WO2020195598A1 - 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置 - Google Patents

転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置 Download PDF

Info

Publication number
WO2020195598A1
WO2020195598A1 PCT/JP2020/008830 JP2020008830W WO2020195598A1 WO 2020195598 A1 WO2020195598 A1 WO 2020195598A1 JP 2020008830 W JP2020008830 W JP 2020008830W WO 2020195598 A1 WO2020195598 A1 WO 2020195598A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
oxygen
furnace
blowing
converter
Prior art date
Application number
PCT/JP2020/008830
Other languages
English (en)
French (fr)
Inventor
寛人 加瀬
富山 伸司
幸雄 ▲高▼橋
勝太 天野
向平 加藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080021531.2A priority Critical patent/CN113574188B/zh
Priority to BR112021018589A priority patent/BR112021018589A2/pt
Priority to KR1020217030026A priority patent/KR102534954B1/ko
Priority to EP20778550.2A priority patent/EP3943618B1/en
Priority to JP2020546508A priority patent/JP6795133B1/ja
Publication of WO2020195598A1 publication Critical patent/WO2020195598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a smelting control method and a smelting control device for a converter type dephosphorization smelting furnace.
  • phosphorus (P) in hot metal is oxidized by oxygen (O) in the oxygen source (FeO) to produce phosphoric acid (P 2). It is carried out by fixing O 5 ) with a CaO-containing substance added as a dephosphorification refining agent.
  • the chemical reaction formula (1) shows a [P], [Fe] component in molten iron, (FeO), (CaO) , (3CaO ⁇ P 2 O 5) component in the slag.
  • the phosphofate capacity defined by the phosphorus equilibrium between slag and metal is highly temperature-dependent, and the lower the hot metal temperature, the more the equilibrium is biased toward the dephosphorization side, and conversely, the higher the hot metal temperature, the lower the dephosphorization efficiency.
  • a rephosphorus phenomenon (a phenomenon in which phosphorus in slag returns to hot metal) occurs. For this reason, in the dephosphorization treatment, if excessive acid feeding is performed, the hot metal temperature rises due to various oxidation reaction heats, and the dephosphorization efficiency may decrease or rephosphorus may occur.
  • Patent Document 1 accurately estimates the FeO concentration in the slag in consideration of the fire point reaction in the furnace and the slag-metal interface reaction, and at the end of the desiliconization treatment (Si concentration is 0.
  • a blowing control method for carrying out a dephosphorization promotion treatment step when the FeO concentration in the slag at the time of reaching 02%) is 20% or less is disclosed.
  • the dephosphorization rate constant and the phosphorus concentration in the hot metal are estimated based on the estimated value of the state quantity including the oxygen accumulation amount in the furnace and the measurement result of the smelting furnace, and the estimated value of the phosphorus concentration in the hot metal is the target.
  • a blowing control method for changing the treatment conditions when the phosphorus concentration exceeds the above is disclosed.
  • Patent Document 1 does not disclose or suggest a method for monitoring the transition of the FeO concentration in the slag after the end of the desiliconization treatment and the conditions for the end of the blowing treatment, and the FeO concentration in the slag at the end of the blowing treatment decreases or There remains the problem that the dephosphorization efficiency decreases or the rephosphorization phenomenon cannot be avoided due to the increase in hot metal temperature.
  • Patent Document 2 describes that it is not necessary to change the treatment conditions when the estimated value of phosphorus concentration in hot metal is equal to or less than the target phosphorus concentration, and it is dephosphorized as in the method described in Patent Document 1. It is not intended to optimize the blowing treatment conditions in order to suppress the efficiency decrease or the rephosphorization phenomenon (for example, the phenomenon in which the dephosphorization rate constant becomes a negative value in Patent Document 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the phosphorus concentration in the hot metal after the dephosphorization treatment by appropriately controlling the amount of blown-off oxygen, and to carry out the dephosphorization treatment step. It is an object of the present invention to provide a smelting control method and a smelting control device for a converter type dephosphorization smelting furnace capable of reducing the consumption of auxiliary raw materials in the subsequent decarburization smelting.
  • the blowing control method of the converter type dephosphorization smelting furnace includes the blowing conditions including the amount of acid sent to the converter type dephosphorization smelting furnace and the amount of auxiliary raw materials input, and the converter type dephosphorization smelting furnace. Calculation of oxygen accumulation in the furnace based on the measurement results of the converter type dephosphorization smelting furnace including the flow rate and component concentration of the exhaust gas in the above and the analysis values of the components and temperature of the hot metal.
  • the step, the feature point extraction step of sequentially monitoring the transition of the oxygen accumulation amount in the furnace during the blowing process, and extracting the feature points of the increase and decrease of the oxygen accumulation amount in the furnace, and the feature point extraction step were extracted.
  • the blow-off oxygen amount determination step for determining the blow-off oxygen amount until the end of the blowing process and the integrated amount of acid feed into the converter type dephosphorization smelting furnace determine the blow-off oxygen amount. It is characterized by including a control step of ending the blowing process at the timing when the amount of blown oxygen determined in the step is reached.
  • the blowing control method of the converter type dephosphorization smelting furnace according to the present invention is the converter type in the above invention so that the carbon mass balance and the oxygen mass balance in the furnace are matched in the step of calculating the oxygen accumulation amount in the furnace. It is characterized by including a step of sequentially correcting the measurement results of the dephosphorization smelting furnace and calculating the amount of oxygen accumulated in the furnace using the corrected measurement results.
  • the feature point extraction step extracts a point where the rate of increase in the amount of oxygen accumulated in the furnace is 0 or less as a feature point. It is characterized by including steps.
  • the blowing control method of the converter type dephosphorization smelting furnace is that the step of determining the amount of blown oxygen is a component analysis value or an estimated value of hot metal and slag, and a measured value for hot metal and slag temperature. Alternatively, it includes a step of calculating the amount of blown oxygen or determining it by machine learning based on at least one or more information of the estimated value, the blowing conditions, and the measurement result for the converter type dephosphorization refining furnace. It is characterized by.
  • the blowing control device of the converter type dephosphorization smelting furnace includes the blowing conditions including the amount of acid sent to the converter type dephosphorization smelting furnace and the amount of auxiliary raw materials input, and the converter type dephosphorization smelting furnace. Calculation of oxygen accumulation in the furnace based on the measurement results of the converter type dephosphorization smelting furnace including the flow rate and component concentration of the exhaust gas in the above and the analysis values of the components and temperature of the hot metal.
  • the feature point extraction section which sequentially monitors the transition of the oxygen accumulation amount in the furnace during the blowing process, and extracts the feature points of the increase / decrease in the oxygen accumulation amount in the furnace, and the feature point extraction section.
  • the blow-off oxygen amount determination unit that determines the blow-off oxygen amount until the end of the blowing process and the integrated amount of acid feed into the converter type dephosphorization smelting furnace determine the blow-off oxygen amount. It is characterized by including a control unit that terminates the blowing process when the amount of blown oxygen determined by the unit is reached.
  • the blowing control device of the converter type dephosphorization smelting furnace according to the present invention is a converter type so that the oxygen accumulation amount calculation unit in the furnace matches the carbon mass balance and the oxygen mass balance in the furnace.
  • the feature is that the measurement results for the dephosphorization smelting furnace are sequentially corrected, and the amount of oxygen accumulated in the furnace is calculated using the corrected measurement results.
  • the feature point extraction unit extracts a point where the rate of increase in the amount of oxygen accumulated in the furnace is 0 or less as a feature point. It is characterized by that.
  • the blown-off oxygen amount determining unit is a component analysis value or estimated value of hot metal and slag, and a measured value for hot metal and slag temperature.
  • the blowoff oxygen amount is calculated or determined by machine learning based on at least one or more information of the estimated value, the blowing conditions, and the measurement result of the converter type dephosphorization refining furnace. To do.
  • the phosphorus concentration in the hot metal after the dephosphorization treatment can be reduced by appropriately controlling the amount of blown oxygen. It is possible to reduce the consumption of auxiliary raw materials in the decarburization smelting following the dephosphorization treatment step.
  • FIG. 1 is a schematic view showing a configuration of a refining facility suitable for a blowing control method of a converter type dephosphorization refining furnace according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a flow of a blowing process according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of changes over time in the amount of oxygen accumulated in the furnace.
  • FIG. 1 is a schematic view showing a configuration of a refining facility suitable for a blowing control method of a converter type dephosphorization refining furnace according to an embodiment of the present invention.
