WO2020195464A1 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
WO2020195464A1
WO2020195464A1 PCT/JP2020/007562 JP2020007562W WO2020195464A1 WO 2020195464 A1 WO2020195464 A1 WO 2020195464A1 JP 2020007562 W JP2020007562 W JP 2020007562W WO 2020195464 A1 WO2020195464 A1 WO 2020195464A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
capacitor
film
laminate film
layer
Prior art date
Application number
PCT/JP2020/007562
Other languages
English (en)
French (fr)
Inventor
崇史 奥戸
康一 西村
竹岡 宏樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021508833A priority Critical patent/JP7390559B2/ja
Publication of WO2020195464A1 publication Critical patent/WO2020195464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present disclosure relates to capacitors in general, and more specifically to capacitors having a capacitor element.
  • Capacitors are passive components that store and release electric charges, and are used as components in electronic devices. Since a capacitor may be defective due to moisture absorption, a capacitor having excellent moisture resistance is required.
  • Patent Document 1 discloses a case-molded capacitor in which a capacitor is housed in a resin case and the case is filled with an insulating mold resin.
  • Patent Document 1 Although a film capacitor having a certain degree of moisture resistance can be obtained, weight reduction is not considered.
  • the purpose of the present disclosure is to provide a capacitor having excellent moisture resistance while realizing weight reduction.
  • the capacitor according to one aspect of the present disclosure includes a capacitor element, first external electrodes and second external electrodes provided at both ends of the capacitor element, and a first bus bar electrically connected to the first external electrode.
  • a second bus bar electrically connected to the second external electrode, and a metal laminate film covering at least a part of the capacitor element are provided.
  • the metal laminate film has a first metal layer and a second metal layer that are insulated from each other.
  • FIG. 1 is a schematic cross-sectional view of the capacitor according to the first embodiment.
  • FIG. 2 is a perspective view of the same capacitor.
  • FIG. 3 is a schematic perspective view showing a method of manufacturing a metal laminated film used for manufacturing the same capacitor.
  • FIG. 4A is a schematic perspective view showing a first example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 4B is a schematic perspective view showing a second example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 4C is a schematic perspective view showing a third example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 5 is a schematic cross-sectional view of the capacitor according to the second embodiment.
  • FIG. 6 is a perspective view of the same capacitor.
  • FIG. 7A is a schematic perspective view showing a method of manufacturing the first metal laminated film used for manufacturing the same capacitor.
  • FIG. 7B is a schematic perspective view showing a method for manufacturing a third metal laminate film used for manufacturing the same capacitor.
  • FIG. 7C is a schematic perspective view showing a method of manufacturing a second metal laminated film used for manufacturing the same capacitor.
  • FIG. 8A is a schematic perspective view showing a first example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 8B is a schematic perspective view showing a second example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 8C is a schematic perspective view showing a third example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 8A is a schematic perspective view showing a first example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 8B is a schematic perspective view showing a second example of the above-mentioned method for manufacturing a capacitor.
  • FIG. 9A is a process diagram (perspective view) of a method for manufacturing a wound capacitor element.
  • FIG. 9B is a perspective view of the winding type capacitor element.
  • FIG. 10A is a process diagram (perspective view) of a method for manufacturing a laminated capacitor element.
  • FIG. 10B is a process diagram (cross-sectional view) of a method for manufacturing a laminated capacitor element.
  • FIG. 10C is a partially cutaway perspective view of the laminated capacitor element shown in FIG. 10B.
  • FIG. 10D is a perspective view of the laminated capacitor element.
  • FIG. 1 shows a capacitor 10 according to the first embodiment.
  • the capacitor 10 according to the present embodiment includes a capacitor element 1, a pair of external electrodes 2 (first external electrode 21 and a second external electrode 22), and a pair of bus bars 9 (first bus bar 91 and second bus bar 92). , The metal laminate film 3 and the like.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the pair of bus bars 9 are electrically connected to the pair of external electrodes 2.
  • the metal laminate film 3 covers at least a part of the capacitor element 1. In the present embodiment, the metal laminate film 3 covers the entire capacitor element 1.
  • the metal laminate film 3 has a first metal layer 51 and a second metal layer 52.
  • the first metal layer 51 and the second metal layer 52 are insulated from each other.
  • the capacitor 10 according to the present embodiment does not include the outer case and the mold resin filled in the outer case as described in Patent Document 1. That is, the capacitor 10 adopts a so-called caseless structure. Therefore, the capacitor 10 can be reduced in weight by at least the amount corresponding to the conventional outer case.
  • the capacitor 10 includes the metal laminate film 3.
  • the metal laminate film 3 covers at least a part of the capacitor element 1.
  • the metal laminate film 3 has a first metal layer 51 and a second metal layer 52.
  • the first metal layer 51 and the second metal layer 52 are less likely to allow gas such as water vapor to permeate than the surface of the capacitor element 1. Therefore, by covering the surface of the capacitor element 1 with the metal laminate film 3, it becomes easy to suppress the moisture absorption of the capacitor element 1.
  • the capacitor 10 according to the present embodiment can have excellent moisture resistance.
  • FIG. 2 is a perspective view of the capacitor 10 according to the present embodiment.
  • FIG. 1 is a cross-sectional view taken along line XX of FIG.
  • FIG. 3 is a schematic perspective view showing a method for manufacturing the metal laminated film 3.
  • 4A to 4C are schematic perspective views showing a method of manufacturing the capacitor 10.
  • the capacitor 10 according to the present embodiment adopts a so-called caseless structure, and does not have an exterior case as described in Patent Document 1. That is, the capacitor 10 is a caseless capacitor. As shown in FIG. 1, the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2 (first external electrode 21 and a second external electrode 22), and a pair of bus bars 9 (first bus bar 91 and second bus bar 92). ) And the metal laminate film 3. As shown in FIG. 1, the metal laminate film 3 covers at least a part (in the present embodiment) of the capacitor element 1.
  • each component will be described.
  • the capacitor element 1 (capacitor body) will be described.
  • the capacitor element 1 has a plastic film as a dielectric.
  • the capacitor element 1 includes a winding type capacitor element 7 (see FIG. 9B) and a laminated capacitor element 8 (see FIG. 10D).
  • the winding type capacitor element 7 and the laminated type capacitor element 8 will be described.
  • the winding type capacitor element 7 can be manufactured, for example, as follows. First, prepare a metallized film. Specifically, the metallized film includes a first metallized film 71 and a second metallized film 72 (see FIG. 9A).
  • the metallized film has a dielectric film and a conductive layer.
  • the first metallized film 71 has a first dielectric film 701 and a first conductive layer 711.
  • the first dielectric film 701 is a long film.
  • a first conductive layer 711 is formed on one side of the first dielectric film 701 except for the first margin portion 721.
  • the first margin portion 721 is a portion where the first dielectric film 701 is exposed.
  • the first margin portion 721 is formed in a band shape thinner than the first conductive layer 711 along one long side of the first dielectric film 701.
  • the second metallized film 72 is formed in the same manner as the first metallized film 71. That is, the second metallized film 72 has a second dielectric film 702 and a second conductive layer 712.
  • the second dielectric film 702 is a long film having the same width as the first dielectric film 701.
  • a second conductive layer 712 is formed on one side of the second dielectric film 702, except for the second margin portion 722.
  • the second margin portion 722 is a portion where the second dielectric film 702 is exposed.
  • the second margin portion 722 is formed in a strip shape thinner than the second conductive layer 712 along one long side of the second dielectric film 702.
  • the first dielectric film 701 and the second dielectric film 702 are made of, for example, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenyl sulfide, polystyrene, or the like.
  • the first conductive layer 711 and the second conductive layer 712 are formed by a method such as a vapor deposition method or a sputtering method.
  • the first conductive layer 711 and the second conductive layer 712 are made of, for example, aluminum, zinc, magnesium, or the like.
  • the two long sides of each of the first metallized film 71 and the second metallized film 72 are aligned and overlapped.
  • the first dielectric film 701 or the second dielectric film 702 is interposed between the first conductive layer 711 and the second conductive layer 712.
  • the long side on which the first margin portion 721 is formed and the long side on which the second margin portion 722 is formed are reversed.
  • the side surfaces of the winding body 73 are pressed from both sides to form a flat winding body 74 (see FIG. 9B).
  • the cross-sectional shape of the flat wound body 74 is oval. By flattening in this way, space can be saved.
  • the winding type capacitor element 7 can be obtained. Inside the wound capacitor element 7, the first conductive layer 711 becomes the first internal electrode, and the second conductive layer 712 becomes the second internal electrode. These pair of internal electrodes face each other via a dielectric film (first dielectric film 701 or second dielectric film 702).
  • the laminated capacitor element 8 can be manufactured, for example, as follows. First, prepare a metallized film. Specifically, the metallized film includes a first metallized film 81 and a second metallized film 82 (see FIG. 10A).
  • the metallized film has a dielectric film and a conductive layer.
  • the first metallized film 81 has a first dielectric film 801 and a first conductive layer 811.
  • the first dielectric film 801 is a rectangular film.
  • a first conductive layer 811 is formed on one side of the first dielectric film 801 except for the first margin portion 821.
  • the first margin portion 821 is a portion where the first dielectric film 801 is exposed.
  • the first margin portion 821 is formed in a strip shape thinner than the first conductive layer 811 along one side of the first dielectric film 801.
  • the second metallized film 82 is formed in the same manner as the first metallized film 81. That is, the second metallized film 82 has a second dielectric film 802 and a second conductive layer 812.
  • the second dielectric film 802 is a rectangular film having the same size as the first dielectric film 801.
  • a second conductive layer 812 is formed on one side of the second dielectric film 802, except for the second margin portion 822.
  • the second margin portion 822 is a portion where the second dielectric film 802 is exposed.
  • the second margin portion 822 is formed in a strip shape thinner than the second conductive layer 812 along one side of the second dielectric film 802.
  • the first dielectric film 801 and the second dielectric film 802 are made of, for example, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenyl sulfide, polystyrene, or the like.
  • the first conductive layer 811 and the second conductive layer 812 are formed by a method such as a vapor deposition method or a sputtering method.
  • the first conductive layer 811 and the second conductive layer 812 are made of, for example, aluminum, zinc, magnesium, or the like.
  • the four sides of the first metallized film 81 and the second metallized film 82 are aligned and alternately stacked.
  • the first dielectric film 801 or the second dielectric film 802 is interposed between the first conductive layer 811 and the second conductive layer 812. Further, one side on which the first margin portion 821 is formed and one side on which the second margin portion 822 is formed are reversed.
  • the first margin portion 821 is arranged rearward (negative direction of the X-axis), and the second margin portion 822 is arranged forward (positive direction of the X-axis).
  • the laminated body 83 as shown in FIGS. 10B and 10C can be obtained. Further, the laminated body 83 is covered with the protective film 84 except for the front surface (the surface facing the positive direction of the X axis) and the rear surface (the surface facing the negative direction of the X axis).
  • the protective film 84 is a film having electrical insulating properties.
  • the laminated capacitor element 8 can be obtained. Inside the laminated capacitor element 8, the first conductive layer 811 serves as a first internal electrode, and the second conductive layer 812 serves as a second internal electrode. These pair of internal electrodes face each other via a dielectric film (first dielectric film 801 or second dielectric film 802).
  • the external electrode 2 As shown in FIG. 1, the pair of external electrodes 2 are a first external electrode 21 and a second external electrode 22. The first external electrode 21 and the second external electrode 22 are provided at both ends of the capacitor element 1. The pair of external electrodes 2 are electrically connected to each of the pair of internal electrodes of the capacitor element 1.
  • the external electrode 2 can be formed by, for example, a metallikon (metal spraying method).
  • the metallikon is not particularly limited, and examples thereof include a plasma spraying method, a frame spraying method, and an arc spraying method.
  • the material of the external electrode 2 is not particularly limited, and includes, for example, at least one metal selected from the group consisting of zinc, tin, copper, and aluminum.
  • the external electrode 2 may be formed of zinc alone, or may be formed of a mixture of zinc and another metal such as tin.
  • the material of the external electrode 2 it is preferable to use a material having a low melting point. In this case, when the external electrode 2 is formed by the metallikon, the capacitor element 1 is less likely to be defective due to heat.
  • the material of the external electrode 2 preferably has a melting point of, for example, 700 ° C. or lower, and more preferably 450 ° C. or lower.
  • external electrodes 2 (first external electrode 21 and second external electrode 22) are attached to both end surfaces of the flat wound body 74 by a metallikon.
  • the first external electrode 21 is electrically connected to the first conductive layer 711 (first internal electrode).
  • the second external electrode 22 is electrically connected to the second conductive layer 712 (second internal electrode).
  • the first conductive layer 711 and the second conductive layer 712 form a pair of internal electrodes.
  • external electrodes 2 (first external electrode 21 and second external electrode 22) are formed on the front surface and the rear surface of the laminated body 83 by the metallikon.
  • the first external electrode 21 is electrically connected to the first conductive layer 811 (first internal electrode).
  • the second external electrode 22 is electrically connected to the second conductive layer 812 (second internal electrode).
  • the first conductive layer 811 and the second conductive layer 812 form a pair of internal electrodes.
  • the bus bar 9 As shown in FIG. 1, the pair of bus bars 9 are a first bus bar 91 and a second bus bar 92.
  • the bus bar 9 is electrically connected to the external electrode 2.
  • the first bus bar 91 is electrically connected to the first external electrode 21. A part of the first bus bar 91 is exposed to the outside.
  • the second bus bar 92 is electrically connected to the second external electrode 22. A part of the second bus bar 92 is exposed to the outside.
  • the material of the bus bar 9 is not particularly limited, and for example, a material in which copper or a copper alloy is formed in a plate shape can be used.
  • the method of bonding the bus bar 9 to the external electrode 2 is not particularly limited, and examples thereof include a method of bonding by solder welding, resistance welding, ultrasonic welding, or the like.
  • the metal laminate film 3 covers at least a part of the capacitor element 1. In the present embodiment, as shown in FIGS. 1 and 2, the metal laminate film 3 covers the entire capacitor element 1. As a result, the moisture absorption of the capacitor element 1 can be suppressed.
  • the metal laminate film 3 has a first metal layer 51 and a second metal layer 52.
  • the material of the first metal layer 51 and the second metal layer 52 is not particularly limited, and for example, a metal foil can be used.
  • the material of the metal leaf is not particularly limited, and includes, for example, copper, aluminum, iron, stainless steel, magnesium, silver, gold, nickel, and platinum.
  • the first metal layer 51 and the second metal layer 52 may be formed of the same material or may be formed of different materials.
  • the first metal layer 51 and the second metal layer 52 are electrically insulated from each other.
  • the method for insulating the first metal layer 51 and the second metal layer 52 is not particularly limited, and an appropriate material such as an insulating film and a cured product of a prepreg can be used. In the present embodiment, as will be described later, the first metal layer 51 and the second metal layer 52 are insulated by the insulating layer 6.
  • the first metal layer 51 is preferably adhered to the first bus bar 91.
  • the second metal layer 52 is preferably adhered to the second bus bar 92. In this case, it becomes easy to suppress the invasion of gas such as water vapor and moisture from the gap between the first bus bar 91 and the first metal layer 51 and the gap between the second bus bar 92 and the second metal layer 52. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the method of adhering the first metal layer 51 and the first bus bar 91 and the method of adhering the second metal layer 52 and the second bus bar 92 are not particularly limited, and for example, methods such as welding and soldering can be used. Good.
  • the first metal layer 51 and the second metal layer 52 overlap each other. As a result, the moisture absorption of the capacitor element 1 can be further suppressed. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the side of the capacitor 10 means a direction perpendicular to the axial direction R.
  • the axial direction R means a virtual direction connecting the first external electrode 21 and the second external electrode 22 provided at both ends of the capacitor element 1.
  • the side surface of the capacitor element 1 means an outer peripheral surface of the capacitor element 1, that is, a surface that intersects a direction perpendicular to the axial direction R.
  • the distance of the overlapping portion L between the first metal layer 51 and the second metal layer 52 is preferably 5 mm or more.
  • the distance of the overlapping portion L is the distance R in the axial direction between the end of the first metal layer 51 located on the side of the capacitor 10 and the end of the second metal layer 52 located on the side of the capacitor 10. ..
  • the distance between the overlapping portions L is 5 mm or more, the moisture absorption of the capacitor element 1 can be further suppressed. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the distance of the overlapping portion L is more preferably 10 mm or more.
  • the first metal layer 51 is electrically connected to the first bus bar 91
  • the second metal layer 52 is electrically connected to the second bus bar 92
  • the first metal layer 10 is viewed from the side.
  • the metal layer 51 and the second metal layer 52 overlap each other.
  • the ESL (Equivalent Series Inductance) of the capacitor 10 can be reduced. This is because the magnetic field changes when a current flows through the capacitor element 1, and a magnetic field is generated at a location where the first metal layer 51 and the second metal layer 52 overlap in a direction that cancels the change in the magnetic field, and is induced by the generated magnetic field. It is considered that this is due to the flow of electric current.
