WO2020196565A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020196565A1
WO2020196565A1 PCT/JP2020/013164 JP2020013164W WO2020196565A1 WO 2020196565 A1 WO2020196565 A1 WO 2020196565A1 JP 2020013164 W JP2020013164 W JP 2020013164W WO 2020196565 A1 WO2020196565 A1 WO 2020196565A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
refrigerant
heat exchanger
indoor
outdoor
Prior art date
Application number
PCT/JP2020/013164
Other languages
English (en)
French (fr)
Inventor
佑 廣崎
聡彦 安藤
慎太郎 真田
光哉 青木
達朗 山▲崎▼
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2020244901A priority Critical patent/AU2020244901B2/en
Priority to CN202080022820.4A priority patent/CN113614469B/zh
Priority to EP20777456.3A priority patent/EP3951285B1/en
Priority to US17/441,906 priority patent/US20220146165A1/en
Publication of WO2020196565A1 publication Critical patent/WO2020196565A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator

Definitions

  • This disclosure relates to an air conditioner.
  • a refrigerant having a small global warming potential for example, an R32 refrigerant
  • a refrigerant circuit from the viewpoint of preventing global warming. Since most of the refrigerants having a small global warming potential, including the R32 refrigerant, are flammable refrigerants, the amount of refrigerant charged in the refrigerant circuit is reduced in order to reduce the amount of leakage when the refrigerant leaks from the refrigerant circuit.
  • a certain effect can be expected for the purpose, but due to the recent increase in environmental regulations, it is required to further reduce the amount of refrigerant by using other technologies in combination.
  • a method of reducing the amount of refrigerant charged in the refrigerant circuit can be considered by controlling the refrigerant flowing inside the liquid pipe to always be in a low density state.
  • the refrigerant that circulates inside the liquid pipe during cooling operation is in a low-density gas-liquid two-phase state, but the refrigerant that circulates inside the liquid pipe during heating operation. Is in a high-density liquid single-phase state. Since the state of the refrigerant flowing inside the liquid pipe is controlled to be in a low-density gas-liquid two-phase state at all times during operation, it always expands on the upstream side of the liquid pipe in the refrigerant circuit during both cooling operation and heating operation. It needs to be depressurized by a valve. Therefore, it is conceivable to equip the indoor unit and the outdoor unit with expansion valves, respectively.
  • the expansion valve on the downstream side of the liquid pipe in the refrigerant circuit does not reduce the pressure, so it is controlled to be fully open. Further, when the opening degree of the expansion valve on the upstream side of the liquid pipe is changed, the dryness of the gas-liquid two-phase refrigerant that passes through the liquid pipe and the expansion valve on the downstream side and flows into the heat exchanger on the downstream side. Fluctuates. When the dryness fluctuates, the refrigerant density changes. For example, as the dryness increases, the refrigerant density decreases.
  • the density of the refrigerant flowing inside the liquid pipe or the expansion valve on the downstream side is low, the flow velocity of the refrigerant is higher than when the density of the refrigerant is high. As a result, the pressure loss generated when the refrigerant flows through the liquid pipe or the expansion valve on the downstream side becomes large, and the pressure of the refrigerant decreases.
  • the opening degree of the expansion valve is made small.
  • the total amount of decompression increases when the pressure is changed.
  • controllability deteriorates. For example, if the amount of depressurization per unit control amount of the expansion valve suddenly increases, the low pressure in the refrigerant circuit of the air conditioner becomes excessively low. As a result, the density of the refrigerant sucked into the compressor is excessively lowered, the temperature of the compressor is excessively raised, and the reliability is deteriorated.
  • this disclosure proposes a technique capable of suppressing a decrease in the reliability of the compressor while reducing the amount of the refrigerant charged in the refrigerant circuit.
  • the air conditioner of the present disclosure includes a refrigerant circuit and control means.
  • the compressor, the flow path switching means, the indoor heat exchanger, the first expansion valve, the liquid pipe, the second expansion valve, and the outdoor heat exchanger are connected in order.
  • the control means performs switching control of the flow path switching means and opening degree control of the first expansion valve and the second expansion valve. Further, the control means switches the flow path switching means so that the refrigerant flows in the order of the indoor heat exchanger, the first expansion valve, the liquid pipe, the second expansion valve, and the outdoor heat exchanger during the heating operation. Further, the control means includes a dryness calculation means for calculating the dryness of the refrigerant flowing into the outdoor heat exchanger during the heating operation.
  • control means controls the first expansion valve so that the refrigerant flowing inside the liquid pipe is in a gas-liquid two-phase state when the dryness is equal to or less than the threshold value during the heating operation, and the second expansion valve is in a gas-liquid two-phase state.
  • a normal mode in which the opening degree of the expansion valve is controlled to be a predetermined opening degree is executed, and if the dryness exceeds the threshold value, control in the direction of reducing the opening degree of the first expansion valve is prohibited. To execute.
  • FIG. 3 is a refrigerant circuit diagram showing the air conditioner of the present disclosure.
  • the air conditioner 1 is applied to an air conditioner for heating and cooling a room, and includes an outdoor unit 2 and an indoor unit 3 as shown in FIG. 1A.
  • the outdoor unit 2 is connected to the indoor unit 3 by a liquid pipe 5 and a gas pipe 6.
  • the outdoor unit 2 includes a compressor 21, a four-way valve (flow path switching means) 22, an outdoor heat exchanger 23, an outdoor expansion valve 24 (second expansion valve), and an outdoor unit control unit 200 (control means).
  • the indoor unit 3 includes an indoor heat exchanger 31 and an indoor expansion valve (first expansion valve) 32.
  • the compressor 21 includes a discharge port 18 as a discharge unit and a suction port 19 as a suction unit.
  • the compressor 21 is controlled by the outdoor unit control unit 200 to compress the refrigerant supplied from the suction port 19 via the suction pipe 42 and the four-way valve 22, and the compressed refrigerant is compressed from the discharge port 18. It is supplied to the four-way valve 22 via the discharge pipe 41.
  • the four-way valve 22 is connected to the discharge pipe 41 and the suction pipe 42, and is connected to the outdoor heat exchanger 23 via the refrigerant pipe 43 and to the indoor unit 3 via the refrigerant pipe 44 and the gas pipe 6, respectively. ..
  • the indoor unit 3 and the outdoor heat exchanger 23 are connected to each other via a refrigerant pipe 45.
  • the four-way valve 22 is controlled by the outdoor unit control unit 200 to switch the air conditioner 1 to either the heating mode or the cooling mode.
  • the four-way valve 22 supplies the refrigerant discharged from the compressor 21 via the discharge pipe 41 to the outdoor heat exchanger 23, and the refrigerant flowing out from the indoor unit 3 is sucked into the compressor 21. Supplied via 42.
  • the four-way valve 22 supplies the refrigerant discharged from the compressor 21 via the discharge pipe 41 to the indoor unit 3, and the refrigerant flowing out from the outdoor heat exchanger 23 is sucked into the compressor 21. Supplied via 42.
  • the outdoor heat exchanger 23 is connected to the outdoor expansion valve 24 via the refrigerant pipe 45.
  • An outdoor fan 27 is arranged in the vicinity of the outdoor heat exchanger 23.