  • the refining equipment 2 suitable for the blowing control method of the converter type dephosphorization refining furnace according to the embodiment of the present invention includes the converter type dephosphorization refining furnace 100, the lance 102, and the duct 104. It has.
  • a lance 102 is arranged on the molten metal 101 in the converter type dephosphorization refining furnace 100.
  • High-pressure oxygen top-blown oxygen
  • Impurities in the molten metal 101 are oxidized by this high-pressure oxygen and taken into the slag 103 (blown treatment).
  • a duct 104 for exhaust gas smoke induction is installed in the upper part of the converter type dephosphorization refining furnace 100.
  • An exhaust gas detection unit 105 is arranged inside the duct 104.
  • the exhaust gas detection unit 105 detects the flow rate of the exhaust gas discharged by the blowing process and the components in the exhaust gas (for example, CO, CO 2 , O 2 , N 2 , H 2 O, Ar, etc.).
  • the exhaust gas detection unit 105 measures the flow rate of the exhaust gas in the duct 104 based on, for example, the differential pressure before and after the Venturi pipe provided in the duct 104. Further, the exhaust gas detection unit 105 measures the concentration [%] of each component in the exhaust gas. The flow rate and component concentration of the exhaust gas are measured, for example, in a cycle of several seconds.
  • a signal indicating the detection result of the exhaust gas detection unit 105 is sent to the control terminal 10.
  • Bottom blowing gas is blown into the molten metal 101 in the converter type dephosphorization smelting furnace 100 through the ventilation holes 107 formed at the bottom of the converter type dephosphorization smelting furnace 100.
  • the flow meter 108 measures the flow rate of the bottom blowing gas blown into the converter type dephosphorization refining furnace 100.
  • the temperature and component concentration of the molten metal 101 are analyzed.
  • the temperature and component concentration of the molten metal 101 are measured once or multiple times during the blowing process, and the supply amount (acid transfer amount) and rate (acid transfer rate) of high-pressure oxygen are measured based on the measured temperature and component concentration. And the flow rate of bottom blowing gas are determined.
  • the smelting control system to which the smelting control device 1 according to the embodiment of the present invention is applied includes a control terminal 10, a smelting control device 1, and a display device 20 as main components.
  • the control terminal 10 is composed of an information processing device such as a personal computer or a workstation, and controls the amount of acid transfer, the rate of acid transfer, and the flow rate of agitated gas so that the component concentration of the molten metal 101 is within a desired range. Collect data on actual values of acid transfer amount, acid transfer rate, and stirring gas flow rate.
  • the smelting control device 1 is composed of an information processing device such as a personal computer or a workstation.
  • the blowing control device 1 includes an input device 11, a database (DB) 12, an arithmetic processing unit 13, and an output device 14.
  • the input device 11 is an input interface for inputting various measurement results and actual information related to the refining facility 2.
  • the input device 11 includes a keyboard, a mouse, a pointing device, a data receiving device, a graphical user interface (GUI), and the like.
  • the input device 11 receives actual data, parameter set values, and the like from the outside, writes the information to the DB 12, and transmits the information to the arithmetic processing unit 13.
  • the input device 11 is input with the measurement results of the temperature and the component concentration of at least one of the molten metal 101 before the start of the smelting process and during the smelting process in the smelting facility 2.
  • the measurement results of the temperature and the component concentration are input to the input device 11 by, for example, manual input by the operator or reading input from the recording medium.
  • actual information is input to the input device 11 from the control terminal 10.
  • the actual information includes information on the flow rate and component concentration of the exhaust gas measured by the exhaust gas detection unit 105, various measurement results in the converter type dephosphorization smelting furnace measured by the converter type dephosphorization smelting furnace measuring device 106, and acid feeding.
  • Information on the amount and acid feeding rate, information on the flow rate of bottom blowing gas, information on the amount of raw materials (main raw material, auxiliary raw material) input, information on the temperature of the molten metal 101, and the like are included.
  • the measurement results related to the converter type dephosphorization smelting furnace including the slag in the furnace and the level information of the molten metal are output.
  • the DB 12 is a storage device in which information on the model formula and parameters of the model formula regarding the smelting process reaction in the smelting facility 2 are stored. Further, the DB 12 stores various information input to the input device 11 and calculation / analysis results in the blowing processing results calculated by the arithmetic processing unit 13.
  • the component analysis value or estimated value of the hot metal and slag used for the blown oxygen amount calculation, the measured value for the hot metal and the slag temperature, or The estimated value, the slag condition, and the measurement result for the smelting facility 2 are stored in a format in which the slag treatment result including the hot metal component after the treatment is linked.
  • the arithmetic processing unit 13 is an arithmetic processing device such as a CPU, and controls the operation of the entire blowing control device 1.
  • the arithmetic processing unit 13 has functions as an oxygen accumulation amount calculation unit 13a in the furnace, a feature point extraction unit 13b, and a blow-off oxygen amount determination unit 13c.
  • the in-core oxygen accumulation amount calculation unit 13a, the feature point extraction unit 13b, and the blown-off oxygen amount determination unit 13c are realized, for example, by the arithmetic processing unit 13 executing a computer program.
  • the arithmetic processing unit 13 may have a dedicated arithmetic unit or arithmetic circuit that functions as an oxygen accumulation amount calculation unit 13a in the furnace, a feature point extraction unit 13b, and a blown oxygen amount determination unit 13c.
  • the blowing control device 1 having such a configuration lowers the phosphorus concentration in the hot metal after the dephosphorization treatment by appropriately controlling the amount of blown oxygen by executing the blowing control process shown below. , Reduce the consumption of auxiliary materials in the decarburization smelting following the dephosphorization process.
  • the operation of the smelting control device 1 when executing the smelting control process will be described with reference to the flowchart shown in FIG.
  • FIG. 2 is a flowchart showing the flow of the wrought control process according to the embodiment of the present invention.
  • the flowchart shown in FIG. 2 starts at the timing when the smelting process is started, and the smelting control process proceeds to the process of step S1.
  • step S1 the arithmetic processing unit 13 acquires the measurement / analysis value of the molten metal 101.
  • the arithmetic processing unit 13 acquires the measurement / analysis results obtained by temperature measurement and component analysis of the molten metal 101 sample.
  • the arithmetic processing unit 13 includes exhaust gas measurement / analysis information (exhaust gas information), temperature information in the furnace and the furnace body, optical characteristic information of the furnace mouth of the converter type dephosphorization refining furnace, and vibration of the furnace body.
  • the measurement result and the operation amount information related to the converter type dephosphorization smelting furnace including information, acoustic information from the furnace body, in-core slag and molten metal level information, etc. are acquired from the control terminal 10.
  • converter type dephosphorization smelting furnace measurement information including exhaust gas measurement / analysis information and operation amount information are collected at regular intervals.
  • step S2 If there is a large time delay between the acquisition time of the operation amount information and the acquisition time of the converter type dephosphorization smelting furnace measurement result, consider the time delay (advance the measurement information by the delay time). Create data. Further, when the measured value and the analyzed value contain a lot of noise, the measured value and the analyzed value may be replaced with a value obtained by smoothing processing such as a moving average calculation. As a result, the process of step S2 is completed, and the blowing control process proceeds to the process of step S3.
  • the oxygen accumulation amount calculation unit 13a in the furnace calculates the oxygen accumulation amount in the furnace by using a well-known method. Specifically, the in-core oxygen accumulation calculation unit 13a calculates the mass balance of carbon and oxygen in the furnace by using the acquired measurement results of the converter type dephosphorization smelting furnace and the actual results of blowing conditions. , Calculate the amount of oxygen accumulated in the furnace by calculating the physical reaction model, or both. For the calculation of the amount of oxygen accumulated in the furnace, the measurement result of the converter type dephosphorization smelting furnace including the exhaust gas flow rate and components sequentially corrected so that the carbon mass balance and the oxygen mass balance in the furnace are consistent can be used. preferable.
  • the oxygen accumulation concentration in the slag [mass%], the oxygen accumulation amount in the furnace per 1 ton of hot metal [kg / ton], etc. are not particularly limited, and the following steps (S4, It is preferable to output according to the shape used in the process of S5). As a result, the process of step S3 is completed, and the blowing control process proceeds to the process of step S4.