  • the metal laminate film 3 preferably has at least one insulating layer 6.
  • the metal laminate film 3 has three insulating layers 6.
  • the three insulating layers 6 are a first insulating layer 61, a second insulating layer 62, and a third insulating layer 63.
  • the second insulating layer 62 is interposed between the first metal layer 51 and the second metal layer 52. In this way, the second insulating layer 62 electrically insulates the first metal layer 51 and the second metal layer 52 from each other. Therefore, a short circuit between the first metal layer 51 and the second metal layer 52 can be suppressed.
  • the metal laminate film 3 has at least one insulating layer 6, it becomes more difficult for moisture and gas such as water vapor to permeate. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the metal laminate film 3 is formed by laminating the first insulating layer 61, the first metal layer 51, the second insulating layer 62, the second metal layer 52, and the third insulating layer 63 in this order. There is.
  • the metal laminate film 3 has the three insulating layers 6, it is possible to suppress a short circuit to further improve the electrical reliability of the capacitor 10, and to impart more excellent moisture resistance to the capacitor 10.
  • the side surface of the capacitor element 1 may be covered with an insulating protective film.
  • the first dielectric films 701 and 801 located on the outermost layer of the capacitor element 1 may function as a protective film.
  • the metal laminate film 3 since the protective film functions as the insulating layer 6, the metal laminate film 3 does not have to have the first insulating layer 61.
  • the metal laminate film 3 preferably has the first insulating layer 61.
  • the material of the insulating layer 6 is not particularly limited, but for example, an insulating film can be used.
  • the material of the insulating film is not particularly limited, and includes, for example, polyester, polypropylene, polyamide, polyethylene, and nylon.
  • the insulating layer 6 is preferably at least one insulating film selected from the group consisting of a polyester film, a polypropylene film, and a nylon film. In this case, a short circuit can be suppressed to further improve the electrical reliability of the capacitor 10, and the capacitor 10 can be further provided with excellent moisture resistance.
  • the materials of the first insulating layer 61, the second insulating layer 62, and the third insulating layer 63 may be the same or different.
  • FIG. 3 shows an example of a method for manufacturing the metal laminate film 3.
  • the metal laminated film 3 can be continuously produced, for example, by using the first insulating roll 61a, the first metal roll 51a, the second insulating roll 62a, the second metal roll 52a, and the third insulating roll 63a.
  • the first insulating roll 61a is a long-shaped first insulating layer 61 wound around.
  • the first metal roll 51a is formed by winding a long first metal layer 51.
  • the second insulating roll 62a is formed by winding a long second insulating layer 62.
  • the second metal roll 52a is formed by winding a long second metal layer 52.
  • the third insulating roll 63a is a long-shaped third insulating layer 63 wound around.
  • the metal laminated film 3 can be manufactured by pulling out the second metal layer 52 and the third insulating layer 63 and laminating and adhering them in this order.
  • the metal laminate film 3 can be cut into an appropriate size and used.
  • the widths of the first insulating layer 61, the first metal layer 51, the second insulating layer 62, the second metal layer 52, and the third insulating layer 63 are the same. As shown in FIG. 3, in the metal laminate film 3, both ends of the three insulating layers 6 (first insulating layer 61, second insulating layer 62, and third insulating layer 63) in the width direction are aligned. Further, the first metal layer 51 projects to one side in the width direction of the metal laminate film 3, and the second metal layer 52 projects to the other side in the width direction of the metal laminate film 3.
  • the ends of the first metal layer 51 and the second metal layer 52 in the width direction are the first bus bar 91 and the first bus bar 91 of the capacitor 10. 2
  • Each can be easily adhered to the bus bar 92.
  • ⁇ Manufacturing method of capacitors> 4A to 4C show first to third examples of the method for manufacturing the capacitor 10 according to the present embodiment.
  • the method for manufacturing the capacitor 10 is not limited to the first to third examples.
  • the capacitor element 1 is wrapped by using two metal laminated films 3a and 3b.
  • the capacitor element 1 is sealed by sandwiching the capacitor element 1 with two metal laminate films 3a and 3b and adhering the outer peripheral portions 610 in the facing surfaces of the metal laminate films 3a and 3b to each other. In this way, the capacitor 10 is obtained.
  • the capacitor element 1 is sealed by adhering the outer peripheral portions 610 of the surfaces of the first insulating layers 61 of the metal laminate films 3a and 3b on the capacitor element 1 side to each other.
  • the bonding method is not particularly limited, and examples thereof include a method of heat-bonding the outer peripheral portion 610 and a method of applying an adhesive to the outer peripheral portion 610 and bonding.
  • the outer peripheral portions 610 of the metal laminated films 3a and 3b are preferably heat-bonded. In this case, it is possible to further suppress the intrusion of moisture and gas such as water vapor from the interface between the two metal laminated films 3a and 3b. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • one metal laminated film 3 is used. That is, one metal laminate film 3 is used to wrap the capacitor element 1.
  • the capacitor element 1 can be sealed by sandwiching the side surface of the capacitor element 1 with one metal laminate film 3 and adhering the facing outer peripheral portions 610 of the metal laminate film 3. In this way, the capacitor 10 is obtained.
  • the capacitor element 1 is sealed by adhering the outer peripheral portions 610 of the surface of the first insulating layer 61 of the metal laminate film 3 on the capacitor element 1 side so as to face each other. There is.
  • the bonding method is the same as in the first example.
  • the third example as shown in FIG. 4C, three capacitor elements 1 and two metal laminated films 3 are used. That is, the three capacitor elements 1 are wrapped with the two metal laminate films 3. Specifically, the three capacitor elements 1 are arranged in a direction perpendicular to the axial direction R. The axial directions R of the three capacitor elements 1 are parallel. Then, the three capacitor elements 1 are sealed by sandwiching the three capacitor elements 1 using the two metal laminated films 3a and 3b and adhering the facing outer peripheral portions 610 of the metal laminated films 3a and 3b. be able to. In this way, the capacitor 10 is obtained.
  • the number of capacitor elements 1 included in the capacitor 10 is not particularly limited.
  • the capacitor element 1 is sealed by adhering the outer peripheral portions 610 of the surfaces of the first insulating layers 61 of the metal laminate films 3a and 3b on the capacitor element 1 side to each other. There is.
  • the bonding method is the same as in the first example.
  • FIG. 5 shows the capacitor 10 according to the second embodiment.
  • the capacitor 10 according to the present embodiment includes a capacitor element 1, a pair of external electrodes 2 (first external electrode 21 and a second external electrode 22), and a pair of bus bars 9 (first bus bar 91 and second bus bar 92).
  • the two metal laminate films 3 (first metal laminate film 31 and second metal laminate film 32) are provided.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the first bus bar 91 is electrically connected to the first external electrode 21.
  • the second bus bar 92 is electrically connected to the second external electrode 22.
  • the first metal laminate film 31 has a first metal layer 51.
  • the first metal laminate film 31 covers a part of the capacitor element 1 and the first external electrode 21.
  • the second metal laminate film 32 has a second metal layer 52.
  • the second metal laminate film 32 covers a part of the capacitor element 1 and the second external electrode 22.
  • the capacitor 10 according to the present embodiment like the capacitor 10 according to the first embodiment, does not include the outer case and the mold resin filled in the outer case as described in Patent Document 1. That is, the capacitor 10 adopts a so-called caseless structure. Therefore, the capacitor 10 can be reduced in weight by at least the amount corresponding to the conventional outer case.
  • the capacitor 10 includes a first metal laminate film 31 and a second metal laminate film 32.
  • the first metal laminate film 31 has a first metal layer 51 and covers a part of the capacitor element 1 and the first external electrode 21.
  • the second metal laminate film 32 has a second metal layer 52 and covers a part of the capacitor element 1 and the second external electrode 22.
  • the first metal layer 51 and the second metal layer 52 are less likely to allow gas such as water vapor to permeate than the surface of the capacitor element 1, the first external electrode 21, and the second external electrode 22. Therefore, by covering a part of the surface of the capacitor element 1, the first external electrode 21 and the second external electrode 22, with the first metal laminate film 31 and the second metal laminate film 32, the capacitor element 1 absorbs moisture. It becomes easier to suppress.
  • the capacitor 10 according to the present embodiment can have excellent moisture resistance.
  • the capacitor 10 according to the second embodiment will be described in detail with reference to FIGS. 5, 6, 7A to 7C, and 8A to 8C.
  • the same components as those in the first embodiment may be designated by the same reference numerals as those in the first embodiment, and detailed description thereof may be omitted.
  • FIG. 6 is a perspective view of the capacitor 10 according to the present embodiment.
  • FIG. 5 is a cross-sectional view taken along line XX of FIG. 7A to 7C are schematic views showing the manufacturing methods of the first metal laminate film 31, the third metal laminate film 33, and the second metal laminate film 32, respectively.
  • 8A to 8C are schematic views showing a method of manufacturing the capacitor 10.
  • the capacitor 10 according to the present embodiment adopts a so-called caseless structure, and does not have an exterior case as described in Patent Document 1. That is, the capacitor 10 is a caseless capacitor.
  • the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2 (first external electrode 21 and a second external electrode 22), and a pair of bus bars 9 (first bus bar 91 and second bus bar 92). ), The first metal laminate film 31, and the second metal laminate film 32.
  • the first metal laminate film 31 covers a part of the capacitor element 1 and the first external electrode 21.
  • the second metal laminate film 32 covers a part of the capacitor element 1 and the second external electrode 22.
  • the metal laminate film 3 includes a first metal laminate film 31 and a second metal laminate film 32.
  • the metal laminate film 3 further includes a third metal laminate film 33.
  • the first metal laminate film 31, the second metal laminate film 32, and the third metal laminate film 33 will be described.
  • the first metal laminate film 31 covers a part of the capacitor element 1 and the first external electrode 21.
  • a part of the capacitor element 1 is a portion located on one side (first external electrode 21 side) of the axial direction R of the capacitor element 1.
  • the first metal laminate film 31 covers the entire circumference of the side surface of the capacitor element 1 on the first external electrode 21 side and the first external electrode 21. That is, the first metal laminate film 31 covers the boundary portion between the capacitor element 1 and the first external electrode 21.
  • the first external electrode 21 is formed by a metallikon on one end surface of the capacitor element 1.
  • the first metal laminate film 31 has a first metal layer 51.
  • the material of the first metal layer 51 is not particularly limited, but for example, a metal foil can be used.
  • the material of the metal leaf is not particularly limited, and includes, for example, copper, aluminum, iron, stainless steel, magnesium, silver, gold, nickel, and platinum.
  • the first metal layer 51 is preferably adhered to the first bus bar 91. In this case, it becomes easy to suppress the invasion of gas such as water vapor and water from the gap between the first bus bar 91 and the first metal layer 51. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the method of adhering the first metal layer 51 and the first bus bar 91 is not particularly limited, and for example, methods such as welding and soldering may be used.
  • the first metal laminate film 31 preferably has at least one insulating layer 6.
  • the first metal laminate film 31 has two insulating layers 6.
  • the two insulating layers 6 are a first insulating layer 61 and a second insulating layer 62.
  • the first insulating layer 61 and the second insulating layer 62 sandwich the first metal layer 51.
  • the moisture resistance of the capacitor 10 can be improved.
  • the side surface of the capacitor element 1 may be covered with an insulating protective film.
  • the first dielectric films 701 and 801 located on the outermost layer of the capacitor element 1 may function as a protective film.
  • the protective film functions as the insulating layer 6
  • the first metal laminate film 31 does not have to have the first insulating layer 61.
  • the first metal laminate film 31 preferably has a first insulating layer 61.
  • the material of the insulating layer 6 is the same as that of the insulating layer 6 of the first embodiment.
  • the insulating layer 6 (first insulating layer 61 and second insulating layer 62) is preferably at least one kind of insulating film selected from the group consisting of polyester film, polypropylene film, and polyamide film. In this case, it is possible to impart more excellent moisture resistance to the capacitor 10.
  • the materials of the first insulating layer 61 and the second insulating layer 62 may be the same or different.
  • FIG. 7A shows an example of a method for manufacturing the first metal laminated film 31.
  • the first metal laminate film 31 can be continuously produced by using, for example, the first insulating roll 61a, the first metal roll 51a, and the second insulating roll 62a.
  • the first metal laminated film 31 can be manufactured.
  • the first metal laminate film 31 can be used by cutting it to an appropriate size.
  • the widths of the first insulating layer 61, the first metal layer 51, and the second insulating layer 62 are the same. As shown in FIG. 7A, in the first metal laminate film 31, both ends of the two insulating layers 6 (the first insulating layer 61 and the second insulating layer 62) in the width direction are aligned. Further, the first metal layer 51 projects to one side in the width direction of the first metal laminate film 31. By arranging the first metal layer 51 in this way, the end portion of the first metal layer 51 in the width direction can be easily adhered to the first bus bar 91 of the capacitor 10.
  • the second metal laminate film 32 covers a part of the capacitor element 1 and the second external electrode 22.
  • a part of the capacitor element 1 is a portion located on the other side (second external electrode 22 side) of the capacitor element 1 in the axial direction R.
  • the second metal laminate film 32 covers the entire circumference of the side surface of the capacitor element 1 on the second external electrode 22 side and the second external electrode 22. That is, the second metal laminate film 32 covers the boundary portion between the capacitor element 1 and the second external electrode 22.
  • the second external electrode 22 is formed by a metallikon on the other end face of the capacitor element 1.
  • the second metal laminate film 32 has a second metal layer 52.
  • the material of the second metal layer 52 is not particularly limited, but is the same as, for example, the material of the first metal layer 51.
  • the first metal layer 51 and the second metal layer 52 may be formed of the same material or may be formed of different materials.
  • the second metal layer 52 is preferably adhered to the second bus bar 92. In this case, it becomes easy to suppress the invasion of gas such as water vapor and water from the gap between the second bus bar 92 and the second metal layer 52. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the method of adhering the second metal layer 52 and the second bus bar 92 is not particularly limited, and for example, methods such as welding and soldering may be used.
  • the second metal laminate film 32 preferably has at least one insulating layer 6.
  • the second metal laminate film 32 has two insulating layers 6.
  • the two insulating layers 6 are a third insulating layer 63 and a fourth insulating layer 64.
  • the third insulating layer 63 and the fourth insulating layer 64 sandwich the second metal layer 52. In this case, it becomes more difficult for moisture and gas such as water vapor to permeate, so that the moisture resistance of the capacitor 10 can be improved.
  • the side surface of the capacitor element 1 may be covered with an insulating protective film.
  • the first dielectric films 701 and 801 located on the outermost layer of the capacitor element 1 may function as a protective film.
  • the protective film functions as the insulating layer 6
  • the second metal laminate film 32 does not have to have the third insulating layer 63.
  • the second metal laminate film 32 preferably has a third insulating layer 63.
  • the material of the insulating layer 6 of the second metal laminated film 32 is the same as the material of the insulating layer 6 of the first metal laminated film 31.
  • the insulating layer 6 (third insulating layer 63 and fourth insulating layer 64) is preferably at least one kind of insulating film selected from the group consisting of polyester film, polypropylene film, and polyamide film. In this case, it is possible to impart more excellent moisture resistance to the capacitor 10.
  • the materials of the third insulating layer 63 and the fourth insulating layer 64 may be the same or different.
  • the first metal layer 51 and the second metal layer 52 are not in contact with each other.
  • the first metal layer 51 and the second metal layer 52 are not in contact with each other, the first metal layer 51 is bonded to the first bus bar 91, and the second metal layer 52 is bonded to the second bus bar 92. Also, short circuits can be suppressed.
  • the distance L3 between the end of the first metal layer 51 and the end of the second metal layer 52 is preferably 5 mm or more.
  • the distance L3 is the distance R in the axial direction between the end of the first metal layer 51 located on the side of the capacitor 10 and the end of the second metal layer 52 located on the side of the capacitor 10.
  • the distance L3 is more preferably 10 mm or more. If the first metal layer 51 and the second metal layer 52 do not come into contact with each other, the first insulating layer 61 of the first metal laminated film 31 and the third insulating layer 63 of the second metal laminated film 32 come into contact with each other. You may be.
  • FIG. 7C shows an example of a method for manufacturing the second metal laminate film 32.
  • the second metal laminate film 32 can be continuously produced by using, for example, the third insulating roll 63a, the second metal roll 52a, and the fourth insulating roll 64a.
  • the fourth insulating roll 64a is a long-shaped fourth insulating layer 64 wound around.
  • the second metal laminated film 32 can be manufactured.
  • the second metal laminate film 32 can be cut into an appropriate size and used.
  • the widths of the third insulating layer 63, the second metal layer 52, and the fourth insulating layer 64 are the same. As shown in FIG. 7C, in the second metal laminate film 32, both ends of the two insulating layers 6 (third insulating layer 63 and fourth insulating layer 64) in the width direction are aligned. Further, the second metal layer 52 projects to the other side in the width direction of the second metal laminate film 32. By arranging the second metal layer 52 in this way, the end portion of the second metal layer 52 in the width direction can be easily adhered to the second bus bar 92 of the capacitor 10.
