S4のオン、オフを制御することにより、入力端子p1と出力端子p2の短絡、開放を切り替えているので、第4実施形態で示した図27の第2切替スイッチS5、及び第4制御線K1-4を設ける必要がない。従って、第7実施形態に係る位相変調装置では、回路構成をより一層簡素化することが可能となる。
 [第8実施形態の説明]
 第8実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第8実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図24に示すブロック図、及び図25に示す回路図を参照して説明する。図24において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25とを備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より液晶42に駆動電圧を印加する。従って、各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御される。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、制御線(K1~Kn)が設けられている。制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図25参照)のオン、オフを切り替えるための制御信号を送信する配線である。なお、制御線(K1~Kn)は、図25に示すようにそれぞれ複数本(図25では、K1-1、K1-2、K1-3、K1-4の4本)設けられているが、図24では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるアナログの電圧(以下、「制御電圧」という)を各画素回路21に供給するための配線である。行走査線(G1~Gn)は、各画素回路21に、行選択信号(走査信号)を出力するための配線である。
 図25は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図24に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図25に示すように、画素回路21aは、第1トランジスタQ1と、チャージポンプ31と、出力キャパシタC2とを備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧を増幅して出力端子p2に出力する。
 第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には、第1キャパシタC1が設けられている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。このように、4つのスイッチS1~S4、及び第1キャパシタC1はブリッジ回路を構成している。即ち、チャージポンプ31は、複数のスイッチS1~S4からなるブリッジ回路を含んでいる。そして、各スイッチS1~S4のオン(短絡)、オフ(開放)を制御することにより、制御電圧を増幅することができる。また、第1スイッチS1と第3スイッチS3を同時にオンとすることにより、チャージポンプ31の入力端子p1と出力端子p2を短絡することができる。
 出力端子p2は、出力キャパシタC2を介してグランドに接続され、液晶42の画素電極q1に接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 更に、第1スイッチS1には第1制御線K1-1が接続され、第2スイッチS2には第2制御線K1-2が接続され、第3スイッチS3には第3制御線K1-3が接続され、第4スイッチS4には第4制御線K1-4が接続されている。そして、各制御線K1-1、K1-2、K1-1、K1-2より供給される制御信号により、各スイッチS1~S4のオン、オフが制御される。
 また、第1制御線K1-1と第3制御線K1-3より、第1スイッチS1と第3スイッチS3をオンとするための制御信号を出力することにより、第1スイッチS1と第3スイッチS3が同時にオンとなるので、チャージポンプ31の作動を停止し、列データ線より供給される制御電圧を画素電極q1、ひいては液晶42に供給することができる。即ち、第1制御線K1-1と第2制御線K1-2は、チャージポンプ31のオン(短絡)、オフ(開放)を切り替える駆動線としての機能を備えている。また、第1スイッチS1と第3スイッチS3は、チャージポンプ31の入力端子p1と出力端子p2を短絡する短絡スイッチとしての機能を備えている。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第8実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図24に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応した制御電圧「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応した制御電圧を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応した制御電圧を選択し、選択した制御電圧を列データ線D1に出力する。
 電圧供給線X1より、各列データ線(D1~Dm)に供給される制御電圧「d」は、「0」(最小電圧)から「VLC」(最大電圧)までのアナログの電圧である。第8実施形態では、最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給される制御電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 以下、図7Aを参照して、第8実施形態に係る位相変調装置における、液晶に設定する階調と、画素回路に供給する制御電圧の関係を詳細に説明する。図7Aは、横軸が上記したk階調(この例では5階調)を示し、縦軸が電圧供給線X1から列データ線を介して画素回路21に供給される制御電圧を示すグラフである。
 図7Aに示すグラフR1は、液晶42に供給する駆動電圧が最大電圧VLC以下である場合の特性を示し、グラフR2は、液晶42に供給する駆動電圧が最大電圧VLC以上である場合の特性を示している。なお、グラフR1、R2では電圧が直線的に変化する例を示しているが、これには限定されず、0~VLCの範囲で単調増加する変化であればよい。
 図7Aにおいて、例えば、液晶42に供給する駆動電圧の階調数を「5」とした場合には(即ち、k=5)、上記した2倍電圧(2×VLC)を5等分して階調1~階調5を設定する。従って、2倍電圧(2×VLC)を5等分し、階調1として(1/5)×2×VLCの電圧、階調2として(2/5)×2×VLCの電圧、階調3として(3/5)×2×VLCの電圧、階調4として(4/5)×2×VLCの電圧、階調5として(5/5)×2×VLCの電圧が、制御電圧として画素回路21に供給されればよいことになる。
 しかし、階調3~5に対応する制御電圧は最大電圧VLCを超えているので、図24に示す電圧供給線X1より階調3~5に対応する制御電圧を画素回路21に供給することができない。第8実施形態では、階調3~5については、それぞれの半分の制御電圧を出力し、その後、チャージポンプ31により2倍に増幅する。つまり、階調3として(3/5)×VLC、階調4として(4/5)×VLC、階調5としてVLC、の制御電圧を出力し、各画素回路21に設けられているチャージポンプ31により2倍に増幅して液晶42に出力する。
 つまり、所望の階調を得るための制御電圧が最大電圧VLC以下の場合(階調1、2の場合)には、図7AのグラフR1に示すように、この制御電圧を増幅することなく駆動電圧として液晶42に出力する。
 一方、所望の階調を得るための電圧が最大電圧VLCを超える場合(階調3、4、5の場合)には、図7AのグラフR2に示すように、この電圧の半分の電圧を制御電圧として画素回路21に供給し、その後チャージポンプ31で2倍に増幅することにより、所望の駆動電圧を得る。従って、グラフR2の傾きは、グラフR1の傾きの半分となっている。
 即ち、チャージポンプ制御部25は、最大電圧(VLC)よりも大きい電圧(2倍電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずに液晶42に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して液晶42に供給することができる。即ち、図35BのグラフR3に示すように、2倍電圧(2×VLC)を5等分して得られる階調1~5の駆動電圧を、液晶42に出力することが可能となる。
 図24に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図25に示す第1スイッチS1と第3スイッチS3のオン、オフを制御する制御線(K1-1、K1-3)に制御信号を出力して、チャージポンプ31の入力端子p1と出力端子p2を短絡する制御を行う。具体的には、最大電圧(VLC)よりも大きい電圧(2×VLC)までの範囲内において設定されている複数の階調(例えば、階調1~5)のうち、任意の階調(例えば、階調1)に対応する電圧が最大電圧(VLC)以下の場合には、第1制御線K1-1と第3制御線K1-3に、第1スイッチS1と第3スイッチS3を同時にオンとする制御信号を出力する。また、複数の階調のうち、任意の階調(例えば、階調3)に対応する電圧が最大電圧(VLC)を超える場合には、第1スイッチS1と第3スイッチS3を同時にオンとせず、通常のチャージポンプ31の作動に応じた制御信号を出力する。以下、チャージポンプ31の作動について詳細に説明する。
 チャージポンプ制御部25は、チャージポンプ31を駆動させる際において、図25に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2、K1-3、K1-4)に出力する。具体的に、列データ線D1より制御電圧が供給された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。これにより、列データ線D1より供給された制御電圧は、第1キャパシタC1に蓄積される。
 所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、列データ線D1より供給される制御電圧と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧の2倍となる電圧が蓄積されて、画素電極q1に出力されることになる。
 そして、第8実施形態に係る位相変調装置101では、図24に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第8実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第8実施形態の動作の説明]