  • the feature point extraction unit 13b sequentially monitors the transition of the oxygen accumulation amount in the furnace calculated in the process of step S3, and extracts the feature points of the increase / decrease in the oxygen accumulation amount in the furnace.
  • a characteristic point for example, a point in which the amount of oxygen accumulated in the furnace changes from an upward trend to a downward trend can be exemplified.
  • the characteristic point that the amount of oxygen accumulated in the furnace changes to a downward trend corresponds to the point that the rate-determining rate of the decarburization reaction changes to the rate-determining rate of supply of oxygen including the oxygen source in the slag, and then the FeO reduction reaction proceeds, and the decarburization reaction further proceeds.
  • the rise in hot metal temperature is also promoted.
  • step S4 it is a characteristic point showing that the reaction environment is changed to a condition unfavorable for the dephosphorization reaction, and the dephosphorization efficiency is changed to a condition in which a rephosphorization phenomenon can occur.
  • This characteristic point can be extracted by detecting that the rate of increase in the amount of oxygen accumulated in the furnace is 0 or less, or that the rate of increase is reduced.
  • step S4 not only the above feature points but also feature points regarding the absolute value and the change amount of the oxygen accumulation amount in the furnace may be extracted. As a result, the process of step S4 is completed, and the blowing control process proceeds to the process of step S5.
  • the blown-off oxygen amount determining unit 13c calculates the blow-off oxygen amount based on the feature points extracted in the process of step S4.
  • the amount of blown-off oxygen (the integrated amount of acid feed that keeps the component concentration of the hot metal within a predetermined range) is the amount of oxygen per ton of hot metal specified with respect to the integrated amount of acid feed per ton of hot metal at the feature points output in step S5. Is added to determine.
  • the oxygen amount addition value from the acid feed integrated amount at the feature point is the component analysis value or estimated value of hot metal and slag, the measured value or estimated value of hot metal and slag temperature, the blowing conditions, and the measurement result of the smelting furnace.
  • the conditions are set based on at least one or more of the information and determined for each condition.
  • the component analysis value or estimated value of hot metal and slag used for calculating the amount of blown oxygen, the measured value or estimated value of hot metal and slag temperature, the blowing condition, and the smelting furnace stored in DB12. It is also possible to determine a suitable oxygen amount addition value by machine learning from the relationship between the measurement result and the result of the blowing treatment containing the hot metal component after the treatment. As a result, the process of step S5 is completed, and the blowing control process proceeds to the process of step S6.
  • step S6 the arithmetic processing unit 13 determines whether or not the integrated amount of acid feed has reached the amount of blown-off oxygen output in the process of step S5. As a result of the determination, when the integrated amount of acid feed reaches the amount of blown-off oxygen (step S6: Yes), the arithmetic processing unit 13 ends the series of blowing control processes after finishing the blowing process. .. On the other hand, when the integrated amount of acid feed has not reached the amount of blown-off oxygen (step S6: No), the arithmetic processing unit 13 returns the blowing control process to the process of step S2.
  • the processing cycle from the processing in step S2 to the processing in step S6 is the same as the cycle in which the converter type dephosphorization refining furnace measurement information including the exhaust gas measurement / analysis information and the operation amount information are input to the input device 11. It is preferable to set it.
  • the feature point extraction unit 13b sequentially monitors the transition of the oxygen accumulation amount in the furnace during the smelting process, and oxygen in the furnace.
  • the feature points of the increase / decrease in the accumulated amount are extracted, and the blown oxygen amount determining unit 13c determines the blown oxygen amount until the blowing process is completed based on the feature points extracted by the feature point extraction unit 13b.
  • the arithmetic processing unit 13 terminates the blowing process at the timing when the integrated amount of oxygen sent into the converter type dephosphorization smelting furnace reaches the amount of blown oxygen. Therefore, by appropriately controlling the amount of blown oxygen. It is possible to reduce the phosphorus concentration in the hot metal after the dephosphorization treatment and reduce the consumption of auxiliary raw materials in the decarburization smelting following the dephosphorization treatment step.
  • the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment.
  • the method of calculating the amount of oxygen accumulated in the furnace, the method of extracting the feature amount, and the method of determining the amount of blown-off oxygen it is possible to perform more sophisticated estimation and control by utilizing data science technology, which has made remarkable progress in recent years. Become.
  • other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the category of the present invention.
  • Example 1 Desiliconization and dephosphorization of the molten metal 101 are performed using a top-bottom blown converter type dephosphorization smelting furnace (oxygen gas top-blown, argon gas bottom-blown) having a capacity similar to that of the refining facility 2 shown in FIG. went. Specifically, first, iron scrap was charged into the refining facility 2, and then 300 tons of hot metal having a temperature in the range of 1200 to 1380 ° C. was charged into a converter type dephosphorization refining furnace. Next, while blowing argon gas into the hot metal for stirring from the ventilation hole 107, oxygen gas was blown from the top blowing lance 102 toward the hot metal bath surface to start desiliconization of the hot metal.
  • a top-bottom blown converter type dephosphorization smelting furnace oxygen gas top-blown, argon gas bottom-blown
  • the amount of iron scrap charged was adjusted so that the hot metal temperature after the completion of dephosphorization refining was 1360 ° C.
  • the basicity at the time of desiliconization (CaO concentration in slag [mass%] / SiO 2 concentration in slag [mass%]) was set within the range of 0.8 to 1.0, and when about 5 minutes had passed. After that, the slag 103 was discharged, and then dephosphorization was continued while controlling the basicity within the range of 1.0 to 1.5.
  • the arithmetic processing unit 13 executed the calculation of the amount of oxygen accumulated in the furnace, the extraction of feature points, and the determination of the amount of blown-off oxygen.
  • a point P at which the rate of increase in the amount of oxygen accumulated in the furnace is 0 is extracted as a feature point, and in the calculation of the amount of blown oxygen, the accumulated amount of acid transfer at the feature point is used.
  • dephosphorization is performed so that the integrated amount of acid feed at the end of the blowing process falls within the range of +0 to +2 Nm 3 / ton with respect to the amount of blown oxygen output from the arithmetic processing unit 13. Controlled the end time.
  • Example 2 Under the same operating conditions as in Example 1, at the end of dephosphorization and blowing, the integrated amount of acid transfer at the end of the blowing process is -3 to +0 Nm 3 / compared to the amount of blown-off oxygen output from the arithmetic processing unit 13. The end time of dephosphorization was controlled so as to be within the range of ton.
  • Example 3 Under the same operating conditions as in Example 1, at the end of dephosphorization and blowing, the integrated amount of acid transfer at the end of the blowing process is +2 to +5 Nm 3 / ton compared to the amount of blown-off oxygen output from the arithmetic processing unit 13. The end time of dephosphorization was controlled so as to fall within the range of.
  • Table 1 below shows the results of comparing the average values of the hot metal phosphorus concentration analysis values after the blowing treatment with each of about 30 charges under the conditions shown in Examples 1 to 3.
  • Example 1 the smelting treatment is carried out according to the smelting control method according to the embodiment of the present invention, and the hot metal phosphorus concentration after the smelting treatment is lower than that of Examples 2 and 3. there were.
  • Example 2 the hot metal phosphorus concentration after the treatment was high because the blowing treatment time was insufficient with respect to the time required for dephosphorization, that is, the time until the hot metal phosphorus concentration reached equilibrium.
  • Example 3 the hot metal phosphorus concentration after the treatment was high because the FeO concentration in the slag at the end of the treatment decreased, the dephosphorization efficiency decreased due to the hot metal temperature rise, or the rephosphorization phenomenon occurred due to the excessive acid feeding.
  • the change in the amount of oxygen accumulated in the furnace FeO concentration in the slag
  • the amount of blown-off oxygen is appropriately controlled, so that the phosphorus concentration in the hot metal after the treatment is reduced. It was confirmed that it was possible.
  • the present invention by appropriately controlling the amount of blown-off oxygen, it is possible to reduce the phosphorus concentration in the hot metal after the dephosphorization treatment and reduce the consumption of auxiliary raw materials in the decarburization blowing following the dephosphorization treatment step. It is possible to provide a smelting control method and a smelting control device for a converter type dephosphorization smelting furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本発明に係る転炉型脱燐精錬炉の吹錬制御方法は、転炉型脱燐精錬炉への送酸量及び副原料投入量を含む吹錬条件と、転炉型脱燐精錬炉における排ガスの流量及び成分濃度を含む転炉型脱燐精錬炉についての計測結果と、溶銑の成分及び温度の分析値と、に基づいて、炉内酸素蓄積量を算出する炉内酸素蓄積量計算ステップと、吹錬処理中における炉内酸素蓄積量の推移を逐次監視し、炉内酸素蓄積量の増減の特徴点を抽出する特徴点抽出ステップと、特徴点抽出ステップにおいて抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定する吹止酸素量決定ステップと、転炉型脱燐精錬炉内への送酸積算量が吹止酸素量決定ステップにおいて決定された吹止酸素量に到達したタイミングで吹錬処理を終了させる制御ステップと、を含む。