  • the third metal laminate film 33 covers a part of the capacitor element 1.
  • the part of the capacitor element 1 in this case is a part of the capacitor element 1 including at least a portion not covered by the first metal laminate film 31 and the second metal laminate film 32.
  • the third metal laminate film 33 covers the side surface of the capacitor element 1.
  • the third metal laminate film 33 has a third metal layer 53.
  • the material of the third metal layer 53 is not particularly limited, but is the same as, for example, the material of the first metal layer 51.
  • the third metal layer 53 may be formed of the same material as the first metal layer 51 and the second metal layer 52, or may be formed of different materials.
  • the third metal laminate film 33 does not cover the first external electrode 21 and the second external electrode 22. In this case, it becomes easy to suppress a short circuit in the capacitor 10. However, when the third metal laminate film 33 has the fifth insulating layer 65 described later and the third metal layer 53 is insulated from the first external electrode 21 and the second external electrode 22, the third metal The laminate film 33 may cover at least a part of the first external electrode 21 and at least a part of the second external electrode 22.
  • the third metal laminate film 33 preferably has at least one insulating layer 6.
  • the third metal laminate film 33 has two insulating layers 6.
  • the two insulating layers 6 are a fifth insulating layer 65 and a sixth insulating layer 66.
  • the fifth insulating layer 65 and the sixth insulating layer 66 sandwich the third metal layer 53. In this case, it becomes more difficult for moisture and gas such as water vapor to permeate, so that the moisture resistance of the capacitor 10 can be improved.
  • the side surface of the capacitor element 1 may be covered with an insulating protective film.
  • the first dielectric films 701 and 801 located on the outermost layer of the capacitor element 1 may function as a protective film.
  • the protective film functions as the insulating layer 6
  • the third metal laminate film 33 does not have to have the fifth insulating layer 65.
  • the third metal laminate film 33 preferably has a fifth insulating layer 65.
  • the third metal laminated film 33 does not have the sixth insulating layer 66. May be good. However, from the viewpoint of improving the moisture resistance of the capacitor 10 and suppressing short circuits, the third metal laminate film 33 preferably has a sixth insulating layer 66.
  • the material of the insulating layer 6 of the third metal laminated film 33 is the same as the material of the insulating layer 6 of the first metal laminated film 31.
  • the insulating layer 6 (fifth insulating layer 65 and sixth insulating layer 66) is preferably at least one kind of insulating film selected from the group consisting of polyester film, polypropylene film, and polyamide film. In this case, it is possible to impart more excellent moisture resistance to the capacitor 10.
  • the materials of the fifth insulating layer 65 and the sixth insulating layer 66 may be the same or different.
  • the metal laminate film 3 further includes the third metal laminate film 33, a part of the first metal layer 51 and a part of the third metal layer 53 overlap when the capacitor 10 is viewed from the side. Is preferable. As a result, the moisture absorption of the capacitor element 1 can be further suppressed. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the distance of the overlapping portion L1 between the first metal layer 51 and the third metal layer 53 is preferably 5 mm or more.
  • the distance of the overlapping portion L1 is the distance in the axial direction R between the end portion of the first metal layer 51 located on the side of the capacitor 10 and the end portion of the third metal layer 53 on the first external electrode 21 side.
  • the distance of the overlapping portion L1 is more preferably 10 mm or more.
  • the metal laminate film 3 includes the third metal laminate film 33
  • a part of the second metal layer 52 and a part of the third metal layer 53 may overlap. preferable.
  • the moisture absorption of the capacitor element 1 can be further suppressed. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the distance of the overlapping portion L2 between the second metal layer 52 and the third metal layer 53 is preferably 5 mm or more.
  • the distance of the overlapping portion L2 is the distance in the axial direction R between the end portion of the second metal layer 52 located on the side of the capacitor 10 and the end portion of the third metal layer 53 on the second external electrode 22 side.
  • the distance between the overlapping portions L2 is 5 mm or more, the moisture absorption of the capacitor element 1 can be further suppressed. Therefore, the moisture resistance of the capacitor 10 can be further improved.
  • the distance of the overlapping portion L2 is more preferably 10 mm or more.
  • FIG. 7B shows an example of a method for manufacturing the third metal laminate film 33.
  • the third metal laminate film 33 can be continuously produced by using, for example, the fifth insulating roll 65a, the third metal roll 53a, and the sixth insulating roll 66a.
  • the fifth insulating roll 65a is a long-shaped fifth insulating layer 65 wound around.
  • the third metal roll 53a is formed by winding a long third metal layer 53.
  • the sixth insulating roll 66a is a long-shaped sixth insulating layer 66 wound around.
  • the third metal laminated film 33 can be manufactured.
  • the third metal laminate film 33 can be cut into an appropriate size and used.
  • the widths of the fifth insulating layer 65, the third metal layer 53, and the sixth insulating layer 66 are the same. As shown in FIG. 7B, in the third metal laminated film 33, both ends of the fifth insulating layer 65, the third metal layer 53, and the sixth insulating layer 66 in the width direction are aligned.
  • ⁇ Manufacturing method of capacitors> 8A to 8C show first to third examples of the method for manufacturing the capacitor 10 according to the present embodiment.
  • the method for manufacturing the capacitor 10 is not limited to the first to third examples.
  • the side surface of the capacitor element 1 is covered with the third metal laminate film 33.
  • two first metal laminate films 31a and 31b and two second metal laminate films 32a and 32b are used to wrap both sides of the capacitor element 1 in the axial direction R. That is, the side surfaces of the capacitor element 1 on the first external electrode 21 side in the axial direction R are sandwiched between the two first metal laminated films 31a and 31b. Then, the outer peripheral portions 610 in the facing planes of the first metal laminated films 31a and 31b are adhered to each other. Further, the outer peripheral portions 610 of the first metal laminated films 31a and 31b are adhered to the end portion 661 on the first external electrode 21 side in the axial direction R of the third metal laminated film 33.
  • the side surfaces of the capacitor element 1 on the second external electrode 22 side in the axial direction R are sandwiched between the two second metal laminated films 32a and 32b. Then, the outer peripheral portions 630 in the facing planes of the second metal laminated films 32a and 32b are adhered to each other. Further, the outer peripheral portions 630 of the second metal laminated films 32a and 32b are adhered to the end portion 662 on the second external electrode 22 side of the third metal laminated film 33 in the axial direction R.
  • the capacitor element 1 can be sealed with the metal laminate film 3. In this way, the capacitor 10 is obtained.
  • the outer peripheral portions 610 of the surface of the first metal laminated films 31a and 31b on the capacitor element 1 side of the first insulating layer 61 are adhered to each other. Further, the outer peripheral portions 630 of the surface of the second metal laminated films 32a and 32b on the capacitor element 1 side of the third insulating layer 63 are adhered to each other. Further, the third metal laminate film 33 covers the portion of the capacitor element 1 that is not covered by the first metal laminate film 31 and the second metal laminate film 32. As a result, the capacitor element 1 is sealed.
  • the bonding method is not particularly limited, and for example, a method of bonding by thermal bonding, a method of applying an adhesive and bonding, and the like can be used.
  • the outer peripheral portions 610 of the first metal laminated films 31a and 31b are heat-bonded. In this case, it is possible to further suppress the intrusion of moisture and gas such as water vapor from the interface between the two first metal laminated films 31a and 31b, and it is possible to further improve the moisture resistance of the capacitor 10.
  • the outer peripheral portions 630 of the second metal laminated films 32a and 32b are heat-bonded. In this case, it is possible to further suppress the intrusion of moisture and gas such as water vapor from the interface between the two second metal laminated films 32a and 32b, and it is possible to further improve the moisture resistance of the capacitor 10.
  • the side surface of the capacitor element 1 is covered with the third metal laminate film 33.
  • one sheet of the first metal laminate film 31 and one sheet of the second metal laminate film 32 are used to wrap both sides of the capacitor element 1 in the axial direction R. That is, one sheet of the first metal laminate film 31 is used to wrap the side surface of the capacitor element 1 on the side of the first external electrode 21 in the axial direction R. Then, the opposite outer peripheral portions 610 of the first metal laminate film 31 are adhered to each other. Further, the outer peripheral portion 610 of the first metal laminated film 31 is adhered to the end portion 661 on the side of the first external electrode 21 in the axial direction R of the third metal laminated film 33.
  • one second metal laminated film 32 is used to wrap the side surface of the capacitor element 1 on the second external electrode 22 side in the axial direction R. Then, the opposite outer peripheral portions 630 of the second metal laminate film 32 are adhered to each other. Further, the outer peripheral portion 630 of the second metal laminate film 32 is adhered to the end portion 662 on the second external electrode 22 side of the third metal laminate film 33 in the axial direction R.
  • the capacitor element 1 can be sealed with the metal laminate film 3. In this way, the capacitor 10 is obtained.
  • the outer peripheral portions 610 of the surface of the first insulating layer 61 of the first metal laminated film 31 on the capacitor element 1 side are adhered to each other. Further, the outer peripheral portion 630 of the surface of the third insulating layer 63 of the second metal laminated film 32 on the capacitor element 1 side is adhered. Further, the third metal laminate film 33 covers the portion of the capacitor element 1 that is not covered by the first metal laminate film 31 and the second metal laminate film 32. As a result, the capacitor element 1 is sealed.
  • the bonding method is not particularly limited and is the same as in the first example.
  • each of the three capacitor elements 1 are covered with one third metal laminate film 33.
  • the three capacitor elements 1 are arranged in the direction perpendicular to the axial direction R.
  • the axial directions R of the three capacitor elements 1 are parallel.
  • the end portions on both sides of the three capacitor elements 1 are sandwiched. That is, the opposite outer peripheral portions 610 of the first metal laminated films 31a and 31b are adhered to each other. Further, the outer peripheral portions 610 of the first metal laminated films 31a and 31b are adhered to the end portion 661 on the first external electrode 21 side in the axial direction R of the third metal laminated film 33.
  • the opposite outer peripheral portions 630 of the second metal laminated films 32a and 32b are adhered to each other. Further, the outer peripheral portions 630 of the second metal laminated films 32a and 32b are adhered to the end portion 662 on the second external electrode 22 side of the third metal laminated film 33 in the axial direction R. As a result, the three capacitor elements 1 can be sealed with the metal laminated film 3. In this way, the capacitor 10 is obtained.
  • the number of capacitor elements 1 included in the capacitor 10 is not particularly limited.
  • the capacitor 10 according to the first and second embodiments may further include a heat shrink tube (not shown).
  • the heat shrink tube covers the capacitor element 1.
  • the heat-shrinkable tube is a resin member formed in a tubular shape and has a property of shrinking when heat is applied. For example, the heat-shrinkable tube is cut to the same length as the capacitor 10, and the cut-out heat-shrinkable tube is fitted into the capacitor 10 and heated to shrink the heat-shrinkable tube, whereby the heat-shrinkable tube is brought into close contact with the capacitor 10. Can be done.
  • the material, thickness, and size of the heat-shrinkable tube are not particularly limited, and any one can be used according to the size of the capacitor 10.
  • the capacitor 10 When the capacitor 10 includes a heat-shrinkable tube, it becomes easy to suppress the invasion of moisture and gas such as water vapor into the inside of the capacitor element 1, and the capacitor 10 can have better moisture resistance.
  • the heat-shrinkable tube is preferably attached to the outermost layer of the capacitor 10.
  • the metal laminate film 3 does not have to have the third insulating layer 63.
  • the heat-shrinkable tube may cover the second metal layer 52 on the side surface of the capacitor 10.
  • the metal laminate film 3 preferably has a third insulating layer 63.
  • the first metal laminate film 31 does not have to have the second insulating layer 62.
  • the heat-shrinkable tube may cover the first metal layer 51 on the side surface of the capacitor 10.
  • the first metal laminate film 31 preferably has a second insulating layer 62.
  • the second metal laminate film 32 does not have to have the fourth insulating layer 64.
  • the heat-shrinkable tube may cover the second metal layer 52 on the side surface of the capacitor 10.
  • the second metal laminate film 32 preferably has a fourth insulating layer 64.
  • the capacitor 10 according to the first and second embodiments may further include a resin encapsulant (not shown) that covers the pair of external electrodes 2.
  • a resin encapsulant (not shown) that covers the pair of external electrodes 2.
  • the material of the resin encapsulant is not particularly limited, and may be any resin material that is less permeable to water and gas such as water vapor than the external electrode 2.
  • a thermosetting resin such as an epoxy resin can be used as the material of the resin encapsulant.
  • the resin encapsulant can be formed by adhering the bus bar 9 to the external electrode 2 and then applying and curing such a resin material so as to cover the external electrode 2. After that, the capacitor element 1 may be coated with the metal laminate film 3.
  • the curing temperature of the thermosetting resin is preferably 120 ° C. or lower. In this case, the influence of heat on the capacitor element 1 when curing the prepreg can be reduced.
  • a resin encapsulant may be formed by using a resin composition in which an inorganic filler, a known curing agent, a catalyst, or the like is added to the resin.
  • the capacitor 10 according to the first and second embodiments may further include a water-repellent layer (not shown) that covers the pair of external electrodes 2.
  • a water-repellent layer (not shown) that covers the pair of external electrodes 2.
  • the material of the water-repellent layer is not particularly limited, and the water-repellent layer may be formed by using a material that is less permeable to water and gas such as water vapor than the external electrode 2.
  • a water-repellent layer can be formed by using a fluorine-based or silicon-based water repellent.
  • a water-repellent layer can be formed by applying a water-repellent agent so as to cover the external electrode 2 and drying the bus bar 9. After that, the capacitor element 1 may be coated with the metal laminate film 3.
  • the first aspect is a capacitor (10), which comprises a capacitor element (1), a first external electrode (21) and a second external electrode (22) provided at both ends of the capacitor element (1).
  • a metal laminate film (3) that covers at least a part of 1) is provided.
  • the metal laminate film (3) has a first metal layer (51) and a second metal layer (52) that are insulated from each other.
  • the second aspect is the capacitor (10) based on the first aspect.
  • the first metal layer (51) is adhered to the first bus bar (91), and the second metal layer (52) is adhered to the second bus bar (92).
  • the third aspect is the capacitor (10) based on the first or second aspect.
  • the first metal layer (51) and the second metal layer (52) overlap each other.
  • the fourth aspect is the capacitor (10) based on any one of the first to third aspects.
  • the outer peripheral portion (610) of the metal laminated film (3) is heat-bonded.
  • the fifth aspect is a capacitor (10) based on any one of the first to fourth aspects.
  • the metal laminate film (3) has at least one insulating layer (6; 61, 62, 63).
  • the moisture resistance of the capacitor (10) can be further enhanced, and the first metal layer (51) and the second metal layer (52) can be well insulated to suppress a short circuit. be able to.
  • the sixth aspect is the capacitor (10) based on the fifth aspect.
  • the insulating layer (6; 61, 62, 63) is at least one insulating film selected from the group consisting of polyester films, polypropylene films, and polyamide films.
  • the moisture resistance of the capacitor (10) can be further enhanced, and the first metal layer (51) and the second metal layer (52) can be well insulated.
  • the seventh aspect is a capacitor (10) based on any one of the first to sixth aspects.
  • the metal laminate film (3) includes a first metal laminate film (31; 31a, 31b) that covers a part of the capacitor element (1) and the first external electrode (21). A part of the capacitor element (1) and a second metal laminate film (32; 32a, 32b) for covering the second external electrode (22) are included.
  • the first metal laminate film (31; 31a, 31b) has a first metal layer (51).
  • the second metal laminate film (32; 32a, 32b) has a second metal layer (52).
  • each of the first metal laminate film (31; 31a, 31b) and the second metal laminate film (32; 32a, 32b) has at least one insulating layer (6; 61, 62, 63). , 64).
  • the moisture resistance of the capacitor (10) can be further improved.
  • the ninth aspect is the capacitor (10) based on the eighth aspect.
  • the insulating layer (6; 61, 62, 63, 64) is at least one insulating film selected from the group consisting of polyester films, polypropylene films, and polyamide films.
  • the moisture resistance of the capacitor (10) can be further improved.
  • the tenth aspect is a capacitor (10) based on any one of the seventh to ninth aspects.
  • the metal laminate film (3) further includes a third metal laminate film (33) that covers a part of the capacitor element (1).
  • the third metal laminate film (33) has a third metal layer (53).
  • the eleventh aspect is a capacitor (10) based on the tenth aspect.
  • the third metal laminate film (33) does not cover the first external electrode (21) and the second external electrode (22).
  • the twelfth aspect is a capacitor (10) based on the tenth or eleventh aspect.
  • the third metal laminate film (33) has at least one insulating layer (6; 65, 66).
  • the thirteenth aspect is a capacitor (10) based on the twelfth aspect.
  • the insulating layer (6; 65,66) is at least one insulating film selected from the group consisting of polyester films, polypropylene films, and polyamide films.
  • the moisture resistance of the capacitor (10) can be further improved.
  • the fourteenth aspect is a capacitor (10) based on any one of the tenth to thirteenth aspects.
  • a part of the first metal layer (51) and a part of the third metal layer (53) overlap each other, and the second metal layer A part of (52) and a part of the third metal layer (53) overlap each other.
  • the fifteenth aspect is a capacitor (10) based on any one of the seventh to fourteenth aspects.
  • at least a part of the outer peripheral portion (610) of the first metal laminated film (31; 31a, 31b) is heat-bonded.
  • the sixteenth aspect is a capacitor (10) based on any one of the seventh to fifteenth aspects.
  • at least a part of the outer peripheral portion (630) of the second metal laminated film (32; 32a, 32b) is heat-bonded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