  • the outdoor fan 27 is rotated by a fan motor (not shown) to take in the outside air into the outdoor unit 2 and discharge the outside air heat exchanged with the refrigerant by the outdoor heat exchanger 23 to the outside of the outdoor unit 2. ..
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant supplied from the four-way valve 22 and the outside air taken into the outdoor unit 2, and the heat-exchanged refrigerant is exchanged with the expansion valve 24.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant supplied from the outdoor expansion valve 24 and the outside air taken into the outdoor unit 2, and the heat-exchanged refrigerant is used as a four-way valve. Supply to 22.
  • the outdoor expansion valve 24 is connected to the indoor expansion valve 32 of the indoor unit 3 via the refrigerant pipe 45, the liquid pipe 5, and the refrigerant pipe 46.
  • the outdoor expansion valve 24 In the cooling mode, the outdoor expansion valve 24 adiabatically expands the refrigerant supplied from the outdoor heat exchanger 23 to reduce the pressure, and supplies the low-temperature low-pressure two-phase refrigerant to the indoor unit 3.
  • the outdoor expansion valve 24 In the heating mode, the outdoor expansion valve 24 adiabatically expands the refrigerant supplied from the indoor unit 3 to reduce the pressure, and supplies the low-temperature and low-pressure two-phase refrigerant to the outdoor heat exchanger 23.
  • the opening degree of the outdoor expansion valve 24 is adjusted by being controlled by the outdoor unit control unit 200, and in the heating mode, the flow rate of the refrigerant supplied from the indoor unit 3 to the outdoor heat exchanger 23 is adjusted. .. In the cooling mode, the flow rate of the refrigerant supplied from the outdoor heat exchanger 23 to the indoor unit 3 is adjusted.
  • the discharge pipe 41 of the outdoor unit 2 has a discharge temperature sensor 71 that detects the temperature of the refrigerant discharged from the compressor 21 (the discharge temperature described above) and a discharge pressure sensor that detects the pressure. 72 is provided. Further, the suction pipe 42 is provided with a suction temperature sensor 73 for detecting the temperature (suction temperature) of the refrigerant sucked into the compressor 21 and a suction pressure sensor 74 for detecting the pressure. Further, an outdoor refrigerant temperature sensor 75 for detecting the temperature of the refrigerant passing through the portion is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23 in the refrigerant pipe 45. Further, the outdoor heat exchanger 23 is provided with an outdoor heat exchange intermediate temperature sensor 76 that detects the temperature of the refrigerant flowing inside.
  • the indoor unit 3 has an indoor heat exchanger 31, an indoor expansion valve 32, and an indoor fan 33.
  • the indoor expansion valve 32 is connected to the indoor heat exchanger 31 via a refrigerant pipe 46.
  • the indoor expansion valve 32 adiabatically expands the refrigerant supplied from the outdoor unit 2 to reduce the pressure, and supplies the low-temperature low-pressure two-phase refrigerant to the indoor heat exchanger 31.
  • the indoor expansion valve 32 adiabatically expands the refrigerant supplied from the indoor heat exchanger 31 to reduce the pressure, and supplies the low-temperature low-pressure two-phase refrigerant to the outdoor unit 2.
  • the indoor fan 33 is arranged in the vicinity of the indoor heat exchanger 31, and is rotated by a fan motor (not shown) to take indoor air into the indoor unit 3 and to take in indoor air by the indoor heat exchanger 31 as a refrigerant.
  • the indoor air that has exchanged heat with is released into the room.
  • the indoor heat exchanger 31 is connected to the four-way valve 22 via the refrigerant pipe 44 and to the indoor expansion valve 32 via the refrigerant pipe 45, respectively.
  • the indoor heat exchanger 31 is connected to the four-way valve 22 via the refrigerant pipe 47, the gas pipe 6, and the refrigerant pipe 44.
  • the air conditioner 1 When the air conditioner 1 is switched to the cooling mode, it functions as an evaporator, and when the air conditioner 1 is switched to the heating mode, it functions as a condenser. That is, in the cooling mode, the indoor heat exchanger 31 exchanges heat between the low-temperature and low-pressure two-phase refrigerant supplied from the indoor expansion valve 32 and the indoor air taken into the indoor unit 3. The heat-exchanged indoor air is discharged into the room, and the heat-exchanged refrigerant is supplied to the four-way valve 22.
  • the indoor heat exchanger 31 exchanges heat between the refrigerant supplied from the four-way valve 22 and the indoor air taken into the indoor unit 3, and the heat-exchanged indoor air is transferred to the room. It is released and the heat-exchanged refrigerant is supplied to the indoor expansion valve 32.
  • an indoor refrigerant temperature sensor 77 that detects the temperature of the refrigerant passing through the portion is provided between the indoor expansion valve 32 and the indoor heat exchanger 31 in the refrigerant pipe 46. Further, the indoor heat exchanger 31 is provided with an indoor heat exchange intermediate temperature sensor 78 that detects the temperature of the refrigerant flowing inside. Further, an indoor temperature sensor 79 for detecting the temperature of the indoor air flowing into the indoor unit 3, that is, the room temperature is provided near the suction port of the indoor unit 3 (not shown).
  • the outdoor unit control unit 200 is composed of a so-called microcomputer, and is mounted on a control board housed in an electrical component box (not shown) of the outdoor unit 2.
  • the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, a sensor input unit 240, and a dryness calculation unit (dryness calculation means) 250 (note that the dryness calculation unit) ,
  • the outdoor unit control means 200 may be simply referred to as a control means).
  • the storage unit 220 is composed of a flash memory, and stores the control program of the outdoor unit 2, the detection value corresponding to the detection signals from various sensors, the control state of the compressor 21, the outdoor fan 25, and the like. Although not shown, the storage unit 220 stores in advance a rotation speed table in which the rotation speed of the compressor 21 is determined according to the required capacity received from the indoor unit 3.
  • the communication unit 230 is an interface for communicating with the indoor unit 3.
  • the sensor input unit 240 captures the detection results of the various sensors of the outdoor unit 2 and outputs them to the CPU 210.
  • the dryness calculation unit 250 calculates the dryness of the refrigerant from the detection results of various sensors of the outdoor unit 2.
  • the CPU 210 captures the detection results of each sensor of the outdoor unit 2 described above via the sensor input unit 240. Further, the CPU 210 captures the control signal transmitted from the indoor unit 3 via the communication unit 230. The CPU 210 controls the drive of the compressor 21 and the outdoor fan 27 based on the captured detection result, control signal, and the like. Further, the CPU 210 performs switching control of the four-way valve 22 based on the captured detection result and control signal. Further, the CPU 210 adjusts the opening degree of the outdoor expansion valve 24 and the indoor expansion valve 32 based on the captured detection result and control signal.
  • the air conditioner 1 of the present embodiment is configured as a single type having one indoor unit 3 corresponding to one outdoor unit 2, but has a plurality of indoor units 3 corresponding to one outdoor unit 2. It may be configured as a multi-type.
  • FIG. 1A shows the flow of the refrigerant in the refrigerant circuit during the heating operation with arrows.
  • the four-way valve 22 is switched to the cooling mode by controlling the four-way valve 22.
  • the compressor 21 controlled by the outdoor unit control unit 200 compresses the gas refrigerant sucked from the four-way valve 22 via the suction pipe 42.
  • the compressor 21 discharges the compressed high-temperature and high-pressure gas refrigerant to the four-way valve 22.
  • the four-way valve 22 supplies the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 to the outdoor heat exchanger 23.