Description

転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置
 本発明は、転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置に関する。
 近年、溶銑の予備処理方法(脱珪処理、脱燐処理、脱硫処理)の開発が進み、転炉型精錬炉に装入される溶銑中の燐や硫黄の濃度はそれ以上に除去する必要のないレベルまで低減され、転炉型精錬炉では主に脱炭精錬のみを行う鉄鋼精錬プロセスが完成しつつある。脱珪処理及び脱燐処理は、溶銑中の珪素及び燐が溶銑に供給される酸素源(酸素ガスや酸化鉄)中の酸素によって酸化除去される反応であり、脱硫処理はCaO等の脱硫材と溶銑中の硫黄とが反応して硫黄が除去される反応である。特に脱燐処理は、以下の化学反応式(1)に示すように、溶銑中の燐(P)が酸素源(FeO)中の酸素(O)によって酸化されて生成される燐酸化物(P)を脱燐精錬剤として添加するCaO含有物質で固定することにより行われている。なお、化学反応式(1)において、[P]、[Fe]は溶銑中の成分、(FeO)、(CaO)、(3CaO・P)はスラグ中の成分を示している。
Figure JPOXMLDOC01-appb-M000001
 つまり、脱燐処理は、溶銑中の燐がFeOによって酸化され、この酸化反応によって生成したPがCaOと反応してCaO含有物質の滓化によって生成されるスラグに吸収されるという反応である。また、固体として添加されたCaOは、スラグ中のFeO濃度が高いほどスラグへの溶解度が高くなることが知られている。このため、脱燐処理では、脱燐平衡の観点から、処理中のスラグ中FeO濃度を所定値以上担保することが求められる。一方で、スラグ―メタル間の燐平衡で定義したフォスフェイトキャパシティは温度依存性が高く、溶銑温度が低温ほど平衡は脱燐側に偏り、逆に溶銑温度が高温になると脱燐効率の低下又は復燐現象(スラグ中の燐が溶銑中に戻る現象)が生じることが知られている。このため、脱燐処理では、過剰に送酸を行うと各種酸化反応熱により溶銑温度が上昇し、脱燐効率の低下又は復燐が生じる場合がある。
 以上の観点から、脱燐処理では、スラグ中FeO濃度の担保と吹止酸素量の適正化が重要である。このような背景から、特許文献1には、炉内の火点反応及びスラグ―メタル界面反応を考慮して、スラグ中FeO濃度を精度良く推定し、脱珪処理終了時(Si濃度が0.02%に到達した時点)のスラグ中FeO濃度が20%以下である場合に、脱燐促進処理工程を実施する吹錬制御方法が開示されている。また、特許文献2には、炉内酸素蓄積量を含む状態量推定値及び精錬炉についての計測結果に基づいて脱燐速度定数及び溶銑中燐濃度を推定し、溶銑中燐濃度推定値が目標の燐濃度を超えている場合に処理条件を変更する吹錬制御方法が開示されている。
特許第6314484号公報 特許第5582105号公報
 しかしながら、特許文献1には、脱珪処理終了時以降のスラグ中FeO濃度推移の監視方法及び吹錬処理終了の条件は開示、示唆されておらず、吹錬処理末期のスラグ中FeO濃度低下又は溶銑温度上昇による脱燐効率低下又は復燐現象を回避できないという問題が残る。また、特許文献2には、溶銑中燐濃度推定値が目標の燐濃度以下である場合は処理条件を変更する必要は無いと記載されており、特許文献1に記載の方法と同様、脱燐効率低下又は復燐現象(例えば特許文献2において脱燐速度定数が負値となる現象)を抑制するための吹錬処理条件の適正化は意図されていない。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、吹止酸素量を適正に制御することにより、脱燐処理後の溶銑中燐濃度を低下させ、脱燐処理工程に続く脱炭吹錬における副原料消費量を低減可能な転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置を提供することにある。
 本発明に係る転炉型脱燐精錬炉の吹錬制御方法は、転炉型脱燐精錬炉への送酸量及び副原料投入量を含む吹錬条件と、前記転炉型脱燐精錬炉における排ガスの流量及び成分濃度を含む転炉型脱燐精錬炉についての計測結果と、溶銑の成分及び温度の分析値と、に基づいて、炉内酸素蓄積量を算出する炉内酸素蓄積量計算ステップと、吹錬処理中における前記炉内酸素蓄積量の推移を逐次監視し、該炉内酸素蓄積量の増減の特徴点を抽出する特徴点抽出ステップと、前記特徴点抽出ステップにおいて抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定する吹止酸素量決定ステップと、転炉型脱燐精錬炉内への送酸積算量が前記吹止酸素量決定ステップにおいて決定された吹止酸素量に到達したタイミングで吹錬処理を終了させる制御ステップと、を含むことを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御方法は、上記発明において、前記炉内酸素蓄積量計算ステップは、炉内における炭素質量収支及び酸素質量収支が整合するように転炉型脱燐精錬炉についての計測結果を逐次補正し、補正された計測結果を用いて炉内酸素蓄積量を算出するステップを含むことを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御方法は、上記発明において、前記特徴点抽出ステップは、前記炉内酸素蓄積量の増加率が0以下となる点を特徴点として抽出するステップを含むことを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御方法は、上記発明において、前記吹止酸素量決定ステップは、溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び転炉型脱燐精錬炉についての計測結果のうち少なくとも1つ以上の情報に基づいて、前記吹止酸素量を計算する又は機械学習により決定するステップを含むことを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御装置は、転炉型脱燐精錬炉への送酸量及び副原料投入量を含む吹錬条件と、前記転炉型脱燐精錬炉における排ガスの流量及び成分濃度を含む転炉型脱燐精錬炉についての計測結果と、溶銑の成分及び温度の分析値と、に基づいて、炉内酸素蓄積量を算出する炉内酸素蓄積量計算部と、吹錬処理中における前記炉内酸素蓄積量の推移を逐次監視し、該炉内酸素蓄積量の増減の特徴点を抽出する特徴点抽出部と、前記特徴点抽出部によって抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定する吹止酸素量決定部と、転炉型脱燐精錬炉内への送酸積算量が前記吹止酸素量決定部によって決定された吹止酸素量に到達したタイミングで吹錬処理を終了させる制御部と、を備えることを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御装置は、上記発明において、前記炉内酸素蓄積量計算部は、炉内における炭素質量収支及び酸素質量収支が整合するように転炉型脱燐精錬炉についての計測結果を逐次補正し、補正された計測結果を用いて炉内酸素蓄積量を算出することを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御装置は、上記発明において、前記特徴点抽出部は、前記炉内酸素蓄積量の増加率が0以下となる点を特徴点として抽出することを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御装置は、上記発明において、前記吹止酸素量決定部は、溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び転炉型脱燐精錬炉についての計測結果のうち少なくとも1つ以上の情報に基づいて、前記吹止酸素量を計算する又は機械学習により決定することを特徴とする。
 本発明に係る転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置によれば、吹止酸素量を適正に制御することにより、脱燐処理後の溶銑中燐濃度を低下させ、脱燐処理工程に続く脱炭吹錬における副原料消費量を低減させることができる。