 次に、第8実施形態に係る位相変調装置101の動作を、図7A、7Bに示すグラフ、及び図26A,26Bに示すタイミングチャートを参照して説明する。図7Bは5段階に設定した階調と液晶42に供給する駆動電圧との関係を示すグラフである。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図24に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給される制御電圧を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 例えば、「0」から最大電圧の2倍電圧までの範囲の電圧「0~2×VLC」を5つの階調(即ち、k=1~5)に区分し、図6(a)に示す1行目の画素回路21-11~21-16に階調1の電圧「(1/5)×2×VLC」を供給し、2行目の画素回路21-21~21-26に階調2の電圧「(2/5)×2×VLC」を供給する。
 更に、3行目の画素回路21-31~21-36に階調3の電圧を供給する。この場合、画素回路に供給する電圧は、「(3/5)×2×VLC」となり、最大電圧VLCを超えることになる。従って、図7Aに示したように、上記の半分の電圧である「(3/5)×VLC」を制御電圧として出力し、更に、チャージポンプ31によりこの電圧を2倍に増幅して「(3/5)×2×VLC」の電圧を生成して階調3の電圧とする。
 4行目の画素回路21-41~21-46、5行目の画素回路21-51~21-56についても同様に、それぞれ半分の電圧を制御電圧として出力し、その後、チャージポンプ31で2倍に増幅することにより、階調4、5の電圧を生成する。
 次に、画素回路21における動作を、図26A,26Bに示すタイミングチャートを参照して説明する。一例として、列データ線D1、行走査線G1に接続された画素回路21aにおけるチャージポンプ31の動作について説明する。
 画素回路21aを、階調1に設定する場合には、チャージポンプ31を作動させない。この場合には、図26Aの時刻t0~t1に示すように、チャージポンプ制御部25は、第1スイッチS1と第3スイッチS3を同時にオンとする。また、第2スイッチS2と第4スイッチS4をオフとする。その結果、チャージポンプ31の入力端子p1と出力端子p2が第1スイッチS1と第3スイッチS3を介して短絡されるので、列データ線D1より供給される制御電圧は、チャージポンプ31で増幅されることなく、液晶42に出力される。従って、図7Bの符号z1に示すように液晶に「(1/5)×2×VLC」の電圧を供給することができる。
 また、画素回路21aを階調2に設定する場合についても同様にチャージポンプ31を作動させず、図7Bの符号z2に示すように、列データ線D1より供給される制御電圧を増幅せずに出力する。その結果、液晶に「(2/5)×2×VLC」の電圧を印加することができる。
 画素回路21を階調3に設定する場合には、列データ線D1に、階調3に対応する電圧「(2/5)×2×VLC」の半分の電圧「(2/5)×VLC」を制御電圧として出力する。更に、この制御電圧をチャージポンプ31により2倍に増幅する。
 具体的に、画素回路21aを階調1、2に設定する場合には、図26Aのチャート(a)~(d)に示すように、時刻t0~t1の期間で、第1スイッチS1をオン、第2スイッチS2をオフ、第3スイッチS3をオン、第4スイッチS4をオフとするように制御する。
 一方、画素回路21aを階調3~5に設定する場合には、図26Bのチャート(a)、(d)に示すように、時刻t10~t11の期間で第1スイッチS1と第4スイッチS4をオンとし、且つ第2スイッチS2と第3スイッチS3をオフとする。その結果、第1キャパシタC1に制御電圧「(3/5)×VLC」が蓄積される。
 その後、時刻t12~t13の期間で第2スイッチS2と第3スイッチS3をオンとし、第1スイッチS1と第4スイッチS4をオフとする。その結果、出力キャパシタC2には、制御電圧の2倍となる電圧「(3/5)×2×VLC」が蓄積されることになる。このため、図7Bの符号z3に示すように、液晶42に階調3の駆動電圧「(3/5)×2×VLC」を供給することができる。
 また、画素回路21aを階調4に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z4に示すように液晶に「(4/5)×2×VLC」の駆動電圧を供給することができる。
 更に、画素回路21aを階調5に設定する場合についても同様にチャージポンプ31を作動させることにより、図7Bの符号z5に示すように液晶に「2×VLC」の駆動電圧を供給することができる。
 [第8実施形態の効果の説明]
 第8実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、「0」から最大電圧の2倍電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により制御電圧を増幅して液晶42に出力するように制御する。
 従って、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 また、列データ線より供給される制御電圧は、チャージポンプ31に設けられる第1スイッチS1と第3スイッチS3を同時にオンとすることにより、液晶42に供給する。従って、列データ線と画素電極q1との間を接続するための配線を別途設ける必要がなく、回路構成を簡素化することが可能となる。
 更に、画素回路21に供給する制御電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲を、最大電圧VLCの2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第8実施形態では、互いに直交する方向、即ち、図24に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(即ち、制御線K1-1、K1-3)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 なお、第8実施形態では、駆動電圧の範囲を最大電圧の2倍の電圧(2×VLC)に設定したが、これに限定されるものではなく、最大電圧VLCよりも大きければ良い。
 [第9実施形態の説明]
 第9実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第9実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図27に示すブロック図、及び図28に示す回路図を参照して説明する。図27において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25とを備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より駆動電圧が印加される。各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御する。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 後述するように、駆動線(L1~Ln)は、各画素回路21に設けられる第1トランジスタQ2(短絡スイッチ;図28参照)のオン、オフを切り替えるための制御信号を送信する電線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図4参照)のオン、オフを切り替えるための制御信号を送信する配線である。なお、制御線(K1~Kn)は、図28に示すようにそれぞれ複数本(図では、K1-1、K1-2、K1-3の3本)設けられているが、図3では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、電圧供給線X1より出力されるランプ波形状の電圧(ランプ状の参照電圧)を各画素回路21に供給するための配線である。
 図28は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図27に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図28に示すように画素回路21aは、列データ線D1より供給される制御電圧を蓄積するキャパシタCdと、ソースフォロワQ4及び負荷トランジスタQ5の直列接続回路を備えている。画素回路21aは、更に第1トランジスタQ1と、第2トランジスタQ2と、チャージポンプ31と、出力キャパシタC2とを備えている。
 キャパシタCdは、列データ線D1より供給される制御電圧を蓄積し、ソースフォロワQ4のゲートに出力する。ソースフォロワQ4の出力は、チャージポンプ31の入力端子p1に接続されている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はチャージポンプ31の入力端子p1に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1より制御電圧が入力された場合には、この制御電圧はチャージポンプ31の入力端子p1に供給されることになる。
 第2トランジスタQ2についても前述した第1トランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31に制御電圧が供給される入力端子p1と、チャージポンプ31から液晶42に電圧(駆動電圧)を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。
 そして、液晶42を所望の屈折率に設定するための駆動電圧が、列データ線D1より供給される電圧の最大値である最大電圧VCL以下の場合には、チャージポンプ制御部25(図27参照)の制御により、第2トランジスタQ2は短絡される。また、上記駆動電圧が最大電圧VCLを超える場合には、第2トランジスタQ2は開放され、チャージポンプ31を駆動可能な状態にする。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される制御電圧、即ち、ランプ波形電圧より取得され、ソースフォロワQ4を経由して供給される制御電圧を増幅して出力端子p2に出力する。
 チャージポンプ31において、第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には第1キャパシタC1が設けられている。出力端子p2は、出力キャパシタC2を介してグランドに接続され、更に、液晶42の画素電極q1に接続されている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第9実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 図27に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、コンパレータ回路28と、カウンタ回路29と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、コンパレータ回路28に出力する例えばqビットのデジタル信号を1水平走査期間の周期で生成する。
 シフトレジスタ回路26は、qビットのデジタル信号である2^q(但し、2^qは、2のq乗を示す)までのデジタル信号を入力し、更に、各画素回路21に対応するデジタル信号をラッチして、コンパレータ回路28に出力する。例えば、液晶42に階調1から階調5までの5段階の階調に相当する駆動電圧を供給して制御する場合には、(1/5)×2^q、(2/5)×2^q、(3/5)×2^q、(4/5)×2^q、2^q、のそれぞれのデジタル信号をラッチして、コンパレータ回路28に出力する。