コンデンサ10は、コンデンサ素子1と、コンデンサ素子1の両端に設けられた第1外部電極21及び第2外部電極22と、第1外部電極21と電気的に接続された第1バスバー91と、第2外部電極22と電気的に接続された第2バスバー92と、コンデンサ素子1の少なくとも一部を被覆する金属ラミネートフィルム3と、を備える。金属ラミネートフィルム3は、互いに絶縁された第1金属層51と第2金属層52とを有する。

Description

コンデンサ
 本開示は、一般にコンデンサに関し、より詳細にはコンデンサ素子を備えるコンデンサに関する。
 コンデンサは、電荷を蓄えたり、放出したりする受動部品であり、電子機器の部品として用いられる。コンデンサは、吸湿により不良が生じることがあるため、優れた耐湿性を有するコンデンサが求められている。例えば、特許文献1には、樹脂製のケースにコンデンサを収容し、ケース内に絶縁性のモールド樹脂を充填したケースモールド型コンデンサが開示されている。
 特許文献1では、ある程度の耐湿性を有するフィルムコンデンサを得ることができるものの、軽量化は配慮されていない。
特開2008-251595号公報
 本開示の目的は、軽量化を実現するとともに、優れた耐湿性を有するコンデンサを提供することである。
 本開示の一態様に係るコンデンサは、コンデンサ素子と、前記コンデンサ素子の両端に設けられた第1外部電極及び第2外部電極と、前記第1外部電極と電気的に接続された第1バスバーと、前記第2外部電極と電気的に接続された第2バスバーと、前記コンデンサ素子の少なくとも一部を被覆する金属ラミネートフィルムと、を備える。前記金属ラミネートフィルムは、互いに絶縁された第1金属層と第2金属層とを有する。
図1は、第1実施形態に係るコンデンサの概略断面図である。 図2は、同上のコンデンサの斜視図である。 図3は、同上のコンデンサの製造に用いられる金属ラミネートフィルムの製造方法を示す概略斜視図である。 図4Aは、同上のコンデンサの製造方法の第1例を示す概略斜視図である。図4Bは、同上のコンデンサの製造方法の第2例を示す概略斜視図である。図4Cは、同上のコンデンサの製造方法の第3例を示す概略斜視図である。 図5は、第2実施形態に係るコンデンサの概略断面図である。 図6は、同上のコンデンサの斜視図である。 図7Aは、同上のコンデンサの製造に用いられる第1金属ラミネートフィルムの製造方法を示す概略斜視図である。図7Bは、同上のコンデンサの製造に用いられる第3金属ラミネートフィルムの製造方法を示す概略斜視図である。図7Cは、同上のコンデンサの製造に用いられる第2金属ラミネートフィルムの製造方法を示す概略斜視図である。 図8Aは、同上のコンデンサの製造方法の第1例を示す概略斜視図である。図8Bは、同上のコンデンサの製造方法の第2例を示す概略斜視図である。図8Cは、同上のコンデンサの製造方法の第3例を示す概略斜視図である。 図9Aは、巻回型コンデンサ素子の製造方法の一工程図(斜視図)である。図9Bは、上記巻回型コンデンサ素子の斜視図である。 図10Aは、積層型コンデンサ素子の製造方法の一工程図(斜視図)である。図10Bは、積層型コンデンサ素子の製造方法の一工程図(断面図)である。図10Cは、図10Bに示す積層型コンデンサ素子の一部破断した斜視図である。図10Dは、上記積層型コンデンサ素子の斜視図である。
 1.第1実施形態
 (1)概要
 図1に第1実施形態に係るコンデンサ10を示す。本実施形態に係るコンデンサ10は、コンデンサ素子1と、一対の外部電極2(第1外部電極21及び第2外部電極22)と、一対のバスバー9(第1バスバー91及び第2バスバー92)と、金属ラミネートフィルム3と、を備える。一対の外部電極2は、コンデンサ素子1の両端に設けられる。一対のバスバー9は、一対の外部電極2と電気的に接続される。金属ラミネートフィルム3は、コンデンサ素子1の少なくとも一部を被覆する。本実施形態では、金属ラミネートフィルム3は、コンデンサ素子1の全体を被覆している。金属ラミネートフィルム3は、第1金属層51と第2金属層52とを有する。第1金属層51と第2金属層52とは、互いに絶縁されている。
 本実施形態に係るコンデンサ10は、特許文献1に記載されているような外装ケース及び外装ケース内に充填されたモールド樹脂を備えていない。すなわち、コンデンサ10は、いわゆるケースレス構造を採用している。そのため、コンデンサ10は、少なくとも従来の外装ケースに相当する分だけ、軽量化を実現することができる。
 上述のように、本実施形態に係るコンデンサ10は、金属ラミネートフィルム3を備える。金属ラミネートフィルム3は、コンデンサ素子1の少なくとも一部を被覆する。金属ラミネートフィルム3は、第1金属層51及び第2金属層52を有する。第1金属層51及び第2金属層52は、コンデンサ素子1の表面に比べて、水蒸気などのガスを透過させにくい。そのため、金属ラミネートフィルム3でコンデンサ素子1の表面を被覆することで、コンデンサ素子1の吸湿を抑制しやすくなる。
 したがって、本実施形態に係るコンデンサ10は、優れた耐湿性を有することができる。
 (2)詳細
 以下、第1実施形態に係るコンデンサ10について、図1、図2、図3、及び図4A~図4Cを参照して詳細に説明する。
 図2は、本実施形態に係るコンデンサ10の斜視図である。図1は、図2のX-X線断面図である。図3は、金属ラミネートフィルム3の製造方法を示す概略斜視図である。図4A~図4Cは、コンデンサ10の製造方法を示す概略斜視図である。
 本実施形態に係るコンデンサ10は、いわゆるケースレス構造を採用しており、特許文献1に記載されているような外装ケースを備えていない。つまり、コンデンサ10は、ケースレスコンデンサである。図1に示すように、コンデンサ10は、コンデンサ素子1と、一対の外部電極2(第1外部電極21及び第2外部電極22)と、一対のバスバー9(第1バスバー91及び第2バスバー92)と、金属ラミネートフィルム3と、を備える。図1に示すように、金属ラミネートフィルム3は、コンデンサ素子1の少なくとも一部(本実施形態では全体)を被覆する。以下、各構成要素について説明する。
 <コンデンサ素子>
 まずコンデンサ素子1(コンデンサ本体)について説明する。コンデンサ素子1は、プラスチックフィルムを誘電体として有する。コンデンサ素子1には、巻回型コンデンサ素子7(図9B参照)、及び積層型コンデンサ素子8(図10D参照)が含まれる。以下、巻回型コンデンサ素子7、及び積層型コンデンサ素子8について説明する。
 ≪巻回型コンデンサ素子≫
 巻回型コンデンサ素子7は、例えば、次のようにして製造することができる。まず金属化フィルムを用意する。具体的には、金属化フィルムには、第1金属化フィルム71及び第2金属化フィルム72が含まれる(図9A参照)。
 金属化フィルムは、誘電体フィルムと、導電層と、を有する。
 具体的には、第1金属化フィルム71は、第1誘電体フィルム701と、第1導電層711と、を有する。第1誘電体フィルム701は、長尺状のフィルムである。第1誘電体フィルム701の片面に、第1マージン部721を除いて、第1導電層711が形成されている。第1マージン部721は、第1誘電体フィルム701が露出している部分である。第1マージン部721は、第1誘電体フィルム701の一方の長辺に沿って、第1導電層711よりも細い帯状に形成されている。
 一方、第2金属化フィルム72は、第1金属化フィルム71と同様に形成されている。すなわち、第2金属化フィルム72は、第2誘電体フィルム702と、第2導電層712と、を有する。第2誘電体フィルム702は、第1誘電体フィルム701と同じ幅を有する長尺状のフィルムである。第2誘電体フィルム702の片面に、第2マージン部722を除いて、第2導電層712が形成されている。第2マージン部722は、第2誘電体フィルム702が露出している部分である。第2マージン部722は、第2誘電体フィルム702の一方の長辺に沿って、第2導電層712よりも細い帯状に形成されている。
 第1誘電体フィルム701及び第2誘電体フィルム702は、例えばポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニルサルファイド又はポリスチレンなどで形成されている。第1導電層711及び第2導電層712は、蒸着法又はスパッタリング法などの方法で形成される。第1導電層711及び第2導電層712は、例えばアルミニウム、亜鉛及びマグネシウムなどで形成されている。
 次に図9Aに示すように、第1金属化フィルム71及び第2金属化フィルム72の各々の2つの長辺を揃えて重ねる。このとき第1導電層711と第2導電層712との間に、第1誘電体フィルム701又は第2誘電体フィルム702を介在させる。さらに第1マージン部721が形成されている長辺と、第2マージン部722が形成されている長辺と、を逆にする。このように、第1金属化フィルム71及び第2金属化フィルム72を重ねた状態で巻き取ることによって、円柱状の巻回体73を得ることができる。次にこの巻回体73の側面を両側から押圧して、扁平状巻回体74に加工する(図9B参照)。扁平状巻回体74の断面形状は、長円状をなしている。このように扁平化することで、省スペース化を図ることができる。
 以上のようにして、巻回型コンデンサ素子7が得られる。巻回型コンデンサ素子7の内部において、第1導電層711は第1内部電極となり、第2導電層712は第2内部電極となる。これらの一対の内部電極は、誘電体フィルム(第1誘電体フィルム701又は第2誘電体フィルム702)を介して対向している。
 ≪積層型コンデンサ素子≫
 一方、積層型コンデンサ素子8は、例えば、次のようにして製造することができる。まず金属化フィルムを用意する。具体的には、金属化フィルムには、第1金属化フィルム81及び第2金属化フィルム82が含まれる(図10A参照)。
 金属化フィルムは、誘電体フィルムと、導電層と、を有する。
 具体的には、第1金属化フィルム81は、第1誘電体フィルム801と、第1導電層811と、を有する。第1誘電体フィルム801は、矩形状のフィルムである。第1誘電体フィルム801の片面に、第1マージン部821を除いて、第1導電層811が形成されている。第1マージン部821は、第1誘電体フィルム801が露出している部分である。第1マージン部821は、第1誘電体フィルム801の1つの辺に沿って、第1導電層811よりも細い帯状に形成されている。
 一方、第2金属化フィルム82は、第1金属化フィルム81と同様に形成されている。すなわち、第2金属化フィルム82は、第2誘電体フィルム802と、第2導電層812と、を有する。第2誘電体フィルム802は、第1誘電体フィルム801と同じ大きさの矩形状のフィルムである。第2誘電体フィルム802の片面に、第2マージン部822を除いて、第2導電層812が形成されている。第2マージン部822は、第2誘電体フィルム802が露出している部分である。第2マージン部822は、第2誘電体フィルム802の1つの辺に沿って、第2導電層812よりも細い帯状に形成されている。
 第1誘電体フィルム801及び第2誘電体フィルム802は、例えばポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニルサルファイド又はポリスチレンなどで形成されている。第1導電層811及び第2導電層812は、蒸着法又はスパッタリング法などの方法で形成される。第1導電層811及び第2導電層812は、例えばアルミニウム、亜鉛及びマグネシウムなどで形成されている。
 次に図10A及び図10Bに示すように、第1金属化フィルム81及び第2金属化フィルム82の四辺を揃えて交互に重ねる。このとき第1導電層811と第2導電層812との間に、第1誘電体フィルム801又は第2誘電体フィルム802を介在させる。さらに第1マージン部821が形成されている一辺と、第2マージン部822が形成されている一辺と、を逆にする。図10Aでは、第1マージン部821を後方(X軸の負の向き)に、第2マージン部822を前方(X軸の正の向き)に配置している。このように、複数の第1金属化フィルム81及び第2金属化フィルム82を積層して一体化することによって、図10B及び図10Cに示すような積層体83を得ることができる。さらに積層体83は、前面(X軸の正の向きに向いている面)及び後面(X軸の負の向きに向いている面)を除いて、保護フィルム84で被覆されている。保護フィルム84は、電気的絶縁性を有するフィルムである。
 以上のようにして、積層型コンデンサ素子8が得られる。積層型コンデンサ素子8の内部において、第1導電層811は第1内部電極となり、第2導電層812は第2内部電極となる。これらの一対の内部電極は、誘電体フィルム(第1誘電体フィルム801又は第2誘電体フィルム802)を介して対向している。
 <外部電極>
 次に、外部電極2について説明する。図1に示すように、一対の外部電極2は、第1外部電極21及び第2外部電極22である。第1外部電極21及び第2外部電極22は、コンデンサ素子1の両端に設けられている。一対の外部電極2は、コンデンサ素子1の一対の内部電極の各々と電気的に接続されている。
 外部電極2は、例えば、メタリコン(金属溶射法)により形成することができる。メタリコンとしては、特に限定されないが、例えば、プラズマ溶射法、フレーム溶射法、及びアーク溶射法が挙げられる。
 外部電極2の材料は、特に限定されないが、例えば、亜鉛、スズ、銅、及びアルミニウムからなる群から選ばれた少なくとも1種の金属を含む。外部電極2は、亜鉛のみで形成されていてもよく、亜鉛とスズなどの他の金属との混合物によって形成されていてもよい。
 外部電極2の材料としては、融点の低い材料を使用することが好ましい。この場合、メタリコンによって外部電極2を形成する際に、熱によってコンデンサ素子1に不良が生じにくくなる。外部電極2の材料は、例えば700℃以下の融点を有することが好ましく、450℃以下の融点を有することがより好ましい。
 ここで、巻回型コンデンサ素子7の場合には、図9Bに示すように、メタリコンにより扁平状巻回体74の両端面に外部電極2(第1外部電極21及び第2外部電極22)を形成する。第1外部電極21は、第1導電層711(第1内部電極)に電気的に接続されている。第2外部電極22は、第2導電層712(第2内部電極)に電気的に接続されている。第1導電層711及び第2導電層712が一対の内部電極を構成している。
 一方、積層型コンデンサ素子8の場合には、図10Dに示すように、メタリコンにより積層体83の前面及び後面に外部電極2(第1外部電極21及び第2外部電極22)を形成する。第1外部電極21は、第1導電層811(第1内部電極)に電気的に接続されている。第2外部電極22は、第2導電層812(第2内部電極)に電気的に接続されている。第1導電層811及び第2導電層812が一対の内部電極を構成している。
 <バスバー>
 次に、バスバー9について説明する。図1に示すように、一対のバスバー9は、第1バスバー91及び第2バスバー92である。バスバー9は、外部電極2と電気的に接続されている。具体的には、第1バスバー91は、第1外部電極21と電気的に接続されている。第1バスバー91の一部は、外部に露出している。第2バスバー92は、第2外部電極22と電気的に接続されている。第2バスバー92の一部は、外部に露出している。
 バスバー9の材料は、特に限定されず、例えば、銅又は銅合金などが板状に形成されたものを用いることができる。
 バスバー9を外部電極2に接着する方法は、特に限定されず、例えば半田溶接、抵抗溶接、及び超音波溶接などによって接着する方法が挙げられる。
 <金属ラミネートフィルム>
 次に、金属ラミネートフィルム3について説明する。金属ラミネートフィルム3は、コンデンサ素子1の少なくとも一部を被覆する。本実施形態では、図1及び図2に示すように、金属ラミネートフィルム3は、コンデンサ素子1全体を被覆している。これにより、コンデンサ素子1の吸湿を抑制することができる。