図1は、本発明の一実施形態である転炉型脱燐精錬炉の吹錬制御方法に好適な精錬設備の構成を示す模式図である。 図2は、本発明の一実施形態である吹錬御処理の流れを示すフローチャートである。 図3は、炉内酸素蓄積量の経時変化の一例を示す図である。
 以下、図面を参照して、本発明の一実施形態である転炉型脱燐精錬炉の吹錬制御方法について詳細に説明する。
〔精錬設備の構成〕
 まず、図1を参照して、本発明の一実施形態である転炉型脱燐精錬炉の吹錬制御方法に好適な精錬設備の構成について説明する。
 図1は、本発明の一実施形態である転炉型脱燐精錬炉の吹錬制御方法に好適な精錬設備の構成を示す模式図である。図1に示すように、本発明の一実施形態である転炉型脱燐精錬炉の吹錬制御方法に好適な精錬設備2は、転炉型脱燐精錬炉100、ランス102、及びダクト104を備えている。転炉型脱燐精錬炉100内の溶湯101上にはランス102が配置されている。ランス102の先端から下方の溶湯101に向けて高圧酸素(上吹き酸素)が噴出される。この高圧酸素によって溶湯101内の不純物が酸化されてスラグ103内に取り込まれる(吹錬処理)。転炉型脱燐精錬炉100の上部には、排ガス導煙用のダクト104が設置されている。
 ダクト104の内部には、排ガス検出部105が配置されている。排ガス検出部105は、吹錬処理に伴い排出される排ガスの流量及び排ガス中の成分(例えば、CO,CO,O,N,HO,Ar等)を検出する。排ガス検出部105は、例えばダクト104内に設けられたベンチュリ管の前後の差圧に基づいてダクト104内の排ガスの流量を計測する。また、排ガス検出部105は、排ガス中の各成分濃度[%]を計測する。排ガスの流量及び成分濃度は、例えば数秒周期で計測される。排ガス検出部105の検出結果を示す信号は制御端末10に送られる。
 転炉型脱燐精錬炉100内の溶湯101には、転炉型脱燐精錬炉100の底部に形成されている通気孔107を介して底吹ガスが吹き込まれる。流量計108は、転炉型脱燐精錬炉100に吹き込まれる底吹ガスの流量を計測する。吹錬処理開始直前及び吹錬処理後には、溶湯101の温度及び成分濃度の分析が行われる。また、溶湯101の温度及び成分濃度は、吹錬処理途中で一度又は複数回計測され、計測された温度及び成分濃度に基づいて高圧酸素の供給量(送酸量)及び速度(送酸速度)や底吹ガス流量等が決められる。
 本発明の一実施形態である吹錬制御装置1が適用される吹錬制御システムは、制御端末10、吹錬制御装置1、及び表示装置20を主な構成要素として備えている。制御端末10は、パーソナルコンピュータやワークステーション等の情報処理装置によって構成され、溶湯101の成分濃度が所望の範囲内になるように送酸量、送酸速度、及び撹拌ガス流量を制御すると共に、送酸量、送酸速度、及び撹拌ガス流量の実績値のデータを収集する。
 吹錬制御装置1は、パーソナルコンピュータやワークステーション等の情報処理装置によって構成されている。吹錬制御装置1は、入力装置11、データベース(DB)12、演算処理部13、及び出力装置14を備えている。
 入力装置11は、精錬設備2に関する各種の計測結果及び実績情報が入力される入力用インターフェースである。入力装置11には、キーボード、マウス、ポインティングディバイス、データ受信装置、及びグラフィカルユーザインターフェース(GUI)等がある。入力装置11は、実績データやパラメータ設定値等を外部から受け取り、その情報のDB12への書き込みや演算処理部13への送信を行う。入力装置11には、精錬設備2における吹錬処理開始前及び吹錬処理中の少なくとも何れか一方の溶湯101の温度と成分濃度についての計測結果が入力される。温度と成分濃度についての計測結果は、例えばオペレータによる手入力や記録媒体からの読み込み入力等によって入力装置11に入力される。また、入力装置11には、制御端末10から実績情報が入力される。実績情報は、排ガス検出部105によって計測された排ガスの流量及び成分濃度についての情報、転炉型脱燐精錬炉計測装置106によって計測された転炉型脱燐精錬炉における各種計測結果、送酸量及び送酸速度の情報、底吹ガス流量の情報、原料(主原料、副原料)投入量の情報、溶湯101の温度情報等が含まれる。転炉型脱燐精錬炉計測装置106からは、炉内及び炉体の温度情報、転炉型脱燐精錬炉炉口部の光学特性情報、炉体の振動情報、炉体からの音響情報、炉内スラグ及び湯面レベル情報等を含む転炉型脱燐精錬炉に係る計測結果が出力される。
 DB12は、精錬設備2における吹錬処理反応に関するモデル式の情報及びモデル式のパラメータが保存されている記憶装置である。また、DB12には、入力装置11に入力された各種情報、及び演算処理部13により算出された吹錬処理実績における計算・解析結果が記憶される。特に、演算処理部13内の吹止酸素量決定部13cでの計算結果として、吹止酸素量計算に利用される溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び精錬設備2についての計測結果と、処理後の溶銑成分を含む吹錬処理結果とが紐づく形式で記憶されている。
 演算処理部13は、CPU等の演算処理装置であり、吹錬制御装置1全体の動作を制御する。演算処理部13は、炉内酸素蓄積量計算部13a、特徴点抽出部13b、及び吹止酸素量決定部13cとしての機能を有する。炉内酸素蓄積量計算部13a、特徴点抽出部13b、及び吹止酸素量決定部13cは、例えば演算処理部13がコンピュータプログラムを実行することにより実現される。なお、演算処理部13は、炉内酸素蓄積量計算部13a、特徴点抽出部13b、及び吹止酸素量決定部13cとして機能する専用の演算装置や演算回路を有していてもよい。
 このような構成を有する吹錬制御装置1は、以下に示す吹錬制御処理を実行することによって、吹止酸素量を適正に制御することにより、脱燐処理後の溶銑中燐濃度を低下させ、脱燐処理工程に続く脱炭吹錬における副原料消費量を低減する。以下、図2に示すフローチャートを参照して、吹錬制御処理を実行する際の吹錬制御装置1の動作について説明する。
〔吹錬制御処理〕
 図2は、本発明の一実施形態である錬制御処理の流れを示すフローチャートである。図2に示すフローチャートは、吹錬処理が開始されたタイミングで開始となり、吹錬制御処理はステップS1の処理に進む。
 ステップS1の処理では、演算処理部13が、溶湯101の計測・分析値を取得する。演算処理部13は、溶湯101のサンプルに対する温度計測及び成分分析により得られた計測・分析結果を取得する。これにより、ステップS1の処理は完了し、吹錬制御処理はステップS2の処理に進む。
 ステップS2の処理では、演算処理部13は、排ガス計測・分析情報(排ガス情報)、炉内及び炉体の温度情報、転炉型脱燐精錬炉炉口部の光学特性情報、炉体の振動情報、炉体からの音響情報、炉内スラグ及び湯面レベル情報等を含む転炉型脱燐精錬炉に係る計測結果、及び操作量情報を制御端末10から取得する。通常の転炉型脱燐精錬炉吹錬操業では、排ガス計測・分析情報を含む転炉型脱燐精錬炉計測情報、及び操作量情報は一定周期で収集されている。操作量情報の取得時間と転炉型脱燐精錬炉計測結果の取得時間との間に大きな時間遅れのある場合には、その時間遅れを考慮して(遅れ時間分だけ計測情報を早めて)データを作成する。また、計測値及び分析値がノイズを多く含んでいる場合には、移動平均計算等の平滑化処理を行った値で計測値及び分析値を置き換えてもよい。これにより、ステップS2の処理は完了し、吹錬制御処理はステップS3の処理に進む。
 ステップS3の処理では、炉内酸素蓄積量計算部13aが、周知の方法を利用して炉内酸素蓄積量を算出する。具体的には、炉内酸素蓄積量計算部13aは、取得した転炉型脱燐精錬炉計測結果及び吹錬条件実績を用いて、炉内の炭素及び酸素についての質量収支計算をする、又は、物理反応モデルを計算する、又は、その両方を実行することにより、炉内酸素蓄積量を計算する。なお、炉内酸素蓄積量の計算には、炉内における炭素質量収支及び酸素質量収支が整合するように逐次補正された排ガス流量及び成分を含む転炉型脱燐精錬炉計測結果を用いることが好ましい。また、炉内酸素蓄積量の出力形式として、スラグ中の酸素蓄積濃度[mass%]、溶銑1tonあたりの炉内酸素蓄積量[kg/ton]等は特に制限せず、次ステップ以降(S4、S5)の処理で用いられる形に合わせて出力することが好ましい。これにより、ステップS3の処理は完了し、吹錬制御処理はステップS4の処理に進む。