 即ち、シフトレジスタ回路26は、所定の最大電圧(VLC)までの範囲の電圧に対応して変化するデジタル信号のうち、予め設定した複数段階のデジタル信号を出力する機能を備えている。
 カウンタ回路29は、上述したqビットのデジタル信号を1水平走査期間内にカウントし、カウント値を出力する。即ち、カウンタ回路29は、所定のデジタル階調の最大値までカウントし、カウント値を出力する機能を備えている。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、コンパレータ回路28より出力されるスイッチング制御信号に基づいてオン状態またはオフ状態に制御される。各スイッチSW1~SWmがオンとされることにより、そのタイミングにおけるランプ波形電圧の電圧値が制御電圧(詳細は後述)として各列データ線(D1~Dm)に供給される。
 コンパレータ回路28は、各列データ線(D1~Dm)ごとに比較回路(図示省略)を備えており、各列データ線(D1~Dm)に制御電圧を供給する制御を行う。即ち、スイッチ回路27に設けられる各スイッチSW1~SWmごとに、各スイッチSW1~SWmのオン状態、オフ状態を切り替えるスイッチング制御信号を生成する比較回路を備えている。そして、各比較回路には、シフトレジスタ回路26より供給される各階調(階調1~5)のいずれかに対応するデジタル信号、及び、カウンタ回路29より出力されるカウント値とが入力される。そして、双方の入力が一致したときに、スイッチング制御信号を出力する。
 即ち、コンパレータ回路28は、各画素回路21に対応した階調値とカウンタ回路29から出力されるカウント値を比較して一致した場合にスイッチング制御信号を出力する機能を備えている。
 従って、液晶42を階調1から階調5までの5段階の階調に制御する場合には、例えば、5つの比較回路、或いは5つにグループ分けされた比較回路にそれぞれ、(1/5)×2^q、(2/5)×2^q、(3/5)×2^q、(4/5)×2^q、2^qのそれぞれのデジタル信号を供給すると、カウンタ回路29より出力されるカウント値が上記のデジタル信号と一致した際に、各比較回路よりスイッチング制御信号が出力されることになる。
 即ち、コンパレータ回路28は、カウンタ回路29のカウント値の変化に対応するランプ波形電圧を取得し、シフトレジスタ回路26より出力されるデジタル信号と、カウンタ回路29より出力されるカウント値とが一致するときの、ランプ波形電圧を制御電圧として列データ線に供給する機能を備えている。
 以下、図29を参照してランプ波形電圧について説明する。図29の目盛り(a)は、0~2^qのデジタル信号に対応する階調(階調1~5)を示す。図29のグラフ(b)は0~2^qのデジタル信号が出力される1水平走査周期において出力されるランプ波形電圧を示す。図29のグラフ(c)は、各階調に対応して液晶42に出力する駆動電圧を示す。
 ランプ波形電圧は、シフトレジスタ回路26により、qビットのデジタル信号を出力する周期(1水平走査周期)において、2つのランプ波形を有するアナログ電圧である。具体的に、図29の目盛り(a)、グラフ(b)に示すように、時刻t0~t2の期間(1水平走査期間)のうち、半分の期間(前半)である時刻t0~t1の期間において、最小電圧「0」から最大電圧「VLC」に単調増加し、その後、半分の期間(後半)である時刻t1~t2の期間において、中間電圧「VLC/2」から最大電圧「VLC」に単調増加するように変化する電圧である。
 第9実施形態では、ランプ波形電圧の最大電圧VLCの2倍の電圧である2倍電圧(2×VLC)を設定し、更に、電圧「0」から2倍電圧「2×VLC」の範囲内でk階調(但し、kは3以上の整数)の電圧を設定する(図29の場合は、k=5)。そして、チャージポンプ31の駆動、停止を切り替えることにより、列データ線より供給されるランプ波形電圧(0~VLCの範囲の電圧)が、上記したk階調の電圧(0~2×VLCの範囲の電圧)となるように制御する。
 例えば、図28に示した液晶42に、階調1の電圧を供給する場合には、電圧(2/5)×VLCを出力する。階調2の電圧を供給する場合には、電圧(4/5)×VLCを出力する。
 更に、階調3の電圧を供給する場合には、電圧(6/5)×VLCを出力する必要がある。しかし、最大電圧「VLC」を超えるので、半分の電圧(3/5)×VLCを制御電圧として入力し、チャージポンプ31により2倍に増幅して液晶42に供給する。階調4である電圧「8/5×VLC」、電圧「2×VLC」についても同様に、半分の電圧(4/5)×VLC、VLCを制御電圧として入力し、チャージポンプ31により2倍に増幅して液晶42に供給する。従って、図29のグラフ(b)の時刻t1~t2間のグラフの傾きは、時刻t0~t1間のグラフの傾きの半分となっている。
 その結果、図29のグラフ(c)に示すように、階調1~5に対応する駆動電圧を生成して、液晶42に供給することができる。
 つまり、所望の階調を得るために液晶42に供給する駆動電圧が、ランプ波形電圧の最大値である最大電圧VLC以下の場合(上記の例では、階調1、2の場合)には、図29のグラフ(b)の時刻t0~t1に示すように、この制御電圧を増幅することなく駆動電圧として液晶42に出力する。一方、駆動電圧が最大電圧VLCよりも大きい場合(上記の例では、階調3、4、5の場合)には、図29のグラフ(b)の時刻t1~t2に示すように、駆動電圧の半分の制御電圧を2倍に増幅して、所望の駆動電圧を生成する。
 即ち、チャージポンプ制御部25は、最大電圧(VLC)よりも大きい電圧(例えば、最大電圧VLCの2倍の電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、制御電圧を増幅せずに前記液晶に出力する。一方、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、チャージポンプ31により、制御電圧を増幅して液晶42に出力するように制御する。
 このように、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、k階調(上記の例では5階調)に対応する駆動信号を生成して液晶42に供給することができる。即ち、図29のグラフ(c)に示すように、最大電圧VCLの2倍の電圧(2×VLC)を5等分して得られる階調1~階調5の駆動電圧を、液晶42に出力することが可能となる。
 図27に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図3に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、最大電圧(VLC)よりも大きい電圧(例えば、最大電圧の2倍の電圧)までの範囲で予め設定された複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、駆動線に「H」レベルの信号を出力する。その結果、第2トランジスタQ2がオン状態とされる。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、駆動線に「L」レベルの信号を出力する。その結果、図28に示す第2トランジスタQ2がオフ状態とされる。
 更に、チャージポンプ制御部25は、駆動線に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線に「L」レベルの信号が供給さる場合にはチャージポンプ31を駆動させるように制御する。
 次に、チャージポンプ31の作動について説明する。チャージポンプ制御部25は、チャージポンプ31を駆動させる場合には、図28に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、チャージポンプ31を駆動させる場合において、列データ線D1より制御電圧が入力された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、制御電圧は第1キャパシタC1に蓄積される。所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、列データ線D1より供給される制御電圧と、第1キャパシタC1に蓄積された電圧が加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2には、列データ線D1より供給される制御電圧の2倍となる電圧が蓄積されて、画素電極q1に出力されることになる。
 そして、第9実施形態に係る位相変調装置101では、図27に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第9実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16に、それぞれ同一の電圧を供給する。例えば、画素回路21-11~21-16には、階調1~5のうち階調1に対応する制御電圧を供給する。また、垂直方向の、図中上から下に向けて徐々に階調が高まるように設定し、最下段の画素回路21-51~21-56に階調5に対応する制御電圧を供給する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42に供給する駆動電圧が階調1~5に対応して段階的に変化するように設定される。従って、6個の画素回路21を一つのグループとし、5通りに反射率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。
 [第9実施形態の動作の説明]
 第9実施形態に係る位相変調装置101の動作について説明する。ここでは、図6(a)に示したように、6×5のマトリクス状に配置された画素回路21を制御して各液晶の屈折率を設定する例について説明する。
 図27に示したコンパレータ回路28は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、電圧供給線X1より供給されるランプ波形電圧から所望の電圧を取り出して制御電圧とし、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21に制御電圧を供給することができる。
 例えば、コンパレータ回路28は、シフトレジスタ回路26により出力されるqビットのデジタル信号(0~2^q)に、5段階の階調(階調1~5)を設定する。そして、シフトレジスタ回路26より各階調1~5に対応するデジタル信号が出力された場合には、カウンタ回路29より出力されるカウント値がこのデジタル信号と一致する時点で、スイッチ回路27における所望のスイッチにスイッチング制御信号を出力する。従って、この時点におけるランプ波形電圧を制御電圧として画素回路21に供給することができる。
 例えば、図29に示したように、階調1に対応するデジタル信号が出力された場合には、ランプ波形電圧は(2/5)×VLCであり、階調2に対応するデジタル信号が出力された場合には、ランプ波形電圧は(4/5)×VLCである。また、階調3に対応するデジタル信号が出力された場合には、ランプ波形電圧は(3/5)×VLCであり、階調4に対応するデジタル信号が出力された場合には、ランプ波形電圧は(4/5)×VLCであり、階調5に対応するデジタル信号が出力された場合には、ランプ波形電圧はVLCである。そして、各ランプ波形電圧に対応する電圧が制御電圧として画素回路21に供給される。