 金属ラミネートフィルム3は、第1金属層51と第2金属層52とを有する。第1金属層51及び第2金属層52の材料は、特に限定されないが、例えば金属箔を用いることができる。金属箔の材料は、特に限定されないが、例えば、銅、アルミニウム、鉄、ステンレス鋼、マグネシウム、銀、金、ニッケル、及び白金を含む。第1金属層51と第2金属層52とは、同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。
 第1金属層51と第2金属層52とは互いに電気的に絶縁されている。第1金属層51と第2金属層52とを絶縁する方法は、特に限定されず、絶縁性フィルム及びプリプレグの硬化物等の適宜の材料を用いることができる。本実施形態では、後述するように、絶縁層6によって第1金属層51と第2金属層52とは絶縁されている。
 第1金属層51は、第1バスバー91と接着されていることが好ましい。第2金属層52は、第2バスバー92と接着されていることが好ましい。この場合、第1バスバー91と第1金属層51との隙間、及び第2バスバー92と第2金属層52との隙間から、水蒸気等のガス及び水分が侵入することを抑制しやすくなる。したがって、コンデンサ10の耐湿性をより高めることができる。
 第1金属層51と第1バスバー91とを接着する方法、及び第2金属層52と第2バスバー92とを接着する方法は、特に限定されず、例えば、溶接及びはんだ等の方法を用いればよい。
 コンデンサ10を側方から見た場合に、第1金属層51と第2金属層52とは重なっていることが好ましい。これにより、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。
 ここで、コンデンサ10の側方とは、軸線方向Rに対して垂直な方向を意味する。軸線方向Rとは、コンデンサ素子1の両端に設けられた第1外部電極21と第2外部電極22とを結ぶ仮想的な方向を意味する。コンデンサ素子1の側面とは、コンデンサ素子1の外周面、すなわち、軸線方向Rに対して垂直な方向と交差する面を意味する。
 第1金属層51と第2金属層52との重なり部分Lの距離は、5mm以上であることが好ましい。重なり部分Lの距離は、コンデンサ10の側方に位置する第1金属層51の端部と、コンデンサ10の側方に位置する第2金属層52の端部との軸線方向Rの距離である。重なり部分Lの距離が5mm以上であることで、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。重なり部分Lの距離は、10mm以上であることがより好ましい。
 特に好ましくは、第1金属層51が第1バスバー91と電気的に接続され、第2金属層52が第2バスバー92と電気的に接続され、コンデンサ10を側方から見た場合に第1金属層51と第2金属層52とが重なっていることである。これにより、コンデンサ10のESL(Equivalent Series Inductance:等価直列インダクタンス)を低減することができる。これは、コンデンサ素子1に電流が流れると磁界が変化し、この磁界の変化を打ち消す方向に第1金属層51及び第2金属層52が重なった箇所において磁界が発生し、発生した磁界によって誘導電流が流れることによるものと考えられる。
 金属ラミネートフィルム3は、少なくとも1つの絶縁層6を有することが好ましい。本実施形態では、金属ラミネートフィルム3は、3つの絶縁層6を有する。3つの絶縁層6は、第1絶縁層61、第2絶縁層62、及び第3絶縁層63である。第2絶縁層62は、第1金属層51と第2金属層52との間に介在している。このように、第2絶縁層62が、第1金属層51と第2金属層52とを互いに電気的に絶縁している。そのため、第1金属層51と第2金属層52との間の短絡を抑制することができる。さらに金属ラミネートフィルム3が少なくとも1つの絶縁層6を有することで、水蒸気などの水分及びガスをより透過させにくくなる。したがって、コンデンサ10の耐湿性を更に向上させることができる。
 本実施形態では、金属ラミネートフィルム3は、第1絶縁層61、第1金属層51、第2絶縁層62、第2金属層52、及び第3絶縁層63がこの順に積層されて形成されている。金属ラミネートフィルム3が3つの絶縁層6を有することで、短絡を抑制してコンデンサ10の電気的信頼性をより向上できるとともに、コンデンサ10に更に優れた耐湿性を付与することができる。
 上述の巻回型コンデンサ素子7及び積層型コンデンサ素子8をコンデンサ素子1として用いる場合、コンデンサ素子1の側面が絶縁性の保護フィルムで被覆されている場合がある。またコンデンサ素子1の最外層に位置する第1誘電体フィルム701,801が保護フィルムとして機能する場合がある。これらの場合には、保護フィルムが絶縁層6として機能するため、金属ラミネートフィルム3は、第1絶縁層61を有さなくてもよい。ただし、コンデンサ10の耐湿性をより向上させるという観点では、金属ラミネートフィルム3は、第1絶縁層61を有することが好ましい。
 絶縁層6の材料は、特に限定されないが、例えば、絶縁性フィルムを用いることができる。絶縁性フィルムの材料は、特に限定されないが、例えば、ポリエステル、ポリプロピレン、ポリアミド、ポリエチレン、及びナイロンを含む。絶縁層6は、ポリエステルフィルム、ポリプロピレンフィルム、及びナイロンフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムであることが好ましい。この場合、短絡を抑制してコンデンサ10の電気的信頼性をより向上できるとともに、コンデンサ10に更に優れた耐湿性を付与することができる。第1絶縁層61、第2絶縁層62、及び第3絶縁層63の材料は、同じであってもよく、異なっていてもよい。
 図3に金属ラミネートフィルム3の製造方法の一例を示す。金属ラミネートフィルム3は、例えば、第1絶縁ロール61a、第1金属ロール51a、第2絶縁ロール62a、第2金属ロール52a、及び第3絶縁ロール63aを用いて連続的に製造することができる。
 第1絶縁ロール61aは、長尺状の第1絶縁層61が巻き取られたものである。第1金属ロール51aは、長尺状の第1金属層51が巻き取られたものである。第2絶縁ロール62aは、長尺状の第2絶縁層62が巻き取られたものである。第2金属ロール52aは、長尺状の第2金属層52が巻き取られたものである。第3絶縁ロール63aは、長尺状の第3絶縁層63が巻き取られたものである。
 第1絶縁ロール61a、第1金属ロール51a、第2絶縁ロール62a、第2金属ロール52a、及び第3絶縁ロール63aから、第1絶縁層61、第1金属層51、第2絶縁層62、第2金属層52、及び第3絶縁層63を引き出しつつ、この順に積層して接着することにより、金属ラミネートフィルム3を製造することができる。金属ラミネートフィルム3は、適宜の大きさに切断して用いることができる。
 本実施形態では、第1絶縁層61、第1金属層51、第2絶縁層62、第2金属層52、及び第3絶縁層63の幅は同じである。図3に示すように、金属ラミネートフィルム3において、3つの絶縁層6(第1絶縁層61、第2絶縁層62、及び第3絶縁層63)の幅方向の両端は揃っている。さらに第1金属層51は、金属ラミネートフィルム3の幅方向一方側に突出し、第2金属層52は、金属ラミネートフィルム3の幅方向他方側に突出している。このように、第1金属層51及び第2金属層52が配置されていることで、第1金属層51及び第2金属層52の幅方向の端部をコンデンサ10の第1バスバー91及び第2バスバー92にそれぞれ容易に接着することができる。
 <コンデンサの製造方法>
 図4A~図4Cに、本実施形態に係るコンデンサ10の製造方法の第1例~第3例を示す。なお、コンデンサ10の製造方法は、第1例~第3例に限定されない。
 ≪第1例≫
 第1例では、図4Aに示すように、2枚の金属ラミネートフィルム3を用いる。すなわち、2枚の金属ラミネートフィルム3a,3bを用いてコンデンサ素子1を包み込む。コンデンサ素子1を2枚の金属ラミネートフィルム3a,3bを用いて挟み、金属ラミネートフィルム3a,3bの対向する面内の外周部610同士を接着することによって、コンデンサ素子1を封止する。このようにしてコンデンサ10が得られる。
 本実施形態では、図4Aに示すように、金属ラミネートフィルム3a,3bの第1絶縁層61のコンデンサ素子1側の面の外周部610同士を接着することによって、コンデンサ素子1を封止している。接着の方法としては、特に限定されないが、例えば、外周部610を熱接着する方法、及び外周部610に接着剤を塗布して接着する方法が挙げられる。金属ラミネートフィルム3a,3bの外周部610は、熱接着されることが好ましい。この場合、2枚の金属ラミネートフィルム3a,3bの界面から水蒸気等の水分及びガスが侵入することをより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。
 ≪第2例≫
 第2例では、図4Bに示すように、1枚の金属ラミネートフィルム3を用いる。すなわち、1枚の金属ラミネートフィルム3を用いてコンデンサ素子1を包み込む。コンデンサ素子1の側面を1枚の金属ラミネートフィルム3を用いて挟み、金属ラミネートフィルム3の対向する外周部610を接着することによって、コンデンサ素子1を封止することができる。このようにしてコンデンサ10が得られる。
 本実施形態では、図4Bに示すように、金属ラミネートフィルム3の第1絶縁層61のコンデンサ素子1側の面の外周部610を対向させて接着することによって、コンデンサ素子1を封止している。接着の方法は、第1例と同じである。
 ≪第3例≫
 第3例では、図4Cに示すように、3つのコンデンサ素子1、及び2枚の金属ラミネートフィルム3を用いる。すなわち、3つのコンデンサ素子1を2枚の金属ラミネートフィルム3で包み込む。具体的には、3つのコンデンサ素子1を軸線方向Rに垂直な方向に並べる。3つのコンデンサ素子1の軸線方向Rは平行である。そして、2枚の金属ラミネートフィルム3a,3bを用いて、3つのコンデンサ素子1を挟み、金属ラミネートフィルム3a,3bの対向する外周部610を接着することによって、3つのコンデンサ素子1を封止することができる。このようにしてコンデンサ10が得られる。なお、コンデンサ10が備えるコンデンサ素子1の数は、特に限定されない。
 本実施形態では、図4Cに示すように、金属ラミネートフィルム3a,3bの第1絶縁層61のコンデンサ素子1側の面の外周部610同士を接着することによって、コンデンサ素子1を封止している。接着の方法は、第1例と同じである。
 2.第2実施形態
 (1)概要
 図5に第2実施形態に係るコンデンサ10を示す。本実施形態に係るコンデンサ10は、コンデンサ素子1と、一対の外部電極2(第1外部電極21及び第2外部電極22)と、一対のバスバー9(第1バスバー91及び第2バスバー92)と、2枚の金属ラミネートフィルム3(第1金属ラミネートフィルム31及び第2金属ラミネートフィルム32)と、を備える。一対の外部電極2は、コンデンサ素子1の両端に設けられる。第1バスバー91は、第1外部電極21と電気的に接続される。第2バスバー92は、第2外部電極22と電気的に接続される。第1金属ラミネートフィルム31は、第1金属層51を有する。第1金属ラミネートフィルム31は、コンデンサ素子1の一部及び第1外部電極21を被覆する。第2金属ラミネートフィルム32は、第2金属層52を有する。第2金属ラミネートフィルム32は、コンデンサ素子1の一部及び第2外部電極22を被覆する。
 本実施形態に係るコンデンサ10は、第1実施形態に係るコンデンサ10と同様に、特許文献1に記載されているような外装ケース及び外装ケース内に充填されたモールド樹脂を備えていない。すなわち、コンデンサ10は、いわゆるケースレス構造を採用している。そのため、コンデンサ10は、少なくとも従来の外装ケースに相当する分だけ、軽量化を実現することができる。
 上述のように、本実施形態に係るコンデンサ10は、第1金属ラミネートフィルム31と、第2金属ラミネートフィルム32と、を備える。第1金属ラミネートフィルム31は、第1金属層51を有し、コンデンサ素子1の一部及び第1外部電極21を被覆する。第2金属ラミネートフィルム32は、第2金属層52を有し、コンデンサ素子1の一部及び第2外部電極22を被覆する。第1金属層51及び第2金属層52は、コンデンサ素子1の表面、第1外部電極21及び第2外部電極22に比べて、水蒸気などのガスを透過させにくい。そのため、コンデンサ素子1の表面の一部、第1外部電極21及び第2外部電極22を、第1金属ラミネートフィルム31及び第2金属ラミネートフィルム32を用いて被覆することで、コンデンサ素子1の吸湿を抑制しやすくなる。
 したがって、本実施形態に係るコンデンサ10は、優れた耐湿性を有することができる。
 (2)詳細
 以下、第2実施形態に係るコンデンサ10について、図5、図6、図7A~図7C、及び図8A~図8Cを参照して詳細に説明する。なお、第2実施形態では、第1実施形態と同様の構成要素には第1実施形態と同一の符号を付して詳細な説明を省略する場合がある。
 図6は、本実施形態に係るコンデンサ10の斜視図である。図5は、図6のX-X線断面図である。図7A~図7Cは、第1金属ラミネートフィルム31、第3金属ラミネートフィルム33、及び第2金属ラミネートフィルム32の製造方法をそれぞれ示す概略図である。図8A~図8Cは、コンデンサ10の製造方法を示す概略図である。
 本実施形態に係るコンデンサ10は、いわゆるケースレス構造を採用しており、特許文献1に記載されているような外装ケースを備えていない。つまり、コンデンサ10は、ケースレスコンデンサである。図5に示すように、コンデンサ10は、コンデンサ素子1と、一対の外部電極2(第1外部電極21及び第2外部電極22)と、一対のバスバー9(第1バスバー91及び第2バスバー92)と、第1金属ラミネートフィルム31と、第2金属ラミネートフィルム32と、を備える。図5に示すように、第1金属ラミネートフィルム31は、コンデンサ素子1の一部及び第1外部電極21を被覆する。第2金属ラミネートフィルム32は、コンデンサ素子1の一部及び第2外部電極22を被覆する。
 <金属ラミネートフィルム>
 本実施形態では、金属ラミネートフィルム3は、第1金属ラミネートフィルム31と、第2金属ラミネートフィルム32と、を含む。好ましくは、金属ラミネートフィルム3は、第3金属ラミネートフィルム33を更に含む。以下、第1金属ラミネートフィルム31、第2金属ラミネートフィルム32、及び第3金属ラミネートフィルム33について説明する。
 ≪第1金属ラミネートフィルム≫
 第1金属ラミネートフィルム31について説明する。第1金属ラミネートフィルム31は、コンデンサ素子1の一部及び第1外部電極21を被覆する。この場合のコンデンサ素子1の一部とは、コンデンサ素子1の軸線方向Rの一方側(第1外部電極21側)に位置する部分である。本実施形態では、図5及び図6に示すように、第1金属ラミネートフィルム31は、コンデンサ素子1の第1外部電極21側の側面の全周と第1外部電極21とを被覆する。すなわち、第1金属ラミネートフィルム31は、コンデンサ素子1と第1外部電極21との境界部を被覆する。第1外部電極21は、コンデンサ素子1の一方の端面にメタリコンにより形成されている。コンデンサ素子1と第1外部電極21との境界部には微小な隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、図5に示すように、第1金属ラミネートフィルム31によってこの境界部が被覆されていれば、コンデンサ10の耐湿性を向上させることができる。
 第1金属ラミネートフィルム31は、第1金属層51を有する。第1金属層51の材料は、特に限定されないが、例えば金属箔を用いることができる。金属箔の材料は、特に限定されないが、例えば、銅、アルミニウム、鉄、ステンレス鋼、マグネシウム、銀、金、ニッケル、及び白金を含む。
 第1金属層51は、第1バスバー91と接着されていることが好ましい。この場合、第1バスバー91と第1金属層51との隙間から水蒸気等のガス及び水分が侵入することを抑制しやすくなる。したがって、コンデンサ10の耐湿性をより高めることができる。
 第1金属層51と第1バスバー91とを接着する方法は、特に限定されず、例えば、溶接及びはんだ等の方法を用いればよい。