 ステップS4の処理では、特徴点抽出部13bが、ステップS3の処理において算出された炉内酸素蓄積量の推移を逐次監視し、炉内酸素蓄積量の増減の特徴点を抽出する。ここで、特徴点としては、例えば、炉内酸素蓄積量が上昇傾向から下降傾向に転換する点を例示できる。炉内酸素蓄積量が下降傾向に転換する特徴点は、脱炭反応律速がスラグ中酸素源を含む酸素の供給律速へと転換する点と対応し、以降FeO還元反応が進み、さらに脱炭反応による溶銑温度上昇も促進される。すなわち、脱燐反応にとって反応環境が不利な条件へと転換し、脱燐効率低下又は復燐現象が生じ得る条件に転換することを示す特徴点である。この特徴点は、炉内酸素蓄積量の増加率が0以下となる、又は増加率の低下を検出することで抽出できる。なお、ステップS4の処理では、以上の特徴点に限らず、炉内酸素蓄積量の絶対値や変化量についての特徴点を抽出してもよい。これにより、ステップS4の処理は完了し、吹錬制御処理はステップS5の処理に進む。
 ステップS5の処理では、吹止酸素量決定部13cが、ステップS4の処理において抽出された特徴点に基づいて吹止酸素量を計算する。吹止酸素量(溶銑の成分濃度が所定範囲内になる送酸積算量)は、ステップS5で出力された特徴点における溶銑1tonあたりの送酸積算量に対し規定された溶銑1tonあたりの酸素量を加算して決定する。特徴点における送酸積算量からの酸素量加算値は、溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び精錬炉についての計測結果、のうち少なくとも1つ以上の情報に基づいて条件を設定し、条件毎に決定されることが好ましい。又は、DB12に記憶されている、吹止酸素量計算に利用される溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び精錬炉についての計測結果と、処理後の溶銑成分を含む吹錬処理結果との関係から機械学習により好適な酸素量加算値を決定することも可能である。これにより、ステップS5の処理は完了し、吹錬制御処理はステップS6の処理に進む。
 ステップS6の処理では、演算処理部13が、ステップS5の処理で出力された吹止酸素量に送酸積算量が到達しているか否かを判別する。判別の結果、吹止酸素量に送酸積算量が到達している場合(ステップS6:Yes)、演算処理部13は、吹錬処理を終了させた後、一連の吹錬制御処理を終了する。一方、吹止酸素量に送酸積算量が到達していない場合には(ステップS6:No)、演算処理部13は、吹錬制御処理をステップS2の処理に戻す。なお、ステップS2の処理からステップS6の処理までの処理周期は、排ガス計測・分析情報を含む転炉型脱燐精錬炉計測情報、及び操作量情報が入力装置11に入力される周期と同様に設定することが好ましい。
 以上の説明から明らかなように、本発明の一実施形態である吹錬制御処理では、特徴点抽出部13bが、吹錬処理中における炉内酸素蓄積量の推移を逐次監視し、炉内酸素蓄積量の増減の特徴点を抽出し、吹止酸素量決定部13cが、特徴点抽出部13bによって抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定し、演算処理部13が、転炉型脱燐精錬炉内への送酸積算量が吹止酸素量に到達したタイミングで吹錬処理を終了させるので、吹止酸素量を適正に制御することにより、脱燐処理後の溶銑中燐濃度を低下させ、脱燐処理工程に続く脱炭吹錬における副原料消費量を低減させることができる。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、炉内酸素蓄積量の算出方法、特徴量の抽出方法、及び吹止酸素量決定方法については、近年進歩がめざましいデータサイエンス技術を活用することにより、より高機能な推定及び制御が可能となる。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
(実施例1)
 図1に示す精錬設備2と同様の形式を有する、容量300tonの上底吹き転炉型脱燐精錬炉(酸素ガス上吹き、アルゴンガス底吹き)を用いて溶湯101の脱珪及び脱燐を行った。具体的には、まず、精錬設備2内に鉄スクラップを装入した後、温度が1200~1380℃の範囲内にある溶銑300tonを転炉型脱燐精錬炉に装入した。次に、通気孔107から、攪拌用としてアルゴンガスを溶銑中に吹き込みながら、上吹きランス102から酸素ガスを溶銑浴面に向けて吹き付け、溶銑の脱珪精錬を開始した。なお、鉄スクラップの装入量は、脱燐精錬終了後の溶銑温度が1360℃となるように調整した。脱珪処理中、脱珪時の塩基度(スラグ中CaO濃度[mass%]/スラグ中SiO濃度[mass%])を0.8~1.0の範囲内とし、約5分間経過した時点でスラグ103を排出し、その後、塩基度を1.0~1.5の範囲内に制御しつつ脱燐吹錬を継続して行った。
 脱燐吹錬中に演算処理部13により炉内酸素蓄積量計算、特徴点抽出、吹止酸素量決定処理を実行した。本実施例では、図3に示すように、特徴点として炉内酸素蓄積量の増加率が0となる点Pを抽出し、吹止酸素量計算においては、特徴点時点の送酸積算量に対し溶銑1tonあたり5.9Nm/tonの酸素量を加算することで決定した。脱燐吹錬末期において、吹錬処理終了における送酸積算量が、演算処理部13から出力された吹止酸素量と比較して+0から+2Nm/tonの範囲に収まるように脱燐吹錬終了時期を制御した。
(実施例2)
 実施例1と同様の操業条件において、脱燐吹錬末期において、吹錬処理終了における送酸積算量が、演算処理部13から出力された吹止酸素量と比較して-3から+0Nm/tonの範囲に収まるように脱燐吹錬終了時期を制御した。
(実施例3)
 実施例1と同様の操業条件において、脱燐吹錬末期において、吹錬処理終了における送酸積算量が、演算処理部13から出力された吹止酸素量と比較して+2から+5Nm/tonの範囲に収まるように脱燐吹錬終了時期を制御した。
〔評価〕
 実施例1~3に示す条件でそれぞれ30チャージ程度吹錬処理を実施し、吹錬処理後の溶銑燐濃度分析値の平均値を比較した結果を以下の表1に示す。実施例1は本発明の一実施形態における吹錬制御方法に即して吹錬処理を実施しており、実施例2及び実施例3と比較して吹錬処理後の溶銑燐濃度が低位であった。実施例2では、吹錬処理時間が、脱燐に要する時間、即ち溶銑燐濃度が平衡に達するまでの時間に対して、不足したため処理後の溶銑燐濃度が高位であった。一方、実施例3では、過剰送酸により、処理末期のスラグ中FeO濃度低下或いは溶銑温度上昇による脱燐効率低下若しくは復燐現象が生じたため処理後の溶銑燐濃度が高位であった。以上のことから、本発明により、脱燐処理において、炉内蓄積酸素量(スラグ中FeO濃度)推移を監視し吹止酸素量を適正に制御することで、処理後溶銑中燐濃度の低下が可能であることが確認された。
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、吹止酸素量を適正に制御することにより、脱燐処理後の溶銑中燐濃度を低下させ、脱燐処理工程に続く脱炭吹錬における副原料消費量を低減可能な転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置を提供するとができる。
 1 吹錬制御装置
 2 精錬設備
 10 制御端末
 11 入力装置
 12 データベース(DB)
 13 演算処理部
 13a 炉内酸素蓄積量計算部
 13b 特徴点抽出部
 13c 吹止酸素量決定部
 14 出力装置
 20 表示装置
 100 転炉型脱燐精錬炉
 101 溶湯
 102 ランス
 103 スラグ
 104 ダクト
 105 排ガス検出部
 107 通気孔
 108 流量計