 この際、前述したようにデジタル信号が2^qの数値の半分以下の場合(図29の時刻t0~t1の場合)には制御電圧を増幅せず、半分以上の場合(時刻t1~t2の場合)には、チャージポンプ31により制御電圧を増幅して、液晶42に出力する駆動電圧とする。
 そして、列データ線より供給される制御電圧は、図28に示す第1トランジスタQ1を経由してキャパシタCdに蓄積され、更にソースフォロワQ4を経由してチャージポンプ31の入力端子p1に供給される。
 以下、図30A、30Bに示すタイミングチャートを参照して、チャージポンプ31の作動について説明する。図30Aは、一例として液晶42に階調2の駆動電圧を出力する際の、各信号の変化を示すタイミングチャートである。また、図30Bは、階調4の駆動電圧を出力する際の、各信号の変化を示すタイミングチャートである。
 図30Aの目盛り(a)に示すように、シフトレジスタ回路26(図27参照)より、qビットのデジタル信号2^qが出力される。この際、qビットのデジタル信号は5等分され、それぞれのデジタル信号に階調1~5(図では「1」~「5」と表記)が割り当てられている。
 そして、カウンタ回路29より出力されるカウント値がデジタル信号と一致した際に、コンパレータ回路28よりスイッチ回路27に設けられる複数のスイッチSW1~SWmのうち所望のスイッチにスイッチング制御信号が出力され、このスイッチがオン状態となって、列データ線にランプ波形電圧が制御電圧として供給される。また、前述したようにランプ波形電圧は図30Aのグラフ(b)に示すように、1水平走査期間内に2つの波形(2つの鋸歯状波形)が出力される。
 液晶42を階調2に設定する場合には、階調2に対応するデジタル信号が出力される時刻taにおいて、(4/5)×VLCのランプ波形電圧が制御電圧として列データ線に供給されることになる。この制御電圧は、キャパシタCdに蓄積され時刻t12まで保持される。
 また、図30Aのグラフ(d)に示すように、第2トランジスタQ2は時刻t12を過ぎてもオン状態が継続され、グラフ(e)、(f)に示すように、各スイッチS1~S4は時刻t12を過ぎても全てオフ状態が継続されている。従って、チャージポンプ31は駆動せず、画素回路21に供給されたランプ波形電圧は増幅されない。そして、図30Aのグラフ(c)に示すように、時刻t12において垂直走査回路24における行選択信号Gがオンとなるので、グラフ(g)に示すように液晶42には列データ線より供給された制御電圧(4/5)×VLCが出力される。従って、液晶42に、第2階調の駆動電圧(4/5)×VLCを供給することができる。
 なお、階調1の場合においても上記と同様に、液晶42に、階調1の駆動電圧(2/5)×VLCを供給することができる。
 一方、液晶42を階調4に設定する場合には、図30Bの目盛り(a)に示すように、階調4に対応するデジタル信号が出力される時刻tbにおいて、(4/5)×VLCのランプ波形電圧が制御電圧として列データ線に供給されることになる。この制御電圧は、キャパシタCdに蓄積され時刻t22まで保持される。
 また、図30Bのグラフ(d)に示すように、第2トランジスタQ2は時刻t22においてオフ状態となる。更に、グラフ(e)に示すように、時刻t22~t23の期間において、第1スイッチS1と第4スイッチS4がオンとなって、第1キャパシタC1に電圧(4/5)×VLCが保持される。その後、グラフ(f)に示すように、時刻t24において、第2スイッチS2と第3スイッチS3がオンとされるので、グラフ(g)に示すように、図28に示す出力キャパシタC2には、電圧(4/5)×VLCを2倍にした電圧(8/5)×VLCが得られることになる。従って、液晶42に階調4の電圧を供給することができる。
 なお、階調3、5の場合においても上記と同様に、液晶42に、階調3の駆動電圧(6/5)×VLC、及び階調5の駆動電圧2×VLCを供給することができる。
 そして上記のように、各画素回路21より液晶42に供給する駆動電圧を制御することにより、各液晶42を所望の階調に設定することが可能となり、各画素回路21に接続される液晶42の屈折率を所望の屈折率に設定することが可能となる。
 [第9実施形態の効果の説明]
 第9実施形態に係る位相変調装置101では、各画素回路21にチャージポンプ31を備えている。そして、液晶42を、「0」から最大電圧の2倍となる電圧(2×VLC)までの範囲で予め設定された複数の階調のうち、任意の階調に設定する場合において、この任意の階調に対応する電圧が最大電圧(VLC)以下の場合には、列データ線より画素回路21に供給される制御電圧(ランプ波形電圧から取得される電圧)を増幅せずに液晶42に出力する。
 また、複数の階調のうち、任意の階調に対応する電圧が最大電圧(VLC)を超える場合には、列データ線より画素回路21に供給される制御電圧を、チャージポンプ31により増幅して液晶42に出力するように制御する。
 従って、列データ線より画素回路21に供給される制御電圧の最大が最大電圧(VLC)である場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率の大小をより広い範囲で変化させることができ、液晶層12の厚みの増加を抑制するとともに、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する制御電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の駆動電圧を設定するための電圧の範囲である電圧を、所定の最大電圧(VLC)の2倍の電圧に設定しているので、制御電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 なお、第9実施形態では、液晶42の駆動電圧を設定するための電圧の範囲を、所定の最大電圧(VLC)の2倍の電圧に設定する例について説明したが、これに限定されるものではなく、駆動電圧を最大電圧VLCよりも大きく設定すれば良い。
 [第9実施形態の第1変形例の説明]
 次に、第9実施形態の第1変形例について説明する。図31は、第9実施形態の第1変形例に係る画素回路21’の構成を示す回路図である。図31に示すように、画素回路21’は、駆動線L1が縦方向に配置されている。従って、マトリクス状配置された各画素回路21’の縦方向に向けて同一の電圧を液晶42に出力することができる。このため、屈折率が変化する方向が縦方向となる。
 即ち、図6(a)、6(b)に示した例では、縦方向に向けて液晶42の屈折率の大小が変化する構成であるのに対して、図31に示す第9実施形態の第1変形例では、横方向に向けて液晶42の屈折率の大小が変化するように設定する構成となる。
 [第9実施形態の第2変形例の説明]
 次に、第9実施形態の第2変形例について説明する。図32A、32Bは、第9実施形態の第2変形例に係るランプ波形電圧の時間的な変化を示す説明図である。第9実施形態の第2変形例では、図27に示した各列データ線D1~Dmと、行走査線G1~Gnとの交差部に、それぞれ画素回路を2個接続する。これらを第1画素回路21A、第2画素回路21Bとする。
 そして、第1画素回路21Aを正極性、第2画素回路21Bを負極性とし、第1画素回路21Aと第2画素回路21Bで、互いに電圧が変化する方向が反転したランプ波形電圧を与える。
 即ち、図32Aのグラフ(a)に示すように、第1画素回路21Aには単調増加するランプ波形電圧を与え、図32Bのグラフ(a)に示すように、第2画素回路21Bには単調減少ランプ波形電圧を与える。そして、階調iにおいて、制御電圧VpixH(図42A参照)、及び制御電圧VpixL(図32B参照)を得ることができる。このため、図32Aのグラフ(b)に示すように、対向電極の電圧CceLに対して、CceL~VpixHの電圧、及び、図32Bのグラフ(b)に示すように、対向電極の電圧CceHに対して、VpixL~CceHの電圧を液晶42に出力することができ、1水平走査期間よりも短い時間で液晶42の階調を変化させることが可能となる。このため、位相変調の精度をより一層向上させることが可能となる。
 [第10実施形態の説明]
 第10実施形態に係る位相変調装置の基本構成は、第1実施形態で説明した図1,2に示す各実施形態の基本構成と同様のため、説明を省略する。
 第10実施形態に係る位相変調装置101おける、各画素回路21、及び各画素回路21を制御する制御回路22の構成を、図33に示すブロック図、及び図34に示す回路図を参照して説明する。図33において、制御回路22は、マトリクス状に配置された複数(m列、n行)の画素回路21と、水平走査回路23と、垂直走査回路24と、チャージポンプ制御部25とを備えている。そして、制御回路22は、各画素回路21に電気信号を出力して各画素回路21を駆動させ、各画素回路21より駆動電圧が印加される。各反射画素上の液晶42の入射光に対する屈折率が所望の値になるように制御する。
 画素回路21は、互いに直交するm本の列データ線(D1~Dm)と、n本の行走査線(G1~Gn)との各交差部(交差する位置)にマトリクス状に複数個(m×n個)配置されている。複数の画素回路21は、全て同一に構成されている。更に、行走査線(G1~Gn)に並行して、駆動線(L1~Ln)、及び制御線(K1~Kn)が設けられている。駆動線(L1~Ln)、制御線(K1~Kn)は、チャージポンプ制御部25に接続されている。
 駆動線(L1~Ln)は、各画素回路21に設けられる第2トランジスタQ2(短絡スイッチ;図44参照)のオン、オフを切り替えるための制御信号を送信する電線である。また、制御線(K1~Kn)は、各画素回路21に設けられたスイッチS1~S4(図34参照)のオン、オフを切り替えるための制御信号を送信する配線である。なお、制御線(K1~Kn)は、図34に示すようにそれぞれ複数本(図では、K1-1、K1-2の2本)設けられているが、図33では1本の制御線K1で簡略化して示している。
 列データ線(D1~Dm)は、デジタル信号線X1より出力されるデジタル信号を各画素回路21に供給するための配線である。
 図34は、画素回路21の詳細な構成を示す回路図である。なお、ここでは図33に示す列データ線D1と行走査線G1の交差部に配置された画素回路21(これを、画素回路21aとする)の構成について説明する。図34に示すように画素回路21aは、SRAM(Static RAM;デジタル信号保持部)32と、第1トランジスタQ1と、第2トランジスタQ2と、チャージポンプ31と、出力キャパシタC2を備えている。
 SRAM32は、列データ線D1より供給される各ビットに対応したパルスパターンからなるデジタル信号を保持し、最大振幅となる電圧VLCのデジタル信号を出力する。後述するように、SRAM32は、電圧「0」或いは「VLC」のデジタル信号を出力する。具体的に、パルスが立っていない場合には電圧「VLC」を出力し、パルスが立っている場合には振幅「VLC」のパルスパターンを出力する。また、チャージポンプ31を駆動させることにより、電圧VLCを2倍の電圧「2×VLC」に増幅して液晶42に供給することができる。
 即ち、SRAM32は、列データ線に供給されるデジタル信号のパルス数またはパルス幅に応じたデジタル信号を出力する機能を備えている。
 第1トランジスタQ1は、スイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第1トランジスタQ1の第1端子(例えば、ドレイン)は列データ線D1に接続され、第2端子(例えば、ソース)はSRAM32の入力に接続されている。また、第1トランジスタQ1の制御端子(例えば、ゲート)は、行走査線G1に接続されている。従って、行走査線G1が選択され、且つ列データ線D1よりデジタル信号が入力された場合には、このデジタル信号はSRAM32に供給されることになる。