 第1金属ラミネートフィルム31は、少なくとも1つの絶縁層6を有することが好ましい。本実施形態では、図5に示すように、第1金属ラミネートフィルム31は、2つの絶縁層6を有する。2つの絶縁層6は、第1絶縁層61及び第2絶縁層62である。第1絶縁層61及び第2絶縁層62は、第1金属層51を挟みこんでいる。この場合、水蒸気などの水分及びガスをより透過させにくくなるため、コンデンサ10の耐湿性を向上させることができる。
 上述の巻回型コンデンサ素子7及び積層型コンデンサ素子8をコンデンサ素子1として用いる場合、コンデンサ素子1の側面が絶縁性の保護フィルムで被覆されている場合がある。またコンデンサ素子1の最外層に位置する第1誘電体フィルム701,801が保護フィルムとして機能する場合がある。これらの場合には、保護フィルムが絶縁層6として機能するため、第1金属ラミネートフィルム31は、第1絶縁層61を有さなくてもよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、第1金属ラミネートフィルム31は、第1絶縁層61を有することが好ましい。
 絶縁層6の材料は、第1実施形態の絶縁層6と同様である。特に絶縁層6(第1絶縁層61及び第2絶縁層62)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムであることが好ましい。この場合、コンデンサ10に更に優れた耐湿性を付与することができる。第1絶縁層61及び第2絶縁層62の材料は、同じであってもよく、異なっていてもよい。
 図7Aに第1金属ラミネートフィルム31の製造方法の一例を示す。第1金属ラミネートフィルム31は、例えば、第1絶縁ロール61a、第1金属ロール51a、及び第2絶縁ロール62aを用いて連続的に製造することができる。
 第1絶縁ロール61a、第1金属ロール51a、及び第2絶縁ロール62aから、第1絶縁層61、第1金属層51、及び第2絶縁層62を引き出しつつ、この順に積層して接着することにより、第1金属ラミネートフィルム31を製造することができる。第1金属ラミネートフィルム31は、適宜の大きさに切断して用いることができる。
 本実施形態では、第1絶縁層61、第1金属層51、及び第2絶縁層62の幅は同じである。図7Aに示すように、第1金属ラミネートフィルム31において、2つの絶縁層6(第1絶縁層61及び第2絶縁層62)の幅方向の両端は揃っている。さらに第1金属層51は、第1金属ラミネートフィルム31の幅方向一方側に突出している。このように、第1金属層51が配置されていることで、第1金属層51の幅方向の端部をコンデンサ10の第1バスバー91に容易に接着することができる。
 ≪第2金属ラミネートフィルム≫
 次に、第2金属ラミネートフィルム32について説明する。第2金属ラミネートフィルム32は、コンデンサ素子1の一部及び第2外部電極22を被覆する。この場合のコンデンサ素子1の一部とは、コンデンサ素子1の軸線方向Rの他方側(第2外部電極22側)に位置する部分である。本実施形態では、図5及び図6に示すように、第2金属ラミネートフィルム32は、コンデンサ素子1の第2外部電極22側の側面の全周と第2外部電極22とを被覆する。すなわち、第2金属ラミネートフィルム32は、コンデンサ素子1と第2外部電極22との境界部を被覆する。第2外部電極22は、コンデンサ素子1の他方の端面にメタリコンにより形成されている。コンデンサ素子1と第2外部電極22との境界部には微小な隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、図5に示すように、第2金属ラミネートフィルム32によってこの境界部が被覆されていれば、コンデンサ10の耐湿性を向上させることができる。
 第2金属ラミネートフィルム32は、第2金属層52を有する。第2金属層52の材料は、特に限定されないが、例えば、第1金属層51の材料と同様である。第1金属層51と第2金属層52とは、同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。
 第2金属層52は、第2バスバー92と接着されていることが好ましい。この場合、第2バスバー92と第2金属層52との隙間から水蒸気等のガス及び水分が侵入することを抑制しやすくなる。したがって、コンデンサ10の耐湿性をより高めることができる。
 第2金属層52と第2バスバー92とを接着する方法は、特に限定されず、例えば、溶接及びはんだ等の方法を用いればよい。
 第2金属ラミネートフィルム32は、少なくとも1つの絶縁層6を有することが好ましい。本実施形態では、図5に示すように、第2金属ラミネートフィルム32は、2つの絶縁層6を有する。2つの絶縁層6は、第3絶縁層63及び第4絶縁層64である。第3絶縁層63及び第4絶縁層64は、第2金属層52を挟み込んでいる。この場合、水蒸気などの水分及びガスをより透過させにくくなるため、コンデンサ10の耐湿性を向上させることができる。
 上述の巻回型コンデンサ素子7及び積層型コンデンサ素子8をコンデンサ素子1として用いる場合、コンデンサ素子1の側面が絶縁性の保護フィルムで被覆されている場合がある。コンデンサ素子1の最外層に位置する第1誘電体フィルム701,801が保護フィルムとして機能する場合がある。これらの場合には、保護フィルムが絶縁層6として機能するため、第2金属ラミネートフィルム32は、第3絶縁層63を有さなくてもよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、第2金属ラミネートフィルム32は、第3絶縁層63を有することが好ましい。
 第2金属ラミネートフィルム32の絶縁層6の材料は、第1金属ラミネートフィルム31の絶縁層6の材料と同様である。特に絶縁層6(第3絶縁層63及び第4絶縁層64)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムであることが好ましい。この場合、コンデンサ10に更に優れた耐湿性を付与することができる。第3絶縁層63及び第4絶縁層64の材料は、同じであってもよく、異なっていてもよい。
 好ましくは、図5に示すように、コンデンサ10において、第1金属層51と第2金属層52とは、接触していない。第1金属層51と第2金属層52とが接触していないことで、第1金属層51が第1バスバー91と接着され、第2金属層52が第2バスバー92と接着される場合においても、短絡を抑制することができる。
 第1金属層51の端部と第2金属層52の端部との距離L3は、5mm以上であることが好ましい。距離L3は、コンデンサ10の側方に位置する第1金属層51の端部と、コンデンサ10の側方に位置する第2金属層52の端部との軸線方向Rの距離である。距離L3が5mm以上であることで、第1金属層51と第2金属層52との短絡をより抑制しやすくなる。距離L3は、10mm以上であることがより好ましい。なお、第1金属層51と第2金属層52とが接触しなければ、第1金属ラミネートフィルム31の第1絶縁層61と、第2金属ラミネートフィルム32の第3絶縁層63とは接触していてもよい。
 図7Cに第2金属ラミネートフィルム32の製造方法の一例を示す。第2金属ラミネートフィルム32は、例えば、第3絶縁ロール63a、第2金属ロール52a、及び第4絶縁ロール64aを用いて連続的に製造することができる。第4絶縁ロール64aは、長尺状の第4絶縁層64が巻き取られたものである。
 第3絶縁ロール63a、第2金属ロール52a、及び第4絶縁ロール64aから、第3絶縁層63、第2金属層52、及び第4絶縁層64を引き出しつつ、この順に積層して接着することにより、第2金属ラミネートフィルム32を製造することができる。第2金属ラミネートフィルム32は、適宜の大きさに切断して用いることができる。
 本実施形態では、第3絶縁層63、第2金属層52、及び第4絶縁層64の幅は同じである。図7Cに示すように、第2金属ラミネートフィルム32において、2つの絶縁層6(第3絶縁層63及び第4絶縁層64)の幅方向の両端は揃っている。さらに第2金属層52は、第2金属ラミネートフィルム32の幅方向他方側に突出している。このように、第2金属層52が配置されていることで、第2金属層52の幅方向の端部をコンデンサ10の第2バスバー92に容易に接着することができる。
 ≪第3金属ラミネートフィルム≫
 次に、第3金属ラミネートフィルム33について説明する。第3金属ラミネートフィルム33は、コンデンサ素子1の一部を被覆する。この場合のコンデンサ素子1の一部とは、コンデンサ素子1において第1金属ラミネートフィルム31及び第2金属ラミネートフィルム32が被覆していない箇所を少なくとも含む部分である。この場合、水蒸気等のガス及び水分のコンデンサ素子1への侵入を抑制しやすくなるため、コンデンサ10の耐湿性をより高めることができる。第3金属ラミネートフィルム33は、コンデンサ素子1の側面を被覆することがより好ましい。
 第3金属ラミネートフィルム33は、第3金属層53を有する。第3金属層53の材料は、特に限定されないが、例えば、第1金属層51の材料と同様である。第3金属層53は、第1金属層51及び第2金属層52と同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。
 第3金属ラミネートフィルム33は、第1外部電極21及び第2外部電極22を被覆しないことが好ましい。この場合、コンデンサ10における短絡を抑制しやすくなる。ただし、第3金属ラミネートフィルム33が、後述する第5絶縁層65を有し、第3金属層53と第1外部電極21及び第2外部電極22とが絶縁される場合には、第3金属ラミネートフィルム33は、第1外部電極21の少なくとも一部及び第2外部電極22の少なくとも一部を被覆してもよい。
 第3金属ラミネートフィルム33は、少なくとも1つの絶縁層6を有することが好ましい。本実施形態では、図5に示すように、第3金属ラミネートフィルム33は、2つの絶縁層6を有する。2つの絶縁層6は、第5絶縁層65及び第6絶縁層66である。第5絶縁層65及び第6絶縁層66は、第3金属層53を挟み込んでいる。この場合、水蒸気などの水分及びガスをより透過させにくくなるため、コンデンサ10の耐湿性を向上させることができる。
 上述の巻回型コンデンサ素子7及び積層型コンデンサ素子8をコンデンサ素子1として用いる場合、コンデンサ素子1の側面が絶縁性の保護フィルムで被覆されている場合がある。コンデンサ素子1の最外層に位置する第1誘電体フィルム701,801が保護フィルムとして機能する場合がある。これらの場合には、保護フィルムが絶縁層6として機能するため、第3金属ラミネートフィルム33は、第5絶縁層65を有さなくてもよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、第3金属ラミネートフィルム33は、第5絶縁層65を有することが好ましい。
 第1金属ラミネートフィルム31が第1絶縁層61を有し、第2金属ラミネートフィルム32が第3絶縁層63を有する場合、第3金属ラミネートフィルム33は、第6絶縁層66を有さなくてもよい。ただし、コンデンサ10の耐湿性を向上させるという観点、及び短絡を抑制するという観点では、第3金属ラミネートフィルム33は、第6絶縁層66を有することが好ましい。
 第3金属ラミネートフィルム33の絶縁層6の材料は、第1金属ラミネートフィルム31の絶縁層6の材料と同様である。特に絶縁層6(第5絶縁層65及び第6絶縁層66)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムであることが好ましい。この場合、コンデンサ10に更に優れた耐湿性を付与することができる。第5絶縁層65及び第6絶縁層66の材料は同じであってもよく、異なっていてもよい。
 金属ラミネートフィルム3が第3金属ラミネートフィルム33を更に含む場合、コンデンサ10を側方から見たときに、第1金属層51の一部と第3金属層53の一部とが重なっていることが好ましい。これにより、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。
 第1金属層51と第3金属層53との重なり部分L1の距離は、5mm以上であることが好ましい。重なり部分L1の距離は、コンデンサ10の側方に位置する第1金属層51の端部と、第3金属層53の第1外部電極21側の端部との軸線方向Rの距離である。重なり部分L1の距離が5mm以上であることで、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。重なり部分L1の距離は、10mm以上であることがより好ましい。
 金属ラミネートフィルム3が第3金属ラミネートフィルム33を含む場合、コンデンサ10を側方から見たときに、第2金属層52の一部と第3金属層53の一部とが重なっていることが好ましい。これにより、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。
 第2金属層52と第3金属層53との重なり部分L2の距離は、5mm以上であることが好ましい。重なり部分L2の距離は、コンデンサ10の側方に位置する第2金属層52の端部と、第3金属層53の第2外部電極22側の端部との軸線方向Rの距離である。重なり部分L2の距離が5mm以上であることで、コンデンサ素子1の吸湿をより抑制することができる。したがって、コンデンサ10の耐湿性を更に向上させることができる。重なり部分L2の距離は、10mm以上であることがより好ましい。
 図7Bに第3金属ラミネートフィルム33の製造方法の一例を示す。第3金属ラミネートフィルム33は、例えば、第5絶縁ロール65a、第3金属ロール53a、及び第6絶縁ロール66aを用いて連続的に製造することができる。第5絶縁ロール65aは、長尺状の第5絶縁層65が巻き取られたものである。第3金属ロール53aは、長尺状の第3金属層53が巻き取られたものである。第6絶縁ロール66aは、長尺状の第6絶縁層66が巻き取られたものである。
 第5絶縁ロール65a、第3金属ロール53a、及び第6絶縁ロール66aから、第5絶縁層65、第3金属層53、及び第6絶縁層66を引き出しつつ、この順に積層して接着することにより、第3金属ラミネートフィルム33を製造することができる。第3金属ラミネートフィルム33は、適宜の大きさに切断して用いることができる。
 本実施形態では、第5絶縁層65、第3金属層53、及び第6絶縁層66の幅は同じである。図7Bに示すように、第3金属ラミネートフィルム33において、第5絶縁層65、第3金属層53、及び第6絶縁層66の幅方向の両端は揃っている。
 <コンデンサの製造方法>
 図8A~図8Cに、本実施形態に係るコンデンサ10の製造方法の第1例~第3例を示す。なお、コンデンサ10の製造方法は、第1例~第3例に限定されない。
 ≪第1例≫
 第1例では、図8Aに示すように、2枚の第1金属ラミネートフィルム31、2枚の第2金属ラミネートフィルム32、及び1枚の第3金属ラミネートフィルム33を用いる。
 まず第3金属ラミネートフィルム33でコンデンサ素子1の側面を被覆する。
 次に2枚の第1金属ラミネートフィルム31a,31bと、2枚の第2金属ラミネートフィルム32a,32bとを用いて、コンデンサ素子1の軸線方向Rの両側を包み込む。すなわち、2枚の第1金属ラミネートフィルム31a,31bを用いてコンデンサ素子1の軸線方向Rの第1外部電極21側の側面を挟み込む。そして、第1金属ラミネートフィルム31a,31bの対向する面内の外周部610同士を接着する。さらに第1金属ラミネートフィルム31a,31bの外周部610を、第3金属ラミネートフィルム33の軸線方向Rの第1外部電極21側の端部661に接着する。
 一方、2枚の第2金属ラミネートフィルム32a,32bを用いてコンデンサ素子1の軸線方向Rの第2外部電極22側の側面を挟み込む。そして、第2金属ラミネートフィルム32a,32bの対向する面内の外周部630同士を接着する。さらに第2金属ラミネートフィルム32a,32bの外周部630を、第3金属ラミネートフィルム33の軸線方向Rの第2外部電極22側の端部662に接着する。