Claims (8)

  1.  転炉型脱燐精錬炉への送酸量及び副原料投入量を含む吹錬条件と、前記転炉型脱燐精錬炉における排ガスの流量及び成分濃度を含む転炉型脱燐精錬炉についての計測結果と、溶銑の成分及び温度の分析値と、に基づいて、炉内酸素蓄積量を算出する炉内酸素蓄積量計算ステップと、
     吹錬処理中における前記炉内酸素蓄積量の推移を逐次監視し、該炉内酸素蓄積量の増減の特徴点を抽出する特徴点抽出ステップと、
     前記特徴点抽出ステップにおいて抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定する吹止酸素量決定ステップと、
     転炉型脱燐精錬炉内への送酸積算量が前記吹止酸素量決定ステップにおいて決定された吹止酸素量に到達したタイミングで吹錬処理を終了させる制御ステップと、
     を含むことを特徴とする転炉型脱燐精錬炉の吹錬制御方法。
  2.  前記炉内酸素蓄積量計算ステップは、炉内における炭素質量収支及び酸素質量収支が整合するように転炉型脱燐精錬炉についての計測結果を逐次補正し、補正された計測結果を用いて炉内酸素蓄積量を算出するステップを含むことを特徴とする請求項1に記載の転炉型脱燐精錬炉の吹錬制御方法。
  3.  前記特徴点抽出ステップは、前記炉内酸素蓄積量の増加率が0以下となる点を特徴点として抽出するステップを含むことを特徴とする請求項1又は2に記載の転炉型脱燐精錬炉の吹錬制御方法。
  4.  前記吹止酸素量決定ステップは、溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び転炉型脱燐精錬炉についての計測結果のうち少なくとも1つ以上の情報に基づいて、前記吹止酸素量を計算する又は機械学習により決定するステップを含むことを特徴とする請求項1~3のうち、いずれか1項に記載の転炉型脱燐精錬炉の吹錬制御方法。
  5.  転炉型脱燐精錬炉への送酸量及び副原料投入量を含む吹錬条件と、前記転炉型脱燐精錬炉における排ガスの流量及び成分濃度を含む転炉型脱燐精錬炉についての計測結果と、溶銑の成分及び温度の分析値と、に基づいて、炉内酸素蓄積量を算出する炉内酸素蓄積量計算部と、
     吹錬処理中における前記炉内酸素蓄積量の推移を逐次監視し、該炉内酸素蓄積量の増減の特徴点を抽出する特徴点抽出部と、
     前記特徴点抽出部によって抽出された特徴点に基づいて、吹錬処理が終了するまでの吹止酸素量を決定する吹止酸素量決定部と、
     転炉型脱燐精錬炉内への送酸積算量が前記吹止酸素量決定部によって決定された吹止酸素量に到達したタイミングで吹錬処理を終了させる制御部と、
     を備えることを特徴とする転炉型脱燐精錬炉の吹錬制御装置。
  6.  前記炉内酸素蓄積量計算部は、炉内における炭素質量収支及び酸素質量収支が整合するように転炉型脱燐精錬炉についての計測結果を逐次補正し、補正された計測結果を用いて炉内酸素蓄積量を算出することを特徴とする請求項5に記載の転炉型脱燐精錬炉の吹錬制御装置。
  7.  前記特徴点抽出部は、前記炉内酸素蓄積量の増加率が0以下となる点を特徴点として抽出することを特徴とする請求項5又は6に記載の転炉型脱燐精錬炉の吹錬制御装置。
  8.  前記吹止酸素量決定部は、溶銑及びスラグの成分分析値若しくは推定値、溶銑及びスラグ温度についての計測値若しくは推定値、吹錬条件、及び転炉型脱燐精錬炉についての計測結果のうち少なくとも1つ以上の情報に基づいて、前記吹止酸素量を計算する又は機械学習により決定することを特徴とする請求項5~7のうち、いずれか1項に記載の転炉型脱燐精錬炉の吹錬制御装置。
PCT/JP2020/008830 2019-03-22 2020-03-03 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置 WO2020195598A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080021531.2A CN113574188B (zh) 2019-03-22 2020-03-03 转炉型脱磷精炼炉的吹炼控制方法和吹炼控制装置
BR112021018589A BR112021018589A2 (pt) 2019-03-22 2020-03-03 Método de controle de sopro e aparelho de controle de sopro para forno de refino de desfosforação do tipo conversor
KR1020217030026A KR102534954B1 (ko) 2019-03-22 2020-03-03 전로형 탈인 정련로의 취련 제어 방법 및 취련 제어 장치
EP20778550.2A EP3943618B1 (en) 2019-03-22 2020-03-03 Blowing control method and blowing control apparatus for converter type dephosphorization refining furnace
JP2020546508A JP6795133B1 (ja) 2019-03-22 2020-03-03 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054154 2019-03-22
JP2019-054154 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020195598A1 true WO2020195598A1 (ja) 2020-10-01