 第2トランジスタQ2についても前述した第1トランジスタQ1と同様にスイッチングトランジスタであり、例えばNチャネルのMOSFET(電界効果トランジスタ)で構成されている。第2トランジスタQ2の第1端子(例えば、ドレイン)はチャージポンプ31の入力端子p1に接続され、第2端子(例えば、ソース)はチャージポンプ31の出力端子p2に接続されている。
 また、第2トランジスタQ2の制御端子(例えば、ゲート)は、駆動線L1に接続されている。従って、駆動線L1に「H」レベルの電圧が供給されると、第2トランジスタQ2がオンとなってチャージポンプ31の入力端子p1と出力端子p2が短絡され、入力端子p1に供給された電圧をそのまま出力端子p2に出力することができ、チャージポンプ31の機能を停止させることができる。これとは反対に、駆動線L1に「L」レベルの電圧が供給されると、第2トランジスタQ2がオフとなり、チャージポンプ31の入力端子p1と出力端子p2が開放され、チャージポンプ31を作動させることができる。
 即ち、第2トランジスタQ2は、チャージポンプ31にSRAM32の出力電圧が供給される入力端子p1と、チャージポンプ31から液晶42に電圧(駆動電圧)を出力する出力端子p2とを短絡する短絡スイッチとしての機能を備えている。
 そして、後述するように、列データ線D1より供給されるデジタル信号のデータビット数が「0~m/2」(但し、mは最大ビット数)の範囲である場合には、チャージポンプ制御部25(図33参照)の制御により、第2トランジスタQ2を短絡し、チャージポンプ31の駆動を停止する。また、デジタル信号のデータビット数が「m/2~m」の範囲である場合には、第2トランジスタQ2を開放し、チャージポンプ31を駆動可能な状態にする。
 チャージポンプ31は、4つのスイッチS1~S4と、電荷を蓄積するための第1キャパシタC1を備えており、入力端子p1に供給される電圧(SRAM32の出力電圧)を増幅して出力端子p2に出力する。
 チャージポンプ31において、第1スイッチS1と第3スイッチS3は互いに直列接続され、第1スイッチS1側の端部は入力端子p1に接続され、第3スイッチS3側の端部は出力端子p2に接続されている。また、第2スイッチS2と第4スイッチS4は互いに直列接続され、第2スイッチS2側の端部は入力端子p1に接続され、第4スイッチS4側の端部はグランドに接続されている。
 更に、第1スイッチS1と第3スイッチS3の接続点と、第2スイッチS2と第4スイッチS4の接続点との間には、第1キャパシタC1が設けられている。出力端子p2は、出力キャパシタC2を介してグランドに接続され、更に、液晶42の画素電極q1に接続されている。即ち、第1キャパシタC1の一端は、第1スイッチS1と第3スイッチS3に接続され、第1キャパシタC1の他端は、第2スイッチS2と第4スイッチS4に接続されている。また、前述したように、液晶42の共通電極q2は、透明ガラスに設けられた透明電極である。透明電極には、共通電極電圧が印加される。
 液晶42は、画素回路21から画素電極q1に与えられる駆動電圧と、共通電極q2に与えられる共通電極との間の電位差に応じて駆動される。従って、液晶42に入射した入射光が、上記電位差に応じて位相変調されて、反射することになる。
 第9実施形態でも、反射基板11に設けられる画素回路21に対応する反射画素20に入射する入射光と、画素回路21に対応する反射画素20で反射する反射光の角度についての関係は、第1実施形態において、図5を用いて説明したものと同様であるため、ここでの説明は省略する。
 なお、第1実施形態では、電圧値による液晶の屈折率の変化として説明しているが、液晶に高周波のパルス信号を加えた場合でも、パルス数やパルス幅、パルスパターンによって屈折率を変化させることができる。パルスパターンの場合は、例えばパルス本数が多いほど屈折率の変化量を大きくすることができる。
 図33に示すように、制御回路22に設けられる水平走査回路23は、シフトレジスタ回路26と、スイッチSW1~SWmを含むスイッチ回路27を備えている。
 シフトレジスタ回路26は、水平同期信号(HST)、及び水平走査用のクロック信号(HCK1、HCK2)を入力する。シフトレジスタ回路26は、水平同期信号及び水平走査用のクロック信号に基づいて、クロック信号を順次シフトすることで、スイッチ回路27に出力するスイッチング信号(これを、「SD1~SDm」とする)を1水平走査期間の周期で生成する。
 スイッチ回路27は、各列データ線(D1~Dm)のオン、オフを切り替えるためのm個のスイッチSW1~SWmを備えている。また、各スイッチSW1~SWmは、シフトレジスタ回路26より出力されるスイッチング信号(SD1~SDm)に基づいてオン状態またはオフ状態に制御される。スイッチSW1~SWmは、列データ線(D1~Dm)に対応して設けられ、各列データ線に対応したデジタル信号「d」を順次入力する。
 スイッチSW1~SWmは、各列データ線(D1~Dm)に対応したデジタル信号を選択的に列データ線に与える。例えばスイッチSW1は、スイッチング信号SD1がハイレベルのときにオン状態となり、列データ線D1に対応したデジタル信号を選択し、選択したデジタル信号を列データ線D1に出力する。デジタル信号は、デジタル信号線X1より供給される。
 図35は、デジタル信号のデータビット数とパルス数との関係を示すグラフである。図35において、横軸は列データ線D1より供給されるデジタル信号のデータビット数(最大値m)を示し、縦軸はパルス数を示す。なお、パルス数の代わりにパルス幅とすることも可能であるが、以下ではパルス数として説明することにする。
 図35に示すように、データビット数が0~(m/2)の範囲では、グラフR1に示すように、パルス数は0から最大値Wmaxの範囲で変化する。また、データビット数が(m/2)~mの範囲では、グラフR2に示すように、パルス数は(Wmax/2)~Wmaxの範囲で変化する。そして、データビット数が0~(m/2)の範囲でチャージポンプ31をオフとし、(m/2)~mの範囲でチャージポンプ31をオンとする。即ち、図33に示したチャージポンプ制御部25は、デジタル信号のデータビット数が0~(m/2)の範囲においてチャージポンプ31をオフとし、(m/2)~mの範囲においてチャージポンプ31をオンとするように制御する。
 図35において、デジタル信号のパルスが立っていない場合には、列データ線より供給される電圧は「0」である。このとき、SRAM32の出力電圧は「VLC」である。パルスが立っている場合で、データビット数が0~(m/2)の範囲である場合には、SRAM32よりデジタル信号の最大振幅となる電圧VCLで各ビットに対応したパルスパターンが出力される。この際、チャージポンプ31はオフとされる。従って、SRAM32より出力される電圧VLCは、チャージポンプ31で増幅されずに駆動電圧として液晶42に供給される。
 また、パルスが立っている場合で、データビット数が(m/2)~mの範囲である場合には、SRAM32よりデジタル信号の最大振幅となる電圧VCLで各ビットに対応したパルスパターンが出力される。この際、チャージポンプ31はオンとされる。従って、SRAM32より出力される電圧VLCは、チャージポンプ31で2倍の電圧(2×VLC)に増幅され、この電圧(2×VLC)のパルスパターンが駆動電圧として液晶42に供給される。
 このため、パルスが立っていない場合には、SRAM32より出力する電圧を「VLC」とし、液晶42に供給する駆動電圧を「VLC」にすることができる。また、SRAM32より電圧VLCを出力し、且つチャージポンプ31を停止することにより、液晶42に供給する駆動電圧を「VLC」にすることができる。更に、SRAM32より電圧VLCのパルスパターンを出力し、且つチャージポンプ31を駆動することにより、この電圧VCLを2倍に増幅できるので、液晶42に供給する駆動電圧の振幅を「2×VLC」にすることができる。
 なお、図35に示すグラフR1、R2はリニアに示しているが、液晶42における電圧に対する位相変化の関係がリニアとは限らないので、パルス数もリニアになるとは限らない。また、SRAM32より出力される電圧は極性が反転するので、画素電極q1には極性が反転した電圧が供給される。これに対応して、共通電極q2に供給する電圧を反転させることにより、液晶42に所望の電圧を印加することが可能になる。
 このように、チャージポンプ31の動作により、液晶42に供給するパルスパターンの駆動電圧の振幅を「0」、「VLC」、「2×VLC」の3通りに設定することが可能となる。そして、各振幅のパルスパターン(パルス幅、或いはパルス数)により、液晶42を複数の階調に設定することが可能になる。
 従って、スイッチ回路27に設けられる各スイッチSW1~SWmのオン、オフを制御し、且つ、チャージポンプ31の駆動を制御することにより、画素回路21は、複数の階調の駆動信号を生成して液晶42に供給することができる。
 図33に示すように、垂直走査回路24には、行走査線(G1~Gn)が接続されている。垂直走査回路24は、垂直同期信号(VST)、垂直走査用のクロック信号(VCK1、VCK2)を入力する。垂直走査回路24は、垂直同期信号、垂直走査用のクロック信号に基づいて、例えば行走査線G1から行走査線Gnに順次行選択信号(走査信号)を、1水平走査期間の周期で供給する。
 チャージポンプ制御部25は、図33に示す各駆動線(L1~Ln)に駆動信号を出力する。具体的に、列データ線より供給されるデジタル信号のデータビット数が0~(m/2)の範囲である場合には、駆動線に「H」レベルの信号を出力する。また、上記デジタル信号のデータビット数が(m/2)~mの範囲である場合には、駆動線に「L」レベルの信号を出力する。
 更に、チャージポンプ制御部25は、駆動線に「H」レベルの信号が供給される場合にはチャージポンプ31を駆動させず、駆動線に「L」レベルの信号が供給される場合にはチャージポンプ31を駆動させるように制御する。以下、チャージポンプ31の作動について説明する。
 チャージポンプ制御部25は、チャージポンプ31を駆動させる場合において、図34に示した各スイッチS1~S4のオン、オフを制御する制御信号を、制御線K1(K1-1、K1-2)に出力する。具体的に、SRAM32よりパルスパターンが出力された際に、まず第1スイッチS1と第4スイッチS4をオンとし、第2スイッチS2と第3スイッチS3をオフとする。
 従って、SRAM32より出力された振幅VLCのパルスパターンによる電圧は、第1キャパシタC1に蓄積される。そして所定時間の経過後に、第1スイッチS1と第4スイッチS4をオフとし、第2スイッチS2と第3スイッチS3をオンとする。その結果、SRAM32より出力されるパルスパターンの電圧と、第1キャパシタC1に蓄積された電圧VLCが加算され、加算後の電圧が出力キャパシタC2に蓄積される。従って、出力キャパシタC2に蓄積された電圧が画素電極q1に出力されることになる。
 そして、第10実施形態に係る位相変調装置101では、図33に示した(n×m)個設けられた各画素回路21のうちの、いくつかの画素回路からなるブロックを設定する。例えば、第10実施形態でも、第1実施形態と同様に、図6(a)に示すように(5行×6列)の画素回路21からなるブロックを設定する。