  • the outdoor heat exchanger 23 condenses and liquefies the high-temperature and high-pressure gas refrigerant by exchanging heat between the outside air taken into the outdoor unit 2 and the high-temperature and high-pressure gas refrigerant.
  • the outdoor heat exchanger 23 supplies the high-pressure liquid refrigerant to the outdoor expansion valve 24.
  • the outdoor expansion valve 24 adiabatically expands the high-pressure liquid refrigerant supplied from the outdoor heat exchanger 23 to form a low-temperature low-pressure two-phase refrigerant.
  • the outdoor expansion valve 24 supplies a low-temperature low-pressure two-phase refrigerant to the indoor heat exchanger 31 via the indoor expansion valve 32 of the indoor unit 3.
  • the indoor heat exchanger 31 exchanges heat between the low-temperature and low-pressure two-phase refrigerant supplied from the indoor expansion valve 32 and the indoor air taken into the indoor unit 3, thereby causing the indoor heat exchanger 31 to exchange heat between the low-temperature and low-pressure two-phase refrigerant. Is evaporated and gasified.
  • the indoor heat exchanger 31 supplies a low-pressure gas refrigerant to the four-way valve 22.
  • the four-way valve 22 supplies the low-pressure gas refrigerant flowing out of the indoor heat exchanger 31 to the compressor 21.
  • the four-way valve 22 is switched to the heating mode by controlling the four-way valve 22.
  • the compressor 21 controlled by the outdoor unit control unit 200 compresses the gas refrigerant sucked from the four-way valve 22 via the suction pipe 42.
  • the compressor 21 discharges the compressed high-temperature and high-pressure gas refrigerant to the four-way valve 22.
  • the four-way valve 22 is switched to the heating mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is supplied to the indoor heat exchanger 31 of the indoor unit 3.
  • the indoor heat exchanger 31 exchanges heat between the high-temperature and high-pressure gas refrigerant supplied from the four-way valve 22 to the indoor unit 3 and the indoor air taken into the indoor unit 3 to exchange high-temperature and high-pressure gas.
  • the refrigerant is condensed and liquefied.
  • the indoor heat exchanger 31 supplies a high-pressure liquid refrigerant to the indoor expansion valve 32.
  • the indoor expansion valve 32 adiabatically expands the high-pressure liquid refrigerant supplied from the indoor heat exchanger 31 to form a low-temperature low-pressure two-phase refrigerant.
  • the indoor expansion valve 32 supplies a low-temperature low-pressure two-phase refrigerant to the outdoor heat exchanger 23 via the outdoor expansion valve 24.
  • the outdoor heat exchanger 23 evaporates the low-temperature low-pressure refrigerant by exchanging heat between the outside air taken into the outdoor unit 2 and the low-temperature low-pressure two-phase refrigerant supplied from the expansion valve 24. Gasify.
  • the outdoor heat exchanger 23 supplies a low-pressure gas refrigerant to the four-way valve 22. When the four-way valve 22 is switched to the heating mode, the four-way valve 22 supplies the low-pressure gas refrigerant flowing out of the outdoor heat exchanger 23 to the compressor 21.
  • the indoor expansion valve 32 adjusts the opening degree so that the refrigerant inside the liquid pipe 5 is in a gas-liquid two-phase state, and the outdoor expansion valve 24 opens a predetermined value. Control so that the degree (fully open) is reached.
  • the outdoor unit control unit 200 controls the opening degree of the indoor expansion valve 32 by controlling the target discharge temperature.
  • the target discharge temperature control adjusts the opening degree of the expansion valve so that the discharge temperature Td becomes the target value (target discharge temperature Tdt) for the purpose of bringing the refrigerant sucked into the compressor 21 into an appropriate state. It is control.
  • the state of the refrigerant sucked into the compressor 21 is such that the dryness is around 1 (for example, 0.8 to 1.0) and the suction superheat degree SH is around 0 (for example, 0 to 5). Make time the right state. This is because if the dryness is much lower than 1, the liquid refrigerant is sucked into the compressor 21, and the compressor 21 may be damaged by the liquid compression. On the other hand, if the suction superheat degree SH is much higher than 0, the temperature inside the compressor 21 rises excessively, leading to deterioration of reliability.
  • the target discharge temperature Tdt is calculated based on the detection results detected by various sensors provided in the air conditioner 1, that is, the target discharge temperature Tdt is a state in which the refrigerant sucked into the compressor 21 is appropriate. It is an estimated value of the discharge temperature Td at the time of.
  • the detection result includes the detection values of the discharge pressure sensor 72, the suction temperature sensor 73, the suction pressure sensor 74, the outdoor heat exchange intermediate temperature sensor 76, and the indoor heat exchange intermediate temperature sensor 78.
  • the target discharge temperature Tgt is a value obtained by adding an adjustment value to the theoretical discharge temperature.
  • the theoretical discharge temperature is a theoretical value calculated based on the load state of the air conditioner 1 specified by the detection result without considering the pressure loss and the operation efficiency in the refrigerant circuit of the air conditioner 1.
  • the theoretical discharge temperature is calculated from the load state (pressure of each part, temperature) of the refrigeration cycle and the target superheat degree Tsh.
  • the target superheat degree Tsh is set to 0, that is, the refrigerant flowing into the compressor 21 is set so that the dryness is around 1 and the suction superheat degree SH is around 0.
  • the refrigerant is depressurized by the indoor expansion valve 32 on the upstream side of the liquid pipe 5 during the heating operation, so that the density of the refrigerant flowing inside the liquid pipe 5 can be reduced. As a result, the amount of refrigerant charged in the refrigerant circuit can be reduced.
  • the outdoor expansion valve 24, which is an expansion valve on the downstream side of the liquid pipe 5, is fully opened, the pressure of the refrigerant flowing out of the outdoor expansion valve 24 decreases due to the pressure loss due to the flow path resistance.
  • the opening degree of the indoor expansion valve 32 is changed, the dryness of the gas-liquid two-phase state refrigerant that passes through the liquid pipe 5 and the outdoor expansion valve 24 and flows into the outdoor heat exchanger 23 changes.
  • the refrigerant density changes. For example, as the dryness increases, the refrigerant density decreases.
  • FIG. 3 is a graph showing the relationship between the dryness of the refrigerant in the gas-liquid two-phase state and the pressure loss [Pa] of the refrigerant passing through the liquid pipe 5 and the outdoor expansion valve 24 when the dryness is 0. Is.
  • the horizontal axis is the dryness and the vertical axis is the pressure loss.
  • the pressure loss of the refrigerant passing through the liquid pipe 5 and the outdoor expansion valve 24 increases sharply as the dryness increases.
  • the indoor expansion valve 32 which is the expansion valve on the upstream side of the liquid pipe 5
  • the indoor expansion valve 32 The total decompression amount (indoor expansion valve 32 + liquid pipe 5 + outdoor expansion valve 24) when the opening degree is changed becomes large.
  • controllability deteriorates.
  • the amount of depressurization per unit control amount of the expansion valve suddenly increases, the low pressure in the refrigerant circuit of the air conditioner 1 becomes excessively reduced.
  • the density of the refrigerant sucked into the compressor 21 is excessively lowered, the temperature of the compressor 21 is excessively raised, and the reliability is deteriorated.