Family

ID=72610009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008830 WO2020195598A1 (ja) 2019-03-22 2020-03-03 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置

Country Status (7)

Country Link
EP (1) EP3943618B1 (ja)
JP (1) JP6795133B1 (ja)
KR (1) KR102534954B1 (ja)
CN (1) CN113574188B (ja)
BR (1) BR112021018589A2 (ja)
TW (1) TWI732490B (ja)
WO (1) WO2020195598A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314484B2 (ja) 1983-04-30 1988-03-31 Toda Kogyo Corp
JPH05239524A (ja) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd 転炉吹錬制御方法
JP2006152426A (ja) * 2004-03-25 2006-06-15 Jfe Steel Kk 溶銑の脱りん方法
JP5582105B2 (ja) 2011-07-15 2014-09-03 新日鐵住金株式会社 転炉吹錬制御方法
JP2015131999A (ja) * 2014-01-14 2015-07-23 新日鐵住金株式会社 溶銑脱りん方法
JP2017008349A (ja) * 2015-06-18 2017-01-12 Jfeスチール株式会社 溶湯状況推定装置および溶湯状況推定方法
JP2018044220A (ja) * 2016-09-16 2018-03-22 Jfeスチール株式会社 同一転炉における溶銑の予備処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474361A (en) * 1980-07-30 1984-10-02 Nippon Steel Corporation Oxygen-blown steelmaking furnace
JP4701727B2 (ja) * 2005-01-25 2011-06-15 Jfeスチール株式会社 高炭素極低りん鋼の溶製方法
CN101305105B (zh) * 2005-11-09 2010-09-08 杰富意钢铁株式会社 铁水的脱磷处理方法
CN102242239B (zh) * 2011-07-28 2013-04-17 首钢总公司 利用顶底复吹转炉的铁水预脱磷方法
JP5924186B2 (ja) * 2011-08-23 2016-05-25 Jfeスチール株式会社 転炉での溶銑の脱炭精錬方法
CN102559985B (zh) * 2012-03-01 2013-07-31 江苏省沙钢钢铁研究院有限公司 转炉低磷钢冶炼方法
WO2014112521A1 (ja) * 2013-01-18 2014-07-24 Jfeスチール株式会社 溶銑の予備処理方法
CN108779506B (zh) * 2016-07-14 2023-07-25 日本制铁株式会社 钢水中磷浓度估计方法和转炉吹炼控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314484B2 (ja) 1983-04-30 1988-03-31 Toda Kogyo Corp
JPH05239524A (ja) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd 転炉吹錬制御方法
JP2006152426A (ja) * 2004-03-25 2006-06-15 Jfe Steel Kk 溶銑の脱りん方法
JP5582105B2 (ja) 2011-07-15 2014-09-03 新日鐵住金株式会社 転炉吹錬制御方法
JP2015131999A (ja) * 2014-01-14 2015-07-23 新日鐵住金株式会社 溶銑脱りん方法
JP2017008349A (ja) * 2015-06-18 2017-01-12 Jfeスチール株式会社 溶湯状況推定装置および溶湯状況推定方法
JP2018044220A (ja) * 2016-09-16 2018-03-22 Jfeスチール株式会社 同一転炉における溶銑の予備処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943618A4

Also Published As

Publication number Publication date
TW202043490A (zh) 2020-12-01
CN113574188B (zh) 2022-10-18
KR20210129145A (ko) 2021-10-27
BR112021018589A2 (pt) 2021-11-23
JPWO2020195598A1 (ja) 2021-04-08
EP3943618A4 (en) 2022-05-18
JP6795133B1 (ja) 2020-12-02
EP3943618B1 (en) 2024-02-21
EP3943618A1 (en) 2022-01-26
TWI732490B (zh) 2021-07-01
KR102534954B1 (ko) 2023-05-26
CN113574188A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP6583594B1 (ja) 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法
JP6314484B2 (ja) 溶銑脱りん方法
JP6897261B2 (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP2017008349A (ja) 溶湯状況推定装置および溶湯状況推定方法
JP5686091B2 (ja) 転炉の精錬方法
JP2019073799A (ja) 溶湯温度補正装置、溶湯温度補正方法、及び溶湯の製造方法
JP6825711B2 (ja) 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法
WO2020195598A1 (ja) 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置
JP5678718B2 (ja) 転炉での溶銑の脱炭精錬方法
CN111032887B (zh) 钢水中磷浓度估计方法、转炉吹炼控制装置、程序和记录介质
JP2018178199A (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP2012062567A (ja) 転炉での溶銑の脱炭精錬方法
JP7156560B2 (ja) 精錬処理制御装置及び精錬処理制御方法
WO2017163902A1 (ja) 溶銑予備処理方法及び溶銑予備処理制御装置
JP7319538B2 (ja) 転炉吹錬制御装置、転炉吹錬制御方法およびプログラム
WO2023095647A1 (ja) 炉内状態推定装置、炉内状態推定方法及び溶鋼製造方法
RU2817694C1 (ru) Устройство управления процессом рафинирования и способ управления процессом рафинирования
CN118103530A (zh) 炉内状态推断装置、炉内状态推断方法以及钢水制造方法
JP2021110012A (ja) 溶鋼中りん濃度推定装置、統計モデル構築装置、溶鋼中りん濃度推定方法、統計モデル構築方法、およびプログラム
JP2013249523A (ja) 転炉操業方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020546508

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217030026

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018589

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2020778550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112021018589

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210917