 上記のようにして、金属ラミネートフィルム3でコンデンサ素子1を封止することができる。このようにしてコンデンサ10が得られる。
 本実施形態では、図8Aに示すように、第1金属ラミネートフィルム31a,31bの第1絶縁層61のコンデンサ素子1側の面の外周部610同士を接着している。また第2金属ラミネートフィルム32a,32bの第3絶縁層63のコンデンサ素子1側の面の外周部630同士を接着している。さらにコンデンサ素子1において第1金属ラミネートフィルム31及び第2金属ラミネートフィルム32が被覆していない箇所を第3金属ラミネートフィルム33が被覆している。これにより、コンデンサ素子1を封止している。接着の方法は、特に限定されないが、例えば、熱接着によって接着する方法、及び接着剤を塗布して接着する方法等を用いることができる。
 第1金属ラミネートフィルム31a,31bの外周部610は、熱接着されていることが好ましい。この場合、2枚の第1金属ラミネートフィルム31a,31bの界面から水蒸気等の水分及びガスが侵入することをより抑制することができ、コンデンサ10の耐湿性を更に向上させることができる。
 第2金属ラミネートフィルム32a,32bの外周部630は、熱接着されていることが好ましい。この場合、2枚の第2金属ラミネートフィルム32a,32bの界面から水蒸気等の水分及びガスが侵入することをより抑制することができ、コンデンサ10の耐湿性を更に向上させることができる。
 ≪第2例≫
 第2例では、図8Bに示すように、1枚の第1金属ラミネートフィルム31、1枚の第2金属ラミネートフィルム32、及び1枚の第3金属ラミネートフィルム33を用いる。
 まず第3金属ラミネートフィルム33でコンデンサ素子1の側面を被覆する。
 次に、1枚の第1金属ラミネートフィルム31と、1枚の第2金属ラミネートフィルム32とを用いて、コンデンサ素子1の軸線方向Rの両側を包み込む。すなわち、1枚の第1金属ラミネートフィルム31を用いてコンデンサ素子1の軸線方向Rの第1外部電極21側の側面を包み込む。そして、第1金属ラミネートフィルム31の対向する外周部610を接着する。さらに第1金属ラミネートフィルム31の外周部610を、第3金属ラミネートフィルム33の軸線方向Rの第1外部電極21側の端部661に接着する。
 一方、1枚の第2金属ラミネートフィルム32を用いてコンデンサ素子1の軸線方向Rの第2外部電極22側の側面を包み込む。そして、第2金属ラミネートフィルム32の対向する外周部630を接着する。さらに第2金属ラミネートフィルム32の外周部630を、第3金属ラミネートフィルム33の軸線方向Rの第2外部電極22側の端部662に接着する。
 上記のようにして、金属ラミネートフィルム3でコンデンサ素子1を封止することができる。このようにしてコンデンサ10が得られる。
 本実施形態では、図8Bに示すように、第1金属ラミネートフィルム31の第1絶縁層61のコンデンサ素子1側の面の外周部610同士を接着している。また第2金属ラミネートフィルム32の第3絶縁層63のコンデンサ素子1側の面の外周部630を接着している。さらにコンデンサ素子1において第1金属ラミネートフィルム31及び第2金属ラミネートフィルム32が被覆していない箇所を第3金属ラミネートフィルム33が被覆している。これにより、コンデンサ素子1を封止している。接着の方法は、特に限定されず、第1例と同様である。
 ≪第3例≫
 第3例では、図8Cに示すように、3つのコンデンサ素子1、2枚の第1金属ラミネートフィルム31、2枚の第2金属ラミネートフィルム32、及び3枚の第3金属ラミネートフィルム33を用いる。
 まず3つのコンデンサ素子1の側面をそれぞれ1枚の第3金属ラミネートフィルム33で被覆する。
 次に、3つのコンデンサ素子1を軸線方向Rに垂直な方向に並べる。3つのコンデンサ素子1の軸線方向Rは平行である。そして、2枚の第1金属ラミネートフィルム31a,31bと、2枚の第2金属ラミネートフィルム32a,32bとを用いて、3つのコンデンサ素子1の両側の端部を挟み込む。すなわち、第1金属ラミネートフィルム31a,31bの対向する外周部610同士を接着する。さらに第1金属ラミネートフィルム31a,31bの外周部610を、第3金属ラミネートフィルム33の軸線方向Rの第1外部電極21側の端部661に接着する。一方、第2金属ラミネートフィルム32a,32bの対向する外周部630同士を接着する。さらに第2金属ラミネートフィルム32a,32bの外周部630を、第3金属ラミネートフィルム33の軸線方向Rの第2外部電極22側の端部662に接着する。これにより、金属ラミネートフィルム3で3つのコンデンサ素子1を封止することができる。このようにしてコンデンサ10が得られる。なお、コンデンサ10が備えるコンデンサ素子1の数は、特に限定されない。
 3.変形例
 第1~2実施形態に係るコンデンサ10は、熱収縮チューブ(図示省略)を更に備えてもよい。熱収縮チューブは、コンデンサ素子1を被覆する。熱収縮チューブは、チューブ状に形成された樹脂部材であり、熱を加えると収縮する性質を有する。例えば、熱収縮チューブをコンデンサ10と同じ長さに切り取り、切り取った熱収縮チューブをコンデンサ10にはめて加熱することで、熱収縮チューブが収縮し、これによってコンデンサ10に熱収縮チューブを密着させることができる。熱収縮チューブの材質、厚み、及び大きさは、特に限定されず、コンデンサ10の大きさに合わせて任意のものを用いることができる。コンデンサ10が熱収縮チューブを備えることで、コンデンサ素子1の内部に水蒸気などの水分及びガスが侵入することを抑制しやすくなり、コンデンサ10はより優れた耐湿性を有しうる。なお、熱収縮チューブは、コンデンサ10の最外層に装着されることが好ましい。
 第1実施形態に係るコンデンサ10が熱収縮チューブを更に備える場合、金属ラミネートフィルム3は、第3絶縁層63を有さなくてもよい。この場合、熱収縮チューブがコンデンサ10の側面の第2金属層52を被覆していればよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、金属ラミネートフィルム3は、第3絶縁層63を有することが好ましい。
 第2実施形態に係るコンデンサ10が熱収縮チューブを更に備える場合、第1金属ラミネートフィルム31は、第2絶縁層62を有さなくてもよい。この場合、熱収縮チューブがコンデンサ10の側面の第1金属層51を被覆していればよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、第1金属ラミネートフィルム31は、第2絶縁層62を有することが好ましい。
 第2実施形態に係るコンデンサ10が熱収縮チューブを更に有する場合、第2金属ラミネートフィルム32は、第4絶縁層64を有さなくてもよい。この場合、熱収縮チューブがコンデンサ10の側面の第2金属層52を被覆していればよい。ただし、コンデンサ10の耐湿性を向上させるという観点では、第2金属ラミネートフィルム32は、第4絶縁層64を有することが好ましい。
 第1~2実施形態に係るコンデンサ10は、一対の外部電極2を被覆する樹脂封止材(図示省略)を更に備えてもよい。外部電極2を樹脂封止材で被覆することで、外部電極2による吸湿を抑制しやすくなる。
 樹脂封止材の材料は、特に限定されず、外部電極2よりも水蒸気などの水分及びガスを透過させにくい樹脂材料であればよい。例えば、樹脂封止材の材料として、エポキシ樹脂等の熱硬化性樹脂を用いることができる。この場合、バスバー9を外部電極2に接着した後に、このような樹脂材料を、外部電極2を被覆するように塗布して硬化させることによって樹脂封止材を形成することができる。その後、コンデンサ素子1を金属ラミネートフィルム3で被覆すればよい。樹脂封止材の材料として熱硬化性樹脂を用いる場合、熱硬化性樹脂の硬化温度は120℃以下であることが好ましい。この場合、プリプレグを硬化させる際の熱によるコンデンサ素子1への影響を小さくすることができる。なお、樹脂に無機充填材、公知の硬化剤、及び触媒など添加した樹脂組成物を用いて樹脂封止材を形成してもよい。
 第1~2実施形態に係るコンデンサ10は、一対の外部電極2を被覆する撥水層(図示省略)を更に備えてもよい。外部電極2を撥水層で被覆することで、外部電極2による吸湿を抑制しやすくなる。
 撥水層の材料は、特に限定されず、外部電極2よりも水蒸気などの水分及びガスを透過させにくい材料を用いて撥水層を形成すればよい。例えば、フッ素系及びシリコン系の撥水剤を用いて撥水層を形成することができる。この場合、バスバー9を外部電極2に接着した後に、外部電極2を被覆するように撥水剤を塗布して乾燥させることによって撥水層を形成することができる。その後、コンデンサ素子1を金属ラミネートフィルム3で被覆すればよい。
 4.態様
 上記実施形態から明らかなように、本開示は、下記の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
 第1の態様は、コンデンサ(10)であって、コンデンサ素子(1)と、前記コンデンサ素子(1)の両端に設けられた第1外部電極(21)及び第2外部電極(22)と、前記第1外部電極(21)と電気的に接続された第1バスバー(91)と、前記第2外部電極(22)と電気的に接続された第2バスバー(92)と、前記コンデンサ素子(1)の少なくとも一部を被覆する金属ラミネートフィルム(3)と、を備える。前記金属ラミネートフィルム(3)は、互いに絶縁された第1金属層(51)と第2金属層(52)とを有する。
 この態様によれば、軽量化を実現するとともに、優れた耐湿性を有するコンデンサ(10)を得ることができる。
 第2の態様は、第1の態様に基づくコンデンサ(10)である。第2の態様では、前記第1金属層(51)は、前記第1バスバー(91)と接着され、前記第2金属層(52)は、前記第2バスバー(92)と接着されている。
 この態様によれば、コンデンサ素子(1)による吸湿をより抑制しやすくなる。
 第3の態様は、第1又は第2の態様に基づくコンデンサ(10)である。第3の態様では、前記コンデンサ(10)を側方から見た場合に、前記第1金属層(51)と前記第2金属層(52)とは重なっている。
 この態様によれば、コンデンサ素子(1)の吸湿をより抑制しやすくなるとともに、コンデンサ(10)のESLを低減することができる。
 第4の態様は、第1~第3の態様のいずれか一つに基づくコンデンサ(10)である。第4の態様では、前記金属ラミネートフィルム(3)の外周部(610)は、熱接着されている。
 この態様によれば、コンデンサ素子(1)の吸湿をより抑制しやすくなる。
 第5の態様は、第1~第4の態様のいずれか一つに基づくコンデンサ(10)である。第5の態様では、前記金属ラミネートフィルム(3)は、少なくとも1つの絶縁層(6;61,62,63)を有する。
 この態様によれば、コンデンサ(10)の耐湿性を更に高めることができるとともに、第1金属層(51)と第2金属層(52)とを良好に絶縁することができ、短絡を抑制することができる。
 第6の態様は、第5の態様に基づくコンデンサ(10)である。第6の態様では、絶縁層(6;61,62,63)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁性フィルムである。
 この態様によれば、コンデンサ(10)の耐湿性を更に高めることができるとともに、第1金属層(51)と第2金属層(52)とを良好に絶縁することができる。
 第7の態様は、第1~第6の態様のいずれか一つに基づくコンデンサ(10)である。第7の態様では、前記金属ラミネートフィルム(3)は、前記コンデンサ素子(1)の一部及び前記第1外部電極(21)を被覆する第1金属ラミネートフィルム(31;31a,31b)と、前記コンデンサ素子(1)の一部及び前記第2外部電極(22)を被覆する第2金属ラミネートフィルム(32;32a,32b)と、を含む。前記第1金属ラミネートフィルム(31;31a,31b)は、第1金属層(51)を有する。前記第2金属ラミネートフィルム(32;32a,32b)は、第2金属層(52)を有する。
 この態様によれば、軽量化を実現するとともに、優れた耐湿性を有するコンデンサ(10)を得ることができる。
 第8の態様は、第7の態様に基づくコンデンサ(10)である。第8の態様では、前記第1金属ラミネートフィルム(31;31a,31b)及び前記第2金属ラミネートフィルム(32;32a,32b)の各々は、少なくとも1つの絶縁層(6;61,62,63,64)を有する。
 この態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第9の態様は、第8の態様に基づくコンデンサ(10)である。第9の態様では、前記絶縁層(6;61,62,63,64)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁性フィルムである。
 この態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第10の態様は、第7~第9の態様のいずれか一つに基づくコンデンサ(10)である。第10の態様では、前記金属ラミネートフィルム(3)は、前記コンデンサ素子(1)の一部を被覆する第3金属ラミネートフィルム(33)を更に備える。前記第3金属ラミネートフィルム(33)は、第3金属層(53)を有する。
 この態様によれば、コンデンサ素子(1)による吸湿をより抑制しやすくなる。
 第11の態様は、第10の態様に基づくコンデンサ(10)である。第11の態様では、前記第3金属ラミネートフィルム(33)は、前記第1外部電極(21)及び前記第2外部電極(22)を被覆しない。
 この態様によれば、短絡を抑制しやすくなる。
 第12の態様は、第10又は第11の態様に基づくコンデンサ(10)である。第12の態様では、前記第3金属ラミネートフィルム(33)は、少なくとも1つの絶縁層(6;65,66)を有する。
 この態様によれば、コンデンサ素子(1)による吸湿をより抑制しやすくなる。
 第13の態様は、第12の態様に基づくコンデンサ(10)である。第13の態様では、前記絶縁層(6;65,66)は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁性フィルムである。
 この態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第14の態様は、第10~第13の態様のいずれか一つに基づくコンデンサ(10)である。第14の態様では、前記コンデンサ(10)を側方から見た場合に、前記第1金属層(51)の一部と第3金属層(53)の一部とが重なり、第2金属層(52)の一部と第3金属層(53)の一部とが重なっている。
 この態様によれば、コンデンサ素子(1)による吸湿をより抑制しやすくなる。
 第15の態様は、第7~第14の態様のいずれか一つに基づくコンデンサ(10)である。第15の態様では、前記第1金属ラミネートフィルム(31;31a,31b)の外周部(610)の少なくとも一部は熱接着されている。
 この態様によれば、コンデンサ素子(1)の吸湿をより抑制しやすくなる。
 第16の態様は、第7~第15の態様のいずれか一つに基づくコンデンサ(10)である。第16の態様では、前記第2金属ラミネートフィルム(32;32a,32b)の外周部(630)の少なくとも一部は熱接着されている。
 この態様によれば、コンデンサ素子(1)の吸湿をより抑制しやすくなる。
 10 コンデンサ
 1 コンデンサ素子
 21 第1外部電極
 22 第2外部電極
 3;3a,3b 金属ラミネートフィルム
 31;31a,31b 第1金属ラミネートフィルム
 32;32a,32b 第2金属ラミネートフィルム
 33 第3金属ラミネートフィルム
 51 第1金属層
 52 第2金属層
 53 第3金属層
 6 絶縁層
 610,630 外周部
 91 第1バスバー
 92 第2バスバー