  • the dryness of the refrigerant flowing into the evaporator is 0.1 to 0 while the discharge temperature Td is stably operating near the target discharge temperature Tdt. It changes in the range of 0.2. Therefore, when the dryness exceeds 0.2, the total decompression amount (indoor expansion valve 32 + liquid pipe 5 + outdoor expansion valve 24) when the opening degree of the indoor expansion valve 32 is changed becomes large, and the compressor 21 It can be said that the reliability of the device may deteriorate.
  • the outdoor unit control unit 200 includes a dryness calculation unit 250 for calculating the dryness of the refrigerant flowing into the heat exchanger (outdoor heat exchanger 23 during heating operation) on the downstream side of the liquid pipe 5.
  • a dryness calculation unit 250 for calculating the dryness of the refrigerant flowing into the heat exchanger (outdoor heat exchanger 23 during heating operation) on the downstream side of the liquid pipe 5.
  • the outdoor unit control unit 200 controls the opening degree of the expansion valve on the downstream side (outdoor expansion valve 24 during heating operation) at the target discharge temperature during the prohibition mode. As a result, it is possible to control the refrigerant sucked into the compressor 21 to be in an appropriate state even during the prohibition mode.
  • FIG. 2 is a flowchart showing a control method of the outdoor unit control unit 200 during the heating operation. During the heating operation, the outdoor unit control unit 200 repeatedly executes the processes after step ST01.
  • the outdoor unit control unit 200 determines whether or not the discharge temperature Td detected by the discharge temperature sensor 71 exceeds the target discharge temperature Tdt (ST01).
  • the target discharge temperature Tdt is calculated based on the detection results detected by the various sensors provided in the air conditioner 1, and the detection results are the discharge pressure sensor 72, the suction temperature sensor 73, and the suction. It includes the detected values of the pressure sensor 74, the outdoor heat exchange intermediate temperature sensor 76, and the indoor heat exchange intermediate temperature sensor 78.
  • the outdoor expansion valve (second expansion valve) 24 When the discharge temperature Td exceeds the target discharge temperature Tdt (ST01-YES), it is determined whether or not the outdoor expansion valve (second expansion valve) 24 has a predetermined opening degree, that is, is fully open (ST02). When the outdoor expansion valve 24 is fully open (ST02-YES), the opening degree of the indoor expansion valve (first expansion valve) 32 is controlled in the opening direction (ST04) to lower the discharge temperature Td. When the outdoor expansion valve 24 is not fully opened (ST02-NO), the outdoor expansion valve 24 is controlled in the opening direction (ST04) to lower the discharge temperature Td. If the indoor expansion valve 32 on the upstream side of the liquid pipe 5 is controlled in the opening direction, the density of the refrigerant flowing inside the liquid pipe 5 is increased. Therefore, the outdoor expansion valve 24 on the downstream side of the liquid pipe 5 is used. This is because it is preferable if the amount of reduced pressure can be adjusted.
  • the discharge temperature Td is equal to or less than the target discharge temperature Tdt (ST01-NO)
  • the threshold value A is stored in advance in a storage unit (not shown) of the outdoor unit control unit 200.
  • the dryness of the refrigerant flowing into the outdoor heat exchanger 23 is the condensation temperature (detected value of the indoor heat exchange intermediate temperature sensor 78 during heating operation) and evaporation temperature (detected value of the outdoor heat exchange intermediate temperature sensor 76 during heating operation). ) And the condenser outlet temperature (detected value of the indoor refrigerant temperature sensor 77 during heating operation).
  • the threshold value A is, for example, 0.2 as described above. The allowable size of the threshold value A varies depending on the inner diameter and length of the liquid pipe 5, the valve diameter of the outdoor expansion valve 24, and the like.
  • the threshold value A is set smaller than when the inner diameter of the liquid pipe 5 is large, the liquid pipe 5 is short, or the valve diameter of the outdoor expansion valve 24 is large. Further, the larger the circulation amount of the refrigerant, the larger the pressure loss of the refrigerant passing through the liquid pipe 5 and the outdoor expansion valve 24. Therefore, the threshold value A may be changed according to the change in the circulation amount of the refrigerant. Specifically, as the number of revolutions of the compressor 21 increases, the threshold value A may be set to a larger value.
  • the outdoor unit control unit 200 if the dryness of the refrigerant flowing into the outdoor heat exchanger 23 is equal to or less than the threshold value A, the refrigerant flowing inside the liquid pipe 5 is in a gas-liquid two-phase state.
  • the indoor expansion valve (first expansion valve) 32 is controlled and the opening degree of the outdoor expansion valve (second expansion valve) 24 is controlled to be a predetermined opening (fully open). )I do.
  • the outdoor unit control unit 200 controls to reduce the opening degree of the indoor expansion valve (first expansion valve) 32 when the dryness of the refrigerant flowing into the outdoor heat exchanger 23 exceeds the threshold value A.
  • the prohibition mode is executed, and during the prohibition mode, the opening degree of the outdoor expansion valve (second expansion valve) 24 is controlled so that the refrigerant sucked into the compressor 21 is in an appropriate state. This prevents the reliability of the compressor from being lowered even when the dryness of the refrigerant flowing into the outdoor heat exchanger 23 is high and the amount of decompression per unit control amount of the expansion valve is large. it can. Further, even during the prohibition mode, the refrigerant sucked into the compressor 21 can be controlled to be in an appropriate state.
  • the outdoor unit control unit 200 includes a dryness calculation unit 250 for calculating the dryness of the refrigerant flowing into the indoor heat exchanger 31, which is a heat exchanger on the downstream side of the liquid pipe 5.
  • a prohibition mode is executed in which control in the direction of reducing the opening degree of the outdoor expansion valve (second expansion valve) 24, which is an expansion valve on the upstream side of the liquid pipe 5, is prohibited.
  • the outdoor unit control unit 200 is an indoor expansion valve (first expansion valve) which is an expansion valve on the downstream side of the liquid pipe 5 so that the refrigerant sucked into the compressor 21 is in an appropriate state during the prohibition mode. ) 32 controls the opening degree. As a result, it is possible to control the refrigerant sucked into the compressor 21 to be in an appropriate state even during the prohibition mode.
  • first expansion valve an expansion valve on the downstream side of the liquid pipe 5 so that the refrigerant sucked into the compressor 21 is in an appropriate state during the prohibition mode.
  • the opening degree of the expansion valve on the upstream side of the liquid pipe 5 (in the normal mode) and the expansion valve on the downstream side of the liquid pipe 5 (in the prohibited mode) is controlled by the target discharge temperature control.
  • the present invention is not limited to this, and it suffices if the opening degree can be adjusted so that the refrigerant inside the liquid pipe 5 is in a gas-liquid two-phase state. It may be a method (target superheat degree control) of controlling so as to be 2 to 5).
  • the suction superheat degree is, for example, the evaporation temperature (detected value of the indoor heat exchange intermediate temperature sensor 78 during cooling operation, the detected value of the outdoor heat exchange intermediate temperature sensor 76 during heating operation) and the suction temperature (suction temperature sensor 73). Calculated from the detected value).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室外機制御部(200)は、液管(5)の下流側の熱交換器(冷房運転時は室内熱交換器(31)、暖房運転時は室外熱交換器(23))に流入する冷媒の乾き度を算出する乾き度算出部(250)を備え、当該乾き度が閾値Aを上回るとき、液管(5)の上流側の膨張弁(冷房運転時は室内膨張弁(32)、暖房運転時は室外膨張弁(24))の開度を小さくする方向に制御することを禁止する禁止モードを実行する。