 図6(a)において、同一の行の6個の画素回路21-11~21-16を、それぞれ同一の屈折率に設定する。例えば、1行目の画素回路21-11~21-16を第1の屈折率に設定し、2行目の画素回路21-21~21-26を第2の屈折率に設定する。3行目の画素回路21-31~21-36を第3の屈折率に設定し、4行目の画素回路21-41~21-46を第4の屈折率に設定し、5行目の画素回路21-51~21-56を第5の屈折率に設定する。
 具体的に、図6(b)に示すように、垂直方向に並ぶ各画素回路21-11~21-51において、各液晶42の屈折率が5段階に変化するように設定される。従って、水平方向に並ぶ6個の画素回路21を一つのグループとし、5つの階調に屈折率を変化させることができ、ひいては5通りに位相変調された反射光を得ることが可能となる。なお、垂直方向と水平方向を入れ替えてもよい。
 [第10実施形態の動作の説明]
 第10実施形態に係る位相変調装置101の動作を、図45に示すグラフ、及び図36に示すタイミングチャートを参照して説明する。また、以下では図6(a)に示したように、6×5のマトリクス状に配置された各画素回路21、及び各画素回路21に対応する反射画素を有する場合の例について説明する。
 図33に示した水平走査回路23は、スイッチ回路27に設けられる各スイッチSW1~SWm(ここでは、m=6)のオン、オフを制御することにより、デジタル信号線X1より供給されるデジタル信号を、所望の列データ線に供給する。
 更に、垂直走査回路24を駆動させることにより、各行走査線(G1~Gn)(ここでは、n=5)のうち所望の画素回路21に対応する走査ラインを選択する。その結果、所望の画素回路21のSRAM32にデジタル信号を供給することができる。
 具体的には、デジタル信号のパルスが立っていない場合には、SRAM32は電圧「VLC」を出力する。また、図7のグラフR1に示したように、データビット数が0~(m/2)の範囲でありパルスが立っている場合には、SRAM32は振幅「VLC」のパルスパターンを出力する。この際、図8の時刻t0~t1に示すように、トランジスタQ2をオンとし、且つ、各スイッチS1~S4を全てオフにする。従って、チャージポンプ31は駆動しない。振幅「VLC」のパルスパターンは、第2トランジスタQ2を経由して画素電極q1及び液晶42に供給される。
 一方、図35のグラフR2に示したように、データビット数が(m/2)~mの範囲でありパルスが立っている場合には、SRAM32は振幅「VLC」のパルスパターンを出力する。この際、図36の時刻t1~t4に示すように、第2トランジスタQ2はオフとされる。更に、時刻t1~t2において第1スイッチS1と第4スイッチS4がオン、第2スイッチS2と第3スイッチS3がオフとされ、時刻t3~t4において、第2スイッチS2と第3スイッチS3がオン、第1スイッチS1と第4スイッチS4がオフとされるので、SRAM32より出力されたパルスパターンは2倍に増幅されて、画素電極q1及び液晶42に供給される。
 [第10実施形態の効果の説明]
 第10実施形態に係る位相変調装置101では、列データ線(D1~Dm)より出力されるデジタル信号を、各画素回路21に設けられたSRAM32に入力する。そして、チャージポンプ31の駆動、停止を制御することにより、液晶42を「0」~「2×VLC」の範囲内で複数の階調に切り替えることができる。
 従って、SRAM32より出力されるデジタル信号の最大値が電圧VLCである場合に、その2倍である電圧(2×VLC)の範囲で、液晶42を駆動するための駆動電圧を設定することが可能となる。従って、液晶42の屈折率をより広い範囲で変化させることができ、位相変調の精度を向上させることができる。
 更に、画素回路21に供給する電圧の最大電圧VLCを高めることなく広い電圧の範囲で階調を設定できるので、制御回路22を構成する各部品の耐圧を高める必要がなく、装置の小型化、軽量化を図ることが可能となる。
 また、液晶42の階調を設定するための電圧の範囲を、所定の最大電圧(VLC)の2倍の電圧に設定しているので、SRAM32より出力される電圧を2倍に増幅するという簡単な処理で所望の駆動電圧を得ることができ、回路構成を簡素化することができる。
 また、第10実施形態では、互いに直交する方向、即ち、図33に示す列方向及び行方向のうちの、一方の方向に向けて液晶42の屈折率が変化するように設定し、他方の方向に、チャージポンプのオン、オフを切り替える駆動線(L1~Ln)を配置している。従って、屈折率の変化による液晶の配向の乱れを防止することが可能となる。
 更に、デジタル信号保持部としてSRAM32を用いているので、デジタル信号を簡単な構成で保持してチャージポンプ31に出力することが可能となる。更に、第10実施形態では、デジタル信号を用いているので、階調を切り替える操作をより高速に行うことが可能になる。
 なお、第10実施形態では、液晶42を駆動する駆動電圧の最大値として、最大電圧VLCの2倍となる電圧(2×VLC)を設定したが、これに限定されるものではなく、駆動電圧の最大値が所定の最大電圧(VLC)よりも大きければ良い。
 [第10実施形態の変形例の説明]
 次に、第10実施形態の変形例について説明する。図37は、第10実施形態の変形例に係る画素回路21’の構成を示す回路図である。図37に示すように、画素回路21’は、駆動線L1が縦方向に配置されている。従って、マトリクス状に配置された各画素回路21’の縦方向に向けてチャージポンプ回路のオン、もしくはオフが設定できる。このため、屈折率が変化する方向が横方向となる。
 即ち、図6(a)、6(b)に示した例では、縦方向に向けて液晶42の屈折率の大小が変化する構成であるのに対して、図37に示す第10実施形態の変形例では、横方向に向けて液晶42の屈折率の大小が変化するように設定する構成となる。この場合には、1垂直走査期間において、パルス数、或いはパルス幅が変化するように、画素回路21’に供給するデジタル信号を設定する。
 以上、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 

Claims (22)

  1.  入射光を所望の角度に反射させるための位相変調装置であって、
     互いに直交する複数の列データ線と複数の行走査線と、
     前記複数の列データ線と前記複数の行走査線とがそれぞれ交差する位置に設けられた複数の画素回路と、
     前記複数の画素回路にそれぞれ対応して設けられた複数の反射画素と、
     前記複数の反射画素にそれぞれ対応して設けられ、前記画素回路より供給される駆動電圧により入射光に対する屈折率が変化する液晶と、
     チャージポンプ制御部と
    を備え、
     前記列データ線は、各々の前記画素回路に所定の最大電圧までの範囲で変化する制御電圧を出力し、
     各々の前記画素回路は、前記制御電圧を増幅可能なチャージポンプを備え、
     前記チャージポンプ制御部は、前記液晶に供給する前記駆動電圧が前記最大電圧以下の場合には、前記制御電圧を増幅せずに前記液晶に出力し、前記駆動電圧が前記最大電圧を超える場合には、前記チャージポンプにて前記制御電圧を増幅して前記液晶に出力する制御を行う
    位相変調装置。
  2.  前記チャージポンプは、前記制御電圧に前記最大電圧を加算することにより前記制御電圧を増幅する
    請求項1に記載の位相変調装置。
  3.  前記画素回路を制御する制御回路を更に備え、
     前記制御回路は、前記所定の最大電圧までの範囲で変化する前記制御電圧、及び前記所定の最大電圧を時分割で出力する制御電圧出力部を備え、
     前記チャージポンプ制御部は、前記駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧出力部より出力される前記制御電圧を増幅せずに前記液晶に出力し、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧出力部より時分割で出力される前記制御電圧と前記所定の最大電圧を加算することにより前記制御電圧を増幅して前記液晶に出力する制御を行う
    請求項1に記載の位相変調装置。
  4.  前記画素回路を制御する制御回路を更に備え、
     前記制御回路は、
      前記駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧を出力電圧とし、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプで増幅された電圧を出力電圧として、前記液晶に供給する制御を行う前記チャージポンプ制御部と、
      一の画素回路における前記出力電圧を供給する供給点と、前記一の画素回路に隣接する他の画素回路における前記出力電圧を供給する供給点と、の短絡、開放を切り替える第1切替スイッチと、
      前記一の画素回路の出力電圧を前記液晶に供給しているときには、前記第1切替スイッチを開放し、前記一の画素回路の出力電圧を前記液晶に供給していないときの少なくとも一部の時間に前記第1切替スイッチを短絡するように制御する切替スイッチ制御部と、
    を備える
    請求項1に記載の位相変調装置。
  5.  前記画素回路を制御する制御回路を更に備え、
     前記画素回路は、前記制御電圧または前記チャージポンプで増幅された前記制御電圧を増幅するソースフォロワを更に備え、
     前記制御回路は、前記駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧を出力電圧とし、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプで増幅された電圧を出力電圧として、前記液晶に供給する制御を行う前記チャージポンプ制御部を備え、
     前記ソースフォロワのウェルとソースが接続され、ウェル電位とソース電位が同電位とされている
    請求項1に記載の位相変調装置。
  6.  前記画素回路を制御する制御回路を更に備え、
     前記画素回路は、
      前記列データ線より出力される制御電圧を増幅するソースフォロワと、
      前記制御電圧としての前記ソースフォロワの出力電圧を増幅する前記チャージポンプと
    を備え、
     前記制御回路は、前記駆動電圧が前記所定の最大電圧以下の場合には、前記ソースフォロワの出力を出力電圧とし、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプで増幅された電圧を出力電圧として、前記液晶に供給する制御を行う前記チャージポンプ制御部を備え、
     前記ソースフォロワのウェルとソースが接続され、ウェル電位とソース電位が同電位とされている
    請求項1に記載の位相変調装置。
  7.  前記画素回路は、複数のスイッチからなるブリッジ回路を更に備え、
     前記チャージポンプ制御部は、前記駆動電圧が前記所定の最大電圧以下の場合には、前記複数のスイッチを制御して前記チャージポンプの入力端子と出力端子を短絡させて前記制御電圧を増幅せずに前記液晶に出力し、前記駆動電圧が前記所定の最大電圧を超える場合には、前記複数のスイッチの短絡と開放を制御して前記制御電圧を増幅し、前記液晶に出力する制御を行う
    請求項1に記載の位相変調装置。
  8.  前記画素回路の駆動を制御する制御回路を更に備え、