 


 

Claims (16)

  1.  コンデンサ素子と、
     前記コンデンサ素子の両端に設けられた第1外部電極及び第2外部電極と、
     前記第1外部電極と電気的に接続された第1バスバーと、
     前記第2外部電極と電気的に接続された第2バスバーと、
     前記コンデンサ素子の少なくとも一部を被覆する金属ラミネートフィルムと、を備え、
     前記金属ラミネートフィルムは、互いに絶縁された第1金属層と第2金属層とを有する、
     コンデンサ。
  2.  前記第1金属層は、前記第1バスバーと接着され、
     前記第2金属層は、前記第2バスバーと接着されている、
     請求項1に記載のコンデンサ。
  3.  前記コンデンサを側方から見た場合に、前記第1金属層と前記第2金属層とは重なっている、
     請求項1又は2に記載のコンデンサ。
  4.  前記金属ラミネートフィルムの外周部は、熱接着されている、
     請求項1~3のいずれか1項に記載のコンデンサ。
  5.  前記金属ラミネートフィルムは、少なくとも1つの絶縁層を有する、
     請求項1~4のいずれか1項に記載のコンデンサ。
  6.  前記絶縁層は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムである、
     請求項5に記載のコンデンサ。
  7.  前記金属ラミネートフィルムは、前記コンデンサ素子の一部及び前記第1外部電極を被覆する第1金属ラミネートフィルムと、前記コンデンサ素子の一部及び前記第2外部電極を被覆する第2金属ラミネートフィルムと、を含み、
     前記第1金属ラミネートフィルムは、第1金属層を有し、
     前記第2金属ラミネートフィルムは、第2金属層を有する、
     請求項1~6のいずれか1項に記載のコンデンサ。
  8.  前記第1金属ラミネートフィルム及び前記第2金属ラミネートフィルムの各々は、少なくとも1つの絶縁層を有する、
     請求項7に記載のコンデンサ。
  9.  前記絶縁層は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムである、
     請求項8に記載のコンデンサ。
  10.  前記金属ラミネートフィルムは、前記コンデンサ素子の一部を被覆する第3金属ラミネートフィルムを更に含み、
     前記第3金属ラミネートフィルムは、第3金属層を有する、
     請求項7~9のいずれか1項に記載のコンデンサ。
  11.  前記第3金属ラミネートフィルムは、前記第1外部電極及び前記第2外部電極を被覆しない、
     請求項10に記載のコンデンサ。
  12.  前記第3金属ラミネートフィルムは、少なくとも1つの絶縁層を有する、
     請求項10又は11に記載のコンデンサ。
  13.  前記絶縁層は、ポリエステルフィルム、ポリプロピレンフィルム、及びポリアミドフィルムからなる群から選ばれた少なくとも1種の絶縁フィルムである、
     請求項12に記載のコンデンサ。
  14.  前記コンデンサを側方から見た場合に、前記第1金属層の一部と前記第3金属層の一部とが重なり、前記第2金属層の一部と前記第3金属層の一部とが重なっている、
     請求項10~13のいずれか1項に記載のコンデンサ。
  15.  前記第1金属ラミネートフィルムの外周部の少なくとも一部は熱接着されている、
     請求項7~14のいずれか1項に記載のコンデンサ。
  16.  前記第2金属ラミネートフィルムの外周部の少なくとも一部は熱接着されている、
     請求項7~15のいずれか1項に記載のコンデンサ。
PCT/JP2020/007562 2019-03-26 2020-02-26 コンデンサ WO2020195464A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508833A JP7390559B2 (ja) 2019-03-26 2020-02-26 コンデンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-059465 2019-03-26
JP2019-059466 2019-03-26
JP2019059465 2019-03-26
JP2019059466 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195464A1 true WO2020195464A1 (ja) 2020-10-01

Family

ID=72608435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007562 WO2020195464A1 (ja) 2019-03-26 2020-02-26 コンデンサ

Country Status (2)

Country Link
JP (1) JP7390559B2 (ja)
WO (1) WO2020195464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043090A1 (ja) * 2022-08-25 2024-02-29 株式会社デンソー コンデンサ、および、コンデンサの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529855A (en) * 1975-07-14 1977-01-25 Matsushita Electric Ind Co Ltd Selffrestoring capacitor
JPS60154127U (ja) * 1984-03-26 1985-10-14 大日本印刷株式会社 電子部品パツケ−ジ用積層フイルム
JP2007019235A (ja) * 2005-07-07 2007-01-25 Shizuki Electric Co Inc 乾式コンデンサ
JP2014529192A (ja) * 2011-09-07 2014-10-30 エプコス アクチエンゲゼルシャフトEpcos Ag コンデンサデバイス
JP2016157755A (ja) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 金属化フィルムコンデンサ
WO2017163660A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 フィルムコンデンサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277101A (ja) 2004-03-24 2005-10-06 Nippon Chemicon Corp フィルムコンデンサ
JP5176919B2 (ja) 2008-12-09 2013-04-03 株式会社デンソー コンデンサ単素子、及びコンデンサモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529855A (en) * 1975-07-14 1977-01-25 Matsushita Electric Ind Co Ltd Selffrestoring capacitor
JPS60154127U (ja) * 1984-03-26 1985-10-14 大日本印刷株式会社 電子部品パツケ−ジ用積層フイルム
JP2007019235A (ja) * 2005-07-07 2007-01-25 Shizuki Electric Co Inc 乾式コンデンサ
JP2014529192A (ja) * 2011-09-07 2014-10-30 エプコス アクチエンゲゼルシャフトEpcos Ag コンデンサデバイス
JP2016157755A (ja) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 金属化フィルムコンデンサ
WO2017163660A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 フィルムコンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043090A1 (ja) * 2022-08-25 2024-02-29 株式会社デンソー コンデンサ、および、コンデンサの製造方法

Also Published As

Publication number Publication date
JP7390559B2 (ja) 2023-12-04
JPWO2020195464A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5835433B2 (ja) フィルム外装電気デバイス
US9190650B2 (en) Electric storage element
JP4946618B2 (ja) ケースモールド型コンデンサ
KR20110021731A (ko) 전기화학 디바이스
JP7217404B2 (ja) コンデンサ
JP7083419B2 (ja) ケースレスフィルムコンデンサ
WO2020195464A1 (ja) コンデンサ
TWI758541B (zh) 電化學元件
JP7077081B2 (ja) 電気化学素子
WO2022118616A1 (ja) コンデンサ及びその製造方法
JP7058526B2 (ja) 電気化学素子
JP7300637B2 (ja) ケースレスフィルムコンデンサの製造方法
JP7442143B2 (ja) コンデンサ
KR20170052547A (ko) 전지
JP2018181447A (ja) 電気化学素子
JP6817143B2 (ja) ラミネート形電池
JP7171351B2 (ja) ラミネート型二次電池及びその製造方法
JP2019067750A (ja) 電気化学素子
JP2010067423A (ja) 蓄電デバイス
JP2002008599A (ja) 電磁シールドされた組電池
JP3185739B2 (ja) 高圧用フィルムコンデンサ
JP2021132166A (ja) コンデンサ
JP2536242Y2 (ja) 複合コンデンサ
JP2021132165A (ja) コンデンサ
JP2022114282A (ja) 電池及び電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779130

Country of ref document: EP

Kind code of ref document: A1