Description

空気調和装置
 本開示は、空気調和装置に関する。
 空気調和装置において、近年では、地球温暖化防止の観点から、地球温暖化係数の小さい冷媒、例えば、R32冷媒が冷媒回路に充填されている。R32冷媒を含む地球温暖化係数の小さい冷媒の多くは可燃性冷媒であるため、冷媒回路から冷媒が漏洩した際の漏洩量を減らすために、冷媒回路に充填する冷媒量が削減される。冷媒量を削減する手段として、室内機と室外機を接続する接続配管(液管・ガス管)の内径を従来よりも小さくする方法がある。接続配管の内径を小さくすれば、冷媒回路の内容積が小さくなるため、冷媒回路に充填する冷媒量を削減できる。
特開2013-200090号公報
 上記の方法によれば、目的に対して一定の効果が見込めるが、昨今の環境規制の高まりにより、他の技術も併用して更なる冷媒量の削減が求められている。例えば、液管の内部を流通する冷媒が常に低密度状態となるように制御することで、冷媒回路に充填する冷媒量を削減する方法が考えられる。
 室外機にのみ膨張弁を備えた空気調和装置の場合、冷房運転中に液管の内部を流通する冷媒は低密度な気液二相状態だが、暖房運転中に液管の内部を流通する冷媒は高密度な液単相状態となる。液管の内部を流通する冷媒の状態が、運転中常に低密度な気液二相状態となるように制御するため、冷房運転時でも暖房運転時でも常に冷媒回路における液管の上流側で膨張弁によって減圧させる必要がある。そのため、膨張弁を室内機と室外機にそれぞれ備えることが考えられる。
 膨張弁を室内機と室外機にそれぞれ備えた空気調和装置では、冷媒回路における液管の下流側の膨張弁では減圧しないため、全開になるように制御する。また、液管の上流側の膨張弁の開度を変化させると、液管やその下流側の膨張弁を通過し、下流側の熱交換器に流入する気液二相状態の冷媒の乾き度が変動する。乾き度が変動すると、冷媒密度が変化する。例えば、乾き度が上昇すると、冷媒密度は低下する。液管や下流側の膨張弁の内部を流れる冷媒の密度が低くなれば、冷媒の密度が高い場合と比べて冷媒の流速が速くなる。その結果、冷媒が液管や下流側の膨張弁を流れる際に生じる圧力損失が大きくなり、冷媒の圧力は低下する。
 つまり、液管の下流側の熱交換器に流入する気液二相状態の冷媒の乾き度が高いときにおいて、液管の上流側の膨張弁を制御する場合、当該膨張弁の開度を小さくする方向に変化させたときにおける、総減圧量(上流側の膨張弁+液管+下流側の膨張弁)が大きくなる。その結果、制御性が悪化する。例えば、膨張弁の単位制御量当たりの減圧量が急激に大きくなると、空気調和装置の冷媒回路における低圧が過剰に低下してしまう。その結果、圧縮機に吸入される冷媒の密度が過剰に低下して、圧縮機の温度が過昇する等、信頼性が悪化する。
 そこで、本開示では、冷媒回路に充填する冷媒量を削減しつつ、圧縮機の信頼性が低下することを抑制することができる技術を提案する。
 本開示の空気調和装置は、冷媒回路と、制御手段とを有する。冷媒回路では、圧縮機と、流路切替手段と、室内熱交換器と、第1膨張弁と、液管と、第2膨張弁と、室外熱交換器とが順に接続されている。制御手段は、流路切替手段の切替制御と、第1膨張弁および第2膨張弁の開度制御とを行う。また、制御手段は、暖房運転時において、室内熱交換器、第1膨張弁、液管、第2膨張弁、室外熱交換器の順に冷媒が流れるように流路切替手段を切替える。また、制御手段は、暖房運転時における室外熱交換器に流入する冷媒の乾き度を算出する乾き度算出手段を備える。また、制御手段は、暖房運転時において、乾き度が閾値以下であれば、液管の内部を流通する冷媒が気液二相状態となるように第1膨張弁を制御し、且つ、第2膨張弁の開度が所定の開度となるように制御する通常モードを実行し、乾き度が閾値を上回れば、第1膨張弁の開度を小さくする方向に制御することを禁止する禁止モードを実行する。
 本開示によれば、冷媒回路に充填する冷媒量を削減しつつ、圧縮機の信頼性が低下することを抑制することができる。
本開示の空気調和装置を示す冷媒回路図である。 本開示の空気調和装置を示す冷媒回路図である。 本開示の室外機制御部200の暖房運転時における制御方法を示すフローチャートである。 気液二相状態の冷媒の乾き度と冷媒密度[kg/m3]の関係を示したグラフである。
 以下に、本開示の空気調和装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの本開示の技術が限定されるものではない。
[空気調和装置の構成]
 図3は、本開示の空気調和装置を示す冷媒回路図である。空気調和装置1は、室内を冷暖房する空気調和装置に適用されており、図1Aに示すように、室外機2と、室内機3とを備えている。室外機2は、液管5とガス管6によって室内機3と接続されている。室外機2は、圧縮機21、四方弁(流路切替手段)22、室外熱交換器23、室外膨張弁24(第2膨張弁)及び室外機制御部200(制御手段)を備えている。室内機3は、室内熱交換器31及び室内膨張弁(第1膨張弁)32を備えている。
 圧縮機21は、吐出部としての吐出口18と、吸入部としての吸入口19と、を備えている。圧縮機21は、室外機制御部200によって制御されることで、吸入口19から吸入管42及び四方弁22を介して供給される冷媒を圧縮し、吐出口18から、その圧縮された冷媒を吐出管41を介して四方弁22へ供給する。
 四方弁22は、吐出管41及び吸入管42と接続されると共に、冷媒配管43を介して室外熱交換器23に、冷媒配管44及びガス管6を介して室内機3にそれぞれ接続されている。室内機3と室外熱交換器23は、冷媒配管45を介して接続されている。四方弁22は室外機制御部200に制御されることにより、空気調和装置1を暖房モードまたは冷房モードのどちらかに切り替える。冷房モードに切り替えられたとき四方弁22は、吐出管41を介して圧縮機21から吐出された冷媒を室外熱交換器23に供給し、室内機3から流出した冷媒を圧縮機21に吸入管42を介して供給する。暖房モードに切り替えられたとき四方弁22は、吐出管41を介して圧縮機21から吐出された冷媒を室内機3に供給し、室外熱交換器23から流出した冷媒を圧縮機21に吸入管42を介して供給する。
 室外熱交換器23は、冷媒配管45を介して室外膨張弁24に接続されている。室外熱交換器23の近傍には、室外ファン27が配置されている。室外ファン27は、ファンモータ(図示せず)によって回転されることで、室外機2の内部へ外気を取り込み、室外熱交換器23によって冷媒と熱交換した外気を室外機2の外部へ放出する。室外熱交換器23は、冷房モードの場合、四方弁22から冷媒が供給された冷媒と、室外機2の内部に取り込まれた外気とを熱交換させ、その熱交換された冷媒を膨張弁24に供給する。室外熱交換器23は、暖房モードの場合、室外膨張弁24から冷媒が供給された冷媒と、室外機2の内部に取り込まれた外気とを熱交換させ、その熱交換された冷媒を四方弁22に供給する。
 室外膨張弁24は、冷媒配管45、液管5、冷媒配管46を介して室内機3の室内膨張弁32に接続されている。室外膨張弁24は、冷房モードの場合に、室外熱交換器23から供給された冷媒を断熱膨張させることにより減圧し、低温低圧となった二相冷媒を室内機3に供給する。室外膨張弁24は、暖房モードの場合に、室内機3から供給された冷媒を断熱膨張させることにより減圧し、低温低圧となった二相冷媒を室外熱交換器23に供給する。さらに、室外膨張弁24は、室外機制御部200に制御されることにより、開度が調節され、暖房モードの場合、室内機3から室外熱交換器23に供給される冷媒の流量を調節する。冷房モードの場合、室外熱交換器23から室内機3に供給される冷媒の流量を調節する。
 以上説明した構成の他に、室外機2の吐出管41には、圧縮機21から吐出される冷媒の温度(上述した吐出温度)を検出する吐出温度センサ71と、圧力を検出する吐出圧力センサ72が設けられている。また、吸入管42には、圧縮機21に吸入される冷媒の温度(吸入温度)を検出する吸入温度センサ73と、圧力を検出する吸入圧力センサ74が設けられている。また、冷媒配管45における室外膨張弁24と室外熱交換器23の間に、当該箇所を通過する冷媒の温度を検出する室外側冷媒温度センサ75が設けられている。また、室外熱交換器23には、内部を流れる冷媒の温度を検出する室外熱交中間温度センサ76が設けられている。
 室内機3は、室内熱交換器31、室内膨張弁32及び室内ファン33を有する。室内膨張弁32は、冷媒配管46を介して室内熱交換器31に接続されている。室内膨張弁32は、冷房モードの場合に、室外機2から供給された冷媒を断熱膨張させることにより減圧し、低温低圧となった二相冷媒を室内熱交換器31に供給する。室内膨張弁32は、暖房モードの場合に、室内熱交換器31から供給された冷媒を断熱膨張させることにより減圧し、低温低圧となった二相冷媒を室外機2に供給する。
 室内ファン33は、室内熱交換器31の近傍に配置されており、ファンモータ(図示せず)によって回転されることで、室内機3の内部へ室内空気を取り込み、室内熱交換器31によって冷媒と熱交換した室内空気を室内へ放出する。室内熱交換器31は、冷媒配管44を介して四方弁22に、冷媒配管45を介して室内膨張弁32とそれぞれ接続されている。