     前記制御回路は、
      前記チャージポンプ制御部と、
      所定のデジタル階調の最大値までカウントするカウンタ回路と、
      各々の前記画素回路に対応した階調値とカウンタ回路から出力されるカウント値を比較して、一致した場合にスイッチング制御信号を出力するコンパレータ回路と
    を備え、
     前記列データ線とスイッチ回路を介して接続された配線に前記所定の最大電圧まで変化するランプ状の参照電圧が印加されており、
     前記スイッチング制御信号のタイミングで前記スイッチ回路が切れることで、前記制御電圧を決定し、各画素回路に保持される
    請求項1に記載の位相変調装置。
  9.  前記画素回路の駆動を制御する制御回路を更に備え、
     前記画素回路は、
      所定のパルス幅またはパルス数を有するデジタル信号が供給された際に、前記デジタル信号を保持するデジタル信号保持部と、
      前記制御電圧として前記デジタル信号保持部より出力される前記デジタル信号を増幅可能な前記チャージポンプと
    を備え、
     前記制御回路は、前記駆動電圧が前記デジタル信号の最大振幅以下の場合には、前記デジタル信号を増幅せずに前記液晶に出力し、前記駆動電圧が前記最大振幅を超える場合には、前記デジタル信号を前記チャージポンプで増幅して前記液晶に出力する制御を行う前記チャージポンプ制御部を備える
    請求項1に記載の位相変調装置。
  10.  前記互いに直交する方向のうちの、一方の方向に向けて前記液晶の屈折率が変化するように設定し、他方の方向に、前記チャージポンプのオン、オフを切り替えるための駆動線を配置した
    請求項1から9のいずれか1項に記載の位相変調装置。
  11.  前記画素回路は、前記チャージポンプに前記制御電圧が供給される入力端子と、前記チャージポンプから液晶に電圧を出力する出力端子と、を短絡する短絡スイッチを備え、
     前記チャージポンプ制御部は、前記液晶に出力する駆動電圧が前記所定の最大電圧以下の場合には前記短絡スイッチを短絡し、前記液晶に出力する駆動電圧が前記所定の最大電圧を超える場合には前記短絡スイッチを開放する
    請求項1から10のいずれか1項に記載の位相変調装置。
  12.  前記画素回路は、前記液晶に供給する電圧を蓄積する出力キャパシタを更に備え、
     前記チャージポンプは、
      電荷を蓄積する第1キャパシタと、
      前記第1キャパシタの一端と、前記制御電圧が供給される入力端子との間に設けられた第1スイッチと、
      前記第1キャパシタの他端と、前記入力端子との間に設けられた第2スイッチと、
      前記第1キャパシタの前記一端と、出力キャパシタの一端との間に設けられた第3スイッチと、
      前記第1キャパシタの前記他端と、前記出力キャパシタの他端との間に設けられた第4スイッチと
    を備える
    請求項1から11のいずれか1項に記載の位相変調装置。
  13.  前記液晶に供給する駆動電圧の最大電圧を、前記所定の最大電圧の2倍に設定する
    請求項1から12のいずれか1項に記載の位相変調装置。
  14.  入射光を所望の角度に反射させるための位相変調方法であって、
     互いに直交する複数の列データ線と複数の行走査線とがそれぞれ交差する位置に設けられた複数の画素回路に、所定の最大電圧までの範囲で変化する制御電圧を出力する制御電圧出力ステップと、
     各々の前記画素回路に対応して設けられ、入力する電圧に応じて入射光に対する屈折率が変化する液晶に供給する駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧を増幅せずに前記液晶に出力する非増幅電圧出力ステップと、
     前記駆動電圧が前記所定の最大電圧を超える場合には、チャージポンプにて前記制御電圧を増幅して前記液晶に出力する増幅電圧出力ステップと
    を備えた位相変調方法。
  15.  前記増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧に前記所定の最大電圧を加算することにより前記制御電圧を増幅して前記液晶に出力する
    請求項14に記載の位相変調方法。 
  16.  前記制御電圧出力ステップは、前記複数の画素回路に、前記所定の最大電圧までの範囲で変化する前記制御電圧、及び前記所定の最大電圧を時分割で出力し、
     前記増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧に前記所定の最大電圧を加算することにより前記制御電圧を増幅して前記液晶に出力する
    請求項14に記載の位相変調方法。
  17.  前記非増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧以下の場合には、前記制御電圧を増幅しない電圧を供給点に出力し、
     前記非増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧を増幅した電圧を前記供給点に出力し、
     第1切替スイッチ制御ステップは、前記供給点の電圧を前記液晶に供給するときには、一の画素回路における供給点と、前記一の画素回路に隣接する他の画素回路における供給点との短絡、開放を切り替える第1切替スイッチを開放し、前記供給点の電圧を前記液晶に供給しないときの少なくとも一部の時間に、前記第1切替スイッチを短絡するように制御する
    請求項14に記載の位相変調方法。
  18.  前記非増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧以下の場合には、前記チャージポンプにて前記制御電圧を増幅しない電圧を、ソースフォロワで増幅して供給点に出力し、
     前記増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記制御電圧を増幅した電圧を、前記ソースフォロワで増幅して前記供給点に出力し、
     前記ソースフォロワのウェルとソースが接続され、ウェル電位とソース電位が同電位とされている
    請求項14に記載の位相変調方法。
  19.  前記制御電圧をソースフォロワにて増幅する制御電圧増幅ステップを更に備え、
     前記非増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧以下の場合には、前記チャージポンプにて前記ソースフォロワの出力電圧を増幅せずに供給点に出力し、
     前記増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記チャージポンプにて前記ソースフォロワの出力電圧を増幅して前記供給点に出力し、
     前記ソースフォロワのウェルとソースが接続され、ウェル電位とソース電位が同電位とされている
    請求項14に記載の位相変調方法。
  20.  前記非増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧以下の場合には、前記チャージポンプのブリッジ回路に含まれる複数のスイッチを制御して入力端子と出力端子を短絡させ、前記制御電圧を増幅せずに前記液晶に出力し、
     前記増幅電圧出力ステップは、前記駆動電圧が前記所定の最大電圧を超える場合には、前記複数のスイッチの短絡と開放を制御して前記制御電圧を増幅し、前記液晶に出力する
    請求項14に記載の位相変調方法。
  21.  前記画素回路ごとに対応した階調値と、カウンタ回路でのカウント値とが、一致したタイミングでのスイッチング制御によって、前記所定の最大電圧まで変化するランプ状の参照電圧から前記制御電圧が決定される制御電圧決定ステップを更に備え、
     前記制御電圧出力ステップは、前記複数の画素回路に前記制御電圧決定ステップで決定された前記制御電圧を出力する
    請求項14に記載の位相変調方法。 
  22.  前記制御電圧出力ステップは、前記複数の画素回路に、前記制御電圧として所定のパルス幅またはパルス数のデジタル信号を出力し、
     デジタル信号保持ステップが、前記デジタル信号を保持し、
     前記非増幅電圧出力ステップは、前記駆動電圧が前記デジタル信号の最大振幅以下の場合には、前記デジタル信号を増幅せずに前記液晶に出力し、
     前記増幅電圧出力ステップは、前記駆動電圧が前記最大振幅を超える場合には、前記チャージポンプにて前記デジタル信号を増幅して前記液晶に出力する
    請求項14に記載の位相変調方法。 
PCT/JP2020/013395 2019-03-25 2020-03-25 位相変調装置及び位相変調方法 WO2020196647A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006291.9A CN113056702B (zh) 2019-03-25 2020-03-25 相位调制装置以及相位调制方法
US17/477,989 US11450293B2 (en) 2019-03-25 2021-09-17 Phase modulator and phase modulation method for reflecting incident light at desired angle

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2019-057247 2019-03-25
JP2019057222A JP7208510B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019057247A JP7208514B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019057239A JP7208513B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019-057222 2019-03-25
JP2019-057214 2019-03-25
JP2019057214A JP7127589B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019057219A JP7208509B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019057220A JP7131451B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019057225A JP7208511B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法
JP2019-057230 2019-03-25
JP2019-057225 2019-03-25
JP2019-057220 2019-03-25
JP2019-057239 2019-03-25
JP2019-057219 2019-03-25
JP2019057230A JP7208512B2 (ja) 2019-03-25 2019-03-25 位相変調装置、及び位相変調方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/477,989 Continuation US11450293B2 (en) 2019-03-25 2021-09-17 Phase modulator and phase modulation method for reflecting incident light at desired angle