 室内熱交換器31は、冷媒配管47、ガス管6及び冷媒配管44を介して四方弁22に接続されている。空気調和装置1が冷房モードに切り替えられたときに蒸発器として機能し、空気調和装置1が暖房モードに切り替えられたときに凝縮器として機能する。すなわち、室内熱交換器31は、冷房モードの場合に、室内膨張弁32から供給された低温低圧となった二相冷媒と、室内機3の内部に取り込まれた室内空気とを熱交換させ、その熱交換された室内空気を室内へ放出し、その熱交換された冷媒を四方弁22に供給する。室内熱交換器31は、暖房モードの場合に、四方弁22から供給された冷媒と、室内機3の内部に取り込まれた室内空気とを熱交換させ、その熱交換された室内空気を室内へ放出し、その熱交換された冷媒を室内膨張弁32に供給する。
 以上説明した構成の他に、冷媒配管46における室内膨張弁32と室内熱交換器31の間に、当該箇所を通過する冷媒の温度を検出する室内側冷媒温度センサ77が設けられている。また、室内熱交換器31には、内部を流れる冷媒の温度を検出する室内熱交中間温度センサ78が設けられている。また、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室内温度センサ79が設けられている。
[室外機制御部の構成]
 室外機制御部200は、いわゆるマイクロコンピュータによって構成されており、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1Bに示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240と、乾き度算出部(乾き度算出手段)250を備えている(なお、本明細書では、室外機制御手段200を単に制御手段ということがある)。
 記憶部220は、フラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン25等の制御状態等を記憶している。また、図示は省略するが、記憶部220には室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。
 通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。乾き度算出部250は、室外機2の各種センサでの検出結果から冷媒の乾き度を算出する。
 CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。さらには、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号等に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切替制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24や室内膨張弁32の開度調整を行う。
 以上、本実施例の空気調和装置1は、1つの室外機2に対応する1つの室内機3を有するシングルタイプとして構成されたが、1つの室外機2に対応する複数の室内機3を有するマルチタイプとして構成されてもよい。
[空気調和装置の動作]
 空気調和装置1のユーザは、室内機3が配置されている室内を温度調節するときに、図示しないリモートコントローラを操作することにより、空気調和装置1を起動し、室内機制御部500に運転条件を入力する。室内機制御部500は、運転条件が入力されると、入力された運転条件と、室内温度とを室外機制御部200に送信する。室外機制御部200は、室内機制御部500から受信した運転条件及び室内温度に基づいて、暖房運転または冷房運転のどちらかを実行する。図1Aには、暖房運転時における冷媒回路内の冷媒の流れを矢印で示す。
[冷房運転]
 室外機制御部200は、冷房運転を行う場合、四方弁22を制御することにより、四方弁22を冷房モードに切り替える。室外機制御部200によって制御された圧縮機21は、吸入管42を介して四方弁22から吸入したガス冷媒を圧縮する。圧縮機21は、圧縮した高温高圧のガス冷媒を四方弁22に吐出する。四方弁22は、冷房モードに切り替えられているとき、圧縮機21から吐出された高温高圧のガス冷媒を室外熱交換器23に供給する。室外熱交換器23は、室外機2の内部に取り込まれた外気と、高温高圧のガス冷媒との間で熱交換させることにより、高温高圧のガス冷媒を凝縮させて液化させる。室外熱交換器23は、その高圧の液冷媒を室外膨張弁24に供給する。
 室外膨張弁24は、室外熱交換器23から供給された高圧の液冷媒を断熱膨張させて低温低圧の二相冷媒にする。室外膨張弁24は、低温低圧の二相冷媒を室内機3の室内膨張弁32を介して室内熱交換器31に供給する。室内熱交換器31は、室内膨張弁32から供給された低温低圧の二相冷媒と、室内機3の内部に取り込まれた室内空気との間で熱交換させることにより、低温低圧の二相冷媒を蒸発させてガス化させる。室内熱交換器31は、低圧のガス冷媒を、四方弁22に供給する。四方弁22は、冷房モードに切り替えられているとき、室内熱交換器31から流出た低圧のガス冷媒を圧縮機21に供給する。
[暖房運転]
 室外機制御部200は、暖房運転を行う場合、四方弁22を制御することにより、四方弁22を暖房モードに切り替える。室外機制御部200によって制御された圧縮機21は、吸入管42を介して四方弁22から吸入したガス冷媒を圧縮する。圧縮機21は、圧縮された高温高圧のガス冷媒を四方弁22に吐出する。四方弁22は、暖房モードに切り替えられているとき、圧縮機21から吐出した高温高圧のガス冷媒を室内機3の室内熱交換器31に供給する。室内熱交換器31は、四方弁22から室内機3に供給された高温高圧のガス冷媒と、室内機3の内部に取り込まれた室内空気との間で熱交換させることにより、高温高圧のガス冷媒を凝縮させて液化させる。室内熱交換器31は、高圧の液冷媒を室内膨張弁32に供給する。
 室内膨張弁32は、室内熱交換器31から供給された高圧の液冷媒を断熱膨張させて低温低圧の二相冷媒にする。室内膨張弁32は、低温低圧の二相冷媒を、室外膨張弁24を介して室外熱交換器23に供給する。室外熱交換器23は、室外機2の内部に取り込まれた外気と、膨張弁24から供給された低温低圧の二相冷媒との間で熱交換させることにより、低温低圧の冷媒を蒸発させてガス化させる。室外熱交換器23は、低圧のガス冷媒を四方弁22に供給する。四方弁22は、暖房モードに切り替えられているとき、室外熱交換器23から流出した低圧のガス冷媒を圧縮機21に供給する。
[室外機制御部(制御手段)による制御]
 次に、室外機制御部(制御手段)200による室外膨張弁(第2膨張弁)24及び室内膨張弁(第1膨張弁)32の制御方法について詳細に説明する。なお、以下の説明では、暖房運転時における室外機制御部200の制御方法について説明し、冷房運転時における制御方法については省略する。空気調和装置1の運転時において、図示しない室内機制御部は、ユーザの操作によって入力された運転条件である設定温度と、室内温度センサ79が検出した室温から、予め定められ室内機制御部の図示しない記憶部に記憶された要求回転数を出力し、室外機制御部200へ送信する。要求回転数は、室温を設定温度にするために必要な圧縮機21の回転数であり、設定温度と室温の差に応じて定められる。室外機制御部200は、圧縮機21が要求回転数となるように制御する。
 空気調和装置1が暖房運転を行っている場合、室内膨張弁32は液管5の内部の冷媒が、気液二相状態となるように開度を調整し、室外膨張弁24は所定の開度(全開)となるように制御する。具体的には、室外機制御部200は、目標吐出温度制御によって室内膨張弁32の開度制御を行う。目標吐出温度制御とは、圧縮機21に吸入される冷媒を適正な状態にすることを目的として、吐出温度Tdが目標値(目標吐出温度Tdt)となるように膨張弁の開度を調整する制御である。
 ここで、圧縮機21に吸入される冷媒の状態は、乾き度が1付近(例えば、0.8~1.0)、且つ、吸入過熱度SHが0付近(例えば、0~5)であるときを適正な状態とする。なぜなら、乾き度が1より大きく下回ると、圧縮機21に液冷媒が吸入され、液圧縮によって圧縮機21が故障する恐れがあるからである。また、吸入過熱度SHが0より大きく上回ると、圧縮機21内部の温度が過昇して信頼性の悪化に繋がる。
 目標吐出温度Tdtは、空気調和装置1に設けられる各種センサが検出した検出結果に基づいて算出されるものであり、すなわち、目標吐出温度Tdtは、圧縮機21に吸入される冷媒が適正な状態のときの吐出温度Tdの推定値である。
 その検出結果は、吐出圧力センサ72、吸入温度センサ73、吸入圧力センサ74、室外熱交中間温度センサ76、室内熱交中間温度センサ78の検出値を含んでいる。目標吐出温度Tgtは、理論吐出温度に調整値が加算された値である。理論吐出温度は、空気調和装置1の冷媒回路内における圧力損失や運転効率を加味せずに、その検出結果により特定された空気調和装置1の負荷状態に基づいて算出される理論値である。理論吐出温度は、冷凍サイクルの負荷状態(各部圧力、温度)、および目標過熱度Tshから算出される。目標過熱度Tshは0、すなわち、圧縮機21に流入する冷媒が、乾き度が1付近、且つ、吸入過熱度SHが0付近の状態となるように設定される。
 以上の制御により、暖房運転時において、液管5の上流側の室内膨張弁32で冷媒が減圧されるため、液管5の内部を流れる冷媒の密度を下げることができる。その結果、冷媒回路に充填する冷媒量を削減できる。