Publications (1)

Publication Number Publication Date
WO2020196647A1 true WO2020196647A1 (ja) 2020-10-01

Family

ID=72608550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013395 WO2020196647A1 (ja) 2019-03-25 2020-03-25 位相変調装置及び位相変調方法

Country Status (3)

Country Link
US (1) US11450293B2 (ja)
CN (1) CN113056702B (ja)
WO (1) WO2020196647A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774342B2 (en) 2019-04-05 2023-10-03 Apple Inc. Particulate matter sensors based on split beam self-mixing interferometry sensors
US11112235B2 (en) 2019-04-05 2021-09-07 Apple Inc. Handling obstructions and transmission element contamination for self-mixing particulate matter sensors
US11692809B2 (en) 2019-09-18 2023-07-04 Apple Inc. Self-mixing interferometry-based absolute distance measurement with distance reference
US11874110B2 (en) 2020-09-25 2024-01-16 Apple Inc. Self-mixing interferometry device configured for non-reciprocal sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943709A (en) * 1989-05-11 1990-07-24 Hughes Aircraft Company Liquid crystal adaptive optics system
US20080055222A1 (en) * 2006-09-05 2008-03-06 Industrial Technology Research Institute Charge pump pixel driving circuit
JP2012053322A (ja) * 2010-09-02 2012-03-15 Chi Mei Electronics Corp ディスプレイ装置及びこれを有する電子機器
JP2016512343A (ja) * 2013-03-15 2016-04-25 レンズヴェクター インコーポレイテッドLensvector Incorporated 複数液晶セルレンズ内での光収束を改善する方法と装置
US20160360301A1 (en) * 2013-04-19 2016-12-08 Wavexing, Inc. Contentionless NxM Wavelength Cross Connect
JP2018045187A (ja) * 2016-09-16 2018-03-22 シチズン時計株式会社 光束分割素子及び顕微鏡装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059701B2 (en) * 2001-06-04 2015-06-16 Gold Charm Limited Method for setting transistor operating point and circuit therefor, method for changing signal component value and active-matrix liquid crystal display device
JP4269542B2 (ja) * 2001-06-04 2009-05-27 日本電気株式会社 トランジスタの動作点設定方法及びその回路、信号成分値変更方法並びにアクティブマトリクス型液晶表示装置
JP3908084B2 (ja) * 2002-04-26 2007-04-25 株式会社半導体エネルギー研究所 発光装置、電子機器
JP5297575B2 (ja) * 2005-03-04 2013-09-25 シチズンホールディングス株式会社 液晶光変調素子の駆動方法および駆動装置
JP4803637B2 (ja) * 2005-03-08 2011-10-26 東北パイオニア株式会社 アクティブマトリクス型発光表示パネルの駆動装置および駆動方法
WO2009063797A1 (en) * 2007-11-14 2009-05-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5685015B2 (ja) * 2010-07-02 2015-03-18 ローム株式会社 発光ダイオードの駆動回路およびそれを用いた発光装置、電子機器
JP6480184B2 (ja) * 2011-06-14 2019-03-06 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト パワートランジスタのゲートドライバ
JP5733154B2 (ja) * 2011-10-27 2015-06-10 株式会社Jvcケンウッド 液晶表示装置
JP6019468B2 (ja) 2012-09-11 2016-11-02 サンテック株式会社 波長選択光スイッチ装置
KR102063642B1 (ko) * 2013-08-07 2020-01-09 삼성디스플레이 주식회사 표시 패널 및 이를 구비한 표시 장치
JP6065125B1 (ja) * 2015-05-13 2017-01-25 凸版印刷株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943709A (en) * 1989-05-11 1990-07-24 Hughes Aircraft Company Liquid crystal adaptive optics system
US20080055222A1 (en) * 2006-09-05 2008-03-06 Industrial Technology Research Institute Charge pump pixel driving circuit
JP2012053322A (ja) * 2010-09-02 2012-03-15 Chi Mei Electronics Corp ディスプレイ装置及びこれを有する電子機器
JP2016512343A (ja) * 2013-03-15 2016-04-25 レンズヴェクター インコーポレイテッドLensvector Incorporated 複数液晶セルレンズ内での光収束を改善する方法と装置
US20160360301A1 (en) * 2013-04-19 2016-12-08 Wavexing, Inc. Contentionless NxM Wavelength Cross Connect
JP2018045187A (ja) * 2016-09-16 2018-03-22 シチズン時計株式会社 光束分割素子及び顕微鏡装置

Also Published As

Publication number Publication date
US11450293B2 (en) 2022-09-20
CN113056702A (zh) 2021-06-29
US20220005430A1 (en) 2022-01-06
CN113056702B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2020196647A1 (ja) 位相変調装置及び位相変調方法
US9148134B2 (en) Data driver, display panel driving device, and display device
US6724361B1 (en) Shift register and image display device
JP4185095B2 (ja) 液晶表示装置及びその駆動方法
RU2496153C1 (ru) Жидкокристаллическое устройство отображения и способ его возбуждения
KR101920885B1 (ko) 표시 장치 및 그 구동 방법
US20100045638A1 (en) Column data driving circuit, display device with the same, and driving method thereof
WO2011114569A1 (ja) シフトレジスタ、走査信号線駆動回路、および表示装置
US20050206629A1 (en) [source driver and liquid crystal display using the same]
KR20050048878A (ko) 소스 라인 리페어 기능을 갖는 액정표시장치 및 소스 라인리페어 방법
US20150287376A1 (en) Gate driver and display device including the same
WO2015033838A1 (ja) アクティブマトリクス基板、表示パネル及びそれを備えた表示装置
JP4730727B2 (ja) 液晶表示装置の駆動回路
JP2011128219A (ja) 表示装置、及び表示装置の駆動方法
JP2011112970A (ja) ソースドライバ及び表示装置
JP7208509B2 (ja) 位相変調装置、及び位相変調方法
JP7208514B2 (ja) 位相変調装置、及び位相変調方法
US20170178587A1 (en) Display apparatus and a method of driving the display apparatus
JP7208511B2 (ja) 位相変調装置、及び位相変調方法
JP7131451B2 (ja) 位相変調装置、及び位相変調方法
JP7127589B2 (ja) 位相変調装置、及び位相変調方法
JP2020160176A (ja) 位相変調装置、及び位相変調方法
JP7208510B2 (ja) 位相変調装置、及び位相変調方法
JP7208513B2 (ja) 位相変調装置、及び位相変調方法
JP2011112971A (ja) 表示装置、及び表示装置の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779603

Country of ref document: EP

Kind code of ref document: A1