 一方、液管5の下流側の膨張弁である室外膨張弁24は、全開であっても流路抵抗による圧力損失によって、室外膨張弁24を流出した冷媒の圧力は低下する。また、室内膨張弁32の開度を変化させると、液管5や室外膨張弁24を通過し、室外熱交換器23に流入する気液二相状態の冷媒の乾き度が変動する。乾き度が変動すると、冷媒密度が変化する。例えば、乾き度が上昇すると、冷媒密度は低下する。液管5や室内膨張弁32の内部を流れる冷媒の密度が低くなれば、冷媒の密度が高い場合と比べて冷媒の流速が速くなる。その結果、冷媒が液管5や室外膨張弁24を流れる際に生じる圧力損失が大きくなり、液管5を流出した冷媒の圧力は低下する。図3は、気液二相状態の冷媒の乾き度と、乾き度が0のときの液管5及び室外膨張弁24を通過する冷媒の圧力損失[Pa]を基準とした関係を示したグラフである。本グラフは、横軸が乾き度で、縦軸が圧力損失である。なお、縦軸の圧力損失は、乾き度=0を基準としている。図に示す通り、液管5及び室外膨張弁24を通過する冷媒の圧力損失は、乾き度の上昇に伴って急激に増加する。
 つまり、室外熱交換器23に流入する気液二相状態の冷媒の乾き度が高いときにおいて、液管5の上流側の膨張弁である室内膨張弁32を制御する場合、室内膨張弁32の開度を変化させたときにおける、総減圧量(室内膨張弁32+液管5+室外膨張弁24)が大きくなる。その結果、制御性が悪化する。例えば、膨張弁の単位制御量当たりの減圧量が急激に大きくなると、空気調和装置1の冷媒回路における低圧が過剰に低下してしまう。その結果、圧縮機21に吸入される冷媒の密度が過剰に低下して、圧縮機21の温度が過昇する等、信頼性が悪化する。従来、吐出温度Tdが目標吐出温度Tdtの付近で安定して運転している最中における、蒸発器(液管の下流側の熱交換器)に流入する冷媒の乾き度は、0.1~0.2の範囲を推移する。そのため、乾き度が0.2を上回る場合は、室内膨張弁32の開度を変化させたときにおける、総減圧量(室内膨張弁32+液管5+室外膨張弁24)が大きくなり、圧縮機21の信頼性が悪化する可能性がある、と言える。
 そこで、室外機制御部200は、液管5の下流側の熱交換器(暖房運転時は室外熱交換器23)に流入する冷媒の乾き度を算出する乾き度算出部250を備え、乾き度算出手段250の算出結果(乾き度)が閾値Aを上回るとき、液管5の上流側の膨張弁(暖房運転時は室内膨張弁32)の開度を小さくする方向に制御することを禁止する禁止モードを実行する。これにより、膨張弁の単位制御量当たりの減圧量が大きくなるような場合であっても、圧縮機の信頼性が低下することを防止できる。
 また、室外機制御部200は、禁止モードの最中、下流側の膨張弁(暖房運転時は室外膨張弁24)の開度を目標吐出温度制御する。これにより、禁止モードの最中であっても、圧縮機21に吸入される冷媒が適正な状態となるように制御することができる。
 次に、本開示の室外機制御部(制御手段)200の制御方法について、図2及び図3を用いて詳細に説明する。図2は、暖房運転時における室外機制御部200の制御方法を示すフローチャートである。暖房運転中、室外機制御部200は、ステップST01以降の処理を繰り返し実行する。
 まず、室外機制御部200は、吐出温度センサ71により検出された吐出温度Tdが目標吐出温度Tdtを上回っているか否かを判定する(ST01)。目標吐出温度Tdtは、前述の通り、空気調和装置1に設けられる各種センサが検出した検出結果に基づいて算出されるものであり、その検出結果は、吐出圧力センサ72、吸入温度センサ73、吸入圧力センサ74、室外熱交中間温度センサ76、室内熱交中間温度センサ78の検出値を含んでいる。
 吐出温度Tdが目標吐出温度Tdtを上回っている場合(ST01-YES)、室外膨張弁(第2膨張弁)24が所定開度、すなわち、全開であるか否かを判定する(ST02)。室外膨張弁24が全開だった場合は(ST02-YES)、室内膨張弁(第1膨張弁)32の開度を開く方向に制御して(ST04)、吐出温度Tdを低下させる。室外膨張弁24が全開ではない場合は(ST02-NO)、室外膨張弁24を開く方向に制御して(ST04)、吐出温度Tdを低下させる。液管5の上流側である室内膨張弁32を開く方向に制御すると、液管5の内部を流れる冷媒の密度を上昇させることになるため、液管5の下流側である室外膨張弁24で減圧量を調整することが可能であれば、その方が好ましいためである。
 また、吐出温度Tdが目標吐出温度Tdt以下の場合(ST01-NO)、室外熱交換器23に流入する冷媒の乾き度が閾値A以下であるか否かを判定し(ST03)、乾き度が閾値A以下であれば(ST03-YES)、吐出温度Tdが目標吐出温度Tdtとなるように室内膨張弁(第1膨張弁)32を絞る(開度を小さくする)方向に制御する。閾値Aは、予め室外機制御部200の図示しない記憶部に記憶される。室外熱交換器23に流入する冷媒の乾き度は、凝縮温度(暖房運転時は室内熱交中間温度センサ78の検出値)と蒸発温度(暖房運転時は室外熱交中間温度センサ76の検出値)と凝縮器出口温度(暖房運転時は室内側冷媒温度センサ77の検出値)から算出することができる。閾値Aは、例えば、前述したように、0.2である。なお、閾値Aは、液管5の内径や長さ、室外膨張弁24の弁口径等によって許容できる大きさが変動する。具体的には、液管5の内径が小さい、液管5が長い、又は、室外膨張弁24の弁口径が小さいと、液管5と室外膨張弁24を通過する冷媒の圧力損失は大きくなる。そのため、同じ乾き度の値であっても液管5の内径が大きい、液管5が短い、又は、室外膨張弁24の弁口径が大きい場合と比較して閾値Aを小さく設定する。また、冷媒の循環量が多い程、液管5と室外膨張弁24を通過する冷媒の圧力損失は大きくなる。そのため、冷媒の循環量の変化に応じて閾値Aを変更しても良い。具体的には、圧縮機21の回転数が増加するに従い、閾値Aも大きい値を設定しても良い。
 一方、乾き度が閾値Aを上回る場合(ST03-NO)、室内膨張弁32を絞る方向に制御することを禁止する禁止モードを開始(ST07)し、吐出温度Tdが目標吐出温度Tdtとなるように、室内膨張弁32の代わりに室外膨張弁(第2膨張弁)24を絞る(開度を小さくする)方向に制御する(ST08)。乾き度が0.1を上回る場合、乾き度の変化に伴い冷媒密度が急激に変化する。室内膨張弁を絞る方向に制御すると、液管5や室内膨張弁32の内部を流れる冷媒の圧力損失が増大することによって、総減圧量が急激に大きくなる恐れがある。そのため、最も下流側の室外膨張弁24を絞ることで、総減圧量の増加を抑制している。その後、室外機制御部200は、禁止モードを終了(ST09)する。
 以上のように、室外機制御部200は、室外熱交換器23に流入する冷媒の乾き度が閾値A以下であれば、液管5の内部を流通する冷媒が気液二相状態となるように室内膨張弁(第1膨張弁)32を制御し、且つ、室外膨張弁(第2膨張弁)24の開度が所定の開度(全開)となるように制御する通常モード(ST01~ST06)を行う。また、室外機制御部200は、室外熱交換器23に流入する冷媒の乾き度が閾値Aを上回れば、室内膨張弁(第1膨張弁)32の開度を小さくする方向に制御することを禁止する禁止モードを実行し、禁止モードの最中、圧縮機21に吸入される冷媒が適正な状態となるように室外膨張弁(第2膨張弁)24の開度を制御する。これにより、室外熱交換器23に流入する冷媒の乾き度が高く、膨張弁の単位制御量当たりの減圧量が大きくなるような場合であっても、圧縮機の信頼性が低下することを防止できる。また、禁止モードの最中であっても、圧縮機21に吸入される冷媒が適正な状態となるように制御することができる。
 なお、本実施例では、暖房運転時の室外機制御部200の制御方法について説明したが、冷房運転時においても本開示の技術は適用可能である。冷房運転時の場合、室外機制御部200は、液管5の下流側の熱交換器であれる室内熱交換器31に流入する冷媒の乾き度を算出する乾き度算出部250を備え、当該乾き度が閾値Aを上回るとき、液管5の上流側の膨張弁である室外膨張弁(第2膨張弁)24の開度を小さくする方向に制御することを禁止する禁止モードを実行する。これにより、膨張弁の単位制御量当たりの減圧量が大きくなるような場合であっても、圧縮機の信頼性が低下することを防止できる。
 また、室外機制御部200は、禁止モードの最中、圧縮機21に吸入される冷媒が適正な状態となるように液管5の下流側の膨張弁である室内膨張弁(第1膨張弁)32の開度を制御する。これにより、禁止モードの最中であっても、圧縮機21に吸入される冷媒が適正な状態となるように制御することができる。
 また、本実施例では、液管5の上流側の膨張弁(通常モード時)と液管5の下流側の膨張弁(禁止モード時)を目標吐出温度制御により開度制御していた。しかし、これに限定されるものではなく、液管5の内部の冷媒が、気液二相状態となるように開度を調整できれば良いので、吐出温度の代わりに吸入過熱度が目標値(例えば、2~5)となるように制御する方法(目標過熱度制御)であっても良い。なお、吸入過熱度は、例えば蒸発温度(冷房運転時は室内熱交中間温度センサ78の検出値、暖房運転時は室外熱交中間温度センサ76の検出値)と吸入温度(吸入温度センサ73の検出値)から算出される。
1 空気調和装置
2 室外機
200 室外機制御部
21 圧縮機
22 四方弁
23 室外熱交換器
24 室外膨張弁(第2膨張弁)
25 室外ファン
41 吐出管
42 吸入管
43 冷媒配管
44 冷媒配管
45 冷媒配管
46 冷媒配管
47 冷媒配管
3 室内機
31 室内熱交換器
32 室内膨張弁(第1膨張弁)
33 室内ファン
71 吐出温度センサ
72 吐出圧力センサ
73 吸入温度センサ
74 吸入圧力センサ
75 室外側冷媒温度センサ
76 室外熱交中間温度センサ
77 室内側冷媒温度センサ
78 室内熱交中間温度センサ
79 室内温度センサ

Claims (6)

  1.  圧縮機と、流路切替手段と、室内熱交換器と、第1膨張弁と、液管と、第2膨張弁と、室外熱交換器とが順に接続された冷媒回路と、
     前記流路切替手段の切替制御と、前記第1膨張弁および前記第2膨張弁の開度制御と、を行う制御手段と、を有し、
     前記制御手段は、
     暖房運転時において、前記室内熱交換器、前記第1膨張弁、前記液管、前記第2膨張弁、前記室外熱交換器の順に冷媒が流れるように前記流路切替手段を切替え、
     前記暖房運転時における前記室外熱交換器に流入する冷媒の乾き度を算出する乾き度算出手段を備え、
     前記暖房運転時において、
     前記乾き度が予め定めた閾値以下であれば、前記液管の内部を流通する冷媒が気液二相状態となるように前記第1膨張弁を制御し、且つ、前記第2膨張弁の開度が所定の開度となるように制御する通常モードを実行し、
     前記乾き度が閾値を上回れば、前記第1膨張弁の開度を小さくする方向に制御することを禁止する禁止モードを実行する、
     空気調和装置。
  2.  前記圧縮機から吐出される冷媒の温度である吐出温度を検出する吐出温度検出手段を備え、
     前記制御手段は、
     前記禁止モードの最中、前記吐出温度が目標値となるように前記第2膨張弁の開度を制御する、
     請求項1に記載の空気調和装置。
  3.  前記制御手段は、
     前記圧縮機に吸入される冷媒の過熱度を算出する吸入過熱度算出手段を備え、
     前記禁止モードの最中、前記吸入過熱度が目標値となるように前記第2膨張弁の開度を制御する、
     請求項1に記載の空気調和装置。
  4.  圧縮機と、流路切替手段と、室内熱交換器と、第1膨張弁と、液管と、第2膨張弁と、室外熱交換器とが順に接続された冷媒回路と、
     前記流路切替手段の切替制御と、前記第1膨張弁および前記第2膨張弁の開度制御と、を行う制御手段と、を有する空気調和装置において、
     前記制御手段は、
     冷房運転時において、前記室外熱交換器、前記第2膨張弁、前記液管、前記第1膨張弁、前記室内熱交換器の順に冷媒が流れるように前記流路切替手段を切替え、
     前記冷房運転時における前記室内熱交換器に流入する冷媒の乾き度を算出する乾き度算出手段を備え、
     前記冷房運転時において、
     前記乾き度が予め定めた閾値以下であれば、前記液管の内部を流通する冷媒が気液二相状態となるように前記第2膨張弁を制御し、且つ、前記第1膨張弁の開度が所定の開度となるように制御する通常モードを実行し、
     前記乾き度が閾値を上回れば、前記第2膨張弁の開度を小さくする方向に制御することを禁止する、
     空気調和装置。
  5.  前記圧縮機から吐出される冷媒の温度である吐出温度を検出する吐出温度検出手段を備え、
     前記制御手段は、
     前記禁止モードの最中、前記吐出温度が目標値となるように前記第1膨張弁の開度を制御する、
     請求項4に記載の空気調和装置。
  6.  前記制御手段は、
     前記圧縮機に吸入される冷媒の過熱度を算出する吸入過熱度算出手段を備え、
     前記禁止モードの最中、前記吸入過熱度が目標値となるように前記第1膨張弁の開度を制御する、
     請求項4に記載の空気調和装置。
PCT/JP2020/013164 2019-03-26 2020-03-24 空気調和装置 WO2020196565A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020244901A AU2020244901B2 (en) 2019-03-26 2020-03-24 Air conditioning device
CN202080022820.4A CN113614469B (zh) 2019-03-26 2020-03-24 空调装置
EP20777456.3A EP3951285B1 (en) 2019-03-26 2020-03-24 Air conditioning device
US17/441,906 US20220146165A1 (en) 2019-03-26 2020-03-24 Air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058393 2019-03-26
JP2019058393A JP6886129B2 (ja) 2019-03-26 2019-03-26 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020196565A1 true WO2020196565A1 (ja) 2020-10-01

Family

ID=72609545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013164 WO2020196565A1 (ja) 2019-03-26 2020-03-24 空気調和装置

Country Status (6)

Country Link
US (1) US20220146165A1 (ja)
EP (1) EP3951285B1 (ja)
JP (1) JP6886129B2 (ja)
CN (1) CN113614469B (ja)
AU (1) AU2020244901B2 (ja)
WO (1) WO2020196565A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343233A1 (en) * 2022-09-20 2024-03-27 Ariston S.P.A. Optimized management method of an environmentally friendly heat pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058145B2 (ja) * 1982-12-03 1985-12-18 株式会社東芝 カ−ド集積装置
JP2013200090A (ja) 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
JP2019020112A (ja) * 2017-07-20 2019-02-07 ダイキン工業株式会社 空調システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079528C (zh) * 1993-10-28 2002-02-20 株式会社日立制作所 制冷循环及其控制方法
CN100494829C (zh) * 2004-05-20 2009-06-03 上海交通大学 蒸发器出口制冷剂为大干度二相状态的高效制冷系统
JP4246189B2 (ja) * 2005-09-07 2009-04-02 株式会社デンソー 冷凍サイクル装置
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP4740984B2 (ja) * 2008-06-19 2011-08-03 三菱電機株式会社 冷凍空調装置
JP5411643B2 (ja) * 2009-10-05 2014-02-12 パナソニック株式会社 冷凍サイクル装置および温水暖房装置
JP5981376B2 (ja) * 2013-03-27 2016-08-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機、および空気調和機の運転方法
WO2014155545A1 (ja) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 空気調和機
JP6149237B2 (ja) * 2013-04-24 2017-06-21 株式会社テージーケー 車両用冷暖房装置および膨張弁
EP3040642B1 (en) * 2013-08-28 2021-06-02 Mitsubishi Electric Corporation Air conditioner
JP2016003828A (ja) * 2014-06-18 2016-01-12 株式会社デンソー 冷凍サイクル装置
EP3199887B1 (en) * 2014-09-22 2019-02-13 Mitsubishi Electric Corporation Refrigeration cycle device
CN107532823A (zh) * 2015-05-13 2018-01-02 三菱电机株式会社 制冷循环装置
CN109114838B (zh) * 2017-06-22 2021-07-06 青岛海尔新能源电器有限公司 一种空气源热泵系统、热水器及控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058145B2 (ja) * 1982-12-03 1985-12-18 株式会社東芝 カ−ド集積装置
JP2013200090A (ja) 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
JP2019020112A (ja) * 2017-07-20 2019-02-07 ダイキン工業株式会社 空調システム

Also Published As

Publication number Publication date
CN113614469A (zh) 2021-11-05
JP2020159615A (ja) 2020-10-01
EP3951285B1 (en) 2023-11-15
AU2020244901A1 (en) 2021-10-14
AU2020244901B2 (en) 2022-10-27
US20220146165A1 (en) 2022-05-12
EP3951285A4 (en) 2022-12-28
EP3951285A1 (en) 2022-02-09
CN113614469B (zh) 2022-09-09
JP6886129B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
US7918097B2 (en) Air conditioning system
JP5516712B2 (ja) 冷凍装置
EP3279580B1 (en) Air-conditioning device
US20090019879A1 (en) Refrigeration System
JP2017142039A (ja) 空気調和装置
JP2008241069A (ja) 空気調和装置
JP2017142038A (ja) 冷凍サイクル装置
JP7233845B2 (ja) 空気調和機
JP2014119221A (ja) 冷凍装置
JP2019148396A (ja) 空気調和機
WO2020196565A1 (ja) 空気調和装置
JP2019148393A (ja) 空気調和機
JP2019148394A (ja) 空気調和機
JP2019148395A (ja) 空気調和機
JP5765325B2 (ja) 冷凍装置
JP7512650B2 (ja) 空気調和機
WO2020179005A1 (ja) 冷凍サイクル装置
JP2021156502A (ja) 空気調和装置
WO2020158888A1 (ja) 空気調和機
JP7496938B2 (ja) 空気調和装置
WO2024127571A1 (ja) 冷凍サイクル装置
WO2020166360A1 (ja) 空気調和機
KR20090069915A (ko) 공기조화 시스템
JP2022069768A (ja) 空気調和機
JP2022070160A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020244901

Country of ref document: AU

Date of ref document: 20200324

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020777456

Country of ref document: EP

Effective date: 